[go: up one dir, main page]

US20100013508A1 - Probe card cassette and probe card - Google Patents

Probe card cassette and probe card Download PDF

Info

Publication number
US20100013508A1
US20100013508A1 US11/995,081 US99508107A US2010013508A1 US 20100013508 A1 US20100013508 A1 US 20100013508A1 US 99508107 A US99508107 A US 99508107A US 2010013508 A1 US2010013508 A1 US 2010013508A1
Authority
US
United States
Prior art keywords
probe card
probe
height adjustment
section
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/995,081
Inventor
Shiro Nozaki
Takashi Ohtori
Kenichi Tsunogaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. reassignment MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOZAKI, SHIRO, OHTORI, TAKASHI, TSUNOGAKI, KENICHI
Assigned to PANASONIC CORPORATION reassignment PANASONIC CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
Publication of US20100013508A1 publication Critical patent/US20100013508A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations

Definitions

  • the present invention relates to probe cards for use in probe tests on semiconductor integrated circuits.
  • Tests on semiconductor integrated circuits are broadly divided into tests (hereinafter referred to as “probe tests”) which are performed on semiconductor integrated circuits in wafer form after completion of diffusion process and tests which are conducted on semiconductor integrated circuits as packaged products after completion of assembly process.
  • a probe test is performed by placing a probe card in prober equipment and bringing the probe needles of the probe card into contact with electrode pads on IC chips which are connected with an LSI tester and arranged regularly on a wafer.
  • FIG. 10 is a view illustrating the structure of a typical probe card.
  • the reference numeral 101 refers to a probe card substrate
  • the reference numerals 102 a , 102 b , . . . refer to probe needles.
  • the numerous probe needles 102 a, 102 b , . . . are connected at their base ends to the probe card substrate 101 , while their tip ends protrude obliquely downward.
  • the base ends of the probe needles 102 a, 102 b , . . . are electrically connected to an LSI tester via the probe card substrate 101 .
  • the tip end of each of the probe needles 102 a, 102 b , . . . corresponds to the approximate center of an electrode pad of a semiconductor integrated circuit.
  • Patent Document 1 discloses a technique in which the positions and levels of all probe needles with respect to electrode pads are automatically recognized by aligning a reference position for LSI chips with a reference position in probe needle information.
  • Patent Document 1 Japanese Laid-Open Publication No. 2005-150224
  • the conventional probe card however, has a structure in which the probe needles are exposed outwardly, and thus has a problem in that the probe needles may be broken due to an operator's error, dropping, or the like.
  • the present invention was made to address the problem with the conventional structure, and an object of the invention is to provide a probe card and a probe card cassette capable of preventing breakage of probe needles due to an operator's error, dropping, or the like.
  • a first aspect of the invention is directed to a probe card cassette including: a holding section for holding a probe card; a transport mechanism for transporting the probe card from the holding section; and a lock mechanism for locking operation of the transport mechanism, wherein when the probe card cassette is placed in prober equipment, the lock mechanism is released to allow the probe card to be transported from the holding section by the transport mechanism, while when the probe card cassette is not placed in the prober equipment, the lock mechanism operates to fix the probe card in the holding section.
  • the lock mechanism when the probe card cassette is not placed in the prober equipment, the lock mechanism operates to fix the probe card in the holding section, thereby allowing the probe needles to be protected.
  • a second aspect of the invention is directed to a probe card including: a probe card substrate; a probe needle whose base end is connected to one surface of the probe card substrate; and a stopper section provided in the probe card substrate and including a stopper member and a height adjustment mechanism, the stopper member protruding from the one surface and being slidable in a direction in which the stopper member protrudes, the height adjustment mechanism adjusting height of the stopper member protruding from the one surface, wherein the height adjustment mechanism is configured to be able to adjust the protruding height of the stopper member between a first height higher than the position of tip end of the probe needle and a second height lower than the position of the tip end of the probe needle.
  • the protruding height of the stopper member is adjustable between the first height higher than the position of the tip end of the probe needle and the second height lower than the position of the tip end of the probe needle.
  • the probe test can be performed by setting the protruding height of the stopper member to the second height lower than the position of the tip end of the probe needle.
  • the height adjustment mechanism preferably includes an inlet/outlet for introducing a medium from outside the stopper section and discharging the medium to outside the stopper section, and is preferably configured so as to set the protruding height of the stopper member in accordance with the amount of the medium introduced.
  • the height adjustment mechanism according to the second aspect of the invention preferably includes a rotating mechanism which is controllable from outside the stopper section, and is preferably configured so as to set the protruding height of the stopper member in accordance with operation of the rotating mechanism.
  • the height adjustment mechanism is preferably configured to be able to output a signal indicating a result of height adjustment
  • the probe card substrate preferably includes: a memory device for storing a result of past height adjustment or a result of height adjustment performed during fabrication; and a comparator for comparing the signal output from the height adjustment mechanism with the past height adjustment result or the result of the height adjustment performed during fabrication stored in the memory device, and if a difference therebetween exceeds a reference value, outputting a signal indicating that.
  • a third aspect of the invention is directed to a probe card cassette including a holding section for holding the probe card of the second aspect of the invention, wherein the height adjustment mechanism in the probe card is configured to be able to output a signal indicating a result of height adjustment; and the holding section includes: a memory device for storing a result of past height adjustment or a result of height adjustment performed during fabrication; and a comparator for comparing the signal output from the height adjustment mechanism with the past height adjustment result or the result of the height adjustment performed during fabrication stored in the memory device, and if a difference therebetween exceeds a reference value, outputting a signal indicating that.
  • a fourth aspect of the invention is directed to a probe card including: a probe card substrate having a hole, with a first electrode provided on one surface of the probe card substrate; and a probe needle section including a base plate and a projection protruding from the base plate, with the base end of a probe needle connected to tip end of the projection, wherein the probe card substrate and the probe needle section are connected via an elastic member, with the projection of the probe needle section inserted into the hole in the probe card substrate from the one surface side, in such a manner that the probe needle section is slidable in a direction in which the projection is inserted; on a surface with the projection protruding of the base plate of the probe needle section, a second electrode is provided to face the first electrode; when pressure is applied to the probe needle section from backside of the base plate, the elastic member contracts to cause the surface with the projection protruding of the base plate and the one surface of the probe card substrate to come into contact with each other to give an electrical connection between the first electrode and the second electrode; and when no pressure is
  • the fourth aspect of the invention when no probe test is conducted, no pressure is applied to the probe needle section from the backside of the base plate, which allows the elastic member to extend, such that the surface with the projection protruding of the base plate and the one surface of the probe card substrate are separated from each other and the tip end of the probe needle is positioned inwardly of another surface of the probe card substrate. That is, it is possible to protect the probe needle.
  • FIG. 1 is a perspective view illustrating the structure of a probe card cassette according to a first embodiment of the invention.
  • FIG. 2 is a cross-sectional view illustrating the structure of a probe card according to a second embodiment of the invention when a probe test is conducted.
  • FIG. 3 is a cross-sectional view illustrating the structure of the probe card according to the second embodiment of the invention when no probe test is conducted.
  • FIG. 4 is a cross-sectional view illustrating the structure of a probe card according to a third embodiment of the invention when a probe test is conducted.
  • FIG. 5 is a cross-sectional view illustrating the structure of the probe card according to the third embodiment of the invention when no probe test is conducted.
  • FIG. 6 is a plan view illustrating the structure of a probe card according to a fourth embodiment of the invention.
  • FIG. 7 is a perspective view illustrating the structure of a probe card cassette according to a fifth embodiment of the invention.
  • FIG. 8 is a cross-sectional view illustrating the structure of a probe card according to a sixth embodiment of the invention when a probe test is conducted.
  • FIG. 9 is a cross-sectional view illustrating the structure of the probe card according to the sixth embodiment of the invention when no probe test is conducted.
  • FIG. 10 is a view illustrating a typical probe card.
  • FIG. 1 is a perspective view showing the structure of a probe card cassette according to a first embodiment of the invention.
  • the reference numeral 1 refers to a probe card; 2 to a holding section for holding the probe card; 3 a, 3 b, 3 c, and 3 d to transport mechanisms for transporting the probe card 1 from the holding section 2 and storing the probe card 1 into the holding section 2 ; and 4 to a lock mechanism for locking operation of the transport mechanism 3 d for prevention of improper transport of the probe card 1 .
  • the lock mechanism 4 While the lock mechanism 4 is operating, the probe card 1 is fixed in the holding section 2 . While the lock mechanism 4 is released, the probe card 1 can be transported from the holding section 2 by the transport mechanisms 3 a to 3 d.
  • the probe card cassette shown in FIG. 1 with the probe card 1 held thereon is placed in prober equipment.
  • the prober equipment releases the lock mechanism 4 to release the lock of the operation of the transport mechanism 3 d, thereby allowing the probe card 1 to be transported by the transport mechanisms 3 a to 3 d from the holding section 2 into the prober equipment. Then, the prober equipment is ready to conduct the probe test.
  • the probe card 1 is transported from the prober equipment and held in the holding section 2 .
  • the probe card cassette is removed from the prober equipment, at which time the lock mechanism 4 is activated to fix the probe card 1 in the holding section 2 .
  • the probe needles are thus protected.
  • FIGS. 2 and 3 are cross-sectional views illustrating the structure of a probe card according to a second embodiment of the invention.
  • FIG. 2 shows a state in which a probe test is conducted
  • FIG. 3 shows a state in which no probe test is performed.
  • the reference numeral 101 refers to a probe card substrate
  • 102 a and 102 b denote probe needles, whose base ends are connected to one surface of the probe card substrate 101
  • the reference numeral 103 represents a stopper section provided in the probe card substrate 101 .
  • the stopper section 103 includes: a receiving section 103 a which is fixed in the probe card substrate 101 ; a stopper member 103 b which slides with respect to the receiving section 103 a; an elastic member 105 which connects the receiving section 103 a and the stopper member 103 b and is formed of a helical spring, for example; and an inlet/outlet 106 which provides communication between a medium storage section 103 c, defined and formed by the receiving section 103 a and the stopper member 103 b, and the outside.
  • the stopper member 103 b protrudes from the one surface of the probe card substrate 101 and is configured so as to be slidable in the protrusion direction.
  • a medium made of, e.g., a gas, such as air, or a liquid, such as oil, can be introduced into the medium storage section 103 c from outside the stopper section 103 and can be discharged from the medium storage section 103 c to outside the stopper section 103 .
  • the elastic member 105 Introducing a medium into the medium storage section 103 c through the inlet/outlet 106 causes the elastic member 105 to extend to increase the height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101 .
  • discharge of the medium from the medium storage section 103 c through the inlet/outlet 106 causes the elastic member 105 to contract to reduce the height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101 . That is, the protruding height of the stopper member 103 b is set by the amount of the medium introduced in the medium storage section 103 c.
  • the medium storage section 103 c, the elastic member 105 , and the inlet/outlet 106 form a height adjustment mechanism.
  • the height adjustment mechanism is configured so as to be able to adjust the protruding height of the stopper member 103 b between a first height higher than the positions of the tip ends of the probe needles 102 a and 102 b and a second height lower than the positions of the tip ends of the probe needles 102 a and 102 b.
  • the probe card When a probe test is conducted, as shown in FIG. 2 , the probe card is placed in prober equipment, followed by discharge of the medium through the inlet/outlet 106 , such that the amount of the medium in the medium storage section 103 c is decreased.
  • This causes the elastic member 105 to contract to thereby reduce the height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101 , so that the stopper member 103 b has a protruding height lower than the positions of the tip ends of the probe needles 102 a and 102 b, allowing the probe test to be performed.
  • the protruding height of the stopper member 103 b be slightly lower than the positions of the tip ends of the probe needles 102 a and 102 b. Then, even if an operator's error occurs during the probe test, the resultant movements of the tip ends of the probe needles 102 a and 102 b during the probe test are minimized, thereby preventing breakage of the probe needles 102 a and 102 b.
  • the probe card is removed from the prober equipment, at which time a medium is introduced through the inlet/outlet 106 to increase the amount of the medium in the medium storage section 103 c.
  • This causes the elastic member 105 to extend to increase the height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101 , such that the stopper member 103 b has a protruding height higher than the positions of the tip ends of the probe needles 102 a and 102 b, thereby protecting the probe needles 102 a and 102 b. That is, it is possible to prevent breakage of the probe needles 102 a and 102 b.
  • FIGS. 4 and 5 are cross-sectional views illustrating the structure of a probe card according to a third embodiment of the invention.
  • FIG. 4 shows a state in which a probe test is conducted
  • FIG. 5 shows a state in which no probe test is carried out.
  • the same members as those shown in FIGS. 2 and 3 are identified by the same reference numerals, and detailed description thereof is omitted herein.
  • a stopper section 103 A includes a receiving section 103 a, the stopper member 103 b, an elastic member 105 , and the rotating mechanism 107 .
  • the rotating mechanism 107 is controllable from outside the stopper section 103 A and is configured so as to pull up the stopper member 103 b when rotated in a given direction and push down the stopper member 103 b when rotated in the opposite direction.
  • the elastic member 105 and the rotating mechanism 107 form a height adjustment mechanism.
  • the height adjustment mechanism is also configured so as to be able to adjust the protruding height of the stopper member 103 b between a first height higher than the positions of the tip ends of probe needles 102 a and 102 b and a second height lower than the positions of the tip ends of the probe needles 102 a and 102 b.
  • the probe card When a probe test is conducted, as shown in FIG. 4 , the probe card is placed in prober equipment, followed by rotation of the rotating mechanism 107 which causes the elastic member 105 to contract to thereby pull up the stopper member 103 b.
  • the height of the protrusion of the stopper member 103 b protruding from one surface of the probe card substrate 101 is thus reduced, so that the stopper member 103 b has a protruding height lower than the positions of the tip ends of the probe needles 102 a and 102 b, thereby allowing the probe test to be performed.
  • the protruding height of the stopper member 103 b be slightly lower than the positions of the tip ends of the probe needles 102 a and 102 b.
  • the probe card is removed from the prober equipment, at which time the rotating mechanism 107 rotates in the opposite direction to cause the elastic member 105 to extend to thereby push down the stopper member 103 b.
  • the height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101 is thus increased, such that the stopper member 103 b has a protruding height higher than the positions of the tip ends of the probe needles 102 a and 102 b, thereby protecting the probe needles 102 a and 102 b. That is, it is possible to prevent breakage of the probe needles 102 a and 102 b.
  • FIG. 6 is a plan view illustrating the structure of a probe card according to a fourth embodiment of the invention.
  • the structure of the probe card shown in FIG. 6 is basically the same as those of the probe cards shown in FIGS. 2 to 5 , and common members are thus identified by the same reference numerals.
  • a memory device 5 a and a comparator 5 b are provided in an empty space in a probe card substrate 101 .
  • the above-described height adjustment mechanism is configured to be able output a signal indicating the result of height adjustment.
  • the memory device 5 a is capable of storing the result of past height adjustment.
  • the comparator 5 b is coupled to the memory device 5 a by a signal line and compares the result of the current height adjustment output from the height adjustment mechanism with the result of past height adjustment stored in the memory device 5 a . And when the difference exceeds a reference value, the comparator 5 b outputs a signal indicating that.
  • the output signal of the comparator 5 b is sent to the prober equipment. This enables an indication of the occurrence of the abnormal condition.
  • the memory device 5 a may store the result of height adjustment performed during fabrication. In that case, the same effects as those described above are also attainable.
  • FIG. 7 is a perspective view illustrating the structure of a probe card cassette according to a fifth embodiment of the invention.
  • the probe card cassette shown in FIG. 7 basically has the same structure as the probe card cassette shown in FIG. 1 , and common members are thus identified by the same reference numerals.
  • the probe cards shown in FIGS. 2 to 5 are held in a holding section 2 .
  • a memory device 5 a and a comparator 5 b are provided in an empty space in a surface of the holding section 2 .
  • the above-described height adjustment mechanism is configured to be able to output a signal indicating the result of height adjustment.
  • the memory device 5 a is capable of storing the result of past height adjustment.
  • the comparator 5 b is coupled to the memory device 5 a by a signal line and compares the result of the current height adjustment output from the height adjustment mechanism with the result of past height adjustment stored in the memory device 5 a. And when the difference exceeds a reference value, the comparator 5 b outputs a signal indicating that.
  • the output signal of the comparator 5 b is sent to the prober equipment. This enables an indication of the occurrence of the abnormal condition.
  • the memory device 5 a may store the result of height adjustment performed during fabrication. In that case, the same effects as those described above are also attainable.
  • FIGS. 8 and 9 are cross-sectional views illustrating the structure of a probe card according to a sixth embodiment of the invention.
  • FIG. 8 shows a state in which a probe test is conducted
  • FIG. 9 shows a state in which no probe test is performed.
  • the reference numeral 101 denotes a probe card substrate, with first electrodes 110 a and 110 b provided on one surface thereof, namely the upper surface. These electrodes 110 a and 110 b are connected to a tester channel in the probe card substrate 101 .
  • the reference numeral 108 represents a probe needle section, which includes a base plate 108 a and a projection 108 b protruding from the base plate 108 a.
  • Probe needles 102 a and 102 b are connected at their base ends to the end of the projection 108 b.
  • the probe card substrate 101 and the probe needle section 108 are connected via elastic members 111 a and 111 b formed of, e.g., helical springs, with the projection 108 b inserted into a hole 101 a in the probe card substrate 101 from the upper surface side of the substrate 101 , in such a manner that the probe needle section 108 is slidable in the insertion direction.
  • second electrodes 109 a and 109 b are provided to face the first electrodes 110 a and 110 b.
  • the probe card When a probe test is conducted, as shown in FIG. 8 , the probe card is placed in prober equipment, at which time the probe card substrate 101 is fixed in the prober equipment to apply pressure to the probe needle section 108 from the backside of the base plate 108 a , thereby pushing the probe needle section 108 downward.
  • the elastic members 111 a and 111 b contract to cause the surface with the projection 108 b of the base plate 108 a and the upper surface of the probe card substrate 101 to come into contact with each other, thereby electrically connecting the first electrodes 110 a and 110 b and the second electrodes 109 a and 109 b.
  • the positions of the tip ends of the probe needles 102 a and 102 b are lower than the lower surface of the probe card substrate 101 , which enables the probe test to be carried out.
  • the probe card is removed from the prober equipment, and no pressure is applied to the probe needle section 108 from the backside of the base plate 108 a.
  • the elastic members 111 a and 111 b extend to push the probe needle section 108 upward, causing the surface with the projection 108 b of the base plate 108 a and the upper surface of the probe card substrate 101 to be separated from each other.
  • the tip ends of the probe needles 102 a and 102 b are positioned inwardly of the lower surface (as another surface) of the probe card substrate 101 . That is, the probe needles 102 a and 102 b are held inside the probe card substrate 101 , allowing the probe needles 102 a and 102 b to be protected.
  • the present invention which enables protection of the probe needles of probe cards and thus produces the effect of preventing breakage of the probe needles due to an error, dropping, or the like, is useful in efficiently conducting probe tests, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

A holding section (2) holds a probe card (1). Transport mechanisms (3 a to 3 d) have the function of transporting the probe card (1) from the holding section (2). A lock mechanism (4) is provided for the transport mechanism (3 d). When the probe card cassette is placed in prober equipment, the lock mechanism (4) is released to allow the probe card (1) to be transported from the holding section (2) by the transport mechanisms (3 a to 3 d). When the probe card cassette is not placed in the prober equipment, the lock mechanism (4) operates to fix the probe card (1) in the holding section (2).

Description

    TECHNICAL FIELD
  • The present invention relates to probe cards for use in probe tests on semiconductor integrated circuits.
  • BACKGROUND ART
  • Tests on semiconductor integrated circuits are broadly divided into tests (hereinafter referred to as “probe tests”) which are performed on semiconductor integrated circuits in wafer form after completion of diffusion process and tests which are conducted on semiconductor integrated circuits as packaged products after completion of assembly process.
  • A probe test is performed by placing a probe card in prober equipment and bringing the probe needles of the probe card into contact with electrode pads on IC chips which are connected with an LSI tester and arranged regularly on a wafer.
  • FIG. 10 is a view illustrating the structure of a typical probe card. In FIG. 10, the reference numeral 101 refers to a probe card substrate, and the reference numerals 102 a, 102 b, . . . refer to probe needles. The numerous probe needles 102 a, 102 b, . . . are connected at their base ends to the probe card substrate 101, while their tip ends protrude obliquely downward. The base ends of the probe needles 102 a, 102 b, . . . are electrically connected to an LSI tester via the probe card substrate 101. The tip end of each of the probe needles 102 a, 102 b, . . . corresponds to the approximate center of an electrode pad of a semiconductor integrated circuit.
  • Patent Document 1 discloses a technique in which the positions and levels of all probe needles with respect to electrode pads are automatically recognized by aligning a reference position for LSI chips with a reference position in probe needle information.
  • Patent Document 1: Japanese Laid-Open Publication No. 2005-150224 DISCLOSURE OF THE INVENTION Problem that the Invention Intends to Solve
  • The conventional probe card, however, has a structure in which the probe needles are exposed outwardly, and thus has a problem in that the probe needles may be broken due to an operator's error, dropping, or the like.
  • The present invention was made to address the problem with the conventional structure, and an object of the invention is to provide a probe card and a probe card cassette capable of preventing breakage of probe needles due to an operator's error, dropping, or the like.
  • Means for Solving the Problem
  • A first aspect of the invention is directed to a probe card cassette including: a holding section for holding a probe card; a transport mechanism for transporting the probe card from the holding section; and a lock mechanism for locking operation of the transport mechanism, wherein when the probe card cassette is placed in prober equipment, the lock mechanism is released to allow the probe card to be transported from the holding section by the transport mechanism, while when the probe card cassette is not placed in the prober equipment, the lock mechanism operates to fix the probe card in the holding section.
  • According to the first aspect of the invention, when the probe card cassette is not placed in the prober equipment, the lock mechanism operates to fix the probe card in the holding section, thereby allowing the probe needles to be protected.
  • A second aspect of the invention is directed to a probe card including: a probe card substrate; a probe needle whose base end is connected to one surface of the probe card substrate; and a stopper section provided in the probe card substrate and including a stopper member and a height adjustment mechanism, the stopper member protruding from the one surface and being slidable in a direction in which the stopper member protrudes, the height adjustment mechanism adjusting height of the stopper member protruding from the one surface, wherein the height adjustment mechanism is configured to be able to adjust the protruding height of the stopper member between a first height higher than the position of tip end of the probe needle and a second height lower than the position of the tip end of the probe needle.
  • According to the second aspect of the invention, the protruding height of the stopper member is adjustable between the first height higher than the position of the tip end of the probe needle and the second height lower than the position of the tip end of the probe needle. Thus, when no probe test is conducted, it is possible to protect the probe needle by setting the protruding height of the stopper member to the first height higher than the position of the tip end of the probe needle. On the other hand, when a probe test is conducted, the probe test can be performed by setting the protruding height of the stopper member to the second height lower than the position of the tip end of the probe needle.
  • The height adjustment mechanism according to the second aspect of the invention preferably includes an inlet/outlet for introducing a medium from outside the stopper section and discharging the medium to outside the stopper section, and is preferably configured so as to set the protruding height of the stopper member in accordance with the amount of the medium introduced.
  • The height adjustment mechanism according to the second aspect of the invention preferably includes a rotating mechanism which is controllable from outside the stopper section, and is preferably configured so as to set the protruding height of the stopper member in accordance with operation of the rotating mechanism.
  • Also, in the second aspect of the invention, the height adjustment mechanism is preferably configured to be able to output a signal indicating a result of height adjustment; and the probe card substrate preferably includes: a memory device for storing a result of past height adjustment or a result of height adjustment performed during fabrication; and a comparator for comparing the signal output from the height adjustment mechanism with the past height adjustment result or the result of the height adjustment performed during fabrication stored in the memory device, and if a difference therebetween exceeds a reference value, outputting a signal indicating that.
  • A third aspect of the invention is directed to a probe card cassette including a holding section for holding the probe card of the second aspect of the invention, wherein the height adjustment mechanism in the probe card is configured to be able to output a signal indicating a result of height adjustment; and the holding section includes: a memory device for storing a result of past height adjustment or a result of height adjustment performed during fabrication; and a comparator for comparing the signal output from the height adjustment mechanism with the past height adjustment result or the result of the height adjustment performed during fabrication stored in the memory device, and if a difference therebetween exceeds a reference value, outputting a signal indicating that.
  • A fourth aspect of the invention is directed to a probe card including: a probe card substrate having a hole, with a first electrode provided on one surface of the probe card substrate; and a probe needle section including a base plate and a projection protruding from the base plate, with the base end of a probe needle connected to tip end of the projection, wherein the probe card substrate and the probe needle section are connected via an elastic member, with the projection of the probe needle section inserted into the hole in the probe card substrate from the one surface side, in such a manner that the probe needle section is slidable in a direction in which the projection is inserted; on a surface with the projection protruding of the base plate of the probe needle section, a second electrode is provided to face the first electrode; when pressure is applied to the probe needle section from backside of the base plate, the elastic member contracts to cause the surface with the projection protruding of the base plate and the one surface of the probe card substrate to come into contact with each other to give an electrical connection between the first electrode and the second electrode; and when no pressure is applied to the probe needle section from backside of the base plate, the elastic member extends, such that the surface with the projection protruding of the base plate and the one surface of the probe card substrate are separated from each other and tip end of the probe needle is positioned inwardly of another surface of the probe card substrate.
  • According to the fourth aspect of the invention, when no probe test is conducted, no pressure is applied to the probe needle section from the backside of the base plate, which allows the elastic member to extend, such that the surface with the projection protruding of the base plate and the one surface of the probe card substrate are separated from each other and the tip end of the probe needle is positioned inwardly of another surface of the probe card substrate. That is, it is possible to protect the probe needle.
  • Effects of the Invention
  • According to the invention, when no probe test is conducted, it is possible to protect the probe needle and hence prevent breakage of the probe needle due to an operator's error, dropping, or the like.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a perspective view illustrating the structure of a probe card cassette according to a first embodiment of the invention.
  • FIG. 2 is a cross-sectional view illustrating the structure of a probe card according to a second embodiment of the invention when a probe test is conducted.
  • FIG. 3 is a cross-sectional view illustrating the structure of the probe card according to the second embodiment of the invention when no probe test is conducted.
  • FIG. 4 is a cross-sectional view illustrating the structure of a probe card according to a third embodiment of the invention when a probe test is conducted.
  • FIG. 5 is a cross-sectional view illustrating the structure of the probe card according to the third embodiment of the invention when no probe test is conducted.
  • FIG. 6 is a plan view illustrating the structure of a probe card according to a fourth embodiment of the invention.
  • FIG. 7 is a perspective view illustrating the structure of a probe card cassette according to a fifth embodiment of the invention.
  • FIG. 8 is a cross-sectional view illustrating the structure of a probe card according to a sixth embodiment of the invention when a probe test is conducted.
  • FIG. 9 is a cross-sectional view illustrating the structure of the probe card according to the sixth embodiment of the invention when no probe test is conducted.
  • FIG. 10 is a view illustrating a typical probe card.
  • EXPLANATION OF THE REFERENCE CHARACTERS
  • 1 Probe card
  • 2 Holding section
  • 3 a, 3 b, 3 c, 3 d Transport mechanisms
  • 4 Lock mechanism
  • 5 a Memory device
  • 5 b Comparator
  • 101 Probe card substrate
  • 101 a Hole
  • 102 a, 102 b Probe needles
  • 103 Stopper section
  • 103 b Stopper member
  • 103 c Medium storage section
  • 105 Elastic member
  • 106 Inlet/outlet
  • 107 Rotating mechanism
  • 108 Probe needle section
  • 108 a Base plate
  • 108 b Projection
  • 109 a, 109 b Second electrodes
  • 110 a, 110 b First electrodes
  • 111 a, 111 b Elastic members
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, in order to further simplify an understanding of the invention, embodiments of the invention will be described. These embodiments are only aspects of the invention and thus do not limit the invention, and any changes and modifications may be made therein within the scope of the invention.
  • FIG. 1 is a perspective view showing the structure of a probe card cassette according to a first embodiment of the invention. In FIG. 1, the reference numeral 1 refers to a probe card; 2 to a holding section for holding the probe card; 3 a, 3 b, 3 c, and 3 d to transport mechanisms for transporting the probe card 1 from the holding section 2 and storing the probe card 1 into the holding section 2; and 4 to a lock mechanism for locking operation of the transport mechanism 3 d for prevention of improper transport of the probe card 1. While the lock mechanism 4 is operating, the probe card 1 is fixed in the holding section 2. While the lock mechanism 4 is released, the probe card 1 can be transported from the holding section 2 by the transport mechanisms 3 a to 3 d.
  • When a probe test is performed, the probe card cassette shown in FIG. 1 with the probe card 1 held thereon is placed in prober equipment. When the probe card cassette is placed in the prober equipment, the prober equipment releases the lock mechanism 4 to release the lock of the operation of the transport mechanism 3 d, thereby allowing the probe card 1 to be transported by the transport mechanisms 3 a to 3 d from the holding section 2 into the prober equipment. Then, the prober equipment is ready to conduct the probe test.
  • At the completion of the probe test, the probe card 1 is transported from the prober equipment and held in the holding section 2. After the completion of the holding process, the probe card cassette is removed from the prober equipment, at which time the lock mechanism 4 is activated to fix the probe card 1 in the holding section 2. The probe needles are thus protected.
  • FIGS. 2 and 3 are cross-sectional views illustrating the structure of a probe card according to a second embodiment of the invention. FIG. 2 shows a state in which a probe test is conducted, while FIG. 3 shows a state in which no probe test is performed. In FIGS. 2 and 3, the reference numeral 101 refers to a probe card substrate, and 102 a and 102 b denote probe needles, whose base ends are connected to one surface of the probe card substrate 101. The reference numeral 103 represents a stopper section provided in the probe card substrate 101. The stopper section 103 includes: a receiving section 103 a which is fixed in the probe card substrate 101; a stopper member 103 b which slides with respect to the receiving section 103 a; an elastic member 105 which connects the receiving section 103 a and the stopper member 103 b and is formed of a helical spring, for example; and an inlet/outlet 106 which provides communication between a medium storage section 103 c, defined and formed by the receiving section 103 a and the stopper member 103 b, and the outside. The stopper member 103 b protrudes from the one surface of the probe card substrate 101 and is configured so as to be slidable in the protrusion direction. Through the inlet/outlet 106, a medium made of, e.g., a gas, such as air, or a liquid, such as oil, can be introduced into the medium storage section 103 c from outside the stopper section 103 and can be discharged from the medium storage section 103 c to outside the stopper section 103.
  • Introducing a medium into the medium storage section 103 c through the inlet/outlet 106 causes the elastic member 105 to extend to increase the height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101. On the other hand, discharge of the medium from the medium storage section 103 c through the inlet/outlet 106 causes the elastic member 105 to contract to reduce the height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101. That is, the protruding height of the stopper member 103 b is set by the amount of the medium introduced in the medium storage section 103 c. The medium storage section 103 c, the elastic member 105, and the inlet/outlet 106 form a height adjustment mechanism.
  • In the second embodiment, the height adjustment mechanism is configured so as to be able to adjust the protruding height of the stopper member 103 b between a first height higher than the positions of the tip ends of the probe needles 102 a and 102 b and a second height lower than the positions of the tip ends of the probe needles 102 a and 102 b.
  • When a probe test is conducted, as shown in FIG. 2, the probe card is placed in prober equipment, followed by discharge of the medium through the inlet/outlet 106, such that the amount of the medium in the medium storage section 103 c is decreased. This causes the elastic member 105 to contract to thereby reduce the height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101, so that the stopper member 103 b has a protruding height lower than the positions of the tip ends of the probe needles 102 a and 102 b, allowing the probe test to be performed. At this time, it is desired that the protruding height of the stopper member 103 b be slightly lower than the positions of the tip ends of the probe needles 102 a and 102 b. Then, even if an operator's error occurs during the probe test, the resultant movements of the tip ends of the probe needles 102 a and 102 b during the probe test are minimized, thereby preventing breakage of the probe needles 102 a and 102 b.
  • When no probe test is conducted, as shown in FIG. 3, the probe card is removed from the prober equipment, at which time a medium is introduced through the inlet/outlet 106 to increase the amount of the medium in the medium storage section 103 c. This causes the elastic member 105 to extend to increase the height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101, such that the stopper member 103 b has a protruding height higher than the positions of the tip ends of the probe needles 102 a and 102 b, thereby protecting the probe needles 102 a and 102 b. That is, it is possible to prevent breakage of the probe needles 102 a and 102 b.
  • FIGS. 4 and 5 are cross-sectional views illustrating the structure of a probe card according to a third embodiment of the invention. FIG. 4 shows a state in which a probe test is conducted, while FIG. 5 shows a state in which no probe test is carried out. In FIGS. 4 and 5, the same members as those shown in FIGS. 2 and 3 are identified by the same reference numerals, and detailed description thereof is omitted herein.
  • In the third embodiment, the protruding height of a stopper member 103 b is adjusted not by introducing or discharging a medium but by operation of a rotating mechanism 107 formed of a screw, for example. To be specific, a stopper section 103A includes a receiving section 103 a, the stopper member 103 b, an elastic member 105, and the rotating mechanism 107. The rotating mechanism 107 is controllable from outside the stopper section 103A and is configured so as to pull up the stopper member 103 b when rotated in a given direction and push down the stopper member 103 b when rotated in the opposite direction. The elastic member 105 and the rotating mechanism 107 form a height adjustment mechanism.
  • In the third embodiment, the height adjustment mechanism is also configured so as to be able to adjust the protruding height of the stopper member 103 b between a first height higher than the positions of the tip ends of probe needles 102 a and 102 b and a second height lower than the positions of the tip ends of the probe needles 102 a and 102 b.
  • When a probe test is conducted, as shown in FIG. 4, the probe card is placed in prober equipment, followed by rotation of the rotating mechanism 107 which causes the elastic member 105 to contract to thereby pull up the stopper member 103 b. The height of the protrusion of the stopper member 103 b protruding from one surface of the probe card substrate 101 is thus reduced, so that the stopper member 103 b has a protruding height lower than the positions of the tip ends of the probe needles 102 a and 102 b, thereby allowing the probe test to be performed. At this time, it is desired that the protruding height of the stopper member 103 b be slightly lower than the positions of the tip ends of the probe needles 102 a and 102 b. Then, even if an operator's error occurs during the probe test, the resulting movements of the tip ends of the probe needles 102 a and 102 b during the probe test are minimized, which prevents breakage of the probe needles 102 a and 102 b.
  • When no probe test is conducted, as shown in FIG. 5, the probe card is removed from the prober equipment, at which time the rotating mechanism 107 rotates in the opposite direction to cause the elastic member 105 to extend to thereby push down the stopper member 103 b. The height of the protrusion of the stopper member 103 b protruding from the one surface of the probe card substrate 101 is thus increased, such that the stopper member 103 b has a protruding height higher than the positions of the tip ends of the probe needles 102 a and 102 b, thereby protecting the probe needles 102 a and 102 b. That is, it is possible to prevent breakage of the probe needles 102 a and 102 b.
  • FIG. 6 is a plan view illustrating the structure of a probe card according to a fourth embodiment of the invention. The structure of the probe card shown in FIG. 6 is basically the same as those of the probe cards shown in FIGS. 2 to 5, and common members are thus identified by the same reference numerals. However, a memory device 5 a and a comparator 5 b are provided in an empty space in a probe card substrate 101.
  • In the probe card shown in FIG. 6, the above-described height adjustment mechanism is configured to be able output a signal indicating the result of height adjustment. And the memory device 5 a is capable of storing the result of past height adjustment. The comparator 5 b is coupled to the memory device 5 a by a signal line and compares the result of the current height adjustment output from the height adjustment mechanism with the result of past height adjustment stored in the memory device 5 a. And when the difference exceeds a reference value, the comparator 5 b outputs a signal indicating that. When the probe card shown in FIG. 6 is placed in prober equipment, the output signal of the comparator 5 b is sent to the prober equipment. This enables an indication of the occurrence of the abnormal condition.
  • The memory device 5 a may store the result of height adjustment performed during fabrication. In that case, the same effects as those described above are also attainable.
  • FIG. 7 is a perspective view illustrating the structure of a probe card cassette according to a fifth embodiment of the invention. The probe card cassette shown in FIG. 7 basically has the same structure as the probe card cassette shown in FIG. 1, and common members are thus identified by the same reference numerals. And the probe cards shown in FIGS. 2 to 5 are held in a holding section 2. However, a memory device 5 a and a comparator 5 b are provided in an empty space in a surface of the holding section 2.
  • In the probe cards held in the probe card cassette shown in FIG. 7, the above-described height adjustment mechanism is configured to be able to output a signal indicating the result of height adjustment. And the memory device 5 a is capable of storing the result of past height adjustment. The comparator 5 b is coupled to the memory device 5 a by a signal line and compares the result of the current height adjustment output from the height adjustment mechanism with the result of past height adjustment stored in the memory device 5 a. And when the difference exceeds a reference value, the comparator 5 b outputs a signal indicating that. When the probe card cassette shown in FIG. 7 is placed in prober equipment, the output signal of the comparator 5 b is sent to the prober equipment. This enables an indication of the occurrence of the abnormal condition.
  • The memory device 5 a may store the result of height adjustment performed during fabrication. In that case, the same effects as those described above are also attainable.
  • FIGS. 8 and 9 are cross-sectional views illustrating the structure of a probe card according to a sixth embodiment of the invention. FIG. 8 shows a state in which a probe test is conducted, while FIG. 9 shows a state in which no probe test is performed. In FIGS. 8 and 9, the reference numeral 101 denotes a probe card substrate, with first electrodes 110 a and 110 b provided on one surface thereof, namely the upper surface. These electrodes 110 a and 110 b are connected to a tester channel in the probe card substrate 101. The reference numeral 108 represents a probe needle section, which includes a base plate 108 a and a projection 108 b protruding from the base plate 108 a. Probe needles 102 a and 102 b are connected at their base ends to the end of the projection 108 b. The probe card substrate 101 and the probe needle section 108 are connected via elastic members 111 a and 111 b formed of, e.g., helical springs, with the projection 108 b inserted into a hole 101 a in the probe card substrate 101 from the upper surface side of the substrate 101, in such a manner that the probe needle section 108 is slidable in the insertion direction. On the surface with the projection 108 b of the base plate 108 a of the probe needle section 108, second electrodes 109 a and 109 b are provided to face the first electrodes 110 a and 110 b.
  • When a probe test is conducted, as shown in FIG. 8, the probe card is placed in prober equipment, at which time the probe card substrate 101 is fixed in the prober equipment to apply pressure to the probe needle section 108 from the backside of the base plate 108 a, thereby pushing the probe needle section 108 downward. At this time, the elastic members 111 a and 111 b contract to cause the surface with the projection 108 b of the base plate 108 a and the upper surface of the probe card substrate 101 to come into contact with each other, thereby electrically connecting the first electrodes 110 a and 110 b and the second electrodes 109 a and 109 b. Also, at this time, the positions of the tip ends of the probe needles 102 a and 102 b are lower than the lower surface of the probe card substrate 101, which enables the probe test to be carried out.
  • When no probe test is conducted, as shown in FIG. 9, the probe card is removed from the prober equipment, and no pressure is applied to the probe needle section 108 from the backside of the base plate 108 a. At this time, the elastic members 111 a and 111 b extend to push the probe needle section 108 upward, causing the surface with the projection 108 b of the base plate 108 a and the upper surface of the probe card substrate 101 to be separated from each other. Also, at this time, the tip ends of the probe needles 102 a and 102 b are positioned inwardly of the lower surface (as another surface) of the probe card substrate 101. That is, the probe needles 102 a and 102 b are held inside the probe card substrate 101, allowing the probe needles 102 a and 102 b to be protected.
  • INDUSTRIAL APPLICABILITY
  • The present invention, which enables protection of the probe needles of probe cards and thus produces the effect of preventing breakage of the probe needles due to an error, dropping, or the like, is useful in efficiently conducting probe tests, for example.

Claims (7)

1. A probe card cassette comprising:
a holding section for holding a probe card;
a transport mechanism for transporting the probe card from the holding section; and
a lock mechanism for locking operation of the transport mechanism,
wherein when the probe card cassette is placed in prober equipment, the lock mechanism is released to allow the probe card to be transported from the holding section by the transport mechanism, while when the probe card cassette is not placed in the prober equipment, the lock mechanism operates to fix the probe card in the holding section.
2. A probe card comprising:
a probe card substrate;
a probe needle whose base end is connected to one surface of the probe card substrate; and
a stopper section provided in the probe card substrate and including a stopper member and a height adjustment mechanism, the stopper member protruding from the one surface and being slidable in a direction in which the stopper member protrudes, the height adjustment mechanism adjusting height of the stopper member protruding from the one surface,
wherein the height adjustment mechanism is configured to be able to adjust the protruding height of the stopper member between a first height higher than the position of tip end of the probe needle and a second height lower than the position of the tip end of the probe needle.
3. The probe card of claim 2, wherein the height adjustment mechanism includes an inlet/outlet for introducing a medium from outside the stopper section and discharging the medium to outside the stopper section; and
the height adjustment mechanism is configured so as to set the protruding height of the stopper member in accordance with the amount of the medium introduced.
4. The probe card of claim 2, wherein the height adjustment mechanism includes a rotating mechanism which is controllable from outside the stopper section; and
the height adjustment mechanism is configured so as to set the protruding height of the stopper member in accordance with operation of the rotating mechanism.
5. The probe card of claim 2, wherein the height adjustment mechanism is configured to be able to output a signal indicating a result of height adjustment; and
the probe card substrate includes:
a memory device for storing a -result of past height adjustment or a result of height adjustment performed during fabrication; and
a comparator for comparing the signal output from the height adjustment mechanism with the past height adjustment result or the result of the height adjustment performed during fabrication stored in the memory device, and if a difference therebetween exceeds a reference value, outputting a signal indicating that.
6. A probe card cassette comprising a holding section for holding the probe card of claim 2,
wherein the height adjustment mechanism in the probe card is configured to be able to output a signal indicating a result of height adjustment; and
the holding section includes:
a memory device for storing a result of past height adjustment or a result of height adjustment performed during fabrication; and
a comparator for comparing the signal output from the height adjustment mechanism with the past height adjustment result or the result of the height adjustment performed during fabrication stored in the memory device, and if a difference therebetween exceeds a reference value, outputting a signal indicating that.
7. A probe card comprising:
a probe card substrate having a hole, with a first electrode provided on one surface of the probe card substrate; and
a probe needle section including a base plate and a projection protruding from the base plate, with the base end of a probe needle connected to tip end of the projection,
wherein the probe card substrate and the probe needle section are connected via an elastic member, with the projection of the probe needle section inserted into the hole in the probe card substrate from the one surface side, in such a manner that the probe needle section is slidable in a direction in which the projection is inserted;
on a surface with the projection protruding of the base plate of the probe needle section, a second electrode is provided to face the first electrode;
when pressure is applied to the probe needle section from backside of the base plate, the elastic member contracts to cause the surface with the projection protruding of the base plate and the one surface of the probe card substrate to come into contact with each other to give an electrical connection between the first electrode and the second electrode; and
when no pressure is applied to the probe needle section from backside of the base plate, the elastic member extends, such that the surface with the projection protruding of the base plate and the one surface of the probe card substrate are separated from each other and tip end of the probe needle is positioned inwardly of another surface of the probe card substrate.
US11/995,081 2006-08-09 2007-07-23 Probe card cassette and probe card Abandoned US20100013508A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006-217226 2006-08-09
JP2006217226 2006-08-09
PCT/JP2007/064439 WO2008018286A1 (en) 2006-08-09 2007-07-23 Probe card cassette and probe card

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064439 A-371-Of-International WO2008018286A1 (en) 2006-08-09 2007-07-23 Probe card cassette and probe card

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/878,554 Division US8040147B2 (en) 2006-08-09 2010-09-09 Probe card cassette and probe card

Publications (1)

Publication Number Publication Date
US20100013508A1 true US20100013508A1 (en) 2010-01-21

Family

ID=39032820

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/995,081 Abandoned US20100013508A1 (en) 2006-08-09 2007-07-23 Probe card cassette and probe card
US12/878,554 Expired - Fee Related US8040147B2 (en) 2006-08-09 2010-09-09 Probe card cassette and probe card

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/878,554 Expired - Fee Related US8040147B2 (en) 2006-08-09 2010-09-09 Probe card cassette and probe card

Country Status (3)

Country Link
US (2) US20100013508A1 (en)
JP (1) JPWO2008018286A1 (en)
WO (1) WO2008018286A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD885155S1 (en) 2017-06-30 2020-05-26 Black & Decker Inc. Tool bit for driving threaded fasteners
CN113495176A (en) * 2020-04-06 2021-10-12 旺矽科技股份有限公司 Probe card and probe module thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102335827B1 (en) 2014-12-24 2021-12-08 삼성전자주식회사 apparatus for loading a prove card and system for managing the prove card with the unit
EP4307342B1 (en) * 2021-03-08 2025-11-26 Kioxia Corporation Wafer and prober

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838892B2 (en) * 2001-08-07 2005-01-04 Tokyo Electron Limited Probe card carrier and method of carrying probe card

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252447A (en) * 1988-08-17 1990-02-22 Oki Electric Ind Co Ltd Probe card
JPH0328772A (en) * 1989-06-27 1991-02-06 Mitsubishi Electric Corp Probe card storage case for semiconductor wafer measurement
JPH06174749A (en) * 1992-12-08 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Probe card
JP2005150224A (en) 2003-11-12 2005-06-09 Nec Electronics Corp Semiconductor testing apparatus using probe information and testing method
US7282932B2 (en) * 2004-03-02 2007-10-16 Micron Technology, Inc. Compliant contact pin assembly, card system and methods thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838892B2 (en) * 2001-08-07 2005-01-04 Tokyo Electron Limited Probe card carrier and method of carrying probe card

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD885155S1 (en) 2017-06-30 2020-05-26 Black & Decker Inc. Tool bit for driving threaded fasteners
CN113495176A (en) * 2020-04-06 2021-10-12 旺矽科技股份有限公司 Probe card and probe module thereof
KR20210124913A (en) * 2020-04-06 2021-10-15 엠피아이 코포레이션 Probe card and probe module thereof
US11585832B2 (en) * 2020-04-06 2023-02-21 Mpi Corporation Probe card and probe module thereof
KR102538771B1 (en) * 2020-04-06 2023-05-31 엠피아이 코포레이션 Probe card and probe module thereof

Also Published As

Publication number Publication date
JPWO2008018286A1 (en) 2009-12-24
US20110006798A1 (en) 2011-01-13
US8040147B2 (en) 2011-10-18
WO2008018286A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
TW457611B (en) Wafer-level package, a method of manufacturing thereof and a method of manufacturing semiconductor devices from such a wafer-level package
KR101228207B1 (en) Pushing apparatus for testing a semiconductor device and test handler including the same
US6258609B1 (en) Method and system for making known good semiconductor dice
EP0746772B1 (en) Reusable die carrier for burn-in and burn-in process
KR100429755B1 (en) Method for mounting an electronic component
US8040147B2 (en) Probe card cassette and probe card
US20080164893A1 (en) Probe card for testing wafer
US6970007B2 (en) Semiconductor device low temperature test apparatus using electronic cooling element
TWI241870B (en) Method for mounting an electronic component
US20040178788A1 (en) Charge eliminating mechanism for stage and testing apparatus
CN101334425A (en) Integrated circuit element test socket, socket substrate, test machine and manufacturing method thereof
US20040112142A1 (en) Test kit for semiconductor package and method for testing semiconductor package using the same
US6737878B2 (en) Probe applied to semiconductor package test and method for testing semiconductor package
KR101307423B1 (en) Test tray and test handler comprising the same
US7893702B2 (en) Apparatus for testing semiconductor device package and multilevel pusher thereof
US8659300B2 (en) Stress testing of silicon-on-insulator substrates using applied electrostatic discharge
US20050218917A1 (en) Semiconductor component with internal heating
TW200907348A (en) A contact insert for a microcircuit test socket
KR101362546B1 (en) Insert assembly and apparatus for receiving electronic device including the same
JPH07113840A (en) Carrier having replaceable substrate used in test of semiconductor die
US20070182432A1 (en) Insert with support for semiconductor package
KR101380280B1 (en) A test device
KR20170119452A (en) Insert assembly for receiving semiconductor device and test tray including the same
KR19980071417A (en) Semiconductor device test equipment
JP3850144B2 (en) Contactor for semiconductor devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NOZAKI, SHIRO;OHTORI, TAKASHI;TSUNOGAKI, KENICHI;REEL/FRAME:020851/0766

Effective date: 20071211

AS Assignment

Owner name: PANASONIC CORPORATION,JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021832/0215

Effective date: 20081001

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021832/0215

Effective date: 20081001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION