[go: up one dir, main page]

US20090134054A1 - Water-soluble product package and product - Google Patents

Water-soluble product package and product Download PDF

Info

Publication number
US20090134054A1
US20090134054A1 US12/266,149 US26614908A US2009134054A1 US 20090134054 A1 US20090134054 A1 US 20090134054A1 US 26614908 A US26614908 A US 26614908A US 2009134054 A1 US2009134054 A1 US 2009134054A1
Authority
US
United States
Prior art keywords
water
package
soluble film
soluble
blister
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/266,149
Inventor
David M. Lee
Thomas Yogan
P. Scott Bening
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monosol LLC
Original Assignee
Monosol LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monosol LLC filed Critical Monosol LLC
Priority to US12/266,149 priority Critical patent/US20090134054A1/en
Assigned to MONOSOL, LLC reassignment MONOSOL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENING, P. SCOTT, YOGAN, THOMAS, LEE, DAVID M.
Publication of US20090134054A1 publication Critical patent/US20090134054A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/28Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
    • B65D75/30Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • B65D75/32Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents
    • B65D75/36Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents one sheet or blank being recessed and the other formed of relatively stiff flat sheet material, e.g. blister packages, the recess or recesses being preformed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/04Articles or materials enclosed in two or more containers disposed one within another
    • B65D77/06Liquids or semi-liquids or other materials or articles enclosed in flexible containers disposed within rigid containers

Definitions

  • the present invention relates to packages for products, and more particularly, to products provided in water-soluble packaging.
  • Blister packs are generally well-known for storing individual doses of medicine, or individual servings of gum, for example.
  • water-soluble films are generally known for packaging, waste source reduction, composite and sheet goods fabrication, and edible applications.
  • One embodiment of the invention comprises a package for an edible or non-edible product.
  • the package comprises a primary package formed within a secondary package.
  • the primary package comprises an edible or non-edible, water-soluble film container.
  • the secondary package comprises a blister-card having at least one blister defining a cavity, and a foil backing.
  • the film container comprises a first film layer portion and a second film layer portion.
  • the first film layer portion is formed intimately within the cavity of the at least one blister of the blister-pack.
  • the second film layer portion is formed adjacent to the first film layer portion to define a container cavity between the first and second film layer portions.
  • the first film layer portion can be formed of a first edible or non-edible, water-soluble material
  • the second film layer portion can be formed of a second edible or non-edible, water-soluble material that is different than the first water-soluble material.
  • the second water-soluble material can be harder, more inelastic, more brittle, and/or less ductile than the first water-soluble film.
  • FIG. 1 is a perspective view of one product package constructed in accordance with the principles of the present invention
  • FIG. 2 is a cross-sectional side view of the product package of FIG. 1 taken through line II-II of FIG. 1 ;
  • FIG. 3 is a perspective view of one embodiment of a dose card of the product package of FIG. 1 including a pull-tab mechanism;
  • FIG. 4 is a perspective view of another embodiment of a dose card of the product package of FIG. 1 including a pull-string mechanism;
  • FIG. 5 is a cross-sectional side view of an alternative product package constructed in accordance with the present invention and taken through line II-II of FIG. 1 ;
  • FIG. 6 is a perspective view of an alternative product package constructed in accordance with the principles of the present invention.
  • FIG. 7 is a cross-sectional side view of the product package of FIG. 6 taken through line VII-VII of FIG. 6 .
  • FIG. 1 depicts one embodiment of a product package 100 constructed in accordance with the present invention.
  • the product package 100 is a blister-pack comprising a blister card 102 and a backing material 108 (shown in FIG. 2 ).
  • the blister card 102 includes a base portion 103 and a plurality of blisters 104 a - 104 f.
  • the blisters 104 a - 104 f are adapted to contain a product such as an ingestible product, for example, as will be described.
  • the backing material 108 is adhered to the base portion 103 of the blister card 102 or a film layer disposed thereon and encloses the blisters 104 a - 104 f.
  • a user To retrieve the product from the blisters 104 a - 104 f, a user must remove the backing material 108 either by breaking the backing material 108 , or by some other means.
  • the blister card 102 includes a plurality of perforated seams 106 a - 106 c.
  • the seams 106 a - 106 c are located on the base portion 103 and divide the blister card 102 into a plurality of individual dose cards 102 a - 102 f.
  • Each dose card 102 a - 102 f carries one of the blisters 104 a - 104 f, respectively.
  • the dose cards 102 a - 102 f, and therefore the blisters 104 a - 104 f are arranged in a matrix.
  • the dose cards 102 a - 102 f and blisters 104 a - 104 f are arranged in a 2 ⁇ 3 matrix.
  • the perforated seams 106 a - 106 c enable a user to detach one or more of the dose cards 102 a - 102 f from the remainder of the package 100 such that the user may carry them away in their pocket or purse, for example.
  • the blisters 104 a - 104 f of the disclosed embodiment of the blister card 102 generally comprise cylindrical containers.
  • the blister card 102 includes a thin piece of material such as a plastic material having an external surface 105 a and an internal surface 105 b.
  • the blister card 102 can be molded to define the plurality of blisters 104 a - 104 f.
  • the blister card 102 can be constructed of polyethylene terephthalate (PET), polystyrene, a blend of polystyrene, polypropylene, a biodegradable polymer such as polylactic acid, and combinations thereof.
  • PET polyethylene terephthalate
  • the blister card 102 can be constructed of any other material suitable for the intended purpose.
  • the package 100 additionally includes a first film layer 110 and a second film layer 112 disposed between the blister card 102 and the backing material 108 .
  • the first film layer 110 includes a first surface 115 a and a second surface 115 b.
  • the first surface 115 a of the first film layer 110 is shaped and configured to intimately correspond to the contours of the internal surface 105 b of the blister card 102 , and particularly, to the blisters 104 a - 104 f.
  • the first surface 115 a of the first film layer 110 can be removably adhered to the internal surface 105 b of the blister card 102 .
  • the first film layer 110 is generally uniform in thickness, and thus, the second surface 115 b of the first film layer 110 is also shaped and configured to correspond to the internal surface 105 b of the blister card 102 .
  • the second surface 115 b of the first film layer 110 of the embodiment of the package 100 depicted in FIG. 2 defines a plurality of cavities 114 a - 114 f, which correspond to the plurality of blisters 104 a - 104 f , respectively.
  • the cavities 114 a - 114 f are accordingly cylindrical cavities.
  • the first film layer 110 does not have to be uniform in thickness, and as such, the second surface 115 b of the first film layer 110 is not required to correspond to the contours of the blister card 102 .
  • the cavities 114 a - 114 f can be shaped other than cylindrical.
  • the second film layer 112 of the package 100 depicted in FIGS. 1 and 2 also includes a first surface 125 a and a second surface 125 b.
  • the second film layer 112 of the disclosed embodiment is generally planar.
  • the first surface 125 a of the second film layer 112 is adhered to the second surface 115 b of the first film layer 110 everywhere, except in the regions of the blisters 104 a - 104 f, thereby enclosing the cavities 114 a - 114 f defined by the first film layers 110 a - 110 f .
  • the first surface 125 a of the second film layer 112 is adhered to the second surface 115 b of the first film layer 110 at a location adjacent to the base portion 103 of the blister card 102 .
  • the first and second film layers 110 , 112 can be each constructed of an edible, water-soluble material.
  • the first and second film layers 110 , 112 can include a base polymer which is a polysaccharide polymer, and one or more additives.
  • the polysaccharide polymer can comprise one or more polymers including, but not limited to pullulan, carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC), and combinations thereof. Any other polysaccharide polymer can also be used.
  • Suitable optional film additives are known in the art, for providing various functionalities.
  • the film composition and film can thus contain one or more auxiliary film agents and processing agents, such as, but not limited to, plasticizers, lubricants, release agents, fillers, extenders, antiblocking agents, detackifying agents, antifoams and other functional ingredients, in amounts suitable for their intended purpose.
  • Preferred optional additives include gelatin, lecithin, such as sunflower lecithin (commercially available as GIRALEC), sorbitol, glycerol, propylene glycol, polysorbate 80, sodium lauryl sulfate, and combinations thereof.
  • the first and second film layers 110 , 112 can be constructed of identical materials having identical physical properties. In alternative embodiments, however, the first and second film layers 110 , 112 can be constructed of similar or different materials composed, however, to have different physical properties.
  • the second film layer 112 can be constructed of an edible, water-soluble material that exhibits one or more properties such as increased hardness, decreased elasticity, increased brittleness, and decreased ductility than the first film layer 110 or vice versa. Such differing compositions of the first and second film layers 110 , 112 can lend to the functionality of the package.
  • the first film layer 110 is constructed of a composition of edible, water-soluble material that is softer than the composition of the second film layer 112 , the first film layer 110 can more readily dissolve when submersed in fluid such as water.
  • the harder, more inelastic, more brittle, and/or less ductile second film layer 112 can more readily break through the backing material 108 upon a user pressing the opposing sides of the blisters 104 a - 104 f.
  • the backing material 108 also includes a first surface 108 a and a second surface 108 b.
  • the first surface 108 a of the backing material 108 is adhered to the second surface 125 b of the second film layer 112 .
  • the backing material 108 comprises a foil backing material such as aluminum foil.
  • the backing material 108 can comprise a paper material coated or treated with a moisture-proof substance, a moisture-resistant substance, or any other suitable removable material.
  • the package 100 includes a plurality of perforated seams 160 a - 106 c.
  • the perforated seams 106 a - 106 c extend through the base portion 103 of the blister card 102 , through the first film layer 110 , through the second film layer 112 , and through the backing material 108 .
  • the first and second film layers 110 , 112 define a plurality of primary packages 116 a - 116 f (primary packages 116 d - 116 f are shown in FIG. 2 ) that are bounded between the perforated seams 106 a - 106 c and the various edges of the blister card 102 .
  • the primary packages 116 a - 116 f are adapted to contain a product 118 within the cavities 114 a - 114 f defined by the first film layers 110 a - 110 f .
  • the primary packages 116 a - 116 f can constitute edible, water-soluble containers.
  • the product 118 can include an edible product such as a powdered beverage mix, an oatmeal mix, a powdered soup mix, powdered vitamins, powdered medications, or any other product that may be added to an aqueous liquid, for example, for ingestion.
  • the edible product is also water-soluble or at least includes a water-soluble component.
  • the edible product preferably is in the form of a powder or a granulate, for ease of filling the cavities 114 a - 114 f, although in other embodiments the product can be a similarly-shaped solid, aqueous or non-aqueous liquid.
  • a user removes one of the primary packages 116 from the blister card 102 and then submerses the primary package 116 in a glass of water, for example.
  • the first and second film layers 110 , 112 dissolve in the water.
  • the product 118 dissolves or disperses in the water.
  • the user may have to stir the water to uniformly disperse or dissolve the product 118 prior to ingestion.
  • the user merely pushes one of the blisters 104 a - 104 f, opposite the backing material 108 , to remove a primary package 116 a - 116 f.
  • the force applied by the user disengages any adhesion between the first surface 115 a of the first film layer 110 from the internal surface 105 b of the blister card 102 , and forces the second film layer 112 to break the backing material 108 .
  • the backing material 108 may include a pull-tab 120 , as depicted in FIG. 3 , for each of the dose cards 102 a - 102 f.
  • the backing material 108 can be equipped with an embedded pull-string 122 , as depicted in FIG. 4 , for each of the dose cards 102 a - 102 f. So configured, a user grasps the pull-string 122 and pulls. As the user pulls the pull-string 122 , the pull-string 122 tears the backing material 108 along a circular path indicated by dashed lines in FIG. 4 . Completely removing the pull-string 122 therefore removes the portion of the backing material 108 within the dashed line in FIG. 4 and enables the user to gain access to the primary package 116 .
  • This embodiment can be particularly useful in connection with the primary packages 116 a - 116 f described in connection with FIG. 5 .
  • the embedded portion of the pull-string 122 has been depicted and described as including a circular pull-string, alternative embodiments can include a linear pull-string, or any other configuration pull-string.
  • the embedded portions of the pull-strings can extend in a straight line across the centers of the blisters 104 a - 104 f. So configured, pulling the pull-strings would tear the backing material 108 in a straight line across the centers of the respective blisters 104 a - 104 f, thereby providing an opening in the form of a slit, for example, sufficient for the respective primary packages 116 to pass through, or at least begin passing through prior to further tearing the backing material 108 .
  • the product package 100 can be manufactured by utilizing a vacuum thermo-forming process.
  • the process can include the use of a forming block, e.g., a die, for forming the blister card 102 and the first film layer 110 substantially simultaneously.
  • the forming block can include a steel plate, for example, comprising a plurality of cylindrical recesses and a plurality of through-bores communicating with the cylindrical recesses.
  • the cylindrical recesses would be shaped and configured to correspond to the plurality of blisters 104 , which are ultimately formed in the blister card 102 .
  • the through-bores would be connected to a suctioning source such as a vacuum for forming the product package 100 , as will be described.
  • a planar sheet of plastic material which constitutes the material to be formed into the blister card 102 , is positioned immediately adjacent the forming block over the plurality of recesses. Additionally, in one embodiment, a planar sheet of edible, water-soluble film, which constitutes the material to be formed into the first film layer 110 , is positioned on top of the plastic material of the blister card 102 .
  • the plastic material of the blister card 102 and the film layer of the first film layer 110 are then heated such that the first surface 115 a of the first film layer 110 begins to melt and adheres to the internal surface 105 b of the plastic material forming the blister card 102 .
  • the suctioning device is activated to create a vacuum in the plurality of recesses of the forming block.
  • the vacuum works, i.e., draws, the plastic material into the recesses, thereby forming the plurality of blisters 104 in the blister card 102 .
  • the vacuum also draws the first film layer 110 into the recesses.
  • the first surface 115 a of the first film layer 110 forms intimately with the contours of the internal surface 105 b of the blister card 102 , as depicted in FIG. 2 .
  • the first film layer 110 defines the cavities 114 a - 114 f, and the suctioning device can be deactivated.
  • the product 118 is then poured, placed, or otherwise filled into the cavities 114 a - 114 f.
  • the second film layer 112 is positioned immediately adjacent the first film layer 110 .
  • the second film layer 112 can begin to melt such that the first surface 125 a of the second film layer 112 adheres to the second surface 115 b of the first film layer 110 .
  • the first film layer 110 forms to the contours of the blisters 104
  • the second film layers 112 only adheres to the first film layer 110 in the region of the base portion 103 of the blister card 102 .
  • the backing material 108 is positioned adjacent the second surface 125 b of the second film layer 112 .
  • the first surface 108 a of the backing material 108 adheres to the second surface 125 b of the second film layer 112 .
  • the perforated seams 106 a - 106 c are cut, stamped, or otherwise provided in the product package 100 with an appropriate tool such as a toothed wheel, a press, or other suitable device.
  • FIG. 5 depicts an alternative embodiment of the product package 100 described above with reference to FIG. 1 .
  • the package 100 is substantially similar to the package 100 described above, and therefore, like components will be identified with like reference characters.
  • the package 100 includes a blister card 102 and a backing material 108 .
  • the blister card 102 includes a base portion 103 and a plurality of blisters 104 a - 104 f.
  • FIG. 5 illustrates a cross-section of the package 100 depicted in FIG. 1 , taken through line V-V, and therefore only blisters 104 d - 104 f are shown.
  • the package 100 depicted in FIG. 5 includes a plurality of first film layer portions 110 a - 110 f and a plurality of second film layer portions 112 a - 112 f .
  • Each of the first and second film layer portions 110 a - 110 f , 112 a - 112 f correspond to one of the plurality of blisters 104 a - 104 f.
  • the first film layer portions 110 a - 110 f each include first surfaces 115 a and second surfaces 115 b.
  • each of the first film layer portions 110 a - 110 f are disposed within a corresponding blister 104 a - 104 f.
  • the first surfaces 115 a of the first film layer portions 110 a - 110 f intimately correspond to the contours of the internal surface 105 b of the blisters 104 a - 104 f .
  • each of the first film layer portions 110 a - 110 f includes a top wall 117 and a cylindrical sidewall 119 .
  • the first surfaces 115 a of the first film layer portions 110 a - 110 f can be removably adhered to the internal surface 105 b of the blister card 102 .
  • the first film layer portions 110 a - 110 f are generally uniform in thickness, and thus, the second surfaces 115 b of the first film layer portions 110 a - 110 f are also shaped and configured to correspond to the internal surface 105 b of the blister card 102 . So configured, each of the second surfaces 115 b of the first film layer portions 110 a - 110 f of the embodiment of the package 100 depicted in FIG. 5 defines a cavity 114 a - 114 f similar to the cavities 114 a - 114 f described above with reference to FIG. 2 .
  • first film layer portions 110 a - 110 f do not have to be uniform in thickness, and as such, the second surfaces 115 b are not required to correspond to the contours of the blister card 102 as discussed above.
  • Each of the second film layer portions 112 a - 112 f of the embodiment of the package 100 depicted in FIG. 5 also include a first surface 125 a and a second surface 125 b. As depicted, the second film layer portions 112 a - 112 f of the disclosed embodiment are generally planar. Perimeter regions of the first surfaces 125 a of the second film layer portions 112 a - 112 f are adhered to the sidewalls 119 of the first film layer portions 110 a - 110 f.
  • the second film layer portions 112 a - 112 f enclose the cavities 114 a - 114 f defined by the first film layer portions 110 a - 110 f, and in combination with the first film layer portions 110 a - 110 f define a plurality of primary packages 116 a - 116 f containing a product 118 .
  • the primary packages 116 a - 116 f constitute edible, water-soluble containers.
  • the backing material 108 includes a first surface 108 a and a second surface 108 b.
  • the first surface 108 a of the backing material 108 is adhered to the internal surface 105 b of the blister card 102 in the region of the base portion 103 , as well as to the second surfaces 125 b of the second film layer portions 112 a - 112 f. So configured, the backing material 108 retains the plurality of primary packages 116 a - 116 f within the blisters 104 a - 104 f by enclosing the blisters 104 a - 104 f.
  • Removing the primary packages 116 from the blister card 102 can be performed in any of the manners discussed above with respect to the embodiment depicted in FIGS. 2-4 .
  • the blister card 102 , the first and second film layer portions 110 a - 110 f, 112 a - 112 f , and the backing material 108 can be constructed of any of the materials discussed above.
  • a method of manufacturing the product package 100 depicted in FIG. 5 can be similar to the process described above with reference to the package 100 depicted in FIG. 2 , with the exception that two additional steps can be required.
  • a planar sheet of plastic material which constitutes the blister card 102 and a first sheet of edible, water soluble film, portions of which ultimately constitute the first film layer portions 110 a - 110 f , are positioned adjacent a forming block.
  • the forming block includes a plurality of recesses and through-bores connected to a suctioning device.
  • the blister card 102 and the first film layer 110 are heated and the suctioning device is activated to draw the materials into the recesses, thereby forming the blisters 104 and the cavities 114 .
  • excess material outside of the blisters 104 Prior to filling the cavities 114 with the product 118 , excess material outside of the blisters 104 must be removed from the first film layer 110 to define the plurality of first film layer portions 110 a - 110 f , as depicted in FIG. 5 .
  • the excess material can be removed via a stamping operation, for example, that includes a plurality of circular blades that cut the first sheet of film around the blisters 104 to define the plurality of first film layer portions 110 a - 110 f . Once the first sheet of film is cut, the excess material can be removed and discarded, or recycled.
  • the cavities 114 a - 114 f are filled with the product 118 and a second sheet of edible, water-soluble film, portions of which will ultimately constitute the plurality of second film layer portions 112 a - 112 f, is positioned onto the blister card 102 , thereby sealing the cavities 114 a - 114 f.
  • the second sheet of film at this point, would actually engage the internal surface 105 b of the blister card 102 only in the region of the base portion 103 . Additionally, due to the presence of heat, portions of the second sheet of film would sink into the cavities 114 a - 114 f and into engagement with the sidewalls 119 of the first film layer portions 110 a - 110 f, as depicted in FIG. 5 .
  • the excess material located outside of the blisters 104 must be removed from the second sheet of film to define the plurality of second film layer portions 112 a - 112 f, as depicted in FIG. 5 .
  • the excess material can be removed via a stamping operation that includes a plurality of circular blades that cut the second sheet of film around the blisters 104 . Once the second film layer portions 112 a - 112 f are appropriately cut, the excess material can be removed and discarded, or recycled.
  • the first and second film layer portions 110 a - 110 f , 112 a - 112 f are completely formed into the primary packages 116 a - 116 f.
  • the internal surface 105 b of the blister card 102 is exposed in the region of the base portion 103 . So exposed, the backing material 108 is positioned adjacent to the internal surface 105 b of the blister card 102 and the second surfaces 125 b of the second film layer portions 112 a - 112 f.
  • the first surface 108 a of the backing material 108 adheres to the second surfaces 125 of the second film layer portions 112 a - 112 f and the base portion 103 of the blister card 102 , as illustrated.
  • the perforated seams 106 a - 106 c are cut, stamped, or otherwise provided in the product package 100 with an appropriate tool such as a toothed wheel, a press, or other suitable device.
  • FIGS. 6 and 7 depict an alternative embodiment of a product package 200 constructed in accordance with the present invention.
  • the product package 200 is similar to the package 100 described above in that it includes a blister card 202 and a backing material 208 .
  • the blister card 202 includes a base portion 203 and a plurality of blisters 204 a - 204 f .
  • the blisters 204 a - 204 f are adapted to contain a product such as an ingestible product, as will be described.
  • the backing material 208 is resealably adhered to the blister card 202 or a film layer disposed thereon, as will also be described.
  • the blister card 202 includes a plurality of perforated seams 206 a - 206 c.
  • the seams 206 a - 206 c are located on the base portion 203 and divide the blister card 202 into a plurality of individual dose cards 202 a - 202 f.
  • Each dose card 202 a - 202 f carries one of the blisters 204 a - 204 f.
  • the dose cards 202 a - 202 f, and therefore the blisters 204 a - 204 f are arranged in a matrix.
  • the dose cards 202 a - 202 f and blisters 204 a - 204 f are arranged in a 2 ⁇ 3 matrix.
  • the perforated seams 206 a - 206 c enable a user to detach one or more of the dose cards 202 a - 202 f from the remainder of the package 200 such that the user may carry them away in their pocket or purse, for example.
  • the blisters 204 a - 204 f of the disclosed embodiment of the package 200 generally comprise elongated box-shaped blisters.
  • the blister card 202 includes a thin piece of material such as a plastic material having an external surface 205 a and an internal surface 205 b.
  • the blister card 202 can be molded to define the plurality of blisters 204 a - 204 f and can be constructed of any of the materials described above in connection with the blister card 102 in FIGS. 1 , 2 , and 5 .
  • the package 200 includes a first film layer 210 and a second film layer 212 disposed between the blister card 202 and the backing material 208 .
  • the first film layer 210 includes a first surface 215 a and a second surface 215 b.
  • the first surface 215 a of the first film layer 210 is shaped and configured to intimately correspond to the contours of the internal surface 205 b of the blister card 202 , and particularly, to the blisters 204 a - 204 f.
  • the first surface 215 a of the first film layer 210 can be removably adhered to the internal surface 205 b of the blister card 202 .
  • the first film layer 210 is generally uniform in thickness, and thus, the second surface 215 b of the first film layer 210 is also shaped and configured to correspond to the internal surface 205 b of the blister card 202 .
  • the second surface 215 b of the first film layer 210 of the embodiment of the package 200 depicted in FIG. 7 defines a plurality of cavities 214 a - 214 f, which correspond to the plurality of blisters 204 a - 204 f.
  • the cavities 214 a - 214 f are accordingly elongated box-shaped cavities.
  • the first film layer 210 does not have to be uniform in thickness, and as such, the second surface 215 b of the first film layer 210 is not required to correspond to the contours of the blister card 202 .
  • the cavities 214 a - 214 f can be shaped other than elongated boxes.
  • the second film layer 212 of the package 200 depicted in FIGS. 6 and 7 also includes a first surface 225 a and a second surface 225 b. As depicted in FIG. 7 , the second film layer 212 of the disclosed embodiment is generally planar. The first surface 225 a of the second film layer 212 is adhered to the second surface 215 b of the first film layer 210 everywhere, except in the regions of the blisters 204 a - 204 f, thereby enclosing the cavities 214 a - 214 f defined by the first film layers 210 a - 210 f.
  • first surface 225 a of the second film layer 212 is adhered to the second surface 215 b of the first film layer 210 at a location adjacent to the base portion 203 of the blister card 202 .
  • the first and second film layers 210 , 212 can be constructed of any of the edible, water-soluble materials described above with reference to FIGS. 1-5 .
  • the package 200 depicted in FIGS. 6 and 7 also includes first and second edible, water-soluble barriers 207 a - 207 f, 209 a - 209 f disposed within each of the cavities 214 a - 214 f.
  • the first and second barriers 207 a - 207 f, 209 a - 209 f divide the cavities 214 a - 214 f into three compartments 224 a - 224 c.
  • the compartments 224 a - 224 c are adapted to store different ingredients 218 a - 218 c of the product 218 , for example, as will be described.
  • the barriers 207 , 209 can be part of the blister card 202 .
  • the backing material 208 also includes a first surface 208 a and a second surface 208 b. Moreover, the backing material 208 of the present embodiment includes a first half 222 a and a second half 222 b. The first surface 208 a of the backing material 208 is removable and resealably adhered to the second surface 225 b of the second film layer 212 .
  • the backing material 208 can be constructed of any of the materials associated with the backing material 108 described above for the package 100 depicted in FIGS. 1-5 .
  • the package 200 includes a plurality of perforated seams 206 a - 206 c.
  • the perforated seams 206 a - 206 c extend through the base portion 203 of the blister card 202 , through the first film layer 210 , and through the second film layer 212 .
  • the perforated seams 206 a - 206 c can optionally perforate the backing material 208 , but preferably do not in this embodiment.
  • the first and second film layers 210 , 212 define a plurality of primary packages 216 a - 216 f (primary packages 216 c and 216 f are shown in FIG.
  • each of the first and second halves 222 a , 222 b of the backing material 208 are independently removable from and resealable to the second film layer 212 such that a user can gain access to the blisters 204 a - 204 f, as will be described.
  • the primary packages 216 are adapted to contain a product 218 within the cavities 214 a - 214 f defined between the first film layer 210 and the second film layer 212 .
  • the various compartments 224 a - 224 c within the cavities 214 a - 214 f are adapted to contain different ingredients 218 a - 218 c of the product 218 .
  • one ingredient 218 a contained in one compartment 224 a can constitute instant coffee crystals
  • another ingredient 218 contained in another compartment 224 b can constitute powdered creamer
  • the last ingredient 218 c contained in the last compartment 224 c can constitute a sweetener such as granulated sugar. So configured, a user can make a cup of coffee including cream and sugar by simply placing a single primary package 216 a - 216 f into a cup of hot water.
  • FIGS. 6 and 7 depicts the package 200 with the one half 222 a peeled back. Once the half 222 a, 222 b of the backing material 208 is peeled back, the user can push on the desired blister 104 a - 104 f to force a primary package 216 a - 216 f out of the blister card 202 .
  • first and second film layers 210 , 212 would tear along the adjacent perforated seams 206 a - 206 c as the user forces the primary package 216 a - 216 f out of the blister card 202 .
  • the entire primary package 216 a - 216 f can be submersed into a container of water, for example, to be dissolved prior to ingestion.
  • the user can then return the half 222 a of the backing material 208 into position engaging the remaining portions of the second surface 225 b of the second film layer 212 .
  • the second surface 225 b of the second film layer 212 or the first surface 208 a of the backing material 208 includes an adhesive that allows the backing material 208 to be removably and resealably attached to the second film layer 212 .
  • a method of manufacturing the product package 200 depicted in FIGS. 6 and 7 can be generally similar to that described above with reference to the product package 100 depicted in FIG. 2 . The entire process will therefore not be repeated.
  • An additional manufacturing step can include positioning the barriers 207 , 209 in the cavities 214 prior to filling the cavities 214 with product 218 .
  • additional manufacturing steps can include filling the different compartments 224 a - 224 c of the cavities 114 a - 114 f with the different ingredients 218 a - 218 c.
  • positioning the plastic material that forms the blister cards 102 , 202 , the films that constitute the first and second film layers 110 , 112 , 210 , 212 , the films that constitute the first and second film layer portions 110 a - 110 f , 112 a - 112 f, and the backing material 108 relative to the forming block during manufacture of the packages 100 , 200 can be accomplished manually or with one or more feeding machines.
  • the feeding machines can be equipped with stock of the respective materials stored on rolls, for example.
  • the materials could then be delivered to the forming block in the form of webs, which are cut from the remainder of the roll when appropriately positioned.
  • the feeding machines can be equipped with sheets of the respective materials, stored in magazines, for example. So configured, the machines can deliver the sheets directly to the forming block, without having to cut the material.
  • first film layers 110 , 210 and first film layer portions 110 a - 110 f have been described herein as being adhered to the blister cards 102 , 202 during the thermoforming process, in an alternative embodiment these materials can be adhered together prior to being placed adjacent the forming block.
  • the plastic material forming the blister cards 102 , 202 and the sheet of edible, water-soluble film that ultimately forms the first film layer 110 , or the first film layer portions 110 a - 110 f can be pre-formed as a composite material through a casting process, for example, or any other process.
  • the plastic material forming the blister cards 102 , 202 and the sheet of edible, water-soluble film that ultimately forms the first film layer 110 , 210 , or the first film layer portions 110 a - 110 f have been described herein as being adhered together via a thermal adhesion process, in alternative embodiments, the materials could be adhered together with an edible, water-soluble adhesive, for example, that is applied to one or both of the materials prior to or during the manufacturing process.
  • a water-soluble film can be adhered to a blister card, another water-soluble film, or a backing material simply by moistening one or more of the adjoining surfaces with a small amount of water, for example.
  • first and second film layer portions 110 a - 110 f , 112 a - 112 f described above with reference to FIG. 5 have been described herein as being cut during the manufacturing process, in alternative embodiments, the first and second film layer portions 110 a - 110 f , 112 a - 112 f can be pre-cut and subsequently positioned adjacent to the blister card 102 for any necessary thermoforming and adhesion.
  • the blister cards 102 , 202 and first film layers 110 , 210 can be worked into the recesses in the forming blocks by other means.
  • the blister cards 102 , 202 and first film layers 110 , 210 can be blown into the recesses, poured into the recesses, or otherwise.
  • the methods of manufacture have been described as including a vacuum thermoforming process, the product packages 100 , 200 can alternatively be formed via injection molding, casting, stamping, or any other suitable method.
  • one embodiment of a process for manufacturing a product package 100 , 200 in accordance with the present invention can comprise the following steps (not necessarily in the disclosed order and including more or less steps as appropriate): (1) positing a plastic sheet of material adjacent to a forming block having a plurality of recesses; (2) positioning a first sheet of edible, water-soluble film adjacent to the plastic sheet of material at a location opposite the plastic sheet of film from the forming block; (3) working the plastic sheet of material into the recesses of the forming block to form a plurality of blisters; (4) working the first sheet of edible, water-soluble film into the recesses of the forming block such that the first sheet of edible, water-soluble film intimately engages and corresponds to the contours of the blisters to define a plurality of cavities within the blisters; (5) filling the cavities with a product; (6) positioning a second sheet of edible, water-soluble film adjacent to the first sheet of edible, water-soluble film at a location opposite the first sheet of plastic material; and (7) adher
  • the product packages 100 , 200 including the primary packages 116 , 216 provide for a robust edible, water-soluble packaging.
  • the primary packages 116 , 216 are constructed and stored in intimate relationship with the blisters 104 , 204 , the primary packages 116 , 216 do not vibrate within the blisters 104 , 204 under the physical stresses involved with transportation and handling.
  • conventional water-soluble packaging can be vulnerable to film dehydration, plasticizer loss, and the concomitant risk of a phenomenon known as “cold cracking” during low temperature transportation, wherein the package literally cracks, thereby compromising the quantity and quality of the product stored therein.
  • the individual storage prevents contamination of stored primary packages 116 , 216 when a user retrieves one or more of the other primary packages 116 , 216 .
  • the disclosed polysaccharide polymer-based materials which constitute the first and second film layers 110 , 112 , 210 , 212 and first and second film layer portions 110 a - 110 f , 112 a - 112 f, can have very good oxygen barrier properties when dry.
  • the backing material 108 and blister card 102 can be constructed of simpler materials.
  • traditional backing material 108 can comprise a foil or metallized film material that provides moisture protection, physical protection, and oxygen protection. Utilizing the disclosed polysaccharide polymer-based materials therefore enables the use of a backing material 108 that does not have to provide for oxygen protection, for example.
  • one or both of the backing material 108 and blister card 102 will have poor or substandard oxygen barrier properties.
  • one or both of the backing material 108 and blister card 102 can have a permeability coefficient greater than or equal to 2 cm 3 ⁇ mil/100 in 2 /day ⁇ atm at 23° C., 75% RH, as measured according to ASTM D-1434.
  • a fair/good barrier material would have a permeability coefficient an order of magnitude lower and that a good barrier material would have a permeability coefficient two orders of magnitude lower (eg., certain polyvinylidene chloride (PVDC) resins and ethylene vinyl alcohol (EVOH) resins at about 0.02 cm 3 ⁇ mil/100 in 2 /day ⁇ atm at 23° C., 75% RH).
  • PVDC polyvinylidene chloride
  • EVOH ethylene vinyl alcohol
  • first and second film layers 110 , 112 , 210 , 212 and film layer portions 110 a - 110 f, 112 a - 112 f of the primary packages 116 , 216 have been described herein as being constructed of edible, water-soluble films, alternative embodiments can be constructed of non-edible films, or combinations of edible and non-edible films. As such, the primary packages 116 , 216 can contain non-edible products.
  • the film layers 110 , 112 , 210 , 212 and film layer portions 110 a - 110 f , 112 a - 112 f can be constructed of fully or partially hydrolyzed polyvinyl alcohol (PVOH) including PVOH copolymers, for example, saponified copolymers of vinyl acetate and methyl acrylate, vinyl acetate and itaconic acid, vinyl acetate and maleic acid, vinyl acetate and 2-acrylamido-2-propane-1-sulfonic acid, and combinations thereof.
  • PVOH polyvinyl alcohol
  • films 110 , 112 , 210 , 212 and/or film layers 110 a - 110 f , 112 a - 112 f can include one or more of the following: polyalkylene oxides, e.g., polyethylene oxide; polyvinyl pyrrolidone and vinyl pyrrolidone copolymers; polyacrylic acid, acrylic acid copolymers, and polyacrylates; polyacrylamide and acrylamide copolymers; water-soluble polyamides; water-soluble polyurethanes, and/or any other water-soluble material suitable for serving the principles described herein.
  • polyalkylene oxides e.g., polyethylene oxide
  • polyvinyl pyrrolidone and vinyl pyrrolidone copolymers polyacrylic acid, acrylic acid copolymers, and polyacrylates
  • polyacrylamide and acrylamide copolymers polyacrylamide and acrylamide copolymers
  • water-soluble polyamides water-soluble polyurethanes, and/or any other
  • the product 118 , 218 can comprise non-edible products.
  • the products 118 , 218 can include personal care products such as shampoo, conditioner, hair styling gels, liquid or granular soaps/sanitizers, bath oils, and/or any other such product—especially in unit dose and travel-pack sizes, e.g., 1 g/1 ml to 20 g/20 ml.
  • personal care products such as shampoo, conditioner, hair styling gels, liquid or granular soaps/sanitizers, bath oils, and/or any other such product—especially in unit dose and travel-pack sizes, e.g., 1 g/1 ml to 20 g/20 ml.
  • One advantage of using the blister pack concept described herein for such personal care products is that a user may retrieve one or more primary packages 116 , 216 of the product 118 , 218 without wetting the remaining, unused, primary packages 116 , 216 .
  • the primary packages 116 , 216 contain shampoo
  • a user may carry the entire blister pack 100 , 200 into the shower and retrieve the desired amount of product.
  • the remaining packages 116 , 216 would remain dry and protected by the blister card 102 , 202 and backing material 108 , 208 .
  • the concept disclosed herein provides a convenient unit-dose dispensing system without raising the concern of a user with wet hands damaging the unused product.
  • the backing material 108 , 208 can be optionally omitted, to reduce costs and/or packaging waste, for example.
  • the non-edible product can include unit doses of solid formulated product (e.g., hygroscopic and adsorptive) including horticultural products, e.g., plant foods, potent low-dose pesticides such as larvicides and sulfonylurea herbicides, household products, e.g., low-dose usually eco-friendly formulations of automatic dishwasher and laundry detergent products, agricultural products, and/or any other product.
  • solid formulated product e.g., hygroscopic and adsorptive
  • horticultural products e.g., plant foods
  • potent low-dose pesticides such as larvicides and sulfonylurea herbicides
  • household products e.g., low-dose usually eco-friendly formulations of automatic dishwasher and laundry detergent products, agricultural products, and/or any other product.
  • the water-soluble primary packaging 116 , 216 advantageously reduces vibrations and helps prevent “cold cracking” in a manner similar to
  • any of the features and advantages described above with respect to the edible use embodiments equally apply to the non-edible use embodiments. That is, the non-edible use embodiments can be constructed in accordance with any of the details described herein, just as the edible use embodiments can be constructed in accordance with any of the details described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Packages (AREA)

Abstract

A product package comprises a primary package formed within a secondary package. The primary package comprises an edible or non-edible, water-soluble film container. The secondary package comprises a blister-card having at least one blister defining a cavity, and a foil backing. In one embodiment, the film container comprises a first film layer portion and a second film layer portion. The first film layer portion is formed intimately within the cavity of the at least one blister of the blister-pack. The second film layer portion is formed adjacent to the first film layer portion to define a container cavity between the first and second film layer portions.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Nos. 60/985,857, filed Nov. 6, 2007, and 61/031,525, filed Feb. 26, 2008, is claimed.
  • FIELD OF THE INVENTION
  • The present invention relates to packages for products, and more particularly, to products provided in water-soluble packaging.
  • BACKGROUND
  • Blister packs are generally well-known for storing individual doses of medicine, or individual servings of gum, for example. Moreover, water-soluble films are generally known for packaging, waste source reduction, composite and sheet goods fabrication, and edible applications.
  • SUMMARY
  • One embodiment of the invention comprises a package for an edible or non-edible product. The package comprises a primary package formed within a secondary package. The primary package comprises an edible or non-edible, water-soluble film container. The secondary package comprises a blister-card having at least one blister defining a cavity, and a foil backing. In one embodiment, the film container comprises a first film layer portion and a second film layer portion. The first film layer portion is formed intimately within the cavity of the at least one blister of the blister-pack. The second film layer portion is formed adjacent to the first film layer portion to define a container cavity between the first and second film layer portions.
  • In one embodiment, the first film layer portion can be formed of a first edible or non-edible, water-soluble material, and the second film layer portion can be formed of a second edible or non-edible, water-soluble material that is different than the first water-soluble material. For example, the second water-soluble material can be harder, more inelastic, more brittle, and/or less ductile than the first water-soluble film.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of one product package constructed in accordance with the principles of the present invention;
  • FIG. 2 is a cross-sectional side view of the product package of FIG. 1 taken through line II-II of FIG. 1;
  • FIG. 3 is a perspective view of one embodiment of a dose card of the product package of FIG. 1 including a pull-tab mechanism;
  • FIG. 4 is a perspective view of another embodiment of a dose card of the product package of FIG. 1 including a pull-string mechanism;
  • FIG. 5 is a cross-sectional side view of an alternative product package constructed in accordance with the present invention and taken through line II-II of FIG. 1;
  • FIG. 6 is a perspective view of an alternative product package constructed in accordance with the principles of the present invention; and
  • FIG. 7 is a cross-sectional side view of the product package of FIG. 6 taken through line VII-VII of FIG. 6.
  • DETAILED DESCRIPTION
  • FIG. 1 depicts one embodiment of a product package 100 constructed in accordance with the present invention. In general, the product package 100 is a blister-pack comprising a blister card 102 and a backing material 108 (shown in FIG. 2). The blister card 102 includes a base portion 103 and a plurality of blisters 104 a-104 f. The blisters 104 a-104 f are adapted to contain a product such as an ingestible product, for example, as will be described. The backing material 108 is adhered to the base portion 103 of the blister card 102 or a film layer disposed thereon and encloses the blisters 104 a-104 f. To retrieve the product from the blisters 104 a-104 f, a user must remove the backing material 108 either by breaking the backing material 108, or by some other means.
  • In the disclosed embodiment of FIG. 1, the blister card 102 includes a plurality of perforated seams 106 a-106 c. The seams 106 a-106 c are located on the base portion 103 and divide the blister card 102 into a plurality of individual dose cards 102 a-102 f. Each dose card 102 a-102 f carries one of the blisters 104 a-104 f, respectively. As illustrated, the dose cards 102 a-102 f, and therefore the blisters 104 a-104 f, are arranged in a matrix. In the disclosed embodiment of FIG. 1, the dose cards 102 a-102 f and blisters 104 a-104 f are arranged in a 2×3 matrix. The perforated seams 106 a-106 c enable a user to detach one or more of the dose cards 102 a-102 f from the remainder of the package 100 such that the user may carry them away in their pocket or purse, for example.
  • Referring to FIGS. 1 and 2, the blisters 104 a-104 f of the disclosed embodiment of the blister card 102 generally comprise cylindrical containers. The blister card 102 includes a thin piece of material such as a plastic material having an external surface 105 a and an internal surface 105 b. The blister card 102 can be molded to define the plurality of blisters 104 a-104 f. In one embodiment, the blister card 102 can be constructed of polyethylene terephthalate (PET), polystyrene, a blend of polystyrene, polypropylene, a biodegradable polymer such as polylactic acid, and combinations thereof. The blister card 102 can be constructed of any other material suitable for the intended purpose.
  • As illustrated in FIG. 2, the package 100 additionally includes a first film layer 110 and a second film layer 112 disposed between the blister card 102 and the backing material 108.
  • The first film layer 110 includes a first surface 115 a and a second surface 115 b. The first surface 115 a of the first film layer 110 is shaped and configured to intimately correspond to the contours of the internal surface 105 b of the blister card 102, and particularly, to the blisters 104 a-104 f. For example, in one embodiment, the first surface 115 a of the first film layer 110 can be removably adhered to the internal surface 105 b of the blister card 102. As illustrated, the first film layer 110 is generally uniform in thickness, and thus, the second surface 115 b of the first film layer 110 is also shaped and configured to correspond to the internal surface 105 b of the blister card 102. So configured, the second surface 115 b of the first film layer 110 of the embodiment of the package 100 depicted in FIG. 2 defines a plurality of cavities 114 a-114 f, which correspond to the plurality of blisters 104 a-104 f, respectively. The cavities 114 a-114 f are accordingly cylindrical cavities.
  • In alternative embodiments, however, the first film layer 110 does not have to be uniform in thickness, and as such, the second surface 115 b of the first film layer 110 is not required to correspond to the contours of the blister card 102. In such an embodiment, the cavities 114 a-114 f can be shaped other than cylindrical.
  • The second film layer 112 of the package 100 depicted in FIGS. 1 and 2 also includes a first surface 125 a and a second surface 125 b. As depicted in FIG. 2, the second film layer 112 of the disclosed embodiment is generally planar. The first surface 125 a of the second film layer 112 is adhered to the second surface 115 b of the first film layer 110 everywhere, except in the regions of the blisters 104 a-104 f, thereby enclosing the cavities 114 a-114 f defined by the first film layers 110 a-110 f. As such, the first surface 125 a of the second film layer 112 is adhered to the second surface 115 b of the first film layer 110 at a location adjacent to the base portion 103 of the blister card 102.
  • In one embodiment, the first and second film layers 110, 112 can be each constructed of an edible, water-soluble material. For example, the first and second film layers 110, 112 can include a base polymer which is a polysaccharide polymer, and one or more additives. The polysaccharide polymer can comprise one or more polymers including, but not limited to pullulan, carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC), and combinations thereof. Any other polysaccharide polymer can also be used.
  • Suitable optional film additives are known in the art, for providing various functionalities. The film composition and film can thus contain one or more auxiliary film agents and processing agents, such as, but not limited to, plasticizers, lubricants, release agents, fillers, extenders, antiblocking agents, detackifying agents, antifoams and other functional ingredients, in amounts suitable for their intended purpose.
  • Preferred optional additives include gelatin, lecithin, such as sunflower lecithin (commercially available as GIRALEC), sorbitol, glycerol, propylene glycol, polysorbate 80, sodium lauryl sulfate, and combinations thereof.
  • Additionally, in one embodiment, the first and second film layers 110, 112 can be constructed of identical materials having identical physical properties. In alternative embodiments, however, the first and second film layers 110, 112 can be constructed of similar or different materials composed, however, to have different physical properties. For example, in one embodiment, the second film layer 112 can be constructed of an edible, water-soluble material that exhibits one or more properties such as increased hardness, decreased elasticity, increased brittleness, and decreased ductility than the first film layer 110 or vice versa. Such differing compositions of the first and second film layers 110, 112 can lend to the functionality of the package. For example, in one embodiment where the first film layer 110 is constructed of a composition of edible, water-soluble material that is softer than the composition of the second film layer 112, the first film layer 110 can more readily dissolve when submersed in fluid such as water. The harder, more inelastic, more brittle, and/or less ductile second film layer 112, however, can more readily break through the backing material 108 upon a user pressing the opposing sides of the blisters 104 a-104 f.
  • The backing material 108, as depicted in FIG. 2, also includes a first surface 108 a and a second surface 108 b. The first surface 108 a of the backing material 108 is adhered to the second surface 125 b of the second film layer 112. In one embodiment, the backing material 108 comprises a foil backing material such as aluminum foil. In alternative embodiments, however, the backing material 108 can comprise a paper material coated or treated with a moisture-proof substance, a moisture-resistant substance, or any other suitable removable material.
  • As mentioned above, the package 100 includes a plurality of perforated seams 160 a-106 c. As depicted in FIG. 2, the perforated seams 106 a-106 c extend through the base portion 103 of the blister card 102, through the first film layer 110, through the second film layer 112, and through the backing material 108. So configured, the first and second film layers 110, 112 define a plurality of primary packages 116 a-116 f (primary packages 116 d-116 f are shown in FIG. 2) that are bounded between the perforated seams 106 a-106 c and the various edges of the blister card 102.
  • The primary packages 116 a-116 f are adapted to contain a product 118 within the cavities 114 a-114 f defined by the first film layers 110 a-110 f. In one embodiment, the primary packages 116 a-116 f can constitute edible, water-soluble containers. Further, the product 118 can include an edible product such as a powdered beverage mix, an oatmeal mix, a powdered soup mix, powdered vitamins, powdered medications, or any other product that may be added to an aqueous liquid, for example, for ingestion. In one preferred embodiment, the edible product is also water-soluble or at least includes a water-soluble component. The edible product preferably is in the form of a powder or a granulate, for ease of filling the cavities 114 a-114 f, although in other embodiments the product can be a similarly-shaped solid, aqueous or non-aqueous liquid.
  • During use, a user removes one of the primary packages 116 from the blister card 102 and then submerses the primary package 116 in a glass of water, for example. The first and second film layers 110, 112 dissolve in the water. Then, the product 118 dissolves or disperses in the water. In some cases, the user may have to stir the water to uniformly disperse or dissolve the product 118 prior to ingestion.
  • In one embodiment, as suggested above, the user merely pushes one of the blisters 104 a-104 f, opposite the backing material 108, to remove a primary package 116 a-116 f. The force applied by the user disengages any adhesion between the first surface 115 a of the first film layer 110 from the internal surface 105 b of the blister card 102, and forces the second film layer 112 to break the backing material 108. With the backing material 108 broken, the user can retrieve the primary package 116. In an alternative embodiment, the backing material 108 may include a pull-tab 120, as depicted in FIG. 3, for each of the dose cards 102 a-102 f. So configured, a user grasps the pull-tab 120 to remove the backing material 108 from the specific dose card 102 a-102 f to gain access to the primary package 116. In yet another alternative embodiment, the backing material 108 can be equipped with an embedded pull-string 122, as depicted in FIG. 4, for each of the dose cards 102 a-102 f. So configured, a user grasps the pull-string 122 and pulls. As the user pulls the pull-string 122, the pull-string 122 tears the backing material 108 along a circular path indicated by dashed lines in FIG. 4. Completely removing the pull-string 122 therefore removes the portion of the backing material 108 within the dashed line in FIG. 4 and enables the user to gain access to the primary package 116. This embodiment can be particularly useful in connection with the primary packages 116 a-116 f described in connection with FIG. 5.
  • While the embedded portion of the pull-string 122 has been depicted and described as including a circular pull-string, alternative embodiments can include a linear pull-string, or any other configuration pull-string. For example, in one embodiment, the embedded portions of the pull-strings can extend in a straight line across the centers of the blisters 104 a-104 f. So configured, pulling the pull-strings would tear the backing material 108 in a straight line across the centers of the respective blisters 104 a-104 f, thereby providing an opening in the form of a slit, for example, sufficient for the respective primary packages 116 to pass through, or at least begin passing through prior to further tearing the backing material 108.
  • Still referring to FIG. 2, the product package 100 can be manufactured by utilizing a vacuum thermo-forming process. In one embodiment, the process can include the use of a forming block, e.g., a die, for forming the blister card 102 and the first film layer 110 substantially simultaneously. The forming block can include a steel plate, for example, comprising a plurality of cylindrical recesses and a plurality of through-bores communicating with the cylindrical recesses. The cylindrical recesses would be shaped and configured to correspond to the plurality of blisters 104, which are ultimately formed in the blister card 102. In one embodiment, the through-bores would be connected to a suctioning source such as a vacuum for forming the product package 100, as will be described.
  • With the forming block so configured, a planar sheet of plastic material, which constitutes the material to be formed into the blister card 102, is positioned immediately adjacent the forming block over the plurality of recesses. Additionally, in one embodiment, a planar sheet of edible, water-soluble film, which constitutes the material to be formed into the first film layer 110, is positioned on top of the plastic material of the blister card 102.
  • The plastic material of the blister card 102 and the film layer of the first film layer 110 are then heated such that the first surface 115 a of the first film layer 110 begins to melt and adheres to the internal surface 105 b of the plastic material forming the blister card 102. With continued heating, the suctioning device is activated to create a vacuum in the plurality of recesses of the forming block. The vacuum works, i.e., draws, the plastic material into the recesses, thereby forming the plurality of blisters 104 in the blister card 102. Additionally, because the first film layer 110 is adhered to the blister card 102, the vacuum also draws the first film layer 110 into the recesses. Thus, the first surface 115 a of the first film layer 110 forms intimately with the contours of the internal surface 105 b of the blister card 102, as depicted in FIG. 2. At this point in the process, the first film layer 110 defines the cavities 114 a-114 f, and the suctioning device can be deactivated. The product 118 is then poured, placed, or otherwise filled into the cavities 114 a-114 f.
  • With the cavities 114 a-114 f filled with product 118, the second film layer 112 is positioned immediately adjacent the first film layer 110. With continued heating of the first and second film layers 110, 112, the second film layer 112 can begin to melt such that the first surface 125 a of the second film layer 112 adheres to the second surface 115 b of the first film layer 110. However, because the first film layer 110 forms to the contours of the blisters 104, the second film layers 112 only adheres to the first film layer 110 in the region of the base portion 103 of the blister card 102.
  • Next, with the second film layer 112 sealed over the first film layer 110, the backing material 108 is positioned adjacent the second surface 125 b of the second film layer 112. With continued heating, the first surface 108 a of the backing material 108 adheres to the second surface 125 b of the second film layer 112. Finally, the perforated seams 106 a-106 c are cut, stamped, or otherwise provided in the product package 100 with an appropriate tool such as a toothed wheel, a press, or other suitable device.
  • FIG. 5 depicts an alternative embodiment of the product package 100 described above with reference to FIG. 1. The package 100 is substantially similar to the package 100 described above, and therefore, like components will be identified with like reference characters. For example, the package 100 includes a blister card 102 and a backing material 108. Identical to that described above, the blister card 102 includes a base portion 103 and a plurality of blisters 104 a-104 f. FIG. 5 illustrates a cross-section of the package 100 depicted in FIG. 1, taken through line V-V, and therefore only blisters 104 d-104 f are shown.
  • Additionally, as depicted, the package 100 depicted in FIG. 5 includes a plurality of first film layer portions 110 a-110 f and a plurality of second film layer portions 112 a-112 f. Each of the first and second film layer portions 110 a-110 f, 112 a-112 f correspond to one of the plurality of blisters 104 a-104 f. The first film layer portions 110 a-110 feach include first surfaces 115 a and second surfaces 115 b.
  • Each of the first film layer portions 110 a-110 f are disposed within a corresponding blister 104 a-104 f. The first surfaces 115 a of the first film layer portions 110 a-110 f intimately correspond to the contours of the internal surface 105 b of the blisters 104 a-104 f. So configured, each of the first film layer portions 110 a-110 f includes a top wall 117 and a cylindrical sidewall 119. In one embodiment, the first surfaces 115 a of the first film layer portions 110 a-110 f can be removably adhered to the internal surface 105 b of the blister card 102. In the disclosed embodiment, the first film layer portions 110 a-110 f are generally uniform in thickness, and thus, the second surfaces 115 b of the first film layer portions 110 a-110 f are also shaped and configured to correspond to the internal surface 105 b of the blister card 102. So configured, each of the second surfaces 115 b of the first film layer portions 110 a-110 f of the embodiment of the package 100 depicted in FIG. 5 defines a cavity 114 a-114 f similar to the cavities 114 a-114 f described above with reference to FIG. 2.
  • In alternative embodiments, however, the first film layer portions 110 a-110 f do not have to be uniform in thickness, and as such, the second surfaces 115 b are not required to correspond to the contours of the blister card 102 as discussed above.
  • Each of the second film layer portions 112 a-112 f of the embodiment of the package 100 depicted in FIG. 5 also include a first surface 125 a and a second surface 125 b. As depicted, the second film layer portions 112 a-112 f of the disclosed embodiment are generally planar. Perimeter regions of the first surfaces 125 a of the second film layer portions 112 a-112 f are adhered to the sidewalls 119 of the first film layer portions 110 a-110 f. As such, the second film layer portions 112 a-112 f enclose the cavities 114 a-114 f defined by the first film layer portions 110 a-110 f, and in combination with the first film layer portions 110 a-110 f define a plurality of primary packages 116 a-116 f containing a product 118. The primary packages 116 a-116 f constitute edible, water-soluble containers.
  • Identical to that described above, the backing material 108 includes a first surface 108 a and a second surface 108 b. The first surface 108 a of the backing material 108 is adhered to the internal surface 105 b of the blister card 102 in the region of the base portion 103, as well as to the second surfaces 125 b of the second film layer portions 112 a-112 f. So configured, the backing material 108 retains the plurality of primary packages 116 a-116 f within the blisters 104 a-104 f by enclosing the blisters 104 a-104 f.
  • Removing the primary packages 116 from the blister card 102 can be performed in any of the manners discussed above with respect to the embodiment depicted in FIGS. 2-4. Moreover, the blister card 102, the first and second film layer portions 110 a-110 f, 112 a-112 f, and the backing material 108 can be constructed of any of the materials discussed above.
  • Moreover, a method of manufacturing the product package 100 depicted in FIG. 5 can be similar to the process described above with reference to the package 100 depicted in FIG. 2, with the exception that two additional steps can be required. Specifically, as described above, a planar sheet of plastic material, which constitutes the blister card 102 and a first sheet of edible, water soluble film, portions of which ultimately constitute the first film layer portions 110 a-110 f, are positioned adjacent a forming block. The forming block includes a plurality of recesses and through-bores connected to a suctioning device. Once positioned, the blister card 102 and the first film layer 110 are heated and the suctioning device is activated to draw the materials into the recesses, thereby forming the blisters 104 and the cavities 114. Prior to filling the cavities 114 with the product 118, excess material outside of the blisters 104 must be removed from the first film layer 110 to define the plurality of first film layer portions 110 a-110 f, as depicted in FIG. 5. In one embodiment, the excess material can be removed via a stamping operation, for example, that includes a plurality of circular blades that cut the first sheet of film around the blisters 104 to define the plurality of first film layer portions 110 a-110 f. Once the first sheet of film is cut, the excess material can be removed and discarded, or recycled.
  • Next, the cavities 114 a-114 f are filled with the product 118 and a second sheet of edible, water-soluble film, portions of which will ultimately constitute the plurality of second film layer portions 112 a-112 f, is positioned onto the blister card 102, thereby sealing the cavities 114 a-114 f. The second sheet of film, at this point, would actually engage the internal surface 105 b of the blister card 102 only in the region of the base portion 103. Additionally, due to the presence of heat, portions of the second sheet of film would sink into the cavities 114 a-114 f and into engagement with the sidewalls 119 of the first film layer portions 110 a-110 f, as depicted in FIG. 5. Continued heating causes the second sheet of film to adhere to the sidewalls 119 of the first film layer portions 110 a-110 f. Next, the excess material located outside of the blisters 104 must be removed from the second sheet of film to define the plurality of second film layer portions 112 a-112 f, as depicted in FIG. 5. The excess material can be removed via a stamping operation that includes a plurality of circular blades that cut the second sheet of film around the blisters 104. Once the second film layer portions 112 a-112 f are appropriately cut, the excess material can be removed and discarded, or recycled.
  • At this point, the first and second film layer portions 110 a-110 f, 112 a-112 f are completely formed into the primary packages 116 a-116 f. The internal surface 105 b of the blister card 102 is exposed in the region of the base portion 103. So exposed, the backing material 108 is positioned adjacent to the internal surface 105 b of the blister card 102 and the second surfaces 125 b of the second film layer portions 112 a-112 f. With continued heating, the first surface 108 a of the backing material 108 adheres to the second surfaces 125 of the second film layer portions 112 a-112 f and the base portion 103 of the blister card 102, as illustrated. Finally, the perforated seams 106 a-106 c (shown in FIG. 1) are cut, stamped, or otherwise provided in the product package 100 with an appropriate tool such as a toothed wheel, a press, or other suitable device.
  • FIGS. 6 and 7 depict an alternative embodiment of a product package 200 constructed in accordance with the present invention. The product package 200 is similar to the package 100 described above in that it includes a blister card 202 and a backing material 208. The blister card 202 includes a base portion 203 and a plurality of blisters 204 a-204 f. The blisters 204 a-204 f are adapted to contain a product such as an ingestible product, as will be described. In the disclosed embodiment, the backing material 208 is resealably adhered to the blister card 202 or a film layer disposed thereon, as will also be described.
  • The blister card 202 includes a plurality of perforated seams 206 a-206 c. The seams 206 a-206 c are located on the base portion 203 and divide the blister card 202 into a plurality of individual dose cards 202 a-202 f. Each dose card 202 a-202 f carries one of the blisters 204 a-204 f. As illustrated, the dose cards 202 a-202 f, and therefore the blisters 204 a-204 f, are arranged in a matrix. In the disclosed embodiment, the dose cards 202 a-202 f and blisters 204 a-204 f are arranged in a 2×3 matrix. The perforated seams 206 a-206 c enable a user to detach one or more of the dose cards 202 a-202 f from the remainder of the package 200 such that the user may carry them away in their pocket or purse, for example.
  • With continued reference to FIGS. 6 and 7, the blisters 204 a-204 f of the disclosed embodiment of the package 200 generally comprise elongated box-shaped blisters. The blister card 202 includes a thin piece of material such as a plastic material having an external surface 205 a and an internal surface 205 b. The blister card 202 can be molded to define the plurality of blisters 204 a-204 f and can be constructed of any of the materials described above in connection with the blister card 102 in FIGS. 1, 2, and 5.
  • Additionally, as illustrated in FIG. 7, the package 200 includes a first film layer 210 and a second film layer 212 disposed between the blister card 202 and the backing material 208.
  • The first film layer 210 includes a first surface 215 a and a second surface 215 b. The first surface 215 a of the first film layer 210 is shaped and configured to intimately correspond to the contours of the internal surface 205 b of the blister card 202, and particularly, to the blisters 204 a-204 f. For example, in one embodiment, the first surface 215 a of the first film layer 210 can be removably adhered to the internal surface 205 b of the blister card 202. As illustrated, the first film layer 210 is generally uniform in thickness, and thus, the second surface 215 b of the first film layer 210 is also shaped and configured to correspond to the internal surface 205 b of the blister card 202. So configured, the second surface 215 b of the first film layer 210 of the embodiment of the package 200 depicted in FIG. 7 defines a plurality of cavities 214 a-214 f, which correspond to the plurality of blisters 204 a-204 f. The cavities 214 a-214 f are accordingly elongated box-shaped cavities.
  • In alternative embodiments, however, the first film layer 210 does not have to be uniform in thickness, and as such, the second surface 215 b of the first film layer 210 is not required to correspond to the contours of the blister card 202. In such an embodiment, the cavities 214 a-214 f can be shaped other than elongated boxes.
  • The second film layer 212 of the package 200 depicted in FIGS. 6 and 7 also includes a first surface 225 a and a second surface 225 b. As depicted in FIG. 7, the second film layer 212 of the disclosed embodiment is generally planar. The first surface 225 a of the second film layer 212 is adhered to the second surface 215 b of the first film layer 210 everywhere, except in the regions of the blisters 204 a-204 f, thereby enclosing the cavities 214 a-214 f defined by the first film layers 210 a-210 f. As such, the first surface 225 a of the second film layer 212 is adhered to the second surface 215 b of the first film layer 210 at a location adjacent to the base portion 203 of the blister card 202. The first and second film layers 210, 212 can be constructed of any of the edible, water-soluble materials described above with reference to FIGS. 1-5.
  • In addition to the first and second edible, water-soluble film layers 210, 212, the package 200 depicted in FIGS. 6 and 7 also includes first and second edible, water-soluble barriers 207 a-207 f, 209 a-209 f disposed within each of the cavities 214 a-214 f. The first and second barriers 207 a-207 f, 209 a-209 f divide the cavities 214 a-214 f into three compartments 224 a-224 c. The compartments 224 a-224 c are adapted to store different ingredients 218 a-218 c of the product 218, for example, as will be described. In an alternative embodiment, the barriers 207, 209 can be part of the blister card 202.
  • The backing material 208, as depicted in FIG. 7, also includes a first surface 208 a and a second surface 208 b. Moreover, the backing material 208 of the present embodiment includes a first half 222 a and a second half 222 b. The first surface 208 a of the backing material 208 is removable and resealably adhered to the second surface 225 b of the second film layer 212. The backing material 208 can be constructed of any of the materials associated with the backing material 108 described above for the package 100 depicted in FIGS. 1-5.
  • As mentioned above, the package 200 includes a plurality of perforated seams 206 a-206 c. As depicted in FIG. 7, the perforated seams 206 a-206 c extend through the base portion 203 of the blister card 202, through the first film layer 210, and through the second film layer 212. The perforated seams 206 a-206 c can optionally perforate the backing material 208, but preferably do not in this embodiment. So configured, the first and second film layers 210, 212 define a plurality of primary packages 216 a-216 f ( primary packages 216 c and 216 f are shown in FIG. 7) that are defined by the perforated seams 206 a-206 c and the various edges of the blister card 202. Moreover, each of the first and second halves 222 a, 222 b of the backing material 208 are independently removable from and resealable to the second film layer 212 such that a user can gain access to the blisters 204 a-204 f, as will be described.
  • The primary packages 216 are adapted to contain a product 218 within the cavities 214 a-214 f defined between the first film layer 210 and the second film layer 212. Moreover, as mentioned, the various compartments 224 a-224 c within the cavities 214 a-214 f are adapted to contain different ingredients 218 a-218 c of the product 218. For example, in one embodiment one ingredient 218 a contained in one compartment 224 a can constitute instant coffee crystals, another ingredient 218 contained in another compartment 224 b can constitute powdered creamer, and the last ingredient 218 c contained in the last compartment 224 c can constitute a sweetener such as granulated sugar. So configured, a user can make a cup of coffee including cream and sugar by simply placing a single primary package 216 a-216 f into a cup of hot water.
  • During use, to retrieve a primary package 216 a-216 f from its respective blister 204 a-204 f, a user must peel one of the halves 222 a, 222 b of the backing material 208 from engagement with the second surface 225 b of the second film layer 212. FIGS. 6 and 7 depicts the package 200 with the one half 222 a peeled back. Once the half 222 a, 222 b of the backing material 208 is peeled back, the user can push on the desired blister 104 a-104 f to force a primary package 216 a-216 f out of the blister card 202. It should be appreciated that the first and second film layers 210, 212 would tear along the adjacent perforated seams 206 a-206 c as the user forces the primary package 216 a-216 f out of the blister card 202. Once removed from the blister card 202, the entire primary package 216 a-216 f can be submersed into a container of water, for example, to be dissolved prior to ingestion. The user can then return the half 222 a of the backing material 208 into position engaging the remaining portions of the second surface 225 b of the second film layer 212. In one embodiment, the second surface 225 b of the second film layer 212 or the first surface 208 a of the backing material 208 includes an adhesive that allows the backing material 208 to be removably and resealably attached to the second film layer 212.
  • A method of manufacturing the product package 200 depicted in FIGS. 6 and 7 can be generally similar to that described above with reference to the product package 100 depicted in FIG. 2. The entire process will therefore not be repeated. An additional manufacturing step, however, can include positioning the barriers 207, 209 in the cavities 214 prior to filling the cavities 214 with product 218. Moreover, additional manufacturing steps can include filling the different compartments 224 a-224 c of the cavities 114 a-114 f with the different ingredients 218 a-218 c.
  • It should be appreciated that positioning the plastic material that forms the blister cards 102, 202, the films that constitute the first and second film layers 110, 112, 210, 212, the films that constitute the first and second film layer portions 110 a-110 f, 112 a-112 f, and the backing material 108 relative to the forming block during manufacture of the packages 100, 200 can be accomplished manually or with one or more feeding machines.
  • In one embodiment, the feeding machines can be equipped with stock of the respective materials stored on rolls, for example. The materials could then be delivered to the forming block in the form of webs, which are cut from the remainder of the roll when appropriately positioned.
  • In another embodiment, the feeding machines can be equipped with sheets of the respective materials, stored in magazines, for example. So configured, the machines can deliver the sheets directly to the forming block, without having to cut the material.
  • While the first film layers 110, 210 and first film layer portions 110 a-110 f have been described herein as being adhered to the blister cards 102, 202 during the thermoforming process, in an alternative embodiment these materials can be adhered together prior to being placed adjacent the forming block. In one embodiment, the plastic material forming the blister cards 102, 202 and the sheet of edible, water-soluble film that ultimately forms the first film layer 110, or the first film layer portions 110 a-110 f, can be pre-formed as a composite material through a casting process, for example, or any other process.
  • Moreover, while the plastic material forming the blister cards 102, 202 and the sheet of edible, water-soluble film that ultimately forms the first film layer 110, 210, or the first film layer portions 110 a-110 f, have been described herein as being adhered together via a thermal adhesion process, in alternative embodiments, the materials could be adhered together with an edible, water-soluble adhesive, for example, that is applied to one or both of the materials prior to or during the manufacturing process. In another method, a water-soluble film can be adhered to a blister card, another water-soluble film, or a backing material simply by moistening one or more of the adjoining surfaces with a small amount of water, for example.
  • Additionally, while the first and second film layer portions 110 a-110 f, 112 a-112 f described above with reference to FIG. 5 have been described herein as being cut during the manufacturing process, in alternative embodiments, the first and second film layer portions 110 a-110 f, 112 a-112 f can be pre-cut and subsequently positioned adjacent to the blister card 102 for any necessary thermoforming and adhesion.
  • Further still, while the methods for manufacturing the product packages 100, 200 have been described herein as utilizing a forming block operatively connected to a suctioning device, in alternative embodiments, the blister cards 102, 202 and first film layers 110, 210 (or first film layer portions 110 a-110 f) can be worked into the recesses in the forming blocks by other means. For example, in one embodiment, the blister cards 102, 202 and first film layers 110, 210 (or first film layer portions 110 a-110 f) can be blown into the recesses, poured into the recesses, or otherwise. Moreover, while the methods of manufacture have been described as including a vacuum thermoforming process, the product packages 100, 200 can alternatively be formed via injection molding, casting, stamping, or any other suitable method.
  • Accordingly, one embodiment of a process for manufacturing a product package 100, 200 in accordance with the present invention can comprise the following steps (not necessarily in the disclosed order and including more or less steps as appropriate): (1) positing a plastic sheet of material adjacent to a forming block having a plurality of recesses; (2) positioning a first sheet of edible, water-soluble film adjacent to the plastic sheet of material at a location opposite the plastic sheet of film from the forming block; (3) working the plastic sheet of material into the recesses of the forming block to form a plurality of blisters; (4) working the first sheet of edible, water-soluble film into the recesses of the forming block such that the first sheet of edible, water-soluble film intimately engages and corresponds to the contours of the blisters to define a plurality of cavities within the blisters; (5) filling the cavities with a product; (6) positioning a second sheet of edible, water-soluble film adjacent to the first sheet of edible, water-soluble film at a location opposite the first sheet of plastic material; and (7) adhering at least portions of the first and second sheets of edible, water-soluble film together to seal the product in the cavities.
  • In light of the foregoing, it should be appreciated that the product packages 100, 200 including the primary packages 116, 216 provide for a robust edible, water-soluble packaging. Particularly, because the primary packages 116, 216 are constructed and stored in intimate relationship with the blisters 104, 204, the primary packages 116, 216 do not vibrate within the blisters 104, 204 under the physical stresses involved with transportation and handling. For example, conventional water-soluble packaging can be vulnerable to film dehydration, plasticizer loss, and the concomitant risk of a phenomenon known as “cold cracking” during low temperature transportation, wherein the package literally cracks, thereby compromising the quantity and quality of the product stored therein. Moreover, the individual storage prevents contamination of stored primary packages 116, 216 when a user retrieves one or more of the other primary packages 116, 216.
  • Further still, it should be appreciated that the disclosed polysaccharide polymer-based materials, which constitute the first and second film layers 110, 112, 210, 212 and first and second film layer portions 110 a-110 f, 112 a-112 f, can have very good oxygen barrier properties when dry. As such, the backing material 108 and blister card 102 can be constructed of simpler materials. For example, traditional backing material 108 can comprise a foil or metallized film material that provides moisture protection, physical protection, and oxygen protection. Utilizing the disclosed polysaccharide polymer-based materials therefore enables the use of a backing material 108 that does not have to provide for oxygen protection, for example. Thus, in one embodiment, one or both of the backing material 108 and blister card 102 will have poor or substandard oxygen barrier properties. For example, one or both of the backing material 108 and blister card 102 can have a permeability coefficient greater than or equal to 2 cm3·mil/100 in2/day·atm at 23° C., 75% RH, as measured according to ASTM D-1434. It is generally accepted that a fair/good barrier material would have a permeability coefficient an order of magnitude lower and that a good barrier material would have a permeability coefficient two orders of magnitude lower (eg., certain polyvinylidene chloride (PVDC) resins and ethylene vinyl alcohol (EVOH) resins at about 0.02 cm3·mil/100 in2/day·atm at 23° C., 75% RH).
  • Finally, while the first and second film layers 110, 112, 210, 212 and film layer portions 110 a-110 f, 112 a-112 f of the primary packages 116, 216 have been described herein as being constructed of edible, water-soluble films, alternative embodiments can be constructed of non-edible films, or combinations of edible and non-edible films. As such, the primary packages 116, 216 can contain non-edible products.
  • For example, the film layers 110, 112, 210, 212 and film layer portions 110 a-110 f, 112 a-112 f can be constructed of fully or partially hydrolyzed polyvinyl alcohol (PVOH) including PVOH copolymers, for example, saponified copolymers of vinyl acetate and methyl acrylate, vinyl acetate and itaconic acid, vinyl acetate and maleic acid, vinyl acetate and 2-acrylamido-2-propane-1-sulfonic acid, and combinations thereof. Further alternative embodiments of the films 110, 112, 210, 212 and/or film layers 110 a-110 f, 112 a-112 f can include one or more of the following: polyalkylene oxides, e.g., polyethylene oxide; polyvinyl pyrrolidone and vinyl pyrrolidone copolymers; polyacrylic acid, acrylic acid copolymers, and polyacrylates; polyacrylamide and acrylamide copolymers; water-soluble polyamides; water-soluble polyurethanes, and/or any other water-soluble material suitable for serving the principles described herein.
  • As mentioned, with such non-edible films, the product 118, 218 can comprise non-edible products. For example, the products 118, 218 can include personal care products such as shampoo, conditioner, hair styling gels, liquid or granular soaps/sanitizers, bath oils, and/or any other such product—especially in unit dose and travel-pack sizes, e.g., 1 g/1 ml to 20 g/20 ml. One advantage of using the blister pack concept described herein for such personal care products is that a user may retrieve one or more primary packages 116, 216 of the product 118, 218 without wetting the remaining, unused, primary packages 116, 216. For example, in an embodiment wherein the primary packages 116, 216 contain shampoo, a user may carry the entire blister pack 100, 200 into the shower and retrieve the desired amount of product. The remaining packages 116, 216, however, would remain dry and protected by the blister card 102, 202 and backing material 108, 208. Thus, the concept disclosed herein provides a convenient unit-dose dispensing system without raising the concern of a user with wet hands damaging the unused product. Alternatively, for non-edible products, the backing material 108, 208 can be optionally omitted, to reduce costs and/or packaging waste, for example.
  • In still other alternative embodiments, the non-edible product can include unit doses of solid formulated product (e.g., hygroscopic and adsorptive) including horticultural products, e.g., plant foods, potent low-dose pesticides such as larvicides and sulfonylurea herbicides, household products, e.g., low-dose usually eco-friendly formulations of automatic dishwasher and laundry detergent products, agricultural products, and/or any other product. With such solid formulated non-edible products, the water-soluble primary packaging 116, 216 advantageously reduces vibrations and helps prevent “cold cracking” in a manner similar to that described above with regard to the edible embodiments of the packages 116, 216.
  • Finally, any of the features and advantages described above with respect to the edible use embodiments equally apply to the non-edible use embodiments. That is, the non-edible use embodiments can be constructed in accordance with any of the details described herein, just as the edible use embodiments can be constructed in accordance with any of the details described herein.
  • It should be appreciated that the foregoing description merely provides examples and embodiments of the present invention and the present invention is not intended to be limited thereby. Rather, the present invention is intended to include subject matter falling within the spirit and scope of the description, as well as equivalents thereof, as would be understood by a person having ordinary skill in the art.

Claims (31)

1. A package, comprising
a primary package formed within a secondary package, the primary package comprising a water-soluble film container and the secondary package comprising a blister card having at least one blister defining a cavity.
2. The package of claim 1, wherein the primary package is edible.
3. The package of claim 2, wherein the edible primary package comprises a polysaccharide polymer.
4. The package of claim 3, wherein the polysaccharide polymer is selected from the group consisting of pullulan, carboxymethyl-cellulose, hydroxypropylmethylcellulose, and combinations thereof.
5. The package of claim 3, wherein the primary package further comprises one or more additives selected from the group consisting of gelatin, sorbitol, glycerol, propylene glycol, lecithin, polysorbate 80, and sodium lauryl sulfate, and combinations thereof.
6. The package of claim 1, wherein the primary package is inedible.
7. The package of claim 6, wherein the inedible primary package comprises a material selected from the group consisting of polyvinyl alcohols, polyvinyl alcohol copolymers, polyalkylene oxides, polyacrylamides and acrylamide copolymers, water-soluble polyamides, water-soluble polyurethanes, and combinations thereof.
8. The package of claim 1, wherein at least a portion of the water-soluble film container is removably adhered to the blister.
9. The package of claim 1, wherein the water-soluble film container comprises a first water-soluble film layer and a second water-soluble film layer formed adjacent to the first water-soluble film layer to define a container cavity between the first and second water-soluble film layers.
10. The package of claim 9, wherein the first and second water-soluble film layers are formed only within the cavity of the at least one blister on the blister card.
11. The package of claim 9, wherein the first water-soluble film layer substantially conforms to a shape of the blister card.
12. The package of claim 9, further comprising a backing removably adhered to the second water-soluble film layer.
13. The package of claim 9, wherein the first water-soluble film layer is formed of a first water-soluble material and the second film layer is formed of a second water-soluble material, different from the first water-soluble material.
14. The package of claim 13, wherein the second water-soluble material comprises one or more properties including increased hardness, decreased elasticity, increased brittleness, and decreased ductility as compared to the first water-soluble material.
15. The package of claim 9, wherein the first and second water-soluble films comprise substantially the same material.
16. The package of claim 1, wherein the blister card is formed of a material selected from the group consisting of polyethylene terephthalate (PET), polystyrene, a blend of polystyrene, polypropylene, and polylactic acid.
17. The package of claim 1, wherein one or more of the blister card and the backing have a permeability coefficient greater than or equal to 2 cm3·mil/100 in2/day·atm, at 25° C., 75% RH.
18. The package of claim 12, wherein the backing is a foil backing or a paper backing coated with a moisture proof substance.
19. The package of claim 1, further comprising one or more water-soluble barriers disposed in the water-soluble film container and dividing the water-soluble film container into two or more volumes.
20. A method of making a packaged product, the method comprising:
disposing a blister card material on a forming block having at least one recess;
disposing a first water-soluble film on the blister card material, adjacent to a surface of the blister card material opposite the forming block;
working the blister card material into the at least one recess to form a blister having a blister cavity;
working the first water-soluble film into the blister cavity to form a cavity within the first water-soluble film;
filing the cavity formed by the first water-soluble film with a product; and
adhering a second water-soluble film to a portion of a surface of the first water-soluble film opposite the blister card material to seal the product in the cavity formed by the first water-soluble film.
21. The method of claim 20, further comprising adhering the first water-soluble film to the blister card material.
22. The method of claim 20, wherein the first and second water-soluble films comprise a polysaccharide polymer.
23. The method of claim 20, comprising working the first water-soluble film into the at least one recess such that a contour of the first water-soluble film substantially corresponds to a contour of the blister card material.
24. The method of claim 20, comprising simultaneously working the blister card material and the first water-soluble film into the at least one recess.
25. The method of claim 20, comprising working the blister card material and the first water-soluble film into the at least on recess using a process selected from the group consisting of suction, blowing the blister card material and first water-soluble film into the at least one recess, pouring the blister card material and first water-soluble film into the at least one recess, and combinations thereof.
26. The method of claim 20, further comprising:
removing a portion of the first water-soluble film disposed outside the blister cavity to form a first water-soluble film portion only within the blister cavity before filing the cavity formed by the first water-soluble film with the product; and
removing a portion of the second water-soluble film disposed outside the blister cavity to form a second water-soluble film portion only within the blister cavity.
27. The method of claim 20, further comprising adhering a backing to a surface of the second water-soluble film opposite the first water-soluble film.
28. The method of claim 27, comprising removably adhering the backing to the surface of the second water-soluble film opposite the first water-soluble film.
29. The method of claim 20, further comprising disposing one or more water-soluble barriers within the cavity formed by the first water-soluble film to divide the cavity into two or more cavity portions before filling the cavity with the product.
30. The method of claim 29, further comprising filling each of the two or more cavity portions with different products.
31. The method of claim 20, further comprising perforating seams in the package to define a unit dose comprising a blister.
US12/266,149 2007-11-06 2008-11-06 Water-soluble product package and product Abandoned US20090134054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/266,149 US20090134054A1 (en) 2007-11-06 2008-11-06 Water-soluble product package and product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US98585707P 2007-11-06 2007-11-06
US3152508P 2008-02-26 2008-02-26
US12/266,149 US20090134054A1 (en) 2007-11-06 2008-11-06 Water-soluble product package and product

Publications (1)

Publication Number Publication Date
US20090134054A1 true US20090134054A1 (en) 2009-05-28

Family

ID=40202859

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/266,149 Abandoned US20090134054A1 (en) 2007-11-06 2008-11-06 Water-soluble product package and product

Country Status (2)

Country Link
US (1) US20090134054A1 (en)
WO (1) WO2009061933A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100180549A1 (en) * 2004-06-19 2010-07-22 Reckitt Benckiser N.V. Process for preparing a water-soluble container with two compartments
US20110253589A1 (en) * 2010-04-15 2011-10-20 Innovative Enterprises, Inc Impact-absorbing package
US20120093982A1 (en) * 2010-03-19 2012-04-19 Tsukioka Co., Ltd. Edible film
WO2015005930A1 (en) * 2013-07-12 2015-01-15 General Mills, Inc. Food product forming system
US20150048001A1 (en) * 2013-08-13 2015-02-19 Meadwestvaco Calmar, Inc. Blister packaging
US20150051071A1 (en) * 2012-03-07 2015-02-19 Kyocera Corporation Printed matter and method of manufacturing the same, and inspection method of printing apparatus
US20150048000A1 (en) * 2013-08-13 2015-02-19 Meadwestvaco Calmar, Inc. Blister packaging
US20160251148A1 (en) * 2015-02-26 2016-09-01 Monosol, Llc Multi-dose cleaning product and method of manufacture
US9505540B2 (en) 2011-08-15 2016-11-29 Colgate-Palmolive Company Packaged oral care implement and package
JP2017061343A (en) * 2009-11-23 2017-03-30 リドー マシーナリー インコーポレイテッド Improvement of continuous motion rotating thermoforming of soluble pouches
US9751676B2 (en) 2013-11-12 2017-09-05 Colgate-Palmolive Company Packaged oral care implement and method of opening the same
US9764886B2 (en) 2013-11-12 2017-09-19 Colgate-Palmolive Company Packaged oral care implement and method of opening the same
US9828154B2 (en) * 2015-02-27 2017-11-28 Monosol, Llc Web of cleaning products and method of manufacture
US20180002647A1 (en) * 2016-06-13 2018-01-04 Monosol, Llc Use of a first film and a second film to improve seal strength of a water-soluble
JP2018502786A (en) * 2015-01-14 2018-02-01 モノソル リミテッド ライアビリティ カンパニー Cleaning product web with regulated internal atmosphere and method of manufacturing
US20180105775A1 (en) * 2012-07-19 2018-04-19 Mari Elizabeth Fox Package suitable for delivering a laundry agent in an aqeuous environment
US20180168927A1 (en) * 2016-05-10 2018-06-21 Anatoly Viktorovich ZAZULIA Device for the life-long administration of varying doses of a geroprotector and for increasing hormesis post-adaptation
GB2558666A (en) * 2017-01-17 2018-07-18 Cedar Advanced Tech Group Ltd Blister packaging for dispensing pills, apparatus and method of manufacturing the same
US10112760B2 (en) 2011-08-15 2018-10-30 Colgate-Palmolive Company Packaged oral care implement and package
US20190291152A1 (en) * 2018-03-20 2019-09-26 Verde Environmental Technologies, Inc. Blister Pack Disposal System
US10829621B2 (en) 2013-01-11 2020-11-10 Monosol, Llc Edible water-soluble film
US20210130057A1 (en) * 2016-06-13 2021-05-06 Monosol., Llc Water-Soluble Packets
CN113978089A (en) * 2021-11-25 2022-01-28 北京福乐云数据科技有限公司 Medicine package and packaging method
US11473039B2 (en) * 2016-06-13 2022-10-18 Monosol, Llc Water-soluble unit dose articles made from a combination of different films
US11708203B2 (en) * 2017-10-26 2023-07-25 Conopco, Inc. Product packaging
US11767405B2 (en) 2016-04-13 2023-09-26 Monosol, Llc Water soluble film, packets employing the film, and methods of making and using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964066B (en) * 2013-02-06 2017-09-19 李和伟 A kind of packing device of lyophilized excipient preparation
DE102014101741B4 (en) * 2014-02-12 2021-03-11 Buergofol GmbH packaging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305502A (en) * 1977-07-20 1981-12-15 John Wyeth & Brother Limited Pharmaceutical dosage form packges
US20030203141A1 (en) * 2002-04-25 2003-10-30 Blum John B. Blister package

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2447202A1 (en) * 2001-05-14 2002-11-21 Aquasol Limited Thermoformed water-soluble package enclosed within an external thermoformed water-insoluble holder and a method for making the package
JP2007533559A (en) * 2003-10-31 2007-11-22 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Packaging method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305502A (en) * 1977-07-20 1981-12-15 John Wyeth & Brother Limited Pharmaceutical dosage form packges
US20030203141A1 (en) * 2002-04-25 2003-10-30 Blum John B. Blister package

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8042318B2 (en) * 2004-06-19 2011-10-25 Reckitt Benckiser N.V. Process for preparing a water-soluble container with two compartments
US20100180549A1 (en) * 2004-06-19 2010-07-22 Reckitt Benckiser N.V. Process for preparing a water-soluble container with two compartments
JP2017061343A (en) * 2009-11-23 2017-03-30 リドー マシーナリー インコーポレイテッド Improvement of continuous motion rotating thermoforming of soluble pouches
US20120093982A1 (en) * 2010-03-19 2012-04-19 Tsukioka Co., Ltd. Edible film
US20110253589A1 (en) * 2010-04-15 2011-10-20 Innovative Enterprises, Inc Impact-absorbing package
US10112760B2 (en) 2011-08-15 2018-10-30 Colgate-Palmolive Company Packaged oral care implement and package
US9505540B2 (en) 2011-08-15 2016-11-29 Colgate-Palmolive Company Packaged oral care implement and package
US20150051071A1 (en) * 2012-03-07 2015-02-19 Kyocera Corporation Printed matter and method of manufacturing the same, and inspection method of printing apparatus
US20180105775A1 (en) * 2012-07-19 2018-04-19 Mari Elizabeth Fox Package suitable for delivering a laundry agent in an aqeuous environment
US11945936B2 (en) 2013-01-11 2024-04-02 Monosol, Llc Edible water-soluble film
US10829621B2 (en) 2013-01-11 2020-11-10 Monosol, Llc Edible water-soluble film
WO2015005930A1 (en) * 2013-07-12 2015-01-15 General Mills, Inc. Food product forming system
US9376246B2 (en) * 2013-08-13 2016-06-28 Westrock Dispensing Systems, Inc. Blister packaging
US10273069B2 (en) * 2013-08-13 2019-04-30 Silgan Dispensing Systems Corporation Blister packaging
US20150048000A1 (en) * 2013-08-13 2015-02-19 Meadwestvaco Calmar, Inc. Blister packaging
US20150048001A1 (en) * 2013-08-13 2015-02-19 Meadwestvaco Calmar, Inc. Blister packaging
US9751676B2 (en) 2013-11-12 2017-09-05 Colgate-Palmolive Company Packaged oral care implement and method of opening the same
US9764886B2 (en) 2013-11-12 2017-09-19 Colgate-Palmolive Company Packaged oral care implement and method of opening the same
JP2018502786A (en) * 2015-01-14 2018-02-01 モノソル リミテッド ライアビリティ カンパニー Cleaning product web with regulated internal atmosphere and method of manufacturing
US11745937B2 (en) 2015-01-14 2023-09-05 Monosol, Llc Web of cleaning products having a modified internal atmosphere and method of manufacture
US9873558B2 (en) * 2015-02-26 2018-01-23 Monosol, Llc Multi-dose cleaning product and method of manufacture
US10611555B2 (en) 2015-02-26 2020-04-07 Monosol, Llc Multi-dose cleaning product and method of manufacture
US20160251148A1 (en) * 2015-02-26 2016-09-01 Monosol, Llc Multi-dose cleaning product and method of manufacture
JP2018508424A (en) * 2015-02-27 2018-03-29 モノソル リミテッド ライアビリティ カンパニー Cleaning product web and manufacturing method
US9828154B2 (en) * 2015-02-27 2017-11-28 Monosol, Llc Web of cleaning products and method of manufacture
US11767405B2 (en) 2016-04-13 2023-09-26 Monosol, Llc Water soluble film, packets employing the film, and methods of making and using same
US20180168927A1 (en) * 2016-05-10 2018-06-21 Anatoly Viktorovich ZAZULIA Device for the life-long administration of varying doses of a geroprotector and for increasing hormesis post-adaptation
JP2019520275A (en) * 2016-06-13 2019-07-18 モノソル リミテッド ライアビリティ カンパニー Use of a First Film and a Second Film to Improve Water-Soluble Sealing Strength
US10907117B2 (en) * 2016-06-13 2021-02-02 Monosol, Llc Use of a first film and a second film to improve seal strength of a water-soluble unit dose article
US20210130057A1 (en) * 2016-06-13 2021-05-06 Monosol., Llc Water-Soluble Packets
TWI745380B (en) * 2016-06-13 2021-11-11 美商摩諾索公司 Use of a first film and a second film to improve seal strength of a water-soluble unit dose article
US12187512B2 (en) * 2016-06-13 2025-01-07 Monosol, Llc Water-soluble packets
JP7059205B2 (en) 2016-06-13 2022-04-25 モノソル リミテッド ライアビリティ カンパニー Use of first and second films to improve water-soluble sealing strength
US20180002647A1 (en) * 2016-06-13 2018-01-04 Monosol, Llc Use of a first film and a second film to improve seal strength of a water-soluble
US11473039B2 (en) * 2016-06-13 2022-10-18 Monosol, Llc Water-soluble unit dose articles made from a combination of different films
US11649419B2 (en) 2016-06-13 2023-05-16 Monosol, Llc Use of a first film and a second film to improve seal strength of a water-soluble unit dose article
GB2558666A (en) * 2017-01-17 2018-07-18 Cedar Advanced Tech Group Ltd Blister packaging for dispensing pills, apparatus and method of manufacturing the same
US11708203B2 (en) * 2017-10-26 2023-07-25 Conopco, Inc. Product packaging
US20190291152A1 (en) * 2018-03-20 2019-09-26 Verde Environmental Technologies, Inc. Blister Pack Disposal System
US11883865B2 (en) 2018-03-20 2024-01-30 Verde Environmental Technologies, Inc. Blister pack disposal system
US11389844B2 (en) * 2018-03-20 2022-07-19 Verde Environmental Technologies, Inc. Blister pack disposal system
CN113978089A (en) * 2021-11-25 2022-01-28 北京福乐云数据科技有限公司 Medicine package and packaging method

Also Published As

Publication number Publication date
WO2009061933A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US20090134054A1 (en) Water-soluble product package and product
US11745937B2 (en) Web of cleaning products having a modified internal atmosphere and method of manufacture
US10611555B2 (en) Multi-dose cleaning product and method of manufacture
CN107406153B (en) Cleaning product web and method of manufacture
US20040142131A1 (en) Compositions
US20040011693A1 (en) Method for producing a packaging filled with tablets and one such packaging
JP2949149B2 (en) Aluminum laminated wood
JP2971939B2 (en) Impact resistant PTP package
WO2025096425A9 (en) Methods of packaging toilet blocks
JP4599709B2 (en) Press-through pack packaging device and press-through pack packaging body
JP2001018986A (en) Packaging bag
JPH0632355U (en) Lid material

Legal Events

Date Code Title Description
AS Assignment

Owner name: MONOSOL, LLC, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, DAVID M.;YOGAN, THOMAS;BENING, P. SCOTT;REEL/FRAME:022260/0322;SIGNING DATES FROM 20081202 TO 20081209

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION