US20090156654A1 - Derivative n-thiolated 2-oxazolidinone antibiotics - Google Patents
Derivative n-thiolated 2-oxazolidinone antibiotics Download PDFInfo
- Publication number
- US20090156654A1 US20090156654A1 US12/339,174 US33917408A US2009156654A1 US 20090156654 A1 US20090156654 A1 US 20090156654A1 US 33917408 A US33917408 A US 33917408A US 2009156654 A1 US2009156654 A1 US 2009156654A1
- Authority
- US
- United States
- Prior art keywords
- mrsa
- alkyl
- cycloalkyl
- aryl
- heteroaryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 title abstract description 41
- 239000003242 anti bacterial agent Substances 0.000 title abstract description 21
- 229940088710 antibiotic agent Drugs 0.000 title description 12
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 claims abstract description 16
- 229960003085 meticillin Drugs 0.000 claims abstract description 16
- 241000191940 Staphylococcus Species 0.000 claims abstract description 11
- 241000193738 Bacillus anthracis Species 0.000 claims abstract description 7
- -1 2-Oxazolidinone compound Chemical class 0.000 claims description 109
- 125000003118 aryl group Chemical group 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 125000001072 heteroaryl group Chemical group 0.000 claims description 19
- 206010041925 Staphylococcal infections Diseases 0.000 claims description 18
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 claims description 17
- 125000000304 alkynyl group Chemical group 0.000 claims description 16
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 claims description 16
- 125000003342 alkenyl group Chemical group 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 230000002401 inhibitory effect Effects 0.000 claims description 12
- 241000894006 Bacteria Species 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 11
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 125000003545 alkoxy group Chemical group 0.000 claims description 9
- 125000001589 carboacyl group Chemical group 0.000 claims description 8
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 8
- 208000035143 Bacterial infection Diseases 0.000 claims description 7
- 125000004423 acyloxy group Chemical group 0.000 claims description 7
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 7
- 125000006732 (C1-C15) alkyl group Chemical group 0.000 claims description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 6
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 6
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 5
- 244000063299 Bacillus subtilis Species 0.000 claims description 4
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 4
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 4
- 241000193749 Bacillus coagulans Species 0.000 claims description 3
- 241000194107 Bacillus megaterium Species 0.000 claims description 3
- 240000001817 Cereus hexagonus Species 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 2
- 241001037822 Bacillus bacterium Species 0.000 claims 2
- 125000001475 halogen functional group Chemical group 0.000 claims 2
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 claims 1
- XSXHWVKGUXMUQE-UHFFFAOYSA-N osmium dioxide Inorganic materials O=[Os]=O XSXHWVKGUXMUQE-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 67
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 21
- 241000191967 Staphylococcus aureus Species 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 11
- 241000193830 Bacillus <bacterium> Species 0.000 abstract description 10
- 238000003786 synthesis reaction Methods 0.000 abstract description 10
- 230000003389 potentiating effect Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 229940065181 bacillus anthracis Drugs 0.000 abstract description 3
- 230000003385 bacteriostatic effect Effects 0.000 abstract description 3
- 238000005991 sulfenylation reaction Methods 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 description 17
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 125000001424 substituent group Chemical group 0.000 description 13
- 208000015181 infectious disease Diseases 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 150000003952 β-lactams Chemical class 0.000 description 11
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 10
- 0 [3*][C@]1([5*])N(SC)C(=O)O[C@]1([4*])C Chemical compound [3*][C@]1([5*])N(SC)C(=O)O[C@]1([4*])C 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 230000003115 biocidal effect Effects 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- 229940124350 antibacterial drug Drugs 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 230000009036 growth inhibition Effects 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 231100000252 nontoxic Toxicity 0.000 description 5
- 230000003000 nontoxic effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 4
- 208000037942 Methicillin-resistant Staphylococcus aureus infection Diseases 0.000 description 4
- 239000008272 agar Substances 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 244000052616 bacterial pathogen Species 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 239000012230 colorless oil Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 125000004404 heteroalkyl group Chemical group 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- 229940056360 penicillin g Drugs 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ACPLDZVSGGKLJH-UHFFFAOYSA-N 3-methylsulfanyl-1,3-oxazolidin-2-one Chemical compound CSN1CCOC1=O ACPLDZVSGGKLJH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 150000001204 N-oxides Chemical class 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000004599 antimicrobial Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 125000000611 organothio group Chemical group 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 125000006413 ring segment Chemical group 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 125000000027 (C1-C10) alkoxy group Chemical group 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000295644 Staphylococcaceae Species 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 208000022338 anthrax infection Diseases 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000002132 β-lactam antibiotic Substances 0.000 description 2
- 229940124586 β-lactam antibiotics Drugs 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-L 2-oxoglutarate(2-) Chemical compound [O-]C(=O)CCC(=O)C([O-])=O KPGXRSRHYNQIFN-UHFFFAOYSA-L 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- WDGCBNTXZHJTHJ-UHFFFAOYSA-N 2h-1,3-oxazol-2-id-4-one Chemical class O=C1CO[C-]=N1 WDGCBNTXZHJTHJ-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- 125000006042 4-hexenyl group Chemical group 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241001112741 Bacillaceae Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241000588807 Bordetella Species 0.000 description 1
- 241000589562 Brucella Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241001112696 Clostridia Species 0.000 description 1
- 241000186031 Corynebacteriaceae Species 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241000186811 Erysipelothrix Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000186809 Kurthia Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000272168 Laridae Species 0.000 description 1
- 241000589902 Leptospira Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 241000186781 Listeria Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 241000192017 Micrococcaceae Species 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000588621 Moraxella Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 241000588656 Neisseriaceae Species 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 208000005141 Otitis Diseases 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 108700020474 Penicillin-Binding Proteins Proteins 0.000 description 1
- 201000007100 Pharyngitis Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000588768 Providencia Species 0.000 description 1
- 241000947836 Pseudomonadaceae Species 0.000 description 1
- 206010037596 Pyelonephritis Diseases 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000253368 Spirillaceae Species 0.000 description 1
- 241000605008 Spirillum Species 0.000 description 1
- 241000589971 Spirochaetaceae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 241000589886 Treponema Species 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000941 anti-staphylcoccal effect Effects 0.000 description 1
- 238000011482 antibacterial activity assay Methods 0.000 description 1
- 238000009635 antibiotic susceptibility testing Methods 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001669 calcium Chemical class 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000007958 cherry flavor Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 201000003146 cystitis Diseases 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 125000003074 decanoyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 208000019258 ear infection Diseases 0.000 description 1
- 206010014665 endocarditis Diseases 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 125000000268 heptanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003104 hexanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 150000003951 lactams Chemical group 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229940041009 monobactams Drugs 0.000 description 1
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000001402 nonanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- OIPZNTLJVJGRCI-UHFFFAOYSA-M octadecanoyloxyaluminum;dihydrate Chemical compound O.O.CCCCCCCCCCCCCCCCCC(=O)O[Al] OIPZNTLJVJGRCI-UHFFFAOYSA-M 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 206010034674 peritonitis Diseases 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000001325 propanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000007892 solid unit dosage form Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 238000006177 thiolation reaction Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 125000000297 undecanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000003774 valeryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/08—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D263/16—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D263/18—Oxygen atoms
- C07D263/20—Oxygen atoms attached in position 2
- C07D263/26—Oxygen atoms attached in position 2 with hetero atoms or acyl radicals directly attached to the ring nitrogen atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/52—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
Definitions
- This invention pertains to the synthesis and characterization of a new family of antibacterial drug. More specifically this invention relates to N-thiolated 2-oxazolidinones as a new class of synthetic antibacterial agents.
- MRSA methicillin-resistant Staphylococcus aureus
- Oxazolidinones were examined as potential antibacterially active organothio carriers. Oxazolidinones are already recognized for their favorable pharmacological properties and are the only new class of antibacterial drugs introduced into clinical use in the last three decades. (Brickner, S., J. Curr. Pharm. Des. 2 (1996), p. 175; Phillips, O. A., Curr. Opin. Invest. Drugs 4 (2003), p. 117; S. J. Brickner, S. J. et al., J. Med. Chem. 39 (1996), p. 673.)
- MRSA methicillin-resistant Staphylococcus aureus
- N-thiolated-2-Oxazolidones represent a new class of antibacterial agent for methicillin-resistant Staphylococcus aureus .
- Described herein is the synthesis and application of N-thiolated 2-oxazolidinones as a new class of anti bacterial agents.
- These compounds can be synthesized from 2-oxazolidinones by N-deprotection and N-sulfenylation. These new substances were found to exhibit potent anti-bacterial activity, including bacteriostatic properties against methicillin resistant Staphylococcus aureus (MRSA).
- MRSA methicillin resistant Staphylococcus aureus
- R 1-5 are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl, alkenyl, or alkynyl;
- the bacterium is a Staphylococcus spp.
- the Staphylococcus spp. is a methicillin-resistant Staphylococcus .
- the methicillin-resistant Staphylococcus can be MRSA USF919, MRSA USF920, MRSA USF652, MRSA USF653, MRSA USF654, MRSA USF655, MRSA USF656, MRSA USF657, MRSA USF658 or MRSA USF659.
- the bacterium is a Bacillus spp.
- Bacillus spp. can be B. anthracis, B. globigii, B. thurigensis, B. megaterium, B. subtilis, B. cereus and B. coagulans.
- the present invention provides compounds and compositions suitable for the treatment of Staphylococcus spp. infection.
- the present invention provides a method of inhibiting Staphylococcus spp. infection. In further embodiments the present invention provides a method of inhibiting methicillin-resistant Staphylococcus aureus infection.
- the present invention provides compounds and compositions suitable for the treatment of Bacillus spp. infection.
- the present invention provides a method of inhibiting Bacillus spp. infection. In further embodiments the present invention provides a method of inhibiting methicillin-resistant Staphylococcus aureus infection.
- It is a further object of this invention to provide a mechanism of inhibiting infection comprising administering an N-thiolated 2-oxazolidinone antibacterial compound to a patient in need thereof, where said antibacterial compound affects events within the cytoplasm of the cell.
- the present invention confers numerous advantages over the compounds of the prior art, including the following: ease of synthesis, whereby compounds with diverse substitutents may be synthesized and tested for antibacterial and antibiotic activity; the invention provides novel antibacterial and antibiotic agents to which bacterial pathogens have not yet acquired resistance; and the invention provides novel compounds for the treatment of increasingly common and resistant diseases.
- antibacterial and antibiotic activities can be obtained in compounds that do not possess traditional activating groups attached to the nitrogen, as required for activity in conventional monobactams which contain, for example, a sulfonic acid group.
- the inventors have also surprisingly discovered that derivatization of structure (A) in FIG.
- the present invention fulfills an urgent need in that novel compounds are urgently required as bacterial pathogens increasingly acquire immunity towards the present arsenal of antibiotics.
- FIG. 1 shows an N-methylthio 2-oxazolidinone.
- FIG. 2 shows an N-thiolated ⁇ -lactam.
- FIG. 3 shows a reference N-thiolated ⁇ -lactam (Lac) and N-alkylthio 2-oxazolidinones 1-5.
- FIG. 4 shows enantiomerically pure N-methylthio 2-oxazolidinones 6-9.
- N-thiolated-2-Oxazolidones represent a new class of antibacterial agent for methicillin-resistant Staphylococcus aureus .
- Described herein is the synthesis and application of N-thiolated 2-oxazolidinones as a new class of anti bacterial agents.
- These compounds can be synthesized from 2-oxazolidinones by N-deprotection and N-sulfenylation. These new substances were found to exhibit potent anti-bacterial activity, including bacteriostatic properties against methicillin resistant Staphylococcus aureus (MRSA).
- MRSA methicillin resistant Staphylococcus aureus
- N-thiolated-2-Oxazolidones is used herein to refer to a cyclic 5-membered compound comprising a 2-Oxazolidone ring in which the ring nitrogen (N-1) atom is covalently bonded to a sulfur that is covalently bonded to a carbon-centered moiety, and which may be further modified as described herein.
- X may be a hydrogen (in which case, n is preferably zero), or a carbon atom (in which case, n is preferably 3), or an oxygen atom (in which case, n is preferably 1)
- R 2 may be any substituent as herein defined.
- R 1 and R 3-5 may be independently any substituent as herein defined.
- R 1 is hydrogen or benzyl, and in particularly advantageous embodiments R 1 is hydrogen.
- Substituents comprising —X(R 2 ) n are preferably methoxy and hydrogen, and most preferably methoxy.
- R 3 may be alkyl, heteroalkyl, aryl, heteroaryl, alkenyl, or alkynyl. Preferred R 3 substituents are phenylethynyl, acetoxy, 1-propenyl, ortho-chlorophenyl, ortho-nitrophenyl, 2-thiophene, or S,S-dioxo-thiophene.
- R 4 and R 5 may be independently alkyl, heteroalkyl, aryl, heteroaryl, alkenyl, or alkynyl groups. In preferred embodiments, R 4 and R 5 are H.
- Halo is fluoro, chloro, bromo, or iodo.
- Alkyl alkoxy, etc. denote both straight and branched groups; but reference to an individual radical such as “propyl” embraces only the straight chain radical, a branched chain isomer such as “isopropyl” being specifically referred to.
- Aryl denotes a phenyl radical or an ortho-fused bicyclic carbocyclic radical having about nine to ten ring atoms in which at least one ring is aromatic.
- Heteroaryl encompasses a radical attached via a ring carbon of a monocyclic aromatic ring containing five or six ring atoms consisting of carbon and one to four heteroatoms each selected from the group consisting of non-peroxide oxygen, sulfur, and N(R x ) wherein R x is absent or is hydrogen, oxo, alkyl, phenyl or benzyl, as well as a radical of an ortho-fused bicyclic heterocycle of about eight to ten ring atoms derived therefrom, particularly a benz-derivative or one derived by fusing a propylene, trimethylene, or tetramethylene diradical thereto.
- Heteroalkyl encompasses the replacement of a carbon atom within an alkyl chain with a heteroatom; e.g., replacement with an element other than carbon such as N, S, or O, including both an alkyl interrupted by a heteroatom as well as an alkyl substituted by a heteroatom.
- compounds of the invention having one or more chiral center(s) may exist in and be isolated in optically active and racemic forms. Some compounds may exhibit polymorphism. It is to be understood that the present invention encompasses any racemic, optically-active, polymorphic, or stereoisomeric form, or mixtures thereof, of a compound of the invention, which possess the useful properties described herein, it being well known in the art how to prepare optically active forms (for example, by resolution of the racemic form by recrystallization techniques, by synthesis, from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase), and how to determine antibacterial activity using the tests described herein, or using other tests which are well known in the art.
- alkyl can include methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl or pentadecyl;
- alkenyl can include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-heptenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-hexenyl, 1-heptenyl,
- Aryl can include phenyl, indenyl, 5,6,7,8-tetrahydronaphthyl, or naphthyl.
- Heteroaryl can include furyl, imidazolyl, tetrazolyl, pyridyl, (or its N-oxide), thienyl, pyrimidinyl (or its N-oxide), indolyl, or quinolyl (or its N-oxide).
- R 1-5 Specific independent values for R 1-5 , include alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl(C 1 -C 10 )alkyl, (C 3 -C 8 )cycloalkyl(C 1 -C 15 )alkenyl, (C 3 -C 8 )cycloalkyl(C 1 -C 15 )alkynyl, (C 1 -C 15 )alkoxy, (C 1 -C 15 )alkanoyl, or (C 1 -C 15 )alkanoyloxy; wherein R 1 is optionally substituted with one or more (e.g., 1, 2, 3, or 4) substituents independently selected from the group consisting of halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C 1 -C 15 )alkyl, (C 2 -C 15 )alkenyl, (C 2 -C 15
- R 1-5 include aryl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C 1 -C 6 )alkyl, (C 2 -C 10 )alkenyl, (C 2 -C 10 )alkynyl, (C 3 -C 8 )cycloalkyl, (C 3 -C 8 )cycloalkyl, (C 1 -C 6 )alkyl, (C 1 -C 10 )alkoxy, (C 1 -C 10 )alkanoyl, (C 2 -C 10 )alkanoyloxy, C( ⁇ O)OR a , C( ⁇ O)NR b R c , or NR e R f .
- substituents independently selected from the group consisting of halo, nitro, cyano, hydroxy, trifluoromethyl, trifluorometh
- R 1-5 include independently phenyl or naphthyl, optionally substituted with a substituent selected from the group consisting of halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C 1 -C 6 )alkyl, (C 2 -C 10 )alkenyl, (C 2 -C 10 )alkynyl, (C 3 -C 8 )cycloalkyl, (C 3 -C 8 )cycloalkyl(C 1 -C 6 )alkyl, (C 1 -C 10 )alkoxy, (C 1 -C 10 )alkanoyl, (C 2 -C 10 )alkanoyloxy, C( ⁇ O)OR a , C( ⁇ O)NR b R c , or NR e R f .
- a substituent selected from the group consisting of halo, nitro, cyano, hydroxy, trifluoromethyl, tri
- R 1-5 include aryl, heteroaryl, aryl(C 1 -C 6 )alkyl, heteroaryl(C 1 -C 6 )alkyl, aryl(C 2 -C 6 )alkenyl, heteroaryl(C 2 -C 6 )alkenyl, aryl(C 2 -C 6 )alkynyl, or heteroaryl(C 2 -C 6 )alkynyl; wherein any aryl or heteroaryl is optionally substituted with halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C 1 -C 15 )alkyl, (C 2 -C 15 )alkenyl, (C 2 -C 15 )alkynyl, (C 3 -C 8 )cycloalkyl, (C 3 -C 8 )cycloalkyl(C 1 -C 15 )alkyl, (C 3 -C
- the compounds of the present invention exhibit broad antibacterial activity against several families of bacteria in the Gram-negative and Gram-positive range, and against beta-lactamase formers. Because of their powerful antibacterial properties, the present compounds may also be used to supplement feed for animals.
- the compounds of the present invention that exhibit antibacterial activity may also be used as medicaments, and also as substances for preserving inorganic and organic materials, especially organic materials of all kinds, for example, polymers, lubricants, paints, fibers, leather, paper, timber, foodstuffs, and water.
- these compounds can be covalently bonded to the polymer.
- the compounds of the present invention may also be used to prevent, alleviate, or cure diseases caused by pathogens whose growth is inhibited by these compounds.
- the instant compounds are particularly active against bacteria and bacteria-like microorganisms. They are therefore suitable for use in human and veterinary medicine, for the prophylaxis and chemotherapy of local and systemic infections caused by these pathogens.
- Micrococcaceae such as Staphylococci , for example Staphylococcus aureus, Staph. Epidermidis and Staph.
- Aerogenes Lactobacteriaceae, such as Streptococci , for example Streptococcus pyogenes ; Neisseriaceae, such as Neisseriae, for example Neisseria gonorrhoeae (Gonococci); Corynebacteriaceae, such as Corynebacteria; Listeria bacteria; Erysipelothrix bacteria; Kurthia bacteria; Enterobacteriaceae, such as Escherichia bacteria of the Coli group; Klebsiella bacteria; Erwiniae; Serratia ; Proteae bacteria; Providencia bacteria; Salmonella bacteria; Shigella ; Pseudomonadaceae; Aeromonas bacteria; Spirillaceae, such as Vibrio bacteria; Spirillum bacteria; Parvobacteriaseae; Brucella bacteria; Bordetella bacteria; Moraxella bacteria; Fusiform bacteria; Bacillaceae; Clostridia;
- the compounds of the present invention include all hydrates and salts that can be prepared by those of skill in the art. Under conditions where the compounds of the present invention are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate.
- pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, alpha-ketoglutarate, and alpha-glycerophosphate.
- Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
- salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion.
- a sufficiently basic compound such as an amine
- a suitable acid affording a physiologically acceptable anion.
- Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made.
- the compounds of the present invention can be formulated as pharmaceutical compositions and administered to a patient, such as a human patient, in a variety of forms adapted to the chosen route of administration, i.e., orally or parenterally, by intravenous, intramuscular, topical, or subcutaneous routes.
- the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet.
- a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier.
- the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- Such compositions and preparations should contain at least 0.1% of active compound.
- the percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form.
- the amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.
- any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed.
- the active compound may be incorporated into sustained-release preparations and devices.
- the pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes.
- the liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof.
- Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization.
- the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient presenting the previously sterile-filtered solutions.
- the present compounds may be applied in pure-form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
- Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like.
- Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants.
- Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use.
- the resultant liquid compositions can be applied from adsorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
- Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
- Examples of useful dermatological compositions which can be used to deliver the compounds of formula I to the skin are disclosed in Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157) and Wortzman (U.S. Pat. No. 4,820,508).
- Useful dosages of the compounds of the present invention can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art (U.S. Pat. No. 4,938,949 (Borch et al.)).
- the invention includes a pharmaceutical composition
- a pharmaceutical composition comprising a compound of the present invention as described above; or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier.
- Pharmaceutical compositions adapted for oral, topical or parenteral administration, comprising an amount of one or more compounds effective to treat a bacterial infection, are a preferred embodiment of the invention.
- the present invention provides a novel class of monocyclic substituted 2-oxazolidinones, specifically termed N-thiolated 2-oxazolidinones as defined herein.
- a representative selection of differentially substituted N-thiolated 2-oxazolidinones 1-9 was prepared for antimicrobial screening by N-thiolation of the corresponding 2-oxazolidinones using protocols that have been previously reported by Miller and co-workers (Woulfe, S. R. et al., Tetrahedron Lett. 1985, 26, 3891) for ⁇ -lactams.
- the structures of the compounds were confirmed by 1 H and 13 C NMR spectroscopy, and antibacterial assays were performed by Kirby-Bauer disk diffusion on agar plates according to NCCLS guidelines.
- NCCLS Document M7-A4, Vol. 17, No. 2, 1997) These assays tested both an ATCC strain of methicillin-susceptible S. aureus as well as 10 strains of methicillin-resistant S. aureus obtained either from ATCC sources or as clinical isolates from a local hospital.
- the zones of growth inhibition produced by the compounds against each of these microbes after 24 h of incubation are presented in Table 1.
- the first goal was to determine the effect of substitution at the C 4 and C 5 centers of the oxazolidinone ring on anti- Staphylococcus activity. Accordingly, N-thiolated oxazolidinones 1-5 (as racemates) were examined and compared to two reference compounds, N-methylthio lactam Lac ( FIG. 2 ) and penicillin G.
- aureus (labeled MRSA USF652-659 and USF919-920) were obtained from Lakeland Regional Medical Center, Lakeland, Fla. Lac is the N-thiolated ⁇ -lactam shown in FIG. 2 .
- Pen G is penicillin G (potassium salt). Error values are within ⁇ 1 mm.
- Mono-substituted oxazolidinones 3-5 also possessed strong anti-MRSA activity, surpassing disubstituted derivative 2, indicating that substituents can be placed at either the C 4 or C 5 centers, or at both, without significantly affecting bioactivity. This stands in contrast to previous observations from studies of mono- versus disubstituted N-thiolated ⁇ -lactams, in which disubstitution on the ring provides for the best anti-MRSA properties. Additionally, replacement of the N-methylthio moiety of compound 4 for N-sec-butylthio (compound 5) leads to no significant improvement in anti-MRSA activity.
- Enantiomerically paired oxazolidinones 6, 7 and 8, 9 were then evaluated for anti-MRSA properties to probe whether absolute stereochemistry was a determinant of activity ( FIG. 3 ). These four compounds were individually prepared from their commercially available N-protio precursors and subjected to Kirby-Bauer testing. First, from these assays, it was noted that the phenyl-substituted oxazolidinones 6 and 7 afforded somewhat larger inhibition zones than the isopropyl-bearing oxazolidinones 8 and 9, indicating stronger anti-MRSA activity. Indeed, oxazolidinone 7 exhibited a lower broth MIC value (8 ⁇ g/mL) against both S.
- N-thiolated ⁇ -lactams As previously described for N-thiolated ⁇ -lactams, the antibacterial activity of these agents shows only a small dependence on the ring substituents, but requires the N-alkylthio group. In each case, N-thiolated 2-oxazolidinones exhibited antibacterial activity, whereas the corresponding N-protio oxazolidinones have no antibacterial activity. It is therefore tentatively postulated that these N-thiolated oxazolidinones, like their ⁇ -lactam counterparts, react covalently with their biological target through transfer of the organothio side chain as shown in Reaction 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
This invention describes the discovery and synthesis of N-thiolated 2-oxazolidinones as a new class of anti bacterial agents. These compounds can be synthesized from 2-oxazolidinones by Ndeprotection and N-sulfenylation. These new substances were found to exhibit potent anti-bacterial activity, including bacteriostatic properties against Staphylococcus spp., including methicillin resistant Staphylococcus aureus (MRSA), and Bacillus spp., including Bacillus anthracis.
Description
- This application is a divisional of pending U.S. Nonprovisional patent application Ser. No. 11/948,073, entitled “N-Thiolated 2-Oxazolidone-Derived Antibiotics”, filed Nov. 30, 2007, which is a divisional of U.S. Nonprovisional patent application Ser. No. 11/382,157, entitled “N-Thiolated 2-Oxazolidone Antibiotics”, filed May 8, 2006, which claims priority to U.S. Provisional Patent Application 60/678,292, entitled, “N-Thiolated 2-Oxazolidones: A New Class of Anti-bacterial Drug”, filed May 6, 2005, the contents of which are herein incorporated by reference.
- This invention was made with Government support under Grant No. R01 AI 51351 awarded by the National Institutes of Health. The Government has certain rights in the invention.
- This invention pertains to the synthesis and characterization of a new family of antibacterial drug. More specifically this invention relates to N-thiolated 2-oxazolidinones as a new class of synthetic antibacterial agents.
- The clinical use of antibiotics in the 20th century has substantially decreased morbidity from bacterial infections. The early success of penicillin was extended by various sulfonamide drugs developed in the 1930s, and subsequently by a “golden” period of discovery, between 1945 and 1970, during which a wide array of highly effective agents are discovered and developed (Chopra, I., et al., “The Search for Antimicrobial Agents Effective against Bacteria Resistant to Multiple Antibiotics” Antimicrobial Agents and Chemotherapy, 1997, 41:497-503).
- However, since the 1980s the introduction of new antibiotics has slowed, and, concurrently, there has been an alarming increase in bacterial resistance to existing agents that now constitutes a serious threat to public health (Brown, A. G. “Discovery and Development of New β-Lactam Antibiotics” Pure & Appl. Chem., 1987, 59:475-484). Hospitals, nursing homes and infant day care centers have become breeding grounds for the most tenacious drug-resistant pathogens (“Frontiers in Biotechnology” Science, 1994, 264:359-393). There has been an alarming rise in drug resistant staphylococci, enterococci, streptococci, and pneumococci infections, and a rise in tuberculosis, influenza and sepsis.
- The problem of bacterial drug resistance has reached a crisis level such that successful treatment of antibiotic-resistant infections in hospitals and health care centers can no longer be taken for granted. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are becoming particularly difficult to treat with conventional antibiotics such as penicillin, leading to a sharp rise in clinical complications and deaths. The need for new antibacterial agents and protocols for treating MRSA infections is becoming extremely serious.
- A novel family of lipophilic N-thiolated β-lactams that are effective growth inhibitors of MRSA and Bacillus species has been reported (U.S. Pat. Nos. 6,473,015 B1 to Turos et al. and 6,946,458 B2 to Turos; see also. Ren, X. F. et al., J. Org. Chem. 60 (1995), p. 4980; Ren, X. F. et al., J. Org. Chem. 63 (1998), p. 8898; E. Turos, E. et al., Tetrahedron 56 (2000), p. 5571; E. Turos, E. et al., Bioorg. Med. Chem. Lett. 12 (2002), p. 2229; C. Coates, C. et al., Bioorg. Med. Chem. 11 (2003), p. 193; Long, E. et al., Bioorg. Med. Chem. 11 (2003), p. 1859; Kazi, A. et al., Biochem. Pharmacol. 67 (2004), p. 365; Turos, E. et al., J. Bioorg. Med. Chem. Lett. 2006 (in press)). The mode of action and structure-activity profiles differ dramatically from those of traditional β-lactams. (See generally Chemistry and Biology of β-Lactam Antibiotics; Morin, R. B., Gorman, M.; Eds.; Academic Press: New York, 1982; Vols 1-3.) Investigations have shown that these β-lactam compounds can carry a wide range of substituents at the C3 and C4 centers; however, the N-organothio substituent is necessary for microbiological activity. (E. Turos, E. et al., Bioorg. Med. Chem. 13 (2005), p. 6289.) The mechanism of action is under investigation but appears to depend on the ability of the compounds to transfer the organothio moiety onto a cellular thiol. This suggests that the role of the lactam ring is to provide a structural framework for the delivery of the thiol moiety and may not be absolutely required for the activity. To probe this possibility, and to expand on the structural diversity of anti-MRSA compounds available for clinical development, oxazolidinones were examined as potential antibacterially active organothio carriers. Oxazolidinones are already recognized for their favorable pharmacological properties and are the only new class of antibacterial drugs introduced into clinical use in the last three decades. (Brickner, S., J. Curr. Pharm. Des. 2 (1996), p. 175; Phillips, O. A., Curr. Opin. Invest. Drugs 4 (2003), p. 117; S. J. Brickner, S. J. et al., J. Med. Chem. 39 (1996), p. 673.)
- Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are becoming extremely difficult to treat with conventional antibiotics, leading to a sharp rise in clinical complications (Binder, S. et al. Science, 1999, 284:1311). The need for new antibiotics and protocols for treating MRSA infections is extremely serious.
- There is a clear need for new antibacterial agents to combat pathogenic bacteria that have become resistant to current antibiotics. Towards this end, a novel class of derivatized, N-thiolated-2-Oxazolidones have been developed in the present invention, that exhibit strong antibacterial activity against a wide variety of species and strains, including methicillin-resistant Staphylococcus aureus.
- This invention pertains to the synthesis of a new family of antibacterial drug. N-thiolated-2-Oxazolidones represent a new class of antibacterial agent for methicillin-resistant Staphylococcus aureus. Described herein is the synthesis and application of N-thiolated 2-oxazolidinones as a new class of anti bacterial agents. These compounds can be synthesized from 2-oxazolidinones by N-deprotection and N-sulfenylation. These new substances were found to exhibit potent anti-bacterial activity, including bacteriostatic properties against methicillin resistant Staphylococcus aureus (MRSA).
- The general structure of these N-thiolated 2-oxazolidinones is:
- wherein R1-5 are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl, alkenyl, or alkynyl; X is H, C or O; and n=0 to 3.
- It is an object of the present invention to provide these compounds, including their salts, hydrates, and in combinations with suitable pharmaceutical carriers, as antibacterial and antibiotic agents.
- It is a further object of this invention to provide such compounds, wherein R4 and R5 are hydrogen, and —C(R1)3 is aryl or heteroaryl.
- It is a further object of this invention to provide antibacterial and antibiotic agents with varying bacterial strain specificities and efficacies, by the expedient means of varying substituents of the 2-oxazolidinone ring, including but not limited to nitrogen (N-1) methylthio or benzylthio moieties, and substitutions at the C3 and C4 positions.
- In certain embodiments the present invention provides methods for inhibiting the growth of bacteria by administering the compounds of the present invention, and to provide methods for the treatment of bacterial infections of a patient, in which one or more doses of an effective amount of the compounds and compositions of the present invention are administered to a patient.
- The present invention provides a method of inhibiting a bacterial infection comprising administering an effective amount of the N-thiolated 2-oxazolidinone of
claim 1, to a patient in need thereof. - In certain embodiments the bacterium is a Staphylococcus spp. In certain specific embodiments the Staphylococcus spp. is a methicillin-resistant Staphylococcus. In still further embodiments the methicillin-resistant Staphylococcus can be MRSA USF919, MRSA USF920, MRSA USF652, MRSA USF653, MRSA USF654, MRSA USF655, MRSA USF656, MRSA USF657, MRSA USF658 or MRSA USF659.
- In certain embodiments the bacterium is a Bacillus spp. In still further embodiments the Bacillus spp. can be B. anthracis, B. globigii, B. thurigensis, B. megaterium, B. subtilis, B. cereus and B. coagulans.
- In certain embodiments the present invention provides compounds and compositions suitable for the treatment of Staphylococcus spp. infection.
- In certain embodiments the present invention provides a method of inhibiting Staphylococcus spp. infection. In further embodiments the present invention provides a method of inhibiting methicillin-resistant Staphylococcus aureus infection.
- In certain embodiments the present invention provides compounds and compositions suitable for the treatment of Bacillus spp. infection.
- In certain embodiments the present invention provides a method of inhibiting Bacillus spp. infection. In further embodiments the present invention provides a method of inhibiting methicillin-resistant Staphylococcus aureus infection.
- It is a further object of this invention to provide a mechanism of inhibiting infection comprising administering an N-thiolated 2-oxazolidinone antibacterial compound to a patient in need thereof, where said antibacterial compound affects events within the cytoplasm of the cell.
- It is a further object of this invention to provide a mechanism of inhibiting bacterial infection by a means other than inhibiting cell wall cross-linking.
- It is a further object of this invention to provide a mechanism of inhibiting bacterial infection through the use of an antibacterial compound that does not block bacterial cell growth by inhibiting penicillin binding proteins.
- The present invention confers numerous advantages over the compounds of the prior art, including the following: ease of synthesis, whereby compounds with diverse substitutents may be synthesized and tested for antibacterial and antibiotic activity; the invention provides novel antibacterial and antibiotic agents to which bacterial pathogens have not yet acquired resistance; and the invention provides novel compounds for the treatment of increasingly common and resistant diseases. Surprisingly, the inventors have found that antibacterial and antibiotic activities can be obtained in compounds that do not possess traditional activating groups attached to the nitrogen, as required for activity in conventional monobactams which contain, for example, a sulfonic acid group. The inventors have also surprisingly discovered that derivatization of structure (A) in
FIG. 1 at the positions indicated by the R1-5 and X, results in compounds exhibiting different specificities for different bacterial pathogens, in a manner that is currently not possible to predict a priori. This aspect is therefore an unobvious benefit of the present invention. The present invention fulfills an urgent need in that novel compounds are urgently required as bacterial pathogens increasingly acquire immunity towards the present arsenal of antibiotics. - For a fuller understanding of the invention, reference should be made to the following detailed description, taken in connection with the accompanying drawings, in which:
-
FIG. 1 shows an N-methylthio 2-oxazolidinone. -
FIG. 2 shows an N-thiolated β-lactam. -
FIG. 3 shows a reference N-thiolated β-lactam (Lac) and N-alkylthio 2-oxazolidinones 1-5. -
FIG. 4 shows enantiomerically pure N-methylthio 2-oxazolidinones 6-9. - This invention pertains to the synthesis of a new family of antibacterial drug. N-thiolated-2-Oxazolidones represent a new class of antibacterial agent for methicillin-resistant Staphylococcus aureus. Described herein is the synthesis and application of N-thiolated 2-oxazolidinones as a new class of anti bacterial agents. These compounds can be synthesized from 2-oxazolidinones by N-deprotection and N-sulfenylation. These new substances were found to exhibit potent anti-bacterial activity, including bacteriostatic properties against methicillin resistant Staphylococcus aureus (MRSA).
- The term “N-thiolated-2-Oxazolidones” is used herein to refer to a cyclic 5-membered compound comprising a 2-Oxazolidone ring in which the ring nitrogen (N-1) atom is covalently bonded to a sulfur that is covalently bonded to a carbon-centered moiety, and which may be further modified as described herein. Specifically, referring now to compound (A) as shown in
FIG. 1 , X may be a hydrogen (in which case, n is preferably zero), or a carbon atom (in which case, n is preferably 3), or an oxygen atom (in which case, n is preferably 1), and R2 may be any substituent as herein defined. Similarly, R1 and R3-5 may be independently any substituent as herein defined. - Thus, in advantageous embodiments, R1 is hydrogen or benzyl, and in particularly advantageous embodiments R1 is hydrogen. Substituents comprising —X(R2)n are preferably methoxy and hydrogen, and most preferably methoxy. R3 may be alkyl, heteroalkyl, aryl, heteroaryl, alkenyl, or alkynyl. Preferred R3 substituents are phenylethynyl, acetoxy, 1-propenyl, ortho-chlorophenyl, ortho-nitrophenyl, 2-thiophene, or S,S-dioxo-thiophene. R4 and R5 may be independently alkyl, heteroalkyl, aryl, heteroaryl, alkenyl, or alkynyl groups. In preferred embodiments, R4 and R5 are H.
- The following definitions are used, unless otherwise described. Halo is fluoro, chloro, bromo, or iodo. “Alkyl,” “alkoxy,” etc. denote both straight and branched groups; but reference to an individual radical such as “propyl” embraces only the straight chain radical, a branched chain isomer such as “isopropyl” being specifically referred to. “Aryl” denotes a phenyl radical or an ortho-fused bicyclic carbocyclic radical having about nine to ten ring atoms in which at least one ring is aromatic. “Heteroaryl” encompasses a radical attached via a ring carbon of a monocyclic aromatic ring containing five or six ring atoms consisting of carbon and one to four heteroatoms each selected from the group consisting of non-peroxide oxygen, sulfur, and N(Rx) wherein Rx is absent or is hydrogen, oxo, alkyl, phenyl or benzyl, as well as a radical of an ortho-fused bicyclic heterocycle of about eight to ten ring atoms derived therefrom, particularly a benz-derivative or one derived by fusing a propylene, trimethylene, or tetramethylene diradical thereto. “Heteroalkyl” encompasses the replacement of a carbon atom within an alkyl chain with a heteroatom; e.g., replacement with an element other than carbon such as N, S, or O, including both an alkyl interrupted by a heteroatom as well as an alkyl substituted by a heteroatom.
- It will be appreciated by those skilled in the art that compounds of the invention having one or more chiral center(s) may exist in and be isolated in optically active and racemic forms. Some compounds may exhibit polymorphism. It is to be understood that the present invention encompasses any racemic, optically-active, polymorphic, or stereoisomeric form, or mixtures thereof, of a compound of the invention, which possess the useful properties described herein, it being well known in the art how to prepare optically active forms (for example, by resolution of the racemic form by recrystallization techniques, by synthesis, from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase), and how to determine antibacterial activity using the tests described herein, or using other tests which are well known in the art.
- Specific and preferred values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents.
- Specifically, “alkyl” can include methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl or pentadecyl; “alkenyl” can include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-heptenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 4-nonenyl, 5-nonenyl, 6-nonenyl, 7-nonenyl, 8-nonenyl, 1-decenyl, 2-decenyl, 3-decenyl, 4-decenyl, 5-decenyl, 6-decenyl, 7-decenyl, 8-decenyl, 9-decenyl; 1-undecenyl, 2-undecenyl, 3-undecenyl, 4-undecenyl, 5-undecenyl, 6-undecenyl, 7-undecenyl, 8-undecenyl, 9-undecenyl, 10-undecenyl, 1-dodecenyl, 2-dodecenyl, 3-dodecenyl, 4-dodecenyl, 5-dodecenyl, 6-dodecenyl, 7-dodecenyl, 8-dodecenyl, 9-dodecenyl, 10-dodecenyl, 11-dodecenyl, 1-tridecenyl, 2-tridecenyl, 3-tridecenyl, 4-tridecenyl, 5-tridecenyl, 6-tridecenyl, 7-tridecenyl, 8-tridecenyl, 9-tridecenyl, 10-tridecenyl, 11-tridecenyl, 12-tridecenyl, 1-tetradecenyl, 2-tetradecenyl, 3-tetradecenyl, 4-tetradecenyl, 5-tetradecenyl, 6-tetradecenyl, 7-tetradecenyl, 8-tetradecenyl, 9-tetradecenyl, 10-tetradecenyl, 11-tetradecenyl, 12-tetradecenyl, 13-tetradecenyl, 1-pentadecenyl, 2-pentadecenyl, 3-pentadecenyl, 4-pentadecenyl, 5-pentadecenyl, 6-pentadecenyl, 7-pentadecenyl, 8-pentadecenyl, 9-pentadecenyl, 10-pentadecenyl, 11-pentadecenyl, 12-pentadecenyl, 13-pentadecenyl, 14-pentadecenyl; “alkoxy” can include methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, hexoxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tridecyloxy, tetradecyloxy, or pentadecyloxy; “alkanoyl” can include acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, or pentadecanoyl; “cycloalkyl” can include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl. “Aryl” can include phenyl, indenyl, 5,6,7,8-tetrahydronaphthyl, or naphthyl. “Heteroaryl” can include furyl, imidazolyl, tetrazolyl, pyridyl, (or its N-oxide), thienyl, pyrimidinyl (or its N-oxide), indolyl, or quinolyl (or its N-oxide).
- Specific independent values for R1-5, include alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl(C1-C10)alkyl, (C3-C8)cycloalkyl(C1-C15)alkenyl, (C3-C8)cycloalkyl(C1-C15)alkynyl, (C1-C15)alkoxy, (C1-C15)alkanoyl, or (C1-C15)alkanoyloxy; wherein R1 is optionally substituted with one or more (e.g., 1, 2, 3, or 4) substituents independently selected from the group consisting of halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C1-C15)alkyl, (C2-C15)alkenyl, (C2-C15)alkynyl, (C3-C8)cycloalkyl, (C3-C8)cycloalkyl, (C1-C15)alkyl, (C3-C8)cycloalkyl-(C2-C15)alkenyl, (C3-C8)cycloalkyl(C2-C15)alkynyl, (C1-C15)alkoxy, (C1-C15)alkanoyl, (C1-C15)alkanoyloxy, C(═O)ORa, C(═O)NRbRc, OC(═O)ORa, OC(═O)NRbRc, AND NReRf.
- Other specific values for R1-5 include aryl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C1-C6)alkyl, (C2-C10)alkenyl, (C2-C10)alkynyl, (C3-C8)cycloalkyl, (C3-C8)cycloalkyl, (C1-C6)alkyl, (C1-C10)alkoxy, (C1-C10)alkanoyl, (C2-C10)alkanoyloxy, C(═O)ORa, C(═O)NRbRc, or NReRf.
- Other specific values for R1-5, include independently phenyl or naphthyl, optionally substituted with a substituent selected from the group consisting of halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C1-C6)alkyl, (C2-C10)alkenyl, (C2-C10)alkynyl, (C3-C8)cycloalkyl, (C3-C8)cycloalkyl(C1-C6)alkyl, (C1-C10)alkoxy, (C1-C10)alkanoyl, (C2-C10)alkanoyloxy, C(═O)ORa, C(═O)NRbRc, or NReRf.
- Still other specific values for R1-5, include aryl, heteroaryl, aryl(C1-C6)alkyl, heteroaryl(C1-C6)alkyl, aryl(C2-C6)alkenyl, heteroaryl(C2-C6)alkenyl, aryl(C2-C6)alkynyl, or heteroaryl(C2-C6)alkynyl; wherein any aryl or heteroaryl is optionally substituted with halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C1-C15)alkyl, (C2-C15)alkenyl, (C2-C15)alkynyl, (C3-C8)cycloalkyl, (C3-C8)cycloalkyl(C1-C15)alkyl, (C3-C8)cycloalkyl-(C2-C15)alkenyl, (C3-C8)cycloalkyl(C2-C15)alkynyl, (C1-C15)alkoxy, (C1-C15)alkanoyl, (C1-C15)alkanoyloxy, C(═O)ORa, C(═O)NRbRc, or NReRf.
- The compounds of the present invention exhibit broad antibacterial activity against several families of bacteria in the Gram-negative and Gram-positive range, and against beta-lactamase formers. Because of their powerful antibacterial properties, the present compounds may also be used to supplement feed for animals.
- In addition, the compounds of the present invention that exhibit antibacterial activity may also be used as medicaments, and also as substances for preserving inorganic and organic materials, especially organic materials of all kinds, for example, polymers, lubricants, paints, fibers, leather, paper, timber, foodstuffs, and water. For example, these compounds can be covalently bonded to the polymer.
- The compounds of the present invention may also be used to prevent, alleviate, or cure diseases caused by pathogens whose growth is inhibited by these compounds. The instant compounds are particularly active against bacteria and bacteria-like microorganisms. They are therefore suitable for use in human and veterinary medicine, for the prophylaxis and chemotherapy of local and systemic infections caused by these pathogens.
- As an illustrative, but not limiting, list of pathogens, the following pathogenic microorganisms are possible targets of the compounds of the present invention. Micrococcaceae, such as Staphylococci, for example Staphylococcus aureus, Staph. Epidermidis and Staph. Aerogenes; Lactobacteriaceae, such as Streptococci, for example Streptococcus pyogenes; Neisseriaceae, such as Neisseriae, for example Neisseria gonorrhoeae (Gonococci); Corynebacteriaceae, such as Corynebacteria; Listeria bacteria; Erysipelothrix bacteria; Kurthia bacteria; Enterobacteriaceae, such as Escherichia bacteria of the Coli group; Klebsiella bacteria; Erwiniae; Serratia; Proteae bacteria; Providencia bacteria; Salmonella bacteria; Shigella; Pseudomonadaceae; Aeromonas bacteria; Spirillaceae, such as Vibrio bacteria; Spirillum bacteria; Parvobacteriaseae; Brucella bacteria; Bordetella bacteria; Moraxella bacteria; Fusiform bacteria; Bacillaceae; Clostridia; Spirochaetaceae; Treponema bacteria; and Leptospira bacteria.
- Examples which may be cited of diseases which can be prevented, alleviated, or cured by the compounds of the present invention are: diseases of the respiratory passages and of the pharyngeal cavity; otitis; pharyngitis; pneumonia; peritonitis; pyelonephritis; cystitis; endocarditis; systemic infections; and bronchitis.
- The compounds of the present invention include all hydrates and salts that can be prepared by those of skill in the art. Under conditions where the compounds of the present invention are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, alpha-ketoglutarate, and alpha-glycerophosphate. Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
- Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made.
- The compounds of the present invention can be formulated as pharmaceutical compositions and administered to a patient, such as a human patient, in a variety of forms adapted to the chosen route of administration, i.e., orally or parenterally, by intravenous, intramuscular, topical, or subcutaneous routes.
- Thus, the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form. The amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.
- The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and devices.
- The active compound may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the active compound or its salts can be prepared in water or other suitable solvent, optionally mixed with a nontoxic surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate dosage form must be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient presenting the previously sterile-filtered solutions.
- For topical administration, the present compounds may be applied in pure-form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
- Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from adsorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
- Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user. Examples of useful dermatological compositions which can be used to deliver the compounds of formula I to the skin are disclosed in Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157) and Wortzman (U.S. Pat. No. 4,820,508).
- Useful dosages of the compounds of the present invention can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art (U.S. Pat. No. 4,938,949 (Borch et al.)).
- Generally, the concentration of the compound(s) of formula (I) in a liquid composition, such as a lotion, will be from about 0.1-25 wt-%, preferably from about 0.5-10 wt-%. The concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 wt-%.
- Accordingly, the invention includes a pharmaceutical composition comprising a compound of the present invention as described above; or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier. Pharmaceutical compositions adapted for oral, topical or parenteral administration, comprising an amount of one or more compounds effective to treat a bacterial infection, are a preferred embodiment of the invention.
- The present invention provides a novel class of monocyclic substituted 2-oxazolidinones, specifically termed N-thiolated 2-oxazolidinones as defined herein.
- The present invention will therefore be fully understood by one of skill in the art by reference to the following embodiments, examples, and claims.
- In accordance with the present invention, a representative selection of differentially substituted N-thiolated 2-oxazolidinones 1-9 was prepared for antimicrobial screening by N-thiolation of the corresponding 2-oxazolidinones using protocols that have been previously reported by Miller and co-workers (Woulfe, S. R. et al., Tetrahedron Lett. 1985, 26, 3891) for β-lactams. The structures of the compounds were confirmed by 1H and 13C NMR spectroscopy, and antibacterial assays were performed by Kirby-Bauer disk diffusion on agar plates according to NCCLS guidelines. (NCCLS (National Committee for Clinical Laboratory Standards) Methods for Dilution of Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. NCCLS Document M7-A4, Vol. 17, No. 2, 1997) These assays tested both an ATCC strain of methicillin-susceptible S. aureus as well as 10 strains of methicillin-resistant S. aureus obtained either from ATCC sources or as clinical isolates from a local hospital. The zones of growth inhibition produced by the compounds against each of these microbes after 24 h of incubation are presented in Table 1. Compound susceptibility measurements obtained from agar disk diffusion of oxazolidinones 1-9 against a methicillin-susceptible strain of Staphylococcus aureus (S. aureus ATCC 25923) and 10 strains of methicillin-resistant S. aureus
-
TABLE 1 Bacterial strains Lac 1 2 3 4 5 6 7 8 9 Pen G S. aureus 849 (ATCC 25923) 25 31 16 17 21 19 30 29 20 21 33 MRSA USF919 (ATCC 43300) — 32 11 19 20 19 30 28 21 13 — MRSA USF920 (ATCC 33591) — 32 0 19 16 19 28 28 18 15 — MRSA USF652 30 30 12 17 16 19 30 30 19 12 8 MRSA USF653 30 32 19 20 20 20 31 30 27 25 15 MRSA USF654 26 30 14 18 20 22 29 26 23 20 10 MRSA USF655 25 30 14 17 20 22 29 28 22 18 14 MRSA USF656 28 31 15 19 22 20 31 28 22 20 12 MRSA USF657 27 30 12 19 21 22 29 27 22 19 12 MRSA USF658 26 31 14 17 18 21 29 27 16 19 19 MRSA USF659 24 28 16 19 19 20 26 26 22 22 16 (MRSA) - The first goal was to determine the effect of substitution at the C4 and C5 centers of the oxazolidinone ring on anti-Staphylococcus activity. Accordingly, N-thiolated oxazolidinones 1-5 (as racemates) were examined and compared to two reference compounds, N-methylthio lactam Lac (
FIG. 2 ) and penicillin G. - Compound susceptibility measurements obtained from agar disk diffusion of oxazolidinones 1-9 against a methicillin-susceptible strain of Staphylococcus aureus (S. aureus ATCC 25923) and 10 strains of methicillin-resistant S. aureus (MRSA) In each case, 20 μg of the test compound in CH2Cl2 was applied to 6 mm cellulose disks prior to inoculation and incubation. The value corresponds to average diameter in mm (triplicate experiments) for the zone of growth inhibitions observed after 24 h of incubation at 37° C. S. aureus (ATCC 25923) and methicillin-resistant S. aureus (labeled MRSA USF652-659 and USF919-920) were obtained from Lakeland Regional Medical Center, Lakeland, Fla. Lac is the N-thiolated β-lactam shown in
FIG. 2 . Pen G is penicillin G (potassium salt). Error values are within ±1 mm. - In almost every case, the five oxazolidinones displayed about equal activity against both S. aureus and MRSA, as did the corresponding β-lactam (Lac), and were uniformly much more effective than penicillin G (Pen G) against the MRSA strains. The most potent of these five oxazolidinones,
compound 1, produced zones of similar dimensions against S. aureus to that ofpenicillin G. Oxazolidinone 2, on the other hand, showed much more moderate activity against both S. aureus and MRSA. Mono-substituted oxazolidinones 3-5 also possessed strong anti-MRSA activity, surpassingdisubstituted derivative 2, indicating that substituents can be placed at either the C4 or C5 centers, or at both, without significantly affecting bioactivity. This stands in contrast to previous observations from studies of mono- versus disubstituted N-thiolated β-lactams, in which disubstitution on the ring provides for the best anti-MRSA properties. Additionally, replacement of the N-methylthio moiety ofcompound 4 for N-sec-butylthio (compound 5) leads to no significant improvement in anti-MRSA activity. - Enantiomerically paired
6, 7 and 8, 9 were then evaluated for anti-MRSA properties to probe whether absolute stereochemistry was a determinant of activity (oxazolidinones FIG. 3 ). These four compounds were individually prepared from their commercially available N-protio precursors and subjected to Kirby-Bauer testing. First, from these assays, it was noted that the phenyl-substituted 6 and 7 afforded somewhat larger inhibition zones than the isopropyl-bearing oxazolidinones 8 and 9, indicating stronger anti-MRSA activity. Indeed,oxazolidinones oxazolidinone 7 exhibited a lower broth MIC value (8 μg/mL) against both S. aureus and MRSA than that of oxazolidinone 8 (16 μg/mL). Second, the S enantiomer in each case was found, on average, to be slightly more active than the R-isomer. Indeed, the growth inhibition zones for R-configured compound 9 were visibly not as clear as they were for the S-stereoisomer 8, indicative of incomplete growth inhibition. Thus, there may be a small but discernible difference in bioactivities of the two enantiomeric forms, which should be further evaluated. - Next, the antibacterial capabilities of the oxazolidinones were examined against Bacillus anthracis, the causative agent of anthrax infections, and six other species of Bacillus. Concerns about the possible use of B. anthracis as a biological weapon have led to widespread efforts to develop antibiotics and vaccines for anthrax infections. For this initial examination, N-thiolated 2-oxazolidinones 6-9 were chosen for Kirby-Bauer testing. The data shown in Table 2 indicate that each of the N-methylthio 2-oxazolidinones inhibits the growth of all seven species of Bacillus. Of these four optically pure compounds, however, 6 and 7 had identical activity, while the R compound 9 possessed much weaker and more sporadic activity compared to that of the S-enantiomer 8. The reasons for this seemingly anomalous, but reproducible, difference in bioactivity are still under investigation.
-
TABLE 2 Bacillus species 6 7 8 9 B. anthracis 23 23 23 15 B. globigii 15 17 15 17 B. thurigensis 17 15 16 0 B. megaterium 18 20 18 10 B. subtilus 19 19 17 19 B. cereus 24 23 22 15 B. coagulans 17 17 17 0 Compound susceptibility measurements obtained from agar disk diffusion of oxazolidinones 6-9 against Bacillus anthracis (Sterne strain) and six other strains of Bacillus - In each case, 20 μg of the test compound in CH2Cl2 was applied to 6 mm cellulose disks prior to inoculation and incubation. The value corresponds to average diameter in mm (triplicate experiments) for the zone of growth inhibitions observed after 24 h of incubation at 37° C. Error values of these measurements are ±1 mm.
- As previously described for N-thiolated β-lactams, the antibacterial activity of these agents shows only a small dependence on the ring substituents, but requires the N-alkylthio group. In each case, N-thiolated 2-oxazolidinones exhibited antibacterial activity, whereas the corresponding N-protio oxazolidinones have no antibacterial activity. It is therefore tentatively postulated that these N-thiolated oxazolidinones, like their β-lactam counterparts, react covalently with their biological target through transfer of the organothio side chain as shown in
Reaction 1. - Procedure for the synthesis of N-methylthiolated 2-oxazolidinones:
- General procedure of N-methylthiolation of 2-oxazolidinones:
- A mixture of oxazolidinone (1.0 eq), S-methylpthalimide (1.5 eq) and potassium carbonate (1.5 eq) in acetone was sonicated till the reaction was complete. The reaction mixture was diluted with methylene chloride and filtered through celite. The solvent was removed under vacuum and the crude product was purified by column chromatography.
- Isolated 22 mg (34%) as a colorless oil. 1H NMR (CDCl3) δ 7.42-7.24 (m, 5H); 4.80 (t, J=7 Hz, 1H); 4.62 (t, J=8.8 Hz, 1H); 4.22 (dd, J=7.0, 8.8 Hz, 1H); 2.17 (s, 3H).13C NMR (CDCl3): δ 138.27, 129.82, 129.67, 127.91, 70.16, 63.79, 21.20.
- Isolated 62 mg (48%) as a colorless oil. 1H NMR (CDCl3) δ 7.42-7.24 (m, 5H); 4.80 (t, J=7 Hz, 1H); 4.62 (t, J=8.8 Hz, 1H); 4.22 (dd, J=7.0, 8.8 Hz, 1H); 2.17 (s, 3H).13C NMR (CDCl3) δ 159.08, 138.28, 129.80, 129.65, 127.91, 70.17, 63.75, 21.18.
-
-
- Additional studies detailing Kirby-Bauer Zones of Inhibition of N-methylthio and N—H Oxazolidinones.
-
TABLE 3 Com- MRSA S. aureus pound R R′ X (inhibition)a (Inhibition)b 1 S-Phenyl H H 0 0 1a S-Phenyl H SMe 29 30 2 R-Phenyl H H 0 0 2a R-Phenyl H SMe 28 29 3 S-iPropyl H H 0 0 3a S-iPropyl H SMe 16c 20c 4 R-iPropyl H H 0 0 4a R-iPropyl H SMe 19c 21c aReported as median diameter of zone of inhibition, in mm of 10 strains of MRSA (652-659, 919-920) bMedian zone of inhibition for S. Aureaus strain 849. cpartial inhibition within this diameter. - The disclosure of all publications cited above are expressly incorporated herein by reference, each in its entirety, to the same extent as if each were incorporated by reference individually.
- While the invention has been described in terms of various preferred embodiments, those skilled in the art will recognize that various modifications, substitutions, omissions, and changes may be made without departing from the spirit of the present invention. Accordingly, it is intended that the scope of the present invention be limited solely by the scope of the following claims.
- It will be seen that the advantages set forth above, and those made apparent from the foregoing description, are efficiently attained and since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
- It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween. Now that the invention has been described,
Claims (8)
1. A method of inhibiting a bacterial infection comprising administering an effective amount of an N-thiolated 2-Oxazolidinone compound of the formula:
or a salt or hydrate thereof, wherein:
—C(R1)3 is aryl, or heteroaryl, alkyl, CH3, CH(CH3)CH2CH3;
—X(R2)n is hydrogen, methoxy, acetoxy, phenoxy, or OSO2R6;
R3 is alkynyl, alkenyl, acetyl, aryl, heteroaryl, aryl(C1-C6) alkyl, heteroaryl(C1-C6) alkyl, aryl(C2-C6) alkenyl, heteroaryl(C2-C6)alkenyl, aryl(C2-C6) alkynyl or heteroaryl(C2-C6)alkynyl; wherein any aryl or heteroaryl is optionally substituted with halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C1-C15)alkyl, (C2-C15)alkenyl, (C2-C15)alkynyl, (C3-C8)cycloalkyl, (C3-C8)cycloalkyl(C1-C15)alkoxy, (C3-C8)cycloalkyl-(C2-C15) alkenyl, C3-C8)cycloalkyl(C2-C15)alkynyl, (C1-C15)alkoxy, (C1-C15)alkanoyl, (C1-C15)alkanoyloxy, C(O)O(C1-C6)alkyl, C(═O)N((C1-C6)alkyl)2, N((C1-C6)alkyl)2 or H;
R4 is hydrogen, CH2N3, CH2CH, CO2Me, or linked to X(R2)n; and
R5 is hydrogen.
2. The method of claim 1 , wherein X(R2)n and R4 form a spirocycle.
3. The method of claim 1 , wherein R6 is alkyl, aryl, or heteroaryl, wherein any aryl or heteroaryl is optionally substituted with halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, (C1-C15)alkyl, (C2-C15)alkenyl, (C2-C15)alkynyl, (C3-C8)cycloalkyl, (C3-C8)cycloalkyl(C2-C15)alkoxy, (C3-C8)cycloalkyl-(C2-C15)alkenyl, (C3-C8)cycloalkyl(C21-C15)alkynyl, (C1-C15)alkoxy, (C1-C15)alkanoyl, (C1-C15)alkanoyloxy, C(O)O(C1-C6)alkyl, C(═O)N((C1-C6)alkyl)2, or N((C1-C6)alkyl)2.
4. The method of claim 1 , wherein the bacterium is a Staphylococcus bacterium.
5. The method of claim 4 , wherein the Staphylococcus bacterium is a methicillin resistant Staphylococcus bacterium.
6. The method of claim 4 , wherein the methicillin resistant Staphylococcus bacterium selected from the group consisting of MRSA USF919, MRSA USF920, MRSA USF652, MRSA USF653, MRSA USF654, MRSA USF655, MRSA USF656, MRSA USF657, MRSA USF658, and MRSA USF659.
7. The method of claim 1 , wherein the bacterium is a Bacillus bacterium.
8. The method of claim 1 , wherein the Bacillus bacterium is selected form the group consisting of B. anthracis, B. globigii, B. thurigensis, B. megaterium, B. subtilis, B. cereus, and B. coagulans.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/339,174 US20090156654A1 (en) | 2005-05-06 | 2008-12-19 | Derivative n-thiolated 2-oxazolidinone antibiotics |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US67829205P | 2005-05-06 | 2005-05-06 | |
| US11/382,157 US7332611B2 (en) | 2005-05-06 | 2006-05-08 | N-thiolated 2 oxazolidone antibiotics |
| US11/948,073 US7482467B2 (en) | 2005-05-06 | 2007-11-30 | N-thiolated 2-oxazolidinone-derived antibiotics |
| US12/339,174 US20090156654A1 (en) | 2005-05-06 | 2008-12-19 | Derivative n-thiolated 2-oxazolidinone antibiotics |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/948,073 Division US7482467B2 (en) | 2005-05-06 | 2007-11-30 | N-thiolated 2-oxazolidinone-derived antibiotics |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090156654A1 true US20090156654A1 (en) | 2009-06-18 |
Family
ID=37396880
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/382,157 Active US7332611B2 (en) | 2005-05-06 | 2006-05-08 | N-thiolated 2 oxazolidone antibiotics |
| US11/948,073 Expired - Fee Related US7482467B2 (en) | 2005-05-06 | 2007-11-30 | N-thiolated 2-oxazolidinone-derived antibiotics |
| US12/028,460 Expired - Fee Related US8703963B2 (en) | 2005-05-06 | 2008-02-08 | Derivative N-thiolated 2-oxazolidinone antibiotics |
| US12/339,174 Abandoned US20090156654A1 (en) | 2005-05-06 | 2008-12-19 | Derivative n-thiolated 2-oxazolidinone antibiotics |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/382,157 Active US7332611B2 (en) | 2005-05-06 | 2006-05-08 | N-thiolated 2 oxazolidone antibiotics |
| US11/948,073 Expired - Fee Related US7482467B2 (en) | 2005-05-06 | 2007-11-30 | N-thiolated 2-oxazolidinone-derived antibiotics |
| US12/028,460 Expired - Fee Related US8703963B2 (en) | 2005-05-06 | 2008-02-08 | Derivative N-thiolated 2-oxazolidinone antibiotics |
Country Status (3)
| Country | Link |
|---|---|
| US (4) | US7332611B2 (en) |
| CA (1) | CA2607660A1 (en) |
| WO (1) | WO2006121962A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070190160A1 (en) * | 2003-09-02 | 2007-08-16 | Edward Turos | Nanoparticles for drug-delivery |
| US20080219281A1 (en) * | 2007-02-12 | 2008-09-11 | Huseyin Cahit Akin | Access line bonding and splitting methods and apparatus |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2607660A1 (en) * | 2005-05-06 | 2006-11-16 | University Of South Florida | N-thiolated 2-oxazolidone antibiotics |
| US8722937B2 (en) | 2006-02-27 | 2014-05-13 | University Of South Florida | Asymmetric disulfides and aryl-alkyl disulfides as anti-bacterial agents |
| CN108348507B (en) * | 2015-07-17 | 2021-10-08 | 结核病药物开发全球联盟公司 | Substituted phenyl oxazolidinones for antimicrobial therapy |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7482467B2 (en) * | 2005-05-06 | 2009-01-27 | University Of South Florida | N-thiolated 2-oxazolidinone-derived antibiotics |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3118129A1 (en) * | 1981-05-07 | 1982-12-02 | Bayer Ag, 5090 Leverkusen | RING SHAPED SULFEN AMIDES, METHOD FOR THEIR PRODUCTION, THEIR USE IN MEDICINAL PRODUCTS AND THE PRODUCTION THEREOF |
| US6476015B1 (en) * | 1999-07-22 | 2002-11-05 | University Of South Florida | N-thiolated β-lactam antibiotics |
| US6946458B2 (en) * | 1999-07-22 | 2005-09-20 | University Of South Florida | N-thiolated beta-lactams: novel antibacterial agents for methicillin-resistant Staphylococcus aureus |
-
2006
- 2006-05-08 CA CA002607660A patent/CA2607660A1/en not_active Abandoned
- 2006-05-08 US US11/382,157 patent/US7332611B2/en active Active
- 2006-05-08 WO PCT/US2006/017605 patent/WO2006121962A1/en not_active Ceased
-
2007
- 2007-11-30 US US11/948,073 patent/US7482467B2/en not_active Expired - Fee Related
-
2008
- 2008-02-08 US US12/028,460 patent/US8703963B2/en not_active Expired - Fee Related
- 2008-12-19 US US12/339,174 patent/US20090156654A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7482467B2 (en) * | 2005-05-06 | 2009-01-27 | University Of South Florida | N-thiolated 2-oxazolidinone-derived antibiotics |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070190160A1 (en) * | 2003-09-02 | 2007-08-16 | Edward Turos | Nanoparticles for drug-delivery |
| US9149440B2 (en) | 2003-09-02 | 2015-10-06 | University Of South Florida | Nanoparticles for drug-delivery |
| US20080219281A1 (en) * | 2007-02-12 | 2008-09-11 | Huseyin Cahit Akin | Access line bonding and splitting methods and apparatus |
| US9201835B2 (en) | 2007-02-12 | 2015-12-01 | Mushroom Networks, Inc | Access line bonding and splitting methods and apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2607660A1 (en) | 2006-11-16 |
| US20060252809A1 (en) | 2006-11-09 |
| US20080119533A1 (en) | 2008-05-22 |
| US7332611B2 (en) | 2008-02-19 |
| US8703963B2 (en) | 2014-04-22 |
| US20120149911A1 (en) | 2012-06-14 |
| WO2006121962A1 (en) | 2006-11-16 |
| US7482467B2 (en) | 2009-01-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6946458B2 (en) | N-thiolated beta-lactams: novel antibacterial agents for methicillin-resistant Staphylococcus aureus | |
| US6605609B2 (en) | Thizaine oxazolidinone | |
| EP1175217B1 (en) | (s)-benzoquinolizine carboxylic acids and their use as antibacterial agents | |
| US8703963B2 (en) | Derivative N-thiolated 2-oxazolidinone antibiotics | |
| CA2962431A1 (en) | Non-beta lactam antibiotics | |
| HU194819B (en) | Process for producing pleuromutilin derivatives and pharmaceutical compositions containing them | |
| RS53191B (en) | HINOLINE DERIVATIVES AS ANTI-BACTERIAL AGENTS | |
| US8217058B2 (en) | Substituted piperidino phenyloxazolidinones | |
| JP2009503025A (en) | Quinoline derivatives as antibacterial agents | |
| US6476015B1 (en) | N-thiolated β-lactam antibiotics | |
| JP2012506908A (en) | Synthetic mimics of host defense and their use | |
| US9573910B2 (en) | Oxazolidinone antibacterial compound | |
| US20130012554A1 (en) | Oxazolidinone derivatives containing new bicyclic group, having antibacterial activity, and method for treating pathogenic bacterial infections using the same | |
| JP5193857B2 (en) | Quinoline derivatives as antibacterial agents | |
| JP5208739B2 (en) | Quinoline derivatives as antibacterial agents | |
| Turos et al. | N-thiolated 2 oxazolidone antibiotics | |
| US10080725B2 (en) | Antibacterial S-heterosubstituted disulfides | |
| WO2014161412A1 (en) | Tricyclic quinolone derivative and preparation method and use thereof | |
| WO2004007488A2 (en) | Antimicrobial oxazolidinones, process of their preparation, and pharmaceutical compositions containing them | |
| JP2008546825A (en) | Quinoline derivatives as antibacterial agents | |
| JP5349730B2 (en) | Quinoline derivatives as antibacterial agents | |
| US9862710B2 (en) | 1,2,4-oxadiazol compounds active against gram-positive pathogens | |
| ZA200209575B (en) | A thiazine oxazolidinone. | |
| SE204636C1 (en) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UNIVERSITY OF SOUTH FLORIDA, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TUROS, EDWARD;MISHRA, RAJESH KUMAR;REEL/FRAME:022246/0240;SIGNING DATES FROM 20090116 TO 20090203 |
|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF SOUTH FLORIDA;REEL/FRAME:023006/0772 Effective date: 20090722 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |