US20090280030A1 - Apparatus for automated accelerated extraction of trace elements from biomass - Google Patents
Apparatus for automated accelerated extraction of trace elements from biomass Download PDFInfo
- Publication number
- US20090280030A1 US20090280030A1 US12/460,140 US46014009A US2009280030A1 US 20090280030 A1 US20090280030 A1 US 20090280030A1 US 46014009 A US46014009 A US 46014009A US 2009280030 A1 US2009280030 A1 US 2009280030A1
- Authority
- US
- United States
- Prior art keywords
- vessel
- sample
- liquid
- chemical reaction
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002028 Biomass Substances 0.000 title claims abstract description 35
- 238000000605 extraction Methods 0.000 title abstract description 14
- 239000011573 trace mineral Substances 0.000 title abstract description 14
- 235000013619 trace mineral Nutrition 0.000 title abstract description 14
- 238000004458 analytical method Methods 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims description 47
- 239000007788 liquid Substances 0.000 claims description 27
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 25
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 13
- 229910017604 nitric acid Inorganic materials 0.000 claims description 13
- 239000003153 chemical reaction reagent Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- 238000009616 inductively coupled plasma Methods 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims 3
- 238000000034 method Methods 0.000 abstract description 19
- 235000013339 cereals Nutrition 0.000 abstract description 4
- 235000013305 food Nutrition 0.000 abstract description 4
- 238000005204 segregation Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 33
- 239000011669 selenium Substances 0.000 description 24
- 229910052711 selenium Inorganic materials 0.000 description 24
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 23
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 23
- 229910002092 carbon dioxide Inorganic materials 0.000 description 13
- 230000029087 digestion Effects 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000004678 hydrides Chemical class 0.000 description 4
- 150000002484 inorganic compounds Chemical class 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 235000013311 vegetables Nutrition 0.000 description 4
- 240000008620 Fagopyrum esculentum Species 0.000 description 3
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 235000021307 Triticum Nutrition 0.000 description 3
- 241000209140 Triticum Species 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 241001133760 Acoelorraphe Species 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- 235000016401 Camelina Nutrition 0.000 description 2
- 244000197813 Camelina sativa Species 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 244000062793 Sorghum vulgare Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000004464 cereal grain Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- 235000020986 nuts and seeds Nutrition 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000010517 secondary reaction Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000013022 venting Methods 0.000 description 2
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 241000209763 Avena sativa Species 0.000 description 1
- 235000007558 Avena sp Nutrition 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 244000056139 Brassica cretica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 244000188595 Brassica sinapistrum Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000001090 Papaver somniferum Species 0.000 description 1
- 235000008753 Papaver somniferum Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 244000028344 Primula vulgaris Species 0.000 description 1
- 235000016311 Primula vulgaris Nutrition 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 206010039921 Selenium deficiency Diseases 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 241000482268 Zea mays subsp. mays Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000006851 antioxidant defense Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004182 chemical digestion Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000021112 essential micronutrients Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 235000021384 green leafy vegetables Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001277 hydride generation atomic absorption spectroscopy Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003342 selenium Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/005—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods investigating the presence of an element by oxidation
Definitions
- Selenium is known to be an essential micronutrient for human beings; as an agent for antioxidant defense it acts as a catalyst for production of thyroid hormone and is vital for proper functioning of the human immune system.
- recent studies have shown that its deficiency can lead to a variety of health risks. For example, selenium deficiency is associated with increased cancer risk, occurrence of cardiovascular diseases, adverse mood states and infertility in males. In contrast, higher concentrations of selenium in human beings can be toxic. Therefore, the United States recommended dietary allowance of selenium is 55-70 ⁇ g/day for an average healthy individual.
- spectroscopic methods such as hydride atomic absorption spectroscopy (HAAS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and graphite furnace absorption spectroscopy (GFAA).
- HAAS hydride atomic absorption spectroscopy
- ICP-AES inductively coupled plasma atomic emission spectroscopy
- GFAA graphite furnace absorption spectroscopy
- Other time consuming methods include inductively coupled plasma/mass spectroscopy and neutron activation.
- the major bottleneck with these analytical methods is the lengthy chemical digestion step that is needed to break down plant fibers and release selenium into a liquid or gaseous phase, where it can be easily analyzed.
- Digestion methods typically use concentrated nitric or perchloric acids as well as hydrogen peroxide, often with heating to high temperatures.
- the present invention is a method or apparatus for the automated accelerated extraction and analysis of trace inorganic compounds from biomass using a closed vessel containing at least one opening, where a pressure of 200 PSIA or greater is generated by carbon dioxide produced by the mixing of nitric acid and hydrogen peroxide with a biomass sample and then heating to accelerate chemical reaction.
- the present invention is a method that utilizes carbon inherently contained in an organic sample as a desired component to accelerate the digestion and automate the process through carbon dioxide pressure produced from the biomass.
- the present invention is directed to the automated extraction of trace inorganic compounds from agricultural cereal grains. More preferably, the present invention is further directed to the automated extraction of trace inorganic compounds from agricultural cereal grains that include buckwheat, wheat, and mustard.
- a method for the accelerated extraction of inorganic compounds residing in a biomass where a stable pressure of 200 PSIA or greater is produced upon addition of nitric acid and hydrogen peroxide and the chemical reaction enabled by heat.
- the vessel containing a biomass sample, nitric acid and hydrogen peroxide is sufficiently heated to enable a chemical reaction to generate pressure ranging from 200 PSIA to 2500 PSIA, and preferably, from 200 PSIA to 1500 PSIA, from the mixture in the vessel.
- the heat is maintained for a sufficient time, preferably 10 minutes or less, until the stable pressure is reached.
- the elevated pressure accelerates the degradation of the biomass, thereby reducing time for the sample preparation for analysis of trace elements derived from the biomass.
- the biomass is any plant biomass and, more preferably, the biomass is an edible crop.
- a method and apparatus for the automated accelerated extraction of trace elements from biomass where a sample, nitric acid and hydrogen peroxide are placed in an extraction vessel having at least one opening which resides at the bottom of the vessel and a chemical reaction enabled by heat until a stable pressure is reached.
- the pressure is at least 200 PSIA or greater and is monitored using a pressure detection device.
- the elevated pressure accelerates the digestion of the sample and provides for automated sampling through the opening in the vessel which is vented using a valve and tubing to a quantitative analytical instrument, preferably a spectrometer, to determine trace element concentration.
- a method and apparatus for the automated accelerated extraction of selenium from biomass where a sample, nitric acid and hydrogen peroxide are placed in an extraction vessel having at least one opening and a chemical reaction enabled by heat until a stable pressure is reached.
- the digested biomass is vented using a value and tubing to a second vessel where sulfamic acid and hydrochloric acid are added to reduce selenium from its +6 state to +4 state for detection.
- the reaction is performed in a closed vessel where nitrogen gas is generated to pressurize the closed vessel for automated sampling and detection.
- FIG. 1 is a schematic diagram of a basic apparatus for the extraction of biomass connected to an open second vessel for additional processing.
- FIG. 2 is a schematic diagram of the basic apparatus connected to a closed second vessel for additional processing.
- FIG. 3 is a schematic diagram of the basic apparatus where the primary vessel is used additional processing.
- FIG. 4 a is a diagram of a nitric acid and hydrogen peroxide chemical reaction.
- FIG. 4 b is a diagram of a sulfamic acid and sulfuric acid chemical reaction.
- FIG. 5 is a graph showing a relationship of time and increased pressure produced by the chemical reaction caused by heating biomass, hydrogen peroxide, and nitric acid in the primary vessel.
- FIG. 6 is a graph showing a relationship of biomass sample size and pressure produced during chemical reaction.
- Biomass means any part or portion of an organic material based on carbon. Examples of biomass include plant, animal, microbial or any other material derived from living material.
- “Edible Crop” means a portion of a plant that can be processed into an edible foodstuff.
- Edible crop means any plant to be harvested for food, livestock fodder, or another edible purpose.
- Edible crops include, but are not limited to, cereals, oil crops, fruits, nuts and seeds, and vegetables.
- Cereals include, but are not limited to, rice, maize, sweetcorn, barley, sorghums, millets, oat, rye, buckwheat, wheat, flax and the like.
- Vegetables include, but are not limited to, peas, leaf vegetables, beans, root vegetables, stem vegetables, and the like.
- Nuts and seeds include, but are not limited to, edible seeds, nuts and the like.
- Oil crops include, but are not limited to, soybean, safflower, sunflower, sesame, canola, rapeseed, primrose, poppy, camelina, olive, coconut, palm, cotton, soybean, palm, sugar beets, camelina, and the like.
- End means to initiate, facilitate, cause, act or the like to begin a chemical reaction.
- Plant biomass means any part or portion of a plant.
- PSIA pounds per square inch absolute, a measure of pressure referenced to a total vacuum.
- Self-venting means a pressured sample where the pressure within the vessel facilitates the venting of the contents from the vessel without the use of any pumps.
- “Stable pressure” means pressure readings that do not change with time under constant environmental conditions such as temperature.
- Trace elements to be analyzed include, but are not limited to, antimony, arsenic, boron, cadmium, cobalt, chromium, copper, mercury, nickel, lead, selenium, tin, and zinc.
- the sample is physically degraded by any means which includes being ground, minced, diced, shredded, sliced, or the like.
- a sample of degraded biomass is placed in an open reaction vessel 1 , and an acid mixture of nitric acid and hydrogen peroxide, (shaded area 2 ) is added.
- the sample preferably from about 0.1 g to 2.5 g, and more preferably, about 1.0 g, is added to the acid mixture, preferably about 2 mL to 10 mL, and more preferably about 8 mL, is sufficient to generate a post-reaction pressure of about 200 PSIA to 2,500 PSIA, and more preferably about 200 PSIA to 1,500 PSIA.
- the open vessel 1 is then placed in a closed pressure vessel 3 able to contain about 10 mL to 50 mL, containing at least one opening 4 in the reaction vessel 1 (typical shown in inset), which is used for sampling.
- the reaction vessel 1 can be formed of borosilicate, aluminosilicate, alumina or quartz ceramic, and preferably, borosilicate.
- the exterior of the pressure vessel 3 is consistent with dimensions and metallic composition that are sufficient to withstand pressures of at least 3500 PSIA.
- Type 361 stainless steel is the preferred pressure vessel material, although titanium or other steels could be used.
- Pressure within the sealed apparatus is continuously monitored with a sensor 5 that is connected to the pressure vessel 3 , for example, through tubing and a 3- or 4-port plastic union 6 .
- the pressure sensor 5 may be monitored visually or by a computer operated device.
- the preferred material for the union 6 is PEEKTM and for the tubing is PEEKTM reinforced silica or like materials capable of withstanding pressures up to 3500 PSIA such as stainless steel, titanium or like materials.
- Sample flow through the opening 4 at the bottom of the vessel is regulated by a valve 7 , that may be opened either manually or automatically using a computer operated device.
- the opening 4 is coupled to other vessels 8 , if desired for additional reactions, or directly to a chemical analysis instrument, such as an atomic absorption spectrometer, for detection and quantitative determination of the desired trace element.
- a chemical analysis instrument such as an atomic absorption spectrometer, for detection and quantitative determination of the desired trace element.
- Other chemical analysis instruments could be used, such as an atomic fluorescence spectrometer, an inductively-couple plasma emission spectrometer, an inductively-couple plasma/mass spectrometer, or an electrochemical analyzer.
- the reaction vessel 1 After an appropriate amount of acid mixture is added to the reaction vessel 1 containing biomass, the reaction vessel 1 is placed in the pressure vessel 3 , the pressure vessel 3 is sealed and heated to between 80° C. to 200° C., with a heat-exchanger 9 (dashed box) for a sufficient time to enable the chemical reaction.
- a heat-exchanger 9 dashed box
- the carbon present in the sample matrix is oxidized by the nitric acid to produce CO 2 (g) as well as various nitrogen by-products.
- An unexpected improvement of the present invention as a method or an apparatus over existing methods is that carbon inherently contained in the sample, previously considered a waste product in other reported organic digestions, is used to accelerate digestion of biomass and to automate sampling.
- the carbon contained in the biomass is used to accelerate the digestion process in the form of carbon dioxide gas, CO 2 (g), produced from the chemical reaction that is used to pressurize the closed vessel to a stable level.
- CO 2 (g) carbon dioxide gas
- H 2 O 2 hydrogen peroxide
- a sufficient time preferably less than 10 minutes, more preferably less than 5 minutes and most preferably less than 2 minutes, a minimum pressure of at least 200 PSIA, is derived in part or all from CO 2 (g) produced from the sample matrix.
- the pressured sample is maintained for sufficient time to effectively accelerate the at least 80%, preferably 90%, more preferably 95% and most preferably 98% digestion of the biomass sample, which is accomplished after 10 minutes at the maintained, preferably after 5 minutes, and most preferably after 1, 2, 3 or 4 minutes pressure.
- the pressure vessel 3 is usually cooled to about 50° C. or lower temperature, and preferably with the heat exchanger or cooling device 9 .
- the trapped CO 2 (g) is used to automatically expel the aqueous sample residing in the reaction vessel by opening the valve 7 to facilitate subsequent analysis or processing.
- reaction vessels 1 that withstand a pressure of at least 200 PSIA are employed to facilitate the production of CO 2 (g), which is produced as a result of the chemical reaction in the form of CO 2 (g) from the carbon backbone in the organic sample matrix, and subsequently used to automate analysis without any additional pressurization or pumps.
- the sample is released into a second vessel (vessel 8 in FIG. 1 or vessel 11 in FIG. 2 ).
- the pressure vessel 3 or union 6 may contain additional openings to introduce other reagents after the initial reaction is complete.
- the secondary reaction desired is one that creates pressure ( FIG. 3 ).
- the digested sample can be mixed with appropriate amounts of a nitrite reductant and hydrochloric acid 10 in a separate open vessel 8 (shown in FIG. 1 ). More preferably, the secondary reaction 12 is performed in a separate closed vessel (in FIG.
- a high-pressure metering pump 14 composed of PEEKTM or other suitable material (shown in FIG. 3 ).
- the nitrite reductant such as sulfamic acid or urea, removes the nitrites that cause interferences ( FIG. 4 b ) and the hydrochloric acid reduces selenium from its +6 state to +4 oxidation state.
- nitrogen gas is generated which pressurizes the closed vessel systems in FIGS. 2 and 3 and expels the aqueous sample to the analytical detection system. Similar to the first reaction vessel 1 , the pressurized system is used to facilitate automated sampling.
- the end product is +4 state selenium in a liquid acidic medium suitable for detection by existing devices, such as hydride generation atomic absorption spectroscopy.
- the digested sample was cooled to below 50° C. and the remaining high-pressure CO 2 (g) headspace expelled the sample to a vessel by opening the valve.
- the expelled solution was reacted with 0.5 g to 5 g of sulfamic acid and 1 to 10 mL of 50% hydrochloric acid.
- the sulfamic acid reduced the nitrites that create interferences and the hydrochloric acid reduced selenium from its +6 state to +4 state.
- the +4 state is the only form of selenium suitable for formation of its hydride.
- the hydride was automatically analyzed using an atomic absorption spectrometer equipped with a hydride generator and heated quartz atom cell. Selenium concentration was quantified based on its absorbance at a specific wavelength. In wheat samples analyzed for selenium content per weight (part per million weight), the reported selenium content (in parts-per-million by weight) showed the following results:
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
A method and apparatus automates and accelerates the extraction and analysis of trace elements from biomass. The method and apparatus are especially useful at key segregation points in the food chain where speed and accuracy is necessary to separate agricultural cereals that are elevated in beneficial trace element content which provides higher value to the producer.
Description
- This application is a divisional application of U.S. patent application Ser. No. 11/471,224, entitled “AUTOMATED ACCELERATED EXTRACTION OF TRACE ELEMENTS FROM BIOMASS,” filed Jun. 20, 2006.
- Numerous investigations have reported both positive and negative efficacy of dietary selenium in preventing or causing a variety of human conditions. Selenium is known to be an essential micronutrient for human beings; as an agent for antioxidant defense it acts as a catalyst for production of thyroid hormone and is vital for proper functioning of the human immune system. In addition, recent studies have shown that its deficiency can lead to a variety of health risks. For example, selenium deficiency is associated with increased cancer risk, occurrence of cardiovascular diseases, adverse mood states and infertility in males. In contrast, higher concentrations of selenium in human beings can be toxic. Therefore, the United States recommended dietary allowance of selenium is 55-70 μg/day for an average healthy individual.
- To effectively monitor the concentrations of naturally occurring trace elements in agricultural products in the food chain, operators must be able to rapidly and efficiently perform highly sensitive analysis of trace elements in a variety of organic materials. Several laboratories have developed analytical methods to more precisely determine the amounts of trace elements present in agricultural biomass. By being able to rapidly distinguish between selenium-enriched and selenium-deficient agricultural raw materials, the operators can effectively facilitate the segregation of selenium-enriched biomass at shipping termination. For example, when a truck or train load of agricultural product arrives at the mill, the mill operators will have to decide within an hour whether the contents of the load should be assigned as a selenium-enriched raw material for premium pricing and sale. The only alternative presently available is a portable X-ray fluorescence spectroscopy method. However, this device does not provide sufficient accuracy with a detection limit and accuracy of around 10 parts per million weight. Furthermore, a major limitation of this method is that it measures only the selenium concentration in the surface layer of the material rather than its concentration in the entire sample.
- In contrast, laboratory methods have higher sensitivity and accuracy but require significant processing time. These methods include spectroscopic methods such as hydride atomic absorption spectroscopy (HAAS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and graphite furnace absorption spectroscopy (GFAA). Other time consuming methods include inductively coupled plasma/mass spectroscopy and neutron activation. The major bottleneck with these analytical methods is the lengthy chemical digestion step that is needed to break down plant fibers and release selenium into a liquid or gaseous phase, where it can be easily analyzed. Digestion methods typically use concentrated nitric or perchloric acids as well as hydrogen peroxide, often with heating to high temperatures. These digestions often take several hours so that the turnaround time for a single analysis is insufficient for the current application. Furthermore, much of the digestion process is manual in nature, requiring highly skilled, trained analytical technologists. It would be highly desirable to develop a method and apparatus that has the combination of speed and accuracy necessary to perform this analysis at key segregation points in the food chain with a reduced requirement for technical skills.
- The present invention is a method or apparatus for the automated accelerated extraction and analysis of trace inorganic compounds from biomass using a closed vessel containing at least one opening, where a pressure of 200 PSIA or greater is generated by carbon dioxide produced by the mixing of nitric acid and hydrogen peroxide with a biomass sample and then heating to accelerate chemical reaction. Surprisingly, the present invention is a method that utilizes carbon inherently contained in an organic sample as a desired component to accelerate the digestion and automate the process through carbon dioxide pressure produced from the biomass. Preferably, the present invention is directed to the automated extraction of trace inorganic compounds from agricultural cereal grains. More preferably, the present invention is further directed to the automated extraction of trace inorganic compounds from agricultural cereal grains that include buckwheat, wheat, and mustard.
- In a first aspect of the invention, a method for the accelerated extraction of inorganic compounds residing in a biomass where a stable pressure of 200 PSIA or greater is produced upon addition of nitric acid and hydrogen peroxide and the chemical reaction enabled by heat. The vessel containing a biomass sample, nitric acid and hydrogen peroxide is sufficiently heated to enable a chemical reaction to generate pressure ranging from 200 PSIA to 2500 PSIA, and preferably, from 200 PSIA to 1500 PSIA, from the mixture in the vessel. The heat is maintained for a sufficient time, preferably 10 minutes or less, until the stable pressure is reached. The elevated pressure accelerates the degradation of the biomass, thereby reducing time for the sample preparation for analysis of trace elements derived from the biomass. Preferably, the biomass is any plant biomass and, more preferably, the biomass is an edible crop.
- In a second aspect of the invention, a method and apparatus for the automated accelerated extraction of trace elements from biomass where a sample, nitric acid and hydrogen peroxide are placed in an extraction vessel having at least one opening which resides at the bottom of the vessel and a chemical reaction enabled by heat until a stable pressure is reached. Preferably, the pressure is at least 200 PSIA or greater and is monitored using a pressure detection device. The elevated pressure accelerates the digestion of the sample and provides for automated sampling through the opening in the vessel which is vented using a valve and tubing to a quantitative analytical instrument, preferably a spectrometer, to determine trace element concentration.
- In a third aspect of the invention, a method and apparatus for the automated accelerated extraction of selenium from biomass where a sample, nitric acid and hydrogen peroxide are placed in an extraction vessel having at least one opening and a chemical reaction enabled by heat until a stable pressure is reached. The digested biomass is vented using a value and tubing to a second vessel where sulfamic acid and hydrochloric acid are added to reduce selenium from its +6 state to +4 state for detection. Preferably, the reaction is performed in a closed vessel where nitrogen gas is generated to pressurize the closed vessel for automated sampling and detection.
-
FIG. 1 is a schematic diagram of a basic apparatus for the extraction of biomass connected to an open second vessel for additional processing. -
FIG. 2 is a schematic diagram of the basic apparatus connected to a closed second vessel for additional processing. -
FIG. 3 is a schematic diagram of the basic apparatus where the primary vessel is used additional processing. -
FIG. 4 a is a diagram of a nitric acid and hydrogen peroxide chemical reaction. -
FIG. 4 b is a diagram of a sulfamic acid and sulfuric acid chemical reaction. -
FIG. 5 is a graph showing a relationship of time and increased pressure produced by the chemical reaction caused by heating biomass, hydrogen peroxide, and nitric acid in the primary vessel. -
FIG. 6 is a graph showing a relationship of biomass sample size and pressure produced during chemical reaction. - “Accelerated” means less than 15 minutes in time duration.
- “Biomass” means any part or portion of an organic material based on carbon. Examples of biomass include plant, animal, microbial or any other material derived from living material.
- “Edible Crop” means a portion of a plant that can be processed into an edible foodstuff.
- “Edible crop” means any plant to be harvested for food, livestock fodder, or another edible purpose.
- Edible crops include, but are not limited to, cereals, oil crops, fruits, nuts and seeds, and vegetables.
- Cereals include, but are not limited to, rice, maize, sweetcorn, barley, sorghums, millets, oat, rye, buckwheat, wheat, flax and the like.
- Vegetables include, but are not limited to, peas, leaf vegetables, beans, root vegetables, stem vegetables, and the like.
- Nuts and seeds include, but are not limited to, edible seeds, nuts and the like.
- Oil crops include, but are not limited to, soybean, safflower, sunflower, sesame, canola, rapeseed, primrose, poppy, camelina, olive, coconut, palm, cotton, soybean, palm, sugar beets, camelina, and the like.
- “Enable” means to initiate, facilitate, cause, act or the like to begin a chemical reaction.
- “Plant biomass” means any part or portion of a plant.
- “PSIA” means pounds per square inch absolute, a measure of pressure referenced to a total vacuum.
- “Self-venting” means a pressured sample where the pressure within the vessel facilitates the venting of the contents from the vessel without the use of any pumps.
- “Stable pressure” means pressure readings that do not change with time under constant environmental conditions such as temperature.
- The invention described herein is for a method and apparatus for the automated extraction and analysis of trace elements from biomass. A schematic of the basic apparatus is illustrated in
FIG. 1 . Trace elements to be analyzed include, but are not limited to, antimony, arsenic, boron, cadmium, cobalt, chromium, copper, mercury, nickel, lead, selenium, tin, and zinc. The sample is physically degraded by any means which includes being ground, minced, diced, shredded, sliced, or the like. A sample of degraded biomass is placed in an open reaction vessel 1, and an acid mixture of nitric acid and hydrogen peroxide, (shaded area 2) is added. The sample, preferably from about 0.1 g to 2.5 g, and more preferably, about 1.0 g, is added to the acid mixture, preferably about 2 mL to 10 mL, and more preferably about 8 mL, is sufficient to generate a post-reaction pressure of about 200 PSIA to 2,500 PSIA, and more preferably about 200 PSIA to 1,500 PSIA. The open vessel 1 is then placed in aclosed pressure vessel 3 able to contain about 10 mL to 50 mL, containing at least one opening 4 in the reaction vessel 1 (typical shown in inset), which is used for sampling. The reaction vessel 1 can be formed of borosilicate, aluminosilicate, alumina or quartz ceramic, and preferably, borosilicate. The exterior of thepressure vessel 3 is consistent with dimensions and metallic composition that are sufficient to withstand pressures of at least 3500 PSIA. Type 361 stainless steel is the preferred pressure vessel material, although titanium or other steels could be used. Pressure within the sealed apparatus is continuously monitored with asensor 5 that is connected to thepressure vessel 3, for example, through tubing and a 3- or 4-port plastic union 6. Thepressure sensor 5 may be monitored visually or by a computer operated device. The preferred material for theunion 6 is PEEK™ and for the tubing is PEEK™ reinforced silica or like materials capable of withstanding pressures up to 3500 PSIA such as stainless steel, titanium or like materials. Sample flow through the opening 4 at the bottom of the vessel is regulated by avalve 7, that may be opened either manually or automatically using a computer operated device. The opening 4 is coupled toother vessels 8, if desired for additional reactions, or directly to a chemical analysis instrument, such as an atomic absorption spectrometer, for detection and quantitative determination of the desired trace element. Other chemical analysis instruments could be used, such as an atomic fluorescence spectrometer, an inductively-couple plasma emission spectrometer, an inductively-couple plasma/mass spectrometer, or an electrochemical analyzer. - After an appropriate amount of acid mixture is added to the reaction vessel 1 containing biomass, the reaction vessel 1 is placed in the
pressure vessel 3, thepressure vessel 3 is sealed and heated to between 80° C. to 200° C., with a heat-exchanger 9 (dashed box) for a sufficient time to enable the chemical reaction. As shown inFIG. 4 a, the carbon present in the sample matrix is oxidized by the nitric acid to produce CO2 (g) as well as various nitrogen by-products. An unexpected improvement of the present invention as a method or an apparatus over existing methods is that carbon inherently contained in the sample, previously considered a waste product in other reported organic digestions, is used to accelerate digestion of biomass and to automate sampling. In the invention described herein, the carbon contained in the biomass is used to accelerate the digestion process in the form of carbon dioxide gas, CO2 (g), produced from the chemical reaction that is used to pressurize the closed vessel to a stable level. In addition, hydrogen peroxide (H2O2) is present to oxidize hazardous NOx (g) by-products back to nitric acid under pressure, thereby driving the digestion to completion and preventing the buildup of toxic gases in the pressurized vessel headspace while producing CO2 (g). After a sufficient time, preferably less than 10 minutes, more preferably less than 5 minutes and most preferably less than 2 minutes, a minimum pressure of at least 200 PSIA, is derived in part or all from CO2 (g) produced from the sample matrix. The pressured sample is maintained for sufficient time to effectively accelerate the at least 80%, preferably 90%, more preferably 95% and most preferably 98% digestion of the biomass sample, which is accomplished after 10 minutes at the maintained, preferably after 5 minutes, and most preferably after 1, 2, 3 or 4 minutes pressure. - After the digestion period is complete, the
pressure vessel 3 is usually cooled to about 50° C. or lower temperature, and preferably with the heat exchanger orcooling device 9. Unexpectedly, the trapped CO2 (g) is used to automatically expel the aqueous sample residing in the reaction vessel by opening thevalve 7 to facilitate subsequent analysis or processing. In the present invention, reaction vessels 1 that withstand a pressure of at least 200 PSIA are employed to facilitate the production of CO2 (g), which is produced as a result of the chemical reaction in the form of CO2 (g) from the carbon backbone in the organic sample matrix, and subsequently used to automate analysis without any additional pressurization or pumps. - If a second reaction is required for additional processing prior to analysis, the sample is released into a second vessel (
vessel 8 inFIG. 1 orvessel 11 inFIG. 2 ). Alternatively, thepressure vessel 3 orunion 6 may contain additional openings to introduce other reagents after the initial reaction is complete. The secondary reaction desired is one that creates pressure (FIG. 3 ). For example, for quantification of selenium concentration the digested sample can be mixed with appropriate amounts of a nitrite reductant andhydrochloric acid 10 in a separate open vessel 8 (shown inFIG. 1 ). More preferably, thesecondary reaction 12 is performed in a separate closed vessel (inFIG. 2 ) or in the same pressurized vessel if the extra reagents are delivered as asolution 13 by a high-pressure metering pump 14 composed of PEEK™ or other suitable material (shown inFIG. 3 ). The nitrite reductant, such as sulfamic acid or urea, removes the nitrites that cause interferences (FIG. 4 b) and the hydrochloric acid reduces selenium from its +6 state to +4 oxidation state. During the reaction, nitrogen gas is generated which pressurizes the closed vessel systems inFIGS. 2 and 3 and expels the aqueous sample to the analytical detection system. Similar to the first reaction vessel 1, the pressurized system is used to facilitate automated sampling. The end product is +4 state selenium in a liquid acidic medium suitable for detection by existing devices, such as hydride generation atomic absorption spectroscopy. - An effective amount of ground buckwheat, ranging from 0.2 g to 2.5 g of coarsely ground sample was placed in a digestion system illustrated in
FIG. 1 . Approximately 8 mL of a 50-50 by volume mixture of nitric acid and hydrogen peroxide was added to the vessel. The biomass sample in solution was rapidly heated using a heat exchange block to a temperature of about 150° C., at which point rapid pressurization occurred within 10 minutes upon enabling the chemical reaction (FIG. 5 ). As a result of the reaction between the carbon-based organic matter in the sample and the acid mixture, CO2 (g) was produced which rapidly increased the pressure within the vessel to least 200 PSIA or higher within 10 minutes from the initial point of heating. As shown inFIG. 6 , larger samples produced more CO2 (g) and increased the post-reaction pressure in direct proportion. In contrast, in the absence of a sample, pressure was limited to less than 100 PSIA. The increased pressure accelerated liquefaction of the sample, thereby facilitating the release of trace elements, such as selenium, from the organic matrix. Typically, sample liquefaction was completed in less than 5 minutes, and usually less than 2 minutes, after the high pressure is reached. In addition, hydrogen peroxide helped to regenerate nitric acid and to significantly reduce the pressurized headspace of hazardous nitrogen oxide gasses (FIG. 4 a). - For selenium detection, the digested sample was cooled to below 50° C. and the remaining high-pressure CO2 (g) headspace expelled the sample to a vessel by opening the valve. The expelled solution was reacted with 0.5 g to 5 g of sulfamic acid and 1 to 10 mL of 50% hydrochloric acid. The sulfamic acid reduced the nitrites that create interferences and the hydrochloric acid reduced selenium from its +6 state to +4 state. The +4 state is the only form of selenium suitable for formation of its hydride. In the present example, the hydride was automatically analyzed using an atomic absorption spectrometer equipped with a hydride generator and heated quartz atom cell. Selenium concentration was quantified based on its absorbance at a specific wavelength. In wheat samples analyzed for selenium content per weight (part per million weight), the reported selenium content (in parts-per-million by weight) showed the following results:
- The description of the specific embodiments of the invention is presented for the purpose of illustration. It is not intended to be exhaustive nor to limit the scope of the invention to the specific forms described herein. Although the invention has been described with reference to several embodiments, it will be understood by one of ordinary skill in the art that various modifications can be made without departing from the spirit and the scope of the invention, as set forth in the claims. All patents, patent applications and publications referenced herein are hereby incorporated by reference.
- Other embodiments are within the claims.
Claims (20)
1. An apparatus comprising:
a first vessel for containing a first chemical reaction and having a first opening for removing a first liquid sample from the first vessel, the first chemical reaction generating a gas which increases pressure within the first vessel;
a first valve for expelling the first liquid sample from the first vessel via the first opening using only the pressure in the first vessel; and
a second vessel for receiving the first liquid sample removed from the first vessel and for containing a second chemical reaction and having a second opening for removing a second liquid sample from the second vessel, the second chemical reaction generating a gas which increases pressure within the second vessel; and
a second valve for expelling the second liquid sample from the second vessel via the second opening using only the pressure in the second vessel.
2. The apparatus of claim 1 , further comprising:
a reaction vessel for containing the first chemical reaction within the first vessel.
3. The apparatus of claim 1 , further comprising:
a sensor connected to the first vessel for monitoring pressure within the first vessel.
4. The apparatus of claim 1 , further comprising:
a heat exchanger for heating the first vessel to increase a rate of the first chemical reaction within the first vessel.
5. The apparatus of claim 1 , further comprising:
a chemical analysis instrument for analyzing the second liquid sample removed from the second vessel.
6. The apparatus of claim 5 , wherein the chemical analysis instrument is selected from the group consisting of atomic absorption spectrometer, atomic fluorescence spectrometer, inductively-coupled plasma emission spectrometer, inductively-coupled plasma/mass spectrometer, electrochemical analyzer and combinations thereof.
7. The apparatus of claim 1 , wherein the first vessel has a top surface and a bottom surface, and wherein the first opening is proximate the bottom surface.
8. The apparatus of claim 1 , further comprising:
a pump for introducing a reagent into the second vessel.
9. A system comprising:
a first closed vessel for containing a first chemical reaction between a biomass and a first reagent, the first chemical reaction producing gas and liquid, the first closed vessel having a first opening for removing a sample of the liquid from the first closed vessel;
a first valve for transferring the sample of the liquid from the first opening using only the pressure in the first closed vessel;
a second closed vessel for receiving the sample of the liquid removed from the first closed vessel and for containing a second chemical reaction between the sample of the liquid removed from the first closed vessel and a second reagent, the second chemical reaction producing gas and liquid, the second closed vessel having a second opening for removing a sample of the liquid from the second closed vessel;
a second valve for transferring the sample of the liquid from the second opening using only the pressure in the second closed vessel; and
a tube network connecting the first opening to the first valve and the second opening to the second valve.
10. The system of claim 9 , further comprising:
a sensor connected to the tube network for monitoring pressure within the first closed vessel.
11. The system of claim 9 , further comprising:
a heat exchanger for heating the first closed vessel to increase a rate of the first chemical reaction within the first closed vessel.
12. The system of claim 9 , wherein the first closed vessel has a top surface and a bottom surface, and wherein the first opening is proximate the bottom surface.
13. The system of claim 9 , wherein the system does not include a pump for removing the sample of the liquid from the first closed vessel or the sample of the liquid from the second closed vessel.
14. A system comprising:
a biomass;
a reagent that reacts with the biomass to produce gas and liquid;
a vessel for containing a chemical reaction between the biomass and the reagent and having an opening for removing a sample of the liquid from the vessel;
a valve for expelling the sample of the liquid from the vessel via the opening using only pressure in the vessel generated by gas produced by the chemical reaction.
15. The system of claim 14 , further comprising:
a sensor connected to the vessel for monitoring pressure within the vessel.
16. The system of claim 14 , further comprising:
a heat exchanger for heating the vessel to increase a rate of the chemical reaction within the vessel.
17. The system of claim 14 , further comprising:
a chemical analysis instrument for analyzing the sample of the liquid removed from the vessel.
18. The system of claim 17 , wherein the chemical analysis instrument is selected from the group consisting of atomic absorption spectrometer, atomic fluorescence spectrometer, inductively-coupled plasma emission spectrometer, inductively-coupled plasma/mass spectrometer, electrochemical analyzer and combinations thereof.
19. The system of claim 14 , further comprising:
a second reagent that reacts with the sample of the liquid removed from the vessel to produce gas and liquid;
a second vessel for receiving the sample of the liquid removed from the vessel and for containing a second chemical reaction between the sample of the liquid removed from the vessel and the second reagent and having a second opening for removing a sample of the liquid from the second vessel; and
a second valve for expelling the sample of the liquid from the second vessel via the second opening using only pressure in the second vessel generated by gas produced by the second chemical reaction.
20. The system of claim 14 , wherein the reagent is a mixture of nitric acid and hydrogen peroxide.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/460,140 US20090280030A1 (en) | 2005-06-20 | 2009-07-14 | Apparatus for automated accelerated extraction of trace elements from biomass |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US59526605P | 2005-06-20 | 2005-06-20 | |
| US11/471,224 US7578983B2 (en) | 2005-06-20 | 2006-06-20 | Automated accelerated extraction of trace elements from biomass |
| US12/460,140 US20090280030A1 (en) | 2005-06-20 | 2009-07-14 | Apparatus for automated accelerated extraction of trace elements from biomass |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/471,224 Division US7578983B2 (en) | 2005-06-20 | 2006-06-20 | Automated accelerated extraction of trace elements from biomass |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090280030A1 true US20090280030A1 (en) | 2009-11-12 |
Family
ID=37572328
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/471,224 Expired - Fee Related US7578983B2 (en) | 2005-06-20 | 2006-06-20 | Automated accelerated extraction of trace elements from biomass |
| US12/460,140 Abandoned US20090280030A1 (en) | 2005-06-20 | 2009-07-14 | Apparatus for automated accelerated extraction of trace elements from biomass |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/471,224 Expired - Fee Related US7578983B2 (en) | 2005-06-20 | 2006-06-20 | Automated accelerated extraction of trace elements from biomass |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US7578983B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6596277B2 (en) * | 2015-09-11 | 2019-10-23 | 公益財団法人日本分析センター | Biological sample decomposition container and pretreatment device |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4587098A (en) * | 1980-05-16 | 1986-05-06 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Method of stabilized operation of acid digestion kettle of tantalum |
| US4946797A (en) * | 1986-06-13 | 1990-08-07 | Cem Corporation | Microwave-based Kjeldahl method |
| US5147551A (en) * | 1990-04-20 | 1992-09-15 | Dynatech Precision Sampling Corporation | Solids and semi-solids sampling apparatus, method, and fluid injection apparatus |
| US5647976A (en) * | 1995-03-03 | 1997-07-15 | Dionex Corporation | High pressure and temperature cell for solvent extraction |
| US5843311A (en) * | 1994-06-14 | 1998-12-01 | Dionex Corporation | Accelerated solvent extraction method |
| US6783668B2 (en) * | 2002-10-09 | 2004-08-31 | Fluid Management Systems, Inc. | Integrated pressurized liquid extraction and purification system |
| US6803237B2 (en) * | 2000-01-25 | 2004-10-12 | Woods Hole Oceanographic Institution | Sequential processing reaction vessel for chemical fractionation and analysis |
| US20050114923A1 (en) * | 2003-07-01 | 2005-05-26 | Edenspace Systems Corporation | Plant biosensor systems |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA485668A (en) * | 1952-08-12 | Imperial Chemical Industries Limited | Biguanide derivatives |
-
2006
- 2006-06-20 US US11/471,224 patent/US7578983B2/en not_active Expired - Fee Related
-
2009
- 2009-07-14 US US12/460,140 patent/US20090280030A1/en not_active Abandoned
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4587098A (en) * | 1980-05-16 | 1986-05-06 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Method of stabilized operation of acid digestion kettle of tantalum |
| US4946797A (en) * | 1986-06-13 | 1990-08-07 | Cem Corporation | Microwave-based Kjeldahl method |
| US5147551A (en) * | 1990-04-20 | 1992-09-15 | Dynatech Precision Sampling Corporation | Solids and semi-solids sampling apparatus, method, and fluid injection apparatus |
| US5843311A (en) * | 1994-06-14 | 1998-12-01 | Dionex Corporation | Accelerated solvent extraction method |
| US5647976A (en) * | 1995-03-03 | 1997-07-15 | Dionex Corporation | High pressure and temperature cell for solvent extraction |
| US6803237B2 (en) * | 2000-01-25 | 2004-10-12 | Woods Hole Oceanographic Institution | Sequential processing reaction vessel for chemical fractionation and analysis |
| US6783668B2 (en) * | 2002-10-09 | 2004-08-31 | Fluid Management Systems, Inc. | Integrated pressurized liquid extraction and purification system |
| US20050114923A1 (en) * | 2003-07-01 | 2005-05-26 | Edenspace Systems Corporation | Plant biosensor systems |
Also Published As
| Publication number | Publication date |
|---|---|
| US7578983B2 (en) | 2009-08-25 |
| US20060283813A1 (en) | 2006-12-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Lee et al. | Microwave-assisted digestion method using diluted nitric acid and hydrogen peroxide for the determination of major and minor elements in milk samples by ICP-OES and ICP-MS | |
| Lamble et al. | Microwave digestion procedures for environmental matrices. Critical Review | |
| da Silva et al. | Microwave-assisted digestion employing diluted nitric acid for mineral determination in rice by ICP OES | |
| Godden et al. | Generation of covalent hydrides in atomic-absorption spectroscopy. A review | |
| Jimenez et al. | Automated elemental analysis: A rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples | |
| Krachler et al. | Analytical procedures for the determination of selected trace elements in peat and plant samples by inductively coupled plasma mass spectrometry | |
| Marcó et al. | Comparison of the Kjeldahl method and a combustion method for total nitrogen determination in animal feed | |
| Araújo et al. | Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials | |
| Astolfi et al. | Simple and rapid method for the determination of mercury in human hair by cold vapour generation atomic fluorescence spectrometry | |
| Lee et al. | Fast and green microwave-assisted digestion with diluted nitric acid and hydrogen peroxide and subsequent determination of elemental composition in brown and white rice by ICP-MS and ICP-OES | |
| Krachler et al. | Digestion procedures for the determination of antimony and arsenic in small amounts of peat samples by hydride generation–atomic absorption spectrometry | |
| Dhaliwal et al. | Standardization of automated vario EL III CHNS analyzer for total carbon and nitrogen determination in plants | |
| Jofre et al. | Infrared assisted digestion used as a simple green sample preparation method for nutrient analysis of animal feed by microwave induced plasma atomic emission spectrometry | |
| Mindak et al. | Determination of arsenic and selenium in food using a microwave digestion–dry ash preparation and flow injection hydride generation atomic absorption spectrometry | |
| US20090280030A1 (en) | Apparatus for automated accelerated extraction of trace elements from biomass | |
| Jones Jr et al. | Sample preparation and determination of iron in plant tissue samples | |
| Enders et al. | Total elemental analysis of metals and nutrients in biochar | |
| Seco-Gesto et al. | Multi-element determination in raft mussels by fast microwave-assisted acid leaching and inductively coupled plasma-optical emission spectrometry | |
| Schloske et al. | Optimisation of sample pre-treatment in the HG-AAS selenium analysis | |
| Tinggi et al. | Determination of selenium in red blood cells by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion | |
| Williams | New techniques for the digestion of biological materials—application to the determination of tin, iron and lead in canned foods | |
| Boutakhrit et al. | Comparison of four analytical techniques based on atomic spectrometry for the determination of total tin in canned foodstuffs | |
| CN102419340B (en) | Standard substance for detecting impurity elements in crude oil and petroleum products and detection method thereof | |
| Flanjak | Atomic absorption spectrometric determination of arsenic and selenium in offal and fish by hydride generation | |
| Forte et al. | Honey as a candidate reference material for trace elements |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UNIVERSITY OF NORTH DAKOTA, THE, NORTH DAKOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PIERCE, DAVID T.;SEAMES, WAYNE S.;REEL/FRAME:022993/0445 Effective date: 20060619 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |