US20090240031A1 - Process and intermediate products for preparing cardiodilatin fragments, and highly purified cardiodilatin fragments - Google Patents
Process and intermediate products for preparing cardiodilatin fragments, and highly purified cardiodilatin fragments Download PDFInfo
- Publication number
- US20090240031A1 US20090240031A1 US11/881,669 US88166907A US2009240031A1 US 20090240031 A1 US20090240031 A1 US 20090240031A1 US 88166907 A US88166907 A US 88166907A US 2009240031 A1 US2009240031 A1 US 2009240031A1
- Authority
- US
- United States
- Prior art keywords
- anp
- fragment
- buffer
- cardiodilatin
- fragments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- QGFSVPWZEPKNDV-BRTFOEFASA-N ranp Chemical group C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)[C@@H](C)CC)C1=CC=CC=C1 QGFSVPWZEPKNDV-BRTFOEFASA-N 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 74
- 230000008569 process Effects 0.000 title claims abstract description 48
- 239000013067 intermediate product Substances 0.000 title description 4
- 239000012634 fragment Substances 0.000 claims abstract description 95
- 101800001288 Atrial natriuretic factor Proteins 0.000 claims description 113
- 102000002723 Atrial Natriuretic Factor Human genes 0.000 claims description 104
- 101800001890 Atrial natriuretic peptide Proteins 0.000 claims description 101
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 99
- 239000000872 buffer Substances 0.000 claims description 56
- IUCCYQIEZNQWRS-DWWHXVEHSA-N ularitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@@H](N)[C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 IUCCYQIEZNQWRS-DWWHXVEHSA-N 0.000 claims description 56
- 108010001957 Ularitide Proteins 0.000 claims description 55
- 150000001413 amino acids Chemical class 0.000 claims description 42
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 102100034296 Natriuretic peptides A Human genes 0.000 claims description 19
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 13
- 239000012043 crude product Substances 0.000 claims description 12
- UBLQIESZTDNNAO-UHFFFAOYSA-N n,n-diethylethanamine;phosphoric acid Chemical compound [O-]P([O-])([O-])=O.CC[NH+](CC)CC.CC[NH+](CC)CC.CC[NH+](CC)CC UBLQIESZTDNNAO-UHFFFAOYSA-N 0.000 claims description 10
- 239000012149 elution buffer Substances 0.000 claims description 8
- 239000007853 buffer solution Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 238000004007 reversed phase HPLC Methods 0.000 claims description 6
- 238000011068 loading method Methods 0.000 claims description 3
- 239000008363 phosphate buffer Substances 0.000 claims description 2
- 108010034646 atrial natriuretic factor prohormone (103-126) Proteins 0.000 claims 1
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 46
- 238000002360 preparation method Methods 0.000 abstract description 21
- 239000012535 impurity Substances 0.000 abstract description 19
- 238000005251 capillar electrophoresis Methods 0.000 abstract description 13
- 239000000543 intermediate Substances 0.000 abstract description 6
- 238000013508 migration Methods 0.000 abstract description 4
- 230000005012 migration Effects 0.000 abstract description 4
- 235000001014 amino acid Nutrition 0.000 description 46
- 239000000243 solution Substances 0.000 description 40
- 229940024606 amino acid Drugs 0.000 description 39
- 102400001279 Urodilatin Human genes 0.000 description 37
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 32
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 28
- 239000008367 deionised water Substances 0.000 description 28
- 229910021641 deionized water Inorganic materials 0.000 description 28
- -1 cardiodilatin amino acids Chemical class 0.000 description 24
- 238000009833 condensation Methods 0.000 description 24
- 230000005494 condensation Effects 0.000 description 24
- 125000006239 protecting group Chemical group 0.000 description 24
- 238000003756 stirring Methods 0.000 description 22
- 239000000047 product Substances 0.000 description 21
- 238000000746 purification Methods 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 20
- 239000011347 resin Substances 0.000 description 19
- 229920005989 resin Polymers 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 16
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 15
- 125000003275 alpha amino acid group Chemical group 0.000 description 15
- 229910052573 porcelain Inorganic materials 0.000 description 14
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 13
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 8
- 239000012317 TBTU Substances 0.000 description 8
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 8
- 108010031762 cardiodilatin Proteins 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- 238000004809 thin layer chromatography Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 6
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 238000007363 ring formation reaction Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 102400000667 Brain natriuretic peptide 32 Human genes 0.000 description 5
- 101800000407 Brain natriuretic peptide 32 Proteins 0.000 description 5
- 101800002247 Brain natriuretic peptide 45 Proteins 0.000 description 5
- 102100031478 C-type natriuretic peptide Human genes 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- 108010033276 Peptide Fragments Proteins 0.000 description 5
- 102000007079 Peptide Fragments Human genes 0.000 description 5
- AQEFLFZSWDEAIP-UHFFFAOYSA-N di-tert-butyl ether Chemical compound CC(C)(C)OC(C)(C)C AQEFLFZSWDEAIP-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- HPNRHPKXQZSDFX-OAQDCNSJSA-N nesiritide Chemical compound C([C@H]1C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)CNC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CO)C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1N=CNC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 HPNRHPKXQZSDFX-OAQDCNSJSA-N 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000011033 desalting Methods 0.000 description 3
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 101800000060 C-type natriuretic peptide Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 159000000021 acetate salts Chemical class 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011067 equilibration Methods 0.000 description 2
- 230000008570 general process Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000006340 racemization Effects 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 239000011877 solvent mixture Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- CQXDYHPBXDZWBA-UHFFFAOYSA-N tert-butyl 2,2,2-trichloroethanimidate Chemical compound CC(C)(C)OC(=N)C(Cl)(Cl)Cl CQXDYHPBXDZWBA-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 229950009436 ularitide Drugs 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- DVBUCBXGDWWXNY-SFHVURJKSA-N (2s)-5-(diaminomethylideneamino)-2-(9h-fluoren-9-ylmethoxycarbonylamino)pentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCCN=C(N)N)C(O)=O)C3=CC=CC=C3C2=C1 DVBUCBXGDWWXNY-SFHVURJKSA-N 0.000 description 1
- AWNXKZVIZARMME-UHFFFAOYSA-N 1-[[5-[2-[(2-chloropyridin-4-yl)amino]pyrimidin-4-yl]-4-(cyclopropylmethyl)pyrimidin-2-yl]amino]-2-methylpropan-2-ol Chemical compound N=1C(NCC(C)(O)C)=NC=C(C=2N=C(NC=3C=C(Cl)N=CC=3)N=CC=2)C=1CC1CC1 AWNXKZVIZARMME-UHFFFAOYSA-N 0.000 description 1
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 1
- 102400001282 Atrial natriuretic peptide Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 101500027325 Homo sapiens Atrial natriuretic peptide Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- 229930182844 L-isoleucine Natural products 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 229930195722 L-methionine Natural products 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 125000003798 L-tyrosyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- 108020001621 Natriuretic Peptide Proteins 0.000 description 1
- 102000004571 Natriuretic peptide Human genes 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102220589754 YjeF N-terminal domain-containing protein 3_G25F_mutation Human genes 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000004900 c-terminal fragment Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000001882 diuretic effect Effects 0.000 description 1
- 238000007905 drug manufacturing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- BRHPBVXVOVMTIQ-ZLELNMGESA-N l-leucine l-leucine Chemical compound CC(C)C[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O BRHPBVXVOVMTIQ-ZLELNMGESA-N 0.000 description 1
- 229940126601 medicinal product Drugs 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000002833 natriuretic agent Substances 0.000 description 1
- 239000000692 natriuretic peptide Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- ZJLMKPKYJBQJNH-UHFFFAOYSA-N propane-1,3-dithiol Chemical compound SCCCS ZJLMKPKYJBQJNH-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229960002898 threonine Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/58—Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/10—Antioedematous agents; Diuretics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the invention relates to a process for the preparation of cardiodilatin fragments, to highly purified cardiodilatin fragments, and to appropriate intermediates for the preparation of said fragments.
- the present invention is directed to a process for the preparation of cardiodilatin fragments of formula I (SEQ ID NO:4):
- ANP(105-121) represents the amino acid sequence (SEQ ID NO:1):
- R 1 represents an amino acid chain of sequence ANP(90-104) (SEQ ID NO:2) or fragments thereof having a chain length of 0-15 amino acids, and
- R 2 represents an amino acid chain of sequence ANP(122-126) (SEQ ID NO:3) or fragments thereof having a chain length of 0-5 amino acids,
- synthesis is effected via condensation of at least three partial fragments, and condensation of the partial fragments to give the cardiodilatin fragments of formula I is carried out between the amino acid positions Gly 108 and Arg 108 and the amino acid positions Gly 120 and Cys 121 .
- Cardiodilatin is a peptide of the class of natriuretic peptides. These peptides play an important role in regulating the balance of salts and water in the body.
- the prototype of natriuretic hormones is cardiodilatin, also referred to in literature as atrial natriuretic peptide (CDD/ANP).
- CDD/ANP atrial natriuretic peptide
- cardiodilatin fragments which begin with the amino acid position Arg 102 at the N-terminus and end with the amino acid position Arg 125 or Arg 126 at the C-terminus.
- the literature frequently uses the designation “atrial natriuretic peptide” (ANP).
- a common structural feature of all hitherto known biologically active cardiodilatin fragments is the formation of a disulfide bridge between the amino acids Cys 105 and Cys 121 , resulting in a stable ring of 17 amino acids. It is believed that the formation of this ring is substantially responsible for the biological activity of the cardiodilatin derivatives.
- the cardiodilatin fragments are substituted by an amino acid chain R 1 having a chain length of 0-15 amino acids, and at position Cys 121 by a chain R 2 having a chain length of 0-5 amino acids.
- the central region ANP(105-121) SEQ ID NO:1 is presented in linearized form.
- the cardiodilatin fragment ANP(95-126), with the INN designation ularitide, is a particularly stable and biologically active human peptide, having diuretic activity and a relaxing effect on the smooth vascular muscles, which is formed of 32 amino acids and has the following sequence, wherein both the cysteine amino acids at positions 11 and 27 in the peptide are forming a disulfide bridge (SEQ ID NO:5):
- Urodilatin is found in human urine.
- EP 0,349,545 describes a process for recovering urodilatin from urine using alginic acid, wherein the peptides adsorbed to alginic acid are eluted, the eluate is fractionated according to conventional purification methods, and the active fraction is recovered using a test based on the examination of the relaxing effect of urodilatin on the smooth muscles.
- EP 0,349,545 describes a stepwise chemical synthesis of urodilatin using the Merrifield process (J. Am. Chem. Soc. 1963, 85; 2149-2156), at a solid phase according to the ABI standard program following the Boc strategy.
- this patent specification describes the preparation of urodilatin from the partial fragment ANP(99-126). This fragment is bound to a solid phase, and is reacted with a second partial fragment, the tetrapeptide Boc-Thr(But)-Ala-Pro-Arg(Tos) (SEQ ID NO:15).
- the peptide ANP(95-126) obtained from the condensation is removed from the support, subjected to cyclization after removal of the protecting groups and subsequently, is processed and purified in a per se known manner.
- EP 0,180,615 describes the chemical synthesis using a solid support, wherein formation of the cardiodilatin fragments described therein is effected successively, starting from the C-terminus in direction of the N-terminus. Here, condensation via partial fragments is not described.
- the cardiodilatin fragments prepared according to the procedures described in literature did not have the purity necessary for clinical studies and for the authorization as medicinal product because, due to the synthesis, peptide impurities had been introduced into the final product which could not be removed even by subsequent purification processes. Due to their immunogenic properties, the impurities may give rise to undesirable side-effects when administered to the patient, so that therapeutic application involved risk. Moreover, the synthesis could be accomplished at only a small scale under reasonable technical input and was not economically suitable for a larger production scale. Furthermore, another drawback of known processes for synthesis was the existing potential risk of racemization due to which the urodilatin was obtained with lower purity, lower biological activity and in insufficient yield. Racemization of the product which frequently occurs with existing syntheses often resulted in insufficient optical purity of the final product, and these impurities frequently cannot be removed or only with exceedingly high technical input.
- the object of the invention is attained by performing the synthesis of cardiodilatin fragments on the basis of the Merrifield process using a specific selection of peptide fragments.
- FIG. 1 is a flow diagram illustrating the principle of synthesis using the condensation method, depicting urodilatin as an example.
- FIG. 2 is a representation of the fragments R 1 , (SEQ ID NO:2); ANP (105-121), SEQ ID NO:1); and R 2 , (SEQ ID NO:3) and the products of their condensation.
- Synthesized fragment 1 SEQ ID NO:6;
- Synthesized fragment 2 SEQ ID NO:7;
- Synthesized fragment 3a SEQ ID NO:8;
- Synthesized fragment 3b SEQ ID NO:9;
- Synthesized fragment 3c SEQ ID NO:10;
- Synthesized fragment 4 SEQ ID NO:11;
- Synthesized fragment 5 SEQ ID NO:12;
- Synthesized fragment 6 SEQ ID NO:13;
- Synthesized fragment 7 SEQ ID NO:14; and
- Synthesized fragment 8 SEQ ID NO:5.
- FIG. 3 illustrates the CE chromatogram of a urodilatin production batch produced according to the methods of the prior art.
- FIG. 4 illustrates the CE chromatogram of a urodilatin production batch produced according to the method of the present invention.
- FIG. 5 illustrates the purification of urodilatin and the separation of impurities by high-performance liquid chromatography.
- FIG. 6 illustrates the inability to separate impurities from urodilatin according to conventional purification methods using trifluoroacetic acid.
- the course of synthesis has been found to be optimal when the cardiodilatin fragments are formed using three partial fragments, with the condensation of the partial fragments to give the cardiodilatin fragment of formula I being performed in such fashion that the formation is effected via condensation of partial fragments and bond formation between the amino acid positions Gly 108 and Arg 108 and the amino acid positions Gly 120 and Cys 121 .
- This process is advantageous in that the cardiodilatin fragments of formula I can be obtained in higher yields and in higher purity as compared to the synthetic processes known from prior art.
- the synthesis of the cardiodilatin fragments of formula I is effected in such way that initially, the three partial fragments having the sequences R 1 -ANP(105-108), ANP(109-120) and ANP(121)-R 2 are prepared according to the Merrifield process. Then, preferably, condensation of the three partial fragments to give the cardiodilatin fragment of formula I is effected in two partial steps, whereby in a first step, condensation between the amino acid positions Gly 120 and Cys 121 of the partial fragments ANP(109-120) and Cys 121 -R 2 is effected, with the intermediate fragment ANP(109-121)-R 2 being formed.
- the yield of cardiodilatin fragments is between 15 and 20%, based on the amount of each cardiodilatin partial fragment used as starting material.
- the three partial fragments having the sequences R 1 -ANP(105-108), ANP(109-120) and ANP(121)-R 2 are prepared according to the Merrifield process, wherein the amino acids with functional groups (hydroxy, carboxy, amino, or mercapto groups) present in the sequence are substituted by appropriate protecting groups.
- suitable protecting groups the following groups are possible:
- Boc t-butyloxycarbonyl
- tBu t-butyl ether
- Fmoc (9-fluorenylmethoxycarbonyl), Pbf (2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl), Pmc (2,2,5,7,8-pentamethylchroman-6-sulfonyl), Trt (trityl);
- the following protecting groups are preferred for the following amino acids: tBu for the amino acids Thr, Asn, Tyr or Ser; Pbf or Pmc for the amino acid Arg; Acm for the amino acid Cys; OtBu for the amino acid Asp; Trt for the amino acids Gln, Asn or Cys.
- the protected partial fragments ANP(109-120), R 1 -ANP(105-108) and ANP(121)-R 2 are formed on a solid support material. All the materials generally used in the Merrifield synthesis may serve as solid support materials. Preferred as support material is polystyrene functionalized as aminomethyl or benzhydrylamino compound.
- support material is polystyrene functionalized as aminomethyl or benzhydrylamino compound.
- the three starting fragments ANP(109-120), R 1 -ANP(105-108) and ANP(121)-R 2 are obtained with a C-terminal free carboxyl group and in good purity.
- the yield in every single step of addition of one amino acid is nearly quantitative and is about 97-99%.
- the flow diagram in FIG. 1 illustrates the principle of synthesis, with urodilatin ANP(95-126) as an example.
- This fragment (5) is synthesized from the fragments Fmoc-15-26-OH (2) (corresponding to an ANP nomenclature of ANP(109-120)) and H-27-32-OtBu (3c) (corresponding to an ANP nomenclature of ANP(121)-R 2 ).
- FIG. 2 represents the fragments synthesized and modified with protecting groups.
- the carboxyl group of fragment (3a) is converted to the t-butyl ester (3b) (cf., Riniker et al., 22nd Europ. Peptide Symposium Interlaken, September 1992 (L7)).
- Subsequent removal of the Fmoc group from fragment (3b) leads to the product (3c). This is fused with fragment (2), resulting in fragment (4).
- Removal of the Fmoc protecting group and condensation of the obtained fragment (5) with fragment (1) leads to the fully protected urodilatin (6).
- the synthesis according to the invention, involving the described partial fragments ANP(109-120), R 1 -ANP(105-108) and ANP(121)-R 2 may be applied to all the cardiodilatin fragments of formula I.
- cardiodilatin fragments are possible, wherein R 1 has a chain length of 0-15 amino acids of the sequence ANP(90-104) or fragments thereof.
- R 1 are chain lengths of 1-15 or 3-10 amino acids, particularly the sequences ANP(95-104), ANP(99-104) and ANP(102-104).
- the group R 2 represents a chain length of 1-5 amino acids of the sequence ANP(122-126) or fragments thereof.
- the sequences ANP(122-126) and ANP(122-125) are possible for R 2 .
- the cardiodilatin fragments ANP(95-126), ANP(99-126) and ANP(102-126) may be prepared according to the process of the invention.
- the cardiodilatin fragments prepared by means of the process of the invention, as well as the partial fragments required for condensation have high optical purity in the range of about 96-99.9%, particularly about 98-99%.
- the synthesis is suitable for all the other derivatives of cardiodilatin fragments wherein one or more amino acids in the sequence of human ANP are replaced by other amino acids.
- replacement of amino acids includes corresponding substitutions, deletions or insertions of amino acids.
- single or multiple amino acids may be replaced by the corresponding D-amino acids (cf., EP 0,180,615).
- peptides of similar structure and with a corresponding cyclic basic structure of 15-20 amino acids may be prepared in this way. Examples of such peptides are BNP (brain natriuretic peptide) or CNP(C-type natriuretic peptide). The structures of these peptides are described in J. Hypertension 1994, 12; 329-336 (N. C. Davidson and A. D. Struthers).
- the present invention is directed to novel partial fragments of ANP which are utilized for the preparation of cardiodilatin fragments of formula I according to the process of the invention.
- corresponding peptide fragments are those of the type R 1 -ANP(105-108), wherein R 1 represents an amino acid chain of sequence ANP(90-104) or fragments thereof having a chain length of 0-15 amino acids, as well as their derivatives modified by protecting groups.
- R 1 has the above-mentioned meanings.
- Another novel peptide fragment is the fragment having the amino acid sequence ANP(109-120), as well as its derivatives modified by protecting groups, which is employed as a starting material in the condensation with the partial fragment ANP(121)-R 2 .
- the corresponding ANP(121)-R 2 type peptide fragments represent a novelty and a subject matter of the invention, wherein R 2 represents an amino acid chain of sequence ANP(122-126) or fragments thereof having a chain length of 0-5 amino acids, as well as their derivatives modified by protecting groups.
- R 2 has the previously mentioned meaning.
- the invention is directed to the intermediate ANP(109-121)-R 2 which is formed from the condensation reaction of the partial fragments ANP(109-120) and ANP(121)-R 2 effected in the first reaction step.
- the present invention relates to a process for preparing high-purity cardiodilatin fragments of formula I.
- Conventional synthetic processes and subsequent purification procedures on cardiodilatin fragments suffered from the drawback that in many cases a peptide purity in a range of merely 97-98% could be achieved.
- EP 0,349,545 describes a purity level of about 98% in the case of urodilatin; therein, the amount of urodilatin prepared was merely on a smaller laboratory scale in the range of a few milligrams.
- the purification procedure described in Example 5 therein is based on a chromatography on a LH column (eluant: 1% AcOH, 1% TFEtOH) and subsequent chromatography on a TSK column (Fractogel TSK-HW 40), wherein an aqueous solution of 10% AcOH and 1% TFETOH was used as the eluant.
- purification using preparative HPLC is effected, without any further indications on the eluant being made.
- cardiodilatin fragments of formula I can be prepared if the crude product is purified using a reversed-phase HPLC column, and the cardiodilatin fragment is eluted using a buffer system containing triethylammonium phosphate (TEAP) and acetonitrile in aqueous solution.
- TEAP triethylammonium phosphate
- the pH value of the elution buffer is adjusted to a value of 2-5, more specifically, of 2-3.
- a type C 18 column for example, Biotage module type filled with YMC C 18 is used as the reversed-phase HPLC column.
- This column is equilibrated with triethylammonium phosphate buffer prior to loading the cardiodilatin fragments to be purified.
- a solution of 10-200 mM TEAP, preferably 50 mM TEAP is employed as a suitable buffer solution.
- the amount of buffer for column equilibration depends on the column size and this, in turn, on the amount of peptide to be purified. According to experience, a column volume of 75 ⁇ 300 mm (diameter ⁇ length) is required to purify an amount of peptide of 3-8 g of crude peptide. In this case, about 300 ml of a 50 mM TEAP buffer solution is required for equilibration.
- a solution of the concentrated crude product of cardiodilatin fragment is applied.
- a solvent for example, 10% acetic acid is suitable.
- the peptide is eluted in a continuous gradient by continuous charging of eluant (mixture of an aqueous solution of 10-200 mM TEAP and acetonitrile at a volume ratio of 2:3; pH 2-5). Elution of peptide is particularly advantageous if a continuous gradient of eluant is applied, where 22-28% of solvent gradient is used for a period of 90 minutes, followed by 28% of solvent gradient for 10 minutes and, eventually, 28-40% of gradient for 20 minutes.
- the flow rate is 100-200 ml/min, more specifically, about 140 ml/min.
- a buffer mixture of triethylammonium phosphate in water and acetonitrile at a mixing ratio of from 1:3 to 2:1 (v/v), more specifically of about 2:3 (v/v) is used as elution buffer.
- the pH value of the buffer solution is 2-5, preferably 2-3, and more specifically about 2.25.
- TEAP may be used at a concentration of 10-200 mM, preferably 20-100 mM, and more specifically, of about 50 mM.
- optimum separation is achieved in the reversed-phase HPLC by equilibrating the column using 50 mM TEAP, pH 2.25, and eluting the peptide with a buffer consisting of 50 mM TEAP, pH 2.25, and acetonitrile at a ratio of 2:3.
- cardiodilatin fragments of formula I are obtained in a purity of at least 99% and preferably, of up to 99.9%.
- the cardiodilatin fragments may subsequently be converted to their physiologically acceptable salts, such as the acetate or citrate salts.
- the cardiodilatin fragments obtained are substantially free of peptide impurities so that not only the reversed-phase HPLC exhibits a single peak but also the much more sensitive method of capillary electrophoresis (CE) provides a single migration peak.
- CE capillary electrophoresis
- FIG. 3 illustrates the CE chromatogram of a urodilatin production batch produced according to prior art.
- FIG. 4 represents the CE chromatogram of a urodilatin production batch produced according to the process of the invention and purified correspondingly. It is clearly obvious that the product is substantially free of other peptide impurities and exhibits a single migration peak in the capillary electrophoresis.
- the invention is directed to high-purity cardiodilatin fragments of formula I which are remarkable in that they do not contain substantial peptide impurities detectable by capillary electrophoresis and MS analysis, and that the purity analysis using capillary electrophoresis exhibits a single migration peak.
- the purification procedure according to the invention is also suitable for the preparation of analogous high-purity peptide compounds such as, e.g., BNP (brain natriuretic peptide), CNP(C-type natriuretic peptide) or derivatives thereof.
- ANP is based on the oxidation of two cysteine residues within the amino acid sequence, forming a cyclic ring of 17 amino acids.
- Other peptides which also form the characteristic cyclic structure of 15-20 amino acids, particularly 17 amino acids, such as, e.g., BNP or CNP, may be converted to the high-purity forms in the same fashion using the purification procedure according to the invention.
- the invention will be illustrated using the selected representative cardiodilatin fragments ANP(95-126), ANP(99-126) and ANP(102-126).
- the first amino acid (AA) protected by the Fmoc group at the N-terminal end is bound to the support resin (Fmoc-AA-OHMPB-support resin).
- the Fmoc protecting group is subsequently removed by adding 100 ml of a solvent mixture of piperidine and N-methylpyrrolidine (1:4 v/v). Then, the resin suspension is stirred for 10 minutes, subsequently filtrated, and again, 100 ml of the piperidine and NMP solvent mixture is added. Then, the suspension is stirred for 10 minutes, filtrated and subsequently washed with NMP an isopropanol, and completeness of the reaction is checked using the Kaiser test.
- the next amino acid is coupled to the resin.
- 20 mmoles of a 0.5 M solution of diisopropylethanylamine (DIPEA) in NMP is added to the resin, then 2.5 mmoles of a 0.5 M solution of 1-hydroxybenzotriazole (OHBT) in NMP, followed by 10 mmoles of the amino acid to be coupled in 25 ml of NMP.
- 11 mmoles of a 0.25 M solution of TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate) in NMP is added and stirred for 10 minutes. Completeness of the reaction is checked using the Kaiser test. Subsequently, the resin is filtrated and washed with NMP.
- each of 10 suction flasks is charged with 75 ml of methanol and 3 ml of pyridine.
- 50 g of the support resin prepared according to step a) is stirred 10 times with 250 ml of 1% TFA in dry methylene chloride for one minute on the suction funnel, and is filtrated directly into the respective suction flask. These 10 filtrates are checked using thin layer chromatography. Fractions containing product are combined and evaporated to dryness. The residue is triturated with deionized water, and the crystalline residue is filtrated off and dried.
- Example 2 Following the general procedures of Example 1, and starting from 273 g of Fmoc-Gly-OHMPB-support resin (corresponding to 130 mmoles), 170.3 g of the fully protected cardiodilatin fragment ANP(109-120) is obtained.
- Example 2 Following the general procedures of Example 1, and starting from 264 g of Fmoc-Tyr-OHMPB-support resin (corresponding to 115 mmoles), 150.7 g of the fully protected cardiodilatin fragment ANP(121-126) is obtained. Here, the N-terminal end of the fragment is protected by the Fmoc group.
- the terminal hydroxy group at the C-terminal end of the fragment is converted to the OtBu protecting group.
- esterification 149 g of the fully protected fragment is dissolved in 500 ml of trifluoroethanol and 4.1 l of chloroform. This is followed by addition of 141 ml of TBTA (t-butyl-2,2,2-trichloroacetimidate), and the solution is heated at reflux for one hour. After the reaction is completed, the solution is concentrated to give a crystalline-oily residue, 6.8 l of diisopropyl ether is added, and the suspension is stirred at room temperature for 14 hours. The product is filtrated off and dried to constant weight. 136.7 g of fragment 3b indicated in FIG. 2 is obtained.
- fragment 3b 135.7 g
- DMF dimethyl methacrylate
- diethylamine diethylamine
- the solution is evaporated to complete dryness in a vacuum.
- the residue is digested with 1.4 l of deionized water and filtrated off.
- the wet product is taken up in 3 l of MTBE (methyl t-butyl ether).
- the solution is extracted with a saturated NaCl solution (2 ⁇ 100 ml), and the organic phase is dried with sodium sulfate.
- the solution is concentrated to a volume of 500 ml. Following addition of 1.5 l of isopropyl ether, stirring for two hours is effected. The product is filtrated and dried. The yield is 104.6 g of fragment 3c indicated in FIG. 2 .
- Example 2 Following the general procedures of Example 1, and starting from 210 g of Fmoc-Gly-OHMPB-support resin, 151.5 g of the fully protected cardiodilatin fragment ANP(95-108) is obtained.
- the fragment ANP(109-120) is converted to the intermediate ANP(109-121)-R 2 by condensation with the C-terminal fragment ANP(121)-R 2 according to the following general process:
- the fragment ANP(109-120), the amino terminus of which is protected by the Fmoc group, is dissolved in N-methylpyrrolidone. Subsequently, TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate), 1-hydroxybenzotriazole and diisopropylethylamine are added to the solution at room temperature with stirring. Thereafter, the fragment ANP(121)-R 2 provided with an appropriate protecting group at the C-terminal end and dissolved in N-methylpyrrolidone is added to the solution. In the following, the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete.
- the reaction mixture is dripped onto diisopropyl ether with stirring and subsequently stirred for about 30 minutes.
- the precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with diisopropyl ether. Thereafter, the residue is suspended in acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated on a porcelain suction funnel, rewashed with acetonitrile and dried to constant weight in a vacuum chamber at 40° C.
- the thus obtained crude product represents the cardiodilatin fragment Fmoc-ANP(109-121)-R 2 protected at the amino terminus by the Fmoc protecting group. Thereafter, the Fmoc group is removed according to known procedures to obtain the intermediate product H-ANP(109-121)-R 2 .
- the intermediate ANP(109-121)-R 2 is converted to the final product R 1 -ANP(105-121)-R 2 by condensation with the amino-terminal fragment R 1 -ANP(105-108) according to the following general process:
- the reaction mixture is dripped onto diisopropyl ether with stirring and subsequently stirred for about 30 minutes.
- the precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with diisopropyl ether. Thereafter, the residue is suspended in acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated off on a porcelain suction funnel, rewashed with acetonitrile and dried to constant weight in a vacuum chamber at 40° C.
- the thus obtained crude product represents the cardiodilatin fragment R 1 -ANP(105-121)-R 2 protected by appropriate protecting groups at the amino terminus and the C-terminus.
- the protecting group is removed according to known procedures to obtain the intermediate product H—R 1 -ANP(109-121)-R 2 .
- the obtained cardiodilatin fragment is converted to the cyclized derivative by oxidation and according to known procedures, for example, using iodine.
- the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete. Then, the reaction mixture is dripped onto 6.5 l of diisopropyl ether with stirring and subsequently stirred for about 30 minutes. The precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with 500 ml of diisopropyl ether. Thereafter, the residue is suspended in 600 ml of acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated off on a porcelain suction funnel, rewashed with 500 ml of acetonitrile and dried to constant weight in a vacuum chamber at 40° C. Subsequently, the crude product Boc-ANP(99-126)-OtBu thus obtained in an amount of 44.7 g is converted to the unprotected ANP(99-126) and dried. The yield is 28.1 g.
- the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete. Then, the reaction mixture is dripped onto 6.5 l of diisopropyl ether with stirring and subsequently stirred for about 30 minutes. The precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with 500 ml of diisopropyl ether. Thereafter, the residue is suspended in 600 ml of acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated off on a porcelain suction funnel, rewashed with 500 ml of acetonitrile and dried to constant weight in a vacuum chamber at 40° C. Subsequently, the crude product Boc-ANP(102-126)-OtBu thus obtained in an amount of 41.2 g is converted to the unprotected ANP(102-126) and dried. The yield is 26.9 g.
- the cyclization solution (about 17 liters of 5% AcOH, in deionized water (v/v), contains about 60 g of cyclized urodilatin) is applied (flow rate 130 ml/min) on a glass column (diameter: 70 mm, length: 900 mm, filled with Vydac 218 TPB 2030) equilibrated with 1000 ml of buffer A3 (0.1% TFA (v/v) in deionized water).
- the peptide is eluted by continuous charging of buffer B3 (0.1% TFA in deionized water/ACN 2:3 v/v) in a continuous gradient (0% buffer B during 40 min; 15-35% buffer B during 90 min; 35% buffer B during 10 min; flow rate 130 ml/min).
- urodilatin fractions showing a purity of more than 75% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and applied (flow rate 140 ml/min) on a Biotage module (diameter: 75 mm, length: 300 mm, filled with YMC C 18 , 120 A, 10 ⁇ m) equilibrated with 300 ml of buffer A3.
- the concentrated peptide is eluted by washing the column with 100% buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- the peptide is eluted by continuous charging of buffer B4 (50 mM TEAP, pH 2.25 in deionized water/ACN 2:3 v/v) in a continuous gradient (22-28% B during 90 min; 28% B during 10 min; 28-40% B during 20 min; flow rate 140 ml/min).
- buffer B4 50 mM TEAP, pH 2.25 in deionized water/ACN 2:3 v/v
- urodilatin fractions showing a purity of more than 99% and impurities of not more than 0.5% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and pumped onto the Biotage module previously cleaned with 1000 ml of buffer B3 and subsequently equilibrated with 300 ml of buffer A3. For desalting, a washing with 1200 ml of buffer A3 is made.
- the pure product is eluted by washing the column with 1500 ml of buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- the result is between 2.3 and 2.7 g of high-purity urodilatin.
- the result is between 2.05 and 2.30 g of high-purity urodilatin acetate.
- the cyclization solution (about 15 liters of 5% AcOH, in deionized water (v/v), with a peptide content of about 50 g) is applied (flow rate 130 ml/min) on a glass column equilibrated with 1000 ml of buffer A3 (0.1% TFA (v/v) in deionized water).
- buffer A3 0.1% TFA (v/v) in deionized water.
- the peptide is eluted by continuous charging of buffer B3 (0.1% TFA in deionized water/ACN 2:3 v/v) in a continuous gradient (0% buffer B during 40 min; 15-35% buffer B during 90 min; 35% buffer B during 10 min; flow rate 130 ml/min).
- Peptide fractions showing a purity of more than 75% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and applied (flow rate 140 ml/min) on a Biotage module equilibrated with 300 ml of buffer A3. Subsequently, the concentrated peptide is eluted by washing the column with 100% buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- the result is between 14 and 17 g of cardiodilatin fragment ANP(99-126) with a purity of more than 90%.
- 3.5 g of the cardiodilatin fragment concentrated according to Example 16a is dissolved in 200 ml of 10% AcOH in deionized water (v/v) and applied (flow rate 140 ml/min) on a Biotage module equilibrated with 300 ml of buffer A4 (50 mM TEAP, pH 2.25, in deionized water).
- buffer A4 50 mM TEAP, pH 2.25, in deionized water
- the peptide is eluted by continuous charging of buffer B4 (50 mM TEAP, pH 2.25 in deionized water/ACN 2:3 v/v) in a continuous gradient (22-28% B during 90 min; 28% B during 10 min; 28-40% B during 20 min; flow rate 140 ml/min).
- Peptide fractions showing a purity of more than 99% and impurities of not more than 0.5% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and pumped onto the Biotage module previously cleaned with 1000 ml of buffer B3 and subsequently equilibrated with 300 ml of buffer A3. For desalting, a washing with 1000 ml of buffer A3 is made.
- the pure product is eluted by washing the column with 1500 ml of buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- the cyclization solution (about 18 liters of 5% AcOH, in deionized water (v/v), with a peptide content of about 65 g) is applied (flow rate 130 ml/min) on a glass column equilibrated with 1000 ml of buffer A3 (0.1% TFA (v/v) in deionized water).
- buffer A3 0.1% TFA (v/v) in deionized water.
- the peptide is eluted by continuous charging of buffer B3 (0.1% TFA in deionized water/ACN 2:3 v/v) in a continuous gradient (0% buffer B during 40 min; 15-35% buffer B during 90 min; 35% buffer B during 10 min; flow rate 130 ml/min).
- Peptide fractions showing a purity of more than 75% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and applied (flow rate 140 ml/min) on a Biotage module equilibrated with 300 ml of buffer A3. Subsequently, the concentrated peptide is eluted by washing the column with 100% buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- the result is between 19 and 23 g of cardiodilatin fragment ANP(102-126) with a purity of more than 90%.
- 4.8 g of the cardiodilatin fragment concentrated according to Example 17a) is dissolved in 200 ml of 10% AcOH in deionized water (v/v) and applied (flow rate 140 ml/min) on a Biotage module equilibrated with 300 ml of buffer A4 (50 mM TEAP, pH 2.25, in deionized water).
- buffer A4 50 mM TEAP, pH 2.25, in deionized water
- the peptide is eluted by continuous charging of buffer B4 (50 mM TEAP, pH 2.25 in deionized water/ACN 2:3 v/v) in a continuous gradient (22-28% B during 90 min; 28% B during 10 min; 28-40% B during 20 min; flow rate 140 ml/min).
- Peptide fractions showing a purity of more than 99% and impurities of not more than 0.5% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and pumped onto the Biotage module previously cleaned with 1000 ml of buffer B3 and subsequently equilibrated with 300 ml of buffer A3. For desalting, a washing with 1000 ml of buffer A3 is made.
- the pure product is eluted by washing the column with 1500 ml of buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- ANP(95-126) 50 ⁇ g of ANP(95-126) is injected onto an analytical HPLC column.
- a linear gradient of buffer B of 25-45% during 20 minutes (buffer A: 50 mM TEAP, pH 2.25; buffer B: mixture of A and acetonitrile at a volume ratio of 2:3) served as the eluant.
- Buffer A 50 mM TEAP, pH 2.25; buffer B: mixture of A and acetonitrile at a volume ratio of 2:3) served as the eluant.
- the chromatogram in FIG. 5 reveals that two polar impurities are contained which may be separated by the eluant employed.
- Buffer A 50 mM TEAP pH 2.25
- Buffer B A:ACN (2:3)
- Buffer A 0.1% TFA in water
- Capillary Fused Silica by Supelco, separation length 50 cm, internal diameter 75 ⁇ m
- Separation buffer 100 mM sodium phosphate, pH 2.5; 0.02% hydroxypropylmethylcellulose
- FIG. 3 shows the chromatogram obtained for prior art urodilatin.
- FIG. 4 shows the chromatogram for high-purity urodilatin obtained according to Example 15.
- the urodilatin according to the invention differs significantly from prior art urodilatin.
- the urodilatin according to the invention is free of peptide impurities.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Endocrinology (AREA)
- Cardiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Diabetes (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Peptides Or Proteins (AREA)
- Saccharide Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The invention relates to a process for the preparation of cardiodilatin fragments, to highly purified cardiodilatin fragments, and to appropriate intermediates for the preparation of said fragments. Furthermore, the invention relates to highly purified cardiodilatin fragments which are free of peptide impurities and exhibit a single migration peak in capillary electrophoresis, as well as to appropriate processes for the preparation of same.
Description
- This application is a continuation of U.S. Ser. No. 11/084,190, filed Mar. 21, 2005, which is a continuation of U.S. Ser. No. 09/027,777, filed Feb. 23, 1998, now abandoned, which is a division of U.S. Ser. No. 08/737,927, filed Dec. 2, 1996, now U.S. Pat. No. 5,767,239, which is the national stage of PCT/EP95/02050 under 35 U.S.C. §371, which was filed May 30, 1995, and claims priority to German Patent Application No. 195 13 784.1, filed Apr. 10, 1995, and German Patent Application No. 44 20 381.0, filed Jun. 2, 1994.
- Not Applicable
- Not Applicable
- The invention relates to a process for the preparation of cardiodilatin fragments, to highly purified cardiodilatin fragments, and to appropriate intermediates for the preparation of said fragments.
- The present invention is directed to a process for the preparation of cardiodilatin fragments of formula I (SEQ ID NO:4):
-
R1-ANP(105-121)-R2 (I), - having a chain length of 17-37 amino acids in total, wherein ANP(105-121) represents the amino acid sequence (SEQ ID NO:1):
- R1 represents an amino acid chain of sequence ANP(90-104) (SEQ ID NO:2) or fragments thereof having a chain length of 0-15 amino acids, and
- R2 represents an amino acid chain of sequence ANP(122-126) (SEQ ID NO:3) or fragments thereof having a chain length of 0-5 amino acids,
- wherein synthesis is effected via condensation of at least three partial fragments, and condensation of the partial fragments to give the cardiodilatin fragments of formula I is carried out between the amino acid positions Gly108 and Arg108 and the amino acid positions Gly120 and Cys121.
- Cardiodilatin is a peptide of the class of natriuretic peptides. These peptides play an important role in regulating the balance of salts and water in the body. The prototype of natriuretic hormones is cardiodilatin, also referred to in literature as atrial natriuretic peptide (CDD/ANP). The isolation of cardiodilatin and the preparation of biologically active fragments of cardiodilatin are known from U.S. Pat. No. 4,751,284 (cf., W. G. Forssmann et al., Klin. Wochenschr. 1986, 64 (Suppl. VI), 4-12). A review on isolation and characterization of cardiodilatin and fragments thereof, as well as their physiological properties has been published in Eur. J. Clin. Invest. 1986, 16; 439-451 (W. G. Forssmann). From EP 0,349,545, a specific cardiodilatin fragment having a chain length of 32 amino acids is known. Meanwhile, this fragment is also referred to in literature as urodilatin (INN: ularitide). Furthermore, U.S. Pat. No. 5,354,900 (Suntory) describes a biologically active fragment having a chain length of 28 amino acids, known as α-hANP. Further biologically active cardiodilatin fragments or derivatives thereof have been described in EP 0,180,615. Therein, in particular, cardiodilatin fragments are described which begin with the amino acid position Arg102 at the N-terminus and end with the amino acid position Arg125 or Arg126 at the C-terminus. Instead of the designation cardiodilatin, the literature frequently uses the designation “atrial natriuretic peptide” (ANP). In the numbering of the sequences of the cardiodilatin amino acids used in the following, reference is made to the nomenclature used for the ANF/CDD (1-126) peptide (=ANP) in EP 0,349,545.
- A common structural feature of all hitherto known biologically active cardiodilatin fragments is the formation of a disulfide bridge between the amino acids Cys105 and Cys121, resulting in a stable ring of 17 amino acids. It is believed that the formation of this ring is substantially responsible for the biological activity of the cardiodilatin derivatives. At position Cys105, the cardiodilatin fragments are substituted by an amino acid chain R1 having a chain length of 0-15 amino acids, and at position Cys121 by a chain R2 having a chain length of 0-5 amino acids. In the (SEQ ID NO:4), the central region ANP(105-121) (SEQ ID NO:1) is presented in linearized form.
- The cardiodilatin fragment ANP(95-126), with the INN designation ularitide, is a particularly stable and biologically active human peptide, having diuretic activity and a relaxing effect on the smooth vascular muscles, which is formed of 32 amino acids and has the following sequence, wherein both the cysteine amino acids at positions 11 and 27 in the peptide are forming a disulfide bridge (SEQ ID NO:5):
- Urodilatin is found in human urine. EP 0,349,545 describes a process for recovering urodilatin from urine using alginic acid, wherein the peptides adsorbed to alginic acid are eluted, the eluate is fractionated according to conventional purification methods, and the active fraction is recovered using a test based on the examination of the relaxing effect of urodilatin on the smooth muscles.
- Furthermore, EP 0,349,545 describes a stepwise chemical synthesis of urodilatin using the Merrifield process (J. Am. Chem. Soc. 1963, 85; 2149-2156), at a solid phase according to the ABI standard program following the Boc strategy. In addition, this patent specification describes the preparation of urodilatin from the partial fragment ANP(99-126). This fragment is bound to a solid phase, and is reacted with a second partial fragment, the tetrapeptide Boc-Thr(But)-Ala-Pro-Arg(Tos) (SEQ ID NO:15). The peptide ANP(95-126) obtained from the condensation is removed from the support, subjected to cyclization after removal of the protecting groups and subsequently, is processed and purified in a per se known manner.
- Similarly, EP 0,180,615 describes the chemical synthesis using a solid support, wherein formation of the cardiodilatin fragments described therein is effected successively, starting from the C-terminus in direction of the N-terminus. Here, condensation via partial fragments is not described.
- However, the cardiodilatin fragments prepared according to the procedures described in literature did not have the purity necessary for clinical studies and for the authorization as medicinal product because, due to the synthesis, peptide impurities had been introduced into the final product which could not be removed even by subsequent purification processes. Due to their immunogenic properties, the impurities may give rise to undesirable side-effects when administered to the patient, so that therapeutic application involved risk. Moreover, the synthesis could be accomplished at only a small scale under reasonable technical input and was not economically suitable for a larger production scale. Furthermore, another drawback of known processes for synthesis was the existing potential risk of racemization due to which the urodilatin was obtained with lower purity, lower biological activity and in insufficient yield. Racemization of the product which frequently occurs with existing syntheses often resulted in insufficient optical purity of the final product, and these impurities frequently cannot be removed or only with exceedingly high technical input.
- Thus, it is an object of the invention to develop an improved process for the chemical synthesis of cardiodilatin fragments which does not involve the above-mentioned drawbacks.
- The object of the invention is attained by performing the synthesis of cardiodilatin fragments on the basis of the Merrifield process using a specific selection of peptide fragments.
-
FIG. 1 is a flow diagram illustrating the principle of synthesis using the condensation method, depicting urodilatin as an example. -
FIG. 2 is a representation of the fragments R1, (SEQ ID NO:2); ANP (105-121), SEQ ID NO:1); and R2, (SEQ ID NO:3) and the products of their condensation. Synthesizedfragment 1=SEQ ID NO:6; Synthesizedfragment 2=SEQ ID NO:7; Synthesizedfragment 3a=SEQ ID NO:8; Synthesizedfragment 3b=SEQ ID NO:9; Synthesizedfragment 3c=SEQ ID NO:10; Synthesizedfragment 4=SEQ ID NO:11; Synthesizedfragment 5=SEQ ID NO:12; Synthesizedfragment 6=SEQ ID NO:13; Synthesizedfragment 7=SEQ ID NO:14; and Synthesizedfragment 8=SEQ ID NO:5. -
FIG. 3 illustrates the CE chromatogram of a urodilatin production batch produced according to the methods of the prior art. -
FIG. 4 illustrates the CE chromatogram of a urodilatin production batch produced according to the method of the present invention. -
FIG. 5 illustrates the purification of urodilatin and the separation of impurities by high-performance liquid chromatography. -
FIG. 6 illustrates the inability to separate impurities from urodilatin according to conventional purification methods using trifluoroacetic acid. - Surprisingly, the course of synthesis has been found to be optimal when the cardiodilatin fragments are formed using three partial fragments, with the condensation of the partial fragments to give the cardiodilatin fragment of formula I being performed in such fashion that the formation is effected via condensation of partial fragments and bond formation between the amino acid positions Gly108 and Arg108 and the amino acid positions Gly120 and Cys121. This process is advantageous in that the cardiodilatin fragments of formula I can be obtained in higher yields and in higher purity as compared to the synthetic processes known from prior art.
- The synthesis of the cardiodilatin fragments of formula I is effected in such way that initially, the three partial fragments having the sequences R1-ANP(105-108), ANP(109-120) and ANP(121)-R2 are prepared according to the Merrifield process. Then, preferably, condensation of the three partial fragments to give the cardiodilatin fragment of formula I is effected in two partial steps, whereby in a first step, condensation between the amino acid positions Gly120 and Cys121 of the partial fragments ANP(109-120) and Cys121-R2 is effected, with the intermediate fragment ANP(109-121)-R2 being formed. Then, in a subsequent second step, condensation of the thus obtained fragment ANP(109-121)-R2 with the third partial fragment R1-ANP(105-108) is effected, forming the desired cardiodilatin fragment of formula I. Using the process according to the invention, the yield of cardiodilatin fragments is between 15 and 20%, based on the amount of each cardiodilatin partial fragment used as starting material.
- The three partial fragments having the sequences R1-ANP(105-108), ANP(109-120) and ANP(121)-R2 are prepared according to the Merrifield process, wherein the amino acids with functional groups (hydroxy, carboxy, amino, or mercapto groups) present in the sequence are substituted by appropriate protecting groups. For example, as suitable protecting groups the following groups are possible:
- protecting groups for hydroxy groups: Boc (t-butyloxycarbonyl), tBu (t-butyl ether);
- protecting groups for amino functions: Fmoc (9-fluorenylmethoxycarbonyl), Pbf (2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl), Pmc (2,2,5,7,8-pentamethylchroman-6-sulfonyl), Trt (trityl);
- protecting groups for carboxy groups: OtBu (t-butyl ester);
- protecting groups for mercapto groups: Acm (acetamidomethyl) or Trt.
- Here, the following protecting groups are preferred for the following amino acids: tBu for the amino acids Thr, Asn, Tyr or Ser; Pbf or Pmc for the amino acid Arg; Acm for the amino acid Cys; OtBu for the amino acid Asp; Trt for the amino acids Gln, Asn or Cys.
- Using the Fmoc strategy (B. Riniker et al., Tetrahedron 1993, 49; 9307-9320), the protected partial fragments ANP(109-120), R1-ANP(105-108) and ANP(121)-R2 are formed on a solid support material. All the materials generally used in the Merrifield synthesis may serve as solid support materials. Preferred as support material is polystyrene functionalized as aminomethyl or benzhydrylamino compound. The superacid-sensitive bonding of the peptide fragments to the resin by means of the 4-(4-hydroxymethyl-3-methoxyphenoxy)butyric acid linker allows their removal without impeding the side-chain protection. The fragments are purified by digestion with various solvents. Thus, the three starting fragments ANP(109-120), R1-ANP(105-108) and ANP(121)-R2 are obtained with a C-terminal free carboxyl group and in good purity. When forming the peptides on the support resin, the yield in every single step of addition of one amino acid is nearly quantitative and is about 97-99%.
- The flow diagram in
FIG. 1 illustrates the principle of synthesis, with urodilatin ANP(95-126) as an example. Here, condensation of the fragment Boc-1-14-OH (1) (this nomenclature corresponds to the general designation of fragment R1-ANP(105-108), wherein R1=ANP(95-104)) with the fragment H-15-32-OtBu (5) (corresponding to an ANP nomenclature of ANP(109-121)-R2, wherein R2=ANP(122-126)) is effected. This fragment (5) is synthesized from the fragments Fmoc-15-26-OH (2) (corresponding to an ANP nomenclature of ANP(109-120)) and H-27-32-OtBu (3c) (corresponding to an ANP nomenclature of ANP(121)-R2).FIG. 2 represents the fragments synthesized and modified with protecting groups. - In the next step, the carboxyl group of fragment (3a) is converted to the t-butyl ester (3b) (cf., Riniker et al., 22nd Europ. Peptide Symposium Interlaken, September 1992 (L7)). Subsequent removal of the Fmoc group from fragment (3b) leads to the product (3c). This is fused with fragment (2), resulting in fragment (4). Removal of the Fmoc protecting group and condensation of the obtained fragment (5) with fragment (1) leads to the fully protected urodilatin (6). Removal of the protecting groups by treatment with trifluoroacetic acid and 1,3-propanedithiol as a scavenger provides the linear peptide (7) which is cyclized to crude urodilatin (8) by oxidation with iodine solution. This is desalted, purified and may be lyophilized subsequently. The synthesis of other cardiodilatin fragments is conducted in an analogous fashion.
- The synthesis according to the invention, involving the described partial fragments ANP(109-120), R1-ANP(105-108) and ANP(121)-R2 may be applied to all the cardiodilatin fragments of formula I. In particular, cardiodilatin fragments are possible, wherein R1 has a chain length of 0-15 amino acids of the sequence ANP(90-104) or fragments thereof. Preferred for R1 are chain lengths of 1-15 or 3-10 amino acids, particularly the sequences ANP(95-104), ANP(99-104) and ANP(102-104). In particular, the group R2 represents a chain length of 1-5 amino acids of the sequence ANP(122-126) or fragments thereof. Preferably, however, the sequences ANP(122-126) and ANP(122-125) are possible for R2.
- Preferably, the cardiodilatin fragments ANP(95-126), ANP(99-126) and ANP(102-126) may be prepared according to the process of the invention. The cardiodilatin fragments prepared by means of the process of the invention, as well as the partial fragments required for condensation have high optical purity in the range of about 96-99.9%, particularly about 98-99%.
- Similarly, the synthesis is suitable for all the other derivatives of cardiodilatin fragments wherein one or more amino acids in the sequence of human ANP are replaced by other amino acids. In this meaning, replacement of amino acids includes corresponding substitutions, deletions or insertions of amino acids. For example, single or multiple amino acids may be replaced by the corresponding D-amino acids (cf., EP 0,180,615). Likewise, peptides of similar structure and with a corresponding cyclic basic structure of 15-20 amino acids may be prepared in this way. Examples of such peptides are BNP (brain natriuretic peptide) or CNP(C-type natriuretic peptide). The structures of these peptides are described in J. Hypertension 1994, 12; 329-336 (N. C. Davidson and A. D. Struthers).
- Likewise, the present invention is directed to novel partial fragments of ANP which are utilized for the preparation of cardiodilatin fragments of formula I according to the process of the invention.
- More specifically, corresponding peptide fragments are those of the type R1-ANP(105-108), wherein R1 represents an amino acid chain of sequence ANP(90-104) or fragments thereof having a chain length of 0-15 amino acids, as well as their derivatives modified by protecting groups. Here, in particular, R1 has the above-mentioned meanings. Another novel peptide fragment is the fragment having the amino acid sequence ANP(109-120), as well as its derivatives modified by protecting groups, which is employed as a starting material in the condensation with the partial fragment ANP(121)-R2. Likewise, the corresponding ANP(121)-R2 type peptide fragments represent a novelty and a subject matter of the invention, wherein R2 represents an amino acid chain of sequence ANP(122-126) or fragments thereof having a chain length of 0-5 amino acids, as well as their derivatives modified by protecting groups. In particular, R2 has the previously mentioned meaning. In addition, the invention is directed to the intermediate ANP(109-121)-R2 which is formed from the condensation reaction of the partial fragments ANP(109-120) and ANP(121)-R2 effected in the first reaction step.
- Furthermore, the present invention relates to a process for preparing high-purity cardiodilatin fragments of formula I. Conventional synthetic processes and subsequent purification procedures on cardiodilatin fragments suffered from the drawback that in many cases a peptide purity in a range of merely 97-98% could be achieved.
- EP 0,349,545 describes a purity level of about 98% in the case of urodilatin; therein, the amount of urodilatin prepared was merely on a smaller laboratory scale in the range of a few milligrams. The purification procedure described in Example 5 therein is based on a chromatography on a LH column (eluant: 1% AcOH, 1% TFEtOH) and subsequent chromatography on a TSK column (Fractogel TSK-HW 40), wherein an aqueous solution of 10% AcOH and 1% TFETOH was used as the eluant. In a final purification step, purification using preparative HPLC is effected, without any further indications on the eluant being made. Within the scope of later experiments on the preparation of larger amounts of urodilatin in the range of a few grams for performing clinical tests, it was determined, however, that in spite of multiple purification steps, the synthesized material could not be purified beyond a purity level of more than 98%.
- A comparable situation resulted in the case of cardiodilatin fragments described in EP 0,180,615. Therein, for example, the purification for fragment ANP(102-126) in Example III.A.3 referred to as hANVP(127-151)—by chromatography on a type G25F Sephadex column is described, where 0.5 M AcOH was used as the eluant. In a subsequent purification step by means of ion exchange chromatography on CM Sepharose or CM Cellulose using a solvent gradient of 0.01 M NH4OAc/300 mM NH4OAc at pH 4.5, the peptide is obtained in a purity of about 97%. Likewise, this purity achieved is not satisfactory for the requirements in drug manufacturing.
- Surprisingly, it has been found that high-purity cardiodilatin fragments of formula I can be prepared if the crude product is purified using a reversed-phase HPLC column, and the cardiodilatin fragment is eluted using a buffer system containing triethylammonium phosphate (TEAP) and acetonitrile in aqueous solution. Here, preferably, the pH value of the elution buffer is adjusted to a value of 2-5, more specifically, of 2-3. Preferably, a type C18 column, for example, Biotage module type filled with YMC C18 is used as the reversed-phase HPLC column. This column is equilibrated with triethylammonium phosphate buffer prior to loading the cardiodilatin fragments to be purified. For example, a solution of 10-200 mM TEAP, preferably 50 mM TEAP, is employed as a suitable buffer solution. The amount of buffer for column equilibration depends on the column size and this, in turn, on the amount of peptide to be purified. According to experience, a column volume of 75×300 mm (diameter×length) is required to purify an amount of peptide of 3-8 g of crude peptide. In this case, about 300 ml of a 50 mM TEAP buffer solution is required for equilibration. Subsequently, a solution of the concentrated crude product of cardiodilatin fragment is applied. As a solvent, for example, 10% acetic acid is suitable. Thereafter, the peptide is eluted in a continuous gradient by continuous charging of eluant (mixture of an aqueous solution of 10-200 mM TEAP and acetonitrile at a volume ratio of 2:3; pH 2-5). Elution of peptide is particularly advantageous if a continuous gradient of eluant is applied, where 22-28% of solvent gradient is used for a period of 90 minutes, followed by 28% of solvent gradient for 10 minutes and, eventually, 28-40% of gradient for 20 minutes. Preferably, the flow rate is 100-200 ml/min, more specifically, about 140 ml/min. In the meaning of the purification process according to the invention, a buffer mixture of triethylammonium phosphate in water and acetonitrile at a mixing ratio of from 1:3 to 2:1 (v/v), more specifically of about 2:3 (v/v) is used as elution buffer. The pH value of the buffer solution is 2-5, preferably 2-3, and more specifically about 2.25. TEAP may be used at a concentration of 10-200 mM, preferably 20-100 mM, and more specifically, of about 50 mM. According to the invention, optimum separation is achieved in the reversed-phase HPLC by equilibrating the column using 50 mM TEAP, pH 2.25, and eluting the peptide with a buffer consisting of 50 mM TEAP, pH 2.25, and acetonitrile at a ratio of 2:3.
- Conventional purification procedures using aqueous 0.1% trifluoroacetic acid (TFA), for example, are not capable of further separating the polar impurities contained in the crude products, as are revealed in
FIG. 5 in the example of urodilatin (FIG. 6 ). In contrast, in the case of the eluants used according to the invention, there is significant separation of both impurities (seeFIG. 5 ). Furthermore, use of the eluant according to the invention is advantageous in that the base line in the HPLC chromatogram takes an absolutely steady course, while in the case of TFA, a strong drift can be observed. In addition, use of TFA suffers from the drawback that a higher back pressure builds up on the HPLC column, which is not the case for the eluant according to the invention. - Using the process according to the invention, high-purity cardiodilatin fragments of formula I are obtained in a purity of at least 99% and preferably, of up to 99.9%. Optionally, the cardiodilatin fragments may subsequently be converted to their physiologically acceptable salts, such as the acetate or citrate salts. The cardiodilatin fragments obtained are substantially free of peptide impurities so that not only the reversed-phase HPLC exhibits a single peak but also the much more sensitive method of capillary electrophoresis (CE) provides a single migration peak. In the case of urodilatin, the latter shows a mass of 3505.9.+−0.1 in the MS analysis, without byproducts being detected. It turned out that the use of capillary electrophoresis allows an excellent demonstration of the differences between cardiodilatin fragments obtained according to prior art and the cardiodilatin fragments according to the invention.
FIG. 3 illustrates the CE chromatogram of a urodilatin production batch produced according to prior art. Herein, it can be clearly seen that the product still contains impurities. In contrast,FIG. 4 represents the CE chromatogram of a urodilatin production batch produced according to the process of the invention and purified correspondingly. It is clearly obvious that the product is substantially free of other peptide impurities and exhibits a single migration peak in the capillary electrophoresis. - Therefore, the invention is directed to high-purity cardiodilatin fragments of formula I which are remarkable in that they do not contain substantial peptide impurities detectable by capillary electrophoresis and MS analysis, and that the purity analysis using capillary electrophoresis exhibits a single migration peak.
- Similarly, the purification procedure according to the invention is also suitable for the preparation of analogous high-purity peptide compounds such as, e.g., BNP (brain natriuretic peptide), CNP(C-type natriuretic peptide) or derivatives thereof. The cyclic structure of ANP is based on the oxidation of two cysteine residues within the amino acid sequence, forming a cyclic ring of 17 amino acids. Other peptides which also form the characteristic cyclic structure of 15-20 amino acids, particularly 17 amino acids, such as, e.g., BNP or CNP, may be converted to the high-purity forms in the same fashion using the purification procedure according to the invention.
- In the following embodiments, the invention will be illustrated using the selected representative cardiodilatin fragments ANP(95-126), ANP(99-126) and ANP(102-126).
- Starting from the C-terminus of the peptide to be synthesized, the first amino acid (AA) protected by the Fmoc group at the N-terminal end, is bound to the support resin (Fmoc-AA-OHMPB-support resin). With a standard batch of 6.66 mmoles, the Fmoc protecting group is subsequently removed by adding 100 ml of a solvent mixture of piperidine and N-methylpyrrolidine (1:4 v/v). Then, the resin suspension is stirred for 10 minutes, subsequently filtrated, and again, 100 ml of the piperidine and NMP solvent mixture is added. Then, the suspension is stirred for 10 minutes, filtrated and subsequently washed with NMP an isopropanol, and completeness of the reaction is checked using the Kaiser test.
- Thereafter, the next amino acid is coupled to the resin. Initially, 20 mmoles of a 0.5 M solution of diisopropylethanylamine (DIPEA) in NMP is added to the resin, then 2.5 mmoles of a 0.5 M solution of 1-hydroxybenzotriazole (OHBT) in NMP, followed by 10 mmoles of the amino acid to be coupled in 25 ml of NMP. Thereafter, 11 mmoles of a 0.25 M solution of TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate) in NMP is added and stirred for 10 minutes. Completeness of the reaction is checked using the Kaiser test. Subsequently, the resin is filtrated and washed with NMP.
- This process is continued in the same way, until the peptide chain of desired chain length of amino acids is built up on the resin. When synthesis is complete, the resin is dried to constant weight at 40° C.
- b) Removal of the Protected Peptides from the Support Resin
- Each of 10 suction flasks is charged with 75 ml of methanol and 3 ml of pyridine. 50 g of the support resin prepared according to step a) is stirred 10 times with 250 ml of 1% TFA in dry methylene chloride for one minute on the suction funnel, and is filtrated directly into the respective suction flask. These 10 filtrates are checked using thin layer chromatography. Fractions containing product are combined and evaporated to dryness. The residue is triturated with deionized water, and the crystalline residue is filtrated off and dried.
- Following the general procedures of Example 1, and starting from 273 g of Fmoc-Gly-OHMPB-support resin (corresponding to 130 mmoles), 170.3 g of the fully protected cardiodilatin fragment ANP(109-120) is obtained.
- Following the general procedures of Example 1, and starting from 264 g of Fmoc-Tyr-OHMPB-support resin (corresponding to 115 mmoles), 150.7 g of the fully protected cardiodilatin fragment ANP(121-126) is obtained. Here, the N-terminal end of the fragment is protected by the Fmoc group.
- Subsequently, the terminal hydroxy group at the C-terminal end of the fragment is converted to the OtBu protecting group. For esterification, 149 g of the fully protected fragment is dissolved in 500 ml of trifluoroethanol and 4.1 l of chloroform. This is followed by addition of 141 ml of TBTA (t-butyl-2,2,2-trichloroacetimidate), and the solution is heated at reflux for one hour. After the reaction is completed, the solution is concentrated to give a crystalline-oily residue, 6.8 l of diisopropyl ether is added, and the suspension is stirred at room temperature for 14 hours. The product is filtrated off and dried to constant weight. 136.7 g of
fragment 3b indicated inFIG. 2 is obtained. - Subsequently, the Fmoc protecting group at the N-terminal end of the fragment is removed, and conversion to
fragment 3c indicated inFIG. 2 is effected. To this end, a solution offragment 3b (135.7 g) in 1.8 l of DMF and 74 ml of diethylamine is stirred at room temperature for 3 hours. The solution is evaporated to complete dryness in a vacuum. The residue is digested with 1.4 l of deionized water and filtrated off. The wet product is taken up in 3 l of MTBE (methyl t-butyl ether). The solution is extracted with a saturated NaCl solution (2×100 ml), and the organic phase is dried with sodium sulfate. The solution is concentrated to a volume of 500 ml. Following addition of 1.5 l of isopropyl ether, stirring for two hours is effected. The product is filtrated and dried. The yield is 104.6 g offragment 3c indicated inFIG. 2 . - In an analogous manner as described in Example 3, starting from 264 g of Fmoc-Arg(Pbf)-OHMPB-support resin and following the procedure described, 115.1 g of cardiodilatin fragment ANP(121-125) is obtained.
- Following the general procedures of Example 1, and starting from 210 g of Fmoc-Gly-OHMPB-support resin, 151.5 g of the fully protected cardiodilatin fragment ANP(95-108) is obtained.
- Following the general procedures of Example 1, and starting from 190 g of Fmoc-Gly-OHMPB-support resin, 145.1 g of the fully protected cardiodilatin fragment ANP(99-108) is obtained.
- Following the general procedures of Example 1, and starting from 220 g of Fmoc-Gly-OHMPB-support resin, 165.3 g of the fully protected cardiodilatin fragment ANP(102-108) is obtained.
- The fragment ANP(109-120) is converted to the intermediate ANP(109-121)-R2 by condensation with the C-terminal fragment ANP(121)-R2 according to the following general process:
- The fragment ANP(109-120), the amino terminus of which is protected by the Fmoc group, is dissolved in N-methylpyrrolidone. Subsequently, TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate), 1-hydroxybenzotriazole and diisopropylethylamine are added to the solution at room temperature with stirring. Thereafter, the fragment ANP(121)-R2 provided with an appropriate protecting group at the C-terminal end and dissolved in N-methylpyrrolidone is added to the solution. In the following, the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete. Then, the reaction mixture is dripped onto diisopropyl ether with stirring and subsequently stirred for about 30 minutes. The precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with diisopropyl ether. Thereafter, the residue is suspended in acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated on a porcelain suction funnel, rewashed with acetonitrile and dried to constant weight in a vacuum chamber at 40° C. The thus obtained crude product represents the cardiodilatin fragment Fmoc-ANP(109-121)-R2 protected at the amino terminus by the Fmoc protecting group. Thereafter, the Fmoc group is removed according to known procedures to obtain the intermediate product H-ANP(109-121)-R2.
- Following the general procedure described in Example 8, 21.6 g of Fmoc-ANP(109-120) is dissolved in 650 ml of N-methylpyrrolidone. Subsequently, 3.2 g of TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate), 1.5 g of 1-hydroxybenzotriazole and 3.5 ml of diisopropylethylamine are added to the solution at room temperature with stirring. Thereafter, a solution of H-ANP(121-126)-OtBu, dissolved in 150 ml of N-methylpyrrolidone, is added. In the following, the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete. Then, the reaction mixture is dripped onto 4 l of diisopropyl ether with stirring and subsequently stirred for about 30 minutes. The precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with 500 ml of diisopropyl ether. Thereafter, the residue is suspended in 600 ml of acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated on a porcelain suction funnel, rewashed with 300 ml of acetonitrile and dried to constant weight in a vacuum chamber at 40° C. Subsequently, the crude product Fmoc-ANP(109-126) thus obtained in an amount of 32.3 g is converted to the unprotected ANP(109-126) by addition of diethylamine. The yield is 30.2 g.
- Following the general procedure described in Example 8, 18.6 g of Fmoc-ANP(109-120) is dissolved in 600 ml of N-methylpyrrolidone. Subsequently, 3.0 g of TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate), 1.2 g of 1-hydroxybenzotriazole and 3.0 ml of diisopropylethylamine are added to the solution at room temperature with stirring. Thereafter, a solution of H-ANP(121-125)-OtBu, dissolved in 150 ml of N-methylpyrrolidone, is added. In the following, the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete. Then, the reaction mixture is dripped onto 4 l of diisopropyl ether with stirring and subsequently stirred for about 30 minutes. The precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with 450 ml of diisopropyl ether. Thereafter, the residue is suspended in 500 ml of acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated off on a porcelain suction funnel, rewashed with 250 ml of acetonitrile and dried to constant weight in a vacuum chamber at 40° C. Subsequently, the crude product Fmoc-ANP(109-125) thus obtained in an amount of 29.1 g is converted to the unprotected ANP(109-125) by addition of diethylamine. The yield is 28.2 g.
- The intermediate ANP(109-121)-R2 is converted to the final product R1-ANP(105-121)-R2 by condensation with the amino-terminal fragment R1-ANP(105-108) according to the following general process:
- The fragment R1-ANP(105-108), the amino terminus of which is protected by an appropriate protecting group, is dissolved in N-methylpyrrolidone. Subsequently, TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate), 1-hydroxybenzotriazole and diisopropylethylamine are added to the solution at room temperature with stirring. Thereafter, the fragment ANP(109-121)-R2 provided with an appropriate protecting group at the C-terminal end and dissolved in N-methylpyrrolidone is added to the solution. In the following, the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete. Then, the reaction mixture is dripped onto diisopropyl ether with stirring and subsequently stirred for about 30 minutes. The precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with diisopropyl ether. Thereafter, the residue is suspended in acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated off on a porcelain suction funnel, rewashed with acetonitrile and dried to constant weight in a vacuum chamber at 40° C. The thus obtained crude product represents the cardiodilatin fragment R1-ANP(105-121)-R2 protected by appropriate protecting groups at the amino terminus and the C-terminus. Thereafter, the protecting group is removed according to known procedures to obtain the intermediate product H—R1-ANP(109-121)-R2. Following complete removal of the protecting groups, the obtained cardiodilatin fragment is converted to the cyclized derivative by oxidation and according to known procedures, for example, using iodine.
- Following the general procedure described in Example 11, 20.6 g of Boc-ANP(95-108) is dissolved in 400 ml of N-methylpyrrolidone. Subsequently, 2.7 g of TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate), 1.3 g of 1-hydroxybenzotriazole and 2.7 ml of diisopropylethylamine are added to the solution at room temperature with stirring. Thereafter, a solution of 29.4 g of H-ANP(109-126)-OtBu, dissolved in 400 ml of N-methylpyrrolidone, is added. In the following, the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete. Then, the reaction mixture is dripped onto 6.5 l of diisopropyl ether with stirring and subsequently stirred for about 30 minutes. The precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with 500 ml of diisopropyl ether. Thereafter, the residue is suspended in 600 ml of acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated off on a porcelain suction funnel, rewashed with 500 ml of acetonitrile and dried to constant weight in a vacuum chamber at 40° C. Subsequently, the crude product Boc-ANP(95-126)-OtBu thus obtained in an amount of 42.5 g is converted to the unprotected ANP(95-126) and dried. The yield is 27.5 g.
- 60 g of unprotected ANP(95-126) is dissolved in 16 l of 5% acetic acid in deionized water (v/v) and oxidized by addition of 570 ml of a 0.02 M methanolic iodine solution. The reaction is complete after 5 minutes. Excess iodine is destroyed by addition of a 0.1 M sodium thiosulfate solution. The cyclization solution obtained is subjected directly to further processing.
- Analogous to the procedure described in Example 12, 22.5 g of Boc-ANP(99-108) is dissolved in 400 ml of N-methylpyrrolidone. Subsequently, 2.9 g of TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate), 1.4 g of 1-hydroxybenzotriazole and 2.8 ml of diisopropylethylamine are added to the solution at room temperature with stirring. Thereafter, a solution of 30.6 g of H-ANP(109-126)-OtBu, dissolved in 400 ml of N-methylpyrrolidone, is added. In the following, the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete. Then, the reaction mixture is dripped onto 6.5 l of diisopropyl ether with stirring and subsequently stirred for about 30 minutes. The precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with 500 ml of diisopropyl ether. Thereafter, the residue is suspended in 600 ml of acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated off on a porcelain suction funnel, rewashed with 500 ml of acetonitrile and dried to constant weight in a vacuum chamber at 40° C. Subsequently, the crude product Boc-ANP(99-126)-OtBu thus obtained in an amount of 44.7 g is converted to the unprotected ANP(99-126) and dried. The yield is 28.1 g.
- Analogous to the procedure described in Example 12, 20.4 g of Boc-ANP(102-108) is dissolved in 360 ml of N-methylpyrrolidone. Subsequently, 2.7 g of TBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate), 1.4 g of 1-hydroxybenzotriazole and 2.6 ml of diisopropylethylamine are added to the solution at room temperature with stirring. Thereafter, a solution of 30.1 g of H-ANP(109-126)-OtBu, dissolved in 400 ml of N-methylpyrrolidone, is added. In the following, the reaction is monitored by thin layer chromatography. After about 2 hours, the reaction is complete. Then, the reaction mixture is dripped onto 6.5 l of diisopropyl ether with stirring and subsequently stirred for about 30 minutes. The precipitate is filtrated on a porcelain suction funnel over hard filter and washed twice with 500 ml of diisopropyl ether. Thereafter, the residue is suspended in 600 ml of acetonitrile and digested at room temperature with stirring. Subsequently, the product is filtrated off on a porcelain suction funnel, rewashed with 500 ml of acetonitrile and dried to constant weight in a vacuum chamber at 40° C. Subsequently, the crude product Boc-ANP(102-126)-OtBu thus obtained in an amount of 41.2 g is converted to the unprotected ANP(102-126) and dried. The yield is 26.9 g.
- The cyclization solution (about 17 liters of 5% AcOH, in deionized water (v/v), contains about 60 g of cyclized urodilatin) is applied (flow rate 130 ml/min) on a glass column (diameter: 70 mm, length: 900 mm, filled with Vydac 218 TPB 2030) equilibrated with 1000 ml of buffer A3 (0.1% TFA (v/v) in deionized water).
- Once application by pumping is finished, the peptide is eluted by continuous charging of buffer B3 (0.1% TFA in deionized water/ACN 2:3 v/v) in a continuous gradient (0% buffer B during 40 min; 15-35% buffer B during 90 min; 35% buffer B during 10 min; flow rate 130 ml/min).
- urodilatin fractions showing a purity of more than 75% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and applied (flow rate 140 ml/min) on a Biotage module (diameter: 75 mm, length: 300 mm, filled with YMC C18, 120 A, 10 μm) equilibrated with 300 ml of buffer A3.
- Subsequently, the concentrated peptide is eluted by washing the column with 100% buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- Between 17 and 20 g of urodilatin with a purity of more than 90% is obtained.
- 4.5 g of the concentrated urodilatin is dissolved in 250 ml of 10′, AcOH in deionized water (v/v) and applied (flow rate 140 ml/min) on a Biotage module (diameter: 75 mm, length: 300 mm, filled with YMC C18, 120 A, 10 μm) equilibrated with 300 ml of buffer A4 (50 mM TEAP, pH 2.25, in deionized water).
- The peptide is eluted by continuous charging of buffer B4 (50 mM TEAP, pH 2.25 in deionized water/ACN 2:3 v/v) in a continuous gradient (22-28% B during 90 min; 28% B during 10 min; 28-40% B during 20 min; flow rate 140 ml/min).
- urodilatin fractions showing a purity of more than 99% and impurities of not more than 0.5% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and pumped onto the Biotage module previously cleaned with 1000 ml of buffer B3 and subsequently equilibrated with 300 ml of buffer A3. For desalting, a washing with 1200 ml of buffer A3 is made.
- The pure product is eluted by washing the column with 1500 ml of buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- The result is between 2.3 and 2.7 g of high-purity urodilatin.
- 2.5 g of high-purity urodilatin×TFA salt is dissolved in 80 ml of 5% AcOH, in deionized water v/v, and applied to a chromatography column (diameter: 20 mm, length: 300 mm, filled with 40 ml of Merck ion exchanger III acetate form) washed with 5% AcOH. A washing with 40 ml of 5% AcOH is made. The eluate, about 125 ml, is applied once more to the same ion exchange column. A washing with 55 ml of 5% AcOH is made. The eluate, about 180 ml, is filtrated clear over a polysulfone membrane (diameter 47 mm, 0.2 μm). The solution is lyophilized.
- The result is between 2.05 and 2.30 g of high-purity urodilatin acetate.
- Analogous to Example 15a), the cyclization solution (about 15 liters of 5% AcOH, in deionized water (v/v), with a peptide content of about 50 g) is applied (flow rate 130 ml/min) on a glass column equilibrated with 1000 ml of buffer A3 (0.1% TFA (v/v) in deionized water). Once application by pumping is finished, the peptide is eluted by continuous charging of buffer B3 (0.1% TFA in deionized water/ACN 2:3 v/v) in a continuous gradient (0% buffer B during 40 min; 15-35% buffer B during 90 min; 35% buffer B during 10 min; flow rate 130 ml/min). Peptide fractions showing a purity of more than 75% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and applied (flow rate 140 ml/min) on a Biotage module equilibrated with 300 ml of buffer A3. Subsequently, the concentrated peptide is eluted by washing the column with 100% buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- The result is between 14 and 17 g of cardiodilatin fragment ANP(99-126) with a purity of more than 90%.
- 3.5 g of the cardiodilatin fragment concentrated according to Example 16a) is dissolved in 200 ml of 10% AcOH in deionized water (v/v) and applied (flow rate 140 ml/min) on a Biotage module equilibrated with 300 ml of buffer A4 (50 mM TEAP, pH 2.25, in deionized water). The peptide is eluted by continuous charging of buffer B4 (50 mM TEAP, pH 2.25 in deionized water/ACN 2:3 v/v) in a continuous gradient (22-28% B during 90 min; 28% B during 10 min; 28-40% B during 20 min; flow rate 140 ml/min).
- Peptide fractions showing a purity of more than 99% and impurities of not more than 0.5% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and pumped onto the Biotage module previously cleaned with 1000 ml of buffer B3 and subsequently equilibrated with 300 ml of buffer A3. For desalting, a washing with 1000 ml of buffer A3 is made.
- The pure product is eluted by washing the column with 1500 ml of buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- The result is between 1.7 and 2.2 g of high-purity cardiodilatin fragment ANP(99-126). Analogous to the procedure described in Example 14c), this fragment is converted to the corresponding acetate salt. The result is between 1.3 and 1.7 g of high-purity ANP(99-126) acetate.
- Analogous to Example 15a), the cyclization solution (about 18 liters of 5% AcOH, in deionized water (v/v), with a peptide content of about 65 g) is applied (flow rate 130 ml/min) on a glass column equilibrated with 1000 ml of buffer A3 (0.1% TFA (v/v) in deionized water). Once application by pumping is finished, the peptide is eluted by continuous charging of buffer B3 (0.1% TFA in deionized water/ACN 2:3 v/v) in a continuous gradient (0% buffer B during 40 min; 15-35% buffer B during 90 min; 35% buffer B during 10 min; flow rate 130 ml/min). Peptide fractions showing a purity of more than 75% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and applied (flow rate 140 ml/min) on a Biotage module equilibrated with 300 ml of buffer A3. Subsequently, the concentrated peptide is eluted by washing the column with 100% buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- The result is between 19 and 23 g of cardiodilatin fragment ANP(102-126) with a purity of more than 90%.
- 4.8 g of the cardiodilatin fragment concentrated according to Example 17a) is dissolved in 200 ml of 10% AcOH in deionized water (v/v) and applied (flow rate 140 ml/min) on a Biotage module equilibrated with 300 ml of buffer A4 (50 mM TEAP, pH 2.25, in deionized water). The peptide is eluted by continuous charging of buffer B4 (50 mM TEAP, pH 2.25 in deionized water/ACN 2:3 v/v) in a continuous gradient (22-28% B during 90 min; 28% B during 10 min; 28-40% B during 20 min; flow rate 140 ml/min).
- Peptide fractions showing a purity of more than 99% and impurities of not more than 0.5% on monitoring by analytical HPLC are combined. These combined fractions are diluted with one volume equivalent of deionized water and pumped onto the Biotage module previously cleaned with 1000 ml of buffer B3 and subsequently equilibrated with 300 ml of buffer A3. For desalting, a washing with 1000 ml of buffer A3 is made.
- The pure product is eluted by washing the column with 1500 ml of buffer B3, and the acetonitrile is evaporated. The remaining solution is lyophilized.
- The result is between 1.9 and 2.4 g of high-purity cardiodilatin fragment ANP(102-126). Analogous to the procedure described in Example 14c), this fragment is converted to the corresponding acetate salt. The result is between 1.5 and 1.9 g of high-purity ANP(99-126) acetate.
- a) Elution with TEAP Buffer, pH 2.25
- 50 μg of ANP(95-126) is injected onto an analytical HPLC column. A linear gradient of buffer B of 25-45% during 20 minutes (buffer A: 50 mM TEAP, pH 2.25; buffer B: mixture of A and acetonitrile at a volume ratio of 2:3) served as the eluant. The chromatogram in
FIG. 5 reveals that two polar impurities are contained which may be separated by the eluant employed. - 25-45% in 20 min.
- 215 nm 1.0 ml/C-Nr. 4040465 C
- Method: 50 μg; TAG 243 CH: 1; Peak reject: 5000
File: 1; Calculation method: area %; Table: 0; conc: area -
No. RT Area % BC 5 7.82 53358 0.,311 BV 6 8.08 84196 0.491 VV 7 9.07 386602 2.255 VV 8 9.78 1265799 7.384 VV 9 10.56 4701290 27.430 VV 10 10.92 10557085 61.582 VV 11 11.91 27613 0.161 TBB 12 12.82 8763 0.051 TBB 13 13.76 14346 0.084 BB 14 14.86 31959 0.186 BB 15 14.86 10892 0.064 BB Total 17143003 100.00
b) Elution with 0.1% TFA (Trifluoroacetic Acid) - Analogous to Example 18a), 50 μg of ANP(95-126) same production batch is applied onto an analytical HPLC column. A linear gradient of buffer B of 30-50% during 20 minutes (buffer A: 0.1% TFA in water; buffer B: mixture of A and acetonitrile at a volume ratio of 2:3) served as the eluant. The chromatogram in
FIG. 6 reveals that separation of the contained impurities by means of this eluant is not effected. Compared to the chromatogram in Example a), the main peak is broader and the isolated product contains both of the polar impurities which can be recognized in the chromatogramFIG. 5 . - Buffer A: 0.1% TFA in water
- 215 nm 1.0 ml/C-Nr. 4011079 C
- Method: 50 μg; TAG 142; CH: 1; Peak reject: 5000
File: 2; Calculation method: area %; Table: 0; conc: area -
No. RT Area % BC 2 3.64 5073 0.040 BV 4 5.10 6624 0.053 BB 5 5.92 8161 0.065 BB 6 7.36 6814 0.054 BB 7 9.11 252878 2.012 BB 9 11.73 87629 0.697 BB 10 12.60 258273 2.055 BB 11 13.09 4578590 36.428 VV 12 13.26 7175177 57.086 VV 13 14.67 179155 1.425 TB 14 17.48 10611 0.084 BB Total 12568985 100.00 - Lyophilized samples of the final products of cardiodilatin fragments from Examples 15 through 17 are dissolved in water at a concentration of 1 mg/ml and analyzed immediately. Capillary electrophoresis was performed using the Beckman P/ACE 2100 system under the following conditions:
- Capillary: Fused Silica by Supelco, separation length 50 cm, internal diameter 75 μm
- Detection wave length: 200 nm
- Injection period: 1 s
- Separation buffer: 100 mM sodium phosphate, pH 2.5; 0.02% hydroxypropylmethylcellulose
- Separation parameters: 25° C., 80 μA, 30 min
-
FIG. 3 shows the chromatogram obtained for prior art urodilatin. -
FIG. 4 shows the chromatogram for high-purity urodilatin obtained according to Example 15. - A comparison of both chromatograms reveals that the urodilatin according to the invention differs significantly from prior art urodilatin. The urodilatin according to the invention is free of peptide impurities.
- Asp L-Asparaginic acid
- Boc t-Butyloxycarbonyl
- OtBu t-Butyl ester
2,2,4,6,7-Pentamethyldihydrobenzofuran-5-sulfonylPbf
2,2,5,7,8-Pentamethylchroman-6-sulfonylPmc
tBu t-Butyl ether - TFA Trifluoroacetic acid
TEAP Triethylammonium phosphate
Claims (22)
1-20. (canceled)
21. A process for purifying a cardiodilatin fragment having the formula R1-ANP(105-121)-R2 and a total chain length of 17-37 amino acids, wherein
ANP(105-121) is the amino acid sequence of SEQ ID NO:1,
R1 is absent or the amino acid sequence ANP(90-104) (SEQ ID NO:2) or a fragment thereof,
R2 is absent or the amino acid sequence ANP(122-126) (SEQ ID NO:3) or a fragment thereof, wherein the process comprises the steps of
loading a crude product containing the cardiodilatin fragment on a reversed-phase HPLC column, and
eluting the cardiodilatin fragment with a buffer system containing either triethylammonium phosphate and acetonitrile, or trifluoroacetic acid and acetonitrile.
22. The process of claim 21 , wherein R1 is a fragment selected from the group consisting of ANP(95-104), ANP(99-104), and ANP(102-104).
23. The process of claim 21 , wherein R2 is a fragment selected from the group consisting of ANP(122-125) and ANP(122-126).
24. The process of claim 21 , wherein the HPLC column is a C18 column.
25. The process of claim 21 , wherein the buffer system contains triethylammonium phosphate and acetonitrile.
26. The process of claim 21 , wherein the buffer system contains trifluoroacetic acid and acetonitrile.
27. The process of claim 21 , wherein the pH of the elution buffer is 2-5.
28. The process of claim 27 , wherein the pH of the elution buffer is 2-3.
29. The process of claim 28 , wherein the pH of the elution buffer is 2.25.
30. The process of claim 21 , wherein the process further comprises equilibrating the reversed-phase HPLC column with a triethylammonium phosphate buffer prior to loading the crude product containing the cardiodilatin fragment.
31. The process of claim 30 , wherein the buffer has a concentration of 10-200 mM.
32. The process of claim 31 , wherein the buffer has a concentration of 50 mM.
33. The process of claim 30 , wherein the cardiodilatin fragment is eluted by continuous charging of a buffer mixture of triethylammonium phosphate in water and acetonitrile in a continuous gradient.
34. The process of claim 33 , wherein the concentration of triethylammonium phosphate in the buffer mixture is 10-200 mM.
35. The process of claim 34 , wherein the concentration is 50 mM.
36. The process of claim 33 , wherein the ratio of triethylammonium phosphate in water to acetonitrile is 2:3 v/v.
37. The process of claim 33 , wherein the pH of the elution buffer is 2-5.
38. The process of claim 33 , wherein the pH of the elution buffer is 2-3.
39. The process of claim 33 , wherein the pH of the elution buffer is 2.25.
40. The process of claim 21 , wherein the process produces a cardiodilatin fragment selected from the group consisting of ANP(95-126), ANP(99-126), ANP(102-106) and ANP(103-126).
41. The process of claim 21 , wherein the process produces a cardiodilatin fragment having a purity of 96-99.9%.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/881,669 US20090240031A1 (en) | 1994-06-02 | 2007-07-27 | Process and intermediate products for preparing cardiodilatin fragments, and highly purified cardiodilatin fragments |
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE4420381 | 1994-06-02 | ||
| DEP4420381.0 | 1994-06-02 | ||
| DE19513784.1 | 1995-04-10 | ||
| DE19513784A DE19513784A1 (en) | 1994-06-02 | 1995-04-10 | High purity urodilatin and process for its manufacture |
| US08/737,927 US5767239A (en) | 1994-06-02 | 1995-05-30 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
| PCT/EP1995/002050 WO1995033769A1 (en) | 1994-06-02 | 1995-05-30 | Process and intermediate products for preparing cardiodilatin fragments, and highly purified cardiodilatin fragments |
| US09/027,777 US20030171536A1 (en) | 1994-06-02 | 1998-02-23 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
| US11/084,190 US20060122371A1 (en) | 1994-06-02 | 2005-03-21 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
| US11/881,669 US20090240031A1 (en) | 1994-06-02 | 2007-07-27 | Process and intermediate products for preparing cardiodilatin fragments, and highly purified cardiodilatin fragments |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/084,190 Continuation US20060122371A1 (en) | 1994-06-02 | 2005-03-21 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/684,734 Continuation US7932713B2 (en) | 2007-07-26 | 2010-01-08 | Method and apparatus for amplifying a signal and test device using same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090240031A1 true US20090240031A1 (en) | 2009-09-24 |
Family
ID=25937342
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/737,927 Expired - Lifetime US5767239A (en) | 1994-06-02 | 1995-05-30 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
| US09/027,777 Abandoned US20030171536A1 (en) | 1994-06-02 | 1998-02-23 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
| US11/084,190 Abandoned US20060122371A1 (en) | 1994-06-02 | 2005-03-21 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
| US11/881,669 Abandoned US20090240031A1 (en) | 1994-06-02 | 2007-07-27 | Process and intermediate products for preparing cardiodilatin fragments, and highly purified cardiodilatin fragments |
| US12/702,894 Abandoned US20100317600A1 (en) | 1994-06-02 | 2010-02-09 | Process for Preparing Cardiodilatin Fragments; Highly Purified Cardiodilatin Fragments and Intermediate Products for the Preparation of Same |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/737,927 Expired - Lifetime US5767239A (en) | 1994-06-02 | 1995-05-30 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
| US09/027,777 Abandoned US20030171536A1 (en) | 1994-06-02 | 1998-02-23 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
| US11/084,190 Abandoned US20060122371A1 (en) | 1994-06-02 | 2005-03-21 | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/702,894 Abandoned US20100317600A1 (en) | 1994-06-02 | 2010-02-09 | Process for Preparing Cardiodilatin Fragments; Highly Purified Cardiodilatin Fragments and Intermediate Products for the Preparation of Same |
Country Status (8)
| Country | Link |
|---|---|
| US (5) | US5767239A (en) |
| EP (1) | EP0763061B1 (en) |
| JP (2) | JPH10500969A (en) |
| AT (1) | ATE226960T1 (en) |
| AU (1) | AU2671795A (en) |
| ES (1) | ES2188665T3 (en) |
| IL (1) | IL113979A0 (en) |
| WO (1) | WO1995033769A1 (en) |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9266939B2 (en) | 2010-12-27 | 2016-02-23 | Alexion Pharmaceuticals, Inc. | Compositions comprising natriuretic peptides and methods of use thereof |
| US10052366B2 (en) | 2012-05-21 | 2018-08-21 | Alexion Pharmaceuticsl, Inc. | Compositions comprising alkaline phosphatase and/or natriuretic peptide and methods of use thereof |
| US10449236B2 (en) | 2014-12-05 | 2019-10-22 | Alexion Pharmaceuticals, Inc. | Treating seizure with recombinant alkaline phosphatase |
| CN110845599A (en) * | 2018-08-21 | 2020-02-28 | 鲁南制药集团股份有限公司 | Preparation and purification method of polypeptide |
| US10603361B2 (en) | 2015-01-28 | 2020-03-31 | Alexion Pharmaceuticals, Inc. | Methods of treating a subject with an alkaline phosphatase deficiency |
| US10822596B2 (en) | 2014-07-11 | 2020-11-03 | Alexion Pharmaceuticals, Inc. | Compositions and methods for treating craniosynostosis |
| US10898549B2 (en) | 2016-04-01 | 2021-01-26 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia in adolescents and adults |
| US10988744B2 (en) | 2016-06-06 | 2021-04-27 | Alexion Pharmaceuticals, Inc. | Method of producing alkaline phosphatase |
| US11065306B2 (en) | 2016-03-08 | 2021-07-20 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia in children |
| US11116821B2 (en) | 2016-08-18 | 2021-09-14 | Alexion Pharmaceuticals, Inc. | Methods for treating tracheobronchomalacia |
| US11186832B2 (en) | 2016-04-01 | 2021-11-30 | Alexion Pharmaceuticals, Inc. | Treating muscle weakness with alkaline phosphatases |
| US11224637B2 (en) | 2017-03-31 | 2022-01-18 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia (HPP) in adults and adolescents |
| US11229686B2 (en) | 2015-09-28 | 2022-01-25 | Alexion Pharmaceuticals, Inc. | Reduced frequency dosage regimens for tissue non-specific alkaline phosphatase (TNSALP)-enzyme replacement therapy of hypophosphatasia |
| US11248021B2 (en) | 2004-04-21 | 2022-02-15 | Alexion Pharmaceuticals, Inc. | Bone delivery conjugates and method of using same to target proteins to bone |
| EP3805246A4 (en) * | 2018-05-30 | 2022-03-23 | Hybio Pharmaceutical Co., Ltd. | LONG CHAIN POLYPEPTIDE PURIFICATION METHOD |
| US11352612B2 (en) | 2015-08-17 | 2022-06-07 | Alexion Pharmaceuticals, Inc. | Manufacturing of alkaline phosphatases |
| US11400140B2 (en) | 2015-10-30 | 2022-08-02 | Alexion Pharmaceuticals, Inc. | Methods for treating craniosynostosis in a patient |
| US11913039B2 (en) | 2018-03-30 | 2024-02-27 | Alexion Pharmaceuticals, Inc. | Method for producing recombinant alkaline phosphatase |
| US12083169B2 (en) | 2021-02-12 | 2024-09-10 | Alexion Pharmaceuticals, Inc. | Alkaline phosphatase polypeptides and methods of use thereof |
| US12268733B2 (en) | 2018-08-10 | 2025-04-08 | Alexion Pharmaceuticals, Inc. | Methods of treating neurofibromatosis type 1 and related conditions with alkaline phosphatase |
| US12433938B2 (en) | 2019-12-09 | 2025-10-07 | Alexion Pharmaceuticals, Inc. | Alkaline phosphatase polypeptides and methods of use thereof |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5767239A (en) * | 1994-06-02 | 1998-06-16 | Boehringer Mannheim Gmbh | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
| US6833358B1 (en) * | 1998-09-28 | 2004-12-21 | Santen Pharmaceutical Co., Ltd. | Lacrimal secretion promoters or eye drops for treating keratoconjunctival failure containing as the active ingredient natriuretic peptides |
| UA71608C2 (en) * | 1999-03-11 | 2004-12-15 | Merck Patent Gmbh | A method for producing the cyclic pentapeptide |
| CA2582083A1 (en) * | 2004-10-04 | 2006-04-20 | Novetide, Ltd. | A counterion exchange process for peptides |
| ES2554713T3 (en) | 2005-04-07 | 2015-12-22 | Cardiorentis Ag | Use of a natriuretic peptide to treat heart failure |
| WO2009015011A1 (en) * | 2007-07-20 | 2009-01-29 | Mayo Foundation For Medical Education And Research | Natriuretic polypeptides |
| EP2234603A1 (en) * | 2007-12-19 | 2010-10-06 | EKR Therapeutics, Inc. | Room temperature stable, lyophilized natriuretic peptide formulations |
| WO2013103896A1 (en) | 2012-01-06 | 2013-07-11 | Mayo Foundation For Medical Education And Research | Treating cardiovascular or renal diseases |
| JP6108858B2 (en) | 2012-02-17 | 2017-04-05 | 株式会社半導体エネルギー研究所 | P-type semiconductor material and semiconductor device |
| TW201442722A (en) | 2013-01-25 | 2014-11-16 | Cardiorentis Ltd | Use of peptides to treat cardiovascular indications |
| CN103145827A (en) * | 2013-03-04 | 2013-06-12 | 吉尔生化(上海)有限公司 | Solid-phase synthesis method of ularitide |
| WO2016131943A1 (en) | 2015-02-20 | 2016-08-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of obesity and complications arising therefrom including type 2 diabetes |
| CN106928342B (en) * | 2015-12-31 | 2020-10-16 | 深圳翰宇药业股份有限公司 | Preparation method of ularitide |
| WO2022029499A1 (en) | 2020-08-06 | 2022-02-10 | Ads Aiphia Development Services Ag | Methods of treating refractory ascites |
| WO2022029497A1 (en) | 2020-08-06 | 2022-02-10 | Ads Aiphia Development Services Ag | Ularitide for use in methods of treating refractory ascites |
| EP4333846A1 (en) | 2021-05-06 | 2024-03-13 | Rigshospitalet | Diagnosing and treating critically ill subjects |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4751284A (en) * | 1983-12-24 | 1988-06-14 | Organogen Medizinisch-Molekularbiologische Forschungsgesellschaft m.b.H | Cardiodilatin, a new peptide hormone and process for its preparation |
| US5057603A (en) * | 1986-01-31 | 1991-10-15 | Merck & Co., Inc. | Peptides having ANF activity |
| US5449751A (en) * | 1987-03-02 | 1995-09-12 | Pharma Bissendorf Peptide Gmbh | Cardiodilatin fragment, process for preparing same and use thereof |
| US5767239A (en) * | 1994-06-02 | 1998-06-16 | Boehringer Mannheim Gmbh | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU572173B2 (en) * | 1983-08-29 | 1988-05-05 | Institut De Recherches Cliniques De Montreal | Natriuretic factors |
| DE3588006T2 (en) * | 1984-04-19 | 1995-08-10 | Scios Nova Inc | ATRIAL NATURAL URBAN / VASILIZING POLYPEPTIDES. |
| JPH0672157B2 (en) * | 1984-08-29 | 1994-09-14 | 味の素株式会社 | New peptide |
| AU614738B2 (en) * | 1987-03-02 | 1991-09-12 | Forssmann, Prof. Dr. Med Wolf-Georg | New cardiodilatin fragment, process for preparing same and use thereof |
| US5204327A (en) * | 1988-11-18 | 1993-04-20 | Ashi Kasei Kogyo Kabushiki Kaisha | Treatment of cerebral edema with anp pharmaceutical compositions |
-
1995
- 1995-05-30 US US08/737,927 patent/US5767239A/en not_active Expired - Lifetime
- 1995-05-30 JP JP8500318A patent/JPH10500969A/en not_active Withdrawn
- 1995-05-30 AU AU26717/95A patent/AU2671795A/en not_active Abandoned
- 1995-05-30 AT AT95921780T patent/ATE226960T1/en not_active IP Right Cessation
- 1995-05-30 WO PCT/EP1995/002050 patent/WO1995033769A1/en not_active Ceased
- 1995-05-30 ES ES95921780T patent/ES2188665T3/en not_active Expired - Lifetime
- 1995-05-30 EP EP95921780A patent/EP0763061B1/en not_active Expired - Lifetime
- 1995-06-01 IL IL11397995A patent/IL113979A0/en unknown
-
1998
- 1998-02-23 US US09/027,777 patent/US20030171536A1/en not_active Abandoned
-
2005
- 2005-03-21 US US11/084,190 patent/US20060122371A1/en not_active Abandoned
- 2005-07-11 JP JP2005202136A patent/JP4130671B2/en not_active Expired - Lifetime
-
2007
- 2007-07-27 US US11/881,669 patent/US20090240031A1/en not_active Abandoned
-
2010
- 2010-02-09 US US12/702,894 patent/US20100317600A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4751284A (en) * | 1983-12-24 | 1988-06-14 | Organogen Medizinisch-Molekularbiologische Forschungsgesellschaft m.b.H | Cardiodilatin, a new peptide hormone and process for its preparation |
| US5057603A (en) * | 1986-01-31 | 1991-10-15 | Merck & Co., Inc. | Peptides having ANF activity |
| US5449751A (en) * | 1987-03-02 | 1995-09-12 | Pharma Bissendorf Peptide Gmbh | Cardiodilatin fragment, process for preparing same and use thereof |
| US5665861A (en) * | 1987-03-02 | 1997-09-09 | Haemopep Pharma Gmbh | Cardiodilatin fragment, process for preparing same and use thereof |
| US5767239A (en) * | 1994-06-02 | 1998-06-16 | Boehringer Mannheim Gmbh | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11248021B2 (en) | 2004-04-21 | 2022-02-15 | Alexion Pharmaceuticals, Inc. | Bone delivery conjugates and method of using same to target proteins to bone |
| US9266939B2 (en) | 2010-12-27 | 2016-02-23 | Alexion Pharmaceuticals, Inc. | Compositions comprising natriuretic peptides and methods of use thereof |
| US10052366B2 (en) | 2012-05-21 | 2018-08-21 | Alexion Pharmaceuticsl, Inc. | Compositions comprising alkaline phosphatase and/or natriuretic peptide and methods of use thereof |
| US10822596B2 (en) | 2014-07-11 | 2020-11-03 | Alexion Pharmaceuticals, Inc. | Compositions and methods for treating craniosynostosis |
| US10449236B2 (en) | 2014-12-05 | 2019-10-22 | Alexion Pharmaceuticals, Inc. | Treating seizure with recombinant alkaline phosphatase |
| US11224638B2 (en) | 2014-12-05 | 2022-01-18 | Alexion Pharmaceuticals, Inc. | Treating seizure with recombinant alkaline phosphatase |
| US11564978B2 (en) | 2015-01-28 | 2023-01-31 | Alexion Pharmaceuticals, Inc. | Methods of treating a subject with an alkaline phosphatase deficiency |
| US10603361B2 (en) | 2015-01-28 | 2020-03-31 | Alexion Pharmaceuticals, Inc. | Methods of treating a subject with an alkaline phosphatase deficiency |
| US11352612B2 (en) | 2015-08-17 | 2022-06-07 | Alexion Pharmaceuticals, Inc. | Manufacturing of alkaline phosphatases |
| US11229686B2 (en) | 2015-09-28 | 2022-01-25 | Alexion Pharmaceuticals, Inc. | Reduced frequency dosage regimens for tissue non-specific alkaline phosphatase (TNSALP)-enzyme replacement therapy of hypophosphatasia |
| US11400140B2 (en) | 2015-10-30 | 2022-08-02 | Alexion Pharmaceuticals, Inc. | Methods for treating craniosynostosis in a patient |
| US11065306B2 (en) | 2016-03-08 | 2021-07-20 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia in children |
| US11186832B2 (en) | 2016-04-01 | 2021-11-30 | Alexion Pharmaceuticals, Inc. | Treating muscle weakness with alkaline phosphatases |
| US10898549B2 (en) | 2016-04-01 | 2021-01-26 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia in adolescents and adults |
| US10988744B2 (en) | 2016-06-06 | 2021-04-27 | Alexion Pharmaceuticals, Inc. | Method of producing alkaline phosphatase |
| US11116821B2 (en) | 2016-08-18 | 2021-09-14 | Alexion Pharmaceuticals, Inc. | Methods for treating tracheobronchomalacia |
| US11224637B2 (en) | 2017-03-31 | 2022-01-18 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia (HPP) in adults and adolescents |
| US11913039B2 (en) | 2018-03-30 | 2024-02-27 | Alexion Pharmaceuticals, Inc. | Method for producing recombinant alkaline phosphatase |
| EP3805246A4 (en) * | 2018-05-30 | 2022-03-23 | Hybio Pharmaceutical Co., Ltd. | LONG CHAIN POLYPEPTIDE PURIFICATION METHOD |
| US12268733B2 (en) | 2018-08-10 | 2025-04-08 | Alexion Pharmaceuticals, Inc. | Methods of treating neurofibromatosis type 1 and related conditions with alkaline phosphatase |
| CN110845599A (en) * | 2018-08-21 | 2020-02-28 | 鲁南制药集团股份有限公司 | Preparation and purification method of polypeptide |
| US12433938B2 (en) | 2019-12-09 | 2025-10-07 | Alexion Pharmaceuticals, Inc. | Alkaline phosphatase polypeptides and methods of use thereof |
| US12083169B2 (en) | 2021-02-12 | 2024-09-10 | Alexion Pharmaceuticals, Inc. | Alkaline phosphatase polypeptides and methods of use thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US20060122371A1 (en) | 2006-06-08 |
| EP0763061A1 (en) | 1997-03-19 |
| JPH10500969A (en) | 1998-01-27 |
| ES2188665T3 (en) | 2003-07-01 |
| US5767239A (en) | 1998-06-16 |
| EP0763061B1 (en) | 2002-10-30 |
| JP4130671B2 (en) | 2008-08-06 |
| WO1995033769A1 (en) | 1995-12-14 |
| JP2005298526A (en) | 2005-10-27 |
| AU2671795A (en) | 1996-01-04 |
| ATE226960T1 (en) | 2002-11-15 |
| IL113979A0 (en) | 1995-10-31 |
| US20030171536A1 (en) | 2003-09-11 |
| US20100317600A1 (en) | 2010-12-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5767239A (en) | Process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same | |
| US5583108A (en) | Vasonatrin peptide and analogs thereof | |
| EP0477885B1 (en) | Parathyroid hormone derivatives | |
| EP0468337B1 (en) | DNA coding for a human vasoconstrictive peptide and use thereof | |
| US6025467A (en) | Parathyroid hormone derivatives and their use | |
| JPH06504795A (en) | Novel amylin antagonist peptides and their uses | |
| AU3411089A (en) | Cyclic analogs of atrial natriuretic peptides | |
| JPS62129297A (en) | Calcitonin gene-related peptide derivative | |
| JP2001527507A (en) | Improved cyclic CRF antagonist | |
| Inouye et al. | Semisynthesis and properties of some insulin analogs | |
| EP0270376A2 (en) | Calcitonin gene-related peptide derivatives | |
| US5204328A (en) | Peptides having atrial natriuretic factor activity | |
| JPH06116284A (en) | New peptide | |
| US5858975A (en) | Oxyntomodulin peptide having cardiotonic activity and insulin release-bromating activity | |
| HU201098B (en) | Process for producing cyclic peptides and pharmaceutical compositions comprising same as active ingredient | |
| US5149779A (en) | Humoral hypercalcemic factor antagonists | |
| EP0246795A2 (en) | Synthetic natriuretic peptides | |
| EP0315118A2 (en) | DNA coding for endothelin and use thereof | |
| US6673769B2 (en) | Lanthionine bridged peptides | |
| US4721704A (en) | Potent synthetic atrial peptide analogs | |
| US5091366A (en) | Peptides having ANF activity | |
| US3988309A (en) | EEL calcitonin | |
| CN114736289B (en) | A kind of chemical synthesis method of hirudin with tyrosine sulfate modification | |
| EP0298474B1 (en) | Novel calcitonin derivative and salt thereof | |
| CA2191612C (en) | A process for preparing cardiodilatin fragments; highly purified cardiodilatin fragments and intermediate products for the preparation of same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |