US20100062420A1 - Type I interferon-inducible proteins to detect viral infection - Google Patents
Type I interferon-inducible proteins to detect viral infection Download PDFInfo
- Publication number
- US20100062420A1 US20100062420A1 US12/590,479 US59047909A US2010062420A1 US 20100062420 A1 US20100062420 A1 US 20100062420A1 US 59047909 A US59047909 A US 59047909A US 2010062420 A1 US2010062420 A1 US 2010062420A1
- Authority
- US
- United States
- Prior art keywords
- protein
- animal
- level
- interferon
- expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 137
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 135
- 208000036142 Viral infection Diseases 0.000 title claims abstract description 55
- 230000009385 viral infection Effects 0.000 title claims abstract description 55
- 241001465754 Metazoa Species 0.000 claims abstract description 120
- 241000700605 Viruses Species 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 26
- 201000010099 disease Diseases 0.000 claims abstract description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 21
- 230000000813 microbial effect Effects 0.000 claims abstract description 4
- 238000012360 testing method Methods 0.000 claims description 56
- 241000894007 species Species 0.000 claims description 17
- 102000007445 2',5'-Oligoadenylate Synthetase Human genes 0.000 claims description 6
- 108010086241 2',5'-Oligoadenylate Synthetase Proteins 0.000 claims description 6
- 102100027266 Ubiquitin-like protein ISG15 Human genes 0.000 claims description 6
- 101710087750 Ubiquitin-like protein ISG15 Proteins 0.000 claims description 6
- 102000015736 beta 2-Microglobulin Human genes 0.000 claims description 6
- 108010081355 beta 2-Microglobulin Proteins 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 241000124008 Mammalia Species 0.000 claims description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 5
- 241000283086 Equidae Species 0.000 claims description 4
- 241000283690 Bos taurus Species 0.000 claims description 3
- 241001494479 Pecora Species 0.000 claims description 3
- 108020004999 messenger RNA Proteins 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 235000002198 Annona diversifolia Nutrition 0.000 claims description 2
- 241000283707 Capra Species 0.000 claims description 2
- 241000282838 Lama Species 0.000 claims description 2
- 238000000636 Northern blotting Methods 0.000 claims description 2
- 241000283089 Perissodactyla Species 0.000 claims description 2
- 241001493546 Suina Species 0.000 claims description 2
- 210000001124 body fluid Anatomy 0.000 claims description 2
- 238000007398 colorimetric assay Methods 0.000 claims description 2
- 101000959820 Homo sapiens Interferon alpha-1/13 Proteins 0.000 claims 5
- 102100040019 Interferon alpha-1/13 Human genes 0.000 claims 5
- 238000004458 analytical method Methods 0.000 claims 2
- 241000282898 Sus scrofa Species 0.000 claims 1
- 238000003752 polymerase chain reaction Methods 0.000 claims 1
- 239000000523 sample Substances 0.000 description 20
- 230000003612 virological effect Effects 0.000 description 10
- 208000015181 infectious disease Diseases 0.000 description 8
- 238000003556 assay Methods 0.000 description 6
- 102000014150 Interferons Human genes 0.000 description 5
- 108010050904 Interferons Proteins 0.000 description 5
- 229940079322 interferon Drugs 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 102000002227 Interferon Type I Human genes 0.000 description 3
- 108010014726 Interferon Type I Proteins 0.000 description 3
- 210000000416 exudates and transudate Anatomy 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 244000144980 herd Species 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000035935 pregnancy Effects 0.000 description 3
- 238000003307 slaughter Methods 0.000 description 3
- 241000283153 Cetacea Species 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 208000007212 Foot-and-Mouth Disease Diseases 0.000 description 2
- 241000283080 Proboscidea <mammal> Species 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 210000002249 digestive system Anatomy 0.000 description 2
- 244000144992 flock Species 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241001466804 Carnivora Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 241001115402 Ebolavirus Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282821 Hippopotamus Species 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 241000283953 Lagomorpha Species 0.000 description 1
- 241000283960 Leporidae Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000428199 Mustelinae Species 0.000 description 1
- 241000283203 Otariidae Species 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 241000283216 Phocidae Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000282806 Rhinoceros Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000555745 Sciuridae Species 0.000 description 1
- 241000282458 Ursus sp. Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003756 cervix mucus Anatomy 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 208000009724 equine infectious anemia Diseases 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000007422 luminescence assay Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 210000003281 pleural cavity Anatomy 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 210000002229 urogenital system Anatomy 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56983—Viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/566—Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
- G01N33/567—Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds utilising isolate of tissue or organ as binding agent
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/005—Assays involving biological materials from specific organisms or of a specific nature from viruses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
- G01N2333/916—Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)
Definitions
- the invention pertains to the field of diagnostic tests to determine whether an individual is infected with a virus. More specifically, the invention pertains to the field of diagnostic tests to determine whether an asymptomatic individual who is not clinically ill or known to be infected with a virus has been infected with a virus.
- the viral infection status of animals is not known before shipping. Yet, knowledge of the viral-infection status of asymptomatic shipped animals is probably the most critical aspect in preventing disease outbreaks. There is a critical need for a means for determining viral infection status of animals before they are shipped.
- Mx proteins are monomeric GTPases, which, depending on the species of animal and type of virus, are potent inhibitors of viral replication (Samuel, Virology 183:1-11 (1991)).
- the sequences of Mx proteins from various species, including sheep, cattle, pigs, and horses, are publicly available through GenBank and have been assigned GenBank Accession numbers X66093, U88329, M65087, and U55216, respectively.
- RNA viruses e.g. orthormyxovirus
- Mx protein does not primarily respond to viral infections, but rather is secondarily induced in response to an elevation in virus-induced IFN. Bazzigher, L., et al., Virology, 186:154-160 (1992). Elevations in Mx protein are present in both acute and chronic viral infections. Fernandez, M., et al., J. Infectious Diseases, 180:262-267 (1999). Induction of Mx protein has been used with patients suffering from an infection to determine whether the illness was due to a viral or bacterial infection.
- Mx protein has also been used as a marker for interferon production to determine the response to vaccination. Roers, A., et al., J. Infectious Diseases, 169:807-813 (1994). It has also been reported that Mx protein levels are elevated in illnesses due to autoimmunity. Rump, J A, Clin. Exp. Immunol., 101:89-93 (1995).
- the prior art thus discloses elevation in levels of Mx protein in patients showing signs of a disease or in subjects that were known to be exposed to a virus or to a vaccine. There is no indication in the prior art that Mx protein determination may be useful as a diagnostic tool in an animal free of signs of a viral disease, which animal has not recently been knowingly exposed to a virus or been recently vaccinated.
- the invention is a method for determining the presence of a viral infection in an animal.
- the animal is not known to have been infected with a virus or other disease-causing microbial organism and, preferably the animal is not showing any clinical signs consistent with a viral infection.
- the level of Mx protein in the animal is determined and compared to that of animals of the same species known to be virus-free.
- a level of Mx protein in a subject animal above that which is found in animals of the same species that are known to be free of viral infection indicates the presence of a viral infection in that subject animal.
- Detection of viral infection by the method of the invention is facilitated by the fact that Mx levels are very low in uninfected, non-pregnant animals or humans and Mx levels are very high for several weeks following infection. Typically, animal producers quarantine new arrivals for a period of time to determine of symptoms of disease will be present.
- the test according to the method of the invention provides an indication as to whether a newly arrived animal has experienced a viral infection during the period of 3 to 4 weeks prior to arrival as the evidence of infection typically lingers for 3 to 4 weeks post-infection.
- the level of Mx protein in the animal is compared to that of animals of the same species known to be virally infected.
- a level of Mx protein in the animal being tested lower than that found in virally infected animals of the same species indicates the absence of viral infection in the subject animal.
- the invention is a kit for determining the presence or absence of viral infection in a subject animal.
- the kit contains a receptacle for holding a test sample, one or more reagents which when combined with the test sample enable an operator to visually determine the level of Mx protein in the test sample, and instructions for determining the level of Mx protein in the sample.
- the instructions further indicate how to determine the presence or absence of a viral infection in an animal based upon the level of Mx protein in the test sample.
- the invention is a method for determining the presence of a viral infection in an animal.
- the animal is not known to have been infected with a virus or other disease-causing microbial organism and, preferably the animal is not showing any clinical signs consistent with a viral infection.
- the level of a Type I Interferon-inducible protein in the animal is determined and compared to that of animals of the same species known to be virus-free. A level of the protein in a subject animal above that which is found in animals of the same species that are known to be free of viral infection indicates the presence of a viral infection in that subject animal.
- the level of a Type I Interferon-inducible protein in the animal is compared to that of animals of the same species known to be virally infected. A level of the protein in the animal being tested lower than that found in virally infected animals of the same species indicates the absence of viral infection in the subject animal.
- the invention is a kit for determining the presence or absence of viral infection in a subject animal.
- the kit contains a receptacle for holding a test sample, one or more reagents which when combined with the test sample enable an operator to visually determine the level of a Type I Interferon-inducible protein in the test sample, and instructions for determining the level of the protein in the sample.
- the instructions further indicate how to determine the presence or absence of a viral infection in an animal based upon the level of this protein in the test sample.
- a first embodiment of the invention is a method for determining the viral infection status of an animal.
- a biologic sample is obtained from a test animal and the level of Mx protein expression in the animal is determined by determining the level of Mx protein or of an indicator of Mx protein expression in the sample.
- the level of Mx protein expression in the test animal is compared with that of a control animal of the same species, wherein the infection status of the control animal is known.
- the viral infection status of the test animal is determined by this comparison.
- the invention is a method for determining the viral infection status of an animal by obtaining a biological sample from a test animal and determining the level of expression of a Type I Interferon-inducible protein or of an indicator of expression of the protein in the sample.
- the level of the protein in the test animal is compared with that of a control animal of the same species, wherein the infection status of the control animal is known.
- the viral infection status of the test animal is determined by this comparison.
- any Type I Interferon-inducible protein that is elevated in the presence of viral infection is suitable for the present invention.
- the Type I Interferon-inducible protein is one of the following proteins: 2′,5′ oligoadenylate synthetase, ⁇ 2-microglobulin, IFN regulatory factor 1, ubiquitin cross-reactive protein (also known as “interferon stimulated gene factor 17” (“ISG-17”)).
- ISG-17 ubiquitin cross-reactive protein
- the Type I inducible protein other than Mx protein is ISG-17.
- Mx protein The following description of the invention, including the Examples, is illustrated by Mx protein. However, it is to be understood that this description is applicable to other Type I Interferon-inducible proteins, collectively and individually, including the proteins listed in the preceding paragraph.
- Mx protein may be interpreted as being “Mx protein or other Type I Interferon-inducible protein”.
- a reference in the claims to Mx protein means Mx protein only
- a reference in the claims to Type I Interferon-inducible proteins includes Mx protein
- a reference in the claims to Type I Interferon-inducible proteins other than Mx protein excludes Mx protein.
- the animal that is tested may be of any species that produces an increase in Mx protein, or other Type I Interferon-inducible protein, either directly or indirectly in response to a viral infection.
- Animals suitable for the method of the invention include vertebrates, such as mammals, reptiles, amphibians, birds, and fish.
- primates such as humans, monkeys and apes
- perissodactyla such as horses and rhinoceros
- artiodactyla such as pigs, cattle, sheep, goats, camels, llamas, and hippopotamus
- the biologic sample that is obtained may be any bodily fluid or tissue in which the level of Mx protein, or other Type I Interferon-inducible protein, is elevated, either directly or indirectly, in response to a viral infection.
- Suitable fluids may vary depending on the type of animal to be tested but generally include fluids such as milk, saliva, urine, or nasal, ocular, or vaginal secretions, or whole blood, plasma, or serum. Fluids may also include those that are produced as part of a pathologic process such as exudates or transudates, such as from the skin, the pleural or peritoneal cavity, the oral cavity, or from the digestive, respiratory, or genital system. Examples of tissues that are suitable include blood cells, biopsy samples, skin, and cellular exudates such as from the oral cavity, the genitourinary, respiratory, or digestive systems.
- the biologic sample is preferably obtained from the test animal during the time following exposure to a virus which is sufficiently late so that the animal will express increased levels of Mx protein, or other Type I Interferon-inducible protein, but which is not so late that the animal will no longer be expressing increased levels of Mx protein or other Type I Interferon-inducible protein in response to the viral infection.
- the time of testing is immaterial because, generally, it is not known whether or not the test animal has been exposed to a virus. Consequently, the preferred time for testing will not be capable of determination.
- the date of testing should be sufficiently after the suspected date so that the increased expression of Mx protein or other Type I Interferon-inducible protein will have occurred. This date will vary depending upon the species of animal and upon the virus that is suspected to have infected the test animal.
- the level of Mx protein or other Type I Interferon-inducible protein expression in the sample may be determined by any method that permits this determination to be made. Suitable methods include detecting the Mx protein itself, such as by ELISA test, an assay based on Mx protein function, or a Western blot. Suitable methods also include detecting increased levels of Mx or other Type I Interferon inducible protein mRNA, such as by Northern blot, slot blot, or PCR.
- the level of Mx, or other Type I Interferon-inducible, protein expression is determined by detecting the level of Mx protein, or other Type I Interferon-inducible protein, present in a sample by a colorimetric assay based, for example, on the binding of an antibody to the Mx protein, similarly to the methods that are used in human home pregnancy diagnostic kits.
- the level of Mx protein, or other Type I Interferon-inducible protein, expression in the test animal is compared to the level of Mx protein, or other Type I Interferon-inducible protein, expression in a control animal of the same species of which the viral infection status is known.
- the control animal is one that is not infected with a virus and is not in an early stage of pregnancy and that, therefore, has a baseline low level of Mx protein, or other Type I Interferon-inducible protein, expression.
- the control animal is an historic control.
- a negative test result is one in which the level of Mx protein, or other Type I Interferon-inducible protein, expression in the test animal is not significantly elevated above that of the control.
- the negative test result in this situation indicates lack of viral infection in the test animal.
- a level of Mx protein, or other Type I Interferon-inducible protein, expression that is significantly elevated above that of the control is a positive test result that indicates that the test animal is infected with a virus.
- a “significant elevation in level of Mx protein expression, or other Type I Interferon-inducible protein expression, above that of a control” is a level of Mx protein that is at least two times that present in a non-infected animal.
- Mx protein is not expressed in the absence of a viral infection. In these animals, any level of Mx protein that is detected is considered to be a significant elevation.
- one or more Type I Interferon-inducible proteins other than Mx protein are not expressed in the absence of a viral infections. Thus, any level of such protein that is detected is considered to be a significant elevation.
- a negative test result is one in which the level of Mx protein expression in the test animal is not significantly lower than that of the control.
- a viral positive control animal may be utilized with a Type I Interferon-inducible protein other than Mx protein.
- the negative test result in this situation indicates that the test animal is infected with a virus.
- a level of Mx protein, or other Type I Interferon-inducible protein, expression that is significantly lower than that of the control is a positive test result that indicates that the test animal is free of viral infection.
- Mx protein as well as one or more other Type I Interferon-inducible proteins, may be elevated in some species of animals during pregnancy and in the presence of an autoimmune disease. The presence of either of these conditions may lead to a false positive result, that is an elevation in Mx protein, or other Type I Interferon-inducible protein, that would otherwise indicate a viral infection.
- the kit of the invention is preferably based on an enzyme linked assay (ELISA), such as what is known as an “immunometric” or “sandwich” assay.
- ELISA enzyme linked assay
- Such an assay involves “sandwiching” a ligand (such as an antigen) with two or more receptor molecules (such as antibodies) which complex with the ligand in a non-interfering manner and at different epitopic sites. Examples of such assays are described in David et al., U.S. Pat. No. 4,486,530.
- the kit may be based on chemiluminescence assays, enhanced luminescence assays, and radioimmunoassays.
- the kit includes a package, which package houses a test surface, such as a slide or multiple test wells, that is bound to an antibody that will bind to an epitope of the protein of interest, such as Mx protein, a container housing a second antibody that will bind to a second epitope of the protein, which second antibody is labeled, a container housing a standard sample having a baseline concentration of the protein, a reagent that when contacted to the labeled second antibody permits the relative amount of the protein present to be visualized, and instructions for use of the kit to determine whether a test sample contains an amount of Mx protein indicative of virally-infected or uninfected status.
- a test surface such as a slide or multiple test wells
- the kit of the invention for determining viral infection status by determining the relative level of Mx protein, or other Type I Interferon-inducible protein, in a test sample compared to a control may be formulated in many different ways, which ways will be apparent to those skilled in the art upon reading the description herein. It is intended that these various formulations of the kit of the invention are included in the invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Virology (AREA)
- Cell Biology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Tropical Medicine & Parasitology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
A method for determining the presence of a viral infection in an animal not known to have been infected with a virus or other disease-causing microbial organism by determining the level of Mx protein or other Type I Interferon-inducible protein in the animal.
Description
- This application claims priority from pending U.S. patent application Ser. No. 10/441,418, filed May 19, 2003.
- The invention pertains to the field of diagnostic tests to determine whether an individual is infected with a virus. More specifically, the invention pertains to the field of diagnostic tests to determine whether an asymptomatic individual who is not clinically ill or known to be infected with a virus has been infected with a virus.
- Throughout the world, animals are routinely being shipped from farm to farm. Animals are also regularly imported or exported across state and national borders. Although these animals may appear clinically healthy with no signs of disease, the possibility exists that many of these animals may harbor potentially serious viral infections. Such animals may later become ill with a disease. More seriously from an economic point of view is that many asymptomatic carriers of viral infections may never show signs of disease but yet will continue to shed virus to other animals of a herd or flock. These asymptomatic carriers of viral infections, upon being introduced into a new herd or flock, present a significant risk of infection to the other animals in their new environment.
- At present, there are a small number of tests that are routinely performed on apparently healthy animals to ensure that they will not present a threat in their new surroundings. Most notable of these tests is the Coggins test which is performed on horses prior to shipping to ensure that the horse is not infected with Equine Infectious Anemia, a disease which is transmitted from one horse to another by blood sucking insects. Such tests, however, are specific for particular viral diseases and, even if it were possible, it would be economically and physically impractical to test animals for every known viral disease prior to shipping. Moreover, tests are unavailable for the detection of most viral diseases.
- Accordingly, the viral infection status of animals is not known before shipping. Yet, knowledge of the viral-infection status of asymptomatic shipped animals is probably the most critical aspect in preventing disease outbreaks. There is a critical need for a means for determining viral infection status of animals before they are shipped.
- Knowledge of viral infection status is also critical in the case of an existing outbreak of disease. In recent years several outbreaks of highly contagious viral diseases have occurred. Most notable among these is the foot-and-mouth disease (FMD) outbreak that began in 2001 in England. This outbreak affected thousands of farms and thousands of animals were found to be infected with the FMD virus.
- In outbreaks like these, which are typically due to viruses, animals that are suspected of having been infected with the virus are slaughtered in order to control the disease. The slaughtered animals are then tested to determine if they did, indeed, harbor the virus. Because asymptomatic animals from the farm of the virus-positive animal may have been exposed to the virus, these other animals are likewise destroyed.
- This slaughter of asymptomatic, possibly exposed animals is done as a precaution because there presently are insufficient tests to determine whether the animals have been infected. In a great many of the cases, it is possible that most if not all of the slaughtered animals were not infected, and so truly posed no danger of spreading the disease. Unfortunately, because of the lack of definitive testing to determine whether or not the animals are virally infected, the slaughter program is a necessary step towards preventing the further spread of the virus.
- In addition to the lamentable and unnecessary loss of animal life, such non-discriminating slaughter programs are extremely disruptive to the farmer who loses all of his livestock and to the agricultural economy of the region or the country. Moreover, the costs of such slaughter programs are high and include compensation of the farms for the destruction of the animals. Such compensation, however, is typically insufficient to truly recompense the farmer as it often takes several years to rebuild a lost herd and to make the farm economically viable once more.
- A significant need exists for a method to screen asymptomatic animals suspected of being infected with a virus to determine whether or not the animals are infected.
- A similar need exists relating to the movement of people throughout the world. In the world of today, people move from one country to the next with little or no knowledge as to whether or not people are harboring potentially lethal viral infections. Although it may never be practical to routinely test all people for infection before travel, if a test for viral infection existed, people that are traveling from a country that is experiencing an outbreak of a viral disease could be tested. Such testing could be used, for example in the case of ebola virus, to prevent the spread of the terrible disease caused by this virus to countries where the virus does not presently exist. Accordingly, as with animals, a significant need exists for a test that can be used to determine viral-infection status in humans.
- Mx proteins are monomeric GTPases, which, depending on the species of animal and type of virus, are potent inhibitors of viral replication (Samuel, Virology 183:1-11 (1991)). The sequences of Mx proteins from various species, including sheep, cattle, pigs, and horses, are publicly available through GenBank and have been assigned GenBank Accession numbers X66093, U88329, M65087, and U55216, respectively. Although the antiviral effects of Mx are generally directed against negative-stranded RNA viruses (e.g. orthormyxovirus), their expression is induced in all cells that possess Type I interferon (IFN) receptors.
- It has been reported that the gene for Mx protein does not primarily respond to viral infections, but rather is secondarily induced in response to an elevation in virus-induced IFN. Bazzigher, L., et al., Virology, 186:154-160 (1992). Elevations in Mx protein are present in both acute and chronic viral infections. Fernandez, M., et al., J. Infectious Diseases, 180:262-267 (1999). Induction of Mx protein has been used with patients suffering from an infection to determine whether the illness was due to a viral or bacterial infection. Halminen, M, et al., Pediatric Research, 41(5):647-650 (1997); Forster, J., et al., Acta Paediatr., 85:163-167 (1996); Chieux V., J. Virological Methods, 70:183-191 (1998), and Haller et al., Rev. Sci. Tech. 17:220-230 (1998), and U.S. Pat. Nos. 5,198,350 (Horisberger) and 6,180,102 (Hanai). Determinations of Mx protein have been utilized as a method for determining levels of interferon in patients known to be suffering from an infectious disease. U.S. Pat. No. 6,200,559 (von Wussow); von Wussow, P., et al., AIDS, 4(2):119-124 (1990), Nieforth, K A, et al., Clinical Pharmacology & Therapeutics, 59(6):636-646 (1996); and Oh, S K, J. Immunological Methods, 176:79-91 (1994). Mx protein has also been used as a marker for interferon production to determine the response to vaccination. Roers, A., et al., J. Infectious Diseases, 169:807-813 (1994). It has also been reported that Mx protein levels are elevated in illnesses due to autoimmunity. Rump, J A, Clin. Exp. Immunol., 101:89-93 (1995).
- The prior art thus discloses elevation in levels of Mx protein in patients showing signs of a disease or in subjects that were known to be exposed to a virus or to a vaccine. There is no indication in the prior art that Mx protein determination may be useful as a diagnostic tool in an animal free of signs of a viral disease, which animal has not recently been knowingly exposed to a virus or been recently vaccinated.
- It has been discovered that Mx protein is useful as a screening parameter for detection of viral infection in animals. In one embodiment, the invention is a method for determining the presence of a viral infection in an animal. According to this embodiment, the animal is not known to have been infected with a virus or other disease-causing microbial organism and, preferably the animal is not showing any clinical signs consistent with a viral infection. The level of Mx protein in the animal is determined and compared to that of animals of the same species known to be virus-free. A level of Mx protein in a subject animal above that which is found in animals of the same species that are known to be free of viral infection indicates the presence of a viral infection in that subject animal.
- Detection of viral infection by the method of the invention is facilitated by the fact that Mx levels are very low in uninfected, non-pregnant animals or humans and Mx levels are very high for several weeks following infection. Typically, animal producers quarantine new arrivals for a period of time to determine of symptoms of disease will be present. The test according to the method of the invention provides an indication as to whether a newly arrived animal has experienced a viral infection during the period of 3 to 4 weeks prior to arrival as the evidence of infection typically lingers for 3 to 4 weeks post-infection.
- In an alternative embodiment, the level of Mx protein in the animal is compared to that of animals of the same species known to be virally infected. A level of Mx protein in the animal being tested lower than that found in virally infected animals of the same species indicates the absence of viral infection in the subject animal.
- In another embodiment, the invention is a kit for determining the presence or absence of viral infection in a subject animal. According to this embodiment, the kit contains a receptacle for holding a test sample, one or more reagents which when combined with the test sample enable an operator to visually determine the level of Mx protein in the test sample, and instructions for determining the level of Mx protein in the sample. Preferably, the instructions further indicate how to determine the presence or absence of a viral infection in an animal based upon the level of Mx protein in the test sample.
- It has also been unexpectedly discovered that Type I Interferon inducible proteins in addition to Mx protein are useful as a screening parameter for detection of viral infection in animals. In one embodiment, the invention is a method for determining the presence of a viral infection in an animal. According to this embodiment, the animal is not known to have been infected with a virus or other disease-causing microbial organism and, preferably the animal is not showing any clinical signs consistent with a viral infection. The level of a Type I Interferon-inducible protein in the animal is determined and compared to that of animals of the same species known to be virus-free. A level of the protein in a subject animal above that which is found in animals of the same species that are known to be free of viral infection indicates the presence of a viral infection in that subject animal.
- In an alternative embodiment, the level of a Type I Interferon-inducible protein in the animal is compared to that of animals of the same species known to be virally infected. A level of the protein in the animal being tested lower than that found in virally infected animals of the same species indicates the absence of viral infection in the subject animal.
- In another embodiment, the invention is a kit for determining the presence or absence of viral infection in a subject animal. According to this embodiment, the kit contains a receptacle for holding a test sample, one or more reagents which when combined with the test sample enable an operator to visually determine the level of a Type I Interferon-inducible protein in the test sample, and instructions for determining the level of the protein in the sample. Preferably, the instructions further indicate how to determine the presence or absence of a viral infection in an animal based upon the level of this protein in the test sample.
- A first embodiment of the invention is a method for determining the viral infection status of an animal. In accordance with this embodiment of the invention, a biologic sample is obtained from a test animal and the level of Mx protein expression in the animal is determined by determining the level of Mx protein or of an indicator of Mx protein expression in the sample. The level of Mx protein expression in the test animal is compared with that of a control animal of the same species, wherein the infection status of the control animal is known. The viral infection status of the test animal is determined by this comparison.
- Alternatively, the invention is a method for determining the viral infection status of an animal by obtaining a biological sample from a test animal and determining the level of expression of a Type I Interferon-inducible protein or of an indicator of expression of the protein in the sample. The level of the protein in the test animal is compared with that of a control animal of the same species, wherein the infection status of the control animal is known. The viral infection status of the test animal is determined by this comparison.
- In addition to Mx protein, any Type I Interferon-inducible protein that is elevated in the presence of viral infection is suitable for the present invention. Preferably, the Type I Interferon-inducible protein is one of the following proteins: 2′,5′ oligoadenylate synthetase, β2-microglobulin, IFN regulatory factor 1, ubiquitin cross-reactive protein (also known as “interferon stimulated gene factor 17” (“ISG-17”)). Most preferably, the Type I inducible protein other than Mx protein is ISG-17.
- The following description of the invention, including the Examples, is illustrated by Mx protein. However, it is to be understood that this description is applicable to other Type I Interferon-inducible proteins, collectively and individually, including the proteins listed in the preceding paragraph.
- Thus, unless specifically indicated otherwise in the description that follows, reference to Mx protein may be interpreted as being “Mx protein or other Type I Interferon-inducible protein”. The claims that follow the description, however, are specific. Thus, a reference in the claims to Mx protein means Mx protein only, a reference in the claims to Type I Interferon-inducible proteins includes Mx protein, and a reference in the claims to Type I Interferon-inducible proteins other than Mx protein excludes Mx protein.
- The animal that is tested may be of any species that produces an increase in Mx protein, or other Type I Interferon-inducible protein, either directly or indirectly in response to a viral infection. Animals suitable for the method of the invention include vertebrates, such as mammals, reptiles, amphibians, birds, and fish. Examples of mammals that may be tested for viral status according to the method of the invention include members of the orders of primates such as humans, monkeys and apes, perissodactyla such as horses and rhinoceros, artiodactyla such as pigs, cattle, sheep, goats, camels, llamas, and hippopotamus, carnivora such as dogs, cats, bears, and weasels, pinnipedia such as seals and sea lions, lagomorpha such as rabbits and hares, rodentia such as squirrels, rats, and mice, cetacea such as whales, dolphins, and porpoises, and proboscidea such as elephants.
- The biologic sample that is obtained may be any bodily fluid or tissue in which the level of Mx protein, or other Type I Interferon-inducible protein, is elevated, either directly or indirectly, in response to a viral infection. Suitable fluids may vary depending on the type of animal to be tested but generally include fluids such as milk, saliva, urine, or nasal, ocular, or vaginal secretions, or whole blood, plasma, or serum. Fluids may also include those that are produced as part of a pathologic process such as exudates or transudates, such as from the skin, the pleural or peritoneal cavity, the oral cavity, or from the digestive, respiratory, or genital system. Examples of tissues that are suitable include blood cells, biopsy samples, skin, and cellular exudates such as from the oral cavity, the genitourinary, respiratory, or digestive systems.
- The biologic sample is preferably obtained from the test animal during the time following exposure to a virus which is sufficiently late so that the animal will express increased levels of Mx protein, or other Type I Interferon-inducible protein, but which is not so late that the animal will no longer be expressing increased levels of Mx protein or other Type I Interferon-inducible protein in response to the viral infection. Practically, however, the time of testing is immaterial because, generally, it is not known whether or not the test animal has been exposed to a virus. Consequently, the preferred time for testing will not be capable of determination. In the event that there is a suspected date of exposure to a virus, the date of testing should be sufficiently after the suspected date so that the increased expression of Mx protein or other Type I Interferon-inducible protein will have occurred. This date will vary depending upon the species of animal and upon the virus that is suspected to have infected the test animal.
- The level of Mx protein or other Type I Interferon-inducible protein expression in the sample may be determined by any method that permits this determination to be made. Suitable methods include detecting the Mx protein itself, such as by ELISA test, an assay based on Mx protein function, or a Western blot. Suitable methods also include detecting increased levels of Mx or other Type I Interferon inducible protein mRNA, such as by Northern blot, slot blot, or PCR. In a preferred embodiment, the level of Mx, or other Type I Interferon-inducible, protein expression is determined by detecting the level of Mx protein, or other Type I Interferon-inducible protein, present in a sample by a colorimetric assay based, for example, on the binding of an antibody to the Mx protein, similarly to the methods that are used in human home pregnancy diagnostic kits.
- The level of Mx protein, or other Type I Interferon-inducible protein, expression in the test animal is compared to the level of Mx protein, or other Type I Interferon-inducible protein, expression in a control animal of the same species of which the viral infection status is known. Preferably, the control animal is one that is not infected with a virus and is not in an early stage of pregnancy and that, therefore, has a baseline low level of Mx protein, or other Type I Interferon-inducible protein, expression. Preferably, the control animal is an historic control.
- In the preferred situation where the control animal is a viral negative, that is not infected with a virus, and therefore has a low level of Mx protein, or other Type I Interferon-inducible protein, expression, a negative test result is one in which the level of Mx protein, or other Type I Interferon-inducible protein, expression in the test animal is not significantly elevated above that of the control. The negative test result in this situation indicates lack of viral infection in the test animal. Conversely, a level of Mx protein, or other Type I Interferon-inducible protein, expression that is significantly elevated above that of the control is a positive test result that indicates that the test animal is infected with a virus.
- For purposes of this application, a “significant elevation in level of Mx protein expression, or other Type I Interferon-inducible protein expression, above that of a control” is a level of Mx protein that is at least two times that present in a non-infected animal. In many animal species, Mx protein is not expressed in the absence of a viral infection. In these animals, any level of Mx protein that is detected is considered to be a significant elevation. Likewise, in many animal species, one or more Type I Interferon-inducible proteins other than Mx protein are not expressed in the absence of a viral infections. Thus, any level of such protein that is detected is considered to be a significant elevation.
- In the less preferred situation where the control animal is a viral positive, that is that it is known to be infected with a virus that stimulates an increase in Mx protein expression, a negative test result is one in which the level of Mx protein expression in the test animal is not significantly lower than that of the control. Similarly, a viral positive control animal may be utilized with a Type I Interferon-inducible protein other than Mx protein. The negative test result in this situation indicates that the test animal is infected with a virus. Conversely, a level of Mx protein, or other Type I Interferon-inducible protein, expression that is significantly lower than that of the control is a positive test result that indicates that the test animal is free of viral infection.
- It has been determined that levels of Mx protein, as well as one or more other Type I Interferon-inducible proteins, may be elevated in some species of animals during pregnancy and in the presence of an autoimmune disease. The presence of either of these conditions may lead to a false positive result, that is an elevation in Mx protein, or other Type I Interferon-inducible protein, that would otherwise indicate a viral infection.
- The kit of the invention is preferably based on an enzyme linked assay (ELISA), such as what is known as an “immunometric” or “sandwich” assay. Such an assay involves “sandwiching” a ligand (such as an antigen) with two or more receptor molecules (such as antibodies) which complex with the ligand in a non-interfering manner and at different epitopic sites. Examples of such assays are described in David et al., U.S. Pat. No. 4,486,530. In other preferred alternatives, the kit may be based on chemiluminescence assays, enhanced luminescence assays, and radioimmunoassays. In a preferred embodiment, the kit includes a package, which package houses a test surface, such as a slide or multiple test wells, that is bound to an antibody that will bind to an epitope of the protein of interest, such as Mx protein, a container housing a second antibody that will bind to a second epitope of the protein, which second antibody is labeled, a container housing a standard sample having a baseline concentration of the protein, a reagent that when contacted to the labeled second antibody permits the relative amount of the protein present to be visualized, and instructions for use of the kit to determine whether a test sample contains an amount of Mx protein indicative of virally-infected or uninfected status.
- The kit of the invention for determining viral infection status by determining the relative level of Mx protein, or other Type I Interferon-inducible protein, in a test sample compared to a control may be formulated in many different ways, which ways will be apparent to those skilled in the art upon reading the description herein. It is intended that these various formulations of the kit of the invention are included in the invention.
- All articles and patents cited in this application are incorporated herein by reference.
- Further modifications, uses, and applications of the invention described herein will be apparent to those skilled in the art. It is intended that such modifications be encompassed in the following claims.
Claims (16)
1. A method for screening an animal for being an asymptomatic carrier of a viral infection associated with increased expression of a Type I Interferon-inducible protein comprising determining the level of expression of a Type I Interferon-inducible protein in a first animal not known to have been infected with a virus or other disease-causing microbial organism and not showing any clinical signs consistent with a viral infection, and comparing the level of expression of said protein in the animal to that of a second animal of the same species known to be free of viral infection, and determining the first animal to be viral-infection positive if the level of expression of the Type I Interferon-inducible protein in the first animal is significantly elevated compared to the level of expression of the Type I Interferon-inducible protein in the second animal.
2. The method of claim 1 wherein the first animal is a mammal.
3. The method of claim 2 wherein the mammal is a member of the order perissodactyla or artiodactyla.
4. The method of claim 2 wherein the mammal is selected from the group consisting of cattle, sheep, goats, horses, swine, and llamas.
5. The method of claim 1 wherein the level of the protein is detected by a colorimetric assay.
6. The method of claim 1 wherein the level of expression of the protein is determined by determining the expression of the protein in a cell of the animal.
7. The method of claim 1 wherein the level of expression of the protein is determined by analyzing a bodily fluid of the animal.
8. The method of claim 1 wherein the level of expression of the protein is determined by determining the level of mRNA coding for the protein.
9. The method of claim 8 wherein the determination of mRNA is by Northern blot analysis, slot-blot analysis, or polymerase chain reaction.
10. The method of claim 1 wherein the protein is selected from the group consisting Mx protein, 2′,5′ oligoadenylate synthetase, β2-microglobulin, IFN regulatory factor 1, and ubiquitin cross-reactive protein (ISG-17).
11. A kit for determining the viral-infection status of an animal, comprising a container for holding a test sample, one or more reagents which, when combined with the test sample in the container, enable an operator to visually determine the level of a Type I Interferon-inducible protein in the test sample, and instructions for determining the viral-infection status of the animal based upon the level of the protein in the sample.
12. The kit of claim 11 wherein the protein is selected from the group consisting of Mx protein, 2′,5′ oligoadenylate synthetase, β2-microglobulin, IFN regulatory factor 1, and ubiquitin cross-reactive protein (ISG-17).
13. The kit of claim 12 wherein the protein is selected from the group consisting of 2′,5′ oligoadenylate synthetase, β2-microglobulin, IFN regulatory factor 1, and ubiquitin cross-reactive protein (ISG-17).
14. A kit for determining the viral-infection status of an animal, comprising a test surface that is bound to an antibody that will bind to an epitope of a Type I Interferon-inducible protein, a container housing a second labeled antibody that will bind to a second epitope of the protein, a container housing a standard sample having a baseline concentration of the protein, a reagent that when contacted to the labeled second antibody permits the relative amount of the protein present to be visualized, and instructions for use of the kit to determine whether a test sample contains an amount of the protein indicative of viral infection or lack of viral infection status.
15. The kit of claim 14 wherein the protein is selected from the group consisting of Mx protein, 2′,5′ oligoadenylate synthetase, β2-microglobulin, IFN regulatory factor 1, and ubiquitin cross-reactive protein (ISG-17).
16. The kit of claim 145 wherein the protein is selected from the group consisting of 2′,5′ oligoadenylate synthetase, β2-microglobulin, IFN regulatory factor 1, and ubiquitin cross-reactive protein (ISG-17).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/590,479 US20100062420A1 (en) | 2002-06-11 | 2009-11-09 | Type I interferon-inducible proteins to detect viral infection |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US38816002P | 2002-06-11 | 2002-06-11 | |
| US10/441,418 US7629116B2 (en) | 2002-06-11 | 2003-05-19 | Type I interferon-inducible proteins to detect viral infection |
| US12/590,479 US20100062420A1 (en) | 2002-06-11 | 2009-11-09 | Type I interferon-inducible proteins to detect viral infection |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/441,418 Continuation US7629116B2 (en) | 2002-06-11 | 2003-05-19 | Type I interferon-inducible proteins to detect viral infection |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100062420A1 true US20100062420A1 (en) | 2010-03-11 |
Family
ID=29736436
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/441,418 Expired - Fee Related US7629116B2 (en) | 2002-06-11 | 2003-05-19 | Type I interferon-inducible proteins to detect viral infection |
| US12/590,479 Abandoned US20100062420A1 (en) | 2002-06-11 | 2009-11-09 | Type I interferon-inducible proteins to detect viral infection |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/441,418 Expired - Fee Related US7629116B2 (en) | 2002-06-11 | 2003-05-19 | Type I interferon-inducible proteins to detect viral infection |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US7629116B2 (en) |
| EP (1) | EP1552021A4 (en) |
| JP (1) | JP2005529599A (en) |
| KR (1) | KR20050040866A (en) |
| AU (1) | AU2003237889A1 (en) |
| CA (1) | CA2488632A1 (en) |
| WO (1) | WO2003104496A1 (en) |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010506166A (en) * | 2006-10-05 | 2010-02-25 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Dengue diagnosis and treatment |
| US20130196310A1 (en) | 2008-05-20 | 2013-08-01 | Rapid Pathogen Screening, Inc. | Method and Device for Combined Detection of Viral and Bacterial Infections |
| US9709565B2 (en) | 2010-04-21 | 2017-07-18 | Memed Diagnostics Ltd. | Signatures and determinants for distinguishing between a bacterial and viral infection and methods of use thereof |
| US9726668B2 (en) | 2012-02-09 | 2017-08-08 | Memed Diagnostics Ltd. | Signatures and determinants for diagnosing infections and methods of use thereof |
| CA3190715A1 (en) | 2014-08-14 | 2016-02-18 | Memed Diagnostics Ltd. | Computational analysis of biological data using manifold and a hyperplane |
| WO2016059636A1 (en) | 2014-10-14 | 2016-04-21 | Memed Diagnostics Ltd. | Signatures and determinants for diagnosing infections in non-human subjects and methods of use thereof |
| CN107209184B (en) | 2014-12-11 | 2020-04-24 | 米密德诊断学有限公司 | Marker combinations for diagnosing multiple infections and methods of use thereof |
| US10808287B2 (en) | 2015-10-23 | 2020-10-20 | Rapid Pathogen Screening, Inc. | Methods and devices for accurate diagnosis of infections |
| WO2017149548A1 (en) | 2016-03-03 | 2017-09-08 | Memed Diagnostics Ltd. | Rna determinants for distinguishing between bacterial and viral infections |
| CN108699609A (en) | 2016-03-03 | 2018-10-23 | 米密德诊断学有限公司 | Analysis of RNA for diagnosis of infection type |
| EP3482201B1 (en) | 2016-07-10 | 2022-12-14 | Memed Diagnostics Ltd. | Early diagnosis of infections |
| EP4141448A1 (en) | 2016-07-10 | 2023-03-01 | MeMed Diagnostics Ltd. | Protein signatures for distinguishing between bacterial and viral infections |
| EP3519834A4 (en) | 2016-09-29 | 2020-06-17 | MeMed Diagnostics Ltd. | Methods of risk assessment and disease classification |
| WO2018060998A1 (en) | 2016-09-29 | 2018-04-05 | Memed Diagnostics Ltd. | Methods of prognosis and treatment |
| US10209260B2 (en) | 2017-07-05 | 2019-02-19 | Memed Diagnostics Ltd. | Signatures and determinants for diagnosing infections and methods of use thereof |
| RS61621B1 (en) * | 2017-11-22 | 2021-04-29 | Dewact Labs GmbH | Method and device for discriminating between viral and bacterial infections |
| CN116008556A (en) * | 2022-03-29 | 2023-04-25 | 付潇 | Application of MxA as a protein marker and its kit |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4480032A (en) * | 1980-11-13 | 1984-10-30 | Yabrov Alexander A | Natural mixture of Type I and Type II interferons |
| US5175113A (en) * | 1986-01-16 | 1992-12-29 | Novo Nordisk A/S | Modified β2 -microglobulin |
| US5194245A (en) * | 1990-05-25 | 1993-03-16 | Hem Research Inc. | Diagnosis of viral hepatitis |
| US5198350A (en) * | 1986-04-15 | 1993-03-30 | Ciba-Geigy Corporation | Interferon-induced human protein in pure form, monoclonal antibodies thereto and test kits containing these antibodies |
| US5466585A (en) * | 1986-04-15 | 1995-11-14 | Ciba-Geigy Corporation | Interferon-induced human protein in pure form, monoclonal antibodies thereto, and test kits containing these antibodies |
| US5776690A (en) * | 1996-10-07 | 1998-07-07 | Vojdani; Aristo | Detection of chronic fatigue syndrome by decreased levels of RNase L inhibitor mRNA |
| US5863742A (en) * | 1994-03-10 | 1999-01-26 | Chiron Diagnostics Corporation | Inhibition of protease activity of human whole blood cell lysates |
| US6030785A (en) * | 1997-03-05 | 2000-02-29 | University Of Washington | Screening methods to identify agents that selectively inhibit hepatitis C virus replication |
| US6180102B1 (en) * | 1994-08-08 | 2001-01-30 | Kyowa Hakko Kogyo Co., Ltd. | Monoclonal antibody to human Mx protein MxA |
| US6200559B1 (en) * | 1996-10-31 | 2001-03-13 | Von Wussow Peter | Use of antibodies against MxA or MxB to determine levels of type I interferons in vivo |
| US20020192838A1 (en) * | 2001-06-19 | 2002-12-19 | Ott Troy L. | Determination of pregnancy status |
| US20030027176A1 (en) * | 2001-02-15 | 2003-02-06 | Dailey Peter J. | Innate immunity markers for rapid diagnosis of infectious diseases |
| US20040209800A1 (en) * | 2001-10-18 | 2004-10-21 | Mushinski J. Frederic | Use of mx gtpases in the prognosis and treatment of cancer |
| US7767653B2 (en) * | 2000-11-09 | 2010-08-03 | The Board Of Trustees Of The University Of Illinois | Enhancement of immune response to vaccine by interferon alpha |
| WO2011028933A1 (en) * | 2009-09-03 | 2011-03-10 | Medimmune, Llc | Type 1 interferon diagnostic |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US27176A (en) * | 1860-02-14 | Gridiron | ||
| US192838A (en) * | 1877-07-10 | Improvement in churns | ||
| WO1996005230A1 (en) | 1994-08-08 | 1996-02-22 | Kyowa Hakko Kogyo Co., Ltd. | MONOCLONAL ANTIBODY AGAINST HUMAN Mx PROTEIN MxA |
| US6844198B2 (en) * | 2001-04-27 | 2005-01-18 | Uop Llc | Adsorptive method for determining a surface property of a solid |
| WO2003081240A1 (en) | 2002-03-22 | 2003-10-02 | Kyowa Medex Co., Ltd. | Method of judging viral infection |
-
2003
- 2003-05-19 EP EP03736646A patent/EP1552021A4/en not_active Withdrawn
- 2003-05-19 KR KR1020047020085A patent/KR20050040866A/en not_active Ceased
- 2003-05-19 JP JP2004511555A patent/JP2005529599A/en active Pending
- 2003-05-19 WO PCT/US2003/015678 patent/WO2003104496A1/en not_active Ceased
- 2003-05-19 AU AU2003237889A patent/AU2003237889A1/en not_active Abandoned
- 2003-05-19 US US10/441,418 patent/US7629116B2/en not_active Expired - Fee Related
- 2003-05-19 CA CA002488632A patent/CA2488632A1/en not_active Abandoned
-
2009
- 2009-11-09 US US12/590,479 patent/US20100062420A1/en not_active Abandoned
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4480032A (en) * | 1980-11-13 | 1984-10-30 | Yabrov Alexander A | Natural mixture of Type I and Type II interferons |
| US5175113A (en) * | 1986-01-16 | 1992-12-29 | Novo Nordisk A/S | Modified β2 -microglobulin |
| US5869264A (en) * | 1986-04-15 | 1999-02-09 | Novartis Ag | Immunoassays for and immunopurification of interferon-induced human protein |
| US5466585A (en) * | 1986-04-15 | 1995-11-14 | Ciba-Geigy Corporation | Interferon-induced human protein in pure form, monoclonal antibodies thereto, and test kits containing these antibodies |
| US5739290A (en) * | 1986-04-15 | 1998-04-14 | Horisberger; Michel Andre | Monoclonal antibody against an interferon-induced human protein in pure form |
| US5198350A (en) * | 1986-04-15 | 1993-03-30 | Ciba-Geigy Corporation | Interferon-induced human protein in pure form, monoclonal antibodies thereto and test kits containing these antibodies |
| US5194245A (en) * | 1990-05-25 | 1993-03-16 | Hem Research Inc. | Diagnosis of viral hepatitis |
| US5863742A (en) * | 1994-03-10 | 1999-01-26 | Chiron Diagnostics Corporation | Inhibition of protease activity of human whole blood cell lysates |
| US6180102B1 (en) * | 1994-08-08 | 2001-01-30 | Kyowa Hakko Kogyo Co., Ltd. | Monoclonal antibody to human Mx protein MxA |
| US5776690A (en) * | 1996-10-07 | 1998-07-07 | Vojdani; Aristo | Detection of chronic fatigue syndrome by decreased levels of RNase L inhibitor mRNA |
| US6200559B1 (en) * | 1996-10-31 | 2001-03-13 | Von Wussow Peter | Use of antibodies against MxA or MxB to determine levels of type I interferons in vivo |
| US6030785A (en) * | 1997-03-05 | 2000-02-29 | University Of Washington | Screening methods to identify agents that selectively inhibit hepatitis C virus replication |
| US7767653B2 (en) * | 2000-11-09 | 2010-08-03 | The Board Of Trustees Of The University Of Illinois | Enhancement of immune response to vaccine by interferon alpha |
| US20030027176A1 (en) * | 2001-02-15 | 2003-02-06 | Dailey Peter J. | Innate immunity markers for rapid diagnosis of infectious diseases |
| US20020192838A1 (en) * | 2001-06-19 | 2002-12-19 | Ott Troy L. | Determination of pregnancy status |
| US20040209800A1 (en) * | 2001-10-18 | 2004-10-21 | Mushinski J. Frederic | Use of mx gtpases in the prognosis and treatment of cancer |
| WO2011028933A1 (en) * | 2009-09-03 | 2011-03-10 | Medimmune, Llc | Type 1 interferon diagnostic |
Non-Patent Citations (14)
| Title |
|---|
| Amon and Farrel. Reactivation of Epstein-Barr virus from latency. Rev. Med. Virol. 2005; 15: 149-156 * |
| Baker and Manuelidis, Unique inflammatory RNA profiles of microglia in Creutzfeldt-Jakob disease. PNAS, 2003; 100(2): 675-679 * |
| Haller, et al. Influenza Virus Resistance of Wild Mice: Wild-Type and Mutant Mx Alíeles Occur at Comparable Frequencies. J. Interfer. Res. 1987; 7: 647-656 * |
| Hansen, et al. Interferon RNA of Embryonic Origin Is Expressed Transiently during Early Pregnancy in the Ewe. J. Biol. Chem. 1988; 263: 12801-12804 * |
| Harley, et al. The Role of Genetic Variation Near Interferon-Kappa in Systemic Lupus Erythematosis. J Biomed. Biotech. 2010. Article ID 706825: 1-11. * |
| Hvas and Bernard, Molecular detection and quantitation of the chemokine RANTES mRNA in neurological brain. APMIS. 1998; 106: 598-604 * |
| Hwang, et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. PNAS USA. 1995; 92: 11284-11288 * |
| Kanda and Watanabe, 17b-estradiol Inhibits the Production of Interferon-induced Protein of 10 kDa by Human Keratinocytes. J Invest Dermatol. 2003; 120:411-419. * |
| Lefevre, et al. Interferon-delta: The first member of a novel type I interferon family. Biochimie. 1998; 80: 779-788 * |
| Lequin, R. M., Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA), 2005; Clin. Chem. 51(12): 2415-2418 * |
| Levy and Garcia-Sastre, The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine & Growth Factor Reviews. 2001; 12: 143-156 * |
| Lewicki, et al. T Cells Infiltrate the Brain in Murine and Human Transmissible Spongiform Encephalopathies. J. Virol. 2003; 77(6): 3799-3808 * |
| Lopes Rodrigues, A. M. Interferon, Virus Vaccines and Antiviral Drugs, 2007, Ph.D. Thesis, University of St. Andrews * |
| Rifal, et al. Analytical and clinical performance of a homogeneous enzymatic LDL-cholesterol assay compared with the ultracentrifugation-dextran sulfate-Mg21 method. Clin. Chem. 1998; 44(6): 1242-1250 * |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20050040866A (en) | 2005-05-03 |
| CA2488632A1 (en) | 2003-12-18 |
| EP1552021A1 (en) | 2005-07-13 |
| AU2003237889A1 (en) | 2003-12-22 |
| EP1552021A4 (en) | 2006-06-14 |
| US20040009472A1 (en) | 2004-01-15 |
| JP2005529599A (en) | 2005-10-06 |
| WO2003104496A1 (en) | 2003-12-18 |
| US7629116B2 (en) | 2009-12-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20100062420A1 (en) | Type I interferon-inducible proteins to detect viral infection | |
| Ohno et al. | Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014 | |
| Nettleton et al. | Ruminant pestiviruses | |
| Müller-Doblies et al. | Innate immune responses of calves during transient infection with a noncytopathic strain of bovine viral diarrhea virus | |
| Stenfeldt et al. | Analysis of the acute phase responses of Serum Amyloid A, Haptoglobin and Type 1 Interferon in cattle experimentally infected with foot-and-mouth disease virus serotype O | |
| Owolodun et al. | First report of hepatitis E virus circulation in domestic pigs in Nigeria | |
| Raoul et al. | Advances in diagnosis and spatial analysis of cysticercosis and taeniasis | |
| Quigley et al. | Horses are susceptible to natural, but resistant to experimental, infection with the liver fluke, Fasciola hepatica | |
| Gharekhani et al. | Detection of Brucella antibodies in dogs from rural regions of Hamedan, Iran | |
| US20240103002A1 (en) | Orthopoxvirus serology assays | |
| WO2009058835A1 (en) | Method of determining vaccine compliance | |
| Lasri et al. | Comparison of three techniques for the serological diagnosis of Neospora caninum in the dog and their use for epidemiological studies | |
| Hussien et al. | Seroprevalence of q fever in goats in the Sudan. | |
| Bedeković et al. | Bovine viral diarrhoea: Ag ELISA and reverse transcription polymerase chain reaction as diagnostic tools in pooled serum samples from persistently infected cattle-short communication | |
| Uesaka et al. | A clinical case of neosporosis in a 4-week-old holstein friesian calf which developed hindlimb paresis postnatally | |
| Pretorius et al. | Gammaherpesvirus carrier status of black wildebeest (Connochaetes gnou) in South Africa | |
| Abtin et al. | Two novel avian influenza virus subtypes isolated from domestic ducks in North of Iran | |
| Raidal | Laboratory diagnostics for birds | |
| Hussein | Correlation of CCL2, CCL5 and CXCL10 Chemokines with Disease Severity among Patients with COVID-19 Infection | |
| Domrazek et al. | Prevalence of Chlamydophila spp. and Canid herpesvirus-1 in Polish dogs | |
| KR102736362B1 (en) | Composition for Coronavirus Infection Diagnosis | |
| Kurth et al. | Prevalence of vesivirus in a laboratory-based set of serum samples obtained from dairy and beef cattle | |
| US20240353409A1 (en) | Novel serology assay for the detection of porcine viruses | |
| Dascalu et al. | Detection of antibodies against rabies virus in foxes serum after oral vaccination campaign in Buzău and Galați Counties. | |
| Tekelioglu | Seroepidemiological and Clinicopathological Investigation of Canine Coronavirus Infection in Dogs, in Türkiye |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |