US20090275645A1 - Method to induce neovascular formation and tissue regeneration - Google Patents
Method to induce neovascular formation and tissue regeneration Download PDFInfo
- Publication number
- US20090275645A1 US20090275645A1 US12/487,398 US48739809A US2009275645A1 US 20090275645 A1 US20090275645 A1 US 20090275645A1 US 48739809 A US48739809 A US 48739809A US 2009275645 A1 US2009275645 A1 US 2009275645A1
- Authority
- US
- United States
- Prior art keywords
- vegf
- glu
- cys
- arg
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000017423 tissue regeneration Effects 0.000 title abstract description 10
- 230000015572 biosynthetic process Effects 0.000 title description 18
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 claims abstract description 143
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims abstract description 140
- 230000001939 inductive effect Effects 0.000 claims abstract description 40
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 40
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 40
- 239000002157 polynucleotide Substances 0.000 claims abstract description 40
- 229920001184 polypeptide Polymers 0.000 claims abstract description 40
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 40
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 40
- 230000027746 artery morphogenesis Effects 0.000 claims abstract description 30
- 230000035168 lymphangiogenesis Effects 0.000 claims abstract description 28
- 230000004862 vasculogenesis Effects 0.000 claims abstract description 28
- 108091026890 Coding region Proteins 0.000 claims abstract description 13
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims abstract description 9
- 238000000338 in vitro Methods 0.000 claims description 25
- 230000000302 ischemic effect Effects 0.000 claims description 20
- 150000001413 amino acids Chemical group 0.000 claims description 7
- 239000013600 plasmid vector Substances 0.000 claims description 4
- 108010016616 cysteinylglycine Proteins 0.000 claims 2
- QDRGPQWIVZNJQD-CIUDSAMLSA-N Ala-Arg-Gln Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(O)=O QDRGPQWIVZNJQD-CIUDSAMLSA-N 0.000 claims 1
- PAIHPOGPJVUFJY-WDSKDSINSA-N Ala-Glu-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O PAIHPOGPJVUFJY-WDSKDSINSA-N 0.000 claims 1
- BHTBAVZSZCQZPT-GUBZILKMSA-N Ala-Pro-Met Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](C)N BHTBAVZSZCQZPT-GUBZILKMSA-N 0.000 claims 1
- SVHRPCMZTWZROG-DCAQKATOSA-N Arg-Cys-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CCCN=C(N)N)N SVHRPCMZTWZROG-DCAQKATOSA-N 0.000 claims 1
- VDBKFYYIBLXEIF-GUBZILKMSA-N Arg-Gln-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O VDBKFYYIBLXEIF-GUBZILKMSA-N 0.000 claims 1
- LKDHUGLXOHYINY-XUXIUFHCSA-N Arg-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N LKDHUGLXOHYINY-XUXIUFHCSA-N 0.000 claims 1
- DIIGDGJKTMLQQW-IHRRRGAJSA-N Arg-Lys-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCN=C(N)N)N DIIGDGJKTMLQQW-IHRRRGAJSA-N 0.000 claims 1
- PPMTUXJSQDNUDE-CIUDSAMLSA-N Asn-Glu-Arg Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N PPMTUXJSQDNUDE-CIUDSAMLSA-N 0.000 claims 1
- ZTRJUKDEALVRMW-SRVKXCTJSA-N Asn-His-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)NC(=O)[C@H](CC(=O)N)N ZTRJUKDEALVRMW-SRVKXCTJSA-N 0.000 claims 1
- FODVBOKTYKYRFJ-CIUDSAMLSA-N Asn-Lys-Cys Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N FODVBOKTYKYRFJ-CIUDSAMLSA-N 0.000 claims 1
- OSZBYGVKAFZWKC-FXQIFTODSA-N Asn-Pro-Cys Chemical compound NC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CS)C(O)=O OSZBYGVKAFZWKC-FXQIFTODSA-N 0.000 claims 1
- OERMIMJQPQUIPK-FXQIFTODSA-N Asp-Arg-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(O)=O OERMIMJQPQUIPK-FXQIFTODSA-N 0.000 claims 1
- PYXXJFRXIYAESU-PCBIJLKTSA-N Asp-Ile-Phe Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O PYXXJFRXIYAESU-PCBIJLKTSA-N 0.000 claims 1
- JGLWFWXGOINXEA-YDHLFZDLSA-N Asp-Val-Tyr Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 JGLWFWXGOINXEA-YDHLFZDLSA-N 0.000 claims 1
- DEVDFMRWZASYOF-ZLUOBGJFSA-N Cys-Asn-Asp Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O DEVDFMRWZASYOF-ZLUOBGJFSA-N 0.000 claims 1
- YMBAVNPKBWHDAW-CIUDSAMLSA-N Cys-Asp-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CS)N YMBAVNPKBWHDAW-CIUDSAMLSA-N 0.000 claims 1
- LHMSYHSAAJOEBL-CIUDSAMLSA-N Cys-Lys-Asn Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O LHMSYHSAAJOEBL-CIUDSAMLSA-N 0.000 claims 1
- JESJDAAGXULQOP-CIUDSAMLSA-N Gln-Arg-Ser Chemical compound C(C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCC(=O)N)N)CN=C(N)N JESJDAAGXULQOP-CIUDSAMLSA-N 0.000 claims 1
- JFSNBQJNDMXMQF-XHNCKOQMSA-N Gln-Asp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCC(=O)N)N)C(=O)O JFSNBQJNDMXMQF-XHNCKOQMSA-N 0.000 claims 1
- JHPFPROFOAJRFN-IHRRRGAJSA-N Gln-Glu-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)N)N)O JHPFPROFOAJRFN-IHRRRGAJSA-N 0.000 claims 1
- FYAULIGIFPPOAA-ZPFDUUQYSA-N Gln-Ile-Met Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCSC)C(O)=O FYAULIGIFPPOAA-ZPFDUUQYSA-N 0.000 claims 1
- XIYWAJQIWLXXAF-XKBZYTNZSA-N Gln-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCC(=O)N)N)O XIYWAJQIWLXXAF-XKBZYTNZSA-N 0.000 claims 1
- FLQAKQOBSPFGKG-CIUDSAMLSA-N Glu-Cys-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CCCN=C(N)N FLQAKQOBSPFGKG-CIUDSAMLSA-N 0.000 claims 1
- FKGNJUCQKXQNRA-NRPADANISA-N Glu-Cys-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCC(O)=O FKGNJUCQKXQNRA-NRPADANISA-N 0.000 claims 1
- LRPXYSGPOBVBEH-IUCAKERBSA-N Glu-Gly-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O LRPXYSGPOBVBEH-IUCAKERBSA-N 0.000 claims 1
- ALMBZBOCGSVSAI-ACZMJKKPSA-N Glu-Ser-Asn Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(=O)N)C(=O)O)N ALMBZBOCGSVSAI-ACZMJKKPSA-N 0.000 claims 1
- SOYWRINXUSUWEQ-DLOVCJGASA-N Glu-Val-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCC(O)=O SOYWRINXUSUWEQ-DLOVCJGASA-N 0.000 claims 1
- VOCMRCVMAPSSAL-IUCAKERBSA-N Gly-Gln-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)CN VOCMRCVMAPSSAL-IUCAKERBSA-N 0.000 claims 1
- IDOGEHIWMJMAHT-BYPYZUCNSA-N Gly-Gly-Cys Chemical compound NCC(=O)NCC(=O)N[C@@H](CS)C(O)=O IDOGEHIWMJMAHT-BYPYZUCNSA-N 0.000 claims 1
- QPTNELDXWKRIFX-YFKPBYRVSA-N Gly-Gly-Gln Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CCC(N)=O QPTNELDXWKRIFX-YFKPBYRVSA-N 0.000 claims 1
- QSQXZZCGPXQBPP-BQBZGAKWSA-N Gly-Pro-Cys Chemical compound C1C[C@H](N(C1)C(=O)CN)C(=O)N[C@@H](CS)C(=O)O QSQXZZCGPXQBPP-BQBZGAKWSA-N 0.000 claims 1
- JXMSHKFPDIUYGS-SIUGBPQLSA-N Ile-Glu-Tyr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N JXMSHKFPDIUYGS-SIUGBPQLSA-N 0.000 claims 1
- LPFBXFILACZHIB-LAEOZQHASA-N Ile-Gly-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)N[C@@H](CCC(=O)O)C(=O)O)N LPFBXFILACZHIB-LAEOZQHASA-N 0.000 claims 1
- GLYJPWIRLBAIJH-UHFFFAOYSA-N Ile-Lys-Pro Natural products CCC(C)C(N)C(=O)NC(CCCCN)C(=O)N1CCCC1C(O)=O GLYJPWIRLBAIJH-UHFFFAOYSA-N 0.000 claims 1
- LRAUKBMYHHNADU-DKIMLUQUSA-N Ile-Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)[C@@H](C)CC)CC1=CC=CC=C1 LRAUKBMYHHNADU-DKIMLUQUSA-N 0.000 claims 1
- JJQQGCMKLOEGAV-OSUNSFLBSA-N Ile-Thr-Met Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCSC)C(=O)O)N JJQQGCMKLOEGAV-OSUNSFLBSA-N 0.000 claims 1
- 108010065920 Insulin Lispro Proteins 0.000 claims 1
- SITWEMZOJNKJCH-UHFFFAOYSA-N L-alanine-L-arginine Natural products CC(N)C(=O)NC(C(O)=O)CCCNC(N)=N SITWEMZOJNKJCH-UHFFFAOYSA-N 0.000 claims 1
- BOFAFKVZQUMTID-AVGNSLFASA-N Leu-Gln-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N BOFAFKVZQUMTID-AVGNSLFASA-N 0.000 claims 1
- QVFGXCVIXXBFHO-AVGNSLFASA-N Leu-Glu-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O QVFGXCVIXXBFHO-AVGNSLFASA-N 0.000 claims 1
- FYPWFNKQVVEELI-ULQDDVLXSA-N Leu-Phe-Val Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C(C)C)C(O)=O)CC1=CC=CC=C1 FYPWFNKQVVEELI-ULQDDVLXSA-N 0.000 claims 1
- BYEBKXRNDLTGFW-CIUDSAMLSA-N Lys-Cys-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O BYEBKXRNDLTGFW-CIUDSAMLSA-N 0.000 claims 1
- CENKQZWVYMLRAX-ULQDDVLXSA-N Lys-Phe-Met Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCSC)C(O)=O CENKQZWVYMLRAX-ULQDDVLXSA-N 0.000 claims 1
- QDMUMFDBUVOZOY-GUBZILKMSA-N Met-Arg-Cys Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O)N QDMUMFDBUVOZOY-GUBZILKMSA-N 0.000 claims 1
- FIZZULTXMVEIAA-IHRRRGAJSA-N Met-Ser-Phe Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 FIZZULTXMVEIAA-IHRRRGAJSA-N 0.000 claims 1
- LNLNHXIQPGKRJQ-SRVKXCTJSA-N Pro-Arg-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H]1CCCN1 LNLNHXIQPGKRJQ-SRVKXCTJSA-N 0.000 claims 1
- VJLJGKQAOQJXJG-CIUDSAMLSA-N Pro-Asp-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O VJLJGKQAOQJXJG-CIUDSAMLSA-N 0.000 claims 1
- SSWJYJHXQOYTSP-SRVKXCTJSA-N Pro-His-Gln Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(N)=O)C(O)=O SSWJYJHXQOYTSP-SRVKXCTJSA-N 0.000 claims 1
- KWMUAKQOVYCQJQ-ZPFDUUQYSA-N Pro-Ile-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@@H]1CCCN1 KWMUAKQOVYCQJQ-ZPFDUUQYSA-N 0.000 claims 1
- DWGFLKQSGRUQTI-IHRRRGAJSA-N Pro-Lys-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H]1CCCN1 DWGFLKQSGRUQTI-IHRRRGAJSA-N 0.000 claims 1
- CZCCVJUUWBMISW-FXQIFTODSA-N Pro-Ser-Cys Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O CZCCVJUUWBMISW-FXQIFTODSA-N 0.000 claims 1
- IURWWZYKYPEANQ-HJGDQZAQSA-N Pro-Thr-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O IURWWZYKYPEANQ-HJGDQZAQSA-N 0.000 claims 1
- PVDTYLHUWAEYGY-CIUDSAMLSA-N Ser-Glu-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O PVDTYLHUWAEYGY-CIUDSAMLSA-N 0.000 claims 1
- OHAJHDJOCKKJLV-LKXGYXEUSA-N Thr-Asp-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O OHAJHDJOCKKJLV-LKXGYXEUSA-N 0.000 claims 1
- NRUPKQSXTJNQGD-XGEHTFHBSA-N Thr-Cys-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O NRUPKQSXTJNQGD-XGEHTFHBSA-N 0.000 claims 1
- KZSYAEWQMJEGRZ-RHYQMDGZSA-N Thr-Leu-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O KZSYAEWQMJEGRZ-RHYQMDGZSA-N 0.000 claims 1
- BVOCLAPFOBSJHR-KKUMJFAQSA-N Tyr-Cys-His Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N)O BVOCLAPFOBSJHR-KKUMJFAQSA-N 0.000 claims 1
- NHXZRXLFOBFMDM-AVGNSLFASA-N Val-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)C(C)C NHXZRXLFOBFMDM-AVGNSLFASA-N 0.000 claims 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 claims 1
- 108010068380 arginylarginine Proteins 0.000 claims 1
- 108010060035 arginylproline Proteins 0.000 claims 1
- 108010038633 aspartylglutamate Proteins 0.000 claims 1
- 108010004073 cysteinylcysteine Proteins 0.000 claims 1
- 108010054813 diprotin B Proteins 0.000 claims 1
- 108010078144 glutaminyl-glycine Proteins 0.000 claims 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 claims 1
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 claims 1
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 claims 1
- 108010025306 histidylleucine Proteins 0.000 claims 1
- 108010085325 histidylproline Proteins 0.000 claims 1
- 108010020532 tyrosyl-proline Proteins 0.000 claims 1
- 108010073969 valyllysine Proteins 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 abstract description 84
- 210000004027 cell Anatomy 0.000 abstract description 55
- 210000004413 cardiac myocyte Anatomy 0.000 abstract description 51
- 230000011278 mitosis Effects 0.000 abstract description 38
- 230000035755 proliferation Effects 0.000 abstract description 28
- 210000002363 skeletal muscle cell Anatomy 0.000 abstract description 18
- 210000000329 smooth muscle myocyte Anatomy 0.000 abstract description 18
- 210000004165 myocardium Anatomy 0.000 abstract description 11
- 102000009524 Vascular Endothelial Growth Factor A Human genes 0.000 description 138
- 230000002107 myocardial effect Effects 0.000 description 49
- 238000001727 in vivo Methods 0.000 description 36
- 230000010412 perfusion Effects 0.000 description 35
- 239000003795 chemical substances by application Substances 0.000 description 31
- 239000013612 plasmid Substances 0.000 description 27
- 108090000623 proteins and genes Proteins 0.000 description 27
- 238000002347 injection Methods 0.000 description 24
- 239000007924 injection Substances 0.000 description 24
- 230000006698 induction Effects 0.000 description 20
- 238000002203 pretreatment Methods 0.000 description 15
- 230000027455 binding Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 230000033115 angiogenesis Effects 0.000 description 13
- 102000004169 proteins and genes Human genes 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 12
- 230000000394 mitotic effect Effects 0.000 description 12
- 239000000902 placebo Substances 0.000 description 12
- 229940068196 placebo Drugs 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- 210000002460 smooth muscle Anatomy 0.000 description 12
- 239000013598 vector Substances 0.000 description 12
- 230000004087 circulation Effects 0.000 description 10
- 239000012634 fragment Substances 0.000 description 10
- 108020004999 messenger RNA Proteins 0.000 description 10
- 210000004940 nucleus Anatomy 0.000 description 10
- 239000008194 pharmaceutical composition Substances 0.000 description 10
- 230000002861 ventricular Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 210000004204 blood vessel Anatomy 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 102000005962 receptors Human genes 0.000 description 9
- 108020003175 receptors Proteins 0.000 description 9
- 230000004071 biological effect Effects 0.000 description 8
- 210000004351 coronary vessel Anatomy 0.000 description 8
- 238000001415 gene therapy Methods 0.000 description 8
- 239000003102 growth factor Substances 0.000 description 8
- 208000031225 myocardial ischemia Diseases 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 235000001014 amino acid Nutrition 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 6
- 102000001708 Protein Isoforms Human genes 0.000 description 6
- 108010029485 Protein Isoforms Proteins 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 6
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 6
- 210000003527 eukaryotic cell Anatomy 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 230000001969 hypertrophic effect Effects 0.000 description 6
- AWLILQARPMWUHA-UHFFFAOYSA-M thiopental sodium Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC([S-])=NC1=O AWLILQARPMWUHA-UHFFFAOYSA-M 0.000 description 6
- 102000007469 Actins Human genes 0.000 description 5
- 108010085238 Actins Proteins 0.000 description 5
- 238000010240 RT-PCR analysis Methods 0.000 description 5
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 5
- 210000002889 endothelial cell Anatomy 0.000 description 5
- 210000002216 heart Anatomy 0.000 description 5
- 102000058223 human VEGFA Human genes 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000000144 pharmacologic effect Effects 0.000 description 5
- 230000000250 revascularization Effects 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 4
- 208000020584 Polyploidy Diseases 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- BJHCYTJNPVGSBZ-YXSASFKJSA-N 1-[4-[6-amino-5-[(Z)-methoxyiminomethyl]pyrimidin-4-yl]oxy-2-chlorophenyl]-3-ethylurea Chemical compound CCNC(=O)Nc1ccc(Oc2ncnc(N)c2\C=N/OC)cc1Cl BJHCYTJNPVGSBZ-YXSASFKJSA-N 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 241000282887 Suidae Species 0.000 description 3
- 108091008605 VEGF receptors Proteins 0.000 description 3
- 108010053096 Vascular Endothelial Growth Factor Receptor-1 Proteins 0.000 description 3
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 3
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 210000000038 chest Anatomy 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 208000029078 coronary artery disease Diseases 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 238000006471 dimerization reaction Methods 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 229920000669 heparin Polymers 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 201000002818 limb ischemia Diseases 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000003226 mitogen Substances 0.000 description 3
- 210000000663 muscle cell Anatomy 0.000 description 3
- 210000002464 muscle smooth vascular Anatomy 0.000 description 3
- 230000003387 muscular Effects 0.000 description 3
- 208000010125 myocardial infarction Diseases 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000009163 protein therapy Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 229960000340 thiopental sodium Drugs 0.000 description 3
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 2
- JRWZLRBJNMZMFE-UHFFFAOYSA-N Dobutamine Chemical compound C=1C=C(O)C(O)=CC=1CCNC(C)CCC1=CC=C(O)C=C1 JRWZLRBJNMZMFE-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 102000009875 Ki-67 Antigen Human genes 0.000 description 2
- 108010020437 Ki-67 Antigen Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 101100372762 Rattus norvegicus Flt1 gene Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108010053100 Vascular Endothelial Growth Factor Receptor-3 Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 206010000891 acute myocardial infarction Diseases 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 108010016628 ameroid Proteins 0.000 description 2
- 239000002870 angiogenesis inducing agent Substances 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000008366 buffered solution Substances 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229960001089 dobutamine Drugs 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- JPGQOUSTVILISH-UHFFFAOYSA-N enflurane Chemical compound FC(F)OC(F)(F)C(F)Cl JPGQOUSTVILISH-UHFFFAOYSA-N 0.000 description 2
- 229960000305 enflurane Drugs 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000002695 general anesthesia Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 206010020871 hypertrophic cardiomyopathy Diseases 0.000 description 2
- 230000002055 immunohistochemical effect Effects 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 210000005240 left ventricle Anatomy 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 210000003098 myoblast Anatomy 0.000 description 2
- 230000010016 myocardial function Effects 0.000 description 2
- JFRJCQJVFMHZOO-QZHHGCDDSA-N n-(2-aminoethyl)-2-[4-[[2-[4-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]amino]phenyl]acetyl]amino]phenyl]acetamide Chemical compound C1=CC(CC(=O)NCCN)=CC=C1NC(=O)CC(C=C1)=CC=C1NC1=NC=NC2=C1N=CN2[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 JFRJCQJVFMHZOO-QZHHGCDDSA-N 0.000 description 2
- 238000000399 optical microscopy Methods 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 208000030613 peripheral artery disease Diseases 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 210000000419 skeletal muscle satellite cell Anatomy 0.000 description 2
- 210000004683 skeletal myoblast Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 210000002948 striated muscle cell Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 210000003556 vascular endothelial cell Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- KKJUPNGICOCCDW-UHFFFAOYSA-N 7-N,N-Dimethylamino-1,2,3,4,5-pentathiocyclooctane Chemical compound CN(C)C1CSSSSSC1 KKJUPNGICOCCDW-UHFFFAOYSA-N 0.000 description 1
- UBKVUFQGVWHZIR-UHFFFAOYSA-N 8-oxoguanine Chemical compound O=C1NC(N)=NC2=NC(=O)N=C21 UBKVUFQGVWHZIR-UHFFFAOYSA-N 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000008076 Angiogenic Proteins Human genes 0.000 description 1
- 108010074415 Angiogenic Proteins Proteins 0.000 description 1
- 235000005749 Anthriscus sylvestris Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 101100381481 Caenorhabditis elegans baz-2 gene Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 206010007558 Cardiac failure chronic Diseases 0.000 description 1
- 206010007572 Cardiac hypertrophy Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 206010069729 Collateral circulation Diseases 0.000 description 1
- 208000001778 Coronary Occlusion Diseases 0.000 description 1
- 206010011086 Coronary artery occlusion Diseases 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 101100372758 Danio rerio vegfaa gene Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000034951 Genetic Translocation Diseases 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 108010022901 Heparin Lyase Proteins 0.000 description 1
- 101001001487 Homo sapiens Phosphatidylinositol-glycan biosynthesis class F protein Proteins 0.000 description 1
- 101000595923 Homo sapiens Placenta growth factor Proteins 0.000 description 1
- 101000621344 Homo sapiens Protein Wnt-2 Proteins 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 206010054805 Macroangiopathy Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 108010009711 Phalloidine Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 102100035194 Placenta growth factor Human genes 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102100022805 Protein Wnt-2 Human genes 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 239000012891 Ringer solution Substances 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 102100031358 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 1
- 102000016663 Vascular Endothelial Growth Factor Receptor-3 Human genes 0.000 description 1
- 102100033179 Vascular endothelial growth factor receptor 3 Human genes 0.000 description 1
- 101150030763 Vegfa gene Proteins 0.000 description 1
- 208000033774 Ventricular Remodeling Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- WLDHEUZGFKACJH-UHFFFAOYSA-K amaranth Chemical compound [Na+].[Na+].[Na+].C12=CC=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(O)=C1N=NC1=CC=C(S([O-])(=O)=O)C2=CC=CC=C12 WLDHEUZGFKACJH-UHFFFAOYSA-K 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000000648 angioblast Anatomy 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 230000000112 colonic effect Effects 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 210000004246 corpus luteum Anatomy 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013632 covalent dimer Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000021953 cytokinesis Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010252 digital analysis Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 210000003315 endocardial cell Anatomy 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 210000002149 gonad Anatomy 0.000 description 1
- 230000036449 good health Effects 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 208000015210 hypertensive heart disease Diseases 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 208000023589 ischemic disease Diseases 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001365 lymphatic vessel Anatomy 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 206010062198 microangiopathy Diseases 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229940042472 mineral oil Drugs 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000007479 molecular analysis Methods 0.000 description 1
- 230000003562 morphometric effect Effects 0.000 description 1
- 238000013425 morphometry Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 210000000277 pancreatic duct Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 229940012957 plasmin Drugs 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- -1 polyethileneglycol Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 210000001850 polyploid cell Anatomy 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000000844 retinal pigment epithelial cell Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 210000004116 schwann cell Anatomy 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- NVBFHJWHLNUMCV-UHFFFAOYSA-N sulfamide Chemical compound NS(N)(=O)=O NVBFHJWHLNUMCV-UHFFFAOYSA-N 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000016853 telophase Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000001604 vasa vasorum Anatomy 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- 230000004218 vascular function Effects 0.000 description 1
- 230000006442 vascular tone Effects 0.000 description 1
- 230000001457 vasomotor Effects 0.000 description 1
- 108010047303 von Willebrand Factor Proteins 0.000 description 1
- 102100036537 von Willebrand factor Human genes 0.000 description 1
- 229960001134 von willebrand factor Drugs 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1858—Platelet-derived growth factor [PDGF]
- A61K38/1866—Vascular endothelial growth factor [VEGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0075—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- This invention relates, e.g., to a method for inducing arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis, or for inducing mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte, using a Vascular Endothelial Growth Factor (VEGF).
- VEGF Vascular Endothelial Growth Factor
- a gene therapy method is described for in vivo localized induction of neovascular formation or tissue regeneration in mammals utilizing VEGF.
- Ischemic heart disease is the main cause of morbidity and mortality.
- the epidemiological and socio-economical impact of coronary heart disease is remarkable. This disease causes million of deaths all over the world. See Murray, et al., Lancet, 349:1269-1276 (1997). In developed countries, it has been estimated that 5.3 million deaths attributable to cardiovascular disease occurred in 1990, whereas the corresponding figure for the developing countries ranged between 8 to 9 million (showing a relative excess of 70%). See Reddy, et al., Circulation, 97:596-601 (1998). In Argentina, ischemic heart disease is the first cause of mortality showing an incidence of around 30%, trend which tends to remain stable since 1980. For the population over 65 years, this rate reaches almost 40%. See Programa Nacional de Estad ⁇ sticas de Salud, Series 5, Number 38, Ministerio de Salud y Acalism Social, Rep ⁇ blica Argentina (December 1995).
- FGFs fibroblast growth factors
- VEGF vascular endothelial growth factor
- VEGF is a protein expressed by skeletal muscle cells, smooth muscle cells, ovarian corpus luteum cells, tumor cells, fibroblasts and cardiomyocytes. Unlike other mitogens, VEGF is a secreted growth factor. See Thomas, J. Biol. Chem, 271:603-606 (1996); Leung, et al., Science, 246:1306-1309 (1989).
- the human VEGF gene is expressed as different isoforms, secondary to post-transcriptional alternative splicing. In non-malignant human tissues, four VEGF isoforms are expressed, with different numbers of amino acids (121, 165, 189, 206) and with a molecular weight ranging from 34 to 46 kD. See Tischer, et al., J. Biol. Chem., 266:11947-11954 (1991); Ferrara, et al., J. Cell. Biochem., 47:211-218 (1991).
- VEGF specific receptors are VEGFR-1 (flt-1), VEGFR-2 (KDR/flk-1) and VEGFR-3 (flt-4). See De Vries, et al., Science, 255:989-991 (1992); Terman, et al., Biochem. Biophys. Res. Commun., 187:1579-1586 (1992); Gallant, et al., Genomics, 13:475-478 (1992). Due to the apparent restricted and confined localization of VEGF receptors to vascular endothelial cells, this growth factor has been described as the most specific mitogen for these cells. It has been proposed that VEGF is not bioactive on non-endothelial cells.
- VEGF receptors have been found in other cells, such as hematopoietic stem cells, endocardial cells and even cultured rat cardiomyocytes, where VEGF has been shown to activate the mitogen-activated protein kinase cascade. See Asahara et al., Science, 275:964-967 (1997); Partanen et al., Circulation, 100:583-586 (1999); Takahashi et al., Circ. Res., 84:1194-1202 (1999).
- VEGF vascular endothelial growth factor
- protein therapy protein therapy
- VEGF-encoding gene transfer gene transfer
- VEGF angiogenic proteins
- Gene therapy can be compared to a drug slow-delivery system.
- the gene encoding for the agent of interest is transported into cells in vehicles called vectors (e.g. plasmids, viruses, liposomes).
- vectors e.g. plasmids, viruses, liposomes.
- Cell mechanisms specialized in protein synthesis perform the production and localized release of the final product. See Crystal, Science, 270:404-410 (1995).
- the gene product is synthesized for a discrete period of time. This time is usually about two weeks. According to experimental studies, sustained expression during this limited period of time is necessary and sufficient to trigger the angiogenic process. Based on these advantages, several research groups have studied the therapeutic effects of gene therapy using angiogenic factors in experimental models of heart and limb ischemia.
- adenoviral gene therapy may induce inflammatory or immune reactions, especially after repeated doses. This type of therapy has been related also to high risk systemic immune response syndrome. These circumstances limit significantly the clinical use of this therapy.
- VEGF induces angiogenesis in vivo. It has not been reported yet that VEGF induces the formation of blood vessels with a smooth muscle layer. See Mack, et al., supra (1998); Tio, et al., supra (1999). Moreover, it has been postulated that VEGF prevents the neoformation of vascular smooth muscle. See Asahara, et al., Circulation, 91:2793-2801 (1995). Smooth muscle plays a significant role in the regulation of vascular function. Its presence at the media layer of blood vessels represents an adaptative advantage since it is involved in the vasomotor tone regulation.
- Vascular smooth muscle maintains a basal vascular tone and permits self-regulation upon variations on blood flow and pressure. It has been suggested that the absence of smooth muscle layer is related to vessel collapse. See “Angiogenesis and Cardiovascular Disease”, Ware, Ed. (Oxford University Press Inc., New York, USA., 1999), p. 258-261.
- Acute myocardial infarction is the consequence of coronary heart disease with the worst short and long-term prognosis. See Bolognese, et al., Am. Heart J., 138:S79-83 (1999); Mehta, et al., Herz, 25:47-60 (2000); Hessen, et al., Cardiovasc. Clin., 20:283-318 (1989); Jacoby, et al., J. Am. Coll. Cardiol., 20:736-744 (1992); Rosenthal, et al., Am. Heart J., 109:865-876 (1985). This condition results frequently in a significant loss of myocardial cells, reducing the contractile muscle mass.
- cardiomyocytes of human and human-like species preserve their ability to replicate DNA. See Pfizer, et al., Curr. Top. Pathol., 54:125-168 (1971). Recently, it has been informed that some human cardiomyocytes can enter into M (mitotic) phase. However, this phenomenon occurs in a very small proportion of total cardiomyocyte population and under certain pathological conditions. So far, this phenomenon has only been noted in myocardial infarction and end-stage cardiac failure. See Beltrami et al., N. Eng. J. Med., 344: 1750-1757 (2001); Kajstura, et al., Proc. Natl. Acad. Sci. USA, 95:8801-8805 (1998). There is no conclusive evidence in all these instances that cardiomyocytes divide into daughter cells.
- cardiomyocytes preclude the replacement of myocardial tissue after injury in upper animal species. Under this scenario, myocardial function is diminished because the infarcted area is replaced by fibrotic tissue without contractile capacity. In addition, the remaining cardiomyocytes become hypertrophic and develop polyploid nuclei. See Herget, et al., Cardiovasc. Res. 36:45-51 (1997); “Textbook of Medical Physiology”, 9th Ed., Guyton et al., Eds. (W. B. Saunders Co, USA, 1997).
- pluripotent stem cells and bone marrow derived angioblasts might restore infarcted myocardial tissue and induce even neovascular formation.
- the efficiency of these methods in upper mammals has not been demonstrated yet. See Orlic, et al., Nature, 410:701-705 (2001); Kocher, et al., Nat. Med., 7:430-436 (2001).
- An ideal method should induce cardiomyocyte division originating daughter cells and neovascular formation in myocardial tissue. This procedure would restore tissue loss with autologous myocardial tissue and increase simultaneously myocardial perfusion. A method like this would reduce the morbility and mortality rates associated to left ventricular remodeling, myocardial infarction and ischemic heart disease. See Bolognese, et al., supra (1999).
- cardiomyocytes Likewise, the failure of cardiomyocytes to replicate properly difficults adaptative hyperplasia (i.e. cell number increasing) as a response to other pathological conditions.
- the adaptative response of human and porcine cardiomyocytes is to increase cell volume and nuclear DNA content. Therefore, in certain pathologies (e.g. hypertensive heart disease, dilated cardiomyopathy) cardiomyocytes are also markedly hypertrophic and polyploid. See Pfizer, Curr. Top. Pathol., 54:125-168 (1971); Adler, et al., J. Mol. Cell. Cardiol., 18:39-53 (1986). In most cases, cell adaptation is insufficient.
- FIG. 1 illustrates the stress tolerance index for the area under risk.
- Pre and post-treatment mean values for Group I-T (VEGF) and Group I-P (placebo) are compared.
- the post-treatment value of Group I-T is higher to the pre-treatment value of the same group.
- the post-treatment value of Group I-T is higher the post-treatment value of Group I-P.
- Intra-group paired comparisons show: 1) absence of statistically significant differences between pre and post-treatment indexes for Group I-P and 2) presence of statistically significant differences between pre and post-treatment indexes for Group I-T.
- the non-paired comparisons between groups show: 1) absence of statistically significant differences between pre-treatment indexes for Group I-T and Group I-P and 2) presence of statistically significant differences between post-treatment indexes for Group I-T and Group I-P.
- FIG. 2 illustrates the perfusion improvement index for the area under risk.
- Mean values for Group I-T (VEGF) and Group I-P (placebo) are compared.
- the value for Group I-T is significantly higher than the value for Group I-P.
- FIG. 3 shows the length density for the area under risk. Mean values for blood vessels with smooth muscle layer ranging from 8 to 50 ⁇ m are illustrated. The value for Group I-T (VEGF) is significantly higher than the value for Group I-P (placebo).
- VEGF vascular endothelial growth factor
- FIG. 4 shows the numerical density for the area under risk. Mean values for blood vessels with smooth muscle layer ranging from 8 to 50 ⁇ m are illustrated. The value for Group I-T (VEGF) is significantly higher than the value for Group I-P (placebo).
- VEGF vascular endothelial growth factor
- FIG. 5 shows the length density for the area under risk. Mean values for blood vessels with smooth muscle layer ranging from 8 to 30 ⁇ m are illustrated. The value for Group I-T (VEGF) is significantly higher than the value for Group I-P (placebo).
- VEGF vascular endothelial growth factor
- FIG. 6 illustrates the effect of ischemia and treatment on cardiomyocyte Ki67-positive nuclei and mitosis.
- FIG. 6A shows Ki67-positive cardiomyocyte nuclei index. No significant differences exist between Group I-T (VEGF) and Group I-P (placebo) individuals.
- FIG. 6B shows Group I-T individuals (VEGF) with a significantly higher cardiomyocyte mitotic index for the area under risk (ischemic area) and the surrounding myocardial tissue (non-ischemic area) as compared with Group I-P individuals. The value for Group I-T (VEGF) is significantly higher than the value for Group I-P (placebo).
- FIG. 7 represents the VEGF mRNA transcription curve of the Group II-T individuals. The curve shows a peak by day 10 post-injection of the pUVEK15 plasmid.
- FIG. 8 illustrates the metaphase of a cardiomyocyte from a Group I-T individual. Metaphasic chromosomes and mitotic spindle are clearly visible.
- FIG. 9 illustrates the telophase of a cardiomyocyte from a Group I-T individual. Sarcomeric striations are clearly visible.
- FIG. 10 illustrates the mitotic process of two adjacent cardiomyocytes. The boundary between the cardiomyocytes is distinguishable. The integrity of both cardiomyocytes is clearly observed.
- FIGS. 12 and 13 illustrate blood vessels with smooth muscle layer in myocardial tissue of a Group I-T individual.
- Vascular smooth muscle was identified with alpha-actin immunohistochemical stain.
- This invention relates, e.g., to a method for inducing arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis, comprising administering to a cell or tissue in need thereof a dose of a polynucleotide that encodes a vascular endothelial growth factor (VEGF), or that encodes a polypeptide comprising an active site of the VEGF.
- VEGF vascular endothelial growth factor
- the coding sequence is operably linked to an expression control sequence, and the dose is sufficient to induce arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis.
- the VEGF is VEGF 1-165 , whose amino acid sequence is represented by SEQ ID NO: 1.
- the invention also relates to a method for inducing mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte, comprising administering to a cell in need thereof a dose of a polynucleotide that encodes a vascular endothelial growth factor (VEGF), or that encodes a polypeptide comprising an active site of the VEGF.
- VEGF vascular endothelial growth factor
- the coding sequence is operably linked to an expression control sequence, and the dose is sufficient to induce the mitosis or proliferation.
- the VEGF is VEGF 1-165 , whose amino acid sequence is represented by SEQ ID NO: 1.
- the method is a method of tissue regeneration.
- the method of the invention is carried out in vivo, and a sufficient dose of the polynucleotide is administered to a subject in need of such treatment to induce arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis, and/or to induce the mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- the invention also relates to a method for inducing arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis, comprising administering to a cell or tissue in need thereof a dose of a VEGF polypeptide, or a polypeptide comprising an active site of the VEGF, the dose being sufficient to induce arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis.
- the invention also relates to a method for inducing mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte, comprising administering to the cell a sufficient dose of a VEGF polypeptide, or a polypeptide that comprises an active site of the VEGF, to induce the mitosis or proliferation.
- the VEGF is VEGF 1-165 , whose amino acid sequence is represented by SEQ ID NO: 1.
- kits suitable for carrying out methods of the invention comprises a polynucleotide or polypeptide of the invention and a label or instructions indicating a use for the polynucleotide or polypeptide to induce arteriogenesis, lymphangiogenesis, vasculogenesis, cardiomyogenesis, or to induce mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- the kit comprises a dose of a polynucleotide or polypeptide of the invention that is sufficient to induce mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte, and/or to induce the mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- myocardiogenesis and cardiomyogenesis are understood by those in the art to be the same, and the terms are used interchangeably herein.
- One advantage of the present invention is the secure and efficient induction of neovascular formation in hypoperfused and normoperfused tissues.
- it is possible, e.g., to stimulate the neoformation, development, proliferation and growth of vessels.
- Embodiments of the invention are effective also for the neoformation, development, proliferation and growth of smooth and striated muscular cells.
- the method is particularly useful for inducing revascularization in patients with ischemic heart disease.
- the present invention can also be used in the treatment of patients with peripheral artery disease or severe limb ischemia.
- the present invention can be utilized as sole therapy of ischemic diseases or associated with conventional revascularization procedures.
- the claimed method is characterized by the absence of adverse side effects related to the systemic exposure to angiogenic factors in high doses.
- Another advantage of the present invention is the regeneration of myocardial tissue (myocardiogenesis).
- the claimed method includes the induction of cardiomyocyte mitosis and/or proliferation. In this way, the claimed method replaces infarcted tissue with autologous cardiac muscle.
- the present invention reverts also the natural development of hypertrophic and dilated cardiomyopathies of any etiology by inducing the mitotic process in polyploid hypertrophic cardiomyocytes and by improving tissue perfusion (i.e. inducing neovascular formation). This circumstance results in higher number of normal daughter cells. These daughter cells have a better perfusion compared to hypertrophic cells. All these advantages indicate that the present invention improves the short, mid and long-term clinical and histophysiological outcomes of heart disease.
- the claimed invention may be particularly useful in transplanted patients with chronic graft rejection and diffuse coronary disease.
- the myocardial revascularization induced by the claimed method would restore the impaired perfusion and function in these patients. These patients are frequently not eligible for conventional revascularization methods (CABG, PTCA).
- the present invention represents an effective alternative revascularization strategy for these patients.
- An additional potential advantage of the present invention is its use for increasing perfusion in ischemic tissues of patients with diabetes-related micro and macroangiopathy.
- the claimed method may revert or reduce chronic complications associated to diabetes such as diabetic neuropathy, vasa-vasorum disease, ischemic heart disease, peripheral artery disease and severe limb ischemia, among others. See Schratzberger, et al., J. Clin. Invest., 107:1083-1092 (2001); Rivard, et al., Circulation 96 Suppl I: 175 (1997); Rivard, et al., Am. J. Pathol., 154: 355-363 (1999).
- One of the advantages of the claimed method is its high safety when used along with minimally invasive procedures of percutaneous intramyocardial-transendocardial administration.
- This administration can be achieved by accessing the left ventricular chamber through a catheter mediated endovascular approach.
- This type of administration may be assisted by fluoroscopy or an electromechanical mapping of the left ventricle. In this way the morbility and mortality associated to open-chest surgery is significantly diminished.
- an inducing agent is administered to a cell, tissue, or subject in need thereof, wherein the inducing agent is a polynucleotide that encodes a VEGF and/or that encodes a polypeptide comprising an active site of the VEGF.
- the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise.
- an active site as used above, means one or more active sites.
- the VEGF polynucleotide may encode a full-length VEGF polypeptide; or it may encode a polypeptide consisting of one or more active sites of VEGF; or it may code a polypeptide consisting essentially of one or more active sites (e.g., sequences of intermediate length, which contain amino acids in addition to those of the active site, wherein the additional amino acids do not affect the basic and novel characteristics (e.g., activity) of the active site).
- the VEGF is VEGF 1-165 , whose amino acid sequence is represented by SEQ ID NO: 1.
- a polynucleotide utilized according to the present invention may be, e.g., genomic DNA, cDNA or a messenger RNA.
- the polynucleotide is a cDNA.
- a coding sequence as above is operably linked to an expression control sequence.
- expression control sequence means a polynucleotide sequence that regulates expression of a polypeptide coded for by a polynucleotide to which it is functionally (“operably”) linked. Expression can be regulated at the level of the mRNA or polypeptide.
- expression control sequence includes mRNA-related elements and protein-related elements. Such elements include promoters, domains within promoters, upstream elements, enhancers, elements that confer tissue or cell specificity, response elements, ribosome binding sequences, transcriptional terminators, etc.
- An expression control sequence is operably linked to a nucleotide sequence (e.g., a coding sequence) when the expression control sequence is positioned in such a manner to effect or achieve expression of the coding sequence.
- a nucleotide sequence e.g., a coding sequence
- expression of the coding sequence is driven by the promoter.
- Suitable expression control sequences will be evident to the skilled worker.
- Expression control sequences which can be used in methods of the invention, including both regulatable and constitutive control sequences, are well-known to those of skill in the art.
- Preferred expression control sequences are derived from highly-expressed genes, e.g., from genes encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), ⁇ -factor, acid phosphatase, or heat shock proteins, among others.
- PGK 3-phosphoglycerate kinase
- ⁇ -factor ⁇ -factor
- acid phosphatase or heat shock proteins, among others.
- Such expression control sequences can be selected from any desired gene, e.g using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers.
- eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, adenovirus promoters, LTRs from retrovirus, and mouse metallothionein-1. Selection of an appropriate vector and expression control sequence is well within the level of ordinary skill in the art.
- an inducing agent is administered to a cell, tissue, or subject in need thereof, wherein the inducing agent is a VEGF polypeptide, and/or a polypeptide comprising an active site of the VEGF.
- the VEGF may consist of, consist essentially of, or comprise, an active site of a VEGF.
- the VEGF is VEGF 1-165 , whose amino acid sequence is represented by SEQ ID NO: 1.
- the inducing agent is administered to a eukaryotic cell or a tissue composed of eukaryotic cells, such as a mammalian cell or a tissue composed of mammalian cells.
- a mammalian cell or a tissue composed of mammalian cells such as a mammalian cell or a tissue composed of mammalian cells.
- mammalian cells are of porcine and human origin. More preferably, cells are of human origin.
- the eukaryotic cells are muscle cells.
- the muscle cells are cardiomyocytes, skeletal myoblasts, skeletal striated muscle cells type I and type II, vascular smooth muscle cells or non-vascular smooth muscle cells or myoepithelial cells. More preferably, the muscle cells are cardiomyocytes.
- One embodiment of the invention is the induction of neovascular formation.
- the induced neovascular formation is localized in the site of administration of the inducing agent. More preferably, the site of administration is the myocardium.
- angiogenesis is localized at the administration site of the inducing agent. More preferably, the site of administration is the myocardium.
- angiogenesis is induced in normoperfused tissue, either in vivo, in vitro or ex vivo.
- angiogenesis is induced in ischemic tissue, either in vivo, in vitro or ex vivo.
- the angiogenesis is induced in hypoperfused myocardial tissue, either in vivo, in vitro or ex vivo.
- Hypoperfused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, infarcted, non-viable, fibrosed or necrosed. More preferably, the claimed method induces angiogenesis in vivo in hypoperfused myocardial tissue.
- arteriogenesis is localized at the site of administration. More preferably, the site of administration is the myocardium.
- arteriogenesis is induced in normoperfused tissue in vivo, in vitro or ex vivo.
- arteriogenesis is induced in ischemic tissue, in vivo, in vitro or ex vivo.
- the arteriogenesis is induced in hypoperfused myocardial tissue in vivo, in vitro or ex vivo.
- Hypoperfused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, infarcted, non-viable, fibrosed or necrosed. More preferably, the claimed method induces arteriogenesis in hypoperfused myocardial tissue in vivo.
- vasculogenesis is localized at the site of administration. More preferably, the site of administration is the myocardium.
- vasculogenesis is induced in normoperfused tissue in vivo, in vitro or ex vivo.
- vasculogenesis is induced in ischemic tissue, in vivo, in vitro or ex vivo.
- the vasculogenesis is induced in hypoperfused myocardial tissue, in vivo, in vitro or ex vivo.
- Hypoperfused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, non-viable, infarcted, necrosed or fibrosed. More preferably, the vasculogenesis is induced in hypoperfused myocardial tissue in vivo.
- lymphangiogenesis is localized at the site of administration. More preferably, the site of administration is the myocardium.
- lymphangiogenesis is induced in normoperfused tissue, in vivo, in vitro or ex vivo.
- lymphangiogenesis is induced in ischemic tissue, in vivo, in vitro or ex vivo.
- the lymphangiogenesis is induced in hypoperfused myocardial tissue, in vivo, in vitro or ex vivo.
- Hypoperfused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, non-viable, infarcted, necrosed or fibrosed. More preferably, the lymphangiogenesis is induced in hypoperfused myocardial tissue in vivo.
- mitosis is induced locally at the site of administration. More preferably, the site of administration is the myocardium.
- mitosis is induced in normoperfused tissue, in vivo, in vitro or ex vivo.
- mitosis is induced in ischemic tissue in vivo, in vitro or ex vivo.
- the mitosis is induced in hypoperfused myocardial tissue, in vivo, in vitro or ex vivo.
- Hypofused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, non-viable, infarcted, necrosed or fibrosed. More preferably, the mitosis is induced in hypoperfused myocardial tissue in vivo.
- the method also relates to the induction of proliferation of cells in which mitosis has been induced.
- the mitosis or proliferation is in smooth muscle cells, skeletal muscle cells, or cardiomyocytes.
- a smooth muscle cell, skeletal muscle cell or cardiomyocyte in which mitosis or proliferation is induced is in myocardial tissue, skeletal tissue, or muscle tissue. Any type of muscle tissue may be regenerated by methods of the invention.
- tissue regeneration is induced locally at the site of administration. More preferably, the site of administration is the myocardium.
- tissue regeneration is induced in normoperfused territories, in vivo, in vitro or ex vivo.
- tissue regeneration is induced in ischemic territories, in vivo, in vitro or ex vivo.
- the tissue regeneration is induced in hypoperfused myocardial territories, in vivo, in vitro or ex vivo.
- Hypoperfused myocardial territory may be ischemic, viable, hibernated, stunned, preconditioned, injured, non-viable, infarcted, necrosed or fibrosed. More preferably, the tissue regeneration is induced in hypoperfused myocardial territories in vivo.
- the coding nucleotide sequence is inserted in a vector.
- the vector is a viral vector such as adenovirus, adeno-associated virus, retrovirus or lentivirus.
- the vector is a plasmid vector. More preferably, the coding sequence inserted in a plasmid vector is pUVEK15.
- the nucleotide sequence (e.g., when inserted into a plasmid vector) is transported by (administered to a cell or tissue by) a liposome.
- the inducing agent is in the form of a pharmaceutical composition. The pharmaceutical composition is administered to the recipient in sufficient doses.
- a pharmaceutical composition used according to the present invention may be administered by intravenous, intracoronary, intra-aortic, intrafemoral, intrapopliteal, intrapedialis, intra-posterior tibialis, intracarotideal and intraradialis routes.
- the pharmaceutical compound may be also administered by intrapericardial, intra-amniotic sac, intrapleural, intramyocardial-transepicardial, intramyocardial-transendocardial, intra-peripheral muscle, subcutaneous, intraspinal, and intracardiac (intra-atrial and intraventricular) routes.
- the inducing agent may be administered by sublingual, inhalatory, oral, rectal, periadventitial, perivascular, topical epicardial, topical epidermal, transdermal, ophthalmic routes or through the conjunctival, nasopharyngeal, bucopharyngeal, laryngopharyngeal, vaginal, colonic, urethral and vesical mucoses.
- the inducing agent is administered by intramyocardial-transepicardial or intramyocardial-transendocardial injections. More preferably, the inducing agent is administered by intramyocardial-transepicardial injection.
- the polynucleotide is administered in vehicles that are microbubbles, and the microbubbles are then disrupted by ultrasound directed at a site of interest, such that the polynucleotide is released at and introduced into the site of interest.
- the ultrasound treatment permits one to direct the release of the polynucleotide by disruption of the bubbles at the specific site at which the ultrasound is directed.
- the inducing agent is injected perpendicular to the plane of injection area. In another embodiment of the present invention, the inducing agent is injected in parallel to the plane of the area of injection. In another embodiment of the present invention, the inducing agent is injected in an oblique angle in relation to the plane of the injection area. Preferably, the inducing agent is injected at an angle in relation to the plane of the injection area of between about 30 degrees and about 90 degrees. Injections may be homogeneously or heterogeneously distributed in the area of injection.
- an inducing agent of the invention (polynucleotide or polypeptide) is formulated such that it is administered under slow-release conditions. Any repeated administration formulation or protocol may be used.
- area of injection includes the tissue territory including the hypoperfused area, the transition area and normoperfused area surrounding the transition area. “Area of injection” may also be defined as normal tissue.
- area under risk includes the myocardial area irrigated by the circumflex coronary artery.
- arteriogenesis includes the formation, growth or development of blood vessels with a smooth muscle media layer.
- Angiogenesis (of any thin-walled vessel that does not contain smooth muscle or a smooth muscle layer, e.g., a capillary vessel) is not encompassed by the term, arteriogenesis.
- induction refers to the action of generating, promoting, forming, regulating, activating, enhancing or accelerating a biological phenomenon.
- An example of induction is the action of VEGF as a vascular proliferation stimulator.
- inducing agent includes genomic DNA, cDNA or messenger RNA comprising sequences coding for the VEGF active site. “Inducing agent” also includes any vector containing a nucleotide sequence coding for VEGF. “Inducing agent” is also defined as any polypeptide including the VEGF active site.
- Ki67-positive cardiomyocyte nuclei index refers to a parameter designed to assess the density of cycling (non-quiescent) cells in a tissue sample. This parameter refers to the number of Ki67 positive cells per 10 6 cardiomyocyte nuclei in an analyzed area.
- length density index refers to a parameter calculated for assessing a tissue vascularization. This parameter was designed to quantify vessels arranged in any variety of orientation. The method for calculating this index is known in the art. See Anversa et al., Am. J. Physiol., 260: H1552-H1560 (1991); Adair et al., Am. J. Physiol., 266: H1434-H1438 (1994); Anversa et al., Am. J. Physiol., 267: H1062-H1073 (1994).
- localized is a response restricted to the area or tissue of interest.
- lymphatic vessel includes the formation, growth, development or proliferation of lymphatic vessels.
- mammal includes a warm blooded vertebrate animal whose progeny feeds with milk secreted by its mammary glands.
- mammary glands include, but is not limited to, rats, mice, rabbits, dogs, cats, goats, sheep, cows, pigs, primates and humans.
- mitosis refers to the complete cell division process.
- mitotic index refers to a parameter designed to assess the density of mitosis in a tissue sample. This parameter refers to the number of mitosis per 10 6 cardiomyocyte nuclei in an analyzed area.
- skeletal muscle cells include striated muscle cells of muscle tissue and its precursors and progenitors, including skeletal myoblasts and skeletal muscle satellite cells.
- Neovascular formation includes the creation, growth, development or proliferation of blood vessels.
- Neovascular proliferation includes arteriogenesis, vasculogenesis and lymphangiogenesis.
- non-paired comparison refers to the statistical comparison between two different groups of individuals at the same time.
- paired comparison refers to the statistical comparison of the same group of individuals at different times.
- perfusion improvement index refers to a parameter designed to assess the overall improvement of left ventricular myocardial perfusion. This index is calculated by the arithmetical difference between the post-treatment stress tolerance index and the pre-treatment stress tolerance index.
- a “pharmaceutical composition” of the invention comprises a polynucleotide or polypeptide of the invention and a pharmaceutically acceptable carrier.
- the pharmaceutically acceptable carrier can be, e.g., a solvent, adjuvant or excipient used to administer an inducing agent.
- Pharmaceutical compositions can comprise any solvent, dispersion media, aqueous, gaseous solutions, antibacterial or antifungal agents, isotonic agents, either absorption delayer or accelerator agents, or similar substances. The use of said substances in the administration of pharmaceutically active compositions is known in the art. Supplementary active ingredients may also be incorporated to the pharmaceutical composition utilized in the present invention.
- compositions can comprise, but are not limited to, inert solid fillings or solvents, sterile aqueous solutions and non-toxic organic solvents.
- the pharmaceutically acceptable carrier should not react with or reduce in any other manner the efficiency or stability of the inducing agent.
- Pharmaceutically acceptable carriers include, but are not limited to, water, ethanol, polyethileneglycol, mineral oil, petrolatum, propyleneglycol, lanolin and similar agents.
- Pharmaceutical compositions for injection include sterile aqueous solutions (when soluble in water) or dispersions and sterile powders for extemporaneous preparation of sterile dispersions or injectable solutions. In all cases, the formulation should be sterile. The formulation may be fluid to facilitate syringe dispensation. The formulation should also be stable under manufacturing and storage conditions and should be preserved against the contaminant action of microorganisms such as bacteria, viruses and fungi.
- post-treatment stress tolerance index refers to a parameter designed to assess the left ventricular myocardial perfusion in post-treatment conditions. This index is calculated by the arithmetical difference between the post-treatment percentual perfusion value during pharmacological challenge (stress) and the post-treatment percentual perfusion value at rest.
- pre-treatment stress tolerance index refers to a parameter designed to assess the left ventricular myocardial perfusion in pre-treatment conditions. This index is calculated by the arithmetical difference between the pre-treatment percentual perfusion value during pharmacological challenge (stress) and the pre-treatment percentual perfusion value at rest.
- stress tolerance index is defined as the arithmetical difference between the percentual perfusion value during pharmacological challenge (stress) and the percentual perfusion value at rest. This index is calculated in post-treatment and pre-treatment situations.
- a method of the invention is carried out in vivo.
- a sufficient dose of an inducing agent e.g., a polynucleotide or polypeptide of the invention
- a subject e.g., a patient
- a subject “in need of such treatment” can be, e.g., a subject who exhibits signs or symptoms of, or who is suffering from, one of the mentioned conditions.
- “Signs” of a condition are manifestations assessed by physical examination, EKG or other methods, which are not full-fledged symptoms, but which are recognizable by a physician.
- the subject may exhibit signs or symptoms of, or may suffer from, myocardial infarction, myocardial ischemia, dilated cardiomyopathy, or hypertrophic cardiomyopathy.
- the subject is a human patient.
- a “sufficient dose” is a quantity of the inducing agent, or of a pharmaceutical composition including the inducing agent, which is adequate to attain at least a detectable amount of the specified function.
- “sufficient dose” refers to a quantity of the inducing agent, or of the pharmaceutical composition including the inducing agent, which is adequate to produce, e.g., one or more of the following results: 1) the induction of arteriogenesis, vasculogenesis, lymphangiogenesis, or myocardiogenesis in eukaryotic cells, 2) the activation of the cell cycle in eukaryotic cells, 3) the induction or acceleration of the mitotic process in eukaryotic cells, e.g. the induction of mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- the sufficient dose for any particular use will vary from subject to subject, depending on, i.a., the species, age, weight and general or clinical condition of the subject, the severity or mechanism of any disorder being treated, the particular agent or vehicle used, the method and scheduling of administration, and the like.
- a therapeutically sufficient dose can be determined empirically, by conventional procedures known to those of skill in the art. See, e.g., The Pharmacological Basis of Therapeutics , Goodman and Gilman, eds., Macmillan Publishing Co., New York.
- a sufficient dose can be estimated initially either in cell culture assays or in suitable animal models. The animal model may also be used to determine the appropriate concentration ranges and routes of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- the doses administered to pigs in the Examples herein can be converted to suitable doses for humans.
- a sufficient dose can also be selected by analogy to doses for comparable therapeutic agents.
- VEGF-encoding polynucleotides vary from between about 0.003 to about 0.36 nmoles/kg body weight, depending on the route of administration and other factors as noted above. In a preferred embodiment, the dose is between about 0.01 and about 0.10 nmoles/kg.
- the nmoles are of polynucleotide encoding an active VEGF polypeptide.
- an “active VEGF polypeptide” is a polypeptide that comprises an active site of a VEGF polypeptide, e.g., full-length VEGF or an active site thereof.
- the dose may be administered as a single dose, or in multiple doses (e.g., two or more doses) over an empirically determined amount of time. For example, the dose may be administered in two or more events, at different times, such as two or more weeks apart.
- a sufficient dose may vary between about 2.5 ⁇ 10 10 and about 10 ⁇ 10 15 pfu (plaque forming units), more preferably between about 3 ⁇ 10 10 and about 10 ⁇ 10 12 pfu. Comparable doses for other viral vectors will be evident to the skilled worker.
- a polynucleotide of the invention in as concentrated a solution as possible.
- a concentration of between about 0.5 to about 4 mg/mL of the plasmid is preferred. Comparable concentrations of other vectors containing the coding sequences, or of polypeptides, will be evident to the skilled worker.
- sufficient doses of VEGF polypeptides vary from between about 0.35 and about 3.5 mg/kg body weight, depending on the route of administration and other factors as noted above. In a preferred embodiment, the dose is between about 0.4 and about 1.4 mg/kg.
- the mgrams are of active VEGF polypeptide.
- the dose may be administered as a single dose, or in multiple doses (e.g., two or more doses) over an empirically determined amount of time.
- vasculogenesis includes the formation, growth, development or proliferation of blood vessels derived from undifferentiated or underdifferentiated cells.
- VEGF includes any vascular endothelial growth factor.
- VEGF includes, but is not limited to, the VEGF variants A, B, C, D, E and F. See Hamawy, et al., Curr. Opin. Cardiol., 14:515-522 (1999); Neufeld, et al., Prog. Growth Factor Res., 5:89-97 (1994); Olofsson, et al., Proc. Natl. Acad. Sci. USA, 93:2576-2581 (1996); Chilov, et al., J. Biol. Chem., 272:25176-25183 (1997); Olofsson, et al., Curr. Opin.
- the VEGF A variant includes, but is not limited to, isoforms VEGF 1-121 , VEGF 1-145 , VEGF 1-167 , VEGF 1-165 , VEGF 1-189 and VEGF 1-206 .
- the SEQ ID NO. 1 illustrates an example of isoform VEGF 1-165 . See Tischer, et al., J. Biol. Chem., 266:11947-11954 (1991); Poltorak, et al., J. Biol. Chem., 272:7151-7158 (1997).
- VEGF also includes the vascular permeability factor or vasculotropin (VPF).
- VPF is currently known in the art as VEGF A.
- Other members of the VEGF family can also be used, including placental growth factors PIGF I and II.
- VEGF-A-P15692 and NP003367 include: VEGF-A-P15692 and NP003367; VEGF-B-NP003368, P49765, AAL79001, AAL79000, AAC50721, AAB06274, and AAH08818; VEGF-C-NP005420, P49767, S69207, AAB36425, and CAA63907; VEGF-D-NP004460, AAH27948, O43915, CAA03942 and BAA24264; VEGF-E-AAQ88857; VEGF-F-2VPFF; PIGF-1-NP002623, AAH07789, AAH07255, AAH01422, P49763, CAA38698 and CAA70463; synthetic constructs of Chain A-1FZVA and Chain B-1FZVB of PIGF
- the VEGF is of human origin. However, VEGF from other species, such as mouse, may also be used.
- VEGF vascular permeability factor
- VPF vascular endothelial cell-specific growth factor
- VEGF vascular endothelial growth factor
- PDGF platelet-derived growth factor
- the other 6 cysteines make 3 intramolecular S—S bonds to form 3 loop structures (Wiesmann 1997).
- the monomers are held in a “side-by-side” orientation, the two ⁇ sheets lying perpendicular to the twofold-symmetry axis.
- the structure of the VEGF165 heparin-binding region (residues 111-165) has been solved separately by NMR and represents a novel type of heparin-binding domain (Fairbrother 1998).
- VEGF isoforms are secreted as covalently linked homodimers. Monomers associate initially through hydrophobic interactions and are then stabilized by disulphide bonding between Cys51 of one chain and Cys61 of the other (Pötgens 1994).
- the signal peptide (exon 1 and four residues of exon 2), which includes an amphipathic ⁇ -helix (residues 12-19) essential for this dimerization, is cleaved off during secretion (Leung 1989, Keck 1989, Sieffle 1998a).
- a potential N-glycosylation site exists at Asn74 and apparently has no effect on VEGF function but is required for efficient secretion (Peretz 1992, Claffey 1995). And it is important to remark that the secretion process is necessary for at least some of the VEGF biological activities (that depend on VEGF binding to other cells receptors).
- Alanine-scanning analysis was performed to identify a positively charged surface in VEGF that mediates receptor binding (Ferrara 1997).
- Site-directed mutagenesis identified three acidic residues (Asp63, Glu64 and Glu67) in exon 3, and three basic residues (Arg82, Lys84 and His86) in exon 4 that are essential for binding to VEGF receptors VEGFR-1 and VEGFR-2, respectively.
- the most significant effect on endothelial cell proliferation was observed with mutations in the 82-86 region (Ferrara 1997, Key 1996a).
- Three highly flexible loops are clustered at each pole of VEGF at the dimer interface.
- Loop II contains the VEGFR-1 binding determinants and lies close to loop III of the opposing monomer, which binds to VEGFR-2 (Keyt 1996a).
- the positioning of these receptor-binding interfaces at each pole of VEGF seems to facilitate receptor dimerisation, which is essential for transphosphorylation and signalling, because mutant dimers that have only one receptor-binding site antagonize native VEGF activity (Sieffle 1998b).
- VEGF isoforms in the ECM constitute a reservoir of growth factor that can be slowly released by exposure to heparin, heparan sulphate and heparinases or more rapidly mobilized by specific proteolytic enzymes such as plasmin and urokinase-type plasminogen activator uPA (Houck 1992, Plouet 1997). These enzymes already contribute to vascular proliferation through ECM depolymerization and, as well as releasing sequestered VEGF from the cell surface and ECM, might also regulate VEGF bioactivity. Keyt et al. found that the removal of the carboxyl-terminal domain of VEGF165 is associated with a significant loss in bioactivity (Keyt 1996b).
- VEGF vascular endothelial growth factor
- VEGF has been shown to upregulate PDGF-BB (Hirschi 1998).
- sequence encoded by exon 6 (not present in VEGF 165) has also been shown to release bioactive bFGF from the ECM and cell surface and thus confers the ability to exert some of VEGF biological effects through bFGF signalling pathways (Jonca 1997)
- a VEGF polypeptide used in methods of the invention may be a fragment or variant of a naturally occurring VEGF polypeptide, provided that the fragment or variant retains an activity of the naturally occurring polypeptide which allows it to achieve a result of a method of the invention.
- a fragment or variant is referred to herein as an “active fragment” or “active variant.”
- An active fragment of a VEGF polypeptide may be of any size that is compatible with the invention, e.g., a polypeptide that is shorter than a naturally occurring VEGF, but that retains an active site of the VEGF.
- An active variant of a VEGF polypeptide may be, e.g., (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue), which substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which additional amino acids are fused to the polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the polypeptide, commonly for the purpose of creating a genetically engineered form of the protein that is susceptible to secretion from a cell, such as a transformed cell.
- a conserved or non-conserved amino acid residue preferably a conserve
- the additional amino acids may be from a heterologous source, or may be endogenous to the natural gene. Examples of all of these types of variants will be evident to a skilled worker.
- glycosylation or PEGylation of the protein and/or amino acid substitutions, which increase bioavailability, biological activity, biological effect, and/or half-life of the protein.
- the invention also encompasses active fragments or variants of naturally occurring polynucleotides encoding VEGF. Such an active fragment or variant retains an activity of the naturally occurring polynucleotide which allows it to achieve a result of a method of the invention.
- Suitable variant polynucleotides include polynucleotides that encode any of the fragments or variant polypeptides noted above. Also included are variants which reflect the degeneracy of the genetic code, or which are naturally occurring or artificially generated allelic variants of a wild type polynucleotide.
- Active variant polynucleotides of the invention may take a variety of forms, including, e.g., naturally or non-naturally occurring polymorphisms, including single nucleotide polymorphisms (SNPs), allelic variants, and mutants. They may comprise, e.g., one or more additions, insertions, deletions, substitutions, transitions, transversions, inversions, chromosomal translocations, variants resulting from alternative splicing events, or the like, or any combinations thereof.
- SNPs single nucleotide polymorphisms
- nucleotides of a polynucleotide can be joined via various known linkages, e.g., ester, sulfamate, sulfamide, phosphorothioate, phosphoramidate, methylphosphonate, carbamate, etc., depending on the desired purpose, e.g., improved in vivo stability, etc. See, e.g., U.S. Pat. No. 5,378,825. Any desired nucleotide or nucleotide analog can be incorporated, e.g., 6-mercaptoguanine, 8-oxo-guanine, etc.
- Active variant polynucleotides or polypeptides of the invention include polynucleotides or polypeptides having sequences that exhibit a percent identity to one of the sequences noted above of at least about 70%, preferably at least about 80%, more preferably at least about 90% or 95%, or 98%, provided that the polypeptide or polypeptide exhibits the desired function noted above.
- a suitable variant polynucleotide is one that hybridizes under standard conditions of high stringency to a naturally occurring VEGF-encoding polynucleotide.
- underdifferentiated cells are cells with a characteristic phenotypic profile but with the capacity of originating cells with a different phenotypic profile.
- Underdifferentiated cells include, but are not limited to, fibroblasts, myoblasts, osteoblasts, endothelial precursor cells, skeletal muscle satellite cells, neural tissue glial cells, stem cells, cardiac progenitor cells, and cardiac precursor cells.
- the present invention employs a plasmid called pUVEK15 of approximately 3086 base pairs (bp).
- the pUVEK15 plasmid is characterized by including a cytomegalovirus (CMV) promoter, a chimeric intron, a DNA fragment containing a vascular endothelial growth factor (VEGF)-encoding sequence and a DNA sequence of approximately 1290 bp, which confers resistance to kanamicyn.
- CMV cytomegalovirus
- VEGF vascular endothelial growth factor
- the VEGF nucleotide sequence present in the pUVEK15 plasmid encodes the human 165 amino acid VEGF polypeptide represented by SEQ ID NO: 1.
- the pUVEK15 plasmid is deposited under the access number DSM 13833 at DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen, Federal Republic of Germany.
- kits suitable for carrying out a method of the invention may comprise (a) a polynucleotide that encodes a vascular endothelial growth factor (VEGF), or that encodes a polypeptide comprising an active site of the VEGF, wherein the coding sequence is operably linked to an expression control sequence, and (b) a label or instructions indicating a use for the polynucleotide to induce arteriogenesis, lymphangiogenesis, vasculogenesis, myocardiogenesis, or mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- VEGF vascular endothelial growth factor
- the kit comprises a dose of a polynucleotide that encodes a vascular endothelial growth factor (VEGF), or that encodes a polypeptide encoding an active site of the VEGF, wherein the coding sequence is operably linked to an expression control sequence, the dose being sufficient to induce arteriogenesis, lymphangiogenesis, vasculogenesis, myocardiogenesis, or mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- VEGF vascular endothelial growth factor
- the kit comprises (a) a VEGF polypeptide, or a polypeptide the comprises an active site of the VEGF, and (b) a label or instructions indicating a use for the polypeptide to induce arteriogenesis, lymphangiogenesis, vasculogenesis, or myocardiogenesis, or mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- the kit comprises a dose of a VEGf polypeptide, or a polypeptide that comprises an active site of the VEGF, the dose being sufficient to induce arteriogenesis, lymphangiogenesis, vasculogenesis, myocardiogenesis, or mitosis or to induce proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- the reagents of a kit of the invention may be in containers in which the reagents are stable, e.g., in lyophilized form or stabilized liquids.
- the reagents may also be in single use form, e.g., in single dosage form.
- Eighty Landrace pigs weighing approximately 25 kg (approx. 3 months of age) were submitted to the following protocol: 1) each individual underwent clinical and laboratory assessment of good health; 2) a sterile thoracotomy was performed at the 4 th left intercostal space under general anesthesia (induction: thiopental sodium 20 mg/kg; maintenance: 2% enflurane) and the circumflex coronary artery was dissected free from surrounding tissue at its proximal portion; 3) an Ameroid constrictor was placed embracing the origin of the circumflex coronary artery; and 4) the thoracotomy was repaired.
- basal (pre-treatment) studies were performed on the individuals. The studies were conducted under sedation with sufficient doses of intravenous sodium thiopental and under electrocardiographic control. Basal myocardial perfusion studies were performed on each individual. The left ventricular perfusion was quantified by single photon emission computed tomography (SPECT) utilizing an ADAC Vertex Dual Detector Camera System (ADAC Healthcare Information Systems Inc., USA). Sestamibi marked with 99m Tc was utilized as contrast.
- SPECT single photon emission computed tomography
- the dobutamine infusion was interrupted when heart rate was at least a 50% above the basal (rest) values.
- the twenty six individuals of the previous example were distributed in two groups: A first group consisting of 16 individuals (Group I) and a second group consisting of 10 individuals (Group II). Group I individuals were utilized to perform histopathological and physiological studies. Group II individuals were utilized to assess the presence and expression of the VEGF plasmid.
- Group I individuals were randomized into two subgroups (Group I-T and Group I-P) with the same number of members (4 females and 4 males per subgroup).
- the treated group was designated Group I-T.
- the placebo group was designated Group I-P.
- Group II individuals were randomized into two subgroups (Group II-T and Group II-P). Eight individuals were allocated to Group II-T. Two individuals were allocated to Group II-P. The treated group was designated Group II-T. The placebo group was designated Group II-P.
- Each individual from Groups I-T and II-T received 10 injections of a solution containing pUVEK15 plasmid encoding for vascular endothelial growth factor (1.9 mg of pUVEK15 in 1 mL of saline). Each injection contained 200 ⁇ l of the plasmid solution. Each individual received a total dose of 3.8 mg of the pUVEK15 plasmid.
- Each individual from Groups I-P and II-P received 10 injections of a solution containing pUVEK15 ⁇ VEGF plasmid without the encoding region for the vascular endothelial growth factor (1.9 mg of pUVEK15 ⁇ VEGF in 1 mL of saline). Each injection contained 200 ⁇ l of the plasmid solution. Each individual received a total dose of 3.8 mg of the pUVEK15 ⁇ VEGF plasmid.
- Each aliquot was injected intramyocardically, starting from the normoperfused left anterior descending artery territory (2-3 aliquots) and spanning the basal and mid zones of the anterolateral left ventricular wall.
- the area of injection included the hypoperfused zone, the transition zone and the normoperfused tissue immediately surrounding the transition zone.
- the injections were administered at a 45 degree angle in relation to the plane of the myocardium area, avoiding intraventricular administration of the solution.
- the injections were homogeneously distributed in the area of injection.
- the thoracotomy was repaired in each individual after administration.
- the individuals were euthanized using an overdose of thiopental sodium followed by a lethal injection of potassium chloride.
- the heart, kidneys, liver, lungs, skeletal muscle, eyes and gonads were excised for histopathological assessment, including neoangiogenesis and mitosis determinations.
- the histopathological studies were performed in myocardial and peripheral tissues according to the following protocols.
- the pericardium, adherent fat, atria and right ventricular free wall were removed.
- the left circumflex coronary artery was examined at the site of the Ameroid to assess for occlusion.
- the left ventricle, including the septum was cut transversally at one third of the distance between the apex and the mitral annulus.
- a slice of 5 mm in thickness was cut from the distal end of the upper third, rinsed in Ringer solution and fixed flat for 48 hours in 10% formaldehyde buffered solution.
- This slice was chosen in order to: 1) limit the analysis to areas clearly perfused by only one vessel (left anterior descending coronary artery, left circumflex coronary artery or right coronary artery), without mixed supply from more than one artery, and 2) match the histology with the perfusion data.
- the slice was divided into 6 blocks, corresponding, from 1 to 6 to: the posterior half of the septum, the posterior wall, the posterolateral wall, the lateral wall, the anterior wall and the anterior half of the septum.
- These 6 blocks were embedded in HistowaxTM, and sections of 5 ⁇ m thickness were mounted on slides previously wetted in a 0.01% polylysine aqueous solution (Sigma Chemical Co., U.S.A.) and dried at 37° C. The sections were stained with hematoxylin-eosin. Identification of intramyocardial vessels was made under optical microscopy. The endothelium was identified by immunohistochemistry employing the biotin streptavidin technique and a monoconal antibody against von Willebrand factor. The smooth muscle layer was identified by immunohistochemistry to assess arteriogenesis. A monoclonal antibody against alpha-actin (Biogenex Labs. Inc., U.S.A.) was utilized to this purpose.
- Lc expressed in millimeters per unit volume of myocardium (mm/mm 3 ) is equal to the sum of the ratio R of the long to the short axis of each vessel.
- indexes were averaged for both the ischemic (posterolateral, lateral, and anterolateral walls) and the non-ischemic (septum, anterior and posterior walls) zones.
- tissue sections treated with enzyme-labeled avidin were examined with light microscopy with Nomarski optics.
- tissue sections stained with fluorescent reactants were examined with confocal microscopy (Zeiss, Federal Republic of Germany).
- Cardiomyocyte nuclei (CMN) density was determined by counting the number of CMN in longitudinally oriented cells containing sarcomeric ⁇ -actin in a 5 mm 2 area of the lateral wall mesocardium.
- the number of Ki67-positive CMN and the number of cardiomyocyte mitosis were determined in the whole ventricular tissue section area of each individual (total scanned area, TSA).
- TSA of the Group I individuals averaged 1345.7 ⁇ 289.7 mm 2 .
- the Ki67-positive CMN index was calculated as: [Ki67-positive nuclei/(TSA ⁇ CMN density)] ⁇ 10 6 .
- the mitotic index was calculated as: [mitosis/(TSA ⁇ CMN density)] ⁇ 10 6 .
- Data was expressed as number of Ki67-positive nuclei and number of cardiomyocyte mitosis per 10 6 CMN. Both indexes were averaged for both the ischemic (posterolateral, lateral, and anterolateral walls) and the non-ischemic (septum, anterior and posterior walls) zones for each individual.
- tissue were fixed in 10% formaldehyde buffered solution, sectioned in blocks and included in HistowaxTM paraffin. Tissue slices of 5 ⁇ m thickness were obtained from the blocks and stained with hematoxylin-eosin. An histopathological assessment for possible toxic effects in remote tissues was made by optical microscopy.
- the Group II individuals were euthanized using an overdose of thiopental sodium followed by a lethal injection of potassium chloride, according to the following chronogram: 2 individuals from Group II-T after 3 days of reoperation, 2 individuals from Group II-T and 2 individuals from Group II-P after 10 days of reoperation, 2 individuals of Group II-T after 16 days of reoperation and 2 individuals from Group II-T after 35 days of reoperation. Necropsies were performed in each euthanized individual. Myocardial tissue of the area under risk was obtained from each individual.
- PCR polymerase chain reaction
- RT-PCR reverse transcriptase-polymerase chain reaction
- Non-competitive amplification of constitutive GAPDH was used to demonstrate the presence of intact mRNA in each total RNA sample.
- RT-PCR was performed in myocardial tissue of Group II-T individuals without reverse transcriptase to assess the possible contamination with plasmidic DNA or genomic DNA. The results of this control reaction were negative, excluding the possibility of contamination.
- the perfusion and histopathological studies showed vascular formation and growth in myocardial tissue of treated individuals.
- the histopathological study also revealed the induction of mitosis in cardiomyocytes, endothelial cells and smooth muscle cells of Group I-T individuals.
- the stress tolerance index and perfusion improvement index were determined for each myocardial segment of all Group I individuals in order to assess left ventricular perfusion. Mean values of both indexes were calculated for the area under risk and the surrounding tissue for each individual. Finally, the mean values for each group were calculated.
- the histopathological study showed statistically significant differences in numerical density, length density and mitotic index between both subgroups (inter-group non-paired comparisons).
- the Group I-T individuals presented higher mean values for these indexes when compared to Group I-P individuals. See Tables 3, 4, 5 and 6; FIGS. 3 , 4 , 5 , 6 , 8 , 9 , 10 , 11 , 12 and 13 .
- neovascular formation in vivo of myocardial tissue in the individuals treated with pUVEK15 neovascular formation in vivo of myocardial tissue in the individuals treated with pUVEK15.
- Vascular formation and growth implies an increase in the number of cells taking part of neovessels (endothelial and vascular smooth muscle cells). See FIGS. 12 and 13 .
- the administration of the inducing agent enhanced mitosis of vascular cells in the individuals treated.
- the subgroup of individuals treated with pUVEK15 also showed a proportion of cardiomyocytes in mitotic process more than 5 times higher than the non-treated subgroup. See FIGS. 6 , 8 , 9 , 10 and 11 ; Table 6.
- Angiogenesis or other adverse side effects were not detected in the peripheral tissues of the individuals treated with pUVEK15.
- Plasmid DNA encoding for VEGF was found in the injected myocardial tissue of the Group II-T individuals. Placebo plasmid DNA was found in the injected myocardial tissue of the Group II-P individuals.
- a transcription curve (presence of mRNA) showing a peak by day 10 post-injection of pUVEK15 was obtained in the Group II-T individuals. See FIG. 7 . Presence of mRNA in group II-P was negative.
- Plasmids as above have also been introduced into sheep suffering from acute myocardial infarction, and myocardiogenesis has been observed.
- the methods in this study were adapted from the methods used in the preceding Examples.
- Plasmid pUVEK15 was deposited on Nov. 13, 2000, under access number DSM 13833 at the DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen, Mascheroder Weg 1B, D-38124 Braunschweig, Federal Republic of Germany.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Vascular Medicine (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Dispersion Chemistry (AREA)
- Urology & Nephrology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a continuation-in-part of PCT/US02/14508, filed May 13, 2002, which is incorporated by reference herein in its entirety.
- This invention relates, e.g., to a method for inducing arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis, or for inducing mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte, using a Vascular Endothelial Growth Factor (VEGF). For example, a gene therapy method is described for in vivo localized induction of neovascular formation or tissue regeneration in mammals utilizing VEGF.
- Ischemic heart disease is the main cause of morbidity and mortality. The epidemiological and socio-economical impact of coronary heart disease is remarkable. This disease causes million of deaths all over the world. See Murray, et al., Lancet, 349:1269-1276 (1997). In developed countries, it has been estimated that 5.3 million deaths attributable to cardiovascular disease occurred in 1990, whereas the corresponding figure for the developing countries ranged between 8 to 9 million (showing a relative excess of 70%). See Reddy, et al., Circulation, 97:596-601 (1998). In Argentina, ischemic heart disease is the first cause of mortality showing an incidence of around 30%, trend which tends to remain stable since 1980. For the population over 65 years, this rate reaches almost 40%. See Programa Nacional de Estadísticas de Salud,
Series 5, Number 38, Ministerio de Salud y Acción Social, República Argentina (December 1995). - Despite recent advances in prevention and treatment of ischemic heart disease, there are many patients who are still symptomatic and cannot benefit from conventional therapy. Administration of growth factors that promote neovascular formation and growth, such as fibroblast growth factors (FGFs) and VEGF, appear as a novel and promising alternative for these patients. This mode of treatment is called therapeutic angiogenesis. See Henry, B. M. J., 318:1536-1539 (1999).
- VEGF is a protein expressed by skeletal muscle cells, smooth muscle cells, ovarian corpus luteum cells, tumor cells, fibroblasts and cardiomyocytes. Unlike other mitogens, VEGF is a secreted growth factor. See Thomas, J. Biol. Chem, 271:603-606 (1996); Leung, et al., Science, 246:1306-1309 (1989). The human VEGF gene is expressed as different isoforms, secondary to post-transcriptional alternative splicing. In non-malignant human tissues, four VEGF isoforms are expressed, with different numbers of amino acids (121, 165, 189, 206) and with a molecular weight ranging from 34 to 46 kD. See Tischer, et al., J. Biol. Chem., 266:11947-11954 (1991); Ferrara, et al., J. Cell. Biochem., 47:211-218 (1991).
- VEGF specific receptors are VEGFR-1 (flt-1), VEGFR-2 (KDR/flk-1) and VEGFR-3 (flt-4). See De Vries, et al., Science, 255:989-991 (1992); Terman, et al., Biochem. Biophys. Res. Commun., 187:1579-1586 (1992); Gallant, et al., Genomics, 13:475-478 (1992). Due to the apparent restricted and confined localization of VEGF receptors to vascular endothelial cells, this growth factor has been described as the most specific mitogen for these cells. It has been proposed that VEGF is not bioactive on non-endothelial cells. See Jakeman, et al., J. Clin. Invest., 89:244-253 (1992); Ferrara, et al., Endocr. Rev., 18:4-25 (1997); Thomas, et al., supra (1996). However, recent studies have reported mitogenic effects of VEGF on some non-endothelial cell types, such as retinal pigment epithelial cells, pancreatic duct cells and Schwann cells. See Guerring et al., J. Cell. Physiol., 164:385-394 (1995); Oberg-Welsh et al., Mol. Cell. Endocrinol., 126:125-132 (1997); Sondell et al., J. Neurosci., 19:5731-5740 (1999). Moreover, VEGF receptors have been found in other cells, such as hematopoietic stem cells, endocardial cells and even cultured rat cardiomyocytes, where VEGF has been shown to activate the mitogen-activated protein kinase cascade. See Asahara et al., Science, 275:964-967 (1997); Partanen et al., Circulation, 100:583-586 (1999); Takahashi et al., Circ. Res., 84:1194-1202 (1999).
- Therapeutic administration of VEGF is a significant challenge. VEGF can be administered as a recombinant protein (protein therapy) or by VEGF-encoding gene transfer (gene therapy). See Safi, et al., J. Mol. Cell. Cardiol., 29:2311-2325 (1997); Simons, et al., Circulation, 102:E73-E86 (2000).
- Protein therapy has several disadvantages. The extremely short mean-life of angiogenic proteins (e.g. VEGF) conditions therapy to the administration of high or repeated doses to achieve a noticeable effect. See Simons, et al., supra (2000); Takeshita, et al., Circulation, 90:II228-234 (1994). Furthermore, intravenous administration of high doses of VEGF protein is known to induce severe or refractory hypotension. See Henry, et al., J. Am. Coll. Cardiol., 31:65A (1998); Horowitz, et al., Arterioscl. Thromb. Vasc. Biol., 17:2793-2800 (1997); López, et al., Am. J. Phisiol., 273:H1317-1323 (1997). To avoid these disadvantages, gene therapy (e.g. DNA encoding for VEGF) has been proposed. See Mack, et al., J. Thorac. Cardiovasc. Surg., 115:168-177 (1998); Tio, et al., Hum. Gene Ther., 10:2953-2960 (1999).
- Gene therapy can be compared to a drug slow-delivery system. The gene encoding for the agent of interest is transported into cells in vehicles called vectors (e.g. plasmids, viruses, liposomes). Cell mechanisms specialized in protein synthesis perform the production and localized release of the final product. See Crystal, Science, 270:404-410 (1995). In addition, it should be noted that in the case of plasmids the gene product is synthesized for a discrete period of time. This time is usually about two weeks. According to experimental studies, sustained expression during this limited period of time is necessary and sufficient to trigger the angiogenic process. Based on these advantages, several research groups have studied the therapeutic effects of gene therapy using angiogenic factors in experimental models of heart and limb ischemia. These approaches have yielded promising results. See Magovern, Ann. Thorac. Surg., 62:425-434 (1996); Mack, et al., supra (1998); Tio, et al., supra (1999); Walder, et al., J. Cardiovasc. Pharmacol., 27:91-98 (1996); Takeshita, et al., Lab. Invest., 75:487-501 (1996); Mack, et al., J. Vasc. Surg., 27:699-709 (1998); Tsurumi, et al., Circulation, 94:3281-3290 (1996). Gene therapy has achieved the expected effects without the shortcomings associated with protein therapy. However, adenoviral gene therapy may induce inflammatory or immune reactions, especially after repeated doses. This type of therapy has been related also to high risk systemic immune response syndrome. These circumstances limit significantly the clinical use of this therapy. See Gilgenkrantz, et al., Hum. Gene Ther., 6:1265-1274 (1995); Dewey, et al., Nat. Med., 5:1256-1263 (1999); Wersto, et al., J. Virol., 72:9491-9502 (1998); Hollon, Nat. Med., 6:6 (2000), Chan, et al., Nat. Med., 5:1143-1149 (1999); Byrnes, et al., J. Nerosci., 16:3045-3055 (1996). According to recent studies, plasmid gene therapy does not have these disadvantages and can be administrated safely in repeated doses. See Simons, et al., supra (2000).
- Systemic administration of VEGF has been associated with undesired angiogenesis in peripheral tissues. See Folkman, Nat. Med., 1:27-31 (1995); Liotta, et al., Cell, 64:327-336 (1991); Lazarous, et al., Circulation, 94:1074-1082 (1996); Ferrara, Breast Cancer Res. Treat., 36:127-137 (1995); Ferrara, Lab. Invest., 72:615-618 (1995); Aiello, et al., N. Eng. J. Med., 331:1480-1485 (1994); Adams, et al., Am. J. Ophthalmol., 118:445-450 (1994); Inoue, et al., Circulation, 98:2108-2116 (1998); Simons, et al., supra (2000). The risk of systemic exposure is probably more related to the route of administration than to the nature of therapy (gene or protein) utilized. In comparison with intravascular delivery, local (e.g. intramyocardial) administration reduces the risk of systemic exposure and undesired peripheral angiogenesis. See Simons, et al., supra (2000).
- At the present, it has been demonstrated that VEGF induces angiogenesis in vivo. It has not been reported yet that VEGF induces the formation of blood vessels with a smooth muscle layer. See Mack, et al., supra (1998); Tio, et al., supra (1999). Moreover, it has been postulated that VEGF prevents the neoformation of vascular smooth muscle. See Asahara, et al., Circulation, 91:2793-2801 (1995). Smooth muscle plays a significant role in the regulation of vascular function. Its presence at the media layer of blood vessels represents an adaptative advantage since it is involved in the vasomotor tone regulation. Vascular smooth muscle maintains a basal vascular tone and permits self-regulation upon variations on blood flow and pressure. It has been suggested that the absence of smooth muscle layer is related to vessel collapse. See “Angiogenesis and Cardiovascular Disease”, Ware, Ed. (Oxford University Press Inc., New York, USA., 1999), p. 258-261.
- Acute myocardial infarction is the consequence of coronary heart disease with the worst short and long-term prognosis. See Bolognese, et al., Am. Heart J., 138:S79-83 (1999); Mehta, et al., Herz, 25:47-60 (2000); Hessen, et al., Cardiovasc. Clin., 20:283-318 (1989); Jacoby, et al., J. Am. Coll. Cardiol., 20:736-744 (1992); Rosenthal, et al., Am. Heart J., 109:865-876 (1985). This condition results frequently in a significant loss of myocardial cells, reducing the contractile muscle mass. It is known in the art that cardiomyocytes of human and human-like species preserve their ability to replicate DNA. See Pfizer, et al., Curr. Top. Pathol., 54:125-168 (1971). Recently, it has been informed that some human cardiomyocytes can enter into M (mitotic) phase. However, this phenomenon occurs in a very small proportion of total cardiomyocyte population and under certain pathological conditions. So far, this phenomenon has only been noted in myocardial infarction and end-stage cardiac failure. See Beltrami et al., N. Eng. J. Med., 344: 1750-1757 (2001); Kajstura, et al., Proc. Natl. Acad. Sci. USA, 95:8801-8805 (1998). There is no conclusive evidence in all these instances that cardiomyocytes divide into daughter cells.
- The inability of cardiomyocytes to replicate properly precludes the replacement of myocardial tissue after injury in upper animal species. Under this scenario, myocardial function is diminished because the infarcted area is replaced by fibrotic tissue without contractile capacity. In addition, the remaining cardiomyocytes become hypertrophic and develop polyploid nuclei. See Herget, et al., Cardiovasc. Res. 36:45-51 (1997); “Textbook of Medical Physiology”, 9th Ed., Guyton et al., Eds. (W. B. Saunders Co, USA, 1997).
- Attempts have been made to restore myocardial cell loss with other cells, such as autologous satellite cells and allogenic myoblasts. The results of these attempts are not conclusive. See Dorfman, et al., J. Thorac. Cardiovasc. Surg., 116:744-751 (1998); Murry, et al., J. Clin. Invest., 98: 2512-2523 (1996); Leor, et al., Circulation, 94 Suppl. II: II-332-II-336 (1996); Li et al., Circ. Res., 78:283-288 (1996). More recently, it has been suggested that pluripotent stem cells and bone marrow derived angioblasts might restore infarcted myocardial tissue and induce even neovascular formation. However, the efficiency of these methods in upper mammals has not been demonstrated yet. See Orlic, et al., Nature, 410:701-705 (2001); Kocher, et al., Nat. Med., 7:430-436 (2001). An ideal method should induce cardiomyocyte division originating daughter cells and neovascular formation in myocardial tissue. This procedure would restore tissue loss with autologous myocardial tissue and increase simultaneously myocardial perfusion. A method like this would reduce the morbility and mortality rates associated to left ventricular remodeling, myocardial infarction and ischemic heart disease. See Bolognese, et al., supra (1999).
- Likewise, the failure of cardiomyocytes to replicate properly difficults adaptative hyperplasia (i.e. cell number increasing) as a response to other pathological conditions. In these cases, the adaptative response of human and porcine cardiomyocytes is to increase cell volume and nuclear DNA content. Therefore, in certain pathologies (e.g. hypertensive heart disease, dilated cardiomyopathy) cardiomyocytes are also markedly hypertrophic and polyploid. See Pfizer, Curr. Top. Pathol., 54:125-168 (1971); Adler, et al., J. Mol. Cell. Cardiol., 18:39-53 (1986). In most cases, cell adaptation is insufficient. Besides, the cellular demand for oxygen and nutrients increases as myocardial hypertrophy progresses. In consequence, the increased demands impair subendocardial perfusion even in the absence of coronary occlusion. Finally, the combination of these factors leads to myocardial function detriment. See “Textbook of Medical Physiology”, 9th Ed, supra. An ideal method should induce mitosis on hypertrophic and polyploid cells. This method should result in smaller and better-perfused daughter cells thus reducing the progression of cardiomyopathy towards heart failure.
-
FIG. 1 illustrates the stress tolerance index for the area under risk. Pre and post-treatment mean values for Group I-T (VEGF) and Group I-P (placebo) are compared. The post-treatment value of Group I-T is higher to the pre-treatment value of the same group. The post-treatment value of Group I-T is higher the post-treatment value of Group I-P. Intra-group paired comparisons show: 1) absence of statistically significant differences between pre and post-treatment indexes for Group I-P and 2) presence of statistically significant differences between pre and post-treatment indexes for Group I-T. The non-paired comparisons between groups show: 1) absence of statistically significant differences between pre-treatment indexes for Group I-T and Group I-P and 2) presence of statistically significant differences between post-treatment indexes for Group I-T and Group I-P. -
FIG. 2 illustrates the perfusion improvement index for the area under risk. Mean values for Group I-T (VEGF) and Group I-P (placebo) are compared. The value for Group I-T is significantly higher than the value for Group I-P. -
FIG. 3 shows the length density for the area under risk. Mean values for blood vessels with smooth muscle layer ranging from 8 to 50 μm are illustrated. The value for Group I-T (VEGF) is significantly higher than the value for Group I-P (placebo). -
FIG. 4 shows the numerical density for the area under risk. Mean values for blood vessels with smooth muscle layer ranging from 8 to 50 μm are illustrated. The value for Group I-T (VEGF) is significantly higher than the value for Group I-P (placebo). -
FIG. 5 shows the length density for the area under risk. Mean values for blood vessels with smooth muscle layer ranging from 8 to 30 μm are illustrated. The value for Group I-T (VEGF) is significantly higher than the value for Group I-P (placebo). -
FIG. 6 illustrates the effect of ischemia and treatment on cardiomyocyte Ki67-positive nuclei and mitosis.FIG. 6A shows Ki67-positive cardiomyocyte nuclei index. No significant differences exist between Group I-T (VEGF) and Group I-P (placebo) individuals.FIG. 6B shows Group I-T individuals (VEGF) with a significantly higher cardiomyocyte mitotic index for the area under risk (ischemic area) and the surrounding myocardial tissue (non-ischemic area) as compared with Group I-P individuals. The value for Group I-T (VEGF) is significantly higher than the value for Group I-P (placebo). -
FIG. 7 represents the VEGF mRNA transcription curve of the Group II-T individuals. The curve shows a peak byday 10 post-injection of the pUVEK15 plasmid. -
FIG. 8 illustrates the metaphase of a cardiomyocyte from a Group I-T individual. Metaphasic chromosomes and mitotic spindle are clearly visible. -
FIG. 9 illustrates the telophase of a cardiomyocyte from a Group I-T individual. Sarcomeric striations are clearly visible. -
FIG. 10 illustrates the mitotic process of two adjacent cardiomyocytes. The boundary between the cardiomyocytes is distinguishable. The integrity of both cardiomyocytes is clearly observed. -
FIG. 11 shows the non-conventional cytokinesis of a cardiomyocyte from a Group I-T individual. Opposite chromosome plates in two adjacent cardiomyocytes are observed. The arrow indicates a possible splitting into daughter cells. Bar=10 μm. -
FIGS. 12 and 13 illustrate blood vessels with smooth muscle layer in myocardial tissue of a Group I-T individual. Vascular smooth muscle was identified with alpha-actin immunohistochemical stain. - This invention relates, e.g., to a method for inducing arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis, comprising administering to a cell or tissue in need thereof a dose of a polynucleotide that encodes a vascular endothelial growth factor (VEGF), or that encodes a polypeptide comprising an active site of the VEGF. In the method, the coding sequence is operably linked to an expression control sequence, and the dose is sufficient to induce arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis. In a preferred embodiment, the VEGF is VEGF1-165, whose amino acid sequence is represented by SEQ ID NO: 1.
- The invention also relates to a method for inducing mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte, comprising administering to a cell in need thereof a dose of a polynucleotide that encodes a vascular endothelial growth factor (VEGF), or that encodes a polypeptide comprising an active site of the VEGF. In this method, the coding sequence is operably linked to an expression control sequence, and the dose is sufficient to induce the mitosis or proliferation. In a preferred embodiment, the VEGF is VEGF1-165, whose amino acid sequence is represented by SEQ ID NO: 1. In some embodiments, the method is a method of tissue regeneration.
- In preferred embodiments, the method of the invention is carried out in vivo, and a sufficient dose of the polynucleotide is administered to a subject in need of such treatment to induce arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis, and/or to induce the mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- The invention also relates to a method for inducing arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis, comprising administering to a cell or tissue in need thereof a dose of a VEGF polypeptide, or a polypeptide comprising an active site of the VEGF, the dose being sufficient to induce arteriogenesis, lymphangiogenesis, vasculogenesis, or cardiomyogenesis. The invention also relates to a method for inducing mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte, comprising administering to the cell a sufficient dose of a VEGF polypeptide, or a polypeptide that comprises an active site of the VEGF, to induce the mitosis or proliferation. In preferred embodiments, the VEGF is VEGF1-165, whose amino acid sequence is represented by SEQ ID NO: 1.
- The invention also relates to kits suitable for carrying out methods of the invention. In one embodiment, the kit comprises a polynucleotide or polypeptide of the invention and a label or instructions indicating a use for the polynucleotide or polypeptide to induce arteriogenesis, lymphangiogenesis, vasculogenesis, cardiomyogenesis, or to induce mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte. In another embodiment, the kit comprises a dose of a polynucleotide or polypeptide of the invention that is sufficient to induce mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte, and/or to induce the mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- The terms myocardiogenesis and cardiomyogenesis are understood by those in the art to be the same, and the terms are used interchangeably herein.
- One advantage of the present invention is the secure and efficient induction of neovascular formation in hypoperfused and normoperfused tissues. By utilizing embodiments of the invention, it is possible, e.g., to stimulate the neoformation, development, proliferation and growth of vessels. Embodiments of the invention are effective also for the neoformation, development, proliferation and growth of smooth and striated muscular cells. The method is particularly useful for inducing revascularization in patients with ischemic heart disease. The present invention can also be used in the treatment of patients with peripheral artery disease or severe limb ischemia. The present invention can be utilized as sole therapy of ischemic diseases or associated with conventional revascularization procedures. The claimed method is characterized by the absence of adverse side effects related to the systemic exposure to angiogenic factors in high doses.
- Another advantage of the present invention is the regeneration of myocardial tissue (myocardiogenesis). The claimed method includes the induction of cardiomyocyte mitosis and/or proliferation. In this way, the claimed method replaces infarcted tissue with autologous cardiac muscle. The present invention reverts also the natural development of hypertrophic and dilated cardiomyopathies of any etiology by inducing the mitotic process in polyploid hypertrophic cardiomyocytes and by improving tissue perfusion (i.e. inducing neovascular formation). This circumstance results in higher number of normal daughter cells. These daughter cells have a better perfusion compared to hypertrophic cells. All these advantages indicate that the present invention improves the short, mid and long-term clinical and histophysiological outcomes of heart disease.
- Another potential advantage of this invention is its use in transplant medicine. The claimed invention may be particularly useful in transplanted patients with chronic graft rejection and diffuse coronary disease. The myocardial revascularization induced by the claimed method would restore the impaired perfusion and function in these patients. These patients are frequently not eligible for conventional revascularization methods (CABG, PTCA). The present invention represents an effective alternative revascularization strategy for these patients.
- An additional potential advantage of the present invention is its use for increasing perfusion in ischemic tissues of patients with diabetes-related micro and macroangiopathy. The claimed method may revert or reduce chronic complications associated to diabetes such as diabetic neuropathy, vasa-vasorum disease, ischemic heart disease, peripheral artery disease and severe limb ischemia, among others. See Schratzberger, et al., J. Clin. Invest., 107:1083-1092 (2001); Rivard, et al., Circulation 96 Suppl I: 175 (1997); Rivard, et al., Am. J. Pathol., 154: 355-363 (1999).
- One of the advantages of the claimed method is its high safety when used along with minimally invasive procedures of percutaneous intramyocardial-transendocardial administration. This administration can be achieved by accessing the left ventricular chamber through a catheter mediated endovascular approach. This type of administration may be assisted by fluoroscopy or an electromechanical mapping of the left ventricle. In this way the morbility and mortality associated to open-chest surgery is significantly diminished.
- In one embodiment of the invention, an inducing agent is administered to a cell, tissue, or subject in need thereof, wherein the inducing agent is a polynucleotide that encodes a VEGF and/or that encodes a polypeptide comprising an active site of the VEGF. As used herein, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. For example, “an” active site, as used above, means one or more active sites. The VEGF polynucleotide may encode a full-length VEGF polypeptide; or it may encode a polypeptide consisting of one or more active sites of VEGF; or it may code a polypeptide consisting essentially of one or more active sites (e.g., sequences of intermediate length, which contain amino acids in addition to those of the active site, wherein the additional amino acids do not affect the basic and novel characteristics (e.g., activity) of the active site). In preferred embodiments, the VEGF is VEGF1-165, whose amino acid sequence is represented by SEQ ID NO: 1.
- A polynucleotide utilized according to the present invention may be, e.g., genomic DNA, cDNA or a messenger RNA. Preferably, the polynucleotide is a cDNA.
- In preferred embodiments, a coding sequence as above is operably linked to an expression control sequence. As used herein, the term “expression control sequence” means a polynucleotide sequence that regulates expression of a polypeptide coded for by a polynucleotide to which it is functionally (“operably”) linked. Expression can be regulated at the level of the mRNA or polypeptide. Thus, the term expression control sequence includes mRNA-related elements and protein-related elements. Such elements include promoters, domains within promoters, upstream elements, enhancers, elements that confer tissue or cell specificity, response elements, ribosome binding sequences, transcriptional terminators, etc. An expression control sequence is operably linked to a nucleotide sequence (e.g., a coding sequence) when the expression control sequence is positioned in such a manner to effect or achieve expression of the coding sequence. For example, when a promoter is operably linked 5′ to a coding sequence, expression of the coding sequence is driven by the promoter. Suitable expression control sequences will be evident to the skilled worker.
- Expression control sequences which can be used in methods of the invention, including both regulatable and constitutive control sequences, are well-known to those of skill in the art. Preferred expression control sequences are derived from highly-expressed genes, e.g., from genes encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), α-factor, acid phosphatase, or heat shock proteins, among others. Such expression control sequences can be selected from any desired gene, e.g using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Particular named eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, adenovirus promoters, LTRs from retrovirus, and mouse metallothionein-1. Selection of an appropriate vector and expression control sequence is well within the level of ordinary skill in the art.
- In another embodiment of the invention, an inducing agent is administered to a cell, tissue, or subject in need thereof, wherein the inducing agent is a VEGF polypeptide, and/or a polypeptide comprising an active site of the VEGF. The VEGF may consist of, consist essentially of, or comprise, an active site of a VEGF. In a preferred embodiment, the VEGF is VEGF1-165, whose amino acid sequence is represented by SEQ ID NO: 1.
- According to the present invention, the inducing agent is administered to a eukaryotic cell or a tissue composed of eukaryotic cells, such as a mammalian cell or a tissue composed of mammalian cells. Preferably, mammalian cells are of porcine and human origin. More preferably, cells are of human origin.
- In one embodiment, the eukaryotic cells are muscle cells. Preferably, the muscle cells are cardiomyocytes, skeletal myoblasts, skeletal striated muscle cells type I and type II, vascular smooth muscle cells or non-vascular smooth muscle cells or myoepithelial cells. More preferably, the muscle cells are cardiomyocytes.
- One embodiment of the invention is the induction of neovascular formation. Preferably, the induced neovascular formation is localized in the site of administration of the inducing agent. More preferably, the site of administration is the myocardium.
- Another embodiment of the invention is the induction of localized angiogenesis, either in vivo or ex vivo. Preferably, angiogenesis is localized at the administration site of the inducing agent. More preferably, the site of administration is the myocardium. In an embodiment of the present invention, angiogenesis is induced in normoperfused tissue, either in vivo, in vitro or ex vivo. In another embodiment of the present invention, angiogenesis is induced in ischemic tissue, either in vivo, in vitro or ex vivo. Preferably, the angiogenesis is induced in hypoperfused myocardial tissue, either in vivo, in vitro or ex vivo. Hypoperfused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, infarcted, non-viable, fibrosed or necrosed. More preferably, the claimed method induces angiogenesis in vivo in hypoperfused myocardial tissue.
- Another embodiment of the invention is the induction of arteriogenesis in vivo, in vitro or ex vivo. Preferably, arteriogenesis is localized at the site of administration. More preferably, the site of administration is the myocardium. In an embodiment of the present invention, arteriogenesis is induced in normoperfused tissue in vivo, in vitro or ex vivo. In another embodiment of the present invention, arteriogenesis is induced in ischemic tissue, in vivo, in vitro or ex vivo. Preferably, the arteriogenesis is induced in hypoperfused myocardial tissue in vivo, in vitro or ex vivo. Hypoperfused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, infarcted, non-viable, fibrosed or necrosed. More preferably, the claimed method induces arteriogenesis in hypoperfused myocardial tissue in vivo.
- Another embodiment of the invention is the induction of vasculogenesis in vivo, in vitro or ex vivo. Preferably, vasculogenesis is localized at the site of administration. More preferably, the site of administration is the myocardium. In an embodiment of the present invention, vasculogenesis is induced in normoperfused tissue in vivo, in vitro or ex vivo. In another embodiment of the present invention, vasculogenesis is induced in ischemic tissue, in vivo, in vitro or ex vivo. Preferably, the vasculogenesis is induced in hypoperfused myocardial tissue, in vivo, in vitro or ex vivo. Hypoperfused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, non-viable, infarcted, necrosed or fibrosed. More preferably, the vasculogenesis is induced in hypoperfused myocardial tissue in vivo.
- Another embodiment of the invention is the induction of lymphangiogenesis in vivo, in vitro or ex vivo. Preferably, lymphangiogenesis is localized at the site of administration. More preferably, the site of administration is the myocardium. In an embodiment of the present invention, lymphangiogenesis is induced in normoperfused tissue, in vivo, in vitro or ex vivo. In another embodiment of the present invention, lymphangiogenesis is induced in ischemic tissue, in vivo, in vitro or ex vivo. Preferably, the lymphangiogenesis is induced in hypoperfused myocardial tissue, in vivo, in vitro or ex vivo. Hypoperfused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, non-viable, infarcted, necrosed or fibrosed. More preferably, the lymphangiogenesis is induced in hypoperfused myocardial tissue in vivo.
- Another embodiment of the invention is the induction of mitosis in vivo, in vitro or ex vivo. Preferably, mitosis is induced locally at the site of administration. More preferably, the site of administration is the myocardium. In an embodiment of the present invention, mitosis is induced in normoperfused tissue, in vivo, in vitro or ex vivo. In another embodiment of the present invention, mitosis is induced in ischemic tissue in vivo, in vitro or ex vivo. Preferably, the mitosis is induced in hypoperfused myocardial tissue, in vivo, in vitro or ex vivo. Hypofused myocardial tissue may be ischemic, viable, hibernated, stunned, preconditioned, injured, non-viable, infarcted, necrosed or fibrosed. More preferably, the mitosis is induced in hypoperfused myocardial tissue in vivo.
- The method also relates to the induction of proliferation of cells in which mitosis has been induced. In preferred embodiments, the mitosis or proliferation is in smooth muscle cells, skeletal muscle cells, or cardiomyocytes. In embodiments of the invention, a smooth muscle cell, skeletal muscle cell or cardiomyocyte in which mitosis or proliferation is induced is in myocardial tissue, skeletal tissue, or muscle tissue. Any type of muscle tissue may be regenerated by methods of the invention.
- Another embodiment of the invention is the induction of tissue regeneration in vivo, in vitro or ex vivo. Preferably, tissue regeneration is induced locally at the site of administration. More preferably, the site of administration is the myocardium. In an embodiment of the present invention, tissue regeneration is induced in normoperfused territories, in vivo, in vitro or ex vivo. In another embodiment of the present invention, tissue regeneration is induced in ischemic territories, in vivo, in vitro or ex vivo. Preferably, the tissue regeneration is induced in hypoperfused myocardial territories, in vivo, in vitro or ex vivo. Hypoperfused myocardial territory may be ischemic, viable, hibernated, stunned, preconditioned, injured, non-viable, infarcted, necrosed or fibrosed. More preferably, the tissue regeneration is induced in hypoperfused myocardial territories in vivo.
- In one embodiment of the present invention, the coding nucleotide sequence is inserted in a vector. In embodiments of the claimed method, the vector is a viral vector such as adenovirus, adeno-associated virus, retrovirus or lentivirus. In another embodiment of the present method, the vector is a plasmid vector. More preferably, the coding sequence inserted in a plasmid vector is pUVEK15.
- Methods for inserting VEGF-coding sequences into vectors are conventional. Some suitable molecular biology methods, for use in these and other aspects of the invention, are provided e.g., in Sambrook, et al. (1989), Molecular Cloning, a Laboratory Manual, Cold Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Ausubel et al. (1995). Current Protocols in Molecular Biology, N.Y., John Wiley & Sons; Davis et al. (1986), Basic Methods in Molecular Biology, Elseveir Sciences Publishing, Inc., New York; Hames et al. (1985), Nucleic Acid Hybridization, IL Press; Dracopoli et al. Current Protocols in Human Genetics, John Wiley & Sons, Inc.; and Coligan et al. Current Protocols in Protein Science, John Wiley & Sons, Inc.
- In another embodiment of the present invention, the nucleotide sequence (e.g., when inserted into a plasmid vector) is transported by (administered to a cell or tissue by) a liposome. In an embodiment of the present invention, the inducing agent is in the form of a pharmaceutical composition. The pharmaceutical composition is administered to the recipient in sufficient doses.
- A pharmaceutical composition used according to the present invention may be administered by intravenous, intracoronary, intra-aortic, intrafemoral, intrapopliteal, intrapedialis, intra-posterior tibialis, intracarotideal and intraradialis routes. The pharmaceutical compound may be also administered by intrapericardial, intra-amniotic sac, intrapleural, intramyocardial-transepicardial, intramyocardial-transendocardial, intra-peripheral muscle, subcutaneous, intraspinal, and intracardiac (intra-atrial and intraventricular) routes. In addition, the inducing agent may be administered by sublingual, inhalatory, oral, rectal, periadventitial, perivascular, topical epicardial, topical epidermal, transdermal, ophthalmic routes or through the conjunctival, nasopharyngeal, bucopharyngeal, laryngopharyngeal, vaginal, colonic, urethral and vesical mucoses. Preferably, the inducing agent is administered by intramyocardial-transepicardial or intramyocardial-transendocardial injections. More preferably, the inducing agent is administered by intramyocardial-transepicardial injection. In one embodiment of parenteral administration, the polynucleotide is administered in vehicles that are microbubbles, and the microbubbles are then disrupted by ultrasound directed at a site of interest, such that the polynucleotide is released at and introduced into the site of interest. The ultrasound treatment permits one to direct the release of the polynucleotide by disruption of the bubbles at the specific site at which the ultrasound is directed.
- In an embodiment of the present invention, the inducing agent is injected perpendicular to the plane of injection area. In another embodiment of the present invention, the inducing agent is injected in parallel to the plane of the area of injection. In another embodiment of the present invention, the inducing agent is injected in an oblique angle in relation to the plane of the injection area. Preferably, the inducing agent is injected at an angle in relation to the plane of the injection area of between about 30 degrees and about 90 degrees. Injections may be homogeneously or heterogeneously distributed in the area of injection.
- In a preferred embodiment, an inducing agent of the invention (polynucleotide or polypeptide) is formulated such that it is administered under slow-release conditions. Any repeated administration formulation or protocol may be used.
- As used herein, “area of injection” includes the tissue territory including the hypoperfused area, the transition area and normoperfused area surrounding the transition area. “Area of injection” may also be defined as normal tissue.
- As used herein, “area under risk” includes the myocardial area irrigated by the circumflex coronary artery.
- As used herein, “arteriogenesis” includes the formation, growth or development of blood vessels with a smooth muscle media layer. Angiogenesis (of any thin-walled vessel that does not contain smooth muscle or a smooth muscle layer, e.g., a capillary vessel) is not encompassed by the term, arteriogenesis.
- As used herein, “induce”, as well as the correlated term “induction”, refer to the action of generating, promoting, forming, regulating, activating, enhancing or accelerating a biological phenomenon. An example of induction is the action of VEGF as a vascular proliferation stimulator.
- As used herein, “inducing agent” includes genomic DNA, cDNA or messenger RNA comprising sequences coding for the VEGF active site. “Inducing agent” also includes any vector containing a nucleotide sequence coding for VEGF. “Inducing agent” is also defined as any polypeptide including the VEGF active site.
- As used herein, “Ki67-positive cardiomyocyte nuclei index” refers to a parameter designed to assess the density of cycling (non-quiescent) cells in a tissue sample. This parameter refers to the number of Ki67 positive cells per 106 cardiomyocyte nuclei in an analyzed area.
- As used herein, “length density index” refers to a parameter calculated for assessing a tissue vascularization. This parameter was designed to quantify vessels arranged in any variety of orientation. The method for calculating this index is known in the art. See Anversa et al., Am. J. Physiol., 260: H1552-H1560 (1991); Adair et al., Am. J. Physiol., 266: H1434-H1438 (1994); Anversa et al., Am. J. Physiol., 267: H1062-H1073 (1994).
- As used herein, “localized” is a response restricted to the area or tissue of interest.
- As used herein, “lymphangiogenesis” includes the formation, growth, development or proliferation of lymphatic vessels.
- As used herein, “mammal” includes a warm blooded vertebrate animal whose progeny feeds with milk secreted by its mammary glands. The term “mammal” includes, but is not limited to, rats, mice, rabbits, dogs, cats, goats, sheep, cows, pigs, primates and humans.
- As used herein, “mitosis” refers to the complete cell division process.
- As used herein, “mitotic index” refers to a parameter designed to assess the density of mitosis in a tissue sample. This parameter refers to the number of mitosis per 106 cardiomyocyte nuclei in an analyzed area.
- As used herein, “skeletal muscle cells” include striated muscle cells of muscle tissue and its precursors and progenitors, including skeletal myoblasts and skeletal muscle satellite cells.
- As used herein, “neovascular formation” includes the creation, growth, development or proliferation of blood vessels. Neovascular proliferation includes arteriogenesis, vasculogenesis and lymphangiogenesis.
- As used herein, “non-paired comparison” refers to the statistical comparison between two different groups of individuals at the same time.
- As used herein, “paired comparison” refers to the statistical comparison of the same group of individuals at different times.
- As used herein, “perfusion improvement index” refers to a parameter designed to assess the overall improvement of left ventricular myocardial perfusion. This index is calculated by the arithmetical difference between the post-treatment stress tolerance index and the pre-treatment stress tolerance index.
- As used herein, a “pharmaceutical composition” of the invention comprises a polynucleotide or polypeptide of the invention and a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier can be, e.g., a solvent, adjuvant or excipient used to administer an inducing agent. Pharmaceutical compositions can comprise any solvent, dispersion media, aqueous, gaseous solutions, antibacterial or antifungal agents, isotonic agents, either absorption delayer or accelerator agents, or similar substances. The use of said substances in the administration of pharmaceutically active compositions is known in the art. Supplementary active ingredients may also be incorporated to the pharmaceutical composition utilized in the present invention. Pharmaceutical compositions can comprise, but are not limited to, inert solid fillings or solvents, sterile aqueous solutions and non-toxic organic solvents. The pharmaceutically acceptable carrier should not react with or reduce in any other manner the efficiency or stability of the inducing agent. Pharmaceutically acceptable carriers include, but are not limited to, water, ethanol, polyethileneglycol, mineral oil, petrolatum, propyleneglycol, lanolin and similar agents. Pharmaceutical compositions for injection include sterile aqueous solutions (when soluble in water) or dispersions and sterile powders for extemporaneous preparation of sterile dispersions or injectable solutions. In all cases, the formulation should be sterile. The formulation may be fluid to facilitate syringe dispensation. The formulation should also be stable under manufacturing and storage conditions and should be preserved against the contaminant action of microorganisms such as bacteria, viruses and fungi.
- As used herein, “post-treatment stress tolerance index” refers to a parameter designed to assess the left ventricular myocardial perfusion in post-treatment conditions. This index is calculated by the arithmetical difference between the post-treatment percentual perfusion value during pharmacological challenge (stress) and the post-treatment percentual perfusion value at rest.
- As used herein, “pre-treatment stress tolerance index” refers to a parameter designed to assess the left ventricular myocardial perfusion in pre-treatment conditions. This index is calculated by the arithmetical difference between the pre-treatment percentual perfusion value during pharmacological challenge (stress) and the pre-treatment percentual perfusion value at rest.
- As used herein, “stress tolerance index” is defined as the arithmetical difference between the percentual perfusion value during pharmacological challenge (stress) and the percentual perfusion value at rest. This index is calculated in post-treatment and pre-treatment situations.
- In preferred embodiments, a method of the invention is carried out in vivo. A sufficient dose of an inducing agent (e.g., a polynucleotide or polypeptide of the invention) is administered to a subject (e.g., a patient) in need of such treatment. A subject “in need of such treatment” can be, e.g., a subject who exhibits signs or symptoms of, or who is suffering from, one of the mentioned conditions. “Signs” of a condition are manifestations assessed by physical examination, EKG or other methods, which are not full-fledged symptoms, but which are recognizable by a physician. For example, the subject may exhibit signs or symptoms of, or may suffer from, myocardial infarction, myocardial ischemia, dilated cardiomyopathy, or hypertrophic cardiomyopathy. Preferably, the subject is a human patient.
- As used herein, a “sufficient dose” is a quantity of the inducing agent, or of a pharmaceutical composition including the inducing agent, which is adequate to attain at least a detectable amount of the specified function. In the context of the present invention, “sufficient dose” refers to a quantity of the inducing agent, or of the pharmaceutical composition including the inducing agent, which is adequate to produce, e.g., one or more of the following results: 1) the induction of arteriogenesis, vasculogenesis, lymphangiogenesis, or myocardiogenesis in eukaryotic cells, 2) the activation of the cell cycle in eukaryotic cells, 3) the induction or acceleration of the mitotic process in eukaryotic cells, e.g. the induction of mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- The sufficient dose for any particular use will vary from subject to subject, depending on, i.a., the species, age, weight and general or clinical condition of the subject, the severity or mechanism of any disorder being treated, the particular agent or vehicle used, the method and scheduling of administration, and the like. A therapeutically sufficient dose can be determined empirically, by conventional procedures known to those of skill in the art. See, e.g., The Pharmacological Basis of Therapeutics, Goodman and Gilman, eds., Macmillan Publishing Co., New York. For example, a sufficient dose can be estimated initially either in cell culture assays or in suitable animal models. The animal model may also be used to determine the appropriate concentration ranges and routes of administration. Such information can then be used to determine useful doses and routes for administration in humans. For example, the doses administered to pigs in the Examples herein can be converted to suitable doses for humans. A sufficient dose can also be selected by analogy to doses for comparable therapeutic agents.
- In general, sufficient doses of VEGF-encoding polynucleotides vary from between about 0.003 to about 0.36 nmoles/kg body weight, depending on the route of administration and other factors as noted above. In a preferred embodiment, the dose is between about 0.01 and about 0.10 nmoles/kg. The nmoles are of polynucleotide encoding an active VEGF polypeptide. As used herein, an “active VEGF polypeptide” is a polypeptide that comprises an active site of a VEGF polypeptide, e.g., full-length VEGF or an active site thereof. The dose may be administered as a single dose, or in multiple doses (e.g., two or more doses) over an empirically determined amount of time. For example, the dose may be administered in two or more events, at different times, such as two or more weeks apart.
- For polynucleotides in adenoviral viral vectors, a sufficient dose may vary between about 2.5×1010 and about 10×1015 pfu (plaque forming units), more preferably between about 3×1010 and about 10×1012 pfu. Comparable doses for other viral vectors will be evident to the skilled worker.
- In general, it is preferable to formulate a polynucleotide of the invention in as concentrated a solution as possible. For example, in one embodiment of the invention, in which the polynucleotide coding sequence is inserted in a vector to form the plasmid, pUVEK15VEGF, a concentration of between about 0.5 to about 4 mg/mL of the plasmid is preferred. Comparable concentrations of other vectors containing the coding sequences, or of polypeptides, will be evident to the skilled worker.
- In general, sufficient doses of VEGF polypeptides vary from between about 0.35 and about 3.5 mg/kg body weight, depending on the route of administration and other factors as noted above. In a preferred embodiment, the dose is between about 0.4 and about 1.4 mg/kg. The mgrams are of active VEGF polypeptide. The dose may be administered as a single dose, or in multiple doses (e.g., two or more doses) over an empirically determined amount of time.
- As used herein, “vasculogenesis” includes the formation, growth, development or proliferation of blood vessels derived from undifferentiated or underdifferentiated cells.
- As used herein, “VEGF” includes any vascular endothelial growth factor. “VEGF” includes, but is not limited to, the VEGF variants A, B, C, D, E and F. See Hamawy, et al., Curr. Opin. Cardiol., 14:515-522 (1999); Neufeld, et al., Prog. Growth Factor Res., 5:89-97 (1994); Olofsson, et al., Proc. Natl. Acad. Sci. USA, 93:2576-2581 (1996); Chilov, et al., J. Biol. Chem., 272:25176-25183 (1997); Olofsson, et al., Curr. Opin. Biotechnol., 10:528-535 (1999). The VEGF A variant includes, but is not limited to, isoforms VEGF1-121, VEGF1-145, VEGF1-167, VEGF1-165, VEGF1-189 and VEGF1-206. The SEQ ID NO. 1 illustrates an example of isoform VEGF1-165. See Tischer, et al., J. Biol. Chem., 266:11947-11954 (1991); Poltorak, et al., J. Biol. Chem., 272:7151-7158 (1997). The term “VEGF” also includes the vascular permeability factor or vasculotropin (VPF). See Keck, et al., Science 246:1309-1312 (1989); Senger, et al., Science, 219:983-985 (1983). VPF is currently known in the art as VEGF A. Other members of the VEGF family can also be used, including placental growth factors PIGF I and II.
- The sequences of suitable VEGFs are readily available, e.g., on the web site of the National Center for Biotechnology Information (NCBI). For example, the loci for human VEGF family members include: VEGF-A-P15692 and NP003367; VEGF-B-NP003368, P49765, AAL79001, AAL79000, AAC50721, AAB06274, and AAH08818; VEGF-C-NP005420, P49767, S69207, AAB36425, and CAA63907; VEGF-D-NP004460, AAH27948, O43915, CAA03942 and BAA24264; VEGF-E-AAQ88857; VEGF-F-2VPFF; PIGF-1-NP002623, AAH07789, AAH07255, AAH01422, P49763, CAA38698 and CAA70463; synthetic constructs of Chain A-1FZVA and Chain B-1FZVB of PIGF-1; and PIGF-2-AAB25832 and AAB30462.
- In preferred embodiments, the VEGF is of human origin. However, VEGF from other species, such as mouse, may also be used.
- Structure/function analysis has identified a number of sequences and amino acid residues of VEGF that are important for its activity. Thus, it would be evident to a skilled worker which residues constitute an “active site” for any particular VEGF activity. A review of some of the structure/function studies follows:
- In the 1980s VEGF was identified independently as vascular permeability factor (VPF) and as vascular endothelial cell-specific growth factor (Senger 1983, Leung 1989). Molecular cloning of the genes encoding these “two” proteins clarified that they are essentially the same protein encoded by a single gene (VEGF gene). Therefore, this protein is referred as VEGF, VEGF/VPF or, sometimes, as VPF.
- X-ray crystallography of a VEGF fragment (residues 8-109) showed that VEGF belongs to the dimeric cysteine-knot growth factor superfamily (Muller 1997). Each monomer is characterized by an intra-chain disulphide bonded knot motif at one end of a four-stranded β sheet (Mc Donald 1993, Murray-Rust 1993, Sun 1995). One subdivision of this super-family is the PDGF (platelet-derived growth factor) gene family, to which VEGF belongs. Among these gene products, 8 cysteine residues are conserved at the same positions, and these products function as a dimer form, since 2 out of 8 cysteines generate intermolecular cross-linking (S—S bonds motif). The other 6 cysteines make 3 intramolecular S—S bonds to form 3 loop structures (Wiesmann 1997). The monomers are held in a “side-by-side” orientation, the two β sheets lying perpendicular to the twofold-symmetry axis. The structure of the VEGF165 heparin-binding region (residues 111-165) has been solved separately by NMR and represents a novel type of heparin-binding domain (Fairbrother 1998).
- All VEGF isoforms are secreted as covalently linked homodimers. Monomers associate initially through hydrophobic interactions and are then stabilized by disulphide bonding between Cys51 of one chain and Cys61 of the other (Pötgens 1994). The signal peptide (
exon 1 and four residues of exon 2), which includes an amphipathic α-helix (residues 12-19) essential for this dimerization, is cleaved off during secretion (Leung 1989, Keck 1989, Siemeister 1998a). A potential N-glycosylation site exists at Asn74 and apparently has no effect on VEGF function but is required for efficient secretion (Peretz 1992, Claffey 1995). And it is important to remark that the secretion process is necessary for at least some of the VEGF biological activities (that depend on VEGF binding to other cells receptors). - Pötgens et al. showed that covalent dimerization of VEGF is essential for effective receptor binding and biological activity (Pötgens 1994). They found that VEGF mutants lacking
cysteine residue 2 or 4 (directly involved in anti-parallel inter-chain disulphide bonds) competed poorly for receptor binding of labeled VEGF and had low biological activity, thus VEGF needs to be a covalent dimer for efficient receptor binding and activation. Furthermore, they also found thatcysteine residue 5 was essential for VEGF dimerization and activity, while the mutant lackingcysteine residue 3 was only mildly affected in its ability to dimerize and had partial biological activity (Pötgens 1994). - Alanine-scanning analysis was performed to identify a positively charged surface in VEGF that mediates receptor binding (Ferrara 1997). Site-directed mutagenesis identified three acidic residues (Asp63, Glu64 and Glu67) in
exon 3, and three basic residues (Arg82, Lys84 and His86) inexon 4 that are essential for binding to VEGF receptors VEGFR-1 and VEGFR-2, respectively. The most significant effect on endothelial cell proliferation was observed with mutations in the 82-86 region (Ferrara 1997, Key 1996a). Three highly flexible loops are clustered at each pole of VEGF at the dimer interface. Loop II contains the VEGFR-1 binding determinants and lies close to loop III of the opposing monomer, which binds to VEGFR-2 (Keyt 1996a). The positioning of these receptor-binding interfaces at each pole of VEGF seems to facilitate receptor dimerisation, which is essential for transphosphorylation and signalling, because mutant dimers that have only one receptor-binding site antagonize native VEGF activity (Siemeister 1998b). - The binding sites to extracellular matrix (ECM) seem to be also important for VEGF action. VEGF isoforms in the ECM constitute a reservoir of growth factor that can be slowly released by exposure to heparin, heparan sulphate and heparinases or more rapidly mobilized by specific proteolytic enzymes such as plasmin and urokinase-type plasminogen activator uPA (Houck 1992, Plouet 1997). These enzymes already contribute to vascular proliferation through ECM depolymerization and, as well as releasing sequestered VEGF from the cell surface and ECM, might also regulate VEGF bioactivity. Keyt et al. found that the removal of the carboxyl-terminal domain of VEGF165 is associated with a significant loss in bioactivity (Keyt 1996b).
- Other relevant issues are the VEGF mediated synthesis or secretion of other growth factors or VEGF interaction with different mitogens to achieve the biological effects. For example VEGF has been shown to upregulate PDGF-BB (Hirschi 1998). Other example is the sequence encoded by exon 6 (not present in VEGF 165) has also been shown to release bioactive bFGF from the ECM and cell surface and thus confers the ability to exert some of VEGF biological effects through bFGF signalling pathways (Jonca 1997)
- A VEGF polypeptide used in methods of the invention may be a fragment or variant of a naturally occurring VEGF polypeptide, provided that the fragment or variant retains an activity of the naturally occurring polypeptide which allows it to achieve a result of a method of the invention. Such a fragment or variant is referred to herein as an “active fragment” or “active variant.”
- An active fragment of a VEGF polypeptide may be of any size that is compatible with the invention, e.g., a polypeptide that is shorter than a naturally occurring VEGF, but that retains an active site of the VEGF.
- An active variant of a VEGF polypeptide may be, e.g., (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue), which substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which additional amino acids are fused to the polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the polypeptide, commonly for the purpose of creating a genetically engineered form of the protein that is susceptible to secretion from a cell, such as a transformed cell. The additional amino acids may be from a heterologous source, or may be endogenous to the natural gene. Examples of all of these types of variants will be evident to a skilled worker. Among the preferred modifications are glycosylation or PEGylation of the protein, and/or amino acid substitutions, which increase bioavailability, biological activity, biological effect, and/or half-life of the protein.
- The invention also encompasses active fragments or variants of naturally occurring polynucleotides encoding VEGF. Such an active fragment or variant retains an activity of the naturally occurring polynucleotide which allows it to achieve a result of a method of the invention. Suitable variant polynucleotides include polynucleotides that encode any of the fragments or variant polypeptides noted above. Also included are variants which reflect the degeneracy of the genetic code, or which are naturally occurring or artificially generated allelic variants of a wild type polynucleotide.
- Active variant polynucleotides of the invention may take a variety of forms, including, e.g., naturally or non-naturally occurring polymorphisms, including single nucleotide polymorphisms (SNPs), allelic variants, and mutants. They may comprise, e.g., one or more additions, insertions, deletions, substitutions, transitions, transversions, inversions, chromosomal translocations, variants resulting from alternative splicing events, or the like, or any combinations thereof.
- Other types of active variants will be evident to one of skill in the art. For example, the nucleotides of a polynucleotide can be joined via various known linkages, e.g., ester, sulfamate, sulfamide, phosphorothioate, phosphoramidate, methylphosphonate, carbamate, etc., depending on the desired purpose, e.g., improved in vivo stability, etc. See, e.g., U.S. Pat. No. 5,378,825. Any desired nucleotide or nucleotide analog can be incorporated, e.g., 6-mercaptoguanine, 8-oxo-guanine, etc.
- Active variant polynucleotides or polypeptides of the invention include polynucleotides or polypeptides having sequences that exhibit a percent identity to one of the sequences noted above of at least about 70%, preferably at least about 80%, more preferably at least about 90% or 95%, or 98%, provided that the polypeptide or polypeptide exhibits the desired function noted above.
- Methods of determining the degree of identity of two sequences are conventional. The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data,
Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). Among suitable mathematical algorithms that can be used are those described in Karlin et al. (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877; those of the GAP program I the GCG software package (Devereux et al. (1984) Nucleic Acids Res. 12 (1):387); and the algorithm of Myers and Miller, CABIOS (1989). - Alternatively, a suitable variant polynucleotide is one that hybridizes under standard conditions of high stringency to a naturally occurring VEGF-encoding polynucleotide.
- As used herein, “underdifferentiated cells” are cells with a characteristic phenotypic profile but with the capacity of originating cells with a different phenotypic profile. “Underdifferentiated cells” include, but are not limited to, fibroblasts, myoblasts, osteoblasts, endothelial precursor cells, skeletal muscle satellite cells, neural tissue glial cells, stem cells, cardiac progenitor cells, and cardiac precursor cells.
- In one embodiment, the present invention employs a plasmid called pUVEK15 of approximately 3086 base pairs (bp). The pUVEK15 plasmid is characterized by including a cytomegalovirus (CMV) promoter, a chimeric intron, a DNA fragment containing a vascular endothelial growth factor (VEGF)-encoding sequence and a DNA sequence of approximately 1290 bp, which confers resistance to kanamicyn. The VEGF nucleotide sequence present in the pUVEK15 plasmid encodes the human 165 amino acid VEGF polypeptide represented by SEQ ID NO: 1. The pUVEK15 plasmid is deposited under the access number DSM 13833 at DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen, Federal Republic of Germany.
- Another embodiment of the invention is a kit suitable for carrying out a method of the invention. For example, the kit may comprise (a) a polynucleotide that encodes a vascular endothelial growth factor (VEGF), or that encodes a polypeptide comprising an active site of the VEGF, wherein the coding sequence is operably linked to an expression control sequence, and (b) a label or instructions indicating a use for the polynucleotide to induce arteriogenesis, lymphangiogenesis, vasculogenesis, myocardiogenesis, or mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- In another embodiment, the kit comprises a dose of a polynucleotide that encodes a vascular endothelial growth factor (VEGF), or that encodes a polypeptide encoding an active site of the VEGF, wherein the coding sequence is operably linked to an expression control sequence, the dose being sufficient to induce arteriogenesis, lymphangiogenesis, vasculogenesis, myocardiogenesis, or mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- In another embodiment, the kit comprises (a) a VEGF polypeptide, or a polypeptide the comprises an active site of the VEGF, and (b) a label or instructions indicating a use for the polypeptide to induce arteriogenesis, lymphangiogenesis, vasculogenesis, or myocardiogenesis, or mitosis or proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- In another embodiment, the kit comprises a dose of a VEGf polypeptide, or a polypeptide that comprises an active site of the VEGF, the dose being sufficient to induce arteriogenesis, lymphangiogenesis, vasculogenesis, myocardiogenesis, or mitosis or to induce proliferation of a smooth muscle cell, a skeletal muscle cell, or a cardiomyocyte.
- The reagents of a kit of the invention may be in containers in which the reagents are stable, e.g., in lyophilized form or stabilized liquids. The reagents may also be in single use form, e.g., in single dosage form.
- Having described the invention in general terms, it will be more easily understood by reference to the following examples which are presented as an illustration and are not intended to limit the present invention, save when specifically indicated.
- Eighty Landrace pigs weighing approximately 25 kg (approx. 3 months of age) were submitted to the following protocol: 1) each individual underwent clinical and laboratory assessment of good health; 2) a sterile thoracotomy was performed at the 4th left intercostal space under general anesthesia (induction:
thiopental sodium 20 mg/kg; maintenance: 2% enflurane) and the circumflex coronary artery was dissected free from surrounding tissue at its proximal portion; 3) an Ameroid constrictor was placed embracing the origin of the circumflex coronary artery; and 4) the thoracotomy was repaired. - Three weeks after the first surgery indicated in the previous example, basal (pre-treatment) studies were performed on the individuals. The studies were conducted under sedation with sufficient doses of intravenous sodium thiopental and under electrocardiographic control. Basal myocardial perfusion studies were performed on each individual. The left ventricular perfusion was quantified by single photon emission computed tomography (SPECT) utilizing an ADAC Vertex Dual Detector Camera System (ADAC Healthcare Information Systems Inc., USA). Sestamibi marked with 99mTc was utilized as contrast.
- The studies were performed at rest and under pharmacological challenge with progressive doses of intravenous dobutamine. The dobutamine infusion was interrupted when heart rate was at least a 50% above the basal (rest) values.
- Individuals fulfilling the inclusion criterium (hipoperfusion in a territory consistent with the circumflex coronary artery bed) were selected. Of the subjects considered, twenty six individuals developed chronic myocardial ischemia and were selected as satisfying the inclusion criterium.
- The twenty six individuals of the previous example were distributed in two groups: A first group consisting of 16 individuals (Group I) and a second group consisting of 10 individuals (Group II). Group I individuals were utilized to perform histopathological and physiological studies. Group II individuals were utilized to assess the presence and expression of the VEGF plasmid.
- Group I individuals were randomized into two subgroups (Group I-T and Group I-P) with the same number of members (4 females and 4 males per subgroup). The treated group was designated Group I-T. The placebo group was designated Group I-P.
- Group II individuals were randomized into two subgroups (Group II-T and Group II-P). Eight individuals were allocated to Group II-T. Two individuals were allocated to Group II-P. The treated group was designated Group II-T. The placebo group was designated Group II-P.
- A sterile reopening of the previous thoracotomy was performed each individual of both Group I and Group II (reoperation) under general anesthesia (induction:
sodium thiopental 20 mg/kg, maintenance: 2% enflurane). - Each individual from Groups I-T and II-T received 10 injections of a solution containing pUVEK15 plasmid encoding for vascular endothelial growth factor (1.9 mg of pUVEK15 in 1 mL of saline). Each injection contained 200 μl of the plasmid solution. Each individual received a total dose of 3.8 mg of the pUVEK15 plasmid.
- Each individual from Groups I-P and II-P received 10 injections of a solution containing pUVEK15−VEGF plasmid without the encoding region for the vascular endothelial growth factor (1.9 mg of pUVEK15−VEGF in 1 mL of saline). Each injection contained 200 μl of the plasmid solution. Each individual received a total dose of 3.8 mg of the pUVEK15−VEGF plasmid.
- Each aliquot was injected intramyocardically, starting from the normoperfused left anterior descending artery territory (2-3 aliquots) and spanning the basal and mid zones of the anterolateral left ventricular wall. The area of injection included the hypoperfused zone, the transition zone and the normoperfused tissue immediately surrounding the transition zone. The injections were administered at a 45 degree angle in relation to the plane of the myocardium area, avoiding intraventricular administration of the solution. The injections were homogeneously distributed in the area of injection. The thoracotomy was repaired in each individual after administration.
- 1. Histopathological and Physiological Studies
- Five weeks after the second surgery (reoperation), post-treatment studies were performed on Group I individuals. The individual were sedated with sufficient doses of intravenous sodium thiopental. The left ventricular perfusion was assessed for each individual following the protocol described in example 2.
- The individuals were euthanized using an overdose of thiopental sodium followed by a lethal injection of potassium chloride. The heart, kidneys, liver, lungs, skeletal muscle, eyes and gonads were excised for histopathological assessment, including neoangiogenesis and mitosis determinations. The histopathological studies were performed in myocardial and peripheral tissues according to the following protocols.
- For myocardial studies, the pericardium, adherent fat, atria and right ventricular free wall were removed. In each animal, the left circumflex coronary artery was examined at the site of the Ameroid to assess for occlusion. Subsequently, the left ventricle, including the septum, was cut transversally at one third of the distance between the apex and the mitral annulus. Subsequently, a slice of 5 mm in thickness was cut from the distal end of the upper third, rinsed in Ringer solution and fixed flat for 48 hours in 10% formaldehyde buffered solution. This slice was chosen in order to: 1) limit the analysis to areas clearly perfused by only one vessel (left anterior descending coronary artery, left circumflex coronary artery or right coronary artery), without mixed supply from more than one artery, and 2) match the histology with the perfusion data.
- After fixation, the slice was divided into 6 blocks, corresponding, from 1 to 6 to: the posterior half of the septum, the posterior wall, the posterolateral wall, the lateral wall, the anterior wall and the anterior half of the septum. These 6 blocks were embedded in Histowax™, and sections of 5 μm thickness were mounted on slides previously wetted in a 0.01% polylysine aqueous solution (Sigma Chemical Co., U.S.A.) and dried at 37° C. The sections were stained with hematoxylin-eosin. Identification of intramyocardial vessels was made under optical microscopy. The endothelium was identified by immunohistochemistry employing the biotin streptavidin technique and a monoconal antibody against von Willebrand factor. The smooth muscle layer was identified by immunohistochemistry to assess arteriogenesis. A monoclonal antibody against alpha-actin (Biogenex Labs. Inc., U.S.A.) was utilized to this purpose.
- For quantitative analysis of collateral circulation a digital analysis system was employed (Vidas Kontron, Germany). The analysis focused on arteriole-sized vessels (ranging from 8 to 50 μm of maximum diameter) with smooth muscle layer. The morphometric study was performed on the total slice area. The numerical and length density of collateral vessels were determined. The numerical density was calculated as number of collaterals (n) per square millimeter (n/mm2). The collateral length density (Lc) was calculated with the methodology known in the art for vessels arranged in any variety of orientation. See Anversa et al., Am. J. Physiol., 260: H1552-H1560 (1991); Adair et al., Am. J. Physiol., 266: H1434-H1438 (1994); Anversa et al., Am. J. Physiol., 267: H1062-H1073 (1994). For n vessels encountered in an area A, Lc, expressed in millimeters per unit volume of myocardium (mm/mm3), is equal to the sum of the ratio R of the long to the short axis of each vessel.
-
- In addition, the length density for intramyocardial vessels ranging from 8 to 30 μm of maximum diameter was also analyzed.
- Both indexes (numerical and length density) were averaged for both the ischemic (posterolateral, lateral, and anterolateral walls) and the non-ischemic (septum, anterior and posterior walls) zones.
- To evidence cardiomyocytes undergoing cell cycle and mitosis, two double immunohistochemical techniques were used in the tissue sections of the Group I individuals. The following protocols were performed:
-
- (a) Tissue sections were incubated with a monoclonal antibody against the Ki67 antigen (Novocastra Labs., U.K.). The Ki67 is a protein expressed exclusively during the cell cycle which identifies nuclei undergoing the G1, S and G2-M phases and decorates condensed mitotic chromosomes. The Ki67 expression pattern is not affected by DNA damage or by apoptosis. See Brown et al., Histopathology, 17:489-503 (1990); Gerdes et al., J. Immunol., 133:1710-1715 (1984); Ross et al., J. Clin. Pathol., 48:M113-117 (1995). Subsequently, the sections were post-treated with a biotinilated anti-mouse immunoglobulin antiserum (Biogenex, USA), followed by peroxidase-labeled avidin and revealed with AEC as chromogen. Afterwards, the sections were incubated with an anti-sarcomeric α-actin antibody (Dako, USA) to identify striated muscular cells. Subsequently, the sections were post-treated with the biotinilated antiserum followed by alkaline phosphatase-labeled streptavidin (Biogenex, USA) and Fast Red as chromogen.
- (b) Tissue sections were incubated with a monoclonal antibody against the Ki67 antigen (Novocastra Labs., U.K.). The sections were post-treated with biotinilated antibodies, and revealed with fluorescein-labeled streptavidin (Vector, USA). Afterwards, the sections were incubated with rhodamine-labeled phalloidin (Sigma, USA), a protein binding F-actin, in order to identify striated muscular cells.
- The tissue sections treated with enzyme-labeled avidin were examined with light microscopy with Nomarski optics. The tissue sections stained with fluorescent reactants were examined with confocal microscopy (Zeiss, Federal Republic of Germany).
- Cardiomyocyte nuclei (CMN) density (CMN per mm2) was determined by counting the number of CMN in longitudinally oriented cells containing sarcomeric α-actin in a 5 mm2 area of the lateral wall mesocardium. The number of Ki67-positive CMN and the number of cardiomyocyte mitosis were determined in the whole ventricular tissue section area of each individual (total scanned area, TSA). The TSA of the Group I individuals averaged 1345.7±289.7 mm2.
- The Ki67-positive CMN index was calculated as: [Ki67-positive nuclei/(TSA×CMN density)]×106. The mitotic index was calculated as: [mitosis/(TSA×CMN density)]×106. Data was expressed as number of Ki67-positive nuclei and number of cardiomyocyte mitosis per 106 CMN. Both indexes were averaged for both the ischemic (posterolateral, lateral, and anterolateral walls) and the non-ischemic (septum, anterior and posterior walls) zones for each individual.
- For peripheral studies, the tissues were fixed in 10% formaldehyde buffered solution, sectioned in blocks and included in Histowax™ paraffin. Tissue slices of 5 μm thickness were obtained from the blocks and stained with hematoxylin-eosin. An histopathological assessment for possible toxic effects in remote tissues was made by optical microscopy.
- 2. Presence and Transcription of VEGF Plasmid in Myocardial Tissue
- After the second surgery (reoperation) the Group II individuals were euthanized using an overdose of thiopental sodium followed by a lethal injection of potassium chloride, according to the following chronogram: 2 individuals from Group II-T after 3 days of reoperation, 2 individuals from Group II-T and 2 individuals from Group II-P after 10 days of reoperation, 2 individuals of Group II-T after 16 days of reoperation and 2 individuals from Group II-T after 35 days of reoperation. Necropsies were performed in each euthanized individual. Myocardial tissue of the area under risk was obtained from each individual.
- The molecular assessment was performed to detect the presence of plasmidic DNA and its transcript (mRNA). The presence of plasmidic DNA and mRNA were determined by the polymerase chain reaction (PCR) and the reverse transcriptase-polymerase chain reaction (RT-PCR) techniques, respectively. See Mullis, et al., Meth. Enzymol., 55:335-350 (1987); Belyavsky, et al., Nucleic. Acids Res., 17:2919-2932 (1989).
- Total RNA was isolated from tissue samples using Trizol reagent (Gibco BRL Life Technologies, USA) and treated with DNAse I (Promega, USA). RNA was quantified by spectrophotometry at A260/280 nm. One μg of total RNA was reverse transcripted using random hexamers (PerkinElmer, USA). Human VEGF was then amplified from cDNA using Taq polymerase (PerkinElmer, USA) with the
oligonucleotide primers 5′CAACATCACCATGCAGATT3′ and 5′GCAGGAATTCATCGATTCA3′ at cycling conditions of 95° C. for 15 sec, 52° C. for 30 sec and 65° C. for 30 sec, for 35 cycles. Non-competitive amplification of constitutive GAPDH was used to demonstrate the presence of intact mRNA in each total RNA sample. RT-PCR was performed in myocardial tissue of Group II-T individuals without reverse transcriptase to assess the possible contamination with plasmidic DNA or genomic DNA. The results of this control reaction were negative, excluding the possibility of contamination. - 1. Histopathological and Physiological Analysis
- The perfusion and histopathological studies showed vascular formation and growth in myocardial tissue of treated individuals. The histopathological study also revealed the induction of mitosis in cardiomyocytes, endothelial cells and smooth muscle cells of Group I-T individuals.
- The stress tolerance index and perfusion improvement index were determined for each myocardial segment of all Group I individuals in order to assess left ventricular perfusion. Mean values of both indexes were calculated for the area under risk and the surrounding tissue for each individual. Finally, the mean values for each group were calculated.
- The analysis of the perfusion in the area under risk revealed that:
-
- (a) Group I-P: absence of statistically significant differences between the pre-treatment and post-treatment stress tolerance indexes (intra-group paired comparison). This result indicates that the perfusion and stress tolerance did not improve in the Group I-P individuals after the placebo treatment.
- (b) Group I-T: presence of statistically significant differences between the pre-treatment and post-treatment stress tolerance indexes (intra-group paired comparison). The post-treatment mean value was significantly higher than the pre-treatment mean value. This result indicates that the perfusion and stress tolerance improved significantly in the Group I-T individuals after pUVEK15 treatment.
- (c) Pre-treatment stress tolerance indexes: absence of statistically significant differences between the pretreatment mean values of Group I-T individuals and Group I-P individuals (inter-group non-paired comparison). This result demonstrates that perfusion was homogenous for both subgroups before treatment.
- (d) Post-treatment stress tolerance indexes: presence of statistically significant differences between the post-treatment mean values of Group I-T individuals and Group I-P individuals (inter-group non-paired comparison). The post-treatment mean value of Group I-T was significantly higher than the post-treatment mean value of Group I-P. This result indicates that the perfusion and stress tolerance of Group I-T individuals were higher than the Group I-P individuals after treatment with pUVEK15.
- (e) Perfusion improvement indexes: presence of statistically significant differences between both subgroups. The mean value for Group I-T individuals was significantly higher than the mean value for Group I-P individuals (inter-group non-paired comparison). This result indicates that the perfusion of the Group I-T individuals improved noticeably in comparison to the perfusion of the Group I-P individuals. Moreover, the perfusion in Group I-P individuals showed a trend to deterioration.
- The physiological study demonstrated an overall improvement in the perfusion and stress tolerance of Group I-T individuals when treated with pUVEK15. See Tables 1 and 2;
FIGS. 1 and 2 . - The histopathological study showed statistically significant differences in numerical density, length density and mitotic index between both subgroups (inter-group non-paired comparisons). The Group I-T individuals presented higher mean values for these indexes when compared to Group I-P individuals. See Tables 3, 4, 5 and 6;
FIGS. 3 , 4, 5, 6, 8, 9, 10, 11, 12 and 13. - These results confirmed neovascular formation in vivo of myocardial tissue in the individuals treated with pUVEK15. Vascular formation and growth implies an increase in the number of cells taking part of neovessels (endothelial and vascular smooth muscle cells). See
FIGS. 12 and 13 . The administration of the inducing agent enhanced mitosis of vascular cells in the individuals treated. The subgroup of individuals treated with pUVEK15 also showed a proportion of cardiomyocytes in mitotic process more than 5 times higher than the non-treated subgroup. SeeFIGS. 6 , 8, 9, 10 and 11; Table 6. - Angiogenesis or other adverse side effects were not detected in the peripheral tissues of the individuals treated with pUVEK15.
- 2. Presence and Transcription of the VEGF Plasmid
- Molecular studies showed presence of plasmid DNA in injected myocardial tissue of all Group II individuals (PCR technique). Plasmid DNA encoding for VEGF was found in the injected myocardial tissue of the Group II-T individuals. Placebo plasmid DNA was found in the injected myocardial tissue of the Group II-P individuals.
- A positive RT-PCR product for pUVEK15 was detected in the injected myocardial tissue of the Group II-T individuals at 3 (n=1/2), 10 (n=2/2) and 16 (n=1/2) days post-treatment. See
FIG. 7 . No RT-PCR product for pUVEK15 was detected in inject myocardial tissue at 35 days (n=2) after pUVEK15 injection and in myocardial tissue receiving plasmid devoid of gene (Group II-P). - A transcription curve (presence of mRNA) showing a peak by
day 10 post-injection of pUVEK15 was obtained in the Group II-T individuals. SeeFIG. 7 . Presence of mRNA in group II-P was negative. -
TABLE 1 Stress Tolerance Index Pre-treatment Post-treatment (1) (2) P value Mean σ Mean σ (1) vs (2) Group I-P −0.6 2.2 −1.2 1.3 0.9 Group I-T −3.1 2.2 3.8 1.3 <0.01 P value 0.42 <0.02 I-T vs I-P -
TABLE 2 Perfusion Improvement Index Mean σ Group I-P −0.6 2.6 Group I-T 6.9 2.6 P value 0.058 I-T vs I-P -
TABLE 3 Numerical Density Index (8-50 μm) Mean σ Group I-T 1 0.1 Group I-P 0.6 0.1 P Value <0.02 I-T vs I-P -
TABLE 4 Length Density Index (8-50 μm) Mean σ Group I-T 2.4 0.4 Group I-P 1.3 0.3 P Value <0.02 I-T vs I-P -
TABLE 5 Length Density Index (8-30 μm) Mean σ Group I-T 1 0.1 Group I-P 0.6 0.1 P Value <0.02 I-T vs I-P -
TABLE 6 Mitotic Index Mean σ Group I-T 187.1 49.6 Group I-P 35.4 9.1 P Value <0.04 I-T vs I-P - Plasmids as above have also been introduced into sheep suffering from acute myocardial infarction, and myocardiogenesis has been observed. The methods in this study were adapted from the methods used in the preceding Examples.
- The following references are referred to in abbreviated bibliographic form above.
- Senger D R, Galli S J, Dvorak A M, Perruzzi C A, Harvey V S, Dvorak H F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983 Feb. 25; 219(4587):983-5.
- Leung D W, Cachianes G, Kuang W J, Goeddel D V, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989 Dec. 8; 246(4935): 1306-9.
- Vincenti V, Cassano C, Rocchi M, Persico G. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation. 1996 Apr. 15; 93(8):1493-5.
- Houck K A, Ferrara N, Winer J, Cachianes G, Li B, Leung D W. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991 December; 5(12):1806-14.
- Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes J C, Abraham J A. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991 Jun. 25; 266(18):11947-54.
- Robinson C J, Stringer S E. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001 March; 114(Pt 5):853-65.
- Muller Y A, Christinger H W, Keyt B A, de Vos A M. The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding. Structure. 1997 Oct. 15; 5(10):1325-38.
- McDonald N Q, Hendrickson W A. A structural superfamily of growth factors containing a cystine knot motif. Cell. 1993 May 7; 73(3):421-4.
- Murray-Rust J, McDonald N Q, Blundell T L, Hosang M, Oefner C, Winkler F, Bradshaw R A. Topological similarities in TGF-
beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure. 1993 Oct. 15; 1(2):153-9. - Sun P D, Davies D R. The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct. 1995; 24:269-91.
- Wiesmann C, Fuh G, Christinger H W, Eigenbrot C, Wells J A, de Vos A M. Crystal structure at 1.7 A resolution of VEGF in complex with
domain 2 of the Flt-1 receptor. Cell. 1997 Nov. 28; 91(5):695-704. - Fairbrother W J, Champe M A, Christinger H W, Keyt B A, Starovasnik M A. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure. 1998 May 15; 6(5):637-48.
- Pötgens A J, Lubsen N H, van Altena M C, Vermeulen R, Bakker A, Schoenmakers J G, Ruiter D J, de Waal R M. Covalent dimerization of vascular permeability factor/vascular endothelial growth factor is essential for its biological activity. Evidence from Cys to Ser mutations. J Biol Chem. 1994 Dec. 30; 269(52):32879-85.
- Keck P J, Hauser S D, Krivi G, Sanzo K, Warren T, Feder J, Connolly D T. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989 Dec. 8; 246(4935):1309-12.
- Siemeister G (a), Marme D, Martiny-Baron G. The alpha-helical domain near the amino terminus is essential for dimerization of vascular endothelial growth factor. J Biol Chem. 1998 May 1; 273(18):11115-20.
- Peretz D, Gitay-Goren H, Safran M, Kimmel N, Gospodarowicz D, Neufeld G. Glycosylation of vascular endothelial growth factor is not required for its mitogenic activity. Biochem Biophys Res Commun. 1992 Feb. 14; 182(3):1340-7.
- Claffey K P, Senger D R, Spiegelman B M. Structural requirements for dimerization, glycosylation, secretion, and biological function of VPF/VEGF. Biochim Biophys Acta. 1995 Jan. 5; 1246(1):1-9.
- Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997 February; 18(1):4-25.
- Keyt B A, Nguyen H V, Berleau L T, Duarte C M, Park J, Chen H, Ferrara N. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J Biol Chem. 1996 Mar. 8; 271(10):5638-46.
- Siemeister G (b), Schirner M, Reusch P, Barleon B, Marme D, Martiny-Baron G. An antagonistic vascular endothelial growth factor (VEGF) variant inhibits VEGF-stimulated receptor autophosphorylation and proliferation of human endothelial cells. Proc Natl Acad Sci USA. 1998 Apr. 14; 95(8):4625-9.
- Houck K A, Leung D W, Rowland A M, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem. 1992 Dec. 25; 267(36):26031-7.
- Plouet J, Moro F, Bertagnolli S, Coldeboeuf N, Mazarguil H, Clamens S, Bayard F. Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J Biol Chem. 1997 May 16; 272(20):13390-6.
- Keyt B A (b), Berleau L T, Nguyen H V, Chen H, Heinsohn H, Vandlen R, Ferrara N. The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem. 1996 Mar. 29; 271(13):7788-95.
- Hirschi K K, Rohovski S A, D'Amore P A. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell. Biol. 1998; 141:805-814. [Erratum in J. Cell. Biol. 1998; 141:1287].
- Jonca F, Ortega N, Gleizes P E, Bertrand N, Plouet J. Cell release of bioactive
fibroblast growth factor 2 by exon 6-encoded sequence of vascular endothelial growth factor. J Biol Chem. 1997 Sep. 26; 272(39):24203-9. - Plasmid pUVEK15 was deposited on Nov. 13, 2000, under access number DSM 13833 at the DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen, Mascheroder Weg 1B, D-38124 Braunschweig, Federal Republic of Germany.
- The present invention has been described in some detail and exemplified to facilitate its understanding and reproducibility. Certain changes in the form and detail can be made by anyone skilled in the art without departing from the true object and scope of the claims of the present invention. The disclosure of all applications, patents and publication cited above and in the figures are hereby incorporated by reference in their entirety.
Claims (5)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/487,398 US20090275645A1 (en) | 2001-05-15 | 2009-06-18 | Method to induce neovascular formation and tissue regeneration |
| US14/176,616 US20140341972A1 (en) | 2001-05-15 | 2014-02-10 | Method to induce neovascular formation and tissue regeneration |
| US15/173,867 US20160346352A1 (en) | 2001-05-15 | 2016-06-06 | Method to induce neovascular formation and tissue regeneration |
| US15/490,198 US20170252405A1 (en) | 2001-05-15 | 2017-04-18 | Method to induce neovascular formation and tissue regeneration |
| US15/945,982 US20180296641A1 (en) | 2001-05-15 | 2018-04-05 | Method to induce neovascular formation and tissue regeneration |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| ARP010102313A AR027161A1 (en) | 2001-05-15 | 2001-05-15 | METHOD FOR INDUCTING NEOVASCULAR PROLIFERATION AND TISSULAR REGENERATION |
| PCT/US2002/014508 WO2002091995A2 (en) | 2001-05-15 | 2002-05-13 | Method to induce neovascular formation and tissue regeneration |
| US10/714,449 US7563777B2 (en) | 2001-05-15 | 2003-11-17 | Method to induce neovascular formation and tissue regeneration |
| US12/487,398 US20090275645A1 (en) | 2001-05-15 | 2009-06-18 | Method to induce neovascular formation and tissue regeneration |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/714,449 Continuation US7563777B2 (en) | 2001-05-15 | 2003-11-17 | Method to induce neovascular formation and tissue regeneration |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/176,616 Continuation US20140341972A1 (en) | 2001-05-15 | 2014-02-10 | Method to induce neovascular formation and tissue regeneration |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090275645A1 true US20090275645A1 (en) | 2009-11-05 |
Family
ID=36129783
Family Applications (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/714,449 Expired - Lifetime US7563777B2 (en) | 2001-05-15 | 2003-11-17 | Method to induce neovascular formation and tissue regeneration |
| US12/487,398 Abandoned US20090275645A1 (en) | 2001-05-15 | 2009-06-18 | Method to induce neovascular formation and tissue regeneration |
| US14/176,616 Abandoned US20140341972A1 (en) | 2001-05-15 | 2014-02-10 | Method to induce neovascular formation and tissue regeneration |
| US15/173,867 Abandoned US20160346352A1 (en) | 2001-05-15 | 2016-06-06 | Method to induce neovascular formation and tissue regeneration |
| US15/490,198 Abandoned US20170252405A1 (en) | 2001-05-15 | 2017-04-18 | Method to induce neovascular formation and tissue regeneration |
| US15/945,982 Abandoned US20180296641A1 (en) | 2001-05-15 | 2018-04-05 | Method to induce neovascular formation and tissue regeneration |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/714,449 Expired - Lifetime US7563777B2 (en) | 2001-05-15 | 2003-11-17 | Method to induce neovascular formation and tissue regeneration |
Family Applications After (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/176,616 Abandoned US20140341972A1 (en) | 2001-05-15 | 2014-02-10 | Method to induce neovascular formation and tissue regeneration |
| US15/173,867 Abandoned US20160346352A1 (en) | 2001-05-15 | 2016-06-06 | Method to induce neovascular formation and tissue regeneration |
| US15/490,198 Abandoned US20170252405A1 (en) | 2001-05-15 | 2017-04-18 | Method to induce neovascular formation and tissue regeneration |
| US15/945,982 Abandoned US20180296641A1 (en) | 2001-05-15 | 2018-04-05 | Method to induce neovascular formation and tissue regeneration |
Country Status (9)
| Country | Link |
|---|---|
| US (6) | US7563777B2 (en) |
| EP (2) | EP1441682B1 (en) |
| AR (1) | AR027161A1 (en) |
| AU (1) | AU2002259162A1 (en) |
| BR (1) | BRPI0209824B8 (en) |
| CA (1) | CA2447343A1 (en) |
| ES (1) | ES2566344T3 (en) |
| MX (1) | MXPA03010532A (en) |
| WO (1) | WO2002091995A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10130288B2 (en) | 2013-03-14 | 2018-11-20 | Cell and Molecular Tissue Engineering, LLC | Coated sensors, and corresponding systems and methods |
| US10405961B2 (en) | 2013-03-14 | 2019-09-10 | Cell and Molecular Tissue Engineering, LLC | Coated surgical mesh, and corresponding systems and methods |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2520044T3 (en) | 2007-03-30 | 2014-11-11 | The Cleveland Clinic Foundation | SDF-1 for use in the treatment of ischemic peripheral vascular disorders |
| US20100272679A1 (en) | 2007-12-14 | 2010-10-28 | Penn Marc S | Compositions and methods of promoting wound healing |
| JP5856059B2 (en) | 2009-08-28 | 2016-02-09 | ザ クリーブランド クリニック ファウンデーション | SDF-1 delivery for treating ischemic tissue |
| US20140065110A1 (en) | 2012-08-31 | 2014-03-06 | The Regents Of The University Of California | Genetically modified msc and therapeutic methods |
| US9663564B2 (en) | 2013-03-15 | 2017-05-30 | The Regents Of The University Of California | Vectors and methods to treat ischemia |
| US20170100029A1 (en) * | 2015-10-13 | 2017-04-13 | The University Of North Carolina At Chapel Hill | Compositions and Methods for Analyzing Collateral Density |
| AU2019210204B2 (en) | 2018-01-18 | 2024-05-16 | EndoProtech, Inc. | Treating microvascular dysfunction |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5219739A (en) * | 1989-07-27 | 1993-06-15 | Scios Nova Inc. | DNA sequences encoding bVEGF120 and hVEGF121 and methods for the production of bovine and human vascular endothelial cell growth factors, bVEGF120 and hVEGF121 |
| US6040157A (en) * | 1994-03-08 | 2000-03-21 | Human Genome Sciences, Inc. | Vascular endothelial growth factor 2 |
| US6440945B1 (en) * | 1999-05-27 | 2002-08-27 | Instituto Dermopatico Dell'immacolata | Method of inducing angiogenesis in nonis chemic skeletal muscle |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20000070572A (en) * | 1997-01-29 | 2000-11-25 | 해우슬러 에이치 월터, 리처드 에스. 카훈 | Multiple site delivery of adenoviral vector for the induction of angiogenesis |
| WO1999033485A1 (en) * | 1997-12-24 | 1999-07-08 | Ludwig Institute For Cancer Research | Expression vectors and cell lines expressing vascular endothelial growth factor d, and method of treating melanomas |
| US20010056073A1 (en) * | 1998-07-21 | 2001-12-27 | Ascher Shmulewitz | Gene therapy method for revascularizing ischemic tissue |
| WO2001013031A2 (en) * | 1999-08-13 | 2001-02-22 | Chiron Corporation | Dose of an angiogenic factor and method of administering to improve myocardial blood flow |
-
2001
- 2001-05-15 AR ARP010102313A patent/AR027161A1/en not_active Application Discontinuation
-
2002
- 2002-05-13 WO PCT/US2002/014508 patent/WO2002091995A2/en not_active Ceased
- 2002-05-13 AU AU2002259162A patent/AU2002259162A1/en not_active Abandoned
- 2002-05-13 EP EP02729151.7A patent/EP1441682B1/en not_active Expired - Lifetime
- 2002-05-13 MX MXPA03010532A patent/MXPA03010532A/en active IP Right Grant
- 2002-05-13 CA CA002447343A patent/CA2447343A1/en not_active Abandoned
- 2002-05-13 ES ES02729151.7T patent/ES2566344T3/en not_active Expired - Lifetime
- 2002-05-13 EP EP10011850A patent/EP2308502A1/en not_active Withdrawn
- 2002-05-13 BR BRPI0209824-5 patent/BRPI0209824B8/en not_active IP Right Cessation
-
2003
- 2003-11-17 US US10/714,449 patent/US7563777B2/en not_active Expired - Lifetime
-
2009
- 2009-06-18 US US12/487,398 patent/US20090275645A1/en not_active Abandoned
-
2014
- 2014-02-10 US US14/176,616 patent/US20140341972A1/en not_active Abandoned
-
2016
- 2016-06-06 US US15/173,867 patent/US20160346352A1/en not_active Abandoned
-
2017
- 2017-04-18 US US15/490,198 patent/US20170252405A1/en not_active Abandoned
-
2018
- 2018-04-05 US US15/945,982 patent/US20180296641A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5219739A (en) * | 1989-07-27 | 1993-06-15 | Scios Nova Inc. | DNA sequences encoding bVEGF120 and hVEGF121 and methods for the production of bovine and human vascular endothelial cell growth factors, bVEGF120 and hVEGF121 |
| US6040157A (en) * | 1994-03-08 | 2000-03-21 | Human Genome Sciences, Inc. | Vascular endothelial growth factor 2 |
| US6440945B1 (en) * | 1999-05-27 | 2002-08-27 | Instituto Dermopatico Dell'immacolata | Method of inducing angiogenesis in nonis chemic skeletal muscle |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10130288B2 (en) | 2013-03-14 | 2018-11-20 | Cell and Molecular Tissue Engineering, LLC | Coated sensors, and corresponding systems and methods |
| US10405961B2 (en) | 2013-03-14 | 2019-09-10 | Cell and Molecular Tissue Engineering, LLC | Coated surgical mesh, and corresponding systems and methods |
| US11491001B2 (en) | 2013-03-14 | 2022-11-08 | Cell and Molecular Tissue Engineering, LLC | Implantable devices coated with extracellular matrix |
Also Published As
| Publication number | Publication date |
|---|---|
| BRPI0209824B8 (en) | 2021-05-25 |
| EP2308502A1 (en) | 2011-04-13 |
| EP1441682A4 (en) | 2007-07-11 |
| WO2002091995A2 (en) | 2002-11-21 |
| ES2566344T3 (en) | 2016-04-12 |
| AR027161A1 (en) | 2003-03-19 |
| US20160346352A1 (en) | 2016-12-01 |
| US20170252405A1 (en) | 2017-09-07 |
| MXPA03010532A (en) | 2005-10-05 |
| US20050020522A1 (en) | 2005-01-27 |
| US20180296641A1 (en) | 2018-10-18 |
| EP1441682B1 (en) | 2016-01-20 |
| BR0209824A (en) | 2004-10-19 |
| AU2002259162A1 (en) | 2002-11-25 |
| US7563777B2 (en) | 2009-07-21 |
| EP1441682A1 (en) | 2004-08-04 |
| BRPI0209824B1 (en) | 2020-11-10 |
| CA2447343A1 (en) | 2002-11-21 |
| US20140341972A1 (en) | 2014-11-20 |
| WO2002091995A8 (en) | 2004-05-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20180296641A1 (en) | Method to induce neovascular formation and tissue regeneration | |
| Kh Haider et al. | Angiomyogenesis for cardiac repair using human myoblasts as carriers of human vascular endothelial growth factor | |
| US8168588B2 (en) | Compositions comprising FGF-9 and betacellulin and methods for treating cardiac conditions | |
| US6352975B1 (en) | Methods of treating hypertension and compositions for use therein | |
| JP2009138004A (en) | Gene transfer of angiogenic factor for skin disease | |
| AU782819B2 (en) | Angiogenic growth factors for treatment of peripheral neuropathy | |
| KR20020049031A (en) | Techniques and compositions for treating cardiovascular disease by in vivo gene delivery | |
| JP2005035945A (en) | Combined therapy for tissue regeneration | |
| JPWO2003059375A1 (en) | Tissue regeneration combination therapy | |
| EP1447089A2 (en) | Methods of treating hypertension and compositions for use therein | |
| JPWO2006046766A1 (en) | Gene therapy for the treatment of heart failure | |
| HK1068788A (en) | Methods of treating hypertension and compositions for use therein | |
| HK1147956A (en) | Compositions and methods for treating cardiac conditions | |
| HK1118210B (en) | Compositions and methods for treating cardiac conditions | |
| HK1042250B (en) | Vegf angiogenic growth factors for treatment of peripheral neuropathy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: BIO SIDUS S.A., ARGENTINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARGUELLES, MARACELO LUIS;CRISCUOLO, MARCELO EDUARDO;JANAVEL, GUSTAVO VERA;AND OTHERS;SIGNING DATES FROM 20050128 TO 20050228;REEL/FRAME:035974/0625 Owner name: STERRENBELD BIOTECHNOLOGIE NORTH AMERICA, INC., DE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIO SIDUS S.A.;REEL/FRAME:035974/0612 Effective date: 20040921 Owner name: FUNDACION UNIVERSITARIA DR. RENE FAVALORO, ARGENTI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CROTTOGINI, ALBERTO JOSE;LAGUENS, RUBEN;PICHEL, RICARDO HORACIO;SIGNING DATES FROM 20050210 TO 20050215;REEL/FRAME:035974/0628 |