US20090118221A1 - Method of treating arrhythmias - Google Patents
Method of treating arrhythmias Download PDFInfo
- Publication number
- US20090118221A1 US20090118221A1 US12/351,731 US35173109A US2009118221A1 US 20090118221 A1 US20090118221 A1 US 20090118221A1 US 35173109 A US35173109 A US 35173109A US 2009118221 A1 US2009118221 A1 US 2009118221A1
- Authority
- US
- United States
- Prior art keywords
- optionally substituted
- cvt
- pharmaceutical composition
- beta blocker
- esmolol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 206010003119 arrhythmia Diseases 0.000 title claims abstract description 30
- 230000006793 arrhythmia Effects 0.000 title claims abstract description 28
- 239000002876 beta blocker Substances 0.000 claims abstract description 52
- 229940097320 beta blocking agent Drugs 0.000 claims abstract description 52
- 239000003379 purinergic P1 receptor agonist Substances 0.000 claims abstract description 18
- 229940127291 Calcium channel antagonist Drugs 0.000 claims abstract description 16
- 239000000480 calcium channel blocker Substances 0.000 claims abstract description 16
- 229940097217 cardiac glycoside Drugs 0.000 claims abstract description 16
- 239000002368 cardiac glycoside Substances 0.000 claims abstract description 16
- 229930002534 steroid glycoside Natural products 0.000 claims abstract description 16
- 229940122614 Adenosine receptor agonist Drugs 0.000 claims abstract description 15
- LPMXVESGRSUGHW-HBYQJFLCSA-N ouabain Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]1C[C@@]2(O)CC[C@H]3[C@@]4(O)CC[C@H](C=5COC(=O)C=5)[C@@]4(C)C[C@@H](O)[C@@H]3[C@@]2(CO)[C@H](O)C1 LPMXVESGRSUGHW-HBYQJFLCSA-N 0.000 claims abstract description 10
- -1 3-tetrahydrofuranyl Chemical group 0.000 claims description 61
- OESBDSFYJMDRJY-BAYCTPFLSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-[6-[[(3r)-oxolan-3-yl]amino]purin-9-yl]oxolane-3,4-diol Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(N[C@H]3COCC3)=C2N=C1 OESBDSFYJMDRJY-BAYCTPFLSA-N 0.000 claims description 57
- 150000001875 compounds Chemical class 0.000 claims description 53
- 125000001072 heteroaryl group Chemical group 0.000 claims description 46
- 229960003745 esmolol Drugs 0.000 claims description 38
- AQNDDEOPVVGCPG-UHFFFAOYSA-N esmolol Chemical compound COC(=O)CCC1=CC=C(OCC(O)CNC(C)C)C=C1 AQNDDEOPVVGCPG-UHFFFAOYSA-N 0.000 claims description 38
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 claims description 30
- 125000000623 heterocyclic group Chemical group 0.000 claims description 26
- 239000008194 pharmaceutical composition Substances 0.000 claims description 26
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 25
- 241000124008 Mammalia Species 0.000 claims description 23
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 17
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 125000002252 acyl group Chemical group 0.000 claims description 15
- 229960003712 propranolol Drugs 0.000 claims description 15
- 125000002947 alkylene group Chemical group 0.000 claims description 14
- 125000003107 substituted aryl group Chemical group 0.000 claims description 11
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical group CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 claims description 10
- 229960002274 atenolol Drugs 0.000 claims description 10
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 10
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims description 10
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical group C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 9
- ZBMZVLHSJCTVON-UHFFFAOYSA-N sotalol Chemical compound CC(C)NCC(O)C1=CC=C(NS(C)(=O)=O)C=C1 ZBMZVLHSJCTVON-UHFFFAOYSA-N 0.000 claims description 6
- 229960002370 sotalol Drugs 0.000 claims description 6
- IZRXENCTXNMAMI-NIKQVSCUSA-N (2s,3s,4r)-2-[(2-fluorophenyl)sulfanylmethyl]-5-[6-[[(1r,2r)-2-hydroxycyclopentyl]amino]purin-9-yl]oxolane-3,4-diol Chemical compound O[C@@H]1CCC[C@H]1NC1=NC=NC2=C1N=CN2C1[C@H](O)[C@H](O)[C@@H](CSC=2C(=CC=CC=2)F)O1 IZRXENCTXNMAMI-NIKQVSCUSA-N 0.000 claims description 3
- 125000004198 2-fluorophenyl group Chemical group [H]C1=C([H])C(F)=C(*)C([H])=C1[H] 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- MRWXACSTFXYYMV-FDDDBJFASA-N nebularine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC=C2N=C1 MRWXACSTFXYYMV-FDDDBJFASA-N 0.000 claims description 3
- 150000002431 hydrogen Chemical group 0.000 claims 4
- 125000001475 halogen functional group Chemical group 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 43
- 125000000217 alkyl group Chemical group 0.000 description 53
- 125000003118 aryl group Chemical group 0.000 description 41
- 239000000203 mixture Substances 0.000 description 39
- 125000001424 substituent group Chemical group 0.000 description 34
- 125000003545 alkoxy group Chemical group 0.000 description 25
- 229910052736 halogen Inorganic materials 0.000 description 23
- 150000002367 halogens Chemical class 0.000 description 23
- IZRXENCTXNMAMI-DIJFLQFKSA-N (2s,3s,4r,5r)-2-[(2-fluorophenyl)sulfanylmethyl]-5-[6-[[(1r,2r)-2-hydroxycyclopentyl]amino]purin-9-yl]oxolane-3,4-diol Chemical compound O[C@@H]1CCC[C@H]1NC1=NC=NC2=C1N=CN2[C@H]1[C@H](O)[C@H](O)[C@@H](CSC=2C(=CC=CC=2)F)O1 IZRXENCTXNMAMI-DIJFLQFKSA-N 0.000 description 20
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 20
- 125000003342 alkenyl group Chemical group 0.000 description 19
- 125000000753 cycloalkyl group Chemical group 0.000 description 19
- 241001465754 Metazoa Species 0.000 description 18
- 150000001412 amines Chemical class 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 125000000392 cycloalkenyl group Chemical group 0.000 description 17
- 229960002237 metoprolol Drugs 0.000 description 17
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 17
- 125000000304 alkynyl group Chemical group 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 14
- 241000700159 Rattus Species 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 11
- 239000004480 active ingredient Substances 0.000 description 11
- 229960005305 adenosine Drugs 0.000 description 11
- 239000000556 agonist Substances 0.000 description 10
- 125000004414 alkyl thio group Chemical group 0.000 description 10
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 10
- 125000004181 carboxyalkyl group Chemical group 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 229940090044 injection Drugs 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 229930194542 Keto Natural products 0.000 description 9
- 125000004442 acylamino group Chemical group 0.000 description 9
- 125000004423 acyloxy group Chemical group 0.000 description 9
- 125000005110 aryl thio group Chemical group 0.000 description 9
- 125000004104 aryloxy group Chemical group 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 125000005553 heteroaryloxy group Chemical group 0.000 description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 9
- 125000000468 ketone group Chemical group 0.000 description 9
- 230000036470 plasma concentration Effects 0.000 description 9
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 9
- 150000003573 thiols Chemical class 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 8
- 125000000033 alkoxyamino group Chemical group 0.000 description 8
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 8
- 125000006598 aminocarbonylamino group Chemical group 0.000 description 8
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 8
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 8
- 125000005368 heteroarylthio group Chemical group 0.000 description 8
- 125000004470 heterocyclooxy group Chemical group 0.000 description 8
- 125000004468 heterocyclylthio group Chemical group 0.000 description 8
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 8
- 125000002349 hydroxyamino group Chemical group [H]ON([H])[*] 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 230000036772 blood pressure Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 230000002195 synergetic effect Effects 0.000 description 7
- 206010002091 Anaesthesia Diseases 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 230000037005 anaesthesia Effects 0.000 description 6
- 208000006218 bradycardia Diseases 0.000 description 6
- 230000036471 bradycardia Effects 0.000 description 6
- 231100000673 dose–response relationship Toxicity 0.000 description 6
- 150000008143 steroidal glycosides Chemical class 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- 241000700198 Cavia Species 0.000 description 5
- 206010019280 Heart failures Diseases 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000002582 adenosine A1 receptor agonist Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 235000019439 ethyl acetate Nutrition 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000003204 osmotic effect Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000006187 pill Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 125000005017 substituted alkenyl group Chemical group 0.000 description 5
- MIPHRQMEIYLZFZ-BYPYZUCNSA-N (3s)-oxolan-3-amine Chemical compound N[C@H]1CCOC1 MIPHRQMEIYLZFZ-BYPYZUCNSA-N 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 208000018452 Torsade de pointes Diseases 0.000 description 4
- 208000002363 Torsades de Pointes Diseases 0.000 description 4
- 0 [1*][Y]NC1=C2N=CN(C3O[C@H](CSC[3*])[C@@H](C)[C@H]3C)C2=NC([2*])=N1 Chemical compound [1*][Y]NC1=C2N=CN(C3O[C@H](CSC[3*])[C@@H](C)[C@H]3C)C2=NC([2*])=N1 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000003288 anthiarrhythmic effect Effects 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 210000001715 carotid artery Anatomy 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229930195734 saturated hydrocarbon Natural products 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- 229960001722 verapamil Drugs 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 3
- SKEFGDREBIAUKI-ABLYXCJOSA-N (3r,4s,5s)-2-[6-(cyclopentylamino)purin-9-yl]-5-[(2-fluorophenyl)sulfanylmethyl]oxolane-3,4-diol Chemical compound C([C@@H]1[C@H]([C@H](C(O1)N1C2=NC=NC(NC3CCCC3)=C2N=C1)O)O)SC1=CC=CC=C1F SKEFGDREBIAUKI-ABLYXCJOSA-N 0.000 description 3
- FNZNHBANMXDENA-DQADVMEASA-N 9-[(3ar,4r,6s,6ar)-6-[(2-fluorophenyl)sulfanylmethyl]-2,2-dimethyl-3a,4,6,6a-tetrahydrofuro[3,4-d][1,3]dioxol-4-yl]-6-chloropurine Chemical compound C([C@@H]1[C@@H]2OC(O[C@H]2[C@@H](O1)N1C2=NC=NC(Cl)=C2N=C1)(C)C)SC1=CC=CC=C1F FNZNHBANMXDENA-DQADVMEASA-N 0.000 description 3
- VXGFWCXTHKYBSB-YPHICONVSA-N 9-[(3ar,4r,6s,6ar)-6-[(2-fluorophenyl)sulfanylmethyl]-2,2-dimethyl-3a,4,6,6a-tetrahydrofuro[3,4-d][1,3]dioxol-4-yl]-n-cyclopentylpurin-6-amine Chemical compound C([C@@H]1[C@@H]2OC(O[C@H]2[C@@H](O1)N1C2=NC=NC(NC3CCCC3)=C2N=C1)(C)C)SC1=CC=CC=C1F VXGFWCXTHKYBSB-YPHICONVSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- FIGBCBGMUIGJBD-ABHRNEANSA-N CC1=C2N=CN(C3O[C@H](CO)[C@@H](O)[C@H]3O)C2=NC=N1 Chemical compound CC1=C2N=CN(C3O[C@H](CO)[C@@H](O)[C@H]3O)C2=NC=N1 FIGBCBGMUIGJBD-ABHRNEANSA-N 0.000 description 3
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 210000001992 atrioventricular node Anatomy 0.000 description 3
- XSCHRSMBECNVNS-UHFFFAOYSA-N benzopyrazine Natural products N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 3
- UIEATEWHFDRYRU-UHFFFAOYSA-N bepridil Chemical compound C1CCCN1C(COCC(C)C)CN(C=1C=CC=CC=1)CC1=CC=CC=C1 UIEATEWHFDRYRU-UHFFFAOYSA-N 0.000 description 3
- 229960003665 bepridil Drugs 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 3
- 229960005156 digoxin Drugs 0.000 description 3
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 3
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 3
- 229960004166 diltiazem Drugs 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 229960003299 ketamine Drugs 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 210000005036 nerve Anatomy 0.000 description 3
- 229960002748 norepinephrine Drugs 0.000 description 3
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 3
- 229960001600 xylazine Drugs 0.000 description 3
- HMJIYCCIJYRONP-UHFFFAOYSA-N (+-)-Isradipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)C1C1=CC=CC2=NON=C12 HMJIYCCIJYRONP-UHFFFAOYSA-N 0.000 description 2
- FWMUBGAYBMDTGP-NTFOPCPOSA-N (3s)-2-(7h-purin-6-yl)oxolan-3-amine Chemical compound N[C@H]1CCOC1C1=NC=NC2=C1NC=N2 FWMUBGAYBMDTGP-NTFOPCPOSA-N 0.000 description 2
- MHOVLDXJDIEEMJ-WCCKRBBISA-N (3s)-oxolan-3-amine;hydrochloride Chemical compound Cl.N[C@H]1CCOC1 MHOVLDXJDIEEMJ-WCCKRBBISA-N 0.000 description 2
- MIOPJNTWMNEORI-GMSGAONNSA-M (S)-camphorsulfonate Chemical compound C1C[C@@]2(CS([O-])(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-M 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- UIAGMCDKSXEBJQ-IBGZPJMESA-N 3-o-(2-methoxyethyl) 5-o-propan-2-yl (4s)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)[C@H]1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-IBGZPJMESA-N 0.000 description 2
- RZTAMFZIAATZDJ-HNNXBMFYSA-N 5-o-ethyl 3-o-methyl (4s)-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC(Cl)=C1Cl RZTAMFZIAATZDJ-HNNXBMFYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 240000001879 Digitalis lutea Species 0.000 description 2
- WDJUZGPOPHTGOT-OAXVISGBSA-N Digitoxin Natural products O([C@H]1[C@@H](C)O[C@@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@@](C)([C@H](C6=CC(=O)OC6)CC5)CC4)CC3)CC2)C[C@H]1O)[C@H]1O[C@@H](C)[C@H](O[C@H]2O[C@@H](C)[C@@H](O)[C@@H](O)C2)[C@@H](O)C1 WDJUZGPOPHTGOT-OAXVISGBSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical group CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- NOSIYYJFMPDDSA-UHFFFAOYSA-N acepromazine Chemical compound C1=C(C(C)=O)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 NOSIYYJFMPDDSA-UHFFFAOYSA-N 0.000 description 2
- 229960005054 acepromazine Drugs 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 2
- 229960000528 amlodipine Drugs 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000003416 antiarrhythmic agent Substances 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 230000001746 atrial effect Effects 0.000 description 2
- 206010003668 atrial tachycardia Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- WDJUZGPOPHTGOT-XUDUSOBPSA-N digitoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)CC5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O WDJUZGPOPHTGOT-XUDUSOBPSA-N 0.000 description 2
- 229960000648 digitoxin Drugs 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000012055 enteric layer Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 229960003580 felodipine Drugs 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000002837 heart atrium Anatomy 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 229960002725 isoflurane Drugs 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 229960004427 isradipine Drugs 0.000 description 2
- 210000004731 jugular vein Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 229960001783 nicardipine Drugs 0.000 description 2
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 2
- 229960001597 nifedipine Drugs 0.000 description 2
- 229960000715 nimodipine Drugs 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000004031 partial agonist Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 229940124531 pharmaceutical excipient Drugs 0.000 description 2
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000001242 postsynaptic effect Effects 0.000 description 2
- 238000012746 preparative thin layer chromatography Methods 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 210000005245 right atrium Anatomy 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 125000004426 substituted alkynyl group Chemical group 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 150000003462 sulfoxides Chemical class 0.000 description 2
- 230000002889 sympathetic effect Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 230000002861 ventricular Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- CEMAWMOMDPGJMB-UHFFFAOYSA-N (+-)-Oxprenolol Chemical compound CC(C)NCC(O)COC1=CC=CC=C1OCC=C CEMAWMOMDPGJMB-UHFFFAOYSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- XHRJGHCQQPETRH-KQYNXXCUSA-N (2r,3r,4s,5r)-2-(6-chloropurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(Cl)=C2N=C1 XHRJGHCQQPETRH-KQYNXXCUSA-N 0.000 description 1
- FWMUBGAYBMDTGP-RUQIKYNFSA-N (3r)-2-(7h-purin-6-yl)oxolan-3-amine Chemical compound N[C@@H]1CCOC1C1=NC=NC2=C1NC=N2 FWMUBGAYBMDTGP-RUQIKYNFSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- UUOJIACWOAYWEZ-UHFFFAOYSA-N 1-(tert-butylamino)-3-[(2-methyl-1H-indol-4-yl)oxy]propan-2-yl benzoate Chemical compound C1=CC=C2NC(C)=CC2=C1OCC(CNC(C)(C)C)OC(=O)C1=CC=CC=C1 UUOJIACWOAYWEZ-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- HEWZVZIVELJPQZ-UHFFFAOYSA-N 2,2-dimethoxypropane Chemical compound COC(C)(C)OC HEWZVZIVELJPQZ-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- XHRJGHCQQPETRH-UHFFFAOYSA-N 2-(6-chloropurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound OC1C(O)C(CO)OC1N1C2=NC=NC(Cl)=C2N=C1 XHRJGHCQQPETRH-UHFFFAOYSA-N 0.000 description 1
- FBMYKMYQHCBIGU-UHFFFAOYSA-N 2-[2-hydroxy-3-[[1-(1h-indol-3-yl)-2-methylpropan-2-yl]amino]propoxy]benzonitrile Chemical compound C=1NC2=CC=CC=C2C=1CC(C)(C)NCC(O)COC1=CC=CC=C1C#N FBMYKMYQHCBIGU-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- WJTZZPVVTSDNJJ-UHFFFAOYSA-N 2-fluorobenzenethiol Chemical compound FC1=CC=CC=C1S WJTZZPVVTSDNJJ-UHFFFAOYSA-N 0.000 description 1
- AUVALWUPUHHNQV-UHFFFAOYSA-N 2-hydroxy-3-propylbenzoic acid Chemical class CCCC1=CC=CC(C(O)=O)=C1O AUVALWUPUHHNQV-UHFFFAOYSA-N 0.000 description 1
- VLRSADZEDXVUPG-UHFFFAOYSA-N 2-naphthalen-1-ylpyridine Chemical compound N1=CC=CC=C1C1=CC=CC2=CC=CC=C12 VLRSADZEDXVUPG-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- FQRHOOHLUYHMGG-BTJKTKAUSA-N 3-(2-acetylphenothiazin-10-yl)propyl-dimethylazanium;(z)-4-hydroxy-4-oxobut-2-enoate Chemical compound OC(=O)\C=C/C(O)=O.C1=C(C(C)=O)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 FQRHOOHLUYHMGG-BTJKTKAUSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- GDRVFDDBLLKWRI-UHFFFAOYSA-N 4H-quinolizine Chemical compound C1=CC=CN2CC=CC=C21 GDRVFDDBLLKWRI-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 102000009346 Adenosine receptors Human genes 0.000 description 1
- 108050000203 Adenosine receptors Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003130 Arrhythmia supraventricular Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010003662 Atrial flutter Diseases 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical group C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- FNZNHBANMXDENA-XKLVTHTNSA-N CC1(C)O[C@@H]2[C@@H](CSC3=C(F)C=CC=C3)O[C@@H](N3C=NC4=C(Cl)N=CN=C43)[C@@H]2O1 Chemical compound CC1(C)O[C@@H]2[C@@H](CSC3=C(F)C=CC=C3)O[C@@H](N3C=NC4=C(Cl)N=CN=C43)[C@@H]2O1 FNZNHBANMXDENA-XKLVTHTNSA-N 0.000 description 1
- VDYNZOUPLVQLRV-PUXKXDTASA-N CC1(C)O[C@H]2C(N3C=NC4=C(Cl)N=CN=C43)O[C@H](CO)[C@H]2O1 Chemical compound CC1(C)O[C@H]2C(N3C=NC4=C(Cl)N=CN=C43)O[C@H](CO)[C@H]2O1 VDYNZOUPLVQLRV-PUXKXDTASA-N 0.000 description 1
- 125000006519 CCH3 Chemical group 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108090000312 Calcium Channels Proteins 0.000 description 1
- 102000003922 Calcium Channels Human genes 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- JOATXPAWOHTVSZ-UHFFFAOYSA-N Celiprolol Chemical compound CCN(CC)C(=O)NC1=CC=C(OCC(O)CNC(C)(C)C)C(C(C)=O)=C1 JOATXPAWOHTVSZ-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 102000004016 L-Type Calcium Channels Human genes 0.000 description 1
- 108090000420 L-Type Calcium Channels Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- SOWBFZRMHSNYGE-UHFFFAOYSA-N Monoamide-Oxalic acid Natural products NC(=O)C(O)=O SOWBFZRMHSNYGE-UHFFFAOYSA-N 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- FPYQCRPQHHACND-FOUAAFFMSA-N N[C@@H]1CCOC1C1=NC=C(NC=N2)C2=N1 Chemical compound N[C@@H]1CCOC1C1=NC=C(NC=N2)C2=N1 FPYQCRPQHHACND-FOUAAFFMSA-N 0.000 description 1
- FPYQCRPQHHACND-DSEUIKHZSA-N N[C@H]1CCOC1C1=NC=C(NC=N2)C2=N1 Chemical compound N[C@H]1CCOC1C1=NC=C(NC=N2)C2=N1 FPYQCRPQHHACND-DSEUIKHZSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102000004257 Potassium Channel Human genes 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 206010049447 Tachyarrhythmia Diseases 0.000 description 1
- 208000001871 Tachycardia Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- 206010047281 Ventricular arrhythmia Diseases 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 210000003489 abdominal muscle Anatomy 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 229960001946 acepromazine maleate Drugs 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229940121359 adenosine receptor antagonist Drugs 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 210000000702 aorta abdominal Anatomy 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960003121 arginine Drugs 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 229960004324 betaxolol Drugs 0.000 description 1
- NWIUTZDMDHAVTP-UHFFFAOYSA-N betaxolol Chemical compound C1=CC(OCC(O)CNC(C)C)=CC=C1CCOCC1CC1 NWIUTZDMDHAVTP-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 229960001035 bopindolol Drugs 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 229950005341 bucindolol Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000001964 calcium overload Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 229960003340 calcium silicate Drugs 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000000269 carotid artery external Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229960001222 carteolol Drugs 0.000 description 1
- LWAFSWPYPHEXKX-UHFFFAOYSA-N carteolol Chemical compound N1C(=O)CCC2=C1C=CC=C2OCC(O)CNC(C)(C)C LWAFSWPYPHEXKX-UHFFFAOYSA-N 0.000 description 1
- NPAKNKYSJIDKMW-UHFFFAOYSA-N carvedilol Chemical compound COC1=CC=CC=C1OCCNCC(O)COC1=CC=CC2=NC3=CC=C[CH]C3=C12 NPAKNKYSJIDKMW-UHFFFAOYSA-N 0.000 description 1
- 229960004195 carvedilol Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229960002320 celiprolol Drugs 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- NISGSNTVMOOSJQ-UHFFFAOYSA-N cyclopentanamine Chemical compound NC1CCCC1 NISGSNTVMOOSJQ-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 230000001091 dromotropic effect Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000002662 enteric coated tablet Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 208000031352 familial ventricular tachycardia Diseases 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 125000005241 heteroarylamino group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000297 inotrophic effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical group 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000002350 laparotomy Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- IXHBTMCLRNMKHZ-LBPRGKRZSA-N levobunolol Chemical compound O=C1CCCC2=C1C=CC=C2OC[C@@H](O)CNC(C)(C)C IXHBTMCLRNMKHZ-LBPRGKRZSA-N 0.000 description 1
- 229960000831 levobunolol Drugs 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 239000001115 mace Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229950008578 medroxalol Drugs 0.000 description 1
- MPQWSYJGFLADEW-UHFFFAOYSA-N medroxalol Chemical compound C=1C=C2OCOC2=CC=1CCC(C)NCC(O)C1=CC=C(O)C(C(N)=O)=C1 MPQWSYJGFLADEW-UHFFFAOYSA-N 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- BQIPXWYNLPYNHW-UHFFFAOYSA-N metipranolol Chemical compound CC(C)NCC(O)COC1=CC(C)=C(OC(C)=O)C(C)=C1C BQIPXWYNLPYNHW-UHFFFAOYSA-N 0.000 description 1
- 229960002704 metipranolol Drugs 0.000 description 1
- 229940116866 metoprolol injection Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- HGUZQMQXAHVIQC-UHFFFAOYSA-N n-methylethenamine Chemical group CNC=C HGUZQMQXAHVIQC-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical compound C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- MHOVLDXJDIEEMJ-UHFFFAOYSA-N oxolan-3-amine;hydrochloride Chemical compound Cl.NC1CCOC1 MHOVLDXJDIEEMJ-UHFFFAOYSA-N 0.000 description 1
- 229960004570 oxprenolol Drugs 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 208000012404 paroxysmal familial ventricular fibrillation Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229960002035 penbutolol Drugs 0.000 description 1
- KQXKVJAGOJTNJS-HNNXBMFYSA-N penbutolol Chemical compound CC(C)(C)NC[C@H](O)COC1=CC=CC=C1C1CCCC1 KQXKVJAGOJTNJS-HNNXBMFYSA-N 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 108020001213 potassium channel Proteins 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000003518 presynaptic effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 229960000203 propafenone Drugs 0.000 description 1
- JWHAUXFOSRPERK-UHFFFAOYSA-N propafenone Chemical compound CCCNCC(O)COC1=CC=CC=C1C(=O)CCC1=CC=CC=C1 JWHAUXFOSRPERK-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 230000006920 protein precipitation Effects 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 239000000296 purinergic P1 receptor antagonist Substances 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000002254 renal artery Anatomy 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical class O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000003195 sodium channel blocking agent Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000012058 sterile packaged powder Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000005156 substituted alkylene group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940066769 systemic antihistamines substituted alkylamines Drugs 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 206010047302 ventricular tachycardia Diseases 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/137—Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/138—Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/455—Nicotinic acids, e.g. niacin; Derivatives thereof, e.g. esters, amides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7076—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/06—Antiarrhythmics
Definitions
- This invention relates to a method of treating arrhythmias and heart failure in a manner that minimizes undesirable side effects, comprising administration of a low dose of an adenosine A 1 receptor agonist in conjunction with a low dose of a beta blocker, or a calcium channel blocker, or a cardiac glycoside.
- Arrhythmias are abnormal heart rhythms that occur either in the atria or the ventricles. Arrhythmias arising in the atria are called atrial arrhythmias, and these disorders include atrial fibrillation, atrial flutter, and paroxysmal atrial tachycardia (PSVT). Arrhythmias arising in the ventricles, known as ventricular arrhythmias, are a group of disorders having diverse etiologies, including idiopathic ventricular tachycardia, ventricular fibrillation, and Torsade de Pointes (TdP). Arrhythmias can range from incidental, asymptomatic clinical findings to life-threatening abnormalities, and account for a significant percentage of the causes of death in humans. Thus, it is desirable to develop methods of mitigating the effects of arrhythmias.
- Class I anti-arrhythmics comprising sodium channel blockers
- Class II comprising beta-blockers
- Class III comprising drugs that prolong action potential (usually by blocking potassium channels)
- Class IV comprising calcium channels blockers.
- Cardiac glycosides for example digitalis, are also used as drugs for the treatment of arrhythmia, but they have a delayed onset of action (about 30 minutes) and their peak effects are not observed for ⁇ 3 to 4 hours after administration. Additionally, digitalis is toxic at doses close to the therapeutic dose, which limits the utility of the compound.
- beta-blockers such as propranolol and esmolol
- calcium-channel blockers for example verapamil, bepridil, and diltiazem
- TdP new arrhythmias
- Adenosine which is widely found in nature, is another compound that has anti-arrhythmic activities, by virtue of its ability, at certain dose levels, to slow the conduction in the atrioventricular node.
- the anti-arrhythmic effects of adenosine are due exclusively to its interaction with the adenosine A 1 receptor subtype.
- adenosine is highly effective in ameliorating arrhythmia, it also binds contemporaneously to other adenosine receptor subtypes (A 2A , A 2B , and A 3 ), which results in undesirable side effects, such as vasodilation, changes in the heart rate, mast cell degradation, etc.
- Adenosine also has a short half-life ( ⁇ 10 sec), making it ineffective in treating conditions that require prolonged action.
- Antiarrythymic agents in general have a narrow margin between the dose required to produce the desired antiarrhythmic effect and the dose that produces an adverse effect. It would therefore be desirable to find a method of treating arrhythmia that is effective at low doses (or minimal doses) of the active agent, thus decreasing the likelihood of adverse effects.
- adenosine A 1 receptor agonists preferably partial agonists, and more preferably selective adenosine A 1 receptor agonists
- beta blocker calcium channel blockers, or cardiac glycosides
- a 1 -adenosine receptor agonists that may potentially occur when taken individually.
- the combination of these agents act in a synergistic manner, thus reducing even further the chance of side effects.
- the combination of an A 1 adenosine receptor antagonist with a beta blocker can be used in the treatment of heart failure, including ischemic heart disease, congestive heart failure, heart failure syndrome, hypertension, and the like.
- a novel and effective method of treating arrhythmias that restores sinus rhythm without slowing the sinus rate and is virtually free of undesirable side effects, such as changes in mean arterial pressure, blood pressure, increased heart rate, TdP, or other adverse effects.
- the invention relates to a method of treating arrhythmias in a mammal, comprising administration of a therapeutically effective minimal dose of an A 1 adenosine receptor agonist in conjunction with a therapeutically effective minimal dose of a beta blocker, calcium channel blocker, or a cardiac glycoside to a mammal in need thereof.
- an A 1 -adenosine receptor agonist useful for this invention is a compound of Formula I:
- R 1 is an optionally substituted heterocyclic group, preferably monocyclic.
- the effective dose is preferably in the range of 0.0001-0.05 mg/kg, more preferably 0.0005-0.02 mg/kg.
- R 1 is 3-tetrahydrofuranyl, 3-tetrahydrothiofuranyl, 4-pyranyl, or 4-thiopyranyl.
- the most preferred compound of Formula I is 6-(3-(R)—N-aminotetrahydrofuranyl)purine riboside (hereinafter referred to as CVT-510).
- an A 1 adenosine receptor agonist useful for this invention is a compound of Formula II:
- the most preferred compound of Formula II is one in which R 1 is 2-hydroxycyclopentyl, X and Y are covalent bonds, R 2 , R 3 , and R 4 are hydrogen, and R 5 is 2-fluorophenyl, most preferably 2- ⁇ 6-[((1R,2R)-2-hydroxycyclopentyl)amino]purin-9-yl ⁇ (4S,5S,3R)-5-[(2-fluorophenylthio)methyl]oxolane-3,4-diol, hereinafter referred to as CVT-3619.
- Preferred beta blockers include atenolol, esmolol, sotalol, and propranolol. More preferred is esmolol.
- the preferred effective dose is in the range of 0.01 to 100 mg/kg, more preferably in the range of 0.1 to 10 mg/kg.
- Preferred calcium channel blockers include amlodipine, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nimodipine and verapamil.
- the preferred effective dose is in the range of 0.01 to 50 mg/kg, more preferably in the range of 0.1 to 10 mg/kg.
- Preferred cardiac glycosides include digoxin and digitoxin.
- One preferred embodiment of the invention is a method of treating arrhythmias in a mammal comprising administering a therapeutically effective minimal dose of CVT-510 in conjunction with a therapeutically effective minimal dose of a beta blocker, preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol, to a mammal in need thereof.
- a beta blocker preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol
- Another preferred embodiment of the invention is a method of treating arrhythmias in a mammal comprising administering a therapeutically effective minimal dose of CVT-3619, and a therapeutically effective minimal dose of a beta blocker, preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol, to a mammal in need thereof.
- a beta blocker preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol
- Another preferred embodiment of the invention is a method of treating arrhythmias in a mammal comprising administering a therapeutically effective minimal dose of CVT-510, or a therapeutically effective minimal dose of CVT-3619, in conjunction with a therapeutically effective minimal dose of a calcium channel blocker, preferably verapamil, to a mammal in need thereof.
- a therapeutically effective minimal dose of CVT-510 or a therapeutically effective minimal dose of CVT-3619
- a calcium channel blocker preferably verapamil
- a third preferred embodiment of the invention is a method of treating arrhythmias in a mammal comprising administering a therapeutically effective minimal dose of CVT-510, or a therapeutically effective minimal dose of CVT-3619, in conjunction with a therapeutically effective minimal dose of a cardiac glycoside, preferably digoxin, to a mammal in need thereof.
- the invention in another aspect, relates to a pharmaceutical composition useful for treating arrhythmias in a mammal, comprising a therapeutically effective minimal dose of an A 1 adenosine receptor agonist and a therapeutically effective minimal dose of a beta blocker, and at least one pharmaceutically acceptable excipient.
- One preferred embodiment of the invention is a pharmaceutical composition for treating arrhythmias in a mammal, comprising a therapeutically effective minimal dose of a compound of Formula I, more preferably CVT-510, and a therapeutically effective minimal dose of a beta blocker, preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol, to a mammal in need thereof.
- the Formula I dose is preferably in the range of 0.0001-0.05 mg/kg, more preferably 0.0005-0.02 mg/kg
- the beta blocker dose is in the in the range of 0.01 to 100 mg/kg, more preferably in the range of 0.1 to 10 mg/kg.
- Another preferred embodiment of the invention is a pharmaceutical composition for treating arrhythmias in a mammal, comprising a therapeutically effective minimal dose of a compound of Formula II, more preferably CVT-3619, and a therapeutically effective minimal dose of a beta blocker, preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol, to a mammal in need thereof.
- the dose is preferably in the range of 0.1 to 200 mg/kg, more preferably 0.5 to 25 mg/kg
- the beta blocker dose is in the in the range of 0.01 to 100 mg/kg, more preferably in the range of 0.1 to 10 mg/kg.
- the invention in another aspect, relates to a method of treating heart failure in a mammal, comprising administration of a therapeutically effective minimal dose of an A 1 adenosine receptor agonist in conjunction with a therapeutically effective minimal dose of a beta blocker to a mammal in need thereof.
- FIG. 1 Comparison of the effect of CVT-3619 alone and CVT-3619 in combination with propranolol on heart rate.
- FIG. 2 Comparison of the effect of CVT-3619 alone and CVT-3619 in combination with propranolol on heart rate.
- FIG. 3 Comparison of the effect of 20 ⁇ g/kg of CVT-510, 10 mg/kg of esmolol, and a combination of 20 ⁇ g/kKg of CVT-510 and 10 mg/kg of esmolol on heart rate.
- FIG. 4 Comparison of the effect of 20 ⁇ g/kg of CVT-510, 3 mg/kg of esmolol, and a combination of 20 ⁇ g/kg of CVT-510 and 3 mg/kg of esmolol on heart rate.
- FIG. 5 Comparison of the effect of 10 ⁇ g/kg, 20 ⁇ g/Kg and 30 ⁇ g/kg doses of CVT-510, 1 mk/kg and 3 mg/kg of esmolol, and a combination of 20 ⁇ g/kg of CVT-510 and 1 and 3 mg/kg of esmolol on duration of Bradycardia.
- FIG. 6 Comparison of plasma levels of CVT-510 alone and a combination of CVT-510 and metoprolol.
- FIG. 7 Dose response curve for metoprolol in the absence and presence of CVT-510.
- FIG. 8 This figure represents the data shown in FIG. 7 .
- FIG. 9 Effect of CVT-510 (0.5 ⁇ g/kg) and metoprolol (0.1 mg/kg), which were given as an iv bolus, on PR interval
- FIG. 10 Effect of CVT-510 (0.5 ⁇ g/kg) and esmolol on PR interval
- BPM beats per minute
- HR Heart rate
- SH Stimulus to His (length of time for conduction of current through AV node)
- alkyl refers to a monoradical branched or unbranched saturated hydrocarbon chain having from 1 to 20 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, t-butyl, n-hexyl, n-decyl, tetradecyl, and the like.
- substituted alkyl refers to:
- an alkyl group as defined above having from 1 to 5 substituents, preferably 1 to 3 substituents, selected from the group consisting of alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO 2 -alkyl, SO 2
- substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2; or 2) an alkyl group as defined above that is interrupted by 1-5 atoms or groups independently chosen from oxygen, sulfur and —NR a —, where R a is chosen from hydrogen, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heteroaryl and heterocyclyl.
- All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2; or 3) an alkyl group as defined above that has both from 1 to 5 substituents as defined above and is also interrupted by 1-5 atoms or groups as defined above.
- lower alkyl refers to a monoradical branched or unbranched saturated hydrocarbon chain having from 1 to 6 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, t-butyl, n-hexyl, and the like.
- substituted lower alkyl refers to lower alkyl as defined above having 1 to 5 substituents, preferably 1 to 3 substituents, as defined for substituted alkyl, or a lower alkyl group as defined above that is interrupted by 1-5 atoms as defined for substituted alkyl, or a lower alkyl group as defined above that has both from 1 to 5 substituents as defined above and is also interrupted by 1-5 atoms as defined above.
- alkylene refers to a diradical of a branched or unbranched saturated hydrocarbon chain, preferably having from 1 to 20 carbon atoms, preferably 1-10 carbon atoms, more preferably 1-6 carbon atoms. This term is exemplified by groups such as methylene (—CH 2 —), ethylene (—CH 2 CH 2 —), the propylene isomers (e.g., —CH 2 CH 2 CH 2 — and —CH(CH 3 )CH 2 —) and the like.
- lower alkylene refers to a diradical of a branched or unbranched saturated hydrocarbon chain, preferably having from 1 to 6 carbon atoms.
- substituted alkylene refers to:
- an alkylene group as defined above having from 1 to 5 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO 2 -alkyl, SO 2 -aryl and —
- substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2; or (2) an alkylene group as defined above that is interrupted by 1-5 atoms or groups independently chosen from oxygen, sulfur and NR a —, where R a is chosen from hydrogen, optionally substituted alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycyl, or groups selected from carbonyl, carboxyester, carboxyamide and sulfonyl; or (3) an alkylene group as defined above that has both from 1 to 5 substituents as defined above and is also interrupted by 1-20 atoms as defined above.
- substituted alkylenes are chloromethylene (—CH(Cl)—), aminoethylene (—CH(NH 2 )CH 2 —), methylaminoethylene (—CH(NHMe)CH 2 —), 2-carboxypropylene isomers(—CH 2 CH(CO 2 H)CH 2 —), ethoxyethyl (—CH 2 CH 2 O—CH 2 CH 2 —), ethylmethylaminoethyl (—CH 2 CH 2 N(CH 3 )CH 2 CH 2 —),1-ethoxy-2-(2-ethoxy-ethoxy)ethane (—CH 2 CH 2 O—CH 2 CH 2 —OCH 2 CH 2 —OCH 2 CH 2 —), and the like.
- aralkyl refers to an aryl group covalently linked to an alkylene group, where aryl and alkylene are defined herein.
- Optionally substituted aralkyl refers to an optionally substituted aryl group covalently linked to an optionally substituted alkylene group.
- Such aralkyl groups are exemplified by benzyl, phenylethyl, 3-(4-methoxyphenyl)propyl, and the like.
- alkoxy refers to the group R—O—, where R is optionally substituted alkyl or optionally substituted cycloalkyl, or R is a group —Y-Z, in which Y is optionally substituted alkylene and Z is; optionally substituted alkenyl, optionally substituted alkynyl; or optionally substituted cycloalkenyl, where alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl are as defined herein.
- Preferred alkoxy groups are alkyl-O— and include, by way of example, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, 1,2-dimethylbutoxy, and the like.
- alkylthio refers to the group R—S—, where R is as defined for alkoxy.
- alkenyl refers to a monoradical of a branched or unbranched unsaturated hydrocarbon group preferably having from 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms and even more preferably 2 to 6 carbon atoms and having 1-6, preferably 1, double bond (vinyl).
- Preferred alkenyl groups include ethenyl or vinyl (—CH ⁇ CH 2 ), 1-propylene or allyl (—CH 2 CH ⁇ CH 2 ), isopropylene (—C(CH 3 ) ⁇ CH 2 ), bicyclo[2.2.1]heptene, and the like. In the event that alkenyl is attached to nitrogen, the double bond cannot be alpha to the nitrogen.
- lower alkenyl refers to alkenyl as defined above having from 2 to 6 carbon atoms.
- substituted alkenyl refers to an alkenyl group as defined above having from 1 to 5 substituents, and preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —
- All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- alkynyl refers to a monoradical of an unsaturated hydrocarbon, preferably having from 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms and even more preferably 2 to 6 carbon atoms and having at least 1 and preferably from 1-6 sites of acetylene (triple bond) unsaturation.
- Preferred alkynyl groups include ethynyl, (—C ⁇ CH), propargyl (or propynyl, —C ⁇ CCH 3 ), and the like. In the event that alkynyl is attached to nitrogen, the triple bond cannot be alpha to the nitrogen.
- substituted alkynyl refers to an alkynyl group as defined above having from 1 to 5 substituents, and preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl,
- All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- aminocarbonyl refers to the group —C(O)NRR where each R is independently hydrogen, alkyl, aryl, heteroaryl, heterocyclyl or where both R groups are joined to form a heterocyclic group (e.g., morpholino). All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- acylamino refers to the group —NRC(O)R where each R is independently hydrogen, alkyl, aryl, heteroaryl, or heterocyclyl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- acyloxy refers to the groups —O(O)C-alkyl, —O(O)C-cycloalkyl, —O(O)C-aryl, #(O)C-heteroaryl, and —O(O)C-heterocyclyl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- aryl refers to an aromatic carbocyclic group of 6 to 20 carbon atoms having a single ring (e.g., phenyl) or multiple rings (e.g., biphenyl), or multiple condensed (fused) rings (e.g., naphthyl or anthryl).
- Preferred aryls include phenyl, naphthyl and the like.
- such aryl groups can optionally be substituted with from 1 to 5 substituents, preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl,
- All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- aryloxy refers to the group aryl-O— wherein the aryl group is as defined above, and includes optionally substituted aryl groups as also defined above.
- arylthio refers to the group R—S—, where R is as defined for aryl.
- amino refers to the group —NH 2 .
- substituted amino refers to the group —NRR where each R is independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, carboxyalkyl (for example, benzyloxycarbonyl), aryl, heteroaryl and heterocyclyl provided that both R groups are not hydrogen, or a group —Y-Z, in which Y is optionally substituted alkylene and Z is alkenyl, cycloalkenyl, or alkynyl, All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- Carboxyalkyl refers to the groups —C(O)O-alkyl, —C(O)O-cycloalkyl, where alkyl and cycloalkyl, are as defined herein, and may be optionally further substituted by alkyl, alkenyl, alkynyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- cycloalkyl refers to cyclic alkyl groups of from 3 to 20 carbon atoms having a single cyclic ring or multiple condensed rings.
- Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, and the like, or multiple ring structures such as adamantanyl, and bicyclo[2.2.1]heptane, or cyclic alkyl groups to which is fused an aryl group, for example indan, and the like.
- substituted cycloalkyl refers to cycloalkyl groups having from 1 to 5 substituents, and preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —
- All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- halogen refers to fluoro, bromo, chloro, and iodo.
- acyl denotes a group —C(O)R, in which R is hydrogen, optionally is substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, and optionally substituted heteroaryl.
- heteroaryl refers to an aromatic group (i.e., unsaturated) comprising 1 to 15 carbon atoms and 1 to 4 heteroatoms selected from oxygen, nitrogen and sulfur within at least one ring.
- heteroaryl groups can be optionally substituted with 1 to 5 substituents, preferably 1 to 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO
- All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- Such heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings (e.g., indolizinyl, benzothiazole, or benzothienyl).
- nitrogen heterocycles and heteroaryls include, but are not limited to, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, and the like as well as N-alkoxy-nitrogen containing heteroaryl compounds.
- heteroaryloxy refers to the group heteroaryl-O—.
- heterocyclyl refers to a monoradical saturated or partially unsaturated group having a single ring or multiple condensed rings, having from 1 to 40 carbon atoms and from 1 to 10 hetero atoms, preferably 1 to 4 heteroatoms, selected from nitrogen, sulfur, phosphorus, and/or oxygen within the ring.
- heterocyclic groups can be optionally substituted with 1 to 5, and preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-he
- All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano, or —S(O) n R, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- Heterocyclic groups can have a single ring or multiple condensed rings. Preferred heterocyclics include tetrahydrofuranyl, morpholino, piperidinyl, and the like.
- thiol refers to the group —SH.
- substituted alkylthio refers to the group —S-substituted alkyl.
- heteroarylthiol refers to the group —S-heteroaryl wherein the heteroaryl group is as defined above including optionally substituted heteroaryl groups as also defined above.
- sulfoxide refers to a group —S(O)R, in which R is alkyl, aryl, or heteroaryl. “Substituted sulfoxide” refers to a group —S(O)R, in which R is substituted alkyl, substituted aryl, or substituted heteroaryl, as defined herein.
- sulfone refers to a group —S(O) 2 R, in which R is alkyl, aryl, or heteroaryl. “Substituted sulfone” refers to a group —S(O) 2 R, in which R is substituted alkyl, substituted aryl, or substituted heteroaryl, as defined herein.
- keto refers to a group —C(O)—.
- thiocarbonyl refers to a group —C(S)—.
- carboxy refers to a group —C(O)—OH.
- compound of Formula I and “compound of Formula II” are intended to encompass the compounds of the invention as disclosed, and the pharmaceutically acceptable salts, pharmaceutically acceptable esters, and prodrugs of such compounds.
- therapeutically effective amount refers to that amount of an active ingredient (A 1 -agonist, beta-blocker, calcium channel blocker, cardiac glycoside) that is sufficient to effect treatment, as defined below, when administered to a mammal in need of such treatment.
- the therapeutically effective amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by a prescribing physician.
- terapéuticaally effective minimal dose” or “low dose” of an A 1 adenosine receptor agonist refers to a dose level of an A 1 adenosine receptor agonist that is generally considered to be below the therapeutically effective amount as defined above, but is sufficient to provide effective treatment when administered in conjunction with a “therapeutically effective minimal dose” or “low dose” of a beta blocker, calcium channel blocker, or a cardiac glycoside.
- a therapeutically effective minimal dose of CVT-3619 is one that would not normally be considered to be useful in the treatment of arrhythmia, but is now found to be useful in the treatment of arrhythmia when administered in conjunction with a therapeutically effective minimal dose of a beta blocker, because of the synergistic effect obtained upon combining an A 1 -agonist with a beta blocker.
- the therapeutically effective minimal dose will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by a prescribing physician.
- a therapeutically effective minimal dose of an adenosine A 1 receptor agonist is administered “in conjunction with” a therapeutically effective minimal doses of a beta blocker, or a calcium channel blocker, or a cardiac glycoside.
- the word “conjunction” means that the doses may be administered together at the same time, for example in a single pill or solution, or administered separately at the same time, or administered at different times.
- treatment means any treatment of a disease in a mammal, including:
- agonist refers to the ability of a compound to interact with a receptor and evoke a maximal effect. This effect is known as the intrinsic efficacy.
- partial agonists interact with adenosine A 1 receptors but produce a less than maximal response.
- Adenosine A 1 receptor agonist refers to an agent that binds to adenosine A 1 receptors thereby producing a negative dromotropic effect.
- CVT-3619 is a partial A 1 -adenosine receptor agonist—it has a rate dependent effect upon AV nodal conduction. It increases AV-node refractoriness, and thus reduces ventricular rate during atrial tachyarrhythmia.
- a 1 agonists also act to inhibit the release of norepinephrine from the pre-synaptic nerve terminal, and to inhibit the uptake of norepinephrine at the post-synaptic nerve terminal.
- Beta-blocker refers to an agent that binds to a beta-adrenergic receptor and inhibits the effects of beta-adrenergic stimulation. Beta-blockers increase AV nodal conduction. In addition, Beta-blockers decrease heart rate by blocking the effect of norepinephrine on the post synaptic nerve terminal that controls heart rate. Beta blockers also decrease intracellular Ca ++ overload, which inhibits after-depolarization mediated automaticity.
- beta blockers examples include atenolol, esmolol, sotalol, propranolol, bopindolol, carteolol, oxprenolol, penbutolol, carvedilol, medroxalol, bucindolol, levobunolol, metipranolol, betaxolol, celiprolol, and propafenone.
- calcium channel blocker refers to an agent that blocks voltage-dependent “L-type calcium channel. They are used in treatment of heart diseases, including cardiac arrhythmia—they have a rate dependent effect upon AV nodal conduction.
- Examples of calcium channel blockers include amlodipine, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nimodipine and verapamil.
- cardiac glycoside refers to a compound with a steroidal nucleus and a lactone ring, and usually has one or more sugar residues. They are used in treatment of heart diseases, including cardiac arrhythmia—they have a rate dependent effect upon AV nodal conduction. Examples of cardiac glycosides include digoxin and digitoxin.
- the term “synergistic” effect means a result produced by a combination of drugs that is greater than that produced by each drug alone.
- the compounds of this invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.
- pharmaceutically acceptable salt refers to salts that retain the biological effectiveness and properties of the compounds of Formula I, and which are not biologically or otherwise undesirable.
- Pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases. Salts derived from inorganic bases, include by way of example only, sodium, potassium, lithium, ammonium, calcium and magnesium salts.
- Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines, such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri(substituted alkyl) amines, alkenyl amines, dialkenyl amines, trialkenyl amines, substituted alkenyl amines, di(substituted alkenyl) amines, tri(substituted alkenyl) amines, cycloalkyl amines, di(cycloalkyl) amines, tri(cycloalkyl) amines, substituted cycloalkyl amines, disubstituted cycloalkyl amine, trisubstituted cycloalkyl amines, cycloalkenyl amines, di(cycloalkeny
- Suitable amines include, by way of example only, isopropylamine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, 2-dimethylaminoethanol, tromethamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, N-alkylglucamines, theobromine, purines, piperazine, piperidine, morpholine, N-ethylpiperidine, and the like.
- Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
- Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like.
- “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- compound of Formula I or “compound of Formula II” is intended to encompass the compounds of the invention as disclosed, and the pharmaceutically acceptable salts, pharmaceutically acceptable esters, and prodrugs of such compounds. Additionally, the compounds of the invention may possess one or more asymmetric centers, and can be produced as a racemic mixture or as individual enantiomers or diastereoisomers. The number of stereoisomers present in any given compound of the invention depends upon the number of asymmetric centers present (there are 2n stereoisomers possible where n is the number of asymmetric centers).
- the individual stereoisomers may be obtained by resolving a racemic or non-racemic mixture of an intermediate at some appropriate stage of the synthesis, or by resolution of the compound of Formula I or Formula II by conventional means.
- the individual stereoisomers (including individual enantiomers and diastereoisomers) as well as racemic and non-racemic mixtures of stereoisomers are encompassed within the scope of the present invention, all of which are intended to be depicted by the structures of this specification unless otherwise specifically indicated.
- “Isomers” are different compounds that have the same molecular formula. “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space. “Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture. The term “( ⁇ )” is used to designate a racemic mixture where appropriate. “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other. The absolute stereochemistry is specified according to the Cahn-Ingold-Prelog R—S system.
- stereochemistry at each chiral carbon may be specified by either R or S.
- Resolved compounds whose absolute configuration is unknown are designated (+) or ( ⁇ ) depending on the direction (dextro- or levorotary) which they rotate the plane of polarized light at the wavelength of the sodium D line.
- the two components of the invention may be administered as a pharmaceutical composition that contains a physical mixture of the two components, but is preferably administered as two separate pharmaceutical compositions. Such separate compositions are preferably administered concurrently, but may also be administered at different times.
- compositions that contain, as the active ingredient, one or two of the components, or a pharmaceutically acceptable salt or ester thereof, and one or more pharmaceutically acceptable excipients, carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
- pharmaceutically acceptable excipients including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
- Such compositions are prepared in a manner well known in the pharmaceutical art (see, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17 th Ed. (1985) and “Modern Pharmaceutics”, Marcel Dekker, Inc. 3 rd Ed. (G. S. Banker & C. T. Rhodes, Eds
- the components may be administered in either single or multiple doses by any of the accepted modes of administration of agents having similar utilities, for example as described in those patents and patent applications incorporated by reference, including rectal, buccal, intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, as an inhalant, or via an impregnated or coated device such as a stent, for example, or an artery-inserted cylindrical polymer.
- compositions of the present invention are incorporated for administration by injection.
- forms in which the novel compositions of the present invention may be incorporated for administration by injection include aqueous or oil suspensions, or emulsions, with sesame oil, corn oil, cottonseed oil, or peanut oil, as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles.
- Aqueous solutions in saline are also conventionally used for injection, but less preferred in the context of the present invention.
- Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Sterile injectable solutions are prepared by incorporating the component in the required amount in the appropriate solvent with various other ingredients as enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral administration is another route for administration of the components. Administration may be via capsule or enteric coated tablets, or the like.
- the active ingredient is usually diluted by an excipient and/or enclosed within such a carrier that can be in the form of a capsule, sachet, paper or other container.
- the excipient serves as a diluent, in can be a solid, semi-solid, or liquid material (as above), which acts as a vehicle, carrier or medium for the active ingredient.
- compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.
- excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose.
- the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
- compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
- Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Pat. Nos. 3,845,770; 4,326,525; 4,902,514; and 5,616,345.
- Another formulation for use in the methods of the present invention employs transdermal delivery devices (“patches”). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts.
- the construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252, 4,992,445 and 5,001,139. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- compositions are preferably formulated in a unit dosage form.
- unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient (e.g., a tablet, capsule, ampoule).
- a suitable pharmaceutical excipient e.g., a tablet, capsule, ampoule.
- the compounds of Formula I and II are effective over a wide dosage range and is generally administered in a pharmaceutically effective amount.
- the amount of the compound of Formula I actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered and its relative activity, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
- the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- a pharmaceutical excipient for preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
- the tablets or pills of the present invention may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action, or to protect from the acid conditions of the stomach.
- the tablet or pill can comprise an inner dosage and an outer dosage element, the latter being in the form of an envelope over the former.
- the two elements can be separated by an enteric layer that serves to resist disintegration in the stomach and permit the inner element to pass intact into the duodenum or to be delayed in release.
- enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
- the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices that deliver the formulation in an appropriate manner.
- the beta blockers, calcium channel blockers, and cardiac glycosides of this invention are well known in the art, and are commercially available.
- the compounds of Formula I may be prepared by conventional methods, in the manner disclosed in U.S. Pat. No. 5,789,416, the entire disclosure of which is hereby incorporated by reference.
- the preferred compound CVT-510 is prepared as follows.
- CVT-510 6-(3-(R)-aminotetrahydrofuranyl)purine riboside
- the compounds of Formula II may be prepared by conventional methods, in the manner disclosed in U.S. patent application Ser. No. 10/194,335, the entire disclosure of which is hereby incorporated by reference.
- the preferred compound CVT-3619 is prepared as follows.
- Rats (Sprague Dawley) weighing 300-400 gms were purchased from Simonsen laboratories.
- CVT-3619 was dissolved in DMSO and further diluted in saline.
- CVT-510 was dissolved in saline.
- Ketamine was purchased from Fort Dodge Animal Health, Xylazine from Bayer and Acepromazine Maleate from Fermenta Animal Health Co.
- Metoprolol and propranolol were purchased from SIGMA. Esmolol was obtained from a local pharmacy.
- rats were instrumented with radiotelemetered transmitters (Data Sciences) at least 3 weeks prior to experimentation.
- Animals were anesthetized by peritoneal injection of a “cocktail” (1 ml/kg) containing Ketamine (75 mg/ml), Xylazine (5 mg/ml), and Acepromazine (1 mg/ml). After 20-30 minutes of induction of anesthesia, a midline laparotomy was performed.
- the transmitter for recordings of ECG, blood pressure and body temperature was placed in the abdominal cavity, and secured to the abdominal muscles. Two electrocardiographic leads were tunneled through the subcutaneous—one toward the upper left shoulder and the other to the right thigh, and secured with sutures.
- a fluid filled sensor catheter was inserted in the descending aorta above the iliac bifurcation for measurement of blood pressure.
- the tip of the telemetry catheter was located in the abdominal aorta just caudal to the renal arteries. Once the transmitter and leads were in place and determined to be functioning properly, the abdominal wall was sutured. After recovery from anesthesia, the rats were housed individually in cages placed on their respective receivers. The ECG, blood pressure and temperature were recorded and heart rate measured by a Dataquest ART Gold system (Version 2.2; Data Sciences Intl).
- the system consisted of a transmitter, i.e., biopotential sensor (Model TL11M2-C50-PXT), receivers (Model RPC-1), a consolidation matrix (BCM 100), a personal computer (Compaq DeskPro Series 3574) and Dataquest 4 software.
- Heart rate, blood pressure and temperature were measured at 5-minute intervals. Each recording lasted 10 seconds and all cardiac cycles within this period were averaged. Animals were given various drugs in a randomized manner after recording the baseline data for at least two hours.
- a subgroup of animals was implanted with osmotic pumps containing CVT-510 for combination experiments. After 7 days or more of having been implanted with radio-telemetry transmitters for recording ECG (L-2), and verifying that the transmitters were functioning, each rat was implanted with an Alzet mini-osmotic pump. Under anesthesia (see above) and sterile conditions, one Alzet mini-osmotic pump, was implanted subcutaneously (SC) in the interseapular area of each rat. The osmotic pumps were filled with either vehicle or CVT-510 (to deliver a dose of 20 ⁇ g/kg/hr).
- Carotid artery was catheterized to obtain serial blood samples for the analysis of CVT-510 plasma concentrations.
- Animals were anesthetized by peritoneal injection of a “cocktail” (1 ml/kg) containing Ketamine (75 mg/ml), Xylazine (5 mg/ml), and Acepromazine (1 mg/ml).
- a midline incision was made in the neck region to expose the external carotid artery.
- a tunnel is made for the catheter using blunt dissection in the subcutaneous pocket on the dorsal section of the neck where it is externalized.
- the carotid artery was cannulated with 24-gauge catheters sampling of blood for determination of plasma levels of CVT-510.
- the catheter is tied at the back of the neck and a piece of suture is tied around the knot leaving both ends about 2 inches long for retrieval from under the skin.
- the knotted catheter is retracted back under the skin to prevent being pulled out by the rat.
- the incision is then cleaned with saline, closed with wound clips, and an antibiotic (0.4 ml of a 40 mg/ml solution of gentamicin) is given I.V. Animals were allowed to recover for at least 48 hrs before performing the experiment.
- an injection plug was attached to a 19-gauge IV set, filled with 0.1% heparinized saline and the needle end was inserted into the catheters.
- CVT-510 plasma level analysis was performed as follows. Briefly, 50 ⁇ L of plasma sample was precipitated with 400 ⁇ L of acetonitrile:methanol (90:10) containing internal standard. The filtrates were evaporated to dryness and reconstituted in 100 ⁇ L of 90:10 water:methanol. Concentration of CVT-510 in protein precipitation filtrates were analyzed by LC-MS-MS using a Waters Alliance 2690 HPLC system (Millford, Mass.) coupled to a Waters/Micromass Quattro Ultima triple quadrupole mass spectrometer (Millford, Mass.). Calibration curves were constructed by plotting peak area ratios of the analyte to internal standard against concentration, using a weighted (1/X) linear regression model in all instances.
- the slowing of heart rate caused by each treatment was quantified by determining the area under the curve (AUC), using the trapezoidal method for calculations.
- Data used for analysis was the area under/over the curve calculated using change form baseline data (untreated animals).
- the data was analyzed for the magnitude as well as the duration of bradycardia caused by each treatment.
- the AUC values for various doses for each monotherapy were compared using one-way ANOVA followed by Tukey's test for multiple comparisons. The significance level was set at p ⁇ 0.05 for all comparisons.
- FIG. 1 shows the effect of CVT-3619 (a partialA 1 receptor agonist) on heart rate with and without propranolol in awake rats instrumented with telemetry radiotransmitters.
- CVT-3619 at dose of (0.5 mg/kg, ip) by itself had minimal effect on heart rate.
- a beta blocker propranolol, 10 mg/kg, ip
- Propranolol was given 10 minutes prior to CVT-3619 injection.
- FIG. 2 shows the summary of data obtained from telemeterized awake rats.
- the data was quantified as area under the curve (AUC) and presented as a decrease in total number of heart beats for a 2 hour period of time caused by CVT-3619 (given ip) alone at two different doses and in the presence of propranolol (10 mg/kg, ip given 10 minutes prior to CVT-3619).
- AUC area under the curve
- FIG. 3 shows the effect of CVT-510 and esmolol alone and given together as a mixture via ip injection to awake rats instrumented with telemetry radiotransmitters.
- CVT-510 at 20 ⁇ g/kg dose transiently lowers the heart rate below baseline levels whereas esmolol (10 mg/kg ip) only slightly reduces the increase in heart rate (which is caused by handling the animal).
- esmolol (10 mg/kg ip) only slightly reduces the increase in heart rate (which is caused caused by handling the animal).
- the combination not only increases the magnitude of the response but also increases the duration of bradycardia significantly.
- FIG. 4 shows the effect of CVT-510 alone and the effect when combined with the beta-blocker, Metoprolol, by observing the effect on heart rate in awake rats instrumented with telemetry radiotransmitters.
- CVT-510 (20 ⁇ g/kg, ip) slowed the heart rate in a dose dependent manner.
- Metoprolol 3 mg/kg, ip
- FIG. 5 The duration of bradycardia caused by CVT-510 was analyzed by observing the time for the heart rate to return to 90% of pretreatment levels. In addition to the increase in magnitude of bradycardia, the combination of CVT-510 and metoprolol resulted in a significant increase in the duration of bradycardia as compared to that caused by CVT-510 alone.
- FIG. 6 Plasma levels of CVT-510 were determined in the absence and presence of metoprolol in a separate group of animals ( FIG. 6 ). Plasma levels of CVT-510 were found to be similar in both groups even though the slowing of heart rate caused by CVT-510 was greater in the presence of metoprolol indicating that the metabolism of CVT-510 was not changed in the presence of metoprolol.
- FIG. 7 To further investigate the mechanism of interaction of CVT-510 and beta-blockers, another series of experiments were performed in which the dose of CVT-510 was kept constant while the dose of metoprolol was varied. First a full dose response curve for metoprolol (0.1-10 mg/kg, ip) alone was obtained ( FIG. 7 , ⁇ symbols). In the second phase of the study, animals were implanted with osmotic pumps subcutaneously containing CVT-510. CVT-510 was delivered at a rate of 20 ⁇ g/kg/hr, which yielded plasma concentration of 7.5 ⁇ 1 ng/ml. Metoprolol dose response curve was repeated in these animals. In the presence of CVT-510, metoprolol dose response curve was shifted to the left and downward ( FIG. 7 , ⁇ symbols).
- FIG. 8 This figure represents the data shown in FIG. 7 .
- the slowing of heart rate caused by CVT-510 and metoprolol was quantified by determining the area under the curve (AUC) for a period of 60 min for each treatment.
- AUC area under the curve
- FIG. 9-10 Studies in anesthetized guinea pigs.
- mice Male guinea pigs weighing 400-450 gm were obtained from Simonsen labs and housed in the institutional laboratory animal facility. Animals were anesthetized with isoflurane in the anesthetizing chamber. After determining (by toe pinch) that the animal is adequately anesthetized, the animals was intubated with an endotracheal tube and ventilated with isoflurane and oxygen mixture using anesthesia workstation. Using sterile equipment and aseptic technique, the right carotid artery was exposed and a catheter inserted for recording of blood pressure (BP). A quadripolar electrode catheter was introduced via the right jugular vein and positioned in the right atrium and ventricle for atrial and ventricular pacing.
- BP blood pressure
- the hearts were paced at a constant rate (330-360 bpm) to eliminate the effect of heart rate variability between animals.
- Another catheter was inserted into the left jugular vein and positioned in the right atrium for the administration of drugs and saline.
- Subcutaneous needles were used as standard electrocardiographic leads to record the electrocardiogram (ECG). After completion of surgery and instrumentation, a 20 min equilibration period was allowed before beginning the experimental protocol. The data was recorded using Power Lab data acquisition system.
- FIG. 9 CVT-510 (0.5 ⁇ g/kg) and metoprolol (0.1 mg/kg), which were given as an iv bolus, demonstrated an increased PR interval by 5 msec each in anesthetized guinea pigs. When the two agents were given in combination the PR interval was increased up to 15 msec. This is a synergistic effect, as the observed effect is more than the algebraic sum of the effect of each agent.
- FIG. 10 Similar results were obtained when CVT-510 was given in the presence of with another beta-blocker, esmolol. Esmolol was administered at three different infusion rates. CVT-510 was given 15 minutes after starting the infusion of Esmolol. Effect of CVT-510 on PR interval was increased with increasing doses of esmolol. The duration of effect was significantly prolonged in a dose-dependent manner.
- the combination of a beta-blocker and A 1 agonist results in synergistic effects on heart rate in rats and PR interval in guinea pigs.
- the combined effect is dependent on the dose of either agent. That is, one can achieve similar responses by keeping one agent constant and varying the other.
- Various routes of administration of the drugs have been tried, and different combinations. For example, one drug has been administered 10 minutes after administration of the first, and 1 hour after administration of the first. The drugs have been given as a mixture, or given separately at the same time. The response varies in magnitude, but the overall effect is same. It has also been demonstrated that the combination is effective using both full A 1 adenosine receptor agonists and partial A 1 adenosine receptor agonists.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Emergency Medicine (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Saccharide Compounds (AREA)
Abstract
Methods are provided for treating arrhythmia in a manner that minimizes undesirable side effects, comprising administration of a therapeutically effective minimal dose of an A1 adenosine receptor agonist with a therapeutically effective minimal dose of a beta blocker, calcium channel blocker, or a cardiac glycoside.
Description
- This application is a Continuation of U.S. patent application Ser. No. 11/262,025, filed Oct. 28, 2008, which is a Divisional of U.S. patent application Ser. No. 10/418,654, filed Apr. 18, 2003, which claims priority to U.S. Provisional Patent Application Ser. No. 60/373,766, filed Apr. 19, 2002, the entireties of which are herein incorporated by reference.
- This invention relates to a method of treating arrhythmias and heart failure in a manner that minimizes undesirable side effects, comprising administration of a low dose of an adenosine A1 receptor agonist in conjunction with a low dose of a beta blocker, or a calcium channel blocker, or a cardiac glycoside.
- Arrhythmias are abnormal heart rhythms that occur either in the atria or the ventricles. Arrhythmias arising in the atria are called atrial arrhythmias, and these disorders include atrial fibrillation, atrial flutter, and paroxysmal atrial tachycardia (PSVT). Arrhythmias arising in the ventricles, known as ventricular arrhythmias, are a group of disorders having diverse etiologies, including idiopathic ventricular tachycardia, ventricular fibrillation, and Torsade de Pointes (TdP). Arrhythmias can range from incidental, asymptomatic clinical findings to life-threatening abnormalities, and account for a significant percentage of the causes of death in humans. Thus, it is desirable to develop methods of mitigating the effects of arrhythmias.
- A variety of anti-arrhythmic drug therapies are presently available, and are classified as follows. Class I anti-arrhythmics, comprising sodium channel blockers; Class II, comprising beta-blockers; Class III, comprising drugs that prolong action potential (usually by blocking potassium channels); and Class IV, comprising calcium channels blockers. Cardiac glycosides, for example digitalis, are also used as drugs for the treatment of arrhythmia, but they have a delayed onset of action (about 30 minutes) and their peak effects are not observed for ≧3 to 4 hours after administration. Additionally, digitalis is toxic at doses close to the therapeutic dose, which limits the utility of the compound.
- In fact all of the above classes have significant limitations. For example, beta-blockers, such as propranolol and esmolol, and calcium-channel blockers, for example verapamil, bepridil, and diltiazem, can cause hypotension, potentially have negative inotropic effects, and may also precipitate new arrhythmias, including TdP.
- Adenosine, which is widely found in nature, is another compound that has anti-arrhythmic activities, by virtue of its ability, at certain dose levels, to slow the conduction in the atrioventricular node. The anti-arrhythmic effects of adenosine are due exclusively to its interaction with the adenosine A1 receptor subtype. However, although adenosine is highly effective in ameliorating arrhythmia, it also binds contemporaneously to other adenosine receptor subtypes (A2A, A2B, and A3), which results in undesirable side effects, such as vasodilation, changes in the heart rate, mast cell degradation, etc. Adenosine also has a short half-life (˜10 sec), making it ineffective in treating conditions that require prolonged action.
- Compounds that are selective agonists for adenosine A1 receptors are known. For example, a new class of agonists that bind to adenosine A1 receptors and that are useful in treating arrhythmias are disclosed in U.S. Pat. No. 5,789,416, and in U.S. patent application, Ser. No. 10/194,335, the entire disclosures of which are hereby incorporated by reference. These compounds have a high specificity for the adenosine A1 receptor subtype, but like all therapeutic compounds, can potentially cause side effects.
- Antiarrythymic agents in general have a narrow margin between the dose required to produce the desired antiarrhythmic effect and the dose that produces an adverse effect. It would therefore be desirable to find a method of treating arrhythmia that is effective at low doses (or minimal doses) of the active agent, thus decreasing the likelihood of adverse effects. We have discovered that low doses of adenosine A1 receptor agonists, preferably partial agonists, and more preferably selective adenosine A1 receptor agonists, can be used in combination with low doses of beta blocker, calcium channel blockers, or cardiac glycosides, to provide an effective treatment for arrhythmia that minimizes the side effects of beta blockers, calcium channel blockers, cardiac glycosides, and A1-adenosine receptor agonists that may potentially occur when taken individually. It has also been observed that at low doses, the combination of these agents act in a synergistic manner, thus reducing even further the chance of side effects. It has also been observed that the combination of an A1 adenosine receptor antagonist with a beta blocker can be used in the treatment of heart failure, including ischemic heart disease, congestive heart failure, heart failure syndrome, hypertension, and the like.
- Accordingly, a novel and effective method of treating arrhythmias is provided that restores sinus rhythm without slowing the sinus rate and is virtually free of undesirable side effects, such as changes in mean arterial pressure, blood pressure, increased heart rate, TdP, or other adverse effects.
- It is an object of this invention to provide an effective method of treating arrhythmias in a mammal while minimizing undesirable side effects. Accordingly, in a first aspect, the invention relates to a method of treating arrhythmias in a mammal, comprising administration of a therapeutically effective minimal dose of an A1 adenosine receptor agonist in conjunction with a therapeutically effective minimal dose of a beta blocker, calcium channel blocker, or a cardiac glycoside to a mammal in need thereof.
- In one embodiment, an A1-adenosine receptor agonist useful for this invention is a compound of Formula I:
- wherein:
- R1 is an optionally substituted heterocyclic group, preferably monocyclic. The effective dose is preferably in the range of 0.0001-0.05 mg/kg, more preferably 0.0005-0.02 mg/kg.
- In a preferred embodiment, R1 is 3-tetrahydrofuranyl, 3-tetrahydrothiofuranyl, 4-pyranyl, or 4-thiopyranyl. The most preferred compound of Formula I is 6-(3-(R)—N-aminotetrahydrofuranyl)purine riboside (hereinafter referred to as CVT-510).
- In another embodiment, an A1 adenosine receptor agonist useful for this invention is a compound of Formula II:
- wherein:
- R1 is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, or optionally substituted heteroaryl;
- R2 is hydrogen, halo, trifluoromethyl, optionally substituted acyl, or cyano;
- R3 is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl; optionally substituted heteroaryl, or optionally substituted heterocyclyl,
- R4 and R5 are independently hydrogen or optionally substituted acyl; and
- X and Y are independently a covalent bond or optionally substituted alkylene.
The effective dose is preferably in the range of 0.1 to 200 mg/kg, more preferably 0.5 to 50 mg/kg. - The most preferred compound of Formula II is one in which R1 is 2-hydroxycyclopentyl, X and Y are covalent bonds, R2, R3, and R4 are hydrogen, and R5 is 2-fluorophenyl, most preferably 2-{6-[((1R,2R)-2-hydroxycyclopentyl)amino]purin-9-yl} (4S,5S,3R)-5-[(2-fluorophenylthio)methyl]oxolane-3,4-diol, hereinafter referred to as CVT-3619.
- Preferred beta blockers include atenolol, esmolol, sotalol, and propranolol. More preferred is esmolol. The preferred effective dose is in the range of 0.01 to 100 mg/kg, more preferably in the range of 0.1 to 10 mg/kg.
- Preferred calcium channel blockers include amlodipine, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nimodipine and verapamil. The preferred effective dose is in the range of 0.01 to 50 mg/kg, more preferably in the range of 0.1 to 10 mg/kg.
- Preferred cardiac glycosides include digoxin and digitoxin.
- One preferred embodiment of the invention is a method of treating arrhythmias in a mammal comprising administering a therapeutically effective minimal dose of CVT-510 in conjunction with a therapeutically effective minimal dose of a beta blocker, preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol, to a mammal in need thereof.
- Another preferred embodiment of the invention is a method of treating arrhythmias in a mammal comprising administering a therapeutically effective minimal dose of CVT-3619, and a therapeutically effective minimal dose of a beta blocker, preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol, to a mammal in need thereof.
- Another preferred embodiment of the invention is a method of treating arrhythmias in a mammal comprising administering a therapeutically effective minimal dose of CVT-510, or a therapeutically effective minimal dose of CVT-3619, in conjunction with a therapeutically effective minimal dose of a calcium channel blocker, preferably verapamil, to a mammal in need thereof.
- A third preferred embodiment of the invention is a method of treating arrhythmias in a mammal comprising administering a therapeutically effective minimal dose of CVT-510, or a therapeutically effective minimal dose of CVT-3619, in conjunction with a therapeutically effective minimal dose of a cardiac glycoside, preferably digoxin, to a mammal in need thereof.
- In another aspect, the invention relates to a pharmaceutical composition useful for treating arrhythmias in a mammal, comprising a therapeutically effective minimal dose of an A1 adenosine receptor agonist and a therapeutically effective minimal dose of a beta blocker, and at least one pharmaceutically acceptable excipient.
- One preferred embodiment of the invention is a pharmaceutical composition for treating arrhythmias in a mammal, comprising a therapeutically effective minimal dose of a compound of Formula I, more preferably CVT-510, and a therapeutically effective minimal dose of a beta blocker, preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol, to a mammal in need thereof. The Formula I dose is preferably in the range of 0.0001-0.05 mg/kg, more preferably 0.0005-0.02 mg/kg, and the beta blocker dose is in the in the range of 0.01 to 100 mg/kg, more preferably in the range of 0.1 to 10 mg/kg.
- Another preferred embodiment of the invention is a pharmaceutical composition for treating arrhythmias in a mammal, comprising a therapeutically effective minimal dose of a compound of Formula II, more preferably CVT-3619, and a therapeutically effective minimal dose of a beta blocker, preferably esmolol, atenolol, sotolol or propranol, more preferably esmolol, to a mammal in need thereof. The dose is preferably in the range of 0.1 to 200 mg/kg, more preferably 0.5 to 25 mg/kg, and the beta blocker dose is in the in the range of 0.01 to 100 mg/kg, more preferably in the range of 0.1 to 10 mg/kg.
- In another aspect, the invention relates to a method of treating heart failure in a mammal, comprising administration of a therapeutically effective minimal dose of an A1 adenosine receptor agonist in conjunction with a therapeutically effective minimal dose of a beta blocker to a mammal in need thereof.
-
FIG. 1 . Comparison of the effect of CVT-3619 alone and CVT-3619 in combination with propranolol on heart rate. -
FIG. 2 . Comparison of the effect of CVT-3619 alone and CVT-3619 in combination with propranolol on heart rate. -
FIG. 3 . Comparison of the effect of 20 μg/kg of CVT-510, 10 mg/kg of esmolol, and a combination of 20 μg/kKg of CVT-510 and 10 mg/kg of esmolol on heart rate. -
FIG. 4 . Comparison of the effect of 20 μg/kg of CVT-510, 3 mg/kg of esmolol, and a combination of 20 μg/kg of CVT-510 and 3 mg/kg of esmolol on heart rate. -
FIG. 5 . Comparison of the effect of 10 μg/kg, 20 μg/Kg and 30 μg/kg doses of CVT-510, 1 mk/kg and 3 mg/kg of esmolol, and a combination of 20 μg/kg of CVT-510 and 1 and 3 mg/kg of esmolol on duration of Bradycardia. -
FIG. 6 . Comparison of plasma levels of CVT-510 alone and a combination of CVT-510 and metoprolol. -
FIG. 7 . Dose response curve for metoprolol in the absence and presence of CVT-510. -
FIG. 8 . This figure represents the data shown inFIG. 7 . -
FIG. 9 . Effect of CVT-510 (0.5 μg/kg) and metoprolol (0.1 mg/kg), which were given as an iv bolus, on PR interval -
FIG. 10 . Effect of CVT-510 (0.5 μg/kg) and esmolol on PR interval - BPM: beats per minute
HR: Heart rate
SH: Stimulus to His (length of time for conduction of current through AV node) - As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.
- The term “alkyl” refers to a monoradical branched or unbranched saturated hydrocarbon chain having from 1 to 20 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, t-butyl, n-hexyl, n-decyl, tetradecyl, and the like.
- The term “substituted alkyl” refers to:
- 1) an alkyl group as defined above, having from 1 to 5 substituents, preferably 1 to 3 substituents, selected from the group consisting of alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO2-alkyl, SO2-aryl and —SO2-heteroaryl. Unless otherwise constrained by the definition, all substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2; or
2) an alkyl group as defined above that is interrupted by 1-5 atoms or groups independently chosen from oxygen, sulfur and —NRa—, where Ra is chosen from hydrogen, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heteroaryl and heterocyclyl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2; or
3) an alkyl group as defined above that has both from 1 to 5 substituents as defined above and is also interrupted by 1-5 atoms or groups as defined above. - The term “lower alkyl” refers to a monoradical branched or unbranched saturated hydrocarbon chain having from 1 to 6 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, t-butyl, n-hexyl, and the like.
- The term “substituted lower alkyl” refers to lower alkyl as defined above having 1 to 5 substituents, preferably 1 to 3 substituents, as defined for substituted alkyl, or a lower alkyl group as defined above that is interrupted by 1-5 atoms as defined for substituted alkyl, or a lower alkyl group as defined above that has both from 1 to 5 substituents as defined above and is also interrupted by 1-5 atoms as defined above.
- The term “alkylene” refers to a diradical of a branched or unbranched saturated hydrocarbon chain, preferably having from 1 to 20 carbon atoms, preferably 1-10 carbon atoms, more preferably 1-6 carbon atoms. This term is exemplified by groups such as methylene (—CH2—), ethylene (—CH2CH2—), the propylene isomers (e.g., —CH2CH2CH2— and —CH(CH3)CH2—) and the like.
- The term “lower alkylene” refers to a diradical of a branched or unbranched saturated hydrocarbon chain, preferably having from 1 to 6 carbon atoms.
- The term “substituted alkylene” refers to:
- (1) an alkylene group as defined above having from 1 to 5 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO2-alkyl, SO2-aryl and —SO2-heteroaryl. Unless otherwise constrained by the definition, all substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2; or
(2) an alkylene group as defined above that is interrupted by 1-5 atoms or groups independently chosen from oxygen, sulfur and NRa—, where Ra is chosen from hydrogen, optionally substituted alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycyl, or groups selected from carbonyl, carboxyester, carboxyamide and sulfonyl; or
(3) an alkylene group as defined above that has both from 1 to 5 substituents as defined above and is also interrupted by 1-20 atoms as defined above. Examples of substituted alkylenes are chloromethylene (—CH(Cl)—), aminoethylene (—CH(NH2)CH2—), methylaminoethylene (—CH(NHMe)CH2—), 2-carboxypropylene isomers(—CH2CH(CO2H)CH2—), ethoxyethyl (—CH2CH2O—CH2CH2—), ethylmethylaminoethyl (—CH2CH2N(CH3)CH2CH2—),1-ethoxy-2-(2-ethoxy-ethoxy)ethane (—CH2CH2O—CH2CH2—OCH2CH2—OCH2CH2—), and the like. - The term “aralkyl: refers to an aryl group covalently linked to an alkylene group, where aryl and alkylene are defined herein. “Optionally substituted aralkyl” refers to an optionally substituted aryl group covalently linked to an optionally substituted alkylene group. Such aralkyl groups are exemplified by benzyl, phenylethyl, 3-(4-methoxyphenyl)propyl, and the like.
- The term “alkoxy” refers to the group R—O—, where R is optionally substituted alkyl or optionally substituted cycloalkyl, or R is a group —Y-Z, in which Y is optionally substituted alkylene and Z is; optionally substituted alkenyl, optionally substituted alkynyl; or optionally substituted cycloalkenyl, where alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl are as defined herein. Preferred alkoxy groups are alkyl-O— and include, by way of example, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, 1,2-dimethylbutoxy, and the like.
- The term “alkylthio” refers to the group R—S—, where R is as defined for alkoxy.
- The term “alkenyl” refers to a monoradical of a branched or unbranched unsaturated hydrocarbon group preferably having from 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms and even more preferably 2 to 6 carbon atoms and having 1-6, preferably 1, double bond (vinyl). Preferred alkenyl groups include ethenyl or vinyl (—CH═CH2), 1-propylene or allyl (—CH2CH═CH2), isopropylene (—C(CH3)═CH2), bicyclo[2.2.1]heptene, and the like. In the event that alkenyl is attached to nitrogen, the double bond cannot be alpha to the nitrogen.
- The term “lower alkenyl” refers to alkenyl as defined above having from 2 to 6 carbon atoms.
- The term “substituted alkenyl” refers to an alkenyl group as defined above having from 1 to 5 substituents, and preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO2-alkyl, SO2-aryl and —SO2-heteroaryl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- The term “alkynyl” refers to a monoradical of an unsaturated hydrocarbon, preferably having from 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms and even more preferably 2 to 6 carbon atoms and having at least 1 and preferably from 1-6 sites of acetylene (triple bond) unsaturation. Preferred alkynyl groups include ethynyl, (—C≡CH), propargyl (or propynyl, —C≡CCH3), and the like. In the event that alkynyl is attached to nitrogen, the triple bond cannot be alpha to the nitrogen.
- The term “substituted alkynyl” refers to an alkynyl group as defined above having from 1 to 5 substituents, and preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO2-alkyl, SO2-aryl and —SO2-heteroaryl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- The term “aminocarbonyl” refers to the group —C(O)NRR where each R is independently hydrogen, alkyl, aryl, heteroaryl, heterocyclyl or where both R groups are joined to form a heterocyclic group (e.g., morpholino). All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- The term “acylamino” refers to the group —NRC(O)R where each R is independently hydrogen, alkyl, aryl, heteroaryl, or heterocyclyl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- The term “acyloxy” refers to the groups —O(O)C-alkyl, —O(O)C-cycloalkyl, —O(O)C-aryl, #(O)C-heteroaryl, and —O(O)C-heterocyclyl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- The term “aryl” refers to an aromatic carbocyclic group of 6 to 20 carbon atoms having a single ring (e.g., phenyl) or multiple rings (e.g., biphenyl), or multiple condensed (fused) rings (e.g., naphthyl or anthryl). Preferred aryls include phenyl, naphthyl and the like.
- Unless otherwise constrained by the definition for the aryl substituent, such aryl groups can optionally be substituted with from 1 to 5 substituents, preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO2-alkyl, SO2-aryl and —SO2-heteroaryl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- The term “aryloxy” refers to the group aryl-O— wherein the aryl group is as defined above, and includes optionally substituted aryl groups as also defined above. The term “arylthio” refers to the group R—S—, where R is as defined for aryl.
- The term “amino” refers to the group —NH2.
- The term “substituted amino” refers to the group —NRR where each R is independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, carboxyalkyl (for example, benzyloxycarbonyl), aryl, heteroaryl and heterocyclyl provided that both R groups are not hydrogen, or a group —Y-Z, in which Y is optionally substituted alkylene and Z is alkenyl, cycloalkenyl, or alkynyl, All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- The term “carboxyalkyl” refers to the groups —C(O)O-alkyl, —C(O)O-cycloalkyl, where alkyl and cycloalkyl, are as defined herein, and may be optionally further substituted by alkyl, alkenyl, alkynyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- The term “cycloalkyl” refers to cyclic alkyl groups of from 3 to 20 carbon atoms having a single cyclic ring or multiple condensed rings. Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, and the like, or multiple ring structures such as adamantanyl, and bicyclo[2.2.1]heptane, or cyclic alkyl groups to which is fused an aryl group, for example indan, and the like.
- The term “substituted cycloalkyl” refers to cycloalkyl groups having from 1 to 5 substituents, and preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO2-alkyl, SO2-aryl and —SO2-heteroaryl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2.
- The term “halogen” or “halo” refers to fluoro, bromo, chloro, and iodo.
- The term “acyl” denotes a group —C(O)R, in which R is hydrogen, optionally is substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, and optionally substituted heteroaryl.
- The term “heteroaryl” refers to an aromatic group (i.e., unsaturated) comprising 1 to 15 carbon atoms and 1 to 4 heteroatoms selected from oxygen, nitrogen and sulfur within at least one ring.
- Unless otherwise constrained by the definition for the heteroaryl substituent, such heteroaryl groups can be optionally substituted with 1 to 5 substituents, preferably 1 to 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO2-alkyl, SO2-aryl and —SO2-heteroaryl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2. Such heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings (e.g., indolizinyl, benzothiazole, or benzothienyl). Examples of nitrogen heterocycles and heteroaryls include, but are not limited to, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, and the like as well as N-alkoxy-nitrogen containing heteroaryl compounds.
- The term “heteroaryloxy” refers to the group heteroaryl-O—.
- The term “heterocyclyl” refers to a monoradical saturated or partially unsaturated group having a single ring or multiple condensed rings, having from 1 to 40 carbon atoms and from 1 to 10 hetero atoms, preferably 1 to 4 heteroatoms, selected from nitrogen, sulfur, phosphorus, and/or oxygen within the ring.
- Unless otherwise constrained by the definition for the heterocyclic substituent, such heterocyclic groups can be optionally substituted with 1 to 5, and preferably 1 to 3 substituents, selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, acyl, acylamino, acyloxy, amino, aminocarbonyl, alkoxycarbonylamino, azido, cyano, halogen, hydroxy, keto, thiocarbonyl, carboxy, carboxyalkyl, arylthio, heteroarylthio, heterocyclylthio, thiol, alkylthio, aryl, aryloxy, heteroaryl, aminosulfonyl, aminocarbonylamino, heteroaryloxy, heterocyclyl, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-aryl, —SO-heteroaryl, —SO2-alkyl, SO2-aryl and —SO2-heteroaryl. All substituents may be optionally further substituted by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano, or —S(O)nR, in which R is alkyl, aryl, or heteroaryl and n is 0, 1 or 2. Heterocyclic groups can have a single ring or multiple condensed rings. Preferred heterocyclics include tetrahydrofuranyl, morpholino, piperidinyl, and the like.
- The term “thiol” refers to the group —SH.
- The term “substituted alkylthio” refers to the group —S-substituted alkyl.
- The term “heteroarylthiol” refers to the group —S-heteroaryl wherein the heteroaryl group is as defined above including optionally substituted heteroaryl groups as also defined above.
- The term “sulfoxide” refers to a group —S(O)R, in which R is alkyl, aryl, or heteroaryl. “Substituted sulfoxide” refers to a group —S(O)R, in which R is substituted alkyl, substituted aryl, or substituted heteroaryl, as defined herein.
- The term “sulfone” refers to a group —S(O)2R, in which R is alkyl, aryl, or heteroaryl. “Substituted sulfone” refers to a group —S(O)2R, in which R is substituted alkyl, substituted aryl, or substituted heteroaryl, as defined herein.
- The term “keto” refers to a group —C(O)—. The term “thiocarbonyl” refers to a group —C(S)—. The term “carboxy” refers to a group —C(O)—OH.
- “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not.
- The terms “compound of Formula I” and “compound of Formula II” are intended to encompass the compounds of the invention as disclosed, and the pharmaceutically acceptable salts, pharmaceutically acceptable esters, and prodrugs of such compounds.
- The term “therapeutically effective amount” refers to that amount of an active ingredient (A1-agonist, beta-blocker, calcium channel blocker, cardiac glycoside) that is sufficient to effect treatment, as defined below, when administered to a mammal in need of such treatment. The therapeutically effective amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by a prescribing physician.
- The term “therapeutically effective minimal dose” or “low dose” of an A1 adenosine receptor agonist refers to a dose level of an A1 adenosine receptor agonist that is generally considered to be below the therapeutically effective amount as defined above, but is sufficient to provide effective treatment when administered in conjunction with a “therapeutically effective minimal dose” or “low dose” of a beta blocker, calcium channel blocker, or a cardiac glycoside. For example, a therapeutically effective minimal dose of CVT-3619 is one that would not normally be considered to be useful in the treatment of arrhythmia, but is now found to be useful in the treatment of arrhythmia when administered in conjunction with a therapeutically effective minimal dose of a beta blocker, because of the synergistic effect obtained upon combining an A1-agonist with a beta blocker. The therapeutically effective minimal dose will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by a prescribing physician.
- A therapeutically effective minimal dose of an adenosine A1 receptor agonist is administered “in conjunction with” a therapeutically effective minimal doses of a beta blocker, or a calcium channel blocker, or a cardiac glycoside. In this context, the word “conjunction” means that the doses may be administered together at the same time, for example in a single pill or solution, or administered separately at the same time, or administered at different times.
- The term “treatment” or “treating” means any treatment of a disease in a mammal, including:
-
- (i) preventing the disease, that is, causing the clinical symptoms of the disease not to develop;
- (ii) inhibiting the disease, that is, arresting the development of clinical symptoms; and/or
- (iii) relieving the disease, that is, causing the regression of clinical symptoms.
- As used herein, the term “agonist” refers to the ability of a compound to interact with a receptor and evoke a maximal effect. This effect is known as the intrinsic efficacy. In contrast, “partial agonists” interact with adenosine A1 receptors but produce a less than maximal response.
- The term “adenosine A1 receptor agonist” refers to an agent that binds to adenosine A1 receptors thereby producing a negative dromotropic effect. For example, CVT-3619 is a partial A1-adenosine receptor agonist—it has a rate dependent effect upon AV nodal conduction. It increases AV-node refractoriness, and thus reduces ventricular rate during atrial tachyarrhythmia. A1 agonists also act to inhibit the release of norepinephrine from the pre-synaptic nerve terminal, and to inhibit the uptake of norepinephrine at the post-synaptic nerve terminal.
- The term “beta-blocker” refers to an agent that binds to a beta-adrenergic receptor and inhibits the effects of beta-adrenergic stimulation. Beta-blockers increase AV nodal conduction. In addition, Beta-blockers decrease heart rate by blocking the effect of norepinephrine on the post synaptic nerve terminal that controls heart rate. Beta blockers also decrease intracellular Ca++ overload, which inhibits after-depolarization mediated automaticity. Examples of beta blockers include atenolol, esmolol, sotalol, propranolol, bopindolol, carteolol, oxprenolol, penbutolol, carvedilol, medroxalol, bucindolol, levobunolol, metipranolol, betaxolol, celiprolol, and propafenone.
- The term “calcium channel blocker” refers to an agent that blocks voltage-dependent “L-type calcium channel. They are used in treatment of heart diseases, including cardiac arrhythmia—they have a rate dependent effect upon AV nodal conduction. Examples of calcium channel blockers include amlodipine, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nimodipine and verapamil.
- The term “cardiac glycoside” refers to a compound with a steroidal nucleus and a lactone ring, and usually has one or more sugar residues. They are used in treatment of heart diseases, including cardiac arrhythmia—they have a rate dependent effect upon AV nodal conduction. Examples of cardiac glycosides include digoxin and digitoxin.
- The term “synergistic” effect means a result produced by a combination of drugs that is greater than that produced by each drug alone.
- In many cases, the compounds of this invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto. The term “pharmaceutically acceptable salt” refers to salts that retain the biological effectiveness and properties of the compounds of Formula I, and which are not biologically or otherwise undesirable. Pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases. Salts derived from inorganic bases, include by way of example only, sodium, potassium, lithium, ammonium, calcium and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines, such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri(substituted alkyl) amines, alkenyl amines, dialkenyl amines, trialkenyl amines, substituted alkenyl amines, di(substituted alkenyl) amines, tri(substituted alkenyl) amines, cycloalkyl amines, di(cycloalkyl) amines, tri(cycloalkyl) amines, substituted cycloalkyl amines, disubstituted cycloalkyl amine, trisubstituted cycloalkyl amines, cycloalkenyl amines, di(cycloalkenyl) amines, tri(cycloalkenyl) amines, substituted cycloalkenyl amines, disubstituted cycloalkenyl amine, trisubstituted cycloalkenyl amines, aryl amines, diaryl amines, triaryl amines, heteroaryl amines, diheteroaryl amines, triheteroaryl amines, heterocyclic amines, diheterocyclic amines, triheterocyclic amines, mixed di- and tri-amines where at least two of the substituents on the amine are different and are selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, and the like. Also included are amines where the two or three substituents, together with the amino nitrogen, form a heterocyclic or heteroaryl group.
- Specific examples of suitable amines include, by way of example only, isopropylamine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, 2-dimethylaminoethanol, tromethamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, N-alkylglucamines, theobromine, purines, piperazine, piperidine, morpholine, N-ethylpiperidine, and the like.
- Pharmaceutically acceptable acid addition salts may be prepared from inorganic and organic acids. Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like.
- As used herein, “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- The term “compound of Formula I” or “compound of Formula II” is intended to encompass the compounds of the invention as disclosed, and the pharmaceutically acceptable salts, pharmaceutically acceptable esters, and prodrugs of such compounds. Additionally, the compounds of the invention may possess one or more asymmetric centers, and can be produced as a racemic mixture or as individual enantiomers or diastereoisomers. The number of stereoisomers present in any given compound of the invention depends upon the number of asymmetric centers present (there are 2n stereoisomers possible where n is the number of asymmetric centers). The individual stereoisomers may be obtained by resolving a racemic or non-racemic mixture of an intermediate at some appropriate stage of the synthesis, or by resolution of the compound of Formula I or Formula II by conventional means. The individual stereoisomers (including individual enantiomers and diastereoisomers) as well as racemic and non-racemic mixtures of stereoisomers are encompassed within the scope of the present invention, all of which are intended to be depicted by the structures of this specification unless otherwise specifically indicated.
- “Isomers” are different compounds that have the same molecular formula.
“Stereoisomers” are isomers that differ only in the way the atoms are arranged in space.
“Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture. The term “(±)” is used to designate a racemic mixture where appropriate.
“Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
The absolute stereochemistry is specified according to the Cahn-Ingold-Prelog R—S system. When the compound is a pure enantiomer the stereochemistry at each chiral carbon may be specified by either R or S. Resolved compounds whose absolute configuration is unknown are designated (+) or (−) depending on the direction (dextro- or levorotary) which they rotate the plane of polarized light at the wavelength of the sodium D line. - The two components of the invention, an A1-adenosine receptor agonist and a beta-blocker, calcium channel blocker, or a cardiac glycoside, may be administered as a pharmaceutical composition that contains a physical mixture of the two components, but is preferably administered as two separate pharmaceutical compositions. Such separate compositions are preferably administered concurrently, but may also be administered at different times. This invention therefore provides pharmaceutical compositions that contain, as the active ingredient, one or two of the components, or a pharmaceutically acceptable salt or ester thereof, and one or more pharmaceutically acceptable excipients, carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants. Such compositions are prepared in a manner well known in the pharmaceutical art (see, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985) and “Modern Pharmaceutics”, Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.).
- The components may be administered in either single or multiple doses by any of the accepted modes of administration of agents having similar utilities, for example as described in those patents and patent applications incorporated by reference, including rectal, buccal, intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, as an inhalant, or via an impregnated or coated device such as a stent, for example, or an artery-inserted cylindrical polymer.
- One mode for administration is parental, particularly by injection. The forms in which the novel compositions of the present invention may be incorporated for administration by injection include aqueous or oil suspensions, or emulsions, with sesame oil, corn oil, cottonseed oil, or peanut oil, as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles. Aqueous solutions in saline are also conventionally used for injection, but less preferred in the context of the present invention. Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- Sterile injectable solutions are prepared by incorporating the component in the required amount in the appropriate solvent with various other ingredients as enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral administration is another route for administration of the components. Administration may be via capsule or enteric coated tablets, or the like. In making the pharmaceutical compositions that include at least one compound of Formula I or II, the active ingredient is usually diluted by an excipient and/or enclosed within such a carrier that can be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, in can be a solid, semi-solid, or liquid material (as above), which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.
- Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
- The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art. Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Pat. Nos. 3,845,770; 4,326,525; 4,902,514; and 5,616,345. Another formulation for use in the methods of the present invention employs transdermal delivery devices (“patches”). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252, 4,992,445 and 5,001,139. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- The compositions are preferably formulated in a unit dosage form. The term “unit dosage forms” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient (e.g., a tablet, capsule, ampoule). The compounds of Formula I and II are effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It will be understood, however, that the amount of the compound of Formula I actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered and its relative activity, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
- For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
- The tablets or pills of the present invention may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action, or to protect from the acid conditions of the stomach. For example, the tablet or pill can comprise an inner dosage and an outer dosage element, the latter being in the form of an envelope over the former. The two elements can be separated by an enteric layer that serves to resist disintegration in the stomach and permit the inner element to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. Preferably the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices that deliver the formulation in an appropriate manner.
- The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
- The beta blockers, calcium channel blockers, and cardiac glycosides of this invention are well known in the art, and are commercially available. The compounds of Formula I may be prepared by conventional methods, in the manner disclosed in U.S. Pat. No. 5,789,416, the entire disclosure of which is hereby incorporated by reference. For example, the preferred compound CVT-510 is prepared as follows.
- A mixture of 3-aminotetrahydrofuran hydrochloride (0.5 GM, 4 mmol) and (S)-(+)-10-camphorsulfonyl chloride (1.1 gm, 4.4 mmol) in pyridine (10 ml) was stirred for 4 hours at room temperature and then concentrated. The residue was dissolved in ethyl acetate and washed with 0.5N hydrochloric acid, followed by sodium bicarbonate and then brine. The organic layer was dried over magnesium sulfate, filtered, and solvent removed from the filtrate under reduced pressure to provide 1.17 g of a brown oil, which was chromatographed on silica gel (25% to 70% ethyl acetate/hexanes). The white solid obtained was repeatedly recrystallized from acetone to yield the (S)-camphorsulfonate of 3-(S)-aminotetrahydrofuran.
- The (S)-camphorsulfonate of 3-(S)-aminotetrahydrofuran (170 mg, 0.56 mmol) was dissolved in concentrated hydrochloric acid/acetic acid (2 mL each), and stirred for 20 hours at room temperature. The reaction mixture was washed three times with methylene chloride (10 ml), and the combined extracts concentrated to dryness under reduced pressure, to give 75 mg of 3-(S)-aminotetrahydrofuran, as a white solid.
- A mixture of 6-chloropurine riboside (30 mg, 0.10 mmol), 3-(S)-aminotetrahydrofuran hydrochloride (19 mg, 0.15 mmol), and triethylamine (45 ml, 0.32 mmol) in methanol (0.5 ml) was heated to 80° C. for 18 hours. The mixture was cooled, concentrated and chromatographed with 95/5 (methylene chloride/methanol), to give 8 mg of 6-(3-(S)-aminotetrahydrofuranyl)purine riboside, as a white solid.
- Similarly, following steps 1-3 above, but replacing (S)-(+)-10-camphorsulfonyl chloride with (R)-(−)-10-camphorsulfonyl chloride, the following compound was prepared:
- 6-(3-(R)-aminotetrahydrofuranyl)purine riboside (CVT-510).
- Similarly, other enantiomers of the compounds of Formula I are prepared.
- The compounds of Formula II may be prepared by conventional methods, in the manner disclosed in U.S. patent application Ser. No. 10/194,335, the entire disclosure of which is hereby incorporated by reference. For example, the preferred compound CVT-3619 is prepared as follows.
-
- To a solution of 2-(6-chloropurin-9-yl)-5-hydroxymethyltetrahydrofuran-3,4-diol (a compound of formula (1)) (4.9 g, 17.1 mmol) and 2,2-dimethoxypropane (10.5 mL, 84.7 mmol) in dimethylformamide (100 mL) was added p-toluenesulfonic acid (325 mg, 1.71 mmol). After stirring for 24 hours at 70° C., the reaction was concentrated in vacuo and the residue purified by flash column chromatography (70% EtOAc/Hexanes) to give 6-(6-chloropurine-9-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl]methanol, a compound of formula (2), as an off-white solid (2). (3.8 g, 68%) 1H NMR (CDCl3) δ 1.4 (s, 3H), 1.65 (s, 3H), 3.8-4.0 (dd, 2H), 4.6 (s, 1H), 5.1-5.3 (m, 2H), 6.0 (d, 1H), 8.25 (s, 1H), 8.8 (s, 1H).
-
- To a solution of 6-(6-chloropurine-9-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl]methanol, a compound of formula (2) (0.48 g, 1.47 mmoles) in 20 mL of tetrahydrofuran was added triphenylphosphine (0.77 g, 2.94 mmoles) and diethylazodicarboxylate (0.47 mL, 2.94 mmoles), and the mixture stirred for 5 minutes. 2-Fluorothiophenol (0.31 mL, 2.94 mmoles) was then added, and the mixture was stirred under reflux. After 72 hours of reflux, the reaction was concentrated in vacuo and the residue purified by flash column chromatography (20% EtOAc/Hexanes) to give 1-{[(2S,1R,4R,5R)-4-(6-chloropurin-9-yl)-7,7-dimethyl-3,6,8-trioxabicyclo[3.3.0]oct-2-yl]methylthio}-2-fluorobenzene, a compound of formula (3), as a clear viscous oil (3). (0.25 g, 40%) 1H NMR (CDCl3) δ 1.4 (s, 3H), 1.6 (s, 3H), 3.2 (m, 2H), 4.6 (t, 1H), 5.1 (m, 1H), 5.5 (m, 1H), 6.0 (d, 1H), 7.0 (m, 2H), 7.2 (m, 1H), 7.4 (m, 1H), 8.25 (s, 1H), 8.75 (s, 1H).
- To a solution of 1-{[(2S,1R,4R,5R)-4-(6-chloropurin-9-yl)-7,7-dimethyl-3,6,8-trioxabicyclo[3.3.0)oct-2-yl]methylthio}-2-fluorobenzene, a compound of formula (3), (0.125 g, 2.86 mmoles) in 10 mL of ethanol and 1 mL of triethylamine was added cyclopentylamine in excess, and the mixture refluxed under nitrogen for 24 hours. The solvent was removed under reduced pressure, and the residue was purified by preparative TLC using 1:1 EtOAc:Hexanes to give (9-{(4S,1R,2R,5R)-4-[(2-fluorophenylthio)methyl]-7,7-dimethyl-3,6,8-trioxabicyclo[3.3.0]oct-2-yl}purin-6-yl)cyclopentylamine, a compound of formula (4), as a yellow oil (80 mg, 56%) 1H NMR (CDCl3) δ 1.4 (s, 3H), 1.6 (s, 3H), 1.6-2.4 (m, 6H), 3.15-3.25 (m, 2H), 4.1 (bs, 1H), 4.4 (t, 1H), 5.1 (m, 1H), 5.5 (m, 1H), 6.0 (d, 1H), 6.2 (bs, 1H), 7.0 (m, 2H), 7.2 (m, 1H), 7.4 (m, 1H), 7.8 (s, 1H), 8.25 (s, 1H).
-
- (9-{(4S,1R,2R,5R)-4-[(2-fluorophenylthio)methyl]-7,7-dimethyl-3,6,8-trioxabicyclo[3.3.0]oct-2-yl}purin-6-yl)cyclopentylamine, a compound of formula (4) (50 mg) was dissolved in a mixture of acetic acid (8 mL) and water (2 mL) and heated at 90 C for 16 hours. Solvents were removed under reduced pressure, and the residue was purified by preparative TLC [methanol-dichloromethane(1:9)] to afford (4S,5S,3R)-2-[6-(cyclopentylamino)purin-9-yl]-5-[(2-fluorophenylthio)methyl]oxolane-3,4-diol, a compound of Formula I. 1H NMR (CDCl3) δ 1.6-2.4 (m, 6H), 3.15-3.25 (m, 2H), 4.1 (bs, 1H), 4.4-4.65 (m, 4H), 6.0 (d, 1H), 6.8 (bs, 1H), 7.05 (m, 2H), 7.2 (m, 1H), 7.4 (m, 1H), 7.8 (s, 1H), 8.25 (s, 1H).
- Rats (Sprague Dawley) weighing 300-400 gms were purchased from Simonsen laboratories. CVT-3619 was dissolved in DMSO and further diluted in saline. CVT-510 was dissolved in saline. Ketamine was purchased from Fort Dodge Animal Health, Xylazine from Bayer and Acepromazine Maleate from Fermenta Animal Health Co. Metoprolol and propranolol were purchased from SIGMA. Esmolol was obtained from a local pharmacy.
- For these studies, rats were instrumented with radiotelemetered transmitters (Data Sciences) at least 3 weeks prior to experimentation. Animals were anesthetized by peritoneal injection of a “cocktail” (1 ml/kg) containing Ketamine (75 mg/ml), Xylazine (5 mg/ml), and Acepromazine (1 mg/ml). After 20-30 minutes of induction of anesthesia, a midline laparotomy was performed. The transmitter for recordings of ECG, blood pressure and body temperature was placed in the abdominal cavity, and secured to the abdominal muscles. Two electrocardiographic leads were tunneled through the subcutaneous—one toward the upper left shoulder and the other to the right thigh, and secured with sutures. A fluid filled sensor catheter was inserted in the descending aorta above the iliac bifurcation for measurement of blood pressure. The tip of the telemetry catheter was located in the abdominal aorta just caudal to the renal arteries. Once the transmitter and leads were in place and determined to be functioning properly, the abdominal wall was sutured. After recovery from anesthesia, the rats were housed individually in cages placed on their respective receivers. The ECG, blood pressure and temperature were recorded and heart rate measured by a Dataquest ART Gold system (Version 2.2; Data Sciences Intl). The system consisted of a transmitter, i.e., biopotential sensor (Model TL11M2-C50-PXT), receivers (Model RPC-1), a consolidation matrix (BCM 100), a personal computer (Compaq DeskPro Series 3574) and Dataquest 4 software. Heart rate, blood pressure and temperature were measured at 5-minute intervals. Each recording lasted 10 seconds and all cardiac cycles within this period were averaged. Animals were given various drugs in a randomized manner after recording the baseline data for at least two hours.
- A subgroup of animals was implanted with osmotic pumps containing CVT-510 for combination experiments. After 7 days or more of having been implanted with radio-telemetry transmitters for recording ECG (L-2), and verifying that the transmitters were functioning, each rat was implanted with an Alzet mini-osmotic pump. Under anesthesia (see above) and sterile conditions, one Alzet mini-osmotic pump, was implanted subcutaneously (SC) in the interseapular area of each rat. The osmotic pumps were filled with either vehicle or CVT-510 (to deliver a dose of 20 μg/kg/hr).
- Carotid artery was catheterized to obtain serial blood samples for the analysis of CVT-510 plasma concentrations. Animals were anesthetized by peritoneal injection of a “cocktail” (1 ml/kg) containing Ketamine (75 mg/ml), Xylazine (5 mg/ml), and Acepromazine (1 mg/ml). After a 20-30 min. of induction of anesthesia, a midline incision was made in the neck region to expose the external carotid artery. A tunnel is made for the catheter using blunt dissection in the subcutaneous pocket on the dorsal section of the neck where it is externalized. The carotid artery was cannulated with 24-gauge catheters sampling of blood for determination of plasma levels of CVT-510. Externally, the catheter is tied at the back of the neck and a piece of suture is tied around the knot leaving both ends about 2 inches long for retrieval from under the skin. The knotted catheter is retracted back under the skin to prevent being pulled out by the rat. The incision is then cleaned with saline, closed with wound clips, and an antibiotic (0.4 ml of a 40 mg/ml solution of gentamicin) is given I.V. Animals were allowed to recover for at least 48 hrs before performing the experiment. On the day of the experiment, an injection plug was attached to a 19-gauge IV set, filled with 0.1% heparinized saline and the needle end was inserted into the catheters. Animals were given either a saline or
metoprolol injection 1 hr prior to CVT-510 injection. About 400 μl of blood was drawn from the line in the carotid artery and 400 ul saline flushed in to replace blood volume at predetermined time points. Plasma was separated and saved at −80° C. for analysis of CVT-510 levels. - CVT-510 plasma level analysis was performed as follows. Briefly, 50 μL of plasma sample was precipitated with 400 μL of acetonitrile:methanol (90:10) containing internal standard. The filtrates were evaporated to dryness and reconstituted in 100 μL of 90:10 water:methanol. Concentration of CVT-510 in protein precipitation filtrates were analyzed by LC-MS-MS using a Waters Alliance 2690 HPLC system (Millford, Mass.) coupled to a Waters/Micromass Quattro Ultima triple quadrupole mass spectrometer (Millford, Mass.). Calibration curves were constructed by plotting peak area ratios of the analyte to internal standard against concentration, using a weighted (1/X) linear regression model in all instances.
- The slowing of heart rate caused by each treatment was quantified by determining the area under the curve (AUC), using the trapezoidal method for calculations. Data used for analysis was the area under/over the curve calculated using change form baseline data (untreated animals). The data was analyzed for the magnitude as well as the duration of bradycardia caused by each treatment. The AUC values for various doses for each monotherapy were compared using one-way ANOVA followed by Tukey's test for multiple comparisons. The significance level was set at p<0.05 for all comparisons.
- The results obtained from the above studies are shown in Figure form, as follows.
-
FIG. 1 shows the effect of CVT-3619 (a partialA1 receptor agonist) on heart rate with and without propranolol in awake rats instrumented with telemetry radiotransmitters. CVT-3619 at dose of (0.5 mg/kg, ip) by itself had minimal effect on heart rate. However when given in the presence of a beta blocker (propranolol, 10 mg/kg, ip), there is significant lowering of heart rate below baseline as compared to CVT-3619 alone. Propranolol was given 10 minutes prior to CVT-3619 injection. -
FIG. 2 shows the summary of data obtained from telemeterized awake rats. The data was quantified as area under the curve (AUC) and presented as a decrease in total number of heart beats for a 2 hour period of time caused by CVT-3619 (given ip) alone at two different doses and in the presence of propranolol (10 mg/kg, ip given 10 minutes prior to CVT-3619). The combination of CVT-3619 and propranolol results in a synergistic effect on heart rate, as the effect observed with combination is much greater than the calculated sum of the effect of each agent. -
FIG. 3 shows the effect of CVT-510 and esmolol alone and given together as a mixture via ip injection to awake rats instrumented with telemetry radiotransmitters. CVT-510 at 20 μg/kg dose transiently lowers the heart rate below baseline levels whereas esmolol (10 mg/kg ip) only slightly reduces the increase in heart rate (which is caused caused by handling the animal). When the two agents are given in combination, the effect on heart rate is much greater. The combination not only increases the magnitude of the response but also increases the duration of bradycardia significantly. -
FIG. 4 shows the effect of CVT-510 alone and the effect when combined with the beta-blocker, Metoprolol, by observing the effect on heart rate in awake rats instrumented with telemetry radiotransmitters. CVT-510 (20 μg/kg, ip) slowed the heart rate in a dose dependent manner. In the presence of Metoprolol (3 mg/kg, ip), there was a greater lowering of heart rate. -
FIG. 5 . The duration of bradycardia caused by CVT-510 was analyzed by observing the time for the heart rate to return to 90% of pretreatment levels. In addition to the increase in magnitude of bradycardia, the combination of CVT-510 and metoprolol resulted in a significant increase in the duration of bradycardia as compared to that caused by CVT-510 alone. -
FIG. 6 : Plasma levels of CVT-510 were determined in the absence and presence of metoprolol in a separate group of animals (FIG. 6 ). Plasma levels of CVT-510 were found to be similar in both groups even though the slowing of heart rate caused by CVT-510 was greater in the presence of metoprolol indicating that the metabolism of CVT-510 was not changed in the presence of metoprolol. -
FIG. 7 : To further investigate the mechanism of interaction of CVT-510 and beta-blockers, another series of experiments were performed in which the dose of CVT-510 was kept constant while the dose of metoprolol was varied. First a full dose response curve for metoprolol (0.1-10 mg/kg, ip) alone was obtained (FIG. 7 , ▪ symbols). In the second phase of the study, animals were implanted with osmotic pumps subcutaneously containing CVT-510. CVT-510 was delivered at a rate of 20 μg/kg/hr, which yielded plasma concentration of 7.5±1 ng/ml. Metoprolol dose response curve was repeated in these animals. In the presence of CVT-510, metoprolol dose response curve was shifted to the left and downward (FIG. 7 , symbols). -
FIG. 8 : This figure represents the data shown inFIG. 7 . The slowing of heart rate caused by CVT-510 and metoprolol was quantified by determining the area under the curve (AUC) for a period of 60 min for each treatment. The combined effect of CVT-510 and metoprolol on heart rate was found to be synergistic. -
FIG. 9-10 : Studies in anesthetized guinea pigs. - Male guinea pigs weighing 400-450 gm were obtained from Simonsen labs and housed in the institutional laboratory animal facility. Animals were anesthetized with isoflurane in the anesthetizing chamber. After determining (by toe pinch) that the animal is adequately anesthetized, the animals was intubated with an endotracheal tube and ventilated with isoflurane and oxygen mixture using anesthesia workstation. Using sterile equipment and aseptic technique, the right carotid artery was exposed and a catheter inserted for recording of blood pressure (BP). A quadripolar electrode catheter was introduced via the right jugular vein and positioned in the right atrium and ventricle for atrial and ventricular pacing. The hearts were paced at a constant rate (330-360 bpm) to eliminate the effect of heart rate variability between animals. Another catheter was inserted into the left jugular vein and positioned in the right atrium for the administration of drugs and saline. Subcutaneous needles were used as standard electrocardiographic leads to record the electrocardiogram (ECG). After completion of surgery and instrumentation, a 20 min equilibration period was allowed before beginning the experimental protocol. The data was recorded using Power Lab data acquisition system.
-
FIG. 9 . CVT-510 (0.5 μg/kg) and metoprolol (0.1 mg/kg), which were given as an iv bolus, demonstrated an increased PR interval by 5 msec each in anesthetized guinea pigs. When the two agents were given in combination the PR interval was increased up to 15 msec. This is a synergistic effect, as the observed effect is more than the algebraic sum of the effect of each agent. -
FIG. 10 : Similar results were obtained when CVT-510 was given in the presence of with another beta-blocker, esmolol. Esmolol was administered at three different infusion rates. CVT-510 was given 15 minutes after starting the infusion of Esmolol. Effect of CVT-510 on PR interval was increased with increasing doses of esmolol. The duration of effect was significantly prolonged in a dose-dependent manner. - Thus, it has been demonstrated that the combination of a beta-blocker and A1 agonist results in synergistic effects on heart rate in rats and PR interval in guinea pigs. The combined effect is dependent on the dose of either agent. That is, one can achieve similar responses by keeping one agent constant and varying the other. Various routes of administration of the drugs have been tried, and different combinations. For example, one drug has been administered 10 minutes after administration of the first, and 1 hour after administration of the first. The drugs have been given as a mixture, or given separately at the same time. The response varies in magnitude, but the overall effect is same. It has also been demonstrated that the combination is effective using both full A1 adenosine receptor agonists and partial A1 adenosine receptor agonists.
- The combination has been shown to be effective in two different models.
- 1) Measurement of heart rate in awake rats, which is not a target for the A1 agonists, but is used as a surrogate for the effect of A1 agonists. The advantage of this model is that the high sympathetic tone seen in many forms of arrhythmias is simulated.
2) In anesthetized guinea pigs the AV nodal conduction method is useful for measuring the PR interval, which is the target of A1 agonists. However, the sympathetic tone is blunted in this model due to anesthesia.
Claims (36)
1. A method of treating arrhythmias in a mammal, comprising administration of a therapeutically effective minimal dose of an A1 adenosine receptor agonist in conjunction with a therapeutically effective minimal dose of a beta blocker, calcium channel blocker, or cardiac glycoside, to a mammal in need thereof.
3. The method of claim 2 , wherein the compound of Formula I is administered in conjunction with a therapeutically effective minimal dose of a beta blocker.
4. The method of claim 3 , wherein in Formula I R1 is 3-tetrahydrofuranyl, 3-tetrahydrothiofuranyl, 4-pyranyl, or 4-thiopyranyl.
5. The method of claim 4 , wherein the beta blocker is atenolol, esmolol, sotalol, or propranolol.
6. The method of claim 5 , wherein the compound of Formula I R1 is 6-(3-(R)—N-aminotetrahydrofuranyl)purine riboside, namely CVT-510.
7. The method of claim 6 , wherein CVT-510 is present in an amount from about 0.0001-0.05 mg/kg.
8. The method of claim 6 , wherein the beta blocker is present in an amount from about 0.01 to 200 mg/kg.
9. The method of claim 8 , wherein the beta blocker is esmolol.
10. The method of claim 9 , wherein CVT-510 is present in an amount from about 0.0005-0.020 mg/kg and esmolol is present in an amount from about 0.1 to 10 mg/kg.
11. The method of claim 1 , wherein the A1 adenosine receptor agonist is a compound of Formula II:
wherein:
R1 is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, or optionally substituted heteroaryl;
R2 is hydrogen, halo, trifluoromethyl, optionally substituted acyl, or cyano;
R3 is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl; optionally substituted heteroaryl, or optionally substituted heterocyclyl,
R4 and R5 are independently hydrogen or optionally substituted acyl; and
X and Y are independently a covalent bond or optionally substituted alkylene.
12. The method of claim 11 , wherein the compound of Formula II is administered in conjunction with a therapeutically effective minimal dose of a beta blocker.
13. The method of claim 12 , wherein the beta blocker is atenolol, esmolol, sotalol, or propranolol.
14. The method of claim 13 , wherein R1 is (R)-2-hydroxycyclopentyl, X and Y are covalent bonds, R2, R3, and R4 are hydrogen, and R5 is 2-fluorophenyl, namely 2-{6-[((1R,2R)-2-hydroxycyclopentyl)amino]purin-9-yl} (4S,5S,3R)-5-[(2-fluorophenylthio)methyl]oxolane-3,4-diol (CVT-3619).
15. The method of claim 14 , wherein CVT-3619 is present in an amount from about 0.1 to 200 mg/kg.
16. The method of claim 14 , wherein the beta blocker is present in an amount from about 0.01 to 100 mg/kg.
17. The method of claim 16 , wherein the beta blocker is esmolol.
18. The method of claim 17 , wherein CVT-3619 is present in an amount from about 0.5 to 50 mg/kg and esmolol is present in an amount from about 0.1 to 10 mg/kg.
19. A pharmaceutical composition comprising a therapeutically effective minimal dose of an A1 adenosine receptor agonist and a therapeutically effective minimal dose of a beta blocker, and at least one pharmaceutically acceptable excipient.
21. The pharmaceutical composition of claim 20 , wherein the compound of Formula I is administered in conjunction with a therapeutically effective minimal dose of a beta blocker.
22. The pharmaceutical composition of claim 21 , wherein in Formula I R1 is 3-tetrahydrofuranyl, 3-tetrahydrothiofuranyl, 4-pyranyl, or 4-thiopyranyl.
23. The pharmaceutical composition of claim 22 , wherein the beta blocker is atenolol, esmolol, sotalol, or propranolol.
24. The pharmaceutical composition of claim 23 , wherein the compound of Formula I R1 is 6-(3-(R)—N-aminotetrahydrofuranyl)purine riboside, namely CVT-510.
25. The pharmaceutical composition of claim 24 , wherein CVT-510 is present in an amount from about 0.0001-0.05 mg/kg.
26. The pharmaceutical composition of claim 24 , wherein the beta blocker is present in an amount from about 0.01 to 100 mg/kg.
27. The pharmaceutical composition of claim 26 , wherein the beta blocker is esmolol.
28. The pharmaceutical composition of claim 27 , wherein CVT-510 is present in an amount from about 0.0005-0.02 mg/kg and esmolol is present in an amount from about 0.1 to 10 mg/kg.
29. The pharmaceutical composition of claim 19 , wherein the A1 adenosine receptor agonist is a compound of Formula II:
wherein:
R1 is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, or optionally substituted heteroaryl;
R2 is hydrogen, halo, trifluoromethyl, optionally substituted acyl, or cyano;
R3 is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl; optionally substituted heteroaryl, or optionally substituted heterocyclyl,
R4 and R5 are independently hydrogen or optionally substituted acyl; and
X and Y are independently a covalent bond or optionally substituted alkylene.
30. The pharmaceutical composition of claim 29 , wherein the compound of Formula II is administered in conjunction with a therapeutically effective minimal dose of a beta blocker.
31. The pharmaceutical composition of claim 30 , wherein the beta blocker is atenolol, esmolol, sotalol, or propranolol.
32. The pharmaceutical composition of claim 31 , wherein R1 is (R)-2-hydroxycyclopentyl, X and Y are covalent bonds, R2, R3, and R4 are hydrogen, and R5 is 2-fluorophenyl, namely 2-{6-[((1R,2R)-2-hydroxycyclopentyl)amino]purin-9-yl}(4S,5S,3R)-5-[(2-fluorophenylthio)methyl]oxolane-3,4-diol (CVT-3619).
33. The pharmaceutical composition of claim 32 , wherein CVT-3619 is present in an amount from about 0.1 to 200 mg/kg.
34. The pharmaceutical composition of claim 32 , wherein the beta blocker is present in an amount from about 0.01 to 100 mg/kg.
35. The pharmaceutical composition of claim 34 , wherein the beta blocker is esmolol.
36. The pharmaceutical composition of claim 35 , wherein CVT-3619 is present in an amount from about 0.5 to 25 mg/kg and esmolol is present in an amount from about 0.1 to 10 mg/kg.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/351,731 US20090118221A1 (en) | 2002-04-18 | 2009-01-09 | Method of treating arrhythmias |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US37376602P | 2002-04-18 | 2002-04-18 | |
| US10/418,654 US7005425B2 (en) | 2002-04-18 | 2003-04-18 | Method for treating arrhythmias |
| US11/262,025 US7479485B2 (en) | 2002-04-18 | 2005-10-28 | Method of treating arrhythmias |
| US12/351,731 US20090118221A1 (en) | 2002-04-18 | 2009-01-09 | Method of treating arrhythmias |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/262,025 Continuation US7479485B2 (en) | 2002-04-18 | 2005-10-28 | Method of treating arrhythmias |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090118221A1 true US20090118221A1 (en) | 2009-05-07 |
Family
ID=29251078
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/418,654 Expired - Fee Related US7005425B2 (en) | 2002-04-18 | 2003-04-18 | Method for treating arrhythmias |
| US11/262,025 Expired - Fee Related US7479485B2 (en) | 2002-04-18 | 2005-10-28 | Method of treating arrhythmias |
| US12/351,731 Abandoned US20090118221A1 (en) | 2002-04-18 | 2009-01-09 | Method of treating arrhythmias |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/418,654 Expired - Fee Related US7005425B2 (en) | 2002-04-18 | 2003-04-18 | Method for treating arrhythmias |
| US11/262,025 Expired - Fee Related US7479485B2 (en) | 2002-04-18 | 2005-10-28 | Method of treating arrhythmias |
Country Status (17)
| Country | Link |
|---|---|
| US (3) | US7005425B2 (en) |
| EP (1) | EP1494685B1 (en) |
| JP (1) | JP2005530736A (en) |
| KR (1) | KR20040106354A (en) |
| CN (2) | CN1646142A (en) |
| AT (1) | ATE418991T1 (en) |
| AU (1) | AU2003235466C1 (en) |
| CA (1) | CA2482928A1 (en) |
| DE (1) | DE60325572D1 (en) |
| ES (1) | ES2318129T3 (en) |
| IL (1) | IL164652A0 (en) |
| MX (1) | MXPA04010285A (en) |
| NO (1) | NO20045005L (en) |
| NZ (1) | NZ536001A (en) |
| RU (1) | RU2332220C2 (en) |
| WO (1) | WO2003088978A1 (en) |
| ZA (1) | ZA200408411B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120005128A1 (en) * | 2010-06-29 | 2012-01-05 | Sanofi | Methods for reducing the risk of an adverse dronedarone / calcium channel blockers interaction in a patient suffering from atrial fibrilation |
Families Citing this family (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2364687C (en) | 1999-03-23 | 2014-11-18 | James Cook University | Organ arrest, protection and preservation |
| USRE47351E1 (en) | 1999-06-22 | 2019-04-16 | Gilead Sciences, Inc. | 2-(N-pyrazolo)adenosines with application as adenosine A2A receptor agonists |
| US6403567B1 (en) | 1999-06-22 | 2002-06-11 | Cv Therapeutics, Inc. | N-pyrazole A2A adenosine receptor agonists |
| CA2671940A1 (en) | 2000-02-23 | 2001-08-30 | Cv Therapeutics, Inc. | Identification of partial agonists of the a2a adenosine receptor |
| US7157440B2 (en) * | 2001-07-13 | 2007-01-02 | Cv Therapeutics, Inc. | Partial and full agonists of A1 adenosine receptors |
| US7713946B2 (en) * | 2002-07-11 | 2010-05-11 | Cv Therapeutics, Inc. | Partial and full agonists A1 adenosine receptors |
| NZ536001A (en) * | 2002-04-18 | 2006-05-26 | Cv Therapeutics Inc | Method of treating arrhythmias comprising administration of an A1 adenosine agonist with a beta blocker, calcium channel blocker or a cardiac glycoside |
| US8470801B2 (en) | 2002-07-29 | 2013-06-25 | Gilead Sciences, Inc. | Myocardial perfusion imaging methods and compositions |
| GB2436255B (en) * | 2002-12-23 | 2007-11-28 | Global Cardiac Solutions Pty L | Organ preconditioning, arrest, protection, preservation and recovery |
| CA2573682A1 (en) * | 2004-07-12 | 2006-02-16 | Cv Therapeutics, Inc. | Process for the preparation of a1 adenosine receptor agonists |
| US20060019954A1 (en) * | 2004-07-20 | 2006-01-26 | Cedars-Sinai Medical Center | Method for reducing the likelihood of the occurrence of cardiac arrhythmias |
| US7300923B2 (en) * | 2004-08-30 | 2007-11-27 | Cv Therapeutics, Inc. | Partial and full agonists of A1 adenosine receptors |
| DE602005021525D1 (en) | 2004-09-14 | 2010-07-08 | Univ Colorado | R TREATMENT WITH BUCINDOLOL |
| US7822474B2 (en) * | 2005-11-30 | 2010-10-26 | Cedars-Sinai Medical Center | Methods for the prediction of arrhythmias and prevention of sudden cardiac death |
| EP1989214B8 (en) | 2006-02-03 | 2016-12-21 | Gilead Sciences, Inc. | Process for preparing an a2a-adenosine receptor agonist and its polymorphs |
| JP2009538834A (en) | 2006-05-29 | 2009-11-12 | ハイバーネイション セラピューティクス リミテッド | Improving organizational maintenance |
| CN101516185A (en) | 2006-07-25 | 2009-08-26 | 低温药理有限公司 | Wound treatment |
| WO2008106724A1 (en) | 2007-03-02 | 2008-09-12 | Hibernation Therapeutics Limited | Transplants |
| SI2234614T1 (en) | 2007-12-21 | 2013-01-31 | Aop Orphan Pharmaceuticals Ag | Pharmaceutical composition for parenteral administration of an ultrashort acting beta-adrenoreceptor antagonist |
| MX2011003168A (en) * | 2008-09-29 | 2011-05-19 | Gilead Sciences Inc | Combinations of a rate control agent and an a-2-alpha receptor antagonist for use in multidetector computed tomography methods. |
| GB0903299D0 (en) * | 2009-02-26 | 2009-04-08 | Guys And St Thomas Nhs Foundat | Composition and methods |
| ES3003038T3 (en) * | 2009-03-18 | 2025-03-10 | Incarda Therapeutics Inc | Unit doses, aerosols, kits, and methods for treating heart conditions by pulmonary administration |
| US20110039799A1 (en) | 2009-08-14 | 2011-02-17 | Gilead Palo Alto, Inc. | A1 adenosine receptor agonist polymorphs |
| BR112012017106A2 (en) | 2010-01-11 | 2018-05-29 | Inotek Pharmaceuticals Corp | combination, kit and method of intraocular pressure reduction. |
| JP2013522323A (en) * | 2010-03-19 | 2013-06-13 | イノテック ファーマシューティカルズ コーポレイション | Combination composition of adenosine A1 receptor agonist and non-selective β-adrenergic receptor blocker for reducing intraocular pressure |
| JP2013523739A (en) | 2010-03-26 | 2013-06-17 | イノテック ファーマシューティカルズ コーポレイション | Method for reducing intraocular pressure in humans using N6-cyclopentyladenosine (CPA), CPA derivatives or prodrugs thereof |
| NZ627778A (en) | 2012-01-26 | 2017-01-27 | Inotek Pharmaceuticals Corp | Anhydrous polymorphs of (2r,3s,4r,5r)-5-(6-(cyclopentylamino)-9h-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)} methyl nitrate and processes of preparation thereof |
| AU2014239222A1 (en) | 2013-03-15 | 2015-10-01 | Inotek Pharmaceuticals Corporation | Ophthalmic formulations |
| MX2016000650A (en) | 2013-07-17 | 2016-11-30 | Hibernation Therapeutics A Kf Llc | A method for treating haemorrhage, shock and brain injury. |
| AU2014361813A1 (en) * | 2013-12-13 | 2016-07-28 | Ralph ANKENMAN | Compositions and methods for treating dysregulated systems |
| EP3411030A4 (en) | 2016-02-01 | 2019-09-04 | InCarda Therapeutics, Inc. | COMBINING ELECTRONIC SURVEILLANCE WITH INHALATION PHARMACOLOGICAL THERAPY FOR MANAGING CARDIAC ARRHYTHMIAS WITH ATRIAL FIBRILLATION |
| CN106370754B (en) * | 2016-11-07 | 2019-03-08 | 西安科技大学 | A method for quantitative determination of optical isomers of buxinolol based on chiral high performance liquid chromatography-mass spectrometry/mass spectrometry |
| KR20200003199A (en) | 2017-05-10 | 2020-01-08 | 인카다 테라퓨틱스, 인크. | Unit doses, aerosols, kits and methods for treating heart conditions by pulmonary administration |
| ES3040411T3 (en) | 2018-03-22 | 2025-10-30 | Incarda Therapeutics Inc | A novel method to slow ventricular rate |
| US10799138B2 (en) | 2018-04-05 | 2020-10-13 | University Of Maryland, Baltimore | Method of administering sotalol IV/switch |
| US11344518B2 (en) | 2018-08-14 | 2022-05-31 | AltaThera Pharmaceuticals LLC | Method of converting atrial fibrillation to normal sinus rhythm and loading oral sotalol in a shortened time frame |
| US10512620B1 (en) | 2018-08-14 | 2019-12-24 | AltaThera Pharmaceuticals, LLC | Method of initiating and escalating sotalol hydrochloride dosing |
| US11610660B1 (en) | 2021-08-20 | 2023-03-21 | AltaThera Pharmaceuticals LLC | Antiarrhythmic drug dosing methods, medical devices, and systems |
| US11696902B2 (en) | 2018-08-14 | 2023-07-11 | AltaThera Pharmaceuticals, LLC | Method of initiating and escalating sotalol hydrochloride dosing |
| US12396970B2 (en) | 2021-08-20 | 2025-08-26 | AltaThera Pharmaceuticals LLC | Anti-arrhythmic compositions and methods |
| JP7156154B2 (en) * | 2019-04-18 | 2022-10-19 | 株式会社島津製作所 | Medium processing system and medium processing method |
| US11020384B2 (en) | 2019-08-01 | 2021-06-01 | Incarda Therapeutics, Inc. | Antiarrhythmic formulation |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5789416A (en) * | 1996-08-27 | 1998-08-04 | Cv Therapeutics | N6 mono heterocyclic substituted adenosine derivatives |
| US5998387A (en) * | 1993-10-28 | 1999-12-07 | University Of Florida Research Foundation, Inc. | Method for using A1 adenosine receptor agonists |
| US6946449B2 (en) * | 2001-07-13 | 2005-09-20 | Cv Therapeutics, Inc. | Partial and full agonists of A1 adenosine receptors |
| US7005425B2 (en) * | 2002-04-18 | 2006-02-28 | Cv Therapeutics, Inc. | Method for treating arrhythmias |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5108363A (en) * | 1988-02-19 | 1992-04-28 | Gensia Pharmaceuticals, Inc. | Diagnosis, evaluation and treatment of coronary artery disease by exercise simulation using closed loop drug delivery of an exercise simulating agent beta agonist |
| CA2257948A1 (en) * | 1996-06-28 | 1998-01-08 | Merck & Co., Inc. | Antiarrhythmic combinations of selective iks antagonists with beta-adenergic blocking agents |
| AU6257798A (en) * | 1997-01-31 | 1998-08-25 | Board Of Trustees Of The Leland Stanford Junior University | Treatment of arrhythmias via inhibition of a multifunctional calcium/calmodulin-dependent protein kinase |
| CO5180581A1 (en) | 1999-09-30 | 2002-07-30 | Pfizer Prod Inc | COMPOUNDS FOR THE TREATMENT OF THE ISCHEMIA PHARMACEUTICAL TIONS THAT CONTAIN THEM FOR THE TREATMENT OF THE ISCHEMIA |
| US6605597B1 (en) * | 1999-12-03 | 2003-08-12 | Cv Therapeutics, Inc. | Partial or full A1agonists-N-6 heterocyclic 5′-thio substituted adenosine derivatives |
| US6576620B2 (en) * | 1999-12-03 | 2003-06-10 | Cv Therapeutics, Inc. | Method of identifying partial adenosine A1 receptor agonists |
| AU2001292591B2 (en) * | 2000-09-08 | 2004-06-03 | Gilead Palo Alto, Inc. | Purine ribosides as antiarrhythmics |
-
2003
- 2003-04-18 NZ NZ536001A patent/NZ536001A/en not_active IP Right Cessation
- 2003-04-18 WO PCT/US2003/012043 patent/WO2003088978A1/en not_active Ceased
- 2003-04-18 CA CA002482928A patent/CA2482928A1/en not_active Abandoned
- 2003-04-18 AU AU2003235466A patent/AU2003235466C1/en not_active Ceased
- 2003-04-18 DE DE60325572T patent/DE60325572D1/en not_active Expired - Lifetime
- 2003-04-18 US US10/418,654 patent/US7005425B2/en not_active Expired - Fee Related
- 2003-04-18 EP EP03724098A patent/EP1494685B1/en not_active Expired - Lifetime
- 2003-04-18 ES ES03724098T patent/ES2318129T3/en not_active Expired - Lifetime
- 2003-04-18 KR KR10-2004-7016764A patent/KR20040106354A/en not_active Abandoned
- 2003-04-18 AT AT03724098T patent/ATE418991T1/en not_active IP Right Cessation
- 2003-04-18 JP JP2003585730A patent/JP2005530736A/en active Pending
- 2003-04-18 MX MXPA04010285A patent/MXPA04010285A/en active IP Right Grant
- 2003-04-18 CN CNA038086999A patent/CN1646142A/en active Pending
- 2003-04-18 RU RU2004130826/14A patent/RU2332220C2/en not_active IP Right Cessation
- 2003-04-18 CN CNA2008101711378A patent/CN101385738A/en active Pending
-
2004
- 2004-10-18 IL IL16465204A patent/IL164652A0/en unknown
- 2004-10-18 ZA ZA200408411A patent/ZA200408411B/en unknown
- 2004-11-17 NO NO20045005A patent/NO20045005L/en not_active Application Discontinuation
-
2005
- 2005-10-28 US US11/262,025 patent/US7479485B2/en not_active Expired - Fee Related
-
2009
- 2009-01-09 US US12/351,731 patent/US20090118221A1/en not_active Abandoned
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5998387A (en) * | 1993-10-28 | 1999-12-07 | University Of Florida Research Foundation, Inc. | Method for using A1 adenosine receptor agonists |
| US5789416A (en) * | 1996-08-27 | 1998-08-04 | Cv Therapeutics | N6 mono heterocyclic substituted adenosine derivatives |
| US5789416B1 (en) * | 1996-08-27 | 1999-10-05 | Cv Therapeutics Inc | N6 mono heterocyclic substituted adenosine derivatives |
| US6946449B2 (en) * | 2001-07-13 | 2005-09-20 | Cv Therapeutics, Inc. | Partial and full agonists of A1 adenosine receptors |
| US7005425B2 (en) * | 2002-04-18 | 2006-02-28 | Cv Therapeutics, Inc. | Method for treating arrhythmias |
| US7479485B2 (en) * | 2002-04-18 | 2009-01-20 | Cv Therapeutics, Inc. | Method of treating arrhythmias |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120005128A1 (en) * | 2010-06-29 | 2012-01-05 | Sanofi | Methods for reducing the risk of an adverse dronedarone / calcium channel blockers interaction in a patient suffering from atrial fibrilation |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20040106354A (en) | 2004-12-17 |
| DE60325572D1 (en) | 2009-02-12 |
| AU2003235466A1 (en) | 2003-11-03 |
| ATE418991T1 (en) | 2009-01-15 |
| IL164652A0 (en) | 2005-12-18 |
| US7005425B2 (en) | 2006-02-28 |
| NO20045005L (en) | 2004-11-17 |
| EP1494685B1 (en) | 2008-12-31 |
| JP2005530736A (en) | 2005-10-13 |
| US7479485B2 (en) | 2009-01-20 |
| CN101385738A (en) | 2009-03-18 |
| ZA200408411B (en) | 2006-02-22 |
| CA2482928A1 (en) | 2003-10-30 |
| AU2003235466C1 (en) | 2008-03-20 |
| CN1646142A (en) | 2005-07-27 |
| RU2004130826A (en) | 2005-05-10 |
| NZ536001A (en) | 2006-05-26 |
| RU2332220C2 (en) | 2008-08-27 |
| US20030216349A1 (en) | 2003-11-20 |
| ES2318129T3 (en) | 2009-05-01 |
| MXPA04010285A (en) | 2005-02-03 |
| US20060052333A1 (en) | 2006-03-09 |
| EP1494685A1 (en) | 2005-01-12 |
| WO2003088978A1 (en) | 2003-10-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7479485B2 (en) | Method of treating arrhythmias | |
| AU2003235466B2 (en) | Method for treating arrhythmias | |
| US7939509B2 (en) | Partial and full agonists of A1 adenosine receptors | |
| KR101032005B1 (en) | Agonists of Partial or Complete A1 Adenosine Receptors | |
| US20090137520A1 (en) | A1 adenosine receptor agonists | |
| EP1315508B1 (en) | Purine ribosides as antiarrhythmics | |
| JP4596913B2 (en) | Partial and complete agonists of the A1 adenosine receptor | |
| HK1219893A1 (en) | Compound and methods for treating long qt syndrome | |
| AU2001292591A1 (en) | Purine ribosides as antiarrhythmics | |
| KR100518144B1 (en) | Purine ribosides as antiarrhythmics | |
| ZA200301684B (en) | Purine ribosides as antiarrhythmics. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |