US20090227724A1 - Adhesives - Google Patents
Adhesives Download PDFInfo
- Publication number
- US20090227724A1 US20090227724A1 US12/396,063 US39606309A US2009227724A1 US 20090227724 A1 US20090227724 A1 US 20090227724A1 US 39606309 A US39606309 A US 39606309A US 2009227724 A1 US2009227724 A1 US 2009227724A1
- Authority
- US
- United States
- Prior art keywords
- isocyanate
- preparations
- preparations according
- catalyst
- polyisocyanates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000853 adhesive Substances 0.000 title description 24
- 230000001070 adhesive effect Effects 0.000 title description 24
- 238000002360 preparation method Methods 0.000 claims abstract description 82
- 239000003054 catalyst Substances 0.000 claims abstract description 67
- 239000006185 dispersion Substances 0.000 claims abstract description 43
- 239000007787 solid Substances 0.000 claims abstract description 40
- 229920000642 polymer Polymers 0.000 claims abstract description 31
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 28
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 238000003776 cleavage reaction Methods 0.000 claims abstract description 19
- 230000007017 scission Effects 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000010410 layer Substances 0.000 claims abstract description 15
- 229920013730 reactive polymer Polymers 0.000 claims abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 238000004132 cross linking Methods 0.000 claims abstract description 12
- 239000012790 adhesive layer Substances 0.000 claims abstract description 8
- 239000011230 binding agent Substances 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 4
- -1 alkali metal carboxylates Chemical class 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 229910052783 alkali metal Inorganic materials 0.000 claims description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 230000009849 deactivation Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000002562 thickening agent Substances 0.000 claims description 9
- 239000000084 colloidal system Substances 0.000 claims description 8
- 229920000768 polyamine Polymers 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 6
- 150000001450 anions Chemical class 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000003995 emulsifying agent Substances 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 6
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 239000003381 stabilizer Substances 0.000 claims description 6
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims description 6
- 150000001735 carboxylic acids Chemical class 0.000 claims description 5
- 229940031826 phenolate Drugs 0.000 claims description 5
- 239000004014 plasticizer Substances 0.000 claims description 5
- 229920002635 polyurethane Polymers 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 4
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 4
- 239000003963 antioxidant agent Substances 0.000 claims description 4
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 claims description 4
- 239000000945 filler Substances 0.000 claims description 4
- 125000003010 ionic group Chemical group 0.000 claims description 4
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 claims description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- IVGRSQBDVIJNDA-UHFFFAOYSA-N 2-(2-aminoethylamino)ethanesulfonic acid Chemical compound NCCNCCS(O)(=O)=O IVGRSQBDVIJNDA-UHFFFAOYSA-N 0.000 claims description 3
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 claims description 3
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 claims description 3
- 150000001340 alkali metals Chemical group 0.000 claims description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 239000000049 pigment Substances 0.000 claims description 3
- 150000003856 quaternary ammonium compounds Chemical class 0.000 claims description 3
- 239000000080 wetting agent Substances 0.000 claims description 3
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 claims description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000005642 Oleic acid Substances 0.000 claims description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 2
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 claims description 2
- WXBLLCUINBKULX-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1.OC(=O)C1=CC=CC=C1 WXBLLCUINBKULX-UHFFFAOYSA-N 0.000 claims description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 claims 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 2
- 229910052744 lithium Inorganic materials 0.000 claims 2
- 229910052700 potassium Inorganic materials 0.000 claims 2
- 239000011591 potassium Substances 0.000 claims 2
- 229910052708 sodium Inorganic materials 0.000 claims 2
- 239000011734 sodium Substances 0.000 claims 2
- 229960003080 taurine Drugs 0.000 claims 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 229930195733 hydrocarbon Natural products 0.000 claims 1
- 150000002430 hydrocarbons Chemical class 0.000 claims 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical class NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 claims 1
- 239000012948 isocyanate Substances 0.000 abstract description 62
- 150000002513 isocyanates Chemical class 0.000 abstract description 61
- 239000010408 film Substances 0.000 abstract description 15
- 239000000843 powder Substances 0.000 abstract description 5
- 150000001412 amines Chemical class 0.000 description 23
- 239000000539 dimer Substances 0.000 description 21
- 239000000178 monomer Substances 0.000 description 21
- 239000000203 mixture Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 14
- 238000009472 formulation Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000000227 grinding Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical group O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 229920000582 polyisocyanurate Polymers 0.000 description 6
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 6
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 5
- 150000001409 amidines Chemical class 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920003009 polyurethane dispersion Polymers 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000001632 sodium acetate Substances 0.000 description 5
- 235000017281 sodium acetate Nutrition 0.000 description 5
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 5
- 239000004324 sodium propionate Substances 0.000 description 5
- 235000010334 sodium propionate Nutrition 0.000 description 5
- 229960003212 sodium propionate Drugs 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 150000003512 tertiary amines Chemical class 0.000 description 5
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 239000004815 dispersion polymer Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 229920002396 Polyurea Chemical group 0.000 description 3
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 238000001311 chemical methods and process Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 125000006222 dimethylaminomethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000011495 polyisocyanurate Substances 0.000 description 3
- 235000011056 potassium acetate Nutrition 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 3
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 3
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- CDBZWJUNHLTYHX-UHFFFAOYSA-N 2-ethylhexanoate;3-hydroxypropylazanium Chemical compound [NH3+]CCCO.CCCCC(CC)C([O-])=O CDBZWJUNHLTYHX-UHFFFAOYSA-N 0.000 description 2
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 2
- 241000208199 Buxus sempervirens Species 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical group NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000002998 adhesive polymer Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001447 alkali salts Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 125000000031 ethylamino group Chemical group [H]C([H])([H])C([H])([H])N([H])[*] 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 150000003335 secondary amines Chemical group 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 2
- 230000003019 stabilising effect Effects 0.000 description 2
- MRYQZMHVZZSQRT-UHFFFAOYSA-M tetramethylazanium;acetate Chemical compound CC([O-])=O.C[N+](C)(C)C MRYQZMHVZZSQRT-UHFFFAOYSA-M 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- HXKKHQJGJAFBHI-GSVOUGTGSA-O (2R)-2-hydroxypropylammonium Chemical compound C[C@@H](O)C[NH3+] HXKKHQJGJAFBHI-GSVOUGTGSA-O 0.000 description 1
- SCZNXLWKYFICFV-UHFFFAOYSA-N 1,2,3,4,5,7,8,9-octahydropyrido[1,2-b]diazepine Chemical compound C1CCCNN2CCCC=C21 SCZNXLWKYFICFV-UHFFFAOYSA-N 0.000 description 1
- LWEAHXKXKDCSIE-UHFFFAOYSA-M 2,3-di(propan-2-yl)naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S([O-])(=O)=O)=C(C(C)C)C(C(C)C)=CC2=C1 LWEAHXKXKDCSIE-UHFFFAOYSA-M 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- HLFNUPJVFUAPLD-UHFFFAOYSA-M 2-ethylhexanoate;2-hydroxypropyl(trimethyl)azanium Chemical compound CC(O)C[N+](C)(C)C.CCCCC(CC)C([O-])=O HLFNUPJVFUAPLD-UHFFFAOYSA-M 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 239000009261 D 400 Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical group CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 239000004823 Reactive adhesive Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- VJMAITQRABEEKP-UHFFFAOYSA-N [6-(phenylmethoxymethyl)-1,4-dioxan-2-yl]methyl acetate Chemical compound O1C(COC(=O)C)COCC1COCC1=CC=CC=C1 VJMAITQRABEEKP-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229940006487 lithium cation Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920003226 polyurethane urea Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8003—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
- C08G18/8054—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1875—Catalysts containing secondary or tertiary amines or salts thereof containing ammonium salts or mixtures of secondary of tertiary amines and acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/225—Catalysts containing metal compounds of alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
- C08G18/3855—Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
- C08G18/3857—Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur having nitrogen in addition to sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/798—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2170/00—Compositions for adhesives
- C08G2170/80—Compositions for aqueous adhesives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
Definitions
- the present invention provides aqueous preparations of isocyanate-reactive polymer dispersions having surface-deactivated oligomeric solid isocyanates dispersed in finely particulate manner and certain catalysts.
- the invention likewise provides the use of the preparations as latently reactive binders, for coatings as well as for adhesives in the form of layers, films or powders, as well as substrates which are coated therewith.
- Aqueous preparations of isocyanate-reactive polymer dispersions having surface-deactivated, uretdione group-containing oligomeric solid isocyanates dispersed in finely particulate manner, as well as the use thereof as latently reactive binders for coatings as well as for adhesives are known.
- EP-A 0 204 970 describes a process for the production of stable dispersions of finely particulate polyisocyanates by treating the polyisocyanates in a liquid with stabilisers and with the action of high shear forces or grinding.
- Di- and polyisocyanates whereof the melting point is greater than 10° C., preferably greater than 40° C., are suitable for this purpose.
- the stabilisers utilised for generating the retarding or surface-deactivating polymer cover which surrounds the isocyanate particles are mono- or polyfunctional amine stabilisers having primary and/or secondary amine groups.
- the dispersions which are described are used as cross-linking agents.
- aqueous preparations of copolymer dispersions and finely particulate surface-deactivated polyisocyanate solid suspensions are recommended. They are used as coating compositions for woven and nonwoven substrates. Compounds which convert the isocyanate groups located on the surface to urea or polyurea structures, such as, for example, water or primary as well as secondary amines, are described as deactivating agents.
- the coatings produced with these preparations which are also designated one-component latently reactive layers, are cross-linked in heat simultaneously with drying.
- EP-A 0 922 720 describes processes for the production and use of storage-stable latently reactive layers or powders of surface-deactivated solid polyisocyanates and dispersion polymers having functional groups.
- aqueous dispersions which comprise a solid polyisocyanate, for example TDI dimer (2,4-diisocyanatotoluene dimerised by way of a uretdione group; Acima AG, Switzerland; TSE Industries, Clearwater, Fla., USA) which is deactivated at the surface, and a polymer which is reactive with isocyanate.
- the latently reactive layers or powders, which are storage-stable at room temperature, are cross-linked by heating above an activation temperature.
- the dispersions used may also comprise catalysts, preferably those which are stable to hydrolysis in the aqueous dispersion and which subsequently accelerate the heat-activated cross-linking reaction.
- catalysts preferably those which are stable to hydrolysis in the aqueous dispersion and which subsequently accelerate the heat-activated cross-linking reaction.
- examples are organic compounds of tin, of iron, of lead, of cobalt, of bismuth, of antimony, of zinc.
- Alkylmercaptide compounds of dibutyltin are preferred on account of the greater stability of the catalyst to hydrolysis.
- Tertiary amines such as dimethylbenzylamine, diazabicycloundecene, as well as non-volatile polyurethane foam catalysts based on tertiary amines may also be used for specific purposes or in combination with metal catalysts.
- EP-A 1013 690 describes aqueous dispersions of isocyanate-reactive polymers and solid surface-deactivated polyisocyanates, with the polymers which are water-soluble or dispersed in water having a minimum film-forming temperature of ⁇ +5° C., a glass transition temperature of ⁇ 5° C. and a storage modulus at 10 Hertz and +10° C. of 10 7 .
- the cross-linking reaction proceeds spontaneously under standard conditions—without heat activation—after evaporation of the water.
- the mono- or polyamines used for the deactivation may have ionic groups, for example carboxylate or sulfonate groups, as a molecular structure constituent.
- Particularly suitable latently reactive layers are distinguished in that they soften or decrystallise by brief heating, of less than 60 seconds' duration, to temperatures above 40° C., preferably to a temperature of 60° C. to 110° C., and in this state can be bonded with a substrate within the meaning of a pressure-sensitive or contact bonding. Simultaneously, under these conditions the surface-deactivated oligomeric solid isocyanate is activated which cross-links the polymers having isocyanate-reactive groups, which are comprised in the adhesive layer, and binds these to the substrate in the event that this also has isocyanate-reactive groups. This cross-linking process may proceed spontaneously, or optionally over a period of several days.
- uretdiones of monomeric isocyanates involve the danger that significant quantities of the volatile isocyanate monomers may be liberated during processing or also during use of the finished components at elevated temperature as a result of cleavage of the thermally labile uretdione structure. This risk arises above all when substrates which must by their nature be subjected to thermal stress are processed. These include, for example, thermoplastic decorative foils which are applied by the thermoforming method, with heating beyond their softening point, to profiled furniture faces coated with one-component latently reactive systems. Automotive interior fitting elements may also be exposed to very high temperatures when the vehicle heats up in the sun. The isocyanate monomers may then outgas and pollute the atmosphere in the vehicle.
- the object of the present invention was therefore to provide adhesive systems with which latently reactive layers can be created in which no liberation of isocyanate group-containing monomers occurs either during joining of the substrates which are to be bonded or during use of the same at elevated temperature.
- the present invention provides aqueous preparations that include
- the present invention also provides a process for producing the above-described preparations, which include mixing aqueous dispersions of at least one isocyanate-reactive polymer with at least one dispersed surface-deactivated oligomeric solid polyisocyanate and at least one catalyst which accelerates the reaction of the monomeric polyisocyanates which form by the thermal cleavage of the oligomeric polyisocyanates more strongly than the thermal cleavage itself.
- the present invention also provides binders, bonded joints, or coatings that include the above-described preparations and one or more additives selected from wetting agents, emulsifiers, thickeners, protective colloids, stabilisers, antioxidants, fillers, coloured pigments, plasticisers, non-solvent liquids, and combinations thereof.
- the present invention further provides a method of making a latently cross-linking adhesive layer by applying the above-described binders, bonded joints, or coatings to a substrate.
- the present invention is also directed to substrates coated with layers obtainable with the above-described preparations.
- This object can be achieved according to the invention by the utilisation of certain catalysts in the preparations which comprise oligomeric solid isocyanates as latently reactive cross-linking agents.
- the organic metal compounds of tin, of lead, of cobalt, of bismuth or of antimony which are used, for example in EP-A 0 922 720, as catalysts are, however, unsuitable for utilisation according to the invention because they are known to accelerate hydrolytic decomposition of the polymer chain of the preferred dispersion polymers based on polyester polyurethanes, and would thereby seriously impair industrial use.
- tertiary amines such as dimethylbenzylamine, diazabicycloundecene or other tertiary amines used as polyurethane catalysts, which are likewise proposed in that document for accelerating the heat-activated cross-linking reaction, are likewise unsuitable for use according to the invention because they do not prevent the liberation of TDI (q.v. Table 7, Comparison Examples 12b-16b).
- a catalyst utilisable according to the invention is selected in accordance with the following criteria: for as long as the preparation is present as an aqueous dispersion mixture, no effect should be brought about by the catalyst addition, and so, for example, the catalyst should not influence disadvantageously the stability of the deactivated solid isocyanate dispersed in the aqueous medium.
- readily water-soluble salts which are dissociated in aqueous solution are particularly highly suitable because in this form they are not able to diffuse into the dispersed solid isocyanate particles.
- the catalyst After the removal of the aqueous phase by drying, however, the catalyst should deploy its action in the polymer film when monomeric isocyanate is separated out from the deactivated solid isocyanate by thermal cleavage of the oligomeric isocyanate during the course of the bonding process or when the finished component produced with the preparation is used. At this temperature, which brings about separation of isocyanate monomer, the catalyst must be able to accelerate the reaction between the isocyanate monomer which has formed and groups present in the matrix which are potentially reactive with isocyanates, in a way that no significant quantities of the isocyanate monomer will be gassing out.
- These isocyanate-reactive groups which originate in the polymer or additives may be OH groups, NH groups (from amine, urethane or urea structures) or also the uretdione structure.
- the catalyst must not, or must only to a subordinate degree, accelerate the cleavage of the oligomeric solid isocyanate, in order for the renewed formation of volatile monomeric isocyanate at all costs to proceed more slowly than the formed volatile monomeric isocyanate is eliminated by its reaction with isocyanate-reactive groups present in the layer or by oligomerisation to the thermally stable isocyanurate structure, which is optionally likewise possible.
- the isocyanate-reactive polymer dispersions used are the known aqueous dispersions of homo- and copolymers of olefinically unsaturated monomers and polyurethane dispersions.
- the oligomeric solid isocyanates are, for example, dimers of aromatic or aliphatic isocyanates, in particular of TDI or IPDI.
- These can be deactivated in the preparation by mono- or polyamines having primary and/or secondary amino groups, as described, for example, in EP-A 0 467 168.
- the mono- or polyamines used for the deactivation may also, as described in DE-A 10 140 206, carry ionic groups, for example carboxylate or in particular sulfonate groups.
- the latter preparations are distinguished by elevated shear resistance and yield highly uniform, smooth layers after drying.
- Catalysts which are suitable according to the invention are, for example, basic trimerisation catalysts from the series of compounds known from the literature (q.v. Methoden der Organischen Chemie [Organic Chemistry Methods], Houben-Weyl, Vol. E 20, Chapter 14 D. Dieterich: Polyisocyanurate [Polyisocyanurates], p. 1739 et seq. and the further literature references quoted therein), which are selected in accordance with the criteria above, optionally by means of simple preliminary testing on the actual one-component latently reactive system.
- salts corresponding to the formula X + Y ⁇ may be used, in which, independently of one another,
- X stands for alkali metal or tetraalkylammonium and Y denotes hydroxyl or stands for phenolate or the anions of saturated or unsaturated carboxylic acids having 1-18 C atoms.
- the preparations according to the invention yield films or coatings from which, even when heated to 90 to 100° C., escape of the monomeric isocyanate as a cleavage product of the oligomeric polyisocyanate which is used virtually no longer occurs, or is minimal.
- amidines or Mannich bases examples of tertiary amines as trimerisation catalysts (q.v. Methoden der Organischen Chemie [Organic Chemistry Methods], Houben-Weyl, Vol. E 20, Chapter 14 D. Dieterich: Polyisocyanurate [Polyisocyanurates], p. 1739 et seq.) are virtually without effect according to the invention.
- Catalysts which are highly effective according to the invention are alkali metal carboxylates, alkali metal phenolates or basic quaternary ammonium compounds.
- the preparations according to the invention comprise these catalysts at concentrations of from 0.05-1.5 wt. %, preferably within the range 0.1-0.7 wt. %, and particularly preferably within the range 0.2-0.5 wt. %, with reference to the total adhesive preparation.
- the adhesive layer bring about a rapid reaction between monomeric isocyanate which has formed and isocyanate-reactive groups such as, for example, OH, NH, SH groups, and other isocyanate groups or uretdiones, with formation of derivatives such as urethanes, allophanates, biurets, isocyanurates and the like.
- Catalysts which accelerate the reaction of the liberated isocyanate monomers, as described above, more strongly than further monomeric isocyanate is liberated by the cleavage of the oligomeric solid isocyanates are in any case utilisable according to the invention.
- free monomer having isocyanate groups for example TDI, is overall reacted more rapidly in the layer than it forms in the layer as a result of cleavage of the uretdione group in the TDI dimer.
- Catalysts which are suitable according to the invention are, for example, alkali metal carboxylates, alkali metal phenolates, or basic quaternary ammonium compounds.
- Basic salts corresponding to the formula
- X + denotes alkali metal cation, for example lithium cation, sodium cation, potassium cation or tetraalkylammonium cation (NR 1 R 2 R 3 R 4 ) + and Y ⁇ denotes OH anion, phenolate anion or carboxylate anion, are preferred.
- X + preferably stands for Li + , Na + , K + , as well as R 1 to R 4 in (NR 1 R 2 R 3 R 4 ) + being, independently of one another, preferably aliphatic, optionally substituent-carrying saturated or unsaturated alkyl radicals having 1 to 18 C atoms (for example methyl, ethyl, 2-hydroxyethyl, propyl, 2-hydroxypropyl, butyl, nonyl, dodecyl, oleyl, benzyl).
- Y ⁇ preferably stands for OH ⁇ , as well as for the anions of saturated and unsaturated carboxylic acids having 1 to 18 C atoms, such as, for example, ethanoic, propionic, benzoic, maleic, 2-ethylhexanoic or oleic acid.
- Table 1 shows the composition of the preparations according to the invention.
- they comprise isocyanate-cross-linkable polymer dispersions, solid isocyanate dimer, deactivating amine, emulsifiers, protective colloids and further auxiliary substances.
- the isocyanate-reactive polymer dispersions content is around 20-99 wt. % of the preparation
- the deactivated solid isocyanates content is around 0.1-5 wt. %
- the auxiliary substances and additives content is around 0-80 wt. %
- the catalyst content according to the invention is around 0.05-1.5 wt. %
- the known isocyanate-reactive aqueous dispersions of homo- and copolymers of olefinically unsaturated monomers and polyurethane dispersions are suitable for the preparations according to the invention.
- Preferred polymer dispersions are isocyanate-reactive polyurethane or polyurea dispersions as well as polymers of 2-chlorobutadiene.
- Suitable polymers of olefinically unsaturated monomers are described in, for example, EP-A 0 206 059. They are, for example, homo- and copolymers based on vinyl esters of carboxylic acids having 2 to 18 C atoms, preferably having 2 to 4 C atoms, such as, for example, vinyl acetate. These can optionally be utilised with up to 70 wt.
- % with reference to the total quantity, of other olefinically unsaturated monomers and/or homo- or copolymers of (meth)acrylic acid esters of alcohols having 1 to 18 C atoms, preferably having 1 to 4 C atoms, such as, for example (meth)acrylic acid esters, methyl esters, ethyl esters, propyl esters, hydroxyethyl esters or hydroxypropyl esters.
- Isocyanate-reactive functions arise as a result of copolymerisation of OH- or NH-functional monomers such as, for example hydroxyethyl or hydroxypropyl (meth)acrylate, butanediol monoacrylate, ethoxylated or propoxylated (meth)acrylates, N-methylol acrylamide, tert.-butylaminoethyl methacrylate or (meth)acrylic acid.
- Glycidyl methacrylate and allylglycidyl ether can also be copolymerised. The subsequent reaction of the epoxy groups with amines or aminoalcohols then leads to secondary amino groups.
- Aqueous dispersions of polymers and copolymers of 2-chlorobuta-1,3-diene, optionally with other olefinically unsaturated monomers of the type named above by way of example, are likewise suitable. These dispersions have, for example, a chlorine content of from 30 to 40 wt. %, preferably a chlorine content of 36 wt. %.
- Suitable aqueous polyurethane dispersions are those such as are described in the prior art, for example in U.S. Pat. No. 3,479,310, U.S. Pat. No. 4,092,286, DE-A 2 651 505, U.S. Pat. No. 4,190,566, DE-A 2 732 131 or DE-A 2 811 148.
- Dispersions of isocyanate-reactive polyurethanes which are constructed of crystallised polymer chains which when measured by means of thermomechanical analysis decrystallise at least partially at temperatures of ⁇ 110° C., preferably at temperatures of ⁇ 90° C. and particularly preferably at temperatures of ⁇ 60° C., are particularly preferred.
- the preparations according to the invention are utilised in particular for the production of coatings or bonded joints which, after drying and brief heat activation during the production of the bonded joint, cross-link over the course of a few days without further additional supply of heat. Their softening point and resistance to water and solvents are markedly improved.
- the adhesive application that has been dried on the substrate which is to be bonded is decrystallised by brief heating, preferably of less than 60 seconds' duration, to T>60° C. and joined in the decrystallised state.
- the adhesive application can also be dried on a substrate and then pressed with a foil material which has been softened to plasticity by heating, such that in contact with the film adhesive the foil acquires a temperature above the decrystallisation temperature of the polymer in the film adhesive.
- a further preferred form of using the preparations is the production of latently reactive heat-activatable pre-coatings, films or powders, which are storable at temperatures below the decrystallisation temperature of the polymer and which cross-link when heated above this limit.
- the solid oligomeric isocyanates preferably have melting or softening points of >30°. Dimerisation products of TDI or IPDI are preferred.
- the solid isocyanates content of the preparations, calculated on the polymer content lies within the range 0.1 to 10 wt. %, preferably within the range 0.5 to 5 wt. %. The range 0.5 to 3.5 wt. % is particularly preferred. They are—appropriately before mixing with the polymer dispersions—ground and dispersed with the action of high shear forces, for example with the use of a pearl mill, in an aqueous solution or dispersion of the deactivating amines, to an average particle diameter of ⁇ 100 ⁇ m, preferably ⁇ 15 ⁇ m.
- the dispersed solid isocyanate in the aqueous dispersion preparation the isocyanate groups which are exposed at the surface of the solid isocyanate particles are reacted with deactivating amines.
- deactivating amines For this purpose longer-chain polyether amines, such as are described in EP-A 0 922 720, for example Jeffamine® D 400 or Jeffamine® T 403 (Huntsman Corp., Utah, USA) can be utilised.
- Mono-, di- and polyamines which have anionic groups such as carboxylate or sulfonate groups as a molecular structure constituent in accordance with DE-A 10 140 206, are particularly preferred.
- the deactivating amines are utilised in a quantity such that there are from 0.5 to 30 mol. %, preferably 3 to 15 mol. %, amine groups per 100 mol. % of the isocyanate groups present in the solid isocyanate. In this circumstance the isocyanate groups which are accessible in the particle surface react with the deactivating amine.
- the preparations can also comprise as additives further hydroxy- or amino-functional low-to-high molecular weight compounds, which can likewise react with the oligomeric solid isocyanates and with the monomeric isocyanates which optionally arise therefrom by thermal cleavage.
- the co-use of such functional additives can support the reduction according to the invention of the monomeric isocyanates which are liberated.
- these compounds are in competition with the polymers which are to be cross-linked, account must optionally be taken of their isocyanate-consumption in order to prevent an inadequate cross-linking of the adhesive polymer.
- Low molecular weight compounds are understood to be those having molecular weights of between 60 and 500 g/mol, and high molecular weight compounds to be those whereof the molecular weights are between 500 and 10000 g/mol, Examples are ethanolamine, diethanolamine, ethanediol, butanediol, glycerol, pentaerythritol, as well as terminally ethoxylated polypropylene glycols, polyvinyl alcohols or polyamines.
- the preparations may also comprise as further auxiliary substances and additives such substances having no isocyanate-reactive groups, furthermore wetting agents, emulsifiers, thickeners, protective colloids and optionally stabilisers, antioxidants, fillers, coloured pigments, plasticisers, non-solvent liquids and further auxiliary agents.
- Dispercoll® U 53 polyurethane dispersion from Bayer MaterialScience AG, 51368 Leverkusen; solids content approx. 40 wt. %; isocyanate-reactive polymer of linear polyurethane chains based on an adipic acid/butanediol polyester having HDI/IPDI as isocyanate component. After the dispersion is dried and the film is cooled to 23° C. the polymer crystallises. Measurement using thermomechanical analysis shows the film to be largely crystallised at temperatures of ⁇ +65° C.
- Dimer of toluoylene 2,4-diisocyanate Metalink® U from Acima AG; CH 9471 Buchs, Switzerland.
- Example series b sodium salt of 2-(2-aminoethylamino) ethanesulfonic acid; ionically modified stabilising amine; Bayer MaterialScience AG, 51368 Leverkusen.
- Emulsifier manufacturer: BASF AG, D-67056 Ludwigshafen Tamol® NN 4501 (45% in water)
- Table 2 shows the basic formulations a and b of the deactivated isocyanate dispersions for deactivating the amines a and b
- the solid Metalink® U (TDI dimer) is dispersed in water in accordance with the basic formulations a) or b) shown in Table 2, with use of suitable grinding and dispersing devices in the presence of the deactivating amine (Jeffamine® T 403 [test series a] or the sodium salt of 2-(2-aminoethylamino) ethanesulfonic acid [test series b].
- Equipment suitable for the finely particulate dispersing are, for example, dissolvers, rotor-stator-type dispersing equipment, ball mills or pearl mills, with the temperature not being permitted to rise above 40° C.
- a TORUSMILL® from VMA-Getzmann GmbH (D-51580 Reichshof, Germany) was used in order to carry out the examples.
- the pre-dispersion and the grinding operation are carried out in the same vigorously cooled double-walled special steel vessel.
- the grinding compartment of the pearl mill is then inserted, which is filled to 70% volume with zirconium oxide spheres (1.2-1.7 mm diameter).
- the grinding compartment is cooled intensively so that the temperature in the dispersion remains below 30° C.
- the grinding operation lasts for approximately 60 minutes and yields an average particle size of approx. 10 ⁇ m, having a maximum at 20 ⁇ m.
- the TDI dimer particles are deactivated by surface reaction with the amines a or b which are present.
- the viscosity of the suspension is increased to approx. 5000 mPas by the addition of the thickener solution, in order to avoid sedimentation.
- Both basic formulations comprise the cross-linking agent TDI dimer at approximately the same concentration of 40 wt. %.
- TDI dimer Separation of volatile monomeric TDI from the preparations considered here which are based on polymer dispersions and deactivated Metalink® U (TDI dimer) can be avoided with the use according to the invention of suitable basic catalysts.
- the suitable catalyst is selected against the background that it must accelerate the reaction between the isocyanate group of liberated isocyanate monomer (TDI) and isocyanate-reactive groups, including the uretdione group itself, more strongly than the cleavage of the dimeric isocyanate (uretdione) to form the monomer (TDI).
- the thermal lability of isocyanate dimers is known (product data sheet for Metalink® U; Acima AG, CH-9471 Buchs) to be intensified by many catalysts, such that the monomeric isocyanate liberation temperature could, if the catalyst were selected incorrectly, be further reduced or the rate of cleavage of the oligomer be increased.
- Thermodesorption Initial temperature 20° C. Heating rate 60° C./min Holding temperature 90° C. Holding time 30 min Cold feed system parameters Initial temperature ⁇ 150° C. Heating rate 12° C./sec Holding temperature 280° C. Holding time 3 min GC parameters: Initial temperature 50° C. Initial time 2 min 1 st heating rate 25° C./min Holding temperature 160° C. Holding time 0 min 2 nd heating rate 10° C./min Holding temperature 300° C. Column DB-5 MS Detector FID
- test specimens of KASX nitrile rubber
- SBR Nora rubber
- soft PVC (30% DOP)
- the adhesive formulation is applied by brush to both sides of the 20 ⁇ 10 mm adherend surface.
- the adhesive layer is dried at 23° C./50% relative humidity for 60 min.
- the adherend surfaces are irradiated with an IR radiation source (from Funk; shock activator 2000), and the film adhesive is heated, dependent on the substrate, to a surface temperature of approx. 85° C. (PVC with 30% DOP), approx. 109° C. (SBR) and approx. 158° C. (nitrile rubber), respectively.
- the decrystallisation temperature of the polymer chain of the polyurethane dispersion used (Dispercoll® U 53) is within the range 50-65° C. Bonding takes place immediately after heat activation of the adhesive-coated test specimens, by laying the activated adhesive layers one against the other and pressing at 4 bar for one minute in a press.
- the test specimens thus produced are stored at 23° C. and 50% relative humidity for 7 days.
- test specimens are placed under a 4 kg load and conditioned to 40° C. in a heating chamber within 30 min.
- the test specimens are then heated to 150° C. at a linear heating rate of 0.5° C./min.
- the softening point that is to say the temperature in ° C. at which the bonded joint fails under the 4 kg load, is recorded. In each case separate measurements are taken.
- Dispercoll® U 53 For comparison: without cross-linking, bonded joints with use of Dispercoll® U 53 have a softening point of approx. 60° C. under these conditions.
- the softening point after isocyanate cross-linking when Dispercoll® U 53 is used as the adhesive polymer is within the range 90-150° C., depending on the substrate (q.v. in this context Table 5).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Polyurethanes Or Polyureas (AREA)
- Paints Or Removers (AREA)
Abstract
Preparations of surface-deactivated solid isocyanates which are dispersed in finely particulate manner, with aqueous isocyanate-reactive polymer dispersions that include
-
- a) dispersed polymers having isocyanate-reactive groups,
- b) dispersed surface-deactivated oligomeric solid polyisocyanates, and
- c) at least one catalyst,
where the catalyst or the totality of catalysts accelerates the reaction of the monomeric polyisocyanates which form by the thermal cleavage of the oligomeric polyisocyanates more strongly than the thermal cleavage itself. The preparations are prepared by mixing aqueous dispersions of at least one isocyanate-reactive polymer with at least one dispersed surface-deactivated oligomeric solid polyisocyanate and at least one catalyst. The preparations can be used in binders, films and powders for bonded joints, or coatings and to make a latently cross-linking adhesive layer. Substrates can be coated with layers obtainable with the above-described preparations.
Description
- The present patent application claims the right of priority under 35 U.S.C. §119 (a)-(d) of German Patent Application No. 10 2004 026 118, filed May 28, 2004.
- 1. Field of the Invention
- The present invention provides aqueous preparations of isocyanate-reactive polymer dispersions having surface-deactivated oligomeric solid isocyanates dispersed in finely particulate manner and certain catalysts. The invention likewise provides the use of the preparations as latently reactive binders, for coatings as well as for adhesives in the form of layers, films or powders, as well as substrates which are coated therewith.
- 2. Description of the Prior Art
- Aqueous preparations of isocyanate-reactive polymer dispersions having surface-deactivated, uretdione group-containing oligomeric solid isocyanates dispersed in finely particulate manner, as well as the use thereof as latently reactive binders for coatings as well as for adhesives are known.
- EP-A 0 204 970 describes a process for the production of stable dispersions of finely particulate polyisocyanates by treating the polyisocyanates in a liquid with stabilisers and with the action of high shear forces or grinding. Di- and polyisocyanates whereof the melting point is greater than 10° C., preferably greater than 40° C., are suitable for this purpose. The stabilisers utilised for generating the retarding or surface-deactivating polymer cover which surrounds the isocyanate particles are mono- or polyfunctional amine stabilisers having primary and/or secondary amine groups. The dispersions which are described are used as cross-linking agents.
- According to EP-A 0 467 168, aqueous preparations of copolymer dispersions and finely particulate surface-deactivated polyisocyanate solid suspensions are recommended. They are used as coating compositions for woven and nonwoven substrates. Compounds which convert the isocyanate groups located on the surface to urea or polyurea structures, such as, for example, water or primary as well as secondary amines, are described as deactivating agents. The coatings produced with these preparations, which are also designated one-component latently reactive layers, are cross-linked in heat simultaneously with drying.
- EP-A 0 922 720 describes processes for the production and use of storage-stable latently reactive layers or powders of surface-deactivated solid polyisocyanates and dispersion polymers having functional groups. For this purpose aqueous dispersions are used which comprise a solid polyisocyanate, for example TDI dimer (2,4-diisocyanatotoluene dimerised by way of a uretdione group; Acima AG, Switzerland; TSE Industries, Clearwater, Fla., USA) which is deactivated at the surface, and a polymer which is reactive with isocyanate. The latently reactive layers or powders, which are storage-stable at room temperature, are cross-linked by heating above an activation temperature. The production of the polyisocyanate dispersion and the surface deactivation take place in accordance with EP-A 0 204 970. In order to control the surface deactivation and the cross-linking reaction the dispersions used may also comprise catalysts, preferably those which are stable to hydrolysis in the aqueous dispersion and which subsequently accelerate the heat-activated cross-linking reaction. Examples are organic compounds of tin, of iron, of lead, of cobalt, of bismuth, of antimony, of zinc. Alkylmercaptide compounds of dibutyltin are preferred on account of the greater stability of the catalyst to hydrolysis. Tertiary amines such as dimethylbenzylamine, diazabicycloundecene, as well as non-volatile polyurethane foam catalysts based on tertiary amines may also be used for specific purposes or in combination with metal catalysts.
- EP-A 1013 690 describes aqueous dispersions of isocyanate-reactive polymers and solid surface-deactivated polyisocyanates, with the polymers which are water-soluble or dispersed in water having a minimum film-forming temperature of ≦+5° C., a glass transition temperature of ≦−5° C. and a storage modulus at 10 Hertz and +10° C. of 107. The cross-linking reaction proceeds spontaneously under standard conditions—without heat activation—after evaporation of the water. According to DE-A 10 140 206 the mono- or polyamines used for the deactivation may have ionic groups, for example carboxylate or sulfonate groups, as a molecular structure constituent.
- Particularly suitable latently reactive layers are distinguished in that they soften or decrystallise by brief heating, of less than 60 seconds' duration, to temperatures above 40° C., preferably to a temperature of 60° C. to 110° C., and in this state can be bonded with a substrate within the meaning of a pressure-sensitive or contact bonding. Simultaneously, under these conditions the surface-deactivated oligomeric solid isocyanate is activated which cross-links the polymers having isocyanate-reactive groups, which are comprised in the adhesive layer, and binds these to the substrate in the event that this also has isocyanate-reactive groups. This cross-linking process may proceed spontaneously, or optionally over a period of several days.
- Preparations produced in accordance with the prior art which comprise as latently reactive cross-linking agents uretdiones of monomeric isocyanates involve the danger that significant quantities of the volatile isocyanate monomers may be liberated during processing or also during use of the finished components at elevated temperature as a result of cleavage of the thermally labile uretdione structure. This risk arises above all when substrates which must by their nature be subjected to thermal stress are processed. These include, for example, thermoplastic decorative foils which are applied by the thermoforming method, with heating beyond their softening point, to profiled furniture faces coated with one-component latently reactive systems. Automotive interior fitting elements may also be exposed to very high temperatures when the vehicle heats up in the sun. The isocyanate monomers may then outgas and pollute the atmosphere in the vehicle.
- The object of the present invention was therefore to provide adhesive systems with which latently reactive layers can be created in which no liberation of isocyanate group-containing monomers occurs either during joining of the substrates which are to be bonded or during use of the same at elevated temperature.
- The present invention provides aqueous preparations that include
-
- a) dispersed polymers having isocyanate-reactive groups,
- b) dispersed surface-deactivated oligomeric solid polyisocyanates, and
- c) at least one catalyst,
where the catalyst or the totality of catalysts accelerates the reaction of the monomeric polyisocyanates which form by the thermal cleavage of the oligomeric polyisocyanates more strongly than the thermal cleavage itself.
- The present invention also provides a process for producing the above-described preparations, which include mixing aqueous dispersions of at least one isocyanate-reactive polymer with at least one dispersed surface-deactivated oligomeric solid polyisocyanate and at least one catalyst which accelerates the reaction of the monomeric polyisocyanates which form by the thermal cleavage of the oligomeric polyisocyanates more strongly than the thermal cleavage itself.
- The present invention also provides binders, bonded joints, or coatings that include the above-described preparations and one or more additives selected from wetting agents, emulsifiers, thickeners, protective colloids, stabilisers, antioxidants, fillers, coloured pigments, plasticisers, non-solvent liquids, and combinations thereof.
- The present invention further provides a method of making a latently cross-linking adhesive layer by applying the above-described binders, bonded joints, or coatings to a substrate.
- The present invention is also directed to substrates coated with layers obtainable with the above-described preparations.
- Other than in the operating examples, or where otherwise indicated, all numbers or expressions referring to quantities of ingredients, reaction conditions, etc. used in the specification and claims are to be understood as modified in all instances by the term “about.”
- This object can be achieved according to the invention by the utilisation of certain catalysts in the preparations which comprise oligomeric solid isocyanates as latently reactive cross-linking agents. The organic metal compounds of tin, of lead, of cobalt, of bismuth or of antimony which are used, for example in EP-A 0 922 720, as catalysts are, however, unsuitable for utilisation according to the invention because they are known to accelerate hydrolytic decomposition of the polymer chain of the preferred dispersion polymers based on polyester polyurethanes, and would thereby seriously impair industrial use. The tertiary amines such as dimethylbenzylamine, diazabicycloundecene or other tertiary amines used as polyurethane catalysts, which are likewise proposed in that document for accelerating the heat-activated cross-linking reaction, are likewise unsuitable for use according to the invention because they do not prevent the liberation of TDI (q.v. Table 7, Comparison Examples 12b-16b).
- A catalyst utilisable according to the invention is selected in accordance with the following criteria: for as long as the preparation is present as an aqueous dispersion mixture, no effect should be brought about by the catalyst addition, and so, for example, the catalyst should not influence disadvantageously the stability of the deactivated solid isocyanate dispersed in the aqueous medium. In the light of this, readily water-soluble salts which are dissociated in aqueous solution are particularly highly suitable because in this form they are not able to diffuse into the dispersed solid isocyanate particles.
- After the removal of the aqueous phase by drying, however, the catalyst should deploy its action in the polymer film when monomeric isocyanate is separated out from the deactivated solid isocyanate by thermal cleavage of the oligomeric isocyanate during the course of the bonding process or when the finished component produced with the preparation is used. At this temperature, which brings about separation of isocyanate monomer, the catalyst must be able to accelerate the reaction between the isocyanate monomer which has formed and groups present in the matrix which are potentially reactive with isocyanates, in a way that no significant quantities of the isocyanate monomer will be gassing out. These isocyanate-reactive groups which originate in the polymer or additives may be OH groups, NH groups (from amine, urethane or urea structures) or also the uretdione structure.
- At the same time, however, at this temperature the catalyst must not, or must only to a subordinate degree, accelerate the cleavage of the oligomeric solid isocyanate, in order for the renewed formation of volatile monomeric isocyanate at all costs to proceed more slowly than the formed volatile monomeric isocyanate is eliminated by its reaction with isocyanate-reactive groups present in the layer or by oligomerisation to the thermally stable isocyanurate structure, which is optionally likewise possible. It is thus possible to suppress to a large extent the liberation of volatile monomeric isocyanate, which, but for the utilisation of suitable catalysts, is virtually unavoidable under the influence of heat during the processing of the preparations or during use of bonded joints or coatings produced with the preparations, owing to the thermal lability of the oligomeric isocyanates.
- The isocyanate-reactive polymer dispersions used are the known aqueous dispersions of homo- and copolymers of olefinically unsaturated monomers and polyurethane dispersions. The oligomeric solid isocyanates are, for example, dimers of aromatic or aliphatic isocyanates, in particular of TDI or IPDI. These can be deactivated in the preparation by mono- or polyamines having primary and/or secondary amino groups, as described, for example, in EP-A 0 467 168. The mono- or polyamines used for the deactivation may also, as described in DE-A 10 140 206, carry ionic groups, for example carboxylate or in particular sulfonate groups. The latter preparations are distinguished by elevated shear resistance and yield highly uniform, smooth layers after drying.
- Catalysts which are suitable according to the invention are, for example, basic trimerisation catalysts from the series of compounds known from the literature (q.v. Methoden der Organischen Chemie [Organic Chemistry Methods], Houben-Weyl, Vol. E 20, Chapter 14 D. Dieterich: Polyisocyanurate [Polyisocyanurates], p. 1739 et seq. and the further literature references quoted therein), which are selected in accordance with the criteria above, optionally by means of simple preliminary testing on the actual one-component latently reactive system.
- According to the invention, for example, salts corresponding to the formula X+Y− may be used, in which, independently of one another,
- X stands for alkali metal or tetraalkylammonium and
Y denotes hydroxyl or stands for phenolate or the anions of saturated or unsaturated carboxylic acids having 1-18 C atoms. - With these catalysts the preparations according to the invention yield films or coatings from which, even when heated to 90 to 100° C., escape of the monomeric isocyanate as a cleavage product of the oligomeric polyisocyanate which is used virtually no longer occurs, or is minimal.
- By contrast, amidines or Mannich bases, examples of tertiary amines as trimerisation catalysts (q.v. Methoden der Organischen Chemie [Organic Chemistry Methods], Houben-Weyl, Vol. E 20, Chapter 14 D. Dieterich: Polyisocyanurate [Polyisocyanurates], p. 1739 et seq.) are virtually without effect according to the invention.
- The largely quantitative suppression of monomeric isocyanate escape from the (adhesive) layer is extremely important, with regard to safety in use and processing of such preparations. This problem is solved by the use according to the invention of catalysts in these preparations.
- Catalysts which are highly effective according to the invention are alkali metal carboxylates, alkali metal phenolates or basic quaternary ammonium compounds.
- In addition to the remaining constituents, the preparations according to the invention comprise these catalysts at concentrations of from 0.05-1.5 wt. %, preferably within the range 0.1-0.7 wt. %, and particularly preferably within the range 0.2-0.5 wt. %, with reference to the total adhesive preparation. In the polymer film, for example the adhesive layer, they bring about a rapid reaction between monomeric isocyanate which has formed and isocyanate-reactive groups such as, for example, OH, NH, SH groups, and other isocyanate groups or uretdiones, with formation of derivatives such as urethanes, allophanates, biurets, isocyanurates and the like. Catalysts which accelerate the reaction of the liberated isocyanate monomers, as described above, more strongly than further monomeric isocyanate is liberated by the cleavage of the oligomeric solid isocyanates are in any case utilisable according to the invention. As a result, at the temperatures which occur during the course of processing and/or use, free monomer having isocyanate groups, for example TDI, is overall reacted more rapidly in the layer than it forms in the layer as a result of cleavage of the uretdione group in the TDI dimer.
- Catalysts which are suitable according to the invention are, for example, alkali metal carboxylates, alkali metal phenolates, or basic quaternary ammonium compounds. Basic salts corresponding to the formula
-
X+Y− - in which
X+ denotes alkali metal cation, for example lithium cation, sodium cation, potassium cation or tetraalkylammonium cation (NR1R2R3R4)+ and
Y− denotes OH anion, phenolate anion or carboxylate anion,
are preferred. - X+ preferably stands for Li+, Na+, K+, as well as R1 to R4 in (NR1R2R3R4)+ being, independently of one another, preferably aliphatic, optionally substituent-carrying saturated or unsaturated alkyl radicals having 1 to 18 C atoms (for example methyl, ethyl, 2-hydroxyethyl, propyl, 2-hydroxypropyl, butyl, nonyl, dodecyl, oleyl, benzyl).
- Y− preferably stands for OH−, as well as for the anions of saturated and unsaturated carboxylic acids having 1 to 18 C atoms, such as, for example, ethanoic, propionic, benzoic, maleic, 2-ethylhexanoic or oleic acid.
- Table 1 shows the composition of the preparations according to the invention. In addition to the catalysts which are determining for the invention, they comprise isocyanate-cross-linkable polymer dispersions, solid isocyanate dimer, deactivating amine, emulsifiers, protective colloids and further auxiliary substances. The isocyanate-reactive polymer dispersions content is around 20-99 wt. % of the preparation, the deactivated solid isocyanates content is around 0.1-5 wt. %, the auxiliary substances and additives content is around 0-80 wt. %, and the catalyst content according to the invention is around 0.05-1.5 wt. %
-
TABLE 1 Composition of the preparations according to the invention Constituents of preparations according Quantity to the invention Function wt. % Oligomeric solid Cross-linking agent 0.1-5 isocyanate Deactivating amine Stabilises the isocyanate oligomer * Emulsifiers/protective Stabilises the shear and coagulation as colloids resistance of the dispersion required Isocyanate-reactive Adhesive polymer 20-99 polymer dispersion Catalyst according Accelerates the reaction of the 0.1-1.5 to the invention monomeric isocyanate liberated from the isocyanate oligomer Auxiliary substances Plasticisers, fillers, antioxidants, 0-80 antimicrobial agents, antifoams, etc. Thickener Stabilises the preparations against as sedimentation by elevated viscosity required * in accordance with the quantity of the isocyanate dimer present, 0.5 to 30 mol. % amine groups, calculated on the total isocyanate groups. - The known isocyanate-reactive aqueous dispersions of homo- and copolymers of olefinically unsaturated monomers and polyurethane dispersions are suitable for the preparations according to the invention. Preferred polymer dispersions are isocyanate-reactive polyurethane or polyurea dispersions as well as polymers of 2-chlorobutadiene.
- Suitable polymers of olefinically unsaturated monomers are described in, for example, EP-A 0 206 059. They are, for example, homo- and copolymers based on vinyl esters of carboxylic acids having 2 to 18 C atoms, preferably having 2 to 4 C atoms, such as, for example, vinyl acetate. These can optionally be utilised with up to 70 wt. %, with reference to the total quantity, of other olefinically unsaturated monomers and/or homo- or copolymers of (meth)acrylic acid esters of alcohols having 1 to 18 C atoms, preferably having 1 to 4 C atoms, such as, for example (meth)acrylic acid esters, methyl esters, ethyl esters, propyl esters, hydroxyethyl esters or hydroxypropyl esters. Isocyanate-reactive functions arise as a result of copolymerisation of OH- or NH-functional monomers such as, for example hydroxyethyl or hydroxypropyl (meth)acrylate, butanediol monoacrylate, ethoxylated or propoxylated (meth)acrylates, N-methylol acrylamide, tert.-butylaminoethyl methacrylate or (meth)acrylic acid. Glycidyl methacrylate and allylglycidyl ether can also be copolymerised. The subsequent reaction of the epoxy groups with amines or aminoalcohols then leads to secondary amino groups.
- Aqueous dispersions of polymers and copolymers of 2-chlorobuta-1,3-diene, optionally with other olefinically unsaturated monomers of the type named above by way of example, are likewise suitable. These dispersions have, for example, a chlorine content of from 30 to 40 wt. %, preferably a chlorine content of 36 wt. %. The reactivity of the polymers of 2-chlorobutadiene, which are a priori non-isocyanate-reactive, results from replacement of hydrolysable Cl groups by OH groups, or in accordance with EP-A 0 857 741 (examples of polychloroprene dispersions having differing degrees of hydrolysis, Table 1, page 5 with CR dispersions 1 to 4), which proceeds during the course of the production process.
- Suitable aqueous polyurethane dispersions are those such as are described in the prior art, for example in U.S. Pat. No. 3,479,310, U.S. Pat. No. 4,092,286, DE-A 2 651 505, U.S. Pat. No. 4,190,566, DE-A 2 732 131 or DE-A 2 811 148.
- Dispersions of isocyanate-reactive polyurethanes, which are constructed of crystallised polymer chains which when measured by means of thermomechanical analysis decrystallise at least partially at temperatures of <110° C., preferably at temperatures of <90° C. and particularly preferably at temperatures of <60° C., are particularly preferred. The preparations according to the invention are utilised in particular for the production of coatings or bonded joints which, after drying and brief heat activation during the production of the bonded joint, cross-link over the course of a few days without further additional supply of heat. Their softening point and resistance to water and solvents are markedly improved. In order to produce such bonded joints the adhesive application that has been dried on the substrate which is to be bonded is decrystallised by brief heating, preferably of less than 60 seconds' duration, to T>60° C. and joined in the decrystallised state.
- For this purpose the adhesive application can also be dried on a substrate and then pressed with a foil material which has been softened to plasticity by heating, such that in contact with the film adhesive the foil acquires a temperature above the decrystallisation temperature of the polymer in the film adhesive. A further preferred form of using the preparations is the production of latently reactive heat-activatable pre-coatings, films or powders, which are storable at temperatures below the decrystallisation temperature of the polymer and which cross-link when heated above this limit.
- The solid oligomeric isocyanates preferably have melting or softening points of >30°. Dimerisation products of TDI or IPDI are preferred. The solid isocyanates content of the preparations, calculated on the polymer content, lies within the range 0.1 to 10 wt. %, preferably within the range 0.5 to 5 wt. %. The range 0.5 to 3.5 wt. % is particularly preferred. They are—appropriately before mixing with the polymer dispersions—ground and dispersed with the action of high shear forces, for example with the use of a pearl mill, in an aqueous solution or dispersion of the deactivating amines, to an average particle diameter of <100 μm, preferably <15 μm.
- In order to “deactivate”, “retard” or “stabilise” (depending on the literature reference one or more of these terms are used synonymously) the dispersed solid isocyanate in the aqueous dispersion preparation, the isocyanate groups which are exposed at the surface of the solid isocyanate particles are reacted with deactivating amines. For this purpose longer-chain polyether amines, such as are described in EP-A 0 922 720, for example Jeffamine® D 400 or Jeffamine® T 403 (Huntsman Corp., Utah, USA) can be utilised. Mono-, di- and polyamines, which have anionic groups such as carboxylate or sulfonate groups as a molecular structure constituent in accordance with DE-A 10 140 206, are particularly preferred. The deactivating amines are utilised in a quantity such that there are from 0.5 to 30 mol. %, preferably 3 to 15 mol. %, amine groups per 100 mol. % of the isocyanate groups present in the solid isocyanate. In this circumstance the isocyanate groups which are accessible in the particle surface react with the deactivating amine. As a result of the very high reactivity of this aliphatic amine vis-à-vis isocyanate groups, by contrast with water, a polyurea layer is formed virtually exclusively with this “deactivating amine” on the surface of the dispersed isocyanate particles. For as long as sufficient quantities of amine are contained in the system, the isocyanate is largely withdrawn from the water reaction. If a small proportion of the NCO groups nevertheless reacts with water, the resulting CO2 is reabsorbed by the stabilising amine.
- The preparations can also comprise as additives further hydroxy- or amino-functional low-to-high molecular weight compounds, which can likewise react with the oligomeric solid isocyanates and with the monomeric isocyanates which optionally arise therefrom by thermal cleavage. In particular in the case of dispersions of polymers having a low isocyanate-reactive group content, the co-use of such functional additives can support the reduction according to the invention of the monomeric isocyanates which are liberated. However, since, in terms of the isocyanate reaction, these compounds are in competition with the polymers which are to be cross-linked, account must optionally be taken of their isocyanate-consumption in order to prevent an inadequate cross-linking of the adhesive polymer.
- Low molecular weight compounds are understood to be those having molecular weights of between 60 and 500 g/mol, and high molecular weight compounds to be those whereof the molecular weights are between 500 and 10000 g/mol, Examples are ethanolamine, diethanolamine, ethanediol, butanediol, glycerol, pentaerythritol, as well as terminally ethoxylated polypropylene glycols, polyvinyl alcohols or polyamines.
- The preparations may also comprise as further auxiliary substances and additives such substances having no isocyanate-reactive groups, furthermore wetting agents, emulsifiers, thickeners, protective colloids and optionally stabilisers, antioxidants, fillers, coloured pigments, plasticisers, non-solvent liquids and further auxiliary agents.
- The following substances are utilised in the Examples:
- Dispercoll® U 53, polyurethane dispersion from Bayer MaterialScience AG, 51368 Leverkusen; solids content approx. 40 wt. %; isocyanate-reactive polymer of linear polyurethane chains based on an adipic acid/butanediol polyester having HDI/IPDI as isocyanate component. After the dispersion is dried and the film is cooled to 23° C. the polymer crystallises. Measurement using thermomechanical analysis shows the film to be largely crystallised at temperatures of <+65° C.
- Dimer of toluoylene 2,4-diisocyanate: Metalink® U from Acima AG; CH 9471 Buchs, Switzerland.
- Example series a: Jeffamine® T 403; trifunctional polyether amine, MW=approx. 450, manufactured by Huntsman Corp., Utah, USA. Example series b: sodium salt of 2-(2-aminoethylamino) ethanesulfonic acid; ionically modified stabilising amine; Bayer MaterialScience AG, 51368 Leverkusen.
- Antifoam; manufacturer: Münzig Chemie GmbH, D-74076 Heilbronn Necal® BX
- Emulsifier; manufacturer: BASF AG, D-67056 Ludwigshafen Tamol® NN 4501 (45% in water)
- Protective colloid; manufacturer: BASF AG, 67056 Ludwigshafen Borchigel® L 75
- Thickener; manufacturer: Borchers GmbH, D-40765 Monheim Walocel® MT 400PV
- Thickener; manufacturer: Wolff Cellulosics GmbH & Co. KG, 29656 Walsrode
- Catalysts utilised in the Examples according to the invention:
-
Example No. Catalyst 1, 2 sodium acetate 3 potassium acetate 4, 5 sodium propionate 6 sodium oleate 7, 8 tetrabutylammonium hydroxide 9 tetramethylammonium acetate 10, 11 trimethyl-2-hydroxypropylammonium-2-ethylhexanoate - These compounds are indicated in the literature (Methoden der Organischen Chemie [Organic Chemistry Methods], Houben-Weyl, Vol. E 20, Chapter 14; D. Dieterich Polyisocyanurate [Polyisocyanurates], p. 1739 et seq. and in the further literature references cited therein as effective trimerisation catalysts). They are unsuitable for achieving the object on which the invention is based because they obviously fail to lead to a sufficiently rapid reduction in the detectable quantity of TDI monomer which outgases from the adhesive layer at elevated temperature.
-
Comparison Example No. Catalyst 12, 13 amidine: (DBU) 1,8-diazabicyclo[5.4.0]undec-7-ene 14, 15, 16 Mannich base of phenol: 2,4,6-tris-(N,N-dimethylaminomethyl) phenol 17 non-basic quaternary ammonium salt: tetrabutylammonium bromide - Production of the preparations:
- The preparations are produced in two steps (I and II) as follows:
- Table 2 shows the basic formulations a and b of the deactivated isocyanate dispersions for deactivating the amines a and b
-
TABLE 2 Basic formulations a and b of the deactivated isocyanate dispersions for deactivating amines a and b (all quantities are expressed as parts by weight) Basic formulation Function Substance a b Dispersing medium Water 500 536 Deactivating amine a Jeffamine ® T-403 25 — Deactivating amine b Sodium salt of 2-(2- — 59 aminoethylamino) ethanesulfonic acid (40% aqueous solution) Oligomeric solid Metalink ® U (TDI dimer) 410 395 isocyanate Antifoam Agitan ® 281 1 — Protective colloid Tamol ® NN 4501 (45% in 10 — water) Detergent Nekal ® BX (salt-free) 4 — Thickener Walocel ® MT 4000PV 50 10 Total 1000 1000 - In the first step the solid Metalink® U (TDI dimer) is dispersed in water in accordance with the basic formulations a) or b) shown in Table 2, with use of suitable grinding and dispersing devices in the presence of the deactivating amine (Jeffamine® T 403 [test series a] or the sodium salt of 2-(2-aminoethylamino) ethanesulfonic acid [test series b]. Equipment suitable for the finely particulate dispersing are, for example, dissolvers, rotor-stator-type dispersing equipment, ball mills or pearl mills, with the temperature not being permitted to rise above 40° C. A TORUSMILL® from VMA-Getzmann GmbH (D-51580 Reichshof, Germany) was used in order to carry out the examples. The pre-dispersion and the grinding operation are carried out in the same vigorously cooled double-walled special steel vessel. First a mixture of water, antifoam, optionally protective colloid, optionally detergent and deactivating amine is produced into which the TDI dimer is finally stirred. The grinding compartment of the pearl mill is then inserted, which is filled to 70% volume with zirconium oxide spheres (1.2-1.7 mm diameter). During the grinding operation the grinding compartment is cooled intensively so that the temperature in the dispersion remains below 30° C. The grinding operation lasts for approximately 60 minutes and yields an average particle size of approx. 10 μm, having a maximum at 20 μm.
- Simultaneously with the grinding, the TDI dimer particles are deactivated by surface reaction with the amines a or b which are present. Lastly, the viscosity of the suspension is increased to approx. 5000 mPas by the addition of the thickener solution, in order to avoid sedimentation. Both basic formulations comprise the cross-linking agent TDI dimer at approximately the same concentration of 40 wt. %.
- (II) Producing the Adhesive Preparations Comprising the Catalysts, with Use of the Basic Formulations a or b Produced in the First Step
- 100 parts by weight of the polymer dispersion—Dispercoll® U 53—are introduced into a stainless steel or glass vessel of an appropriate size. With stirring, using a dissolver (Dispermat), 5 parts by weight of the deactivated TDI dimer suspensions as well as additionally respectively one of the catalysts listed in the Tables which follow are then added in the quantities indicated: Table 3 for Examples according to the invention and Table 4 for examples not according to the invention. Since the deactivated suspensions of the Metalink® U (TDI dimer) comprise approx. 40 wt. % of solid isocyanate, this quantity corresponds to approx. 2.0 parts by weight of solid isocyanate to 100 parts of polymer dispersion. The mixtures are stirred at 1000 r.p.m. for 5 minutes to homogenise. Finally, sufficient thickener is dispensed into them for the finished preparations to have a viscosity of the order of approximately 2500 mPas (approx. 2 wt. %—with reference to the total mixture—of the solution of Borchigel L 75).
-
TABLE 3 Examples according to the invention Components of the adhesive Preparation preparations A b Parts/wt Dispercoll ® U 53 — — 100 Basic formulation of Deactivation: Deactivation: 5 deactivated Metalink ® U Jeffamine ® 2-(2-amino- dispersion in water T 403 ethylamino) ethanesulfonic acid, Na salt Borchigel ® L 75 solution — — approx. 2 Catalysts according Example Nos. to the invention: Sodium acetate 1b 0.1 Sodium acetate 2b 0.2 Potassium acetate 3b 0.2 Sodium propionate 4b 0.1 Sodium propionate 5b 0.2 Sodium oleate 6b 0.2 Tetrabutylammonium 7b 0.1 hydroxide Tetrabutylammonium 8a 8b 0.2 hydroxide Tetramethylammonium 9b 0.2 acetate Trimethyl-2- 10b 0.2 hydroxypropylammonium 2- ethylhexanoate Trimethyl-2- 11a 11b 0.4 hydroxypropylammonium 2- ethylhexanoate -
TABLE 4 Comparison Examples Components of the adhesive Preparation preparations A b Parts/wt Dispercoll ® U 53 100 Basic formulation of deactivated Deactivation: Deactivation: 5 Metalink ® U (TDI dimer) dispersion Jeffamine ® 2-(2-amino- in water T 403 ethylamino) ethanesulfonic acid Na salt Borchigel ® L 75 solution approx. 2 Catalysts: Example Nos. Amidine: (DBU) 1,8- — 12b 1.1 diazabicyclo[5.4.0]undec-7-ene Amidine: (DBU) 1,8- — 13b 1.7 diazabicyclo[5.4.0]undec-7-ene Mannich base of phenol: 2,4,6-tris- — 14b 0.5 N,N-dimethylaminomethyl) phenol Mannich base of phenol: 2,4,6-tris- — 15b 0.9 N,N-dimethylaminomethyl) phenol Mannich base of phenol: 2,4,6-tris- — 16b 1.8 N,N-dimethylaminomethyl) phenol Non-basic catalyst: — 17b 0.1 tetrabutylammonium bromide - In Table 5 the definition of the prior art relating to the TDI monomer separation (thermodesorption for 30 min at 90° C., followed by analysis of volatile components (GC measurement)) from dry film adhesives of preparations without catalyst is set out. The preparations show a variation in the proportion of TDI dimer (in the form of the suspension having the basic formulation b, as produced in accordance with Table 2). As the proportion of Metalink® U (TDI dimer) decreases, the quantity of separated monomeric TDI decreases. However, because cross-linking is likewise reduced as the TDI dimer quantity drops, in measurements of the softening point (the measure of heat resistance for the shoe industry) on substrates containing plasticisers or oil (soft PVC or NORA rubber), satisfactory values for the softening point of bonding in heat are not achieved, provided that the quantity of separated monomeric TDI is <10 ppm.
-
TABLE 5 TDI separation from dry film adhesives of the preparation b (q.v. Table 3 or 4) without catalyst Metalink ® U (TDI dimer) TDI monomer basic formulation to 100 determina- Softening point [° C.] parts Dispercoll ® U 53 tion by GC PVC 30% Parts by weight (ppm) DOP Nora KASX 10 1700 107 138 146 7 1200 105 129 141 5 570 96 120 133 4 200 88 117 132 3 15 77 94 119 2 7 68 83 109 The polymer dispersion (Dispercoll ® U 53) used in these preparations has a 40% solids content, as also has the basic formulation b of the dispersed TDI dimer. - Separation of volatile monomeric TDI from the preparations considered here which are based on polymer dispersions and deactivated Metalink® U (TDI dimer) can be avoided with the use according to the invention of suitable basic catalysts. The suitable catalyst is selected against the background that it must accelerate the reaction between the isocyanate group of liberated isocyanate monomer (TDI) and isocyanate-reactive groups, including the uretdione group itself, more strongly than the cleavage of the dimeric isocyanate (uretdione) to form the monomer (TDI). The thermal lability of isocyanate dimers is known (product data sheet for Metalink® U; Acima AG, CH-9471 Buchs) to be intensified by many catalysts, such that the monomeric isocyanate liberation temperature could, if the catalyst were selected incorrectly, be further reduced or the rate of cleavage of the oligomer be increased.
- Basic alkali metal salts (Examples 1b-6b; Results: Table 6) even at low concentrations demonstrate an excellent effectiveness in terms of the very low quantity of volatile TDI monomer achieved with their aid. It is important to utilise the salts at the lowest possible concentration in the adhesive preparations in order to avoid negative effects on the rheological stability (shear resistance and coagulation resistance) of the preparations produced with polymer dispersions.
- Basic tetraalkylammonium compounds (Examples 7b-11b; Results: Table 6) are likewise highly effective catalysts according to the invention. The importance of the basicity of the catalyst for effectiveness according to the invention in the preparation is demonstrated by the contrast between tetrabutylammonium bromide (Example 17b; Results: Table 7), which brings about no substantial reduction in the quantity of TDI liberated, and the basic tetramethylammonium acetate which at the same low concentration suppresses the liberation of monomeric TDI very effectively (Example 9b; Results: Table 6).
-
TABLE 6 The influence on the TDI liberation of the type and quantity of catalyst according to the invention TDI from film Concentration adhesive (TDS/GC, in preparation 30 min 90° C.) Example No. Catalyst [wt. %] [ppm] Prior art None — 470-670 Preparation a and b 1b Sodium acetate 0.1 40-100 2b Sodium acetate 0.2 <10 3b Potassium acetate 0.2 <10 4b Sodium propionate 0.1 11-24 5b Sodium propionate 0.2 15 6b Sodium oleate 0.2 48 7b Tetrabutylammonium 0.1 190 hydroxide 8a Tetrabutylammonium 0.2 30 hydroxide 8b Tetrabutylammonium 0.2 30 hydroxide 9b Tetramethylammonium 0.2 <10 acetate 10b Trimethyl-2- 0.2 30-70 hydroxypropylammonium 2-ethylhexanoate 11a Trimethyl-2- 0.4 <10 hydroxypropylammonium 2- thylhexanoate 11b Trimethyl-2- 0.4 <10 hydroxypropylammonium 2- thylhexanoate -
TABLE 7 Comparison Examples having unsuitable catalysts TDI from dry Concentration film adhesive Comparison in preparation at 90° C. Example No. Catalyst [wt. %] [ppm] Prior art None — 470-670 12b: amidine DBU 1.1 620 13b: amidine DBU 1.7 510 14b: 2,4,6-tris-(N,N- 0.5 490 Mannich dimethylaminomethyl) base phenol 15b: 2,4,6-tris-(N,N- 0.9 470 Mannich dimethylaminomethyl) base phenol 16b: 2,4,6-tris-(N,N- 1.8 410 Mannich dimethylaminomethyl) base phenol 17b: non- Tetrabutylammonium 0.1 220 basic salt bromide DBU: 1.3-diazabicyclo[5.4.0]undecene - In order to determine the TDI liberation from the dried film adhesives (approx. 170 μm) samples of the film adhesives were introduced into the TDS system from Gerstel GmbH & Co KG (Aktienstrasse 232-234, 45473 Mülheim) and conditioned at 90° C. under a dry gas current for 30 min. The constituents which were volatile under these conditions were first collected in a cold trap (−150° C.) and, following completed thermodesorption, were analysed using a GC Agilent® 6890N (Agilent Technologies Deutschland GmbH, Hewlett-Packard Str 8, D-76337 Waldbronn).
-
-
Thermodesorption: Initial temperature 20° C. Heating rate 60° C./min Holding temperature 90° C. Holding time 30 min Cold feed system parameters Initial temperature −150° C. Heating rate 12° C./sec Holding temperature 280° C. Holding time 3 min GC parameters: Initial temperature 50° C. Initial time 2 min 1st heating rate 25° C./min Holding temperature 160° C. Holding time 0 min 2nd heating rate 10° C./min Holding temperature 300° C. Column DB-5 MS Detector FID - The test specimens of KASX (nitrile rubber), Nora rubber (SBR) and soft PVC (30% DOP), respectively, are roughened with abrasive paper (grade 80) immediately before application of the adhesive. The adhesive formulation is applied by brush to both sides of the 20×10 mm adherend surface. The adhesive layer is dried at 23° C./50% relative humidity for 60 min.
- The adherend surfaces are irradiated with an IR radiation source (from Funk; shock activator 2000), and the film adhesive is heated, dependent on the substrate, to a surface temperature of approx. 85° C. (PVC with 30% DOP), approx. 109° C. (SBR) and approx. 158° C. (nitrile rubber), respectively. The decrystallisation temperature of the polymer chain of the polyurethane dispersion used (Dispercoll® U 53) is within the range 50-65° C. Bonding takes place immediately after heat activation of the adhesive-coated test specimens, by laying the activated adhesive layers one against the other and pressing at 4 bar for one minute in a press. The test specimens thus produced are stored at 23° C. and 50% relative humidity for 7 days.
- The test specimens are placed under a 4 kg load and conditioned to 40° C. in a heating chamber within 30 min. The test specimens are then heated to 150° C. at a linear heating rate of 0.5° C./min. The softening point, that is to say the temperature in ° C. at which the bonded joint fails under the 4 kg load, is recorded. In each case separate measurements are taken.
- For comparison: without cross-linking, bonded joints with use of Dispercoll® U 53 have a softening point of approx. 60° C. under these conditions. The softening point after isocyanate cross-linking when Dispercoll® U 53 is used as the adhesive polymer is within the range 90-150° C., depending on the substrate (q.v. in this context Table 5).
- Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims.
Claims (20)
1. Aqueous preparations comprising
a) dispersed polymers having isocyanate-reactive groups,
b) dispersed surface-deactivated oligomeric solid polyisocyanates, and
c) at least one catalyst,
wherein the catalyst or the totality of catalysts accelerates the reaction of the monomeric polyisocyanates which form by the thermal cleavage of the oligomeric polyisocyanates more strongly than the thermal cleavage itself.
2. The preparations according to claim 1 , wherein alkali metal carboxylates, alkali metal phenolates and/or basic quaternary ammonium compounds are used as catalyst.
3. The preparations according to claim 1 , wherein the preparations comprise from 0.05 to 1.5 wt. % catalyst, with reference to the total preparation.
4. The preparations according to claim 1 , wherein the preparations comprise from 0.1 to 0.7 wt. % catalyst, with reference to the total preparation.
5. The preparations according to claim 1 , wherein the preparations comprise from 0.2 to 0.5 wt. % catalyst, with reference to the total preparation.
6. The preparations according to claim 1 , wherein catalysts compounds corresponding to the formula X+Y− are used in which, independently of one another,
X represents alkali metal or tetraalkylammonium, and
Y represents hydroxyl or phenolate or the anions of saturated or unsaturated carboxylic acids having 1-18 C atoms.
7. The preparations according to claim 6 , wherein independently of one another,
X denotes lithium, sodium or potassium or tetraalkylammonium corresponding to the formula (NR1R2R3R4)+, wherein R1 to R4, independently of one another, denote saturated or unsaturated alkyl radicals having 1-18 C atoms, and
Y denotes hydroxyl or stands for phenolate or the anions of saturated or unsaturated carboxylic acids having 1-18 C atoms.
8. The preparations according to claim 6 , wherein independently of one another,
X denotes lithium, sodium or potassium or tetraalkylammonium corresponding to the formula (NR1R2R3R4)+, wherein R1 to R4, independently of one another, stand for methyl, ethyl, 2-hydroxyethyl, propyl, 2-hydroxypropyl, butyl, nonyl, dodecyl, oleyl or benzyl, and
Y denotes hydroxyl or stands for phenolate or the anions of ethanoic, propionic, benzoic, maleic, 2-ethylhexanoic or oleic acid.
9. The preparations according to claim 1 , wherein mono- and/or polyamines are used for the surface deactivation of the oligomeric solid polyisocyanates.
10. The preparations according to claim 1 , wherein mono- and/or polyamines are used which carry ionic groups as a molecular structure constituent for the surface deactivation of the oligomeric solid polyisocyanates.
11. The preparations according to claim 10 , wherein the polyamines which carry ionic groups as a molecular structure constituent are aminosulfonates corresponding to the formula
H2N-A-NH-B-SO3 (−)Z(+)
H2N-A-NH-B-SO3 (−)Z(+)
wherein A and B, independently of one another, stand for hydrocarbon segments having 2 to 6 carbon atoms and Z stands for an alkali metal atom or tetraalkylammonium corresponding to the formula (NR1R2R3R4)+, wherein R1 to R4, independently of one another, represent methyl, ethyl, 2-hydroxyethyl, propyl, 2-hydroxypropyl, butyl, nonyl, dodecyl, oleyl or benzyl.
12. The preparations according to claim 11 , wherein the amine sulfonate is a salt of 2-(−2-aminoethylamino)ethanesulfonic acid.
13. The preparations according to claim 10 , wherein the amine sulfonate is a salt of taurine (2-aminoethanesulfonic acid).
14. The preparations according to claim 1 , wherein dimerisation products of TDI or IPDI are used as oligomeric solid polyisocyanates.
15. The preparations according to claim 1 , wherein polyurethanes are used as isocyanate-reactive polymers.
16. The preparations according to claim 1 , wherein polymers and copolymers of 2-chlorobutadiene are used as isocyanate-reactive polymers.
17. A process for the production of preparations according to claim 1 , comprising mixing aqueous dispersions of at least one isocyanate-reactive polymer with at least one dispersed surface-deactivated oligomeric solid polyisocyanate and at least one catalyst which accelerates the reaction of the monomeric polyisocyanates which form by the thermal cleavage of the oligomeric polyisocyanates more strongly than the thermal cleavage itself.
18. Binders, bonded joints, or coatings comprising the preparations according to claim 1 and one or more additives selected from the group consisting of wetting agents, emulsifiers, thickeners, protective colloids, stabilisers, antioxidants, fillers, coloured pigments, plasticisers, non-solvent liquids, and combinations thereof.
19. A method of making a latently cross-linking adhesive layer comprising applying the binders, bonded joints, or coatings according to claim 18 to a substrate.
20. Substrates coated with layers obtainable with preparations according to claim 1 .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/396,063 US20090227724A1 (en) | 2004-05-28 | 2009-03-02 | Adhesives |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102004026118.0 | 2004-05-28 | ||
| DE102004026118A DE102004026118A1 (en) | 2004-05-28 | 2004-05-28 | adhesives |
| US11/137,260 US7498380B2 (en) | 2004-05-28 | 2005-05-25 | Adhesives |
| US12/396,063 US20090227724A1 (en) | 2004-05-28 | 2009-03-02 | Adhesives |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/137,260 Continuation US7498380B2 (en) | 2004-05-28 | 2005-05-25 | Adhesives |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090227724A1 true US20090227724A1 (en) | 2009-09-10 |
Family
ID=34936487
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/137,260 Expired - Fee Related US7498380B2 (en) | 2004-05-28 | 2005-05-25 | Adhesives |
| US12/396,063 Abandoned US20090227724A1 (en) | 2004-05-28 | 2009-03-02 | Adhesives |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/137,260 Expired - Fee Related US7498380B2 (en) | 2004-05-28 | 2005-05-25 | Adhesives |
Country Status (11)
| Country | Link |
|---|---|
| US (2) | US7498380B2 (en) |
| EP (1) | EP1600485B1 (en) |
| JP (1) | JP4945093B2 (en) |
| CN (1) | CN1702138B (en) |
| AR (1) | AR049181A1 (en) |
| AT (1) | ATE453699T1 (en) |
| BR (1) | BRPI0501990A (en) |
| CA (1) | CA2508200C (en) |
| DE (2) | DE102004026118A1 (en) |
| MX (1) | MXPA05005603A (en) |
| NO (1) | NO20052569L (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080171208A1 (en) * | 2006-12-12 | 2008-07-17 | Jorg Buchner | Adhesives |
| WO2016100344A1 (en) * | 2014-12-15 | 2016-06-23 | H.B. Fuller Company | Reactive film adhesives with enhanced adhesion to metallic surfaces |
| US11802226B2 (en) | 2013-07-30 | 2023-10-31 | H.B. Fuller Company | Polyurethane adhesive film |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102004026118A1 (en) * | 2004-05-28 | 2005-12-15 | Bayer Materialscience Ag | adhesives |
| DE102005050525A1 (en) * | 2005-10-21 | 2007-04-26 | Degussa Gmbh | Metal-free 1-component polyurethane systems |
| EP1845132B8 (en) * | 2006-04-11 | 2009-04-01 | Shin-Etsu Chemical Co., Ltd. | Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method |
| US8147395B2 (en) * | 2006-11-28 | 2012-04-03 | Gregory S. Anderson | Bone-activity stimulation apparatus and method |
| US8256019B2 (en) * | 2007-08-01 | 2012-09-04 | Honeywell International Inc. | Composite ballistic fabric structures for hard armor applications |
| DE102007054046A1 (en) * | 2007-11-13 | 2009-06-18 | Bayer Materialscience Ag | Latent reactive adhesives for identification documents |
| ATE532806T1 (en) * | 2009-03-31 | 2011-11-15 | Sika Technology Ag | HOT-CURING OR HEAT-ACTIVATABLE COMPOSITION CONTAINING A SURFACE-DEACTIVATED POLYISOCYANATE |
| EP2386600B1 (en) * | 2010-04-15 | 2013-06-19 | LANXESS Deutschland GmbH | Cross-linking agent for nitrile rubbers containing isocyanate groups |
| JP5697955B2 (en) * | 2010-11-19 | 2015-04-08 | 住化バイエルウレタン株式会社 | Multilayer decorative film |
| DE102012203249A1 (en) * | 2012-03-01 | 2013-09-05 | Tesa Se | Use of a latent-reactive adhesive film for bonding anodized aluminum with plastic |
| EP3026071A1 (en) | 2014-11-26 | 2016-06-01 | Henkel AG & Co. KGaA | Stabilised polyurethane dispersions |
| BR112018072181B1 (en) * | 2016-04-29 | 2022-04-05 | Dow Global Technologies Llc | Multi-layer coating, and multi-layer coating preparation method |
| CN112135853A (en) * | 2018-05-18 | 2020-12-25 | 汉高股份有限及两合公司 | Stable and low-curing-temperature 1K polyisocyanates |
| EP3730528A1 (en) | 2019-04-24 | 2020-10-28 | Covestro Deutschland AG | Latent reactive adhesive preparations |
| EP4467586A1 (en) | 2023-05-25 | 2024-11-27 | Covestro Deutschland AG | Use of polyurethane dispersions for producing latent-reactive adhesive layers and self-supporting adhesive films |
| WO2024240683A1 (en) | 2023-05-25 | 2024-11-28 | Covestro Deutschland Ag | Use of polyurethane dispersions for production of latently reactive adhesive layers and self-supporting adhesive films |
| JP7568809B1 (en) * | 2023-06-06 | 2024-10-16 | 大日精化工業株式会社 | Water-based white ink composition, laminate and plastic label |
Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3479310A (en) * | 1963-09-19 | 1969-11-18 | Bayer Ag | Polyurethane plastics |
| US4092286A (en) * | 1975-11-14 | 1978-05-30 | Bayer Aktiengesellschaft | Production of water-dispersible polyurethanes having ionic groups and hydrophilic side chains |
| US4190566A (en) * | 1975-12-10 | 1980-02-26 | Bayer Aktiengesellschaft | Water-dispersible polyurethanes |
| US4192937A (en) * | 1977-07-15 | 1980-03-11 | Bayer Aktiengesellschaft | Process for the preparation of isocyanate polyaddition products which have hydroxyl groups in side chains |
| US4238378A (en) * | 1976-11-11 | 1980-12-09 | Bayer Aktiengesellschaft | Cationic electrolyte-stable dispersions and process for producing polyurethanes useful therein |
| US4269748A (en) * | 1978-03-15 | 1981-05-26 | Bayer Aktiengesellschaft | Process for the preparation of aqueous polyurethane dispersions and solutions |
| US4581432A (en) * | 1983-11-29 | 1986-04-08 | Basf Aktiengesellschaft | Heat-curable compositions which are storage-stable at room temperature and are based on compounds having reactive hydrogen atoms and polyisocyanates |
| US4888124A (en) * | 1985-05-14 | 1989-12-19 | Basf Aktiengesellschaft | Preparation of stable dispersions of finely divided polyisocyanates and preparation of heat-crosslinkable isocyanate systems |
| US5159011A (en) * | 1990-07-16 | 1992-10-27 | Basf Aktiengesellschaft | Aqueous formulations of copolymer latices and polyisocyanate dispersions |
| US6348548B1 (en) * | 1997-12-11 | 2002-02-19 | Bayer Ag | Method for producing and using storage-stable, latent-reactive layers or powders of surface-deactivated, solid polyisocyanates and dispersion polymers with functional groups |
| US20030119976A1 (en) * | 2001-08-16 | 2003-06-26 | Otto Ganster | One-component isocyanate-crosslinking two-phase compositions |
| US20030153713A1 (en) * | 2002-02-11 | 2003-08-14 | Degussa Ag | Low-temperature-curable, solid polyurethane powder coating compositions containing uretdione groups |
| US20030157337A1 (en) * | 2000-06-15 | 2003-08-21 | Abend Thomas P. | Pressure-sensitive adhesives exhibiting an improved shear strength at elevated temperatures |
| US20030232199A1 (en) * | 2002-06-17 | 2003-12-18 | Thorsten Rische | Polyurethane-polyurea dispersions |
| US20040162387A1 (en) * | 2003-02-14 | 2004-08-19 | Thorsten Rische | One-component coating systems |
| US20050159575A1 (en) * | 2004-01-16 | 2005-07-21 | Bayer Materialscience Ag | Polyurethane-polyurea dispersions stable to thermal yellowing |
| US7498380B2 (en) * | 2004-05-28 | 2009-03-03 | Bayer Materialscience Ag | Adhesives |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5998180A (en) * | 1982-11-26 | 1984-06-06 | Nippon Polyurethan Kogyo Kk | Solvent-free adhesive composition |
| DE3343125A1 (en) * | 1983-11-29 | 1985-06-05 | Basf Ag, 6700 Ludwigshafen | REINFORCED, COMPACT OR CELLULAR POLYURETHANE MOLDED PARTS, METHOD FOR THE PRODUCTION THEREOF FROM HEAT-CURABLE ONE-COMPONENT POLYURETHANE FORMULATIONS AND THE USE THEREOF |
| DE3521618A1 (en) | 1985-06-15 | 1986-12-18 | Bayer Ag, 5090 Leverkusen | POLYISOCYANATE PREPARATION IN WATER AND THEIR USE AS ADDITIVES FOR AQUEOUS ADHESIVES |
| JPH08291279A (en) * | 1995-02-21 | 1996-11-05 | Nippon Polyurethane Ind Co Ltd | Adhesive composition for laminating, and method for producing laminated film |
| DE19704245A1 (en) | 1997-02-05 | 1998-08-06 | Bayer Ag | Aqueous, crosslinking polymer dispersions and their use for the production of aqueous adhesives |
| US6686415B1 (en) * | 1998-05-07 | 2004-02-03 | Jowat Lobers Und Frank Gmbh & Co. Kg | Substance system |
| EP1013690A1 (en) | 1998-12-21 | 2000-06-28 | Abend, Thomas | Aqueous storage-stable dispersions or solutions containing isocyanate reactive polymers and surface-deactivated solid polyisocyanates and method of preparing the same as well as a method of preparing a layer |
| JP2002284839A (en) * | 2000-09-22 | 2002-10-03 | Asahi Kasei Corp | Polyuretdione ring dissociation promoter |
| DE10347901A1 (en) * | 2003-10-15 | 2005-05-19 | Degussa Ag | Polyurethane powder coating coatings containing solid uretdione group-containing polyaddition compounds and a process for their preparation |
-
2004
- 2004-05-28 DE DE102004026118A patent/DE102004026118A1/en not_active Withdrawn
-
2005
- 2005-05-13 DE DE502005008763T patent/DE502005008763D1/en not_active Expired - Lifetime
- 2005-05-13 AT AT05010439T patent/ATE453699T1/en not_active IP Right Cessation
- 2005-05-13 EP EP05010439A patent/EP1600485B1/en not_active Expired - Lifetime
- 2005-05-20 AR ARP050102089A patent/AR049181A1/en active IP Right Grant
- 2005-05-25 MX MXPA05005603A patent/MXPA05005603A/en active IP Right Grant
- 2005-05-25 CA CA2508200A patent/CA2508200C/en not_active Expired - Fee Related
- 2005-05-25 US US11/137,260 patent/US7498380B2/en not_active Expired - Fee Related
- 2005-05-27 CN CN2005100739353A patent/CN1702138B/en not_active Expired - Fee Related
- 2005-05-27 NO NO20052569A patent/NO20052569L/en not_active Application Discontinuation
- 2005-05-27 JP JP2005155473A patent/JP4945093B2/en not_active Expired - Fee Related
- 2005-05-30 BR BR0501990-7A patent/BRPI0501990A/en not_active IP Right Cessation
-
2009
- 2009-03-02 US US12/396,063 patent/US20090227724A1/en not_active Abandoned
Patent Citations (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3479310A (en) * | 1963-09-19 | 1969-11-18 | Bayer Ag | Polyurethane plastics |
| US4092286A (en) * | 1975-11-14 | 1978-05-30 | Bayer Aktiengesellschaft | Production of water-dispersible polyurethanes having ionic groups and hydrophilic side chains |
| US4190566A (en) * | 1975-12-10 | 1980-02-26 | Bayer Aktiengesellschaft | Water-dispersible polyurethanes |
| US4238378A (en) * | 1976-11-11 | 1980-12-09 | Bayer Aktiengesellschaft | Cationic electrolyte-stable dispersions and process for producing polyurethanes useful therein |
| US4192937A (en) * | 1977-07-15 | 1980-03-11 | Bayer Aktiengesellschaft | Process for the preparation of isocyanate polyaddition products which have hydroxyl groups in side chains |
| US4269748A (en) * | 1978-03-15 | 1981-05-26 | Bayer Aktiengesellschaft | Process for the preparation of aqueous polyurethane dispersions and solutions |
| US4581432A (en) * | 1983-11-29 | 1986-04-08 | Basf Aktiengesellschaft | Heat-curable compositions which are storage-stable at room temperature and are based on compounds having reactive hydrogen atoms and polyisocyanates |
| US4888124A (en) * | 1985-05-14 | 1989-12-19 | Basf Aktiengesellschaft | Preparation of stable dispersions of finely divided polyisocyanates and preparation of heat-crosslinkable isocyanate systems |
| US5159011A (en) * | 1990-07-16 | 1992-10-27 | Basf Aktiengesellschaft | Aqueous formulations of copolymer latices and polyisocyanate dispersions |
| US6348548B1 (en) * | 1997-12-11 | 2002-02-19 | Bayer Ag | Method for producing and using storage-stable, latent-reactive layers or powders of surface-deactivated, solid polyisocyanates and dispersion polymers with functional groups |
| US20020193534A1 (en) * | 1997-12-11 | 2002-12-19 | Thomas Abend | Method for producing and using storage-stable, latent-reactive layers or powders of surface-deactivated, solid polyisocyanates and dispersion polymers with functional groups |
| US6593435B2 (en) * | 1997-12-11 | 2003-07-15 | Bayer Ag | Method for producing and using storage-stable, latent-reactive layers or powders of surface-deactivated, solid polyisocyanates and dispersion polymers with functional groups |
| US20030157337A1 (en) * | 2000-06-15 | 2003-08-21 | Abend Thomas P. | Pressure-sensitive adhesives exhibiting an improved shear strength at elevated temperatures |
| US20030119976A1 (en) * | 2001-08-16 | 2003-06-26 | Otto Ganster | One-component isocyanate-crosslinking two-phase compositions |
| US20030153713A1 (en) * | 2002-02-11 | 2003-08-14 | Degussa Ag | Low-temperature-curable, solid polyurethane powder coating compositions containing uretdione groups |
| US20030232199A1 (en) * | 2002-06-17 | 2003-12-18 | Thorsten Rische | Polyurethane-polyurea dispersions |
| US20040162387A1 (en) * | 2003-02-14 | 2004-08-19 | Thorsten Rische | One-component coating systems |
| US20050159575A1 (en) * | 2004-01-16 | 2005-07-21 | Bayer Materialscience Ag | Polyurethane-polyurea dispersions stable to thermal yellowing |
| US7498380B2 (en) * | 2004-05-28 | 2009-03-03 | Bayer Materialscience Ag | Adhesives |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080171208A1 (en) * | 2006-12-12 | 2008-07-17 | Jorg Buchner | Adhesives |
| US11802226B2 (en) | 2013-07-30 | 2023-10-31 | H.B. Fuller Company | Polyurethane adhesive film |
| WO2016100344A1 (en) * | 2014-12-15 | 2016-06-23 | H.B. Fuller Company | Reactive film adhesives with enhanced adhesion to metallic surfaces |
| WO2016100350A1 (en) * | 2014-12-15 | 2016-06-23 | H.B. Fuller Company | Reactive adhesive with enhanced adhesion to metallic surfaces |
| US9944834B2 (en) | 2014-12-15 | 2018-04-17 | H.B. Fuller Company | Reactive film adhesives with enhanced adhesion to metallic surfaces |
| US9957427B2 (en) | 2014-12-15 | 2018-05-01 | H.B. Fuller Company | Reactive adhesive with enhanced adhesion to metallic surfaces |
| TWI685555B (en) * | 2014-12-15 | 2020-02-21 | 美商H B 富勒公司 | Reactive adhesive with enhanced adhesion to metallic surfaces |
Also Published As
| Publication number | Publication date |
|---|---|
| BRPI0501990A (en) | 2006-01-24 |
| US20050267255A1 (en) | 2005-12-01 |
| CA2508200A1 (en) | 2005-11-28 |
| JP2005336494A (en) | 2005-12-08 |
| ATE453699T1 (en) | 2010-01-15 |
| NO20052569D0 (en) | 2005-05-27 |
| JP4945093B2 (en) | 2012-06-06 |
| AR049181A1 (en) | 2006-07-05 |
| CA2508200C (en) | 2013-01-15 |
| US7498380B2 (en) | 2009-03-03 |
| DE502005008763D1 (en) | 2010-02-11 |
| EP1600485B1 (en) | 2009-12-30 |
| DE102004026118A1 (en) | 2005-12-15 |
| CN1702138B (en) | 2011-08-03 |
| NO20052569L (en) | 2005-11-29 |
| MXPA05005603A (en) | 2005-11-30 |
| CN1702138A (en) | 2005-11-30 |
| EP1600485A1 (en) | 2005-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090227724A1 (en) | Adhesives | |
| US4663377A (en) | Polyisocyanate preparation dispersible in water and their use as an additive for aqueous adhesives | |
| EP2493946B1 (en) | Aqueous formulations based on crystalline or semicrystalline polyurethane polymers | |
| CA2055419C (en) | Nonaqueous polyisocyanate formulation | |
| US8841369B2 (en) | Latently reactive polyurethane dispersion with activatable crosslinking | |
| US10745591B2 (en) | Method for adhesively bonding substrates using adhesives | |
| US11180686B2 (en) | Accelerate cure of moisture curable polyurethane adhesive compositions useful for bonding glass | |
| US4543393A (en) | Mixtures, for polyurethane adhesives, which consist of polyols and/or polyamines and polyisocyanates, are liquid at room temperature, have a long shelf life and can be activated by heat | |
| US20230407153A1 (en) | De-bondable polyurethane adhesives based on thermally expandable microspheres | |
| EP1066333B1 (en) | Process for coating substrates having polar surfaces with polyurethane latexes | |
| US20030119976A1 (en) | One-component isocyanate-crosslinking two-phase compositions | |
| JP2008512519A (en) | Emulsifiable polyisocyanate | |
| US20040198899A1 (en) | Reactive hot melt adhesive with improved hydrolysis resistance | |
| US20230340310A1 (en) | Heat-crosslinked polyurethane adhesives, a polyurethane adhesive film and preparation method therefor | |
| JPH09137149A (en) | Hot-melt type acrylic pressure-sensitive adhesive composition | |
| HK1085759A (en) | Adhesives | |
| JP2972981B2 (en) | Aqueous isocyanate dispersion and curable composition | |
| JP3181854B2 (en) | Aqueous adhesive composition | |
| EP3536726A1 (en) | Coated product or article and method for manufacturing the same | |
| HK1171775B (en) | Aqueous formulations based on crystalline or semicrystalline polyurethane polymers | |
| MXPA00005772A (en) | Method for producing and using storage-stable, latent-reactive layers or powders of surface-deactivated, solid polyisocyanates and dispersion polymers with functional groups | |
| MXPA00005337A (en) | Modified polyurethane hotmelt adhesive |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |