US20090129977A1 - Hydrogen peroxide indicator and method - Google Patents
Hydrogen peroxide indicator and method Download PDFInfo
- Publication number
- US20090129977A1 US20090129977A1 US12/359,783 US35978309A US2009129977A1 US 20090129977 A1 US20090129977 A1 US 20090129977A1 US 35978309 A US35978309 A US 35978309A US 2009129977 A1 US2009129977 A1 US 2009129977A1
- Authority
- US
- United States
- Prior art keywords
- blue
- change
- hydrogen peroxide
- green
- red
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title description 128
- 238000000034 method Methods 0.000 title description 17
- 230000008859 change Effects 0.000 description 119
- 239000000203 mixture Substances 0.000 description 72
- 239000003086 colorant Substances 0.000 description 49
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 40
- 230000001954 sterilising effect Effects 0.000 description 26
- -1 Quinea green B Chemical compound 0.000 description 25
- 238000004659 sterilization and disinfection Methods 0.000 description 23
- 229960001506 brilliant green Drugs 0.000 description 18
- HXCILVUBKWANLN-UHFFFAOYSA-N brilliant green cation Chemical compound C1=CC(N(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 HXCILVUBKWANLN-UHFFFAOYSA-N 0.000 description 18
- 239000002253 acid Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 11
- 244000172533 Viola sororia Species 0.000 description 10
- AOADSHDCARXSGL-ZMIIQOOPSA-M alkali blue 4B Chemical compound CC1=CC(/C(\C(C=C2)=CC=C2NC2=CC=CC=C2S([O-])(=O)=O)=C(\C=C2)/C=C/C\2=N\C2=CC=CC=C2)=CC=C1N.[Na+] AOADSHDCARXSGL-ZMIIQOOPSA-M 0.000 description 10
- 235000012701 green S Nutrition 0.000 description 10
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 10
- ALJHHTHBYJROOG-UHFFFAOYSA-N 7-(dimethylamino)phenothiazin-3-one Chemical compound C1=CC(=O)C=C2SC3=CC(N(C)C)=CC=C3N=C21 ALJHHTHBYJROOG-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- WDPIZEKLJKBSOZ-UHFFFAOYSA-M green s Chemical compound [Na+].C1=CC(N(C)C)=CC=C1C(C=1C2=CC=C(C=C2C=C(C=1O)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](C)C)C=C1 WDPIZEKLJKBSOZ-UHFFFAOYSA-M 0.000 description 9
- IPSIPYMEZZPCPY-UHFFFAOYSA-N new fuchsin Chemical compound [Cl-].C1=CC(=[NH2+])C(C)=CC1=C(C=1C=C(C)C(N)=CC=1)C1=CC=C(N)C(C)=C1 IPSIPYMEZZPCPY-UHFFFAOYSA-N 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 9
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 9
- RUDINRUXCKIXAJ-UHFFFAOYSA-N 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptacosafluorotetradecanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RUDINRUXCKIXAJ-UHFFFAOYSA-N 0.000 description 8
- MOVNSGGBTSIUGX-UHFFFAOYSA-N 2-n,2-n-diethyl-10-phenylphenazin-10-ium-2,8-diamine;chloride Chemical compound [Cl-].C12=CC(N(CC)CC)=CC=C2N=C2C=CC(N)=CC2=[N+]1C1=CC=CC=C1 MOVNSGGBTSIUGX-UHFFFAOYSA-N 0.000 description 8
- ZGUVJHNFJIZDBZ-UHFFFAOYSA-N 4-[[3-[(2,4-diamino-5-methylphenyl)diazenyl]-4-methylphenyl]diazenyl]-6-methylbenzene-1,3-diamine;hydrochloride Chemical compound Cl.C1=C(N)C(C)=CC(N=NC=2C=C(C(C)=CC=2)N=NC=2C(=CC(N)=C(C)C=2)N)=C1N ZGUVJHNFJIZDBZ-UHFFFAOYSA-N 0.000 description 8
- 108010076830 Thionins Proteins 0.000 description 8
- HOWITLLZNKSJOJ-UHFFFAOYSA-M chembl471028 Chemical compound [Na+].C1=CC=CC2=C(O)C(N=NC3=C4C=CC=CC4=C(C=C3O)S([O-])(=O)=O)=CC=C21 HOWITLLZNKSJOJ-UHFFFAOYSA-M 0.000 description 8
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 description 8
- JSFUMBWFPQSADC-UHFFFAOYSA-N Disperse Blue 1 Chemical compound O=C1C2=C(N)C=CC(N)=C2C(=O)C2=C1C(N)=CC=C2N JSFUMBWFPQSADC-UHFFFAOYSA-N 0.000 description 7
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 7
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000012414 sterilization procedure Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- WWKGVZASJYXZKN-UHFFFAOYSA-N Methyl violet 2B Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(N)=CC=1)=C1C=CC(=[N+](C)C)C=C1 WWKGVZASJYXZKN-UHFFFAOYSA-N 0.000 description 6
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 6
- DGOBMKYRQHEFGQ-UHFFFAOYSA-L acid green 5 Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 DGOBMKYRQHEFGQ-UHFFFAOYSA-L 0.000 description 6
- WLDHEUZGFKACJH-UHFFFAOYSA-K amaranth Chemical compound [Na+].[Na+].[Na+].C12=CC=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(O)=C1N=NC1=CC=C(S([O-])(=O)=O)C2=CC=CC=C12 WLDHEUZGFKACJH-UHFFFAOYSA-K 0.000 description 6
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 description 6
- 229940057841 eosine yellowish Drugs 0.000 description 6
- JVICFMRAVNKDOE-UHFFFAOYSA-M ethyl violet Chemical compound [Cl-].C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)=C1C=CC(=[N+](CC)CC)C=C1 JVICFMRAVNKDOE-UHFFFAOYSA-M 0.000 description 6
- 229940002712 malachite green oxalate Drugs 0.000 description 6
- LSFNRVBPDLEXDS-VHEBQXMUSA-N mordant red 19 Chemical compound CC1=NN(C=2C=CC=CC=2)C(=O)C1\N=N\C1=CC(Cl)=CC(S(O)(=O)=O)=C1O LSFNRVBPDLEXDS-VHEBQXMUSA-N 0.000 description 6
- OCKKUZVCJCWWHM-UHFFFAOYSA-L (7-amino-8-methylphenoxazin-3-ylidene)-diethylazanium;dichlorozinc;dichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Zn+2].CC1=C(N)C=C2OC3=CC(=[N+](CC)CC)C=CC3=NC2=C1.CC1=C(N)C=C2OC3=CC(=[N+](CC)CC)C=CC3=NC2=C1 OCKKUZVCJCWWHM-UHFFFAOYSA-L 0.000 description 5
- WMAVHUWINYPPKT-UHFFFAOYSA-M (e)-3-methyl-n-[(e)-(1-methyl-2-phenylindol-1-ium-3-ylidene)amino]-1,3-thiazol-2-imine;chloride Chemical compound [Cl-].C12=CC=CC=C2N(C)C(C=2C=CC=CC=2)=C1N=NC=1SC=C[N+]=1C WMAVHUWINYPPKT-UHFFFAOYSA-M 0.000 description 5
- GTKXSYHXQSKWNP-UHFFFAOYSA-N 1-aminocyclohexane-1-carboxylic acid;hydron;chloride Chemical compound Cl.OC(=O)C1(N)CCCCC1 GTKXSYHXQSKWNP-UHFFFAOYSA-N 0.000 description 5
- IHZXTIBMKNSJCJ-UHFFFAOYSA-N 3-{[(4-{[4-(dimethylamino)phenyl](4-{ethyl[(3-sulfophenyl)methyl]amino}phenyl)methylidene}cyclohexa-2,5-dien-1-ylidene)(ethyl)azaniumyl]methyl}benzene-1-sulfonate Chemical compound C=1C=C(C(=C2C=CC(C=C2)=[N+](C)C)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 IHZXTIBMKNSJCJ-UHFFFAOYSA-N 0.000 description 5
- 229920001800 Shellac Polymers 0.000 description 5
- 241001104043 Syringa Species 0.000 description 5
- 235000004338 Syringa vulgaris Nutrition 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- SXYCCJAPZKHOLS-UHFFFAOYSA-N chembl2008674 Chemical compound [O-][N+](=O)C1=CC=C2C(N=NC3=C4C=CC=CC4=CC=C3O)=C(O)C=C(S(O)(=O)=O)C2=C1 SXYCCJAPZKHOLS-UHFFFAOYSA-N 0.000 description 5
- XCFVSYWEMCQEOH-UHFFFAOYSA-L disodium 4-amino-5-hydroxy-3-[(4-nitrophenyl)diazenyl]naphthalene-2,7-disulfonate Chemical compound [Na+].[Na+].NC1=C(C(=CC2=CC(=CC(=C12)O)S(=O)(=O)[O-])S(=O)(=O)[O-])N=NC1=CC=C(C=C1)[N+](=O)[O-] XCFVSYWEMCQEOH-UHFFFAOYSA-L 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012847 fine chemical Substances 0.000 description 5
- YYGBVRCTHASBKD-UHFFFAOYSA-M methylene green Chemical compound [Cl-].C1=CC(N(C)C)=C([N+]([O-])=O)C2=[S+]C3=CC(N(C)C)=CC=C3N=C21 YYGBVRCTHASBKD-UHFFFAOYSA-M 0.000 description 5
- HFIYIRIMGZMCPC-YOLJWEMLSA-J remazole black-GR Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]S(=O)(=O)C1=CC2=CC(S([O-])(=O)=O)=C(\N=N\C=3C=CC(=CC=3)S(=O)(=O)CCOS([O-])(=O)=O)C(O)=C2C(N)=C1\N=N\C1=CC=C(S(=O)(=O)CCOS([O-])(=O)=O)C=C1 HFIYIRIMGZMCPC-YOLJWEMLSA-J 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 5
- 239000004208 shellac Substances 0.000 description 5
- 229940113147 shellac Drugs 0.000 description 5
- 235000013874 shellac Nutrition 0.000 description 5
- FJBHGWADYLMEJG-UHFFFAOYSA-M sodium;3-[[4-[[4-(diethylamino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]cyclohexa-2,5-dien-1-ylidene]methyl]-n-ethylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC=1C=C(C=CC=1)S([O-])(=O)=O)=C(C=C1)C=CC1=[N+](CC)CC1=CC=CC(S([O-])(=O)=O)=C1 FJBHGWADYLMEJG-UHFFFAOYSA-M 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- LLWJPGAKXJBKKA-UHFFFAOYSA-N victoria blue B Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C(C=C1)C2=CC=CC=C2C1=[NH+]C1=CC=CC=C1 LLWJPGAKXJBKKA-UHFFFAOYSA-N 0.000 description 4
- JEVGKYBUANQAKG-UHFFFAOYSA-N victoria blue R Chemical compound [Cl-].C12=CC=CC=C2C(=[NH+]CC)C=CC1=C(C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 JEVGKYBUANQAKG-UHFFFAOYSA-N 0.000 description 4
- ROVRRJSRRSGUOL-UHFFFAOYSA-N victoria blue bo Chemical compound [Cl-].C12=CC=CC=C2C(NCC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)=C1C=CC(=[N+](CC)CC)C=C1 ROVRRJSRRSGUOL-UHFFFAOYSA-N 0.000 description 4
- 241000720913 Fuchsia Species 0.000 description 3
- 244000178870 Lavandula angustifolia Species 0.000 description 3
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 3
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 description 3
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 3
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 3
- 150000004056 anthraquinones Chemical class 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- KSCQDDRPFHTIRL-UHFFFAOYSA-N auramine O Chemical compound [H+].[Cl-].C1=CC(N(C)C)=CC=C1C(=N)C1=CC=C(N(C)C)C=C1 KSCQDDRPFHTIRL-UHFFFAOYSA-N 0.000 description 3
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 3
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 3
- 239000001102 lavandula vera Substances 0.000 description 3
- 235000018219 lavender Nutrition 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 2
- AGIJRRREJXSQJR-UHFFFAOYSA-N 2h-thiazine Chemical compound N1SC=CC=C1 AGIJRRREJXSQJR-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- QGNDAXYFYSPDKJ-ZQFDHWOPSA-N (E)-3-hydroxy-2-[(4-methyl-2-nitrophenyl)diazenyl]-N-phenylbut-2-enamide Chemical compound C\C(O)=C(/N=NC1=CC=C(C)C=C1[N+]([O-])=O)C(=O)NC1=CC=CC=C1 QGNDAXYFYSPDKJ-ZQFDHWOPSA-N 0.000 description 1
- JAHICWMIDKUVSI-UHFFFAOYSA-N 1-methylidene-2h-thiazine Chemical compound C=S1NC=CC=C1 JAHICWMIDKUVSI-UHFFFAOYSA-N 0.000 description 1
- FOQABOMYTOFLPZ-UHFFFAOYSA-N 2-[n-ethyl-4-[(4-nitrophenyl)diazenyl]anilino]ethanol Chemical compound C1=CC(N(CCO)CC)=CC=C1N=NC1=CC=C([N+]([O-])=O)C=C1 FOQABOMYTOFLPZ-UHFFFAOYSA-N 0.000 description 1
- MHOFGBJTSNWTDT-UHFFFAOYSA-M 2-[n-ethyl-4-[(6-methoxy-3-methyl-1,3-benzothiazol-3-ium-2-yl)diazenyl]anilino]ethanol;methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC(N(CCO)CC)=CC=C1N=NC1=[N+](C)C2=CC=C(OC)C=C2S1 MHOFGBJTSNWTDT-UHFFFAOYSA-M 0.000 description 1
- AXDJCCTWPBKUKL-UHFFFAOYSA-N 4-[(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]aniline;hydron;chloride Chemical compound Cl.C1=CC(=N)C(C)=CC1=C(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 AXDJCCTWPBKUKL-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000004214 Fast Green FCF Substances 0.000 description 1
- RZSYLLSAWYUBPE-UHFFFAOYSA-L Fast green FCF Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC(O)=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 RZSYLLSAWYUBPE-UHFFFAOYSA-L 0.000 description 1
- XKTMIJODWOEBKO-UHFFFAOYSA-M Guinee green B Chemical compound [Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC=CC=2)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 XKTMIJODWOEBKO-UHFFFAOYSA-M 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- UFUQRRYHIHJMPB-DUCFOALUSA-L Sirius red 4B Chemical compound [Na+].[Na+].OS(=O)(=O)c1cc2cc(NC(=O)c3ccccc3)ccc2c([O-])c1\N=N\c1ccc(cc1)\N=N\c1ccc(cc1)S([O-])(=O)=O UFUQRRYHIHJMPB-DUCFOALUSA-L 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- YVNQAIFQFWTPLQ-UHFFFAOYSA-O [4-[[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfophenyl)methyl]amino]-2-methylphenyl]methylidene]-3-methylcyclohexa-2,5-dien-1-ylidene]-ethyl-[(3-sulfophenyl)methyl]azanium Chemical compound C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S(O)(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S(O)(=O)=O)C)C=C1 YVNQAIFQFWTPLQ-UHFFFAOYSA-O 0.000 description 1
- FUGCXLNGEHFIOA-UHFFFAOYSA-L acid red 44 Chemical compound [Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=CC2=C1 FUGCXLNGEHFIOA-UHFFFAOYSA-L 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000012745 brilliant blue FCF Nutrition 0.000 description 1
- NNBFNNNWANBMTI-UHFFFAOYSA-M brilliant green Chemical compound OS([O-])(=O)=O.C1=CC(N(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 NNBFNNNWANBMTI-UHFFFAOYSA-M 0.000 description 1
- LEYJJTBJCFGAQN-UHFFFAOYSA-N chembl1985378 Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=C(S(O)(=O)=O)C=C1 LEYJJTBJCFGAQN-UHFFFAOYSA-N 0.000 description 1
- BPHHNXJPFPEJOF-UHFFFAOYSA-J chembl296966 Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]S(=O)(=O)C1=CC(S([O-])(=O)=O)=C(N)C2=C(O)C(N=NC3=CC=C(C=C3OC)C=3C=C(C(=CC=3)N=NC=3C(=C4C(N)=C(C=C(C4=CC=3)S([O-])(=O)=O)S([O-])(=O)=O)O)OC)=CC=C21 BPHHNXJPFPEJOF-UHFFFAOYSA-J 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 125000000853 cresyl group Chemical group C1(=CC=C(C=C1)C)* 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019240 fast green FCF Nutrition 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229960001235 gentian violet Drugs 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 235000019238 ponceau 6R Nutrition 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- LGZQSRCLLIPAEE-UHFFFAOYSA-M sodium 1-[(4-sulfonaphthalen-1-yl)diazenyl]naphthalen-2-olate Chemical compound [Na+].C1=CC=C2C(N=NC3=C4C=CC=CC4=CC=C3O)=CC=C(S([O-])(=O)=O)C2=C1 LGZQSRCLLIPAEE-UHFFFAOYSA-M 0.000 description 1
- VFKMJZUEFSTCGQ-PXNGTKLSSA-M sodium;2-[(e)-[3-[[bis(carboxymethyl)amino]methyl]-4-hydroxy-5-methylphenyl]-[3-[[bis(carboxymethyl)amino]methyl]-5-methyl-4-oxocyclohexa-2,5-dien-1-ylidene]methyl]benzenesulfonate Chemical compound [Na+].C1=C(CN(CC(O)=O)CC(O)=O)C(=O)C(C)=C\C1=C(C=1C(=CC=CC=1)S([O-])(=O)=O)\C1=CC(C)=C(O)C(CN(CC(O)=O)CC(O)=O)=C1 VFKMJZUEFSTCGQ-PXNGTKLSSA-M 0.000 description 1
- BPCZPTGXEYXQRS-UHFFFAOYSA-M sodium;2-[4-[bis(4-anilinophenyl)-hydroxymethyl]anilino]benzenesulfonate Chemical compound [Na+].C=1C=C(NC=2C=CC=CC=2)C=CC=1C(C=1C=CC(NC=2C(=CC=CC=2)S([O-])(=O)=O)=CC=1)(O)C(C=C1)=CC=C1NC1=CC=CC=C1 BPCZPTGXEYXQRS-UHFFFAOYSA-M 0.000 description 1
- RWVGQQGBQSJDQV-UHFFFAOYSA-M sodium;3-[[4-[(e)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-n-ethyl-3-methylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=C1 RWVGQQGBQSJDQV-UHFFFAOYSA-M 0.000 description 1
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229960001555 tolonium chloride Drugs 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/22—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
- G01N31/228—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for peroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/26—Accessories or devices or components used for biocidal treatment
- A61L2/28—Devices for testing the effectiveness or completeness of sterilisation, e.g. indicators which change colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/22—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
- G01N31/226—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating the degree of sterilisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/20—Oxygen containing
- Y10T436/206664—Ozone or peroxide
Definitions
- Medical instruments are typically sterilized prior to use using steam or other sterilizing/disinfecting gases or liquids.
- a traditional sterilization process uses steam under pressure.
- Alternative sterilization processes use ethylene oxide or hydrogen peroxide in vapor form as the sterilant.
- the use of hydrogen peroxide and other chemical vapor phase sterilization techniques typically involve operating temperatures well below those associated with steam sterilization. These “low temperature” technologies generally operate at temperatures below about 80° C., and often below about 65° C.
- the sterilized goods are typically available for use shortly after the completion of the sterilization cycle. This is because the decomposition products (e.g., water and oxygen) are nontoxic.
- the potency of the hydrogen peroxide may be augmented by the presence of electrical energy in the form of an ionizing plasma field.
- Sterilization indicators are used to monitor whether a sterilization process has been performed. Sterilization indicators typically include an indicator composition, carried on a substrate, that changes color during the sterilization process. Conventional indicators for hydrogen peroxide, however, often fade upon exposure to light. Thus, there is still a need for a suitable indicator that includes a color change composition for indicating the vapor phase sterilization of an article using hydrogen peroxide.
- the present invention is directed to a method and indicator for detecting the presence of hydrogen peroxide in the vapor phase.
- the method and indicator are particularly well suited for monitoring whether a hydrogen peroxide sterilization process has been performed.
- the present invention provides a hydrogen peroxide indicator that includes a substrate and an indicator composition disposed thereon, wherein the indicator composition includes at least one colorant selected from the group consisting of Malachite green oxalate, Crystal violet, Methyl violet 2B, Ethyl violet, New fuchsin, Victoria blue B, Victoria pure blue BO, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Victoria blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no.
- the indicator composition includes at least one colorant selected from the group consisting of Malachite green oxalate, Crystal violet, Methyl violet 2B, Ethyl violet, New fuchsin, Victoria blue B, Victoria pure blue BO, To
- the colorant is selected from the group consisting of Ethyl violet, New fuchsin, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no. 2, Spirit soluble fast RR, Spirit soluble fast red 3B, D & C red no.
- the present invention provides a hydrogen peroxide indicator that includes a substrate and an indicator composition disposed thereon, wherein the indicator composition includes a binder, at least one colorant selected from the group consisting of Malachite green oxalate, Crystal violet, Methyl violet 2B, Ethyl violet, New fuchsin, Victoria blue B, Victoria pure blue BO, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Victoria blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no.
- the indicator composition includes a binder, at least one colorant selected from the group consisting of Malachite green oxalate, Crystal violet, Methyl violet 2B, Ethyl violet, New fuchsin,
- Methods of monitoring a hydrogen peroxide sterilization process includes exposing an article to be sterilized and the hydrogen peroxide indicators as described herein to hydrogen peroxide vapor.
- the present invention provides a hydrogen peroxide indicator that includes a substrate on which is disposed an indicator composition that includes at least one of a select group of colorants. As a result of contact with hydrogen peroxide, the colorants change color, and even become colorless, thereby providing an indication of the presence of hydrogen peroxide.
- the present invention is directed to a system for indicating exposure to a hydrogen peroxide vapor sterilization process.
- the indicator composition includes at least one component that is transformed (typically, chemically transformed) in the presence of vaporous hydrogen peroxide such that the color of the composition changes.
- the composition may include one or more components that change color upon contact with hydrogen peroxide, as well as other components that do not change color upon contact with hydrogen peroxide.
- the composition preferably includes a polymeric binder to aid in applying the composition to a suitable substrate.
- Indicators of the present invention are very useful in indicating when an article has been exposed to hydrogen peroxide in the vapor phase. Significantly, indicators of the present invention offer one a simple, yet effective means for indicating when a particular article has been subjected to sterilization using vaporous hydrogen peroxide.
- the indicator compositions of the present invention undergo a color change when exposed to an atmosphere above an aqueous solution containing 30 weight percent (wt-%) hydrogen peroxide at 50° C. within a period of at least about one hour and/or a color change when exposed to an atmosphere containing about 6 milligrams/liter (mg/l) to about 7 mg/l hydrogen peroxide (in an empty chamber, i.e., without articles to be sterilized) at a pressure of about 8 ⁇ 10 2 Pascals (Pa) to about 13.3 ⁇ 10 2 Pa and a temperature of about 45° C. to about 50° C. for a period of at least about 50 minutes, which are typical conditions within an empty commercial hydrogen peroxide plasma sterilizer.
- the indicator compositions of the present invention undergo a color change when exposed to an atmosphere containing about 6 mg/l to about 7 mg/l hydrogen peroxide (in an empty chamber) at a pressure of about 8 ⁇ 10 2 Pa to about 13.3 ⁇ 10 2 Pa and a temperature of about 45° C. to about 50° C. for a period of at least about 50 minutes.
- a color change includes becoming colorless.
- the indicator compositions do not significantly fade upon exposure to room lighting, e.g., fluorescent lighting. More preferably, the indicator compositions do not significantly fade, for example, upon exposure to sunlight through a window for one week or room lighting for two months.
- Suitable colorants for use in the indicator compositions of the present invention include the following: Malachite green oxalate, Crystal violet, Methyl violet 2B, Ethyl violet, New fuchsin, Victoria blue B, Victoria pure blue BO, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Victoria blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no. 2, Spirit soluble fast RR, Spirit soluble fast red 3B, D & C red no.
- a preferred group of colorants include the following: Ethyl violet, New fuchsin, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no. 2, Spirit soluble fast RR, Spirit soluble fast red 3B, D & C red no.
- Another preferred group of colorants include the following: Malachite green oxalate, Methyl violet 2B, New fuchsin, Toluidine blue O, Luxol brilliant green BL, Quinea green B, Thionin, Meldolas blue, Lissamine green B, Alkali blue 6B, Brilliant green, Victoria green S extra, Eriochrome blue black B, Congo red, Bismarck brown R, Methylene violet, Methylene violet 3RAX, Bromopyrogallol red, and combinations thereof.
- Suitable colorants become colorless or change to a different color upon exposure to hydrogen peroxide vapor.
- Preferred are those colorants that show good contrast between the initial color and the color after exposure to hydrogen peroxide vapor. Examples include, Malachite green oxalate, Methyl violet 2B, New fuchsin, Quinea green B, Thionin, Meldolas blue, Lissamine green B, Alkali blue 6B, Congo red, Eriochrome blue black B, Bismarck brown R, Methylene violet 3RAX, and combinations thereof.
- Another group of preferred colorants are those that become substantially colorless upon exposure to hydrogen peroxide vapors under conventional sterilization conditions (e.g., 6 mg/l to about 7 mg/l hydrogen peroxide in an empty chamber at a pressure of about 8 ⁇ 10 2 Pa to about 13.3 ⁇ 10 2 Pa and a temperature of about 45° C. to about 50° C. for a period of at least about 50 minutes) or to the more concentrated hydrogen peroxide vapors in a desiccator.
- Examples of such colorants include Toluidine blue O, Luxol brilliant green BL, Victoria green S extra, Methylene violet, Bromopyrogallol red, Brilliant green, and combinations thereof.
- Such colorants that become substantially colorless after exposure to hydrogen peroxide can also be used in combination with other colorants (e.g., dyes or pigments) that do not change color in the presence of hydrogen peroxide to give a chemical indicator with a suitable contrasting color change.
- colorants e.g., dyes or pigments
- Alkali blue 6B plus a red unreactive dye such as Quinacridone red 19 show a color change from blue (initial) to pink, or a mixture of Brilliant green and Auramine O show a color change from bright green (initial) to bright yellow.
- Quinacridone red 19 and Auramine O other sterilant-immune colored components may include those examples indicated in Tables 3A and 3B below.
- At least one colorant is present in the indicator composition in an amount sufficient to cause a color change when the composition is exposed to an atmosphere above an aqueous solution containing 30% hydrogen peroxide at 50° C. within a period of at least about one hour and/or an amount sufficient to cause a color change when exposed to an atmosphere containing about 6 mg/l to about 7 mg/l hydrogen peroxide (in an empty chamber) at a pressure of about 8 ⁇ 10 2 Pa to about 13.3 ⁇ 10 2 Pa and a temperature of about 45° C. to about 50° C. for a period of at least about 50 minutes.
- the compositions contain about 0.1 wt-% to about 5.0 wt-%, based on the total weight of the composition, of a colorant that changes color upon exposure to hydrogen peroxide.
- the colorant concentration should be such as to allow a clear visual indication of a color change. If at least one colorant that does not change color upon exposure to hydrogen peroxide is used in the indicator compositions of the present invention, it is present in an amount sufficient to provide the targeted color intensity, both prior to and subsequent to exposure to hydrogen peroxide vapor. Generally, such compositions contain about 0.1 wt-% to about 5.0 wt-%, based on the total weight of the composition, of a colorant that does not change color upon exposure to hydrogen peroxide.
- the indicating composition is generally formulated in the form of a dispersion or solution in water or an organic solvent (preferably, an organic solvent).
- the composition includes at least one colorant as described above as well as an organic binder.
- suitable binders can be used. Examples include synthetic or natural polymers or resins. Suitable binders are those that do not interfere with the function of the indicator composition. Examples include cellulose acetate butyrate, shellac, ethyl cellulose, methyl cellulose, acrylic resins, etc.
- a sufficient amount of binder is included in the compositions to provide adequate binding of the composition to a substrate on which it is disposed, while providing the desired rate of color change.
- the compositions contain about 20 wt-% to about 40 wt-% of a polymer binder, based on the total weight of the composition.
- Indicator compositions of the present invention can also include other resins that do not necessarily function as a binder.
- the compositions can include a resin that functions as a dispersing agent, such as Rhoplex I-545, a water based acrylic polymer, available from Rohm and Haas Corp., Philadelphia, Pa., that assists in dispersing the ingredients of the composition in the solvent used in application of the composition to a substrate.
- Indicator compositions of the present invention can also include opacifying agents such as titanium dioxide, surfactants, plasticizers, antifoam agents, and the like.
- a basic material such as an organic amine (e.g., triethanolamine) can be used to enhance sensitivity of the colorant to the low concentration of hydrogen peroxide in a conventional sterilizer.
- organic amine e.g., triethanolamine
- additives are used in no more than about 5 wt-% based on the total weight of the indicator composition.
- compositions are typically applied to a substrate out of a solvent as discussed above.
- Suitable solvents include water and organic solvents such as ketones, esters, alcohols, and the like.
- suitable solvents include methyl ethyl ketone, n-propyl acetate, and isopropanol.
- the solvent is typically used in an amount of about up to about 15 wt-%, based on the total weight of the composition.
- the indicator composition can be applied to the substrate by a wide variety of techniques, including, for example, printing or coating by flexographic, gravure, screen, or die processes.
- the substrate on which the indicator composition is disposed can be any of a wide variety.
- suitable substrates include polymeric materials, which may be pigmented or colorless, such as polyester, polyethylene, or polystyrene films, paper, and the like.
- it is a MELINEX polyester film from E.I. du Pont de Nemours and Company, Wilmington, Del.
- the substrate may be in the form of a strip of material (e.g., a strip of material having the dimensions 2 cms by 13 cm).
- the composition can be coated as a stripe over the length of the substrate strip.
- the substrate may also have an adhesive on the surface opposite that on which the indicator composition is disposed. In this way, the indicator may be used as a tape or label for attachment to the article to be sterilized
- the vapor sterilization procedure used is conventional, and is disclosed in, for example U.S. Pat. Nos. 4,756,882, 4,643,876, 4,956,145, and 5,445,792, for example.
- it is a plasma-based sterilization system.
- the article to be sterilized is placed in a sterilization chamber, and a dose of hydrogen peroxide, which generally comes pre-measured, is delivered to the chamber. Vapor is generated and allowed to fill the container for an appropriate length of time after which the sterilization is complete.
- the equipment and the entire procedure is generally controlled electronically. When sterilizing medical instruments, one cycle is often sufficient.
- the medical instruments are often packaged, with the entire package being placed into the sterilizing compartment. The package allows the hydrogen peroxide to penetrate and effect sterilization of the instruments, while subsequently protecting the instruments from contamination in air.
- the temperatures used in the process of the present invention are all generally less than 65° C.
- Indicator compositions were prepared by mixing 70 grams of a shellac binder solution containing 60% weight percent of shellac in isopropanol (commercially available as 5 pound refined shellac in 99 percent isopropanol form Mantrose, Bradshaw and Zinsser Group, Westport, Conn.), 17.5 grams of dispersing resin (commercially available as Rhoplex 1-545 from Rohm & Haas Corp., Philadelphia, Pa.), in 15 grams of isopropanol, with approximately 0.1 gram or a sufficient amount of colorant (0.1 wt-% to 5 wt-%) to give a good color of the colorants listed in Table 1.
- the indicator compositions were mixed in glass jars containing marbles. The glass jars were rolled for three hours on a roller mill.
- An indicator composition was coated on a plastic backing (commercially available as “3M printable Polyester Film Label Stock” from Minnesota Mining and Manufacturing Co., St. Paul, Minn.) using a number 16 Meyer bar (commercially available from R. D. Specialties, Webster, N.Y.).
- the coated ink was dried at 50° C. in an oven (commercially available as “Despatch Style V 29” from Despatch Oven Co., Minneapolis, Minn.) for 2 minutes.
- the coated film was cut using scissors to obtain indicators of approximately 2 cm by 13 cm.
- One indicator composition was placed on an instrument tray lid and exposed to a full cycle of a hydrogen peroxide plasma sterilization procedure at 45-55° C. in a STERRADTM 100SI GMP Sterilizer, obtained from Advanced Sterilization Products Co., Irvine, Calif. During the sterilization procedure a vacuum was drawn in the sterilization chamber for 5-6 minutes until the pressure was reduced to 40.0 Pa. A 1.8 ml aliquot of an aqueous solution of 58-60 percent hydrogen peroxide was then injected into the empty sterilization chamber over a period of about 6 minutes, yielding an empty chamber concentration of 6-7 mg/liter hydrogen peroxide. Hydrogen peroxide vapor was allowed to diffuse throughout the chamber for 44 minutes at 8 ⁇ 10 2 to 13.3 ⁇ 10 2 Pa.
- a vacuum was then drawn, reducing the pressure to 66.7 Pa and removing all detectable hydrogen peroxide vapor from the chamber.
- a plasma phase was then generated in the chamber by emitting an RF power source at 400 watts and 13.56 MHz for about 15-16 minutes at 66.7 Pa, after which the chamber was vented for 3-4 minutes until atmospheric pressure was reached in the chamber.
- the indicators were removed from the tray lid and examined for color change. The results for each indicator composition are described in Table 1.
- Some of the colorants were either the same color as they were initially or only slightly lighter, so another set of indicators were exposed to a higher concentration of hydrogen peroxide to determine if changing concentration would effect the results.
- a set of indicators were taped to a roll of film which was placed in a vented desiccator containing 80 ml of 30 weight percent (wt-%) hydrogen peroxide. The desiccator was placed in an oven (commercially available as “Despatch Style V 29” from Despatch Oven Co.) at 50° C. for one hour. The indicators were removed from the desiccator and examined for color change. The results for each indicator composition are also described in Table 1.
- Colorants that showed good contrast between the initial color and the color after exposure to hydrogen peroxide vapor are Malachite green oxalate, Methyl violet 2B, New fuchsin, Quinea green B, Thionin, Meldolas blue, Lissamine green B, and Alkali blue 6B.
- Another set of preferred colorants for chemical indicators become colorless after exposure in the STERRADTM Sterilizer or to the more concentrated hydrogen peroxide in a desiccator.
- these colorants include Toluidine blue O, Luxol brilliant green BL, and Brilliant green.
- a cellulose acetate butyrate binder was prepared by dissolving 15 grams of the cellulose acetate butyrate grade 553-0.4 resin (commercially available from Eastman Chemical Company, Kingsport, Tenn.) in 100 milliliters of methyl ethyl ketone.
- Indicator compositions were prepared by dissolving a sufficient amount (approximately 0.1 gram or more 0.1 wt-% to 5 wt-% of the colorants listed in Table 2 to give a good color in 15 milliliters of the binder.
- the resulting indicator composition was coated as described for Example 1. Each indicator composition was exposed to a full cycle of a hydrogen peroxide plasma sterilization procedure in a STERRADTM 100SI GMP Sterilizer as described in Example 1. The results for each indicator composition are described in Table 2.
- Example 2 As in Example 1 some of the colorants were either the same color as they were initially or only slightly lighter, so another set of indicators were exposed to a higher concentration of hydrogen peroxide to determine if changing concentration would effect the results.
- the results for each indicator composition are also described in Table 2.
- Colorants that showed good contrast between the initial color and the color after exposure to hydrogen peroxide vapor are Eriochrome blue black B, Congo red, Bismarck brown R, and Methylene violet 3RAX.
- Another set of preferred colorants for chemical indicators become colorless after exposure in the STERRADTM Sterilizer or to the more concentrated hydrogen peroxide in a desiccator.
- these colorants include Victoria green S extra, Methylene violet, and Bromopyrogallol red.
- Example 3A The colorants listed in Table 3A were used to make chemical indicators as described in Example 1, while the colorants listed in Table 3B were used to make chemical indicators as described in Example 2.
- Each indicator composition was exposed to a full cycle of a hydrogen peroxide plasma sterilization procedure in a STERRADTM 100SI GMP Sterilizer as described in Example 1. The results for each indicator composition are described in Table 3A or 3B.
- Example 2 As in Example 1, some of the colorants were either the same color as they were initially or only slightly lighter. Thus, another set of indicators were exposed to a higher concentration of hydrogen peroxide to determine if changing concentration would effect the results. The results for each indicator composition are also described in Table 3A or 3B.
- Example 1 A preferred composition was prepared as described in Example 1 using the components and the amounts given in Table 4. The resulting indicator composition was coated as described for Example 1. Each indicator composition was exposed to a full cycle of a hydrogen peroxide plasma sterilization procedure in a STERRADTM 100SI GMP Sterilizer as described in Example 1.
- Colorants that become colorless after exposure in the STERRADTM Sterilizer or to the more concentrated hydrogen peroxide in a desiccator can be used in combination with dyes or pigments which are stable to hydrogen peroxide to give a chemical indicator with a suitable contrasting color change.
- a red unreactive dye such as Quinacridone red 19 (commercially available as Sunfast Red 19 from Sun Chemical Corporation, Cincinnati, Ohio) showed a color change from blue (initial) to pink after exposure in the STERRADTM Sterilizer.
- Another example was made by combining Brilliant green and Auramine O (commercially available from Sigma Aldrich Fine Chemicals, St. Louis, Mo.) which showed a color change from bright green (initial) to bright yellow after exposure in the STERRADTM Sterilizer.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
The present invention provides a hydrogen peroxide indicator that includes a substrate on which is disposed an indicator composition that includes at least one of a select group of colorants. As a result of contact with hydrogen peroxide, the colorants change color, and even become colorless, thereby providing an indication of the presence of hydrogen peroxide.
Description
- This is a continuation of U.S. patent application Ser. No. 10/890,612, filed on Jul. 14, 2004, now allowed, which is a continuation of U.S. patent application Ser. No. 09/453,726, filed on Dec. 2, 1999, now U.S. Pat. No. 6,790,411, each of which is incorporated herein by reference in its entirety.
- Medical instruments, particularly surgical instruments, are typically sterilized prior to use using steam or other sterilizing/disinfecting gases or liquids. A traditional sterilization process uses steam under pressure. Alternative sterilization processes use ethylene oxide or hydrogen peroxide in vapor form as the sterilant.
- The use of hydrogen peroxide and other chemical vapor phase sterilization techniques typically involve operating temperatures well below those associated with steam sterilization. These “low temperature” technologies generally operate at temperatures below about 80° C., and often below about 65° C. For hydrogen peroxide sterilization, the sterilized goods are typically available for use shortly after the completion of the sterilization cycle. This is because the decomposition products (e.g., water and oxygen) are nontoxic. The potency of the hydrogen peroxide may be augmented by the presence of electrical energy in the form of an ionizing plasma field.
- Sterilization indicators are used to monitor whether a sterilization process has been performed. Sterilization indicators typically include an indicator composition, carried on a substrate, that changes color during the sterilization process. Conventional indicators for hydrogen peroxide, however, often fade upon exposure to light. Thus, there is still a need for a suitable indicator that includes a color change composition for indicating the vapor phase sterilization of an article using hydrogen peroxide.
- The present invention is directed to a method and indicator for detecting the presence of hydrogen peroxide in the vapor phase. The method and indicator are particularly well suited for monitoring whether a hydrogen peroxide sterilization process has been performed.
- The present invention provides a hydrogen peroxide indicator that includes a substrate and an indicator composition disposed thereon, wherein the indicator composition includes at least one colorant selected from the group consisting of Malachite green oxalate, Crystal violet, Methyl violet 2B, Ethyl violet, New fuchsin, Victoria blue B, Victoria pure blue BO, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Victoria blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no. 2, Spirit soluble fast RR, Spirit soluble fast red 3B, D & C red no. 22, Nitro red, Congo red, Brilliant cresyl blue ALD, Arsenazo 1, Basic red 29, Bismarck brown R, Methylene violet, Methylene violet 3RAX, Mordant brown 1, Reactive black 5, Mordant brown 48, Acid brown AX987, Acid violet AX990, Basic red 15, Mordant red 19, Bromopyrogallol red, and combinations thereof.
- Preferably, the colorant is selected from the group consisting of Ethyl violet, New fuchsin, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no. 2, Spirit soluble fast RR, Spirit soluble fast red 3B, D & C red no. 22, Nitro red, Congo red, Brilliant cresyl blue ALD, Arsenazo 1, Basic red 29, Bismarck brown R, Methylene violet, Methylene violet 3RAX, Mordant brown 1, Reactive black 5, Mordant brown 48, Acid brown AX987, Acid violet AX990, Mordant red 19, Bromopyrogallol red, and combinations thereof.
- In a preferred embodiment the present invention provides a hydrogen peroxide indicator that includes a substrate and an indicator composition disposed thereon, wherein the indicator composition includes a binder, at least one colorant selected from the group consisting of Malachite green oxalate, Crystal violet, Methyl violet 2B, Ethyl violet, New fuchsin, Victoria blue B, Victoria pure blue BO, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Victoria blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no. 2, Spirit soluble fast RR, Spirit soluble fast red 3B, D & C red no. 22, Nitro red, Congo red, Brilliant cresyl blue ALD, Arsenazo 1, Basic red 29, Bismarck brown R, Methylene violet, Methylene violet 3RAX, Mordant brown 1, Reactive black 5, Mordant brown 48, Acid brown AX987, Acid violet AX990, Basic red 15, Mordant red 19, Bromopyrogallol red, and combinations thereof, and at least one colorant that does not change color upon contact with hydrogen peroxide vapor.
- Methods of monitoring a hydrogen peroxide sterilization process is also provides. These methods include exposing an article to be sterilized and the hydrogen peroxide indicators as described herein to hydrogen peroxide vapor.
- The present invention provides a hydrogen peroxide indicator that includes a substrate on which is disposed an indicator composition that includes at least one of a select group of colorants. As a result of contact with hydrogen peroxide, the colorants change color, and even become colorless, thereby providing an indication of the presence of hydrogen peroxide.
- In particular, the present invention is directed to a system for indicating exposure to a hydrogen peroxide vapor sterilization process. The indicator composition includes at least one component that is transformed (typically, chemically transformed) in the presence of vaporous hydrogen peroxide such that the color of the composition changes. The composition may include one or more components that change color upon contact with hydrogen peroxide, as well as other components that do not change color upon contact with hydrogen peroxide. For example, the composition preferably includes a polymeric binder to aid in applying the composition to a suitable substrate.
- Indicators of the present invention are very useful in indicating when an article has been exposed to hydrogen peroxide in the vapor phase. Significantly, indicators of the present invention offer one a simple, yet effective means for indicating when a particular article has been subjected to sterilization using vaporous hydrogen peroxide.
- Preferably, the indicator compositions of the present invention undergo a color change when exposed to an atmosphere above an aqueous solution containing 30 weight percent (wt-%) hydrogen peroxide at 50° C. within a period of at least about one hour and/or a color change when exposed to an atmosphere containing about 6 milligrams/liter (mg/l) to about 7 mg/l hydrogen peroxide (in an empty chamber, i.e., without articles to be sterilized) at a pressure of about 8×102 Pascals (Pa) to about 13.3×102 Pa and a temperature of about 45° C. to about 50° C. for a period of at least about 50 minutes, which are typical conditions within an empty commercial hydrogen peroxide plasma sterilizer. More preferably, for use in conventional sterilizers, the indicator compositions of the present invention undergo a color change when exposed to an atmosphere containing about 6 mg/l to about 7 mg/l hydrogen peroxide (in an empty chamber) at a pressure of about 8×102 Pa to about 13.3×102 Pa and a temperature of about 45° C. to about 50° C. for a period of at least about 50 minutes. As used herein, a color change includes becoming colorless.
- Preferably, the indicator compositions do not significantly fade upon exposure to room lighting, e.g., fluorescent lighting. More preferably, the indicator compositions do not significantly fade, for example, upon exposure to sunlight through a window for one week or room lighting for two months.
- Suitable colorants for use in the indicator compositions of the present invention include the following: Malachite green oxalate, Crystal violet, Methyl violet 2B, Ethyl violet, New fuchsin, Victoria blue B, Victoria pure blue BO, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Victoria blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no. 2, Spirit soluble fast RR, Spirit soluble fast red 3B, D & C red no. 22, Nitro red, Congo red, Brilliant cresyl blue ALD, Arsenazo 1, Basic red 29, Bismarck brown R, Methylene violet, Methylene violet 3RAX, Mordant brown 1, Reactive black 5, Mordant brown 48, Acid brown AX987, Acid violet AX990, Basic red 15, Mordant red 19, and Bromopyrogallol red. Alternative names and Color Index Numbers for these colorants are listed in Tables 1 and 2 below. Various combinations of these colorants can be used in the indicator compositions of the present invention. Such mixtures or blends would increase the options available in color changes dramatically.
- A preferred group of colorants include the following: Ethyl violet, New fuchsin, Toluidine blue O, Luxol brilliant green BL, Disperse blue 1, Brilliant blue R, Quinea green B, Thionin, Meldolas blue, Methylene green, Lissamine green B, Alkali blue 6B, Brilliant green, Spirit soluble HLK BASF, Victoria green S extra, Acid violet 17, Eriochrome black T, Eriochrome blue black B, D & C green no. 2, Spirit soluble fast RR, Spirit soluble fast red 3B, D & C red no. 22, Nitro red, Congo red, Brilliant cresyl blue ALD, Arsenazo 1, Basic red 29, Bismarck brown R, Methylene violet, Methylene violet 3RAX, Mordant brown 1, Reactive black 5, Mordant brown 48, Acid brown AX987, Acid violet AX990, Mordant red 19, Bromopyrogallol red, and combinations thereof.
- Another preferred group of colorants include the following: Malachite green oxalate, Methyl violet 2B, New fuchsin, Toluidine blue O, Luxol brilliant green BL, Quinea green B, Thionin, Meldolas blue, Lissamine green B, Alkali blue 6B, Brilliant green, Victoria green S extra, Eriochrome blue black B, Congo red, Bismarck brown R, Methylene violet, Methylene violet 3RAX, Bromopyrogallol red, and combinations thereof.
- Suitable colorants become colorless or change to a different color upon exposure to hydrogen peroxide vapor. Preferred are those colorants that show good contrast between the initial color and the color after exposure to hydrogen peroxide vapor. Examples include, Malachite green oxalate, Methyl violet 2B, New fuchsin, Quinea green B, Thionin, Meldolas blue, Lissamine green B, Alkali blue 6B, Congo red, Eriochrome blue black B, Bismarck brown R, Methylene violet 3RAX, and combinations thereof.
- Another group of preferred colorants are those that become substantially colorless upon exposure to hydrogen peroxide vapors under conventional sterilization conditions (e.g., 6 mg/l to about 7 mg/l hydrogen peroxide in an empty chamber at a pressure of about 8×102 Pa to about 13.3×102 Pa and a temperature of about 45° C. to about 50° C. for a period of at least about 50 minutes) or to the more concentrated hydrogen peroxide vapors in a desiccator. Examples of such colorants include Toluidine blue O, Luxol brilliant green BL, Victoria green S extra, Methylene violet, Bromopyrogallol red, Brilliant green, and combinations thereof.
- Such colorants that become substantially colorless after exposure to hydrogen peroxide can also be used in combination with other colorants (e.g., dyes or pigments) that do not change color in the presence of hydrogen peroxide to give a chemical indicator with a suitable contrasting color change. For example, Alkali blue 6B plus a red unreactive dye such as Quinacridone red 19 show a color change from blue (initial) to pink, or a mixture of Brilliant green and Auramine O show a color change from bright green (initial) to bright yellow. In addition to Quinacridone red 19 and Auramine O, other sterilant-immune colored components may include those examples indicated in Tables 3A and 3B below.
- Preferably, at least one colorant is present in the indicator composition in an amount sufficient to cause a color change when the composition is exposed to an atmosphere above an aqueous solution containing 30% hydrogen peroxide at 50° C. within a period of at least about one hour and/or an amount sufficient to cause a color change when exposed to an atmosphere containing about 6 mg/l to about 7 mg/l hydrogen peroxide (in an empty chamber) at a pressure of about 8×102 Pa to about 13.3×102 Pa and a temperature of about 45° C. to about 50° C. for a period of at least about 50 minutes. Generally, the compositions contain about 0.1 wt-% to about 5.0 wt-%, based on the total weight of the composition, of a colorant that changes color upon exposure to hydrogen peroxide.
- In effect, the colorant concentration should be such as to allow a clear visual indication of a color change. If at least one colorant that does not change color upon exposure to hydrogen peroxide is used in the indicator compositions of the present invention, it is present in an amount sufficient to provide the targeted color intensity, both prior to and subsequent to exposure to hydrogen peroxide vapor. Generally, such compositions contain about 0.1 wt-% to about 5.0 wt-%, based on the total weight of the composition, of a colorant that does not change color upon exposure to hydrogen peroxide.
- The indicating composition is generally formulated in the form of a dispersion or solution in water or an organic solvent (preferably, an organic solvent). The composition includes at least one colorant as described above as well as an organic binder. A wide variety of suitable binders can be used. Examples include synthetic or natural polymers or resins. Suitable binders are those that do not interfere with the function of the indicator composition. Examples include cellulose acetate butyrate, shellac, ethyl cellulose, methyl cellulose, acrylic resins, etc. A sufficient amount of binder is included in the compositions to provide adequate binding of the composition to a substrate on which it is disposed, while providing the desired rate of color change. Generally, the compositions contain about 20 wt-% to about 40 wt-% of a polymer binder, based on the total weight of the composition.
- Indicator compositions of the present invention can also include other resins that do not necessarily function as a binder. For example, the compositions can include a resin that functions as a dispersing agent, such as Rhoplex I-545, a water based acrylic polymer, available from Rohm and Haas Corp., Philadelphia, Pa., that assists in dispersing the ingredients of the composition in the solvent used in application of the composition to a substrate. Indicator compositions of the present invention can also include opacifying agents such as titanium dioxide, surfactants, plasticizers, antifoam agents, and the like. For certain embodiments, a basic material such as an organic amine (e.g., triethanolamine) can be used to enhance sensitivity of the colorant to the low concentration of hydrogen peroxide in a conventional sterilizer. Typically, such additives are used in no more than about 5 wt-% based on the total weight of the indicator composition.
- The compositions are typically applied to a substrate out of a solvent as discussed above. Suitable solvents include water and organic solvents such as ketones, esters, alcohols, and the like. Examples of suitable solvents include methyl ethyl ketone, n-propyl acetate, and isopropanol. The solvent is typically used in an amount of about up to about 15 wt-%, based on the total weight of the composition. The indicator composition can be applied to the substrate by a wide variety of techniques, including, for example, printing or coating by flexographic, gravure, screen, or die processes.
- The substrate on which the indicator composition is disposed can be any of a wide variety. Typically, suitable substrates include polymeric materials, which may be pigmented or colorless, such as polyester, polyethylene, or polystyrene films, paper, and the like. Preferably, it is a MELINEX polyester film from E.I. du Pont de Nemours and Company, Wilmington, Del. The substrate may be in the form of a strip of material (e.g., a strip of material having the dimensions 2 cms by 13 cm). Optionally, the composition can be coated as a stripe over the length of the substrate strip. The substrate may also have an adhesive on the surface opposite that on which the indicator composition is disposed. In this way, the indicator may be used as a tape or label for attachment to the article to be sterilized
- The vapor sterilization procedure used is conventional, and is disclosed in, for example U.S. Pat. Nos. 4,756,882, 4,643,876, 4,956,145, and 5,445,792, for example. Preferably, it is a plasma-based sterilization system.
- In general, the article to be sterilized is placed in a sterilization chamber, and a dose of hydrogen peroxide, which generally comes pre-measured, is delivered to the chamber. Vapor is generated and allowed to fill the container for an appropriate length of time after which the sterilization is complete. The equipment and the entire procedure is generally controlled electronically. When sterilizing medical instruments, one cycle is often sufficient. The medical instruments are often packaged, with the entire package being placed into the sterilizing compartment. The package allows the hydrogen peroxide to penetrate and effect sterilization of the instruments, while subsequently protecting the instruments from contamination in air. The temperatures used in the process of the present invention are all generally less than 65° C.
- The invention will be illustrated in greater detail by the following specific examples. It is understood that these examples are given by way of illustration and are not meant to limit the disclosure or the claims to follow. All percentages in the examples, and elsewhere in the specification, are by weight unless otherwise specified.
- Indicator compositions were prepared by mixing 70 grams of a shellac binder solution containing 60% weight percent of shellac in isopropanol (commercially available as 5 pound refined shellac in 99 percent isopropanol form Mantrose, Bradshaw and Zinsser Group, Westport, Conn.), 17.5 grams of dispersing resin (commercially available as Rhoplex 1-545 from Rohm & Haas Corp., Philadelphia, Pa.), in 15 grams of isopropanol, with approximately 0.1 gram or a sufficient amount of colorant (0.1 wt-% to 5 wt-%) to give a good color of the colorants listed in Table 1. The indicator compositions were mixed in glass jars containing marbles. The glass jars were rolled for three hours on a roller mill.
- An indicator composition was coated on a plastic backing (commercially available as “3M Printable Polyester Film Label Stock” from Minnesota Mining and Manufacturing Co., St. Paul, Minn.) using a number 16 Meyer bar (commercially available from R. D. Specialties, Webster, N.Y.). The coated ink was dried at 50° C. in an oven (commercially available as “Despatch Style V 29” from Despatch Oven Co., Minneapolis, Minn.) for 2 minutes. The coated film was cut using scissors to obtain indicators of approximately 2 cm by 13 cm.
- One indicator composition was placed on an instrument tray lid and exposed to a full cycle of a hydrogen peroxide plasma sterilization procedure at 45-55° C. in a STERRAD™ 100SI GMP Sterilizer, obtained from Advanced Sterilization Products Co., Irvine, Calif. During the sterilization procedure a vacuum was drawn in the sterilization chamber for 5-6 minutes until the pressure was reduced to 40.0 Pa. A 1.8 ml aliquot of an aqueous solution of 58-60 percent hydrogen peroxide was then injected into the empty sterilization chamber over a period of about 6 minutes, yielding an empty chamber concentration of 6-7 mg/liter hydrogen peroxide. Hydrogen peroxide vapor was allowed to diffuse throughout the chamber for 44 minutes at 8×102 to 13.3×102 Pa. A vacuum was then drawn, reducing the pressure to 66.7 Pa and removing all detectable hydrogen peroxide vapor from the chamber. A plasma phase was then generated in the chamber by emitting an RF power source at 400 watts and 13.56 MHz for about 15-16 minutes at 66.7 Pa, after which the chamber was vented for 3-4 minutes until atmospheric pressure was reached in the chamber. After exposure to the sterilization procedure the indicators were removed from the tray lid and examined for color change. The results for each indicator composition are described in Table 1.
- Some of the colorants were either the same color as they were initially or only slightly lighter, so another set of indicators were exposed to a higher concentration of hydrogen peroxide to determine if changing concentration would effect the results. A set of indicators were taped to a roll of film which was placed in a vented desiccator containing 80 ml of 30 weight percent (wt-%) hydrogen peroxide. The desiccator was placed in an oven (commercially available as “Despatch Style V 29” from Despatch Oven Co.) at 50° C. for one hour. The indicators were removed from the desiccator and examined for color change. The results for each indicator composition are also described in Table 1.
-
TABLE 1 Indicator Compositions Color Change Color Color When in Run Index Initial Change Desiccator No. Colorant Colorant Class No. Color when in Sterilizer (30% H2O2) 1 1Malachite green Methane 4200 Blue/green Pale green Pale green oxalate (Basic green 4) 2 1Crystal violet Methane 42555 Very Dark Slightly Lighter Lighter (Gentian violet Blue or Hexamethyl- pararosaniline chloride 3 1Methyl violet Methane 42535 Fuchsia Lighter Light lavender 2B (Basic violet 1) 4 1Ethyl violet Methane 42600 Blue No Change Lighter (Basic violet 4) 5 1New fuchsin Anthraquinone 42520 Purple Slightly lighter Light pink (Basic violet 2 or Magenta III) 6 1Victoria blue B Methane 44045 Royal blue Lighter Lighter (Basic blue 26) 7 1Victoria pure Methane 42595 Blue Slightly Lighter Lighter blue BO (Basic blue 7) 8 1Toluidine blue Thiazine 52040 Pale blue No Change Colorless O (BasicbBlue 17 or Tolonium chloride) 9 1Luxol brilliant Methane None Blue/green Pale green Almost green BL Colorless (Solvent green 11) 10 1Disperse blue 1 Anthraquinone 46500 Royal Blue More gray Dark gray blue (Solvent blue 18 or Celliton blue extra) 11 1Brilliant blue R Methane 42660 Blue No Change Lighter (Acid blue 83 or Coomassie brilliant blue R) 12 1Victoria blue R Methane 44040 Royal blue Slightly Lighter Lighter (Basic blue 11) 13 1Quinea green B Methane 42085 Green Pale green Very pale (Acid green 3) green 14 1Thionin Thiazine 52000 Blue No Change Light gray (Lauth's violet) 15 1Meldolas blue Oxazine 51175 Dark lilac Slightly Lighter Pale beige 16 1Methylene Thiazine 52020 Light blue None Very Pale blue green 17 1Lissamine green Methane 44090 Blue (teal) Slightly Lighter Pale blue B (Acid Green 50 or Wool Green S) 18 2Alkali blue 6B Methane 42750 Blue Light grey blue Light blue (Acid Blue 119) 19 1Brilliant Green Methane 42040 Green Pale green Colorless (Basic Green 1) 1Commercially available from Sigma-Aldrich Fine Chemicals, St. Louis, MO. 2Commercially available from ICN Biomedicals, Costa Mesa, CA. - Colorants that showed good contrast between the initial color and the color after exposure to hydrogen peroxide vapor are Malachite green oxalate, Methyl violet 2B, New fuchsin, Quinea green B, Thionin, Meldolas blue, Lissamine green B, and Alkali blue 6B.
- Another set of preferred colorants for chemical indicators become colorless after exposure in the STERRAD™ Sterilizer or to the more concentrated hydrogen peroxide in a desiccator. Examples of these colorants include Toluidine blue O, Luxol brilliant green BL, and Brilliant green.
- A cellulose acetate butyrate binder was prepared by dissolving 15 grams of the cellulose acetate butyrate grade 553-0.4 resin (commercially available from Eastman Chemical Company, Kingsport, Tenn.) in 100 milliliters of methyl ethyl ketone. Indicator compositions were prepared by dissolving a sufficient amount (approximately 0.1 gram or more 0.1 wt-% to 5 wt-% of the colorants listed in Table 2 to give a good color in 15 milliliters of the binder.
- The resulting indicator composition was coated as described for Example 1. Each indicator composition was exposed to a full cycle of a hydrogen peroxide plasma sterilization procedure in a STERRAD™ 100SI GMP Sterilizer as described in Example 1. The results for each indicator composition are described in Table 2.
- As in Example 1 some of the colorants were either the same color as they were initially or only slightly lighter, so another set of indicators were exposed to a higher concentration of hydrogen peroxide to determine if changing concentration would effect the results. The results for each indicator composition are also described in Table 2.
-
TABLE 2 Indicator Compositions Color Color Color Change Run Colorant Index Initial Change when in Desiccator No. Colorant Class No. Color When in Sterilizer (30% H2O2) 20 Spirit soluble HLK BASF Green No Change Slightly Lighter 21 Victoria green S extra Dark green Almost Colorless Very Pale green 22 1Acid violet 17 Methane 42650 Purple No Change Lighter 23 1Eriochrome black T Monazo 14645 D Brown Slightly Lighter None 24 1Eriochrome blue black B Monazo 14640 Dark lilac Lighter Very Pale beige 25 D & C green no. 2 Green/blue Pale green Pale green 26 Spirit soluble fast RR Purple Slightly Lighter No Change 27 Spirit soluble fast red 3B Fuchsia Slightly Lighter Lighter 28 D & C red no. 22 Pink No Change Slightly Lighter 29 1Nitro red Monazo None Lilac Lighter Lighter 30 1Congo red Diazo 22120 Light red Darker Blue orange 31 1Brilliant cresyl blue ALD Oxazine Light blue No Change Lighter 32 1Arsenazo 1 Monazo None Very pale No Change Lighter pink 33 1Basic red 29 Monazo 11460 Dark bold No Change Lighter pink 34 1Bismarck brown R Diazo 21010 Brown/gold No Change Significantly Lighter 35 Methylene violet Light purple Darker Colorless 36 1Methylene violet 3RAX Diazine 50206 Fuchsia No Change Light pink 37 1Mordant brown 1 Diazo 20110 Brown Lighter None 38 1Reactive black 5 Diazo 20505 Very pale No Change Light gray blue lilac 39 1Mordant brown 48 Monoazo 11300 Red/brown Slightly Lighter Significantly Lighter 40 2Acid brown AX987 Lilac Light blue Light blue 41 2Acid violet AX990 41001 Dark lavender Blue Blue 42 2Basic red 15 Red/pink Lighter Pale pink 43 Mordant red 19 Beige Lighter Lighter 44 1Bromopyrogallol red Methane None Lilac Pale beige Colorless 1Commercially available from Sigma-Aldrich Fine Chemicals, St. Louis, MO. 2Commercially available from Spectra, Kearny, NJ. 3Commercially available from ICN Biomedicals, Costa Mesa, CA. - Colorants that showed good contrast between the initial color and the color after exposure to hydrogen peroxide vapor are Eriochrome blue black B, Congo red, Bismarck brown R, and Methylene violet 3RAX.
- Another set of preferred colorants for chemical indicators become colorless after exposure in the STERRAD™ Sterilizer or to the more concentrated hydrogen peroxide in a desiccator. Examples of these colorants include Victoria green S extra, Methylene violet, and Bromopyrogallol red.
- The colorants listed in Table 3A were used to make chemical indicators as described in Example 1, while the colorants listed in Table 3B were used to make chemical indicators as described in Example 2. Each indicator composition was exposed to a full cycle of a hydrogen peroxide plasma sterilization procedure in a STERRAD™ 100SI GMP Sterilizer as described in Example 1. The results for each indicator composition are described in Table 3A or 3B.
- As in Example 1, some of the colorants were either the same color as they were initially or only slightly lighter. Thus, another set of indicators were exposed to a higher concentration of hydrogen peroxide to determine if changing concentration would effect the results. The results for each indicator composition are also described in Table 3A or 3B.
-
TABLE 3A Colorants for Indicator Compositions Color Color Change Run Colorant Index Initial Color Change in Desiccator No. Colorant Class No. Color in Sterilizer (30% H2O2) 1 1Brilliant blue G (Acid Blue 90 or Methane 42655 Blue No Change No Change Coomassie Brilliant Blue G 250) 2 1Acid black 24 Diazo 26370 Grey No Change No Change 3 2Patent blue violet Methane Blue No Change No Change 4 1Disperse red 13 (Celliton Scarlet B) Monoazo 11115 Purple No Change No Change 5 1Sudan black B Diazo 26150 Blue/Black No Change No Change 6 1Janus green B Monoazo 11050 Blue No Change No Change 7 1Acridine orange base (Solvent Acridine 46005 Orange No Change No Change Orange 15) 8 1Fast green FCF (Food Green 3) Methane 42053 Blue (teal) No Change No Change 9 1Patent blue VF (Acid Blue 1) Methane 42045 Dark blue No Change 1Commercially available from Sigma-Aldrich Fine Chemicals, St. Louis, MO. 2Commercially available from ICN Biomedicals, Costa Mesa, CA. -
TABLE 3B Colorants for Indicator Compositions Color Color Color Change in Run Index Initial Change in Desiccator (30% No. Colorant Colorant Class No. Color Sterilizer H2O2) 10 1Acid red 97 Diazo 22890 Red/orange No Change No Change 11 1Sulforhodamine B Xanthene 45100 Dark pink No Change No Change 12 Xylenol orange sodium salt Light pink No Change No Change 13 Azure B Pale blue No Change No Change 14 Spirit soluble fast yellow G Yellow No Change No Change 15 3Keystone soap fluoro green Blue/green No Change No Change 16 3Calco oil blue N None Blue No Change No Change 17 3Oil blue A Light blue No Change No Change 18 3Calco oil green Green No Change No Change 19 3D & C red no. 33 Monoazo 17200 Pink No Change No Change 20 3D & C green no. 5 Anthraquinone 61570 Pale blue No Change No Change 21 Bordeaux R Light pink No Change No Change 22 1Xylenol cyanole FF Methane 42135 Blue No Change No Change 23 Crystal scarlet Light pink No Change No Change 24 Basic blue 41 Dark blue No Change No Change 25 1Evans blue Diazo 23860 Blue No Change No Change 26 1Chicago sky blue 6B Diazo 24410 Blue No Change No Change 27 1Acid blue 113 Diazo 26360 Blue No Change No Change 28 1Acid blue 120 Diazo 26400 Grey/blue No Change 29 Acid red 88 Dark pink No Change No Change 30 Acid red 151 Red/pink No Change No Change 31 1Acid violet 5 Monoazo 18125 Dark No Change No Change lavender 32 1Disperse red 1 Monoazo 11110 Red/orange No Change No Change 33 Direct red 81 Pale pink No Change No Change 34 1Disperse red 19 Monoazo 11130 Dark No Change No Change orange 35 1Sudan red 7B Diazo 26050 Dark pink No Change No Change 36 2Basic red 73 Light red No Change No Change 37 3Acid green AX986 Lime green No Change No Change 1Commercially available from Sigma-Aldrich Fine Chemicals, St. Louis, MO. 2Commercially available from Spectra, Kearny, NJ. 3Commercially available from ICN Biomedicals, Costa Mesa, CA. - A preferred composition was prepared as described in Example 1 using the components and the amounts given in Table 4. The resulting indicator composition was coated as described for Example 1. Each indicator composition was exposed to a full cycle of a hydrogen peroxide plasma sterilization procedure in a STERRAD™ 100SI GMP Sterilizer as described in Example 1.
-
TABLE 4 Indicator Composition Weight Percent Shellac Binder 70.2 Rhoplex I-545 Water based 23.0 Acrylic Polymer Resin Alkali Blue 6B 00.6 Quinacridone red 19 available 00.3 as Sunfast Red 19 Triethanolamine 02.0 Isopropanol 03.9 - Colorants that become colorless after exposure in the STERRAD™ Sterilizer or to the more concentrated hydrogen peroxide in a desiccator can be used in combination with dyes or pigments which are stable to hydrogen peroxide to give a chemical indicator with a suitable contrasting color change. For example, Alkali blue 6B plus a red unreactive dye such as Quinacridone red 19 (commercially available as Sunfast Red 19 from Sun Chemical Corporation, Cincinnati, Ohio) showed a color change from blue (initial) to pink after exposure in the STERRAD™ Sterilizer. Another example was made by combining Brilliant green and Auramine O (commercially available from Sigma Aldrich Fine Chemicals, St. Louis, Mo.) which showed a color change from bright green (initial) to bright yellow after exposure in the STERRAD™ Sterilizer.
- The complete disclosures of the patents, patent documents, and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows.
Claims (4)
1. A hydrogen peroxide sterilization indicator comprising a substrate and an indicator composition disposed thereon, wherein the indicator composition comprises:
at least one first colorant that becomes substantially colorless or changes to a different color upon exposure to hydrogen peroxide; and
at least one second colorant that does not change color upon exposure to hydrogen peroxide;
wherein exposure to hydrogen peroxide comprises exposing the indicator to an atmosphere containing about 6 mg/L to about 7 mg/L hydrogen peroxide in an empty chamber at a pressure of about 8×102 Pa to about 13.3×102 Pa and a temperature of about 45° C. to about 50° C. for a period of at least about 50 minutes.
2. The hydrogen peroxide sterilization indicator of claim 1 , wherein the indicator composition does not significantly fade upon exposure to room lighting.
3. The hydrogen peroxide sterilization indicator of claim 2 , wherein the indicator composition does not significantly fade upon exposure to room lighting for two months.
4. The hydrogen peroxide sterilization indicator of claim 1 , wherein the indicator composition does not significantly fade upon exposure to sunlight through a window for one week.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/359,783 US20090129977A1 (en) | 1999-12-02 | 2009-01-26 | Hydrogen peroxide indicator and method |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/453,726 US6790411B1 (en) | 1999-12-02 | 1999-12-02 | Hydrogen peroxide indicator and method |
| US10/890,612 US7481975B2 (en) | 1999-12-02 | 2004-07-14 | Hydrogen peroxide indicator and method |
| US12/359,783 US20090129977A1 (en) | 1999-12-02 | 2009-01-26 | Hydrogen peroxide indicator and method |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/890,612 Continuation US7481975B2 (en) | 1999-12-02 | 2004-07-14 | Hydrogen peroxide indicator and method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090129977A1 true US20090129977A1 (en) | 2009-05-21 |
Family
ID=23801808
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/453,726 Expired - Lifetime US6790411B1 (en) | 1999-12-02 | 1999-12-02 | Hydrogen peroxide indicator and method |
| US10/890,612 Expired - Fee Related US7481975B2 (en) | 1999-12-02 | 2004-07-14 | Hydrogen peroxide indicator and method |
| US12/359,783 Abandoned US20090129977A1 (en) | 1999-12-02 | 2009-01-26 | Hydrogen peroxide indicator and method |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/453,726 Expired - Lifetime US6790411B1 (en) | 1999-12-02 | 1999-12-02 | Hydrogen peroxide indicator and method |
| US10/890,612 Expired - Fee Related US7481975B2 (en) | 1999-12-02 | 2004-07-14 | Hydrogen peroxide indicator and method |
Country Status (6)
| Country | Link |
|---|---|
| US (3) | US6790411B1 (en) |
| EP (1) | EP1236040A1 (en) |
| JP (1) | JP2003515744A (en) |
| AU (1) | AU776092B2 (en) |
| CA (1) | CA2392068A1 (en) |
| WO (1) | WO2001040792A1 (en) |
Families Citing this family (58)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6355448B1 (en) | 1998-06-02 | 2002-03-12 | 3M Innovative Properties Company | Sterilization indicator with chemically stabilized enzyme |
| US7045343B2 (en) | 1998-06-02 | 2006-05-16 | 3M Innovative Properties Company | Sterilization indicator test packs |
| US6790411B1 (en) | 1999-12-02 | 2004-09-14 | 3M Innovative Properties Company | Hydrogen peroxide indicator and method |
| US7192554B2 (en) * | 2001-12-31 | 2007-03-20 | 3M Innovative Properties Company | Hydrogen peroxide and peracetic acid indicators and methods |
| AU2003221061A1 (en) * | 2003-03-31 | 2004-10-25 | Fujimori Kogyo Co., Ltd. | Indicator for plasma sterilization and packaging material for sterilization |
| US7186373B2 (en) * | 2003-07-22 | 2007-03-06 | Steris Inc. | Visual detector for vaporized hydrogen peroxide |
| JP4671717B2 (en) * | 2004-03-30 | 2011-04-20 | 株式会社サクラクレパス | Ozone gas detection ink composition and ozone gas detection indicator |
| JP2011081007A (en) * | 2004-03-30 | 2011-04-21 | Sakura Color Products Corp | Ink composition for sensing hydrogen peroxide gas and hydrogen peroxide gas indicator |
| US7682696B2 (en) | 2004-09-13 | 2010-03-23 | Sabic Innovative Plastics Ip B.V. | Medical article and method of making and using the same |
| CN100368483C (en) * | 2004-11-29 | 2008-02-13 | 明德国际仓储贸易(上海)有限公司 | Dye component and its use |
| JP4690027B2 (en) * | 2004-12-17 | 2011-06-01 | 独立行政法人科学技術振興機構 | Method for measuring protease activity and reagent therefor |
| US8187533B2 (en) * | 2004-12-21 | 2012-05-29 | Parah, Llc | Descenting systems and methods |
| US7939015B1 (en) | 2004-12-21 | 2011-05-10 | Parah, Llc | Method of descenting hunter's clothing |
| US8329096B2 (en) | 2004-12-21 | 2012-12-11 | Parah, Llc | Systems and methods for detecting descented material |
| US20070212253A1 (en) | 2004-12-21 | 2007-09-13 | Elrod Scott A | Descenting systems and methods |
| US20100289655A1 (en) * | 2004-12-21 | 2010-11-18 | Elrod Scott A | Detecting descented material |
| US8257648B2 (en) | 2004-12-21 | 2012-09-04 | Scott Elrod | System and method for reducing odors in a blind |
| US8067350B2 (en) | 2005-12-15 | 2011-11-29 | Kimberly-Clark Worldwide, Inc. | Color changing cleansing composition |
| US20070218562A1 (en) * | 2006-03-20 | 2007-09-20 | Shulong Li | Color indicator for halamine treated fabric |
| US7939340B2 (en) * | 2006-06-28 | 2011-05-10 | Board Of Trustees Of Michigan State University | Hydroxyl radical detection |
| US20080021392A1 (en) * | 2006-07-20 | 2008-01-24 | Lurvey Kent L | Medical fluid access site with antiseptic indicator |
| US20080107564A1 (en) | 2006-07-20 | 2008-05-08 | Shmuel Sternberg | Medical fluid access site with antiseptic indicator |
| JP4970542B2 (en) * | 2006-08-16 | 2012-07-11 | ノバルティス アーゲー | Temporal photobleaching of colored lens care solutions and their use |
| US9134285B2 (en) | 2006-11-30 | 2015-09-15 | Sensor International, Llc | Apparatus with timed color change indication |
| US20080129960A1 (en) | 2006-11-30 | 2008-06-05 | Gregory Lee Heacock | Disposable ophthalmic/medical apparatus with timed color change indication |
| JP5118389B2 (en) * | 2007-05-26 | 2013-01-16 | 中村製作所株式会社 | Method for forming recess in workpiece |
| US7850925B2 (en) * | 2007-06-15 | 2010-12-14 | American Sterilizer Company | Apparatus for removal of vaporized hydrogen peroxide from a region |
| US8858887B2 (en) | 2007-07-19 | 2014-10-14 | Steris, Inc. | Integrated chemical indicator device |
| USRE47452E1 (en) | 2007-07-20 | 2019-06-25 | Baxter International Inc. | Antimicrobial housing and cover for a medical device |
| US9125973B2 (en) | 2007-07-20 | 2015-09-08 | Baxter International Inc. | Antimicrobial housing and cover for a medical device |
| WO2009104053A2 (en) | 2007-09-29 | 2009-08-27 | Timothy James Williams | Composition and method to modify sperm function and increase male gender ratio in mammals |
| US20100292575A1 (en) * | 2009-05-15 | 2010-11-18 | General Electric Company | Device and method for identifying tampering of an ultrasound probe |
| GB2492819A (en) * | 2011-07-13 | 2013-01-16 | Bioquell Uk Ltd | Indicators for confirming decontamination treatment of chemical/biological warfare agents |
| US8663998B2 (en) | 2011-12-09 | 2014-03-04 | Gregory L. Heacock | Color changeable dyes for indicating exposure, methods of making and using such dyes, and apparatuses incorporating such dyes |
| US20140271345A1 (en) * | 2013-03-15 | 2014-09-18 | Michael Pavesi | Sterilization Indicator Tapes, Labels and other Apparatus Made Free of Cellulose, Latex, Lead and Heavy Metals |
| US9457115B2 (en) * | 2013-05-31 | 2016-10-04 | Avent, Inc. | Recyclable indicator tape for sterilization |
| US9746421B2 (en) | 2013-09-26 | 2017-08-29 | Sensor International, Llc | Apparatuses, indicators, methods and kits with timed color change indication |
| CN104634960B (en) * | 2013-11-11 | 2016-06-29 | 北京普析通用仪器有限责任公司 | The preparation method of a kind of immune magnetic microsphere and the tonyred detection kit containing immune magnetic microsphere and detection method |
| US10401338B2 (en) | 2014-02-14 | 2019-09-03 | Sakura Color Products Corporation | Plasma processing detection indicator |
| JP6337235B2 (en) * | 2014-02-27 | 2018-06-06 | 学校法人東海大学 | Medical indicator and medical sterilization container |
| JP2015205995A (en) | 2014-04-21 | 2015-11-19 | 株式会社サクラクレパス | Ink composition for plasma treatment detection and plasma treatment detection indicator |
| JP6474390B2 (en) | 2014-05-09 | 2019-02-27 | 株式会社サクラクレパス | Plasma treatment detection indicator using inorganic substance as discoloration layer |
| US11467422B2 (en) | 2014-05-30 | 2022-10-11 | Sensor International, Llc | Carbon dioxide sensing color changeable dyes for indicating exposure, methods of making and using such dyes, and apparatuses incorporating such dye |
| CN104049051A (en) * | 2014-06-18 | 2014-09-17 | 南京麦思德餐饮管理有限公司 | Pretreatment method for detecting rose pink R in candies |
| JP6567863B2 (en) | 2014-09-16 | 2019-08-28 | 株式会社サクラクレパス | Ink composition for detecting plasma treatment and indicator for detecting plasma treatment |
| JP2016078331A (en) * | 2014-10-17 | 2016-05-16 | 株式会社サクラクレパス | Plasma treatment detection indicator |
| JP6567817B2 (en) | 2014-12-02 | 2019-08-28 | 株式会社サクラクレパス | Plasma treatment detection ink composition and plasma treatment detection indicator using the same |
| US12220284B2 (en) | 2016-10-17 | 2025-02-11 | Thermographic Measurements Limited | Color sensor with gas generating layer |
| CN110072562A (en) | 2016-12-08 | 2019-07-30 | 3M创新有限公司 | process monitoring device |
| US10823715B2 (en) * | 2017-07-19 | 2020-11-03 | American Sterilizer Company | Chemical indicator for monitoring hydrogen peroxide sterilization and disinfection processes |
| US12306154B2 (en) | 2017-12-05 | 2025-05-20 | Thermographic Measurements Limited | Meltable color changeable indicators with organic polymer cores and methods of making such meltable indicators and composites thereof |
| US10759976B2 (en) | 2018-03-23 | 2020-09-01 | Sensor International, Llc | Color changeable adhesives and methods of making such adhesives |
| US11346786B2 (en) | 2018-10-09 | 2022-05-31 | Sensor International, Llc | High pressure sensitive color changeable indicators and methods of making such indicators |
| US12251489B2 (en) | 2018-12-21 | 2025-03-18 | Solventum Intellectual Properties Company | Sterilization chemical indicator |
| US12405256B2 (en) | 2019-04-26 | 2025-09-02 | Solventum Intellectual Properties Company | Chemical hydrogen peroxide indicator |
| CA3138103A1 (en) | 2019-04-26 | 2020-10-29 | 3M Innovative Properties Company | Process and device for generating a moving front within a sterilization monitoring device and uses thereof |
| US11603551B2 (en) | 2020-12-02 | 2023-03-14 | Steritec Products Mfg. Co., Inc. | Biological indicators, and systems and methods for determining efficacy of sterilization |
| US11680181B1 (en) | 2021-09-29 | 2023-06-20 | W. Thomas Forlander | Industrial coating with color-change responsivity to acid and base contact |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4298569A (en) * | 1977-03-11 | 1981-11-03 | Minnesota Mining And Manufacturing Company | Steam-formaldehyde sterilization indicator |
| US4863627A (en) * | 1985-03-25 | 1989-09-05 | University Of Bath | Cleaning and/or disinfection of contact lenses |
| US5378430A (en) * | 1993-10-07 | 1995-01-03 | Pymah Corporation | Steam sterilization process monitor |
| US5955025A (en) * | 1997-04-30 | 1999-09-21 | Tempil, Inc. | Chemical vapor sterilization indicating materials |
Family Cites Families (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE273775C (en) | ||||
| DE273776C (en) | ||||
| GB1411287A (en) | 1972-07-12 | 1975-10-22 | Agfa Gevaert | Liquid electrophotographic developers |
| US4046577A (en) * | 1975-06-09 | 1977-09-06 | The Richardson Company | Photoreactive compositions comprising polymers containing alkoxyaromatic glyoxy groups |
| US4155895A (en) | 1978-05-30 | 1979-05-22 | American Can Company | Thermotropic ink |
| US4362645A (en) * | 1978-09-28 | 1982-12-07 | Akzona, Inc. | Temperature indicating compositions of matter |
| US4756882A (en) | 1985-06-21 | 1988-07-12 | Surgikos Inc. | Hydrogen peroxide plasma sterilization system |
| US4643876A (en) | 1985-06-21 | 1987-02-17 | Surgikos, Inc. | Hydrogen peroxide plasma sterilization system |
| US4731222A (en) * | 1986-02-06 | 1988-03-15 | Innovative Medical Technologies | Automated liquid sterilization system |
| US4756758A (en) * | 1987-04-24 | 1988-07-12 | Videojet Systems International, Inc. | Thermochromic jet ink |
| US4855228A (en) * | 1987-09-11 | 1989-08-08 | Miles Inc. | Multiple oxidative indicator system for visual determination of hydrogen peroxide |
| US4956145A (en) | 1987-12-30 | 1990-09-11 | American Sterilizer Company | Optimum hydrogen peroxide vapor sterilization method |
| DD273776A1 (en) | 1988-07-06 | 1989-11-29 | Erfurt Medizinische Akademie | CONTROL INDICATOR FOR GAS STERILIZATION |
| DD273775A1 (en) | 1988-07-06 | 1989-11-29 | Erfurt Medizinische Akademie | STERILIZATION INDICATOR FOR GAS STERILIZATION |
| JPH0297575A (en) * | 1988-09-30 | 1990-04-10 | Sakura Color Prod Corp | Sterilization-indicating ink composition for ink jet recording |
| US5053339A (en) * | 1988-11-03 | 1991-10-01 | J P Labs Inc. | Color changing device for monitoring shelf-life of perishable products |
| US5420000A (en) * | 1990-04-09 | 1995-05-30 | Jp Laboratories, Inc. | Heat fixable high energy radiation imaging film |
| US5139957A (en) | 1990-05-24 | 1992-08-18 | American Sterilizer Company | Chemical indicator that includes potassium dichromate and urea and method of using the same to detect hydrogen peroxide |
| WO1992022806A1 (en) | 1991-06-17 | 1992-12-23 | Serim Research Corporation | Test for per acids |
| US5445792A (en) | 1992-03-13 | 1995-08-29 | American Sterilizer Company | Optimum hydrogen peroxide vapor sterlization method |
| US5352282A (en) | 1992-07-31 | 1994-10-04 | Binney & Smith, Inc. | Color changing compositions |
| US5620656A (en) | 1993-08-25 | 1997-04-15 | Abtox, Inc. | Packaging systems for peracid sterilization processes |
| US5482684A (en) | 1994-05-03 | 1996-01-09 | Abtox, Inc. | Vessel useful for monitoring plasma sterilizing processes |
| US5518927A (en) * | 1994-08-17 | 1996-05-21 | Steris Corporation | Instrument sterilation life-span indicator |
| US5990199A (en) | 1995-04-19 | 1999-11-23 | North American Science Associates, Inc. | Indicator ink compositions |
| AU6852198A (en) * | 1997-04-17 | 1998-11-11 | Fujimori Kogyo Co. Ltd. | Chemical indicator sheets and packaging bags for sterilization made with the useof the same |
| JP3290132B2 (en) * | 1997-04-17 | 2002-06-10 | エシコン・インコーポレイテッド | Composition for chemical indicator and sheet to which the composition is adhered |
| US6063631A (en) | 1997-05-21 | 2000-05-16 | 3M Innovative Properties Company | Sterilization indicator |
| US6238623B1 (en) | 1997-05-21 | 2001-05-29 | 3M Innovative Properties Company | Labels and tracking systems for sterilization procedures |
| US6287518B1 (en) * | 1997-06-25 | 2001-09-11 | 3M Innovative Properties Company | Sterilization monitors |
| US5942438A (en) | 1997-11-07 | 1999-08-24 | Johnson & Johnson Medical, Inc. | Chemical indicator for oxidation-type sterilization processes using bleachable dyes |
| JP3435505B2 (en) | 1997-12-22 | 2003-08-11 | 株式会社ホギメディカル | Indicator for plasma sterilization |
| USD433511S (en) * | 1998-03-24 | 2000-11-07 | 3M Innovative Properties Company | Sterilization indicator with a transparent portion |
| US6352837B1 (en) | 1999-02-22 | 2002-03-05 | 3M Innovative Properties Company | Rapid readout sterilization indicator for liquid peracetic acid sterilization procedures |
| AU4336700A (en) | 1999-04-13 | 2000-11-14 | Gordhanbhai N. Patel | Indicators for monitoring sterilization with plasma |
| US6410338B1 (en) | 1999-05-14 | 2002-06-25 | Ethicon, Inc. | Method of indicating an oxidizing agent |
| DE19925120A1 (en) | 1999-06-01 | 2000-12-07 | Intermedical S A H | Method for the qualitative and quantitative determination of peroxides, especially hydrogen peroxide |
| US6488890B1 (en) * | 1999-08-05 | 2002-12-03 | 3M Innovative Properties Company | Machine readable sterilization indicator for monitoring articles to be sterilized |
| USD439344S1 (en) * | 1999-10-06 | 2001-03-20 | 3M Innovative Properties Company | Sterilization indicator for sterilization process |
| USD438980S1 (en) * | 1999-10-06 | 2001-03-13 | 3M Innovative Properties Company | Sterilization indicator for a hydrogen peroxide plasma sterilization process |
| US6790411B1 (en) | 1999-12-02 | 2004-09-14 | 3M Innovative Properties Company | Hydrogen peroxide indicator and method |
| US7192554B2 (en) | 2001-12-31 | 2007-03-20 | 3M Innovative Properties Company | Hydrogen peroxide and peracetic acid indicators and methods |
-
1999
- 1999-12-02 US US09/453,726 patent/US6790411B1/en not_active Expired - Lifetime
-
2000
- 2000-11-20 CA CA002392068A patent/CA2392068A1/en not_active Abandoned
- 2000-11-20 WO PCT/US2000/031847 patent/WO2001040792A1/en not_active Ceased
- 2000-11-20 EP EP00982165A patent/EP1236040A1/en not_active Withdrawn
- 2000-11-20 AU AU19230/01A patent/AU776092B2/en not_active Ceased
- 2000-11-20 JP JP2001542203A patent/JP2003515744A/en active Pending
-
2004
- 2004-07-14 US US10/890,612 patent/US7481975B2/en not_active Expired - Fee Related
-
2009
- 2009-01-26 US US12/359,783 patent/US20090129977A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4298569A (en) * | 1977-03-11 | 1981-11-03 | Minnesota Mining And Manufacturing Company | Steam-formaldehyde sterilization indicator |
| US4863627A (en) * | 1985-03-25 | 1989-09-05 | University Of Bath | Cleaning and/or disinfection of contact lenses |
| US5378430A (en) * | 1993-10-07 | 1995-01-03 | Pymah Corporation | Steam sterilization process monitor |
| US5955025A (en) * | 1997-04-30 | 1999-09-21 | Tempil, Inc. | Chemical vapor sterilization indicating materials |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1236040A1 (en) | 2002-09-04 |
| US20040265170A1 (en) | 2004-12-30 |
| CA2392068A1 (en) | 2001-06-07 |
| WO2001040792A1 (en) | 2001-06-07 |
| JP2003515744A (en) | 2003-05-07 |
| AU776092B2 (en) | 2004-08-26 |
| AU1923001A (en) | 2001-06-12 |
| US6790411B1 (en) | 2004-09-14 |
| US7481975B2 (en) | 2009-01-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7481975B2 (en) | Hydrogen peroxide indicator and method | |
| US7897403B2 (en) | Hydrogen peroxide and peracetic acid indicators and methods | |
| EP1378746B1 (en) | Sterilization indicator | |
| US5955025A (en) | Chemical vapor sterilization indicating materials | |
| EP0821714B1 (en) | Indicator ink | |
| KR100979769B1 (en) | Indicator for plasma sterilization and packaging material for sterilization | |
| CN113767276B (en) | Chemical hydrogen peroxide indicator | |
| JP2002071570A (en) | Indicators for plasma sterilization and packaging materials for sterilization | |
| JP2003102811A (en) | Indicator for plasma sterilization and packaging material for sterilization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |