US20090096045A1 - Magnetoresistive device and nonvolatile magnetic memory equipped with the same - Google Patents
Magnetoresistive device and nonvolatile magnetic memory equipped with the same Download PDFInfo
- Publication number
- US20090096045A1 US20090096045A1 US12/335,271 US33527108A US2009096045A1 US 20090096045 A1 US20090096045 A1 US 20090096045A1 US 33527108 A US33527108 A US 33527108A US 2009096045 A1 US2009096045 A1 US 2009096045A1
- Authority
- US
- United States
- Prior art keywords
- film
- ferromagnetic
- ferromagnetic film
- magnetoresistive device
- tunnel magnetoresistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 50
- 230000015654 memory Effects 0.000 title claims abstract description 34
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 170
- 239000012212 insulator Substances 0.000 claims abstract description 41
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 13
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 41
- 230000005415 magnetization Effects 0.000 claims description 19
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 29
- 229910019236 CoFeB Inorganic materials 0.000 description 26
- 239000000395 magnesium oxide Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 229910003321 CoFe Inorganic materials 0.000 description 14
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 9
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3263—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being symmetric, e.g. for dual spin valve, e.g. NiO/Co/Cu/Co/Cu/Co/NiO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
- H01F10/3272—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
Definitions
- the present invention relates to a high-output tunnel magnetoresistive device and a low-power-consumption nonvolatile magnetic memory equipped with the same.
- tunnel magnetoresistive devices employ a tunnel film stack that includes an insulator film comprised of an oxide of Al (T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995)). Because Al oxides are amorphous, they have been unable to provide sufficient electric output signals for industrial applications. Recently, it has been reported that a magnetoresistance ratio several times greater than that of the aforementioned tunnel magnetoresistive device employing an Al oxide in the insulator was obtained in a tunnel magnetoresistive device employing magnesium oxide in the insulator film (S. Yuasa. et al., Nature Material 3, 868(2004)).
- Nonvolatile magnetic memories are comprised of memory cells having MOSFETs on which tunnel magnetoresistive devices are formed.
- the MOSFETs are used for switching, and the direction of magnetization of the tunnel magnetoresistive device is rotated by means of a spatial magnetic field induced by a current upon energization of a bit line and a word line so as to write information. Readout of information is conducted based on an output voltage of the tunnel magnetoresistive device.
- spin-transfer torque magnetization switching which is also known as current induced magnetization switching.
- a current is caused to flow directly through a magnetoresistive device so as to rotate magnetization, as disclosed in U.S. Pat. No. 5,695,864 or JP Patent Publication (Kokai) No. 2002-305337 A.
- a compound ferromagnetic film having a body center cubic of Co or Fe including B is used in a ferromagnetic film of a tunnel magnetoresistive device. Further, a magnesium oxide is used in an insulator film.
- the invention provides a tunnel magnetoresistive device comprising an insulator film, and first and second ferromagnetic films between which the insulator film is disposed, wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, and wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100).
- the second ferromagnetic film may comprise a film of a body-centered cubic structure containing Co, Fe, and B.
- the first ferromagnetic film has a Co-to-Fe composition ratio (atm %) of 50:50 to 70:30.
- the body-centered cubic structure can stably exist, as shown in FIG. 8 .
- the spin polarization that contributes to the tunneling magnetoresistance ratio can be improved.
- the ferromagnetic film of the body-centered cubic structure containing Co, Fe, and B has a film thickness of 3 nm or smaller and contains 10 to 30 atm % of B.
- the invention also provides a magnetic memory comprising a tunnel magnetoresistive device, and a switching element for controlling the ON/OFF of a current that flows through the tunnel magnetoresistive device, wherein the tunnel magnetoresistive device comprises an insulator film, first and second ferromagnetic films between which the insulator film is disposed, wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100).
- the invention further provides a magnetic random access memory comprising a plurality of magnetic memory cells and a means for selecting a desired magnetic memory cell, wherein the magnetic memory cells include a tunnel magnetoresistive device in which a first ferromagnetic film of a body-centered cubic structure containing Co, Fe, and B, a MgO insulator film of a rock-salt structure oriented in (100), and a second ferromagnetic film are stacked.
- a high-output tunnel magnetoresistive device can be obtained.
- a magnetic memory By equipping a magnetic memory with the tunnel magnetoresistive device, a fast and very low-power-consuming nonvolatile memory can be provided.
- FIG. 1 shows a first example of a tunnel magnetoresistive device according to the invention.
- FIG. 2 shows a second example of the tunnel magnetoresistive device according to the invention.
- FIG. 3 shows a third example of the tunnel magnetoresistive device according to the invention.
- FIG. 4 shows a fourth example of the tunnel magnetoresistive device according to the invention.
- FIG. 5 shows a fifth example of the tunnel magnetoresistive device according to the invention.
- FIG. 6 shows a sixth example of the tunnel magnetoresistive device according to the invention.
- FIG. 7 shows an example of a magnetic memory cell according to the invention.
- FIG. 8 shows a crystal structure of a composition Co x Fe 100 ⁇ x .
- FIG. 9 shows an example of a magnetic memory cell according to the invention.
- FIG. 10 shows the TMR ratio and the heat-processing-temperature dependency of the tunnel magnetoresistive device of the invention.
- FIG. 1 shows a schematic cross section of an example of a tunnel magnetoresistive device of the invention.
- a tunnel magnetoresistive device 1 is formed by stacking an orientation control film 300 , an antiferromagnetic film 301 , a ferromagnetic film 302 , a non-ferromagnetic film 303 , a ferromagnetic film 304 , an insulator film 305 , a ferromagnetic film 306 , and a protection film 307 .
- the device is thermally processed at an appropriate temperature so as to optimize its magnetoresistance ratio.
- the tunnel magnetoresistive device according to the present embodiment was prepared by a sputtering process.
- orientation control film 300 was formed from NiFe (5 nm), other material may be used that are capable of improving the orientation of the aforementioned antiferromagnetic film 301 and achieving stable anti-ferromagnetic coupling, such as a double-layer film of Ta (5 nm)/NiFe (5 nm), for example.
- the antiferromagnetic film 301 employed MnIr (8 nm) the film thickness may be selected from a range of 5 to 15 nm.
- stable anti-ferromagnetic coupling may also be realized with an antiferromagnetic film comprised of a Mn compound, such as MnPt or MnFe.
- CoFe (2 nm) was used for the ferromagnetic film 302 .
- the non-ferromagnetic film 303 Ru (0.8 nm) was used.
- CoFeB (3 nm) having a body center cubic was used for the non-ferromagnetic film 303 .
- the composition ratio of the CoFe in the ferromagnetic film 302 was selected such that the Co composition w as mainly between 50 to 90 atm %. In this composition range, a stable anti-ferromagnetic coupling with the aforementioned antiferromagnetic film can be realized.
- the materials for the ferromagnetic film 302 , non-ferromagnetic film 303 , and ferromagnetic film 304 were selected such that the magnetization of the ferromagnetic film 302 and that of the ferromagnetic film 304 form an anti-ferromagnetic coupling. Their film thicknesses were selected such that the magnitude of magnetization of the ferromagnetic film 302 and that of the ferromagnetic film 304 were equal.
- the insulator film 305 which employed a magnesium oxide crystalline film having a rock-salt structure, is a film oriented in the (100) direction. The film thickness of the insulator film was in the range of 0.8 nm to 3 nm.
- the ferromagnetic film 306 CoFeB (3 nm) having a body center cubic was employed.
- the composition of Co and Fe in CoFeB of the ferromagnetic film 304 and the ferromagnetic film 306 is in the range of 50:50 to 70:30.
- the body-centered cubic structure can stably exist.
- the spin polarization that contributes to the tunnel magnetoresistance ratio can be improved by containing more Co than Fe.
- Table 1 shows examples of the composition of CoFeB and that of CoFe that can be used in the ferromagnetic films 304 and 306 .
- CoFeB in the ferromagnetic films 304 and 306 and to have the Co composition range from 50 to 90 atm %. It is also possible, however, to have the composition ratio of Co relative to Fe in the range between 0 to 50 atm %.
- the magnitude of the TMR ratio decreases as compared with the case where the Co composition is between 50 to 90 atm %, the dependency on the voltage applied to the tunnel magnetoresistive device tends to be improved. While the TMR ratio normally tends to decrease as the applied voltage increases, the ratio of such decrease can be reduced in half at a maximum when the Co composition is between 0 to 50 atm %.
- the CoFeB of the above ferromagnetic film 304 and the ferromagnetic film 306 may be amorphous, or it may be crystallized in a heat process at an appropriate temperature.
- the composition ratio of CoFeB the Co composition was used between 40 to 60 atm % and the B composition between 10 to 30 atm % such that a body center cubic was obtained.
- the ferromagnetic film 306 may be comprised of a single layer film of CoFe, a single layer film of NiFe, or a double layer film of CoFe/NiFe or CoFeB/NiFe.
- the Co composition in CoFe was set to be 50 atm % at which the body center cubic was stable, the composition may range between 50 to 90%.
- the Co composition is large, the face-centered cubic lattice is stable and, while the tunnel magnetoresistance ratio decreases, good magnetic characteristics with a small coercivity for a magnetic free layer can be realized, and the threshold current density during spin-transfer torque magnetization switching can be varied depending on the magnitude of each magnetic moment.
- the protection film 307 was formed as a double-layer film of Ta (5 nm)/Ru (5 nm).
- a tunnel magnetoresistive device having an area of 0.8 ⁇ m ⁇ 1.6 ⁇ m was manufactured.
- the tunnel magnetoresistance ratio of the thus manufactured tunnel magnetoresistive device can be increased by a heat processing.
- CoFeB was used for the ferromagnetic film 306
- a tunnel magnetoresistance ratio of 250% was achieved by performing approximately one hour of heat processing at 375° C. or higher.
- a tunnel magnetoresistance ratio of 100% or more was observed. It is possible to obtain a good magnetoresistance ratio of 150% or more even if the temperature of the heat processing is increased up to 400° C.
- a tunnel magnetoresistance ratio of 200% or more is observed in a tunnel magnetoresistive device 1 including a ferromagnetic film 304 and a ferromagnetic film 306 that are comprised of crystalline CoFeB, and including an insulator film 305 comprised of a crystalline magnesium oxide with the (100) orientation, the ferromagnetic film 304 and the ferromagnetic film 306 upon film formation are definitely of noncrystalline CoFeB, and that such device has been manufactured through a heat process.
- the tunnel magnetoresistive device 1 has a structure in which the ferromagnetic film 304 is CoFeB, the insulator film 305 is MgO, and the ferromagnetic film 306 is CoFeB, and in which the antiferromagnetic film 301 is not used.
- the tunnel magnetoresistive device 1 may employ a stacked structure in which a TMR ratio is obtained by taking advantage of the difference in the magnetic anisotropy or the magnitude of the coercivity between the ferromagnetic films 304 and 306 . For example, when a stacked structure of Ta/CoFeB/MgO/CoFeB/Ta is used, the TMR ratio of 450% is obtained at the heat processing temperature of 450° C., as shown in FIG.
- the maximum TMR ratio can be obtained when the composition of CoFeB is such that Co:Fe:B is 40:40:20 (atm %).
- the composition of Co:Fe may be anywhere between 0 to 100 atm %, with the B composition ranging from 0 to 30 (atm %).
- Such composition ratio has the relationship [Co(100 ⁇ x) Fe(x)] (100 ⁇ y) B(y), 0 ⁇ x ⁇ 100 (%), 0 ⁇ y ⁇ 30 (%), as shown in Table 1, which shows the materials that can be used in the ferromagnetic films of the invention and examples of their composition.
- an amorphous film with a high melting point may also be validly used. In the case of this structure, it becomes possible to obtain an even higher TMR ratio at a high heat processing temperature because of the absence of thermal diffusion via Mn in an Mn compound, for example, that is used in the antiferromagnetic film 301 .
- a tunnel magnetoresistive device 1 is produced by causing the ferromagnetic film 304 and the ferromagnetic film 306 , which are amorphous upon film formation, to be crystallized by a heat process differs from conventional methods. It is noted, however, that in a tunnel magnetoresistive device 1 in which a CoFe single layer film, a NiFe single layer film, or a CoFe/NiFe film is used in the ferromagnetic film 306 , such ferromagnetic film 306 is crystalline from the time of film formation, and only the ferromagnetic film 304 is crystallized by the heat process.
- the maximum tunnel magnetoresistance ratio of tunnel magnetoresistive devices 1 in which the ferromagnetic film 306 was comprised of a CoFe single layer film, a NiFe single layer film, or a CoFe/NiFe film was 200%, 40%, and 150%, respectively.
- FIG. 2 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention.
- a tunnel magnetoresistive device 2 was formed by stacking an orientation control film 300 , a ferromagnetic film 306 , an insulator film 305 , a ferromagnetic film 304 , a non-ferromagnetic film 303 , a ferromagnetic film 302 , an antiferromagnetic film 301 , and a protection film 307 .
- the resultant crystal structure is a body center cubic.
- the insulator film 305 is MgO having a rock-salt structure highly oriented in (100).
- the ferromagnetic film 306 is formed adjacent to the oriented insulator film 300 and has an excellent flatness, the soft magnetic property of the ferromagnetic film 306 can be improved over that of the structure according to Example 1. For example, the coercivity of CoFeB after crystallization is reduced by half as compared with that of Example 1.
- the insulator film 305 is also formed as a flat film.
- the antiferromagnetic film 301 is formed toward the top of the tunnel magnetoresistive device 2 in the direction in which the films are stacked, the orientation of the antiferromagnetic film 301 deteriorates as compared with that of Example 1.
- the anti-ferromagnetic coupling weakens and its heat-process resistance property deteriorates as compared with that of Example 1, and the tunnel magnetoresistance ratio tends to decrease by a heat process at 400° C.
- the method of manufacture of the tunnel magnetoresistive device 2 and the materials used for the various films thereof were the same as those of Example 1.
- the magnetoresistance ratio of the tunnel magnetoresistive device 2 was 200%, which was substantially the same as that of Example 1.
- FIG. 3 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention.
- the structure of the tunnel magnetoresistive device 3 is similar to that of the tunnel magnetoresistive device 1 shown in FIG. 1 with the exception that, on the ferromagnetic film 306 , a non-ferromagnetic film 308 , a ferromagnetic film 309 , an antiferromagnetic film 310 , and a protection film 307 were stacked sequentially in mentioned order.
- Ru (6 nm) was used in the non-ferromagnetic film 308
- CoFe (2 nm) was used in the ferromagnetic film 309
- MnIr 8 nm was used in the antiferromagnetic film 310 .
- the composition ratio of CoFe of the ferromagnetic film 309 was selected such that the Co composition ranged between 50 to 90%, at which a stable anti-ferromagnetic coupling can be realized between the ferromagnetic film 309 and the antiferromagnetic film 310 .
- a material or film thickness other than Ru (6 nm) may be selected such that the magnetic bond between the ferromagnetic film 306 and the ferromagnetic film 309 disappears.
- the method for manufacturing the tunnel magnetoresistive device 3 , and the materials used for the orientation control film 300 , antiferromagnetic film 301 , ferromagnetic film 302 , non-ferromagnetic film 303 , ferromagnetic film 304 , insulator film 305 , ferromagnetic film 306 , and protection film 307 were the same as those used for Example 1.
- the resultant crystal structure is a body center cubic
- the insulator film 305 is MgO having a rock-salt structure highly oriented in (100).
- the magnetoresistance ratio obtained in the present example was 150%, which was a little smaller than that of Example 1.
- the efficiency of spin torque that acts on the ferromagnetic film 306 can be increased due to the spin-dependent reflection that takes place at the interface between the non-ferromagnetic film 308 and the ferromagnetic film 309 .
- the threshold current density for spin-torque magnetization switching can be reduced by approximately two-thirds as compared with Example 1.
- FIG. 4 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention.
- a tunnel magnetoresistive device 4 is similar to the tunnel magnetoresistive device 2 of FIG. 2 with the exception that between the ferromagnetic film 306 and the orientation control film 300 , an antiferromagnetic film 310 , a ferromagnetic film 309 , and a non-ferromagnetic film 308 are sequentially stacked in mentioned order from the side of the orientation control film 300 .
- Ru (6 nm) was used for the non-ferromagnetic film 308
- CoFe (2 nm) was used for the ferromagnetic film 309
- MnIr 8 nm was used for the antiferromagnetic film 310 .
- the composition ratio of CoFe of the ferromagnetic film 309 was selected such that the Co composition ranged between 50 to 90%, at which a stable anti-ferromagnetic coupling can be realized between the ferromagnetic film 309 and the antiferromagnetic film 310 .
- a material or film thickness other than Ru (6 nm) may be selected such that the magnetic bond between the ferromagnetic film 306 and the ferromagnetic film 309 disappears.
- the method for manufacture of the tunnel magnetoresistive device 4 and the materials used for the orientation control film 300 , antiferromagnetic film 301 , ferromagnetic film 302 , non-ferromagnetic film 303 , ferromagnetic film 304 , insulator film 305 , ferromagnetic film 306 , and protection film 307 were the same as those for Example 2.
- the resultant crystal structure is a body center cubic
- the insulator film 305 is MgO having a rock-salt structure highly oriented in (100).
- the magnetoresistance ratio obtained in the present example was 140%, which was a little smaller than that of Example 2.
- the efficiency of spin torque that acts on the ferromagnetic film 306 can be increased due to the spin-dependent reflection that takes place at the interface between the non-ferromagnetic film 308 and the ferromagnetic film 309 .
- the threshold current density during spin-torque magnetization switching can be reduced by approximately two-thirds as compared with Example 2.
- FIG. 5 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention.
- a tunnel magnetoresistive device 5 is similar to the tunnel magnetoresistive device 3 of FIG. 3 with the exception that the device does not include the antiferromagnetic film 310 .
- Ru (8 nm) was used in the non-ferromagnetic film 308 .
- a material or a film thickness other than Ru (8 nm) may be selected such that the anti-ferromagnetic coupling between the ferromagnetic film 306 and ferromagnetic film 309 disappears.
- the method of manufacture of the tunnel magnetoresistive device 5 and the materials for the orientation control film 300 , antiferromagnetic film 301 , ferromagnetic film 302 , non-ferromagnetic film 303 , ferromagnetic film 304 , insulator film 305 , ferromagnetic film 306 , ferromagnetic film 309 , and protection film 307 were the same as those of Example 3.
- the resultant crystal structure is a body center cubic
- the insulator film 305 is MgO having a rock-salt structure highly oriented in (100).
- the obtained magnetoresistance ratio was approximately 150%, which is substantially the same as that of Example 3.
- Example 3 the efficiency of the spin-transfer torque that acts on the ferromagnetic film 306 increases over Example 1, so that magnetization rotation utilizing the spin-transfer torque can be realized with a small current. Further, as compared with Example 3, the diffusion of Mn due to the heat process can be suppressed because of the lack of the antiferromagnetic film 310 , so that the heat resistance of the magnetoresistance ratio can be improved.
- FIG. 6 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention.
- a tunnel magnetoresistive device 6 is similar to the tunnel magnetoresistive device 4 of FIG. 4 with the exception that the antiferromagnetic film 310 is absent.
- Ru (8 nm) was used for the non-ferromagnetic film 308 .
- a material or film thickness other than Ru (8 nm) may be selected such that the anti-ferromagnetic coupling between the ferromagnetic film 306 and the ferromagnetic film 309 can disappear.
- the method of manufacture of the tunnel magnetoresistive device 6 and the materials used for the orientation control film 300 , antiferromagnetic film 301 , ferromagnetic film 302 , non-ferromagnetic film 303 , ferromagnetic film 304 , insulator film 305 , ferromagnetic film 306 , ferromagnetic film 309 , and protection film 307 were the same as those for Example 4.
- the resultant crystal structure is a body center cubic
- the insulator film 305 is MgO having a rock-salt structure highly oriented in (100).
- the maximum magnetoresistance ratio obtained was approximately 140%, which was similar to that of Example 4.
- the efficiency of the spin-transfer torque that acts on the ferromagnetic film 306 increases over Example 4, so that magnetization rotation utilizing the spin-transfer torque can be realized with a smaller current. Further, as compared with Example 4, the diffusion of Mn due to the heat process can be suppressed by the lack of the antiferromagnetic film 310 , so that the heat resistance of the magnetoresistance ratio can be increased.
- FIG. 7 shows a schematic cross section of an example of a magnetic memory cell according to the invention.
- the magnetic memory cell is equipped with the tunnel magnetoresistive device 10 according to Examples 1 to 6 as a memory cell.
- C-MOS 11 is comprised of two n-type semiconductors 12 and 13 and one p-type semiconductor 14 .
- an electrode 21 is electrically connected that serves as a drain, which is connected to ground via electrodes 41 and 47 .
- an electrode 22 is electrically connected that severs as a source.
- Numeral 23 designates a gate electrode, by the ON/OFF switching of which the current between the source electrode 22 and the drain electrode 21 is ON/OFF controlled.
- electrodes 45 , 44 , 43 , 42 , and 46 are stacked. Via the electrode 46 , an orientation control film 300 of the tunnel magnetoresistive device 10 is connected.
- a bit line 212 is connected to the protection film 307 of the tunnel magnetoresistive device 10 .
- the magnetization direction of the ferromagnetic film 306 of the tunnel magnetoresistive device 10 is rotated by the so-called spin-transfer torque due to the current that flows through the tunnel magnetoresistive device 10 , whereby magnetic information is recorded.
- a current can be caused to flow through an electrode 47 that serves as both a bit line 212 and a word line, so that the magnetization direction of the ferromagnetic film 306 of the tunnel magnetoresistive device 10 is rotated by means of the magnetic field produced around the electrode, thereby recording magnetic information.
- the power required for writing can be reduced to about one hundredths of the power required when a current magnetic filed is used.
- FIG. 9 shows an example of a nonvolatile magnetic memory in which the above magnetic memory cells are arranged.
- the gate electrode 23 and the bit line 212 are electrically connected to the memory cell 100 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Thin Magnetic Films (AREA)
Abstract
A fast and very low-power-consuming nonvolatile memory. A nonvolatile magnetic memory includes a high-output tunnel magnetoresistive device, in which spin-transfer torque is used for writing. A tunnel magnetoresistive device has a structure such that a ferromagnetic film of a body-centered cubic structure containing Co, Fe, and B, a MgO insulator film of a rock-salt structure oriented in (100), and a ferromagnetic film are stacked.
Description
- The present application claims priority from Japanese application JP 2005-219526 filed on Jul. 28, 2005 and JP 2006-181979 filed on Jun. 30, 2006, the contents of which are hereby incorporated by reference into this application.
- This application is a Continuation Application of application Ser. No. 11/493,892, filed Jul. 27, 2006, the contents of which are incorporated herein by reference in their entirety.
- 1. Field of the Invention
- The present invention relates to a high-output tunnel magnetoresistive device and a low-power-consumption nonvolatile magnetic memory equipped with the same.
- 2. Background Art
- Conventional tunnel magnetoresistive devices employ a tunnel film stack that includes an insulator film comprised of an oxide of Al (T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995)). Because Al oxides are amorphous, they have been unable to provide sufficient electric output signals for industrial applications. Recently, it has been reported that a magnetoresistance ratio several times greater than that of the aforementioned tunnel magnetoresistive device employing an Al oxide in the insulator was obtained in a tunnel magnetoresistive device employing magnesium oxide in the insulator film (S. Yuasa. et al., Nature
Material 3, 868(2004)). Conventional nonvolatile magnetic memories are comprised of memory cells having MOSFETs on which tunnel magnetoresistive devices are formed. The MOSFETs are used for switching, and the direction of magnetization of the tunnel magnetoresistive device is rotated by means of a spatial magnetic field induced by a current upon energization of a bit line and a word line so as to write information. Readout of information is conducted based on an output voltage of the tunnel magnetoresistive device. In addition to the above magnetization rotation based on the current-induced spatial magnetic field, there is also a so-called spin-transfer torque magnetization switching, which is also known as current induced magnetization switching. In this system, a current is caused to flow directly through a magnetoresistive device so as to rotate magnetization, as disclosed in U.S. Pat. No. 5,695,864 or JP Patent Publication (Kokai) No. 2002-305337 A. - Non-patent Document 1: J. Magn. Magn. Mater. 139, L231 (1995)
- Non-patent Document 2: Nature
Material 3, 868 (2004) - Patent Document 1: U.S. Pat. No. 5,695,864
- Patent Document 2: JP Patent Publication (Kokai) No. 2002-305337 A
- For the realization of a low-power-consumption nonvolatile magnetic memory, it is vital to develop technologies capable of achieving higher output of the tunnel magnetoresistive device and capable of writing the tunnel magnetoresistive device based on spin-transfer torque magnetization switching.
- It is therefore an object of the invention to provide a tunnel magnetoresistive device and nonvolatile magnetic memory by which the aforementioned needs can be satisfied.
- In order to achieve the above object, in accordance with the invention, a compound ferromagnetic film having a body center cubic of Co or Fe including B is used in a ferromagnetic film of a tunnel magnetoresistive device. Further, a magnesium oxide is used in an insulator film.
- The invention provides a tunnel magnetoresistive device comprising an insulator film, and first and second ferromagnetic films between which the insulator film is disposed, wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, and wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100). The second ferromagnetic film may comprise a film of a body-centered cubic structure containing Co, Fe, and B. Preferably, the first ferromagnetic film has a Co-to-Fe composition ratio (atm %) of 50:50 to 70:30. In the tunnel magnetoresistive device in which MgO is used in the insulator film, the body-centered cubic structure can stably exist, as shown in
FIG. 8 . By containing more Co than Fe, the spin polarization that contributes to the tunneling magnetoresistance ratio can be improved. Preferably, the ferromagnetic film of the body-centered cubic structure containing Co, Fe, and B has a film thickness of 3 nm or smaller and contains 10 to 30 atm % of B. - The invention also provides a magnetic memory comprising a tunnel magnetoresistive device, and a switching element for controlling the ON/OFF of a current that flows through the tunnel magnetoresistive device, wherein the tunnel magnetoresistive device comprises an insulator film, first and second ferromagnetic films between which the insulator film is disposed, wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100).
- The invention further provides a magnetic random access memory comprising a plurality of magnetic memory cells and a means for selecting a desired magnetic memory cell, wherein the magnetic memory cells include a tunnel magnetoresistive device in which a first ferromagnetic film of a body-centered cubic structure containing Co, Fe, and B, a MgO insulator film of a rock-salt structure oriented in (100), and a second ferromagnetic film are stacked.
- In accordance with the invention, a high-output tunnel magnetoresistive device can be obtained. By equipping a magnetic memory with the tunnel magnetoresistive device, a fast and very low-power-consuming nonvolatile memory can be provided.
-
FIG. 1 shows a first example of a tunnel magnetoresistive device according to the invention. -
FIG. 2 shows a second example of the tunnel magnetoresistive device according to the invention. -
FIG. 3 shows a third example of the tunnel magnetoresistive device according to the invention. -
FIG. 4 shows a fourth example of the tunnel magnetoresistive device according to the invention. -
FIG. 5 shows a fifth example of the tunnel magnetoresistive device according to the invention. -
FIG. 6 shows a sixth example of the tunnel magnetoresistive device according to the invention. -
FIG. 7 shows an example of a magnetic memory cell according to the invention. -
FIG. 8 shows a crystal structure of a composition CoxFe100−x. -
FIG. 9 shows an example of a magnetic memory cell according to the invention. -
FIG. 10 shows the TMR ratio and the heat-processing-temperature dependency of the tunnel magnetoresistive device of the invention. - In the following, embodiments of the invention will be described with reference to the drawings.
-
FIG. 1 shows a schematic cross section of an example of a tunnel magnetoresistive device of the invention. A tunnelmagnetoresistive device 1 is formed by stacking anorientation control film 300, anantiferromagnetic film 301, aferromagnetic film 302, anon-ferromagnetic film 303, aferromagnetic film 304, aninsulator film 305, aferromagnetic film 306, and aprotection film 307. The device is thermally processed at an appropriate temperature so as to optimize its magnetoresistance ratio. The tunnel magnetoresistive device according to the present embodiment was prepared by a sputtering process. - While the
orientation control film 300 was formed from NiFe (5 nm), other material may be used that are capable of improving the orientation of the aforementionedantiferromagnetic film 301 and achieving stable anti-ferromagnetic coupling, such as a double-layer film of Ta (5 nm)/NiFe (5 nm), for example. While theantiferromagnetic film 301 employed MnIr (8 nm), the film thickness may be selected from a range of 5 to 15 nm. Further, stable anti-ferromagnetic coupling may also be realized with an antiferromagnetic film comprised of a Mn compound, such as MnPt or MnFe. For theferromagnetic film 302, CoFe (2 nm) was used. For thenon-ferromagnetic film 303, Ru (0.8 nm) was used. And for theferromagnetic film 304, CoFeB (3 nm) having a body center cubic was used. The composition ratio of the CoFe in theferromagnetic film 302 was selected such that the Co composition w as mainly between 50 to 90 atm %. In this composition range, a stable anti-ferromagnetic coupling with the aforementioned antiferromagnetic film can be realized. The materials for theferromagnetic film 302,non-ferromagnetic film 303, andferromagnetic film 304 were selected such that the magnetization of theferromagnetic film 302 and that of theferromagnetic film 304 form an anti-ferromagnetic coupling. Their film thicknesses were selected such that the magnitude of magnetization of theferromagnetic film 302 and that of theferromagnetic film 304 were equal. Theinsulator film 305, which employed a magnesium oxide crystalline film having a rock-salt structure, is a film oriented in the (100) direction. The film thickness of the insulator film was in the range of 0.8 nm to 3 nm. For theferromagnetic film 306, CoFeB (3 nm) having a body center cubic was employed. Preferably, the composition of Co and Fe in CoFeB of theferromagnetic film 304 and theferromagnetic film 306 is in the range of 50:50 to 70:30. In this composition range, as shown inFIG. 8 , the body-centered cubic structure can stably exist. Further, in thetunnel magnetoresistive device 1 in which MgO is used in theinsulator film 305, the spin polarization that contributes to the tunnel magnetoresistance ratio can be improved by containing more Co than Fe. - Table 1 shows examples of the composition of CoFeB and that of CoFe that can be used in the
304 and 306. In order to obtain a large TMR ratio in theferromagnetic films tunnel magnetoresistive device 1, it is desirable to use CoFeB in the 304 and 306 and to have the Co composition range from 50 to 90 atm %. It is also possible, however, to have the composition ratio of Co relative to Fe in the range between 0 to 50 atm %. Although in the case of such Co composition the magnitude of the TMR ratio decreases as compared with the case where the Co composition is between 50 to 90 atm %, the dependency on the voltage applied to the tunnel magnetoresistive device tends to be improved. While the TMR ratio normally tends to decrease as the applied voltage increases, the ratio of such decrease can be reduced in half at a maximum when the Co composition is between 0 to 50 atm %.ferromagnetic films - The CoFeB of the above
ferromagnetic film 304 and theferromagnetic film 306 may be amorphous, or it may be crystallized in a heat process at an appropriate temperature. Regarding the composition ratio of CoFeB, the Co composition was used between 40 to 60 atm % and the B composition between 10 to 30 atm % such that a body center cubic was obtained. Apart form CoFeB, theferromagnetic film 306 may be comprised of a single layer film of CoFe, a single layer film of NiFe, or a double layer film of CoFe/NiFe or CoFeB/NiFe. In the present example, while the Co composition in CoFe was set to be 50 atm % at which the body center cubic was stable, the composition may range between 50 to 90%. When the Co composition is large, the face-centered cubic lattice is stable and, while the tunnel magnetoresistance ratio decreases, good magnetic characteristics with a small coercivity for a magnetic free layer can be realized, and the threshold current density during spin-transfer torque magnetization switching can be varied depending on the magnitude of each magnetic moment. Theprotection film 307 was formed as a double-layer film of Ta (5 nm)/Ru (5 nm). - Using photolithography and ion milling for material processing, a tunnel magnetoresistive device having an area of 0.8 μm×1.6 μm was manufactured. The tunnel magnetoresistance ratio of the thus manufactured tunnel magnetoresistive device can be increased by a heat processing. When CoFeB was used for the
ferromagnetic film 306, a tunnel magnetoresistance ratio of 250% was achieved by performing approximately one hour of heat processing at 375° C. or higher. In a range of thickness of theinsulator film 305 between 0.8 nm and 3.0 nm, a tunnel magnetoresistance ratio of 100% or more was observed. It is possible to obtain a good magnetoresistance ratio of 150% or more even if the temperature of the heat processing is increased up to 400° C. In particular, it was confirmed that CoFeB is crystallized by a heat processing, and that when the crystallized CoFeB had a crystalline structure of the body center cubic, the tunnel magnetoresistance ratio was maximized. While the aforementioned (100) oriented film of magnesium oxide can be formed on an amorphous ferromagnetic film by sputtering, if it is formed on a polycrystalline ferromagnetic film by sputtering, it is difficult to obtain a good (100) oriented film, with the tunnel magnetoresistance ratio remaining at a maximum of 50%. This shows that, when a tunnel magnetoresistance ratio of 200% or more is observed in atunnel magnetoresistive device 1 including aferromagnetic film 304 and aferromagnetic film 306 that are comprised of crystalline CoFeB, and including aninsulator film 305 comprised of a crystalline magnesium oxide with the (100) orientation, theferromagnetic film 304 and theferromagnetic film 306 upon film formation are definitely of noncrystalline CoFeB, and that such device has been manufactured through a heat process. - The
tunnel magnetoresistive device 1 has a structure in which theferromagnetic film 304 is CoFeB, theinsulator film 305 is MgO, and theferromagnetic film 306 is CoFeB, and in which theantiferromagnetic film 301 is not used. Thetunnel magnetoresistive device 1 may employ a stacked structure in which a TMR ratio is obtained by taking advantage of the difference in the magnetic anisotropy or the magnitude of the coercivity between the 304 and 306. For example, when a stacked structure of Ta/CoFeB/MgO/CoFeB/Ta is used, the TMR ratio of 450% is obtained at the heat processing temperature of 450° C., as shown inferromagnetic films FIG. 10 , by selecting an appropriate film thickness for each film. The maximum TMR ratio can be obtained when the composition of CoFeB is such that Co:Fe:B is 40:40:20 (atm %). However, the composition of Co:Fe may be anywhere between 0 to 100 atm %, with the B composition ranging from 0 to 30 (atm %). Such composition ratio has the relationship [Co(100−x) Fe(x)] (100−y) B(y), 0<x<100 (%), 0<y<30 (%), as shown in Table 1, which shows the materials that can be used in the ferromagnetic films of the invention and examples of their composition. Other than Ta mentioned above, an amorphous film with a high melting point may also be validly used. In the case of this structure, it becomes possible to obtain an even higher TMR ratio at a high heat processing temperature because of the absence of thermal diffusion via Mn in an Mn compound, for example, that is used in theantiferromagnetic film 301. -
TABLE 1 [Co(100 − x) Fe(x)] (100 − y) B(y) 0 < x < 100 (%), 0 < y < 30 (%) (Composition of CoFeB: which includes CoB, FeB) Co(100 − x) Fe(x) (Composition of Co and Fe: which includes Fe, Co) 0 < x < 100 (%) [Co(100 − x) Fe(x)] (100 − y) B(y)/Co(100 − x) Fe(x) Laminated film composed of two ferromagnetic films 0 < x < 100 (%), 0 < y < 30 (%) - The above-described method whereby a
tunnel magnetoresistive device 1 is produced by causing theferromagnetic film 304 and theferromagnetic film 306, which are amorphous upon film formation, to be crystallized by a heat process differs from conventional methods. It is noted, however, that in atunnel magnetoresistive device 1 in which a CoFe single layer film, a NiFe single layer film, or a CoFe/NiFe film is used in theferromagnetic film 306, suchferromagnetic film 306 is crystalline from the time of film formation, and only theferromagnetic film 304 is crystallized by the heat process. The maximum tunnel magnetoresistance ratio oftunnel magnetoresistive devices 1 in which theferromagnetic film 306 was comprised of a CoFe single layer film, a NiFe single layer film, or a CoFe/NiFe film was 200%, 40%, and 150%, respectively. -
FIG. 2 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention. Atunnel magnetoresistive device 2 was formed by stacking anorientation control film 300, aferromagnetic film 306, aninsulator film 305, aferromagnetic film 304, anon-ferromagnetic film 303, aferromagnetic film 302, anantiferromagnetic film 301, and aprotection film 307. In particular, when CoFeB is used in theferromagnetic film 306 and theferromagnetic layer film 304, the resultant crystal structure is a body center cubic. Theinsulator film 305 is MgO having a rock-salt structure highly oriented in (100). - In the
tunnel magnetoresistive device 2 of the present example, because theferromagnetic film 306 is formed adjacent to the orientedinsulator film 300 and has an excellent flatness, the soft magnetic property of theferromagnetic film 306 can be improved over that of the structure according to Example 1. For example, the coercivity of CoFeB after crystallization is reduced by half as compared with that of Example 1. Theinsulator film 305 is also formed as a flat film. However, because theantiferromagnetic film 301 is formed toward the top of thetunnel magnetoresistive device 2 in the direction in which the films are stacked, the orientation of theantiferromagnetic film 301 deteriorates as compared with that of Example 1. As a result, the anti-ferromagnetic coupling weakens and its heat-process resistance property deteriorates as compared with that of Example 1, and the tunnel magnetoresistance ratio tends to decrease by a heat process at 400° C. The method of manufacture of thetunnel magnetoresistive device 2 and the materials used for the various films thereof were the same as those of Example 1. The magnetoresistance ratio of thetunnel magnetoresistive device 2 was 200%, which was substantially the same as that of Example 1. -
FIG. 3 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention. The structure of thetunnel magnetoresistive device 3 is similar to that of thetunnel magnetoresistive device 1 shown inFIG. 1 with the exception that, on theferromagnetic film 306, anon-ferromagnetic film 308, aferromagnetic film 309, anantiferromagnetic film 310, and aprotection film 307 were stacked sequentially in mentioned order. - In the present example, Ru (6 nm) was used in the
non-ferromagnetic film 308, CoFe (2 nm) was used in theferromagnetic film 309, and MnIr (8 nm) was used in theantiferromagnetic film 310. The composition ratio of CoFe of theferromagnetic film 309 was selected such that the Co composition ranged between 50 to 90%, at which a stable anti-ferromagnetic coupling can be realized between theferromagnetic film 309 and theantiferromagnetic film 310. For thenon-ferromagnetic film 308, a material or film thickness other than Ru (6 nm) may be selected such that the magnetic bond between theferromagnetic film 306 and theferromagnetic film 309 disappears. The method for manufacturing thetunnel magnetoresistive device 3, and the materials used for theorientation control film 300,antiferromagnetic film 301,ferromagnetic film 302,non-ferromagnetic film 303,ferromagnetic film 304,insulator film 305,ferromagnetic film 306, andprotection film 307 were the same as those used for Example 1. In particular, when CoFeB is used for theferromagnetic film 306 and theferromagnetic layer film 304, the resultant crystal structure is a body center cubic, and theinsulator film 305 is MgO having a rock-salt structure highly oriented in (100). - The magnetoresistance ratio obtained in the present example was 150%, which was a little smaller than that of Example 1. However, the efficiency of spin torque that acts on the
ferromagnetic film 306 can be increased due to the spin-dependent reflection that takes place at the interface between thenon-ferromagnetic film 308 and theferromagnetic film 309. As a result, the threshold current density for spin-torque magnetization switching can be reduced by approximately two-thirds as compared with Example 1. -
FIG. 4 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention. Atunnel magnetoresistive device 4 is similar to thetunnel magnetoresistive device 2 ofFIG. 2 with the exception that between theferromagnetic film 306 and theorientation control film 300, anantiferromagnetic film 310, aferromagnetic film 309, and anon-ferromagnetic film 308 are sequentially stacked in mentioned order from the side of theorientation control film 300. - In the present example, Ru (6 nm) was used for the
non-ferromagnetic film 308, CoFe (2 nm) was used for theferromagnetic film 309, and MnIr (8 nm) was used for theantiferromagnetic film 310. The composition ratio of CoFe of theferromagnetic film 309 was selected such that the Co composition ranged between 50 to 90%, at which a stable anti-ferromagnetic coupling can be realized between theferromagnetic film 309 and theantiferromagnetic film 310. For thenon-ferromagnetic film 308, a material or film thickness other than Ru (6 nm) may be selected such that the magnetic bond between theferromagnetic film 306 and theferromagnetic film 309 disappears. The method for manufacture of thetunnel magnetoresistive device 4 and the materials used for theorientation control film 300,antiferromagnetic film 301,ferromagnetic film 302,non-ferromagnetic film 303,ferromagnetic film 304,insulator film 305,ferromagnetic film 306, andprotection film 307 were the same as those for Example 2. In particular, when CoFeB is used in theferromagnetic film 306 and theferromagnetic layer film 304, the resultant crystal structure is a body center cubic, and theinsulator film 305 is MgO having a rock-salt structure highly oriented in (100). - The magnetoresistance ratio obtained in the present example was 140%, which was a little smaller than that of Example 2. However, the efficiency of spin torque that acts on the
ferromagnetic film 306 can be increased due to the spin-dependent reflection that takes place at the interface between thenon-ferromagnetic film 308 and theferromagnetic film 309. As a result, the threshold current density during spin-torque magnetization switching can be reduced by approximately two-thirds as compared with Example 2. -
FIG. 5 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention. Atunnel magnetoresistive device 5 is similar to thetunnel magnetoresistive device 3 ofFIG. 3 with the exception that the device does not include theantiferromagnetic film 310. - In the present embodiment, Ru (8 nm) was used in the
non-ferromagnetic film 308. For thenon-ferromagnetic film 308, a material or a film thickness other than Ru (8 nm) may be selected such that the anti-ferromagnetic coupling between theferromagnetic film 306 andferromagnetic film 309 disappears. The method of manufacture of thetunnel magnetoresistive device 5 and the materials for theorientation control film 300,antiferromagnetic film 301,ferromagnetic film 302,non-ferromagnetic film 303,ferromagnetic film 304,insulator film 305,ferromagnetic film 306,ferromagnetic film 309, andprotection film 307 were the same as those of Example 3. In particular, when CoFeB is used for theferromagnetic film 306 and theferromagnetic layer film 304, the resultant crystal structure is a body center cubic, and theinsulator film 305 is MgO having a rock-salt structure highly oriented in (100). The obtained magnetoresistance ratio was approximately 150%, which is substantially the same as that of Example 3. - In the present configuration, as in Example 3, the efficiency of the spin-transfer torque that acts on the
ferromagnetic film 306 increases over Example 1, so that magnetization rotation utilizing the spin-transfer torque can be realized with a small current. Further, as compared with Example 3, the diffusion of Mn due to the heat process can be suppressed because of the lack of theantiferromagnetic film 310, so that the heat resistance of the magnetoresistance ratio can be improved. -
FIG. 6 shows a schematic cross section of another example of the tunnel magnetoresistive device of the invention. Atunnel magnetoresistive device 6 is similar to thetunnel magnetoresistive device 4 ofFIG. 4 with the exception that theantiferromagnetic film 310 is absent. - In the present example, Ru (8 nm) was used for the
non-ferromagnetic film 308. For thenon-ferromagnetic film 308, however, a material or film thickness other than Ru (8 nm) may be selected such that the anti-ferromagnetic coupling between theferromagnetic film 306 and theferromagnetic film 309 can disappear. The method of manufacture of thetunnel magnetoresistive device 6 and the materials used for theorientation control film 300,antiferromagnetic film 301,ferromagnetic film 302,non-ferromagnetic film 303,ferromagnetic film 304,insulator film 305,ferromagnetic film 306,ferromagnetic film 309, andprotection film 307 were the same as those for Example 4. In particular, when CoFeB is used for theferromagnetic film 306 and theferromagnetic layer film 304, the resultant crystal structure is a body center cubic, and theinsulator film 305 is MgO having a rock-salt structure highly oriented in (100). The maximum magnetoresistance ratio obtained was approximately 140%, which was similar to that of Example 4. - In the present configuration, the efficiency of the spin-transfer torque that acts on the
ferromagnetic film 306 increases over Example 4, so that magnetization rotation utilizing the spin-transfer torque can be realized with a smaller current. Further, as compared with Example 4, the diffusion of Mn due to the heat process can be suppressed by the lack of theantiferromagnetic film 310, so that the heat resistance of the magnetoresistance ratio can be increased. -
FIG. 7 shows a schematic cross section of an example of a magnetic memory cell according to the invention. The magnetic memory cell is equipped with thetunnel magnetoresistive device 10 according to Examples 1 to 6 as a memory cell. - C-
MOS 11 is comprised of two n- 12 and 13 and one p-type semiconductors type semiconductor 14. To the n-type semiconductor 12, anelectrode 21 is electrically connected that serves as a drain, which is connected to ground via 41 and 47. To the n-electrodes type semiconductor 13 anelectrode 22 is electrically connected that severs as a source.Numeral 23 designates a gate electrode, by the ON/OFF switching of which the current between thesource electrode 22 and thedrain electrode 21 is ON/OFF controlled. On thesource electrode 22, 45, 44, 43, 42, and 46 are stacked. Via theelectrodes electrode 46, anorientation control film 300 of thetunnel magnetoresistive device 10 is connected. - A
bit line 212 is connected to theprotection film 307 of thetunnel magnetoresistive device 10. In the magnetic memory cell of the present example, the magnetization direction of theferromagnetic film 306 of thetunnel magnetoresistive device 10 is rotated by the so-called spin-transfer torque due to the current that flows through thetunnel magnetoresistive device 10, whereby magnetic information is recorded. Alternatively, instead of using the spin-transfer torque, a current can be caused to flow through anelectrode 47 that serves as both abit line 212 and a word line, so that the magnetization direction of theferromagnetic film 306 of thetunnel magnetoresistive device 10 is rotated by means of the magnetic field produced around the electrode, thereby recording magnetic information. When writing is performed using the spin-transfer torque, the power required for writing can be reduced to about one hundredths of the power required when a current magnetic filed is used. -
FIG. 9 shows an example of a nonvolatile magnetic memory in which the above magnetic memory cells are arranged. Thegate electrode 23 and thebit line 212 are electrically connected to thememory cell 100. By arranging the magnetic memory cells according to the foregoing examples, the magnetic memory can be operated with low power consumption, thereby enabling the realization of a giga-bit class high-density magnetic memory.
Claims (20)
1. A tunnel magnetoresistive device comprising an insulator film, and first and second ferromagnetic films between which the insulator film is disposed,
wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, and wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100).
2. The tunnel magnetoresistive device according to claim 1 , wherein the second ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B.
3. The tunnel magnetoresistive device according to claim 1 , wherein the first ferromagnetic film has a Co-to-Fe composition ratio (atm %) of 50:50 to 70:30.
4. The tunnel magnetoresistive device according to claim 1 , comprising an orientation control film on which an antiferromagnetic film, a third ferromagnetic film, and a non-ferromagnetic film are sequentially stacked, wherein the first ferromagnetic film, the insulator film, and the second ferromagnetic film are sequentially stacked on the non-ferromagnetic film,
wherein the magnetization direction of the third ferromagnetic film is fixed by the antiferromagnetic film, and wherein the third ferromagnetic film and the first ferromagnetic film are antiferromagnetically coupled via the non-ferromagnetic film.
5. The tunnel magnetoresistive device according to claim 4 , wherein, on the second ferromagnetic film, a second non-ferromagnetic film, a fourth ferromagnetic film, and a second antiferromagnetic film are sequentially stacked in mentioned order, wherein the magnetization direction of the fourth ferromagnetic film is fixed by the second antiferromagnetic film.
6. The tunnel magnetoresistive device according to claim 4 , wherein, on the second ferromagnetic film, a second non-ferromagnetic film and a fourth ferromagnetic film are sequentially stacked in mentioned order.
7. The tunnel magnetoresistive device according to claim 1 , comprising an orientation control film on which the first ferromagnetic film, the insulator film, and the second ferromagnetic film are sequentially stacked,
wherein, on the second ferromagnetic film, a non-ferromagnetic film, a third ferromagnetic film, and an antiferromagnetic film are sequentially stacked,
wherein the magnetization direction of the third ferromagnetic film is fixed by the antiferromagnetic film, and wherein the third ferromagnetic film and the first ferromagnetic film are antiferromagnetically coupled via the non-ferromagnetic film.
8. The tunnel magnetoresistive device according to claim 7 , wherein, between the orientation control film and the first ferromagnetic film, a second antiferromagnetic film, a fourth ferromagnetic film, and a second non-ferromagnetic film are sequentially stacked in mentioned order, wherein the magnetization direction of the fourth ferromagnetic film is fixed by the second antiferromagnetic film.
9. The tunnel magnetoresistive device according to claim 7 , wherein, between the orientation control film and the first ferromagnetic film, a fourth ferromagnetic film and a second non-ferromagnetic film are sequentially stacked in mentioned order.
10. A magnetic memory comprising a tunnel magnetoresistive device, and a switching element for controlling the ON/OFF of a current that flows through the tunnel magnetoresistive device,
wherein the tunnel magnetoresistive device comprises an insulator film, and first and second ferromagnetic films between which the insulator film is disposed, wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100).
11. The magnetic memory according to claim 10 , wherein the second ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B.
12. The magnetic memory according to claim 10 , wherein the first ferromagnetic film has a Co-to-Fe composition ratio (atm %) of 50:50 to 70:30.
13. The magnetic memory according to claim 10 , wherein magnetic information is recorded using spin-transfer torque.
14. A magnetic random access memory comprising a plurality of magnetic memory cells and a means for selecting a desired magnetic memory cell, wherein the magnetic memory cells include a tunnel magnetoresistive device in which a first ferromagnetic film of a body-centered cubic structure containing Co, Fe, and B, a MgO insulator film of a rock-salt structure oriented in (100), and a second ferromagnetic film are stacked.
15. The magnetic random access memory according to claim 14 , wherein the second ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B.
16. The magnetic random access memory according to claim 14 , wherein the first ferromagnetic film has a Co-to-Fe composition ratio (atm %) of 50:50 to 70:30.
17. The magnetic random access memory according to claim 14 , wherein magnetic information is recorded using spin-transfer torque.
18. The tunnel magnetoresistive device according to claim 1 , wherein the composition ratio of Co is 0 to 50%.
19. The magnetic memory according to claim 10 , wherein the composition ratio of Co is 0 to 50%.
20. The magnetic random access memory according to claim 14 , wherein the composition ratio of Co is 0 to 50%.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/335,271 US20090096045A1 (en) | 2005-07-28 | 2008-12-15 | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005-219526 | 2005-07-28 | ||
| JP2005219526 | 2005-07-28 | ||
| JP2006181979A JP5096702B2 (en) | 2005-07-28 | 2006-06-30 | Magnetoresistive element and nonvolatile magnetic memory equipped with the same |
| JP2006-181979 | 2006-06-30 | ||
| US11/493,892 US7468542B2 (en) | 2005-07-28 | 2006-07-27 | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
| US12/335,271 US20090096045A1 (en) | 2005-07-28 | 2008-12-15 | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/493,892 Continuation US7468542B2 (en) | 2005-07-28 | 2006-07-27 | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090096045A1 true US20090096045A1 (en) | 2009-04-16 |
Family
ID=37694041
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/493,892 Active 2026-11-08 US7468542B2 (en) | 2005-07-28 | 2006-07-27 | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
| US12/335,271 Abandoned US20090096045A1 (en) | 2005-07-28 | 2008-12-15 | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/493,892 Active 2026-11-08 US7468542B2 (en) | 2005-07-28 | 2006-07-27 | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US7468542B2 (en) |
| JP (1) | JP5096702B2 (en) |
| CN (1) | CN1905229B (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090155629A1 (en) * | 2007-12-18 | 2009-06-18 | Hardayal Singh Gill | Tunnel junction magnetoresistive sensor having a near zero magnetostriction free layer |
| US20090219754A1 (en) * | 2005-05-19 | 2009-09-03 | Nec Corporation | Magnetoresistive device and magnetic memory using the same |
| US20100118600A1 (en) * | 2005-10-19 | 2010-05-13 | Toshihiko Nagase | Magnetoresistive element |
| US20100178528A1 (en) * | 2007-06-19 | 2010-07-15 | Canon Anelva Corporation | Tunnel magnetoresistive thin film and magnetic multilayer film formation apparatus |
| US20110134689A1 (en) * | 2008-09-22 | 2011-06-09 | Hitachi, Ltd. | Magnetic recording element, magnetic memory cell, and magnetic random access memory |
| US20140241047A1 (en) * | 2013-02-25 | 2014-08-28 | T3Memory, Inc. | Self-aligned process for fabricating voltage-gated mram |
| US9130143B2 (en) | 2013-09-10 | 2015-09-08 | Toshihiko Nagase | Magnetic memory and method for manufacturing the same |
| WO2018174877A1 (en) * | 2017-03-23 | 2018-09-27 | Intel Corporation | Spintronic devices, duplexers, transceivers and telecommunication devices |
Families Citing this family (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5077802B2 (en) | 2005-02-16 | 2012-11-21 | 日本電気株式会社 | Laminated ferromagnetic structure and MTJ element |
| JP5591888B2 (en) * | 2005-07-28 | 2014-09-17 | 株式会社日立製作所 | Magnetoresistive element and nonvolatile magnetic memory equipped with the same |
| US7800868B2 (en) * | 2005-12-16 | 2010-09-21 | Seagate Technology Llc | Magnetic sensing device including a sense enhancing layer |
| US8335105B2 (en) * | 2007-03-07 | 2012-12-18 | Headway Technologies, Inc. | Magnetic memory cell |
| JP4682998B2 (en) * | 2007-03-15 | 2011-05-11 | ソニー株式会社 | Memory element and memory |
| JP5397902B2 (en) | 2007-03-16 | 2014-01-22 | 国立大学法人東北大学 | Spin relaxation variation method, spin current detection method, and spintronic device using spin relaxation |
| JP4384196B2 (en) * | 2007-03-26 | 2009-12-16 | 株式会社東芝 | Spin FET, magnetoresistive effect element, and spin memory |
| JP5429480B2 (en) * | 2007-04-24 | 2014-02-26 | 日本電気株式会社 | Magnetoresistive element, MRAM, and magnetic sensor |
| US7682841B2 (en) * | 2007-05-02 | 2010-03-23 | Qimonda Ag | Method of forming integrated circuit having a magnetic tunnel junction device |
| US20080272448A1 (en) * | 2007-05-02 | 2008-11-06 | Faiz Dahmani | Integrated circuit having a magnetic tunnel junction device |
| US20080273375A1 (en) * | 2007-05-02 | 2008-11-06 | Faiz Dahmani | Integrated circuit having a magnetic device |
| JP4914495B2 (en) | 2007-05-22 | 2012-04-11 | アルプス電気株式会社 | Tunnel type magnetic sensor |
| US7602033B2 (en) * | 2007-05-29 | 2009-10-13 | Headway Technologies, Inc. | Low resistance tunneling magnetoresistive sensor with composite inner pinned layer |
| US7750421B2 (en) * | 2007-07-23 | 2010-07-06 | Magic Technologies, Inc. | High performance MTJ element for STT-RAM and method for making the same |
| JP4738395B2 (en) | 2007-09-25 | 2011-08-03 | 株式会社東芝 | Magnetoresistive element and magnetic random access memory using the same |
| JP4649457B2 (en) * | 2007-09-26 | 2011-03-09 | 株式会社東芝 | Magnetoresistive element and magnetic memory |
| JP2009081315A (en) * | 2007-09-26 | 2009-04-16 | Toshiba Corp | Magnetoresistive element and magnetic memory |
| US8497559B2 (en) * | 2007-10-10 | 2013-07-30 | Magic Technologies, Inc. | MRAM with means of controlling magnetic anisotropy |
| JPWO2009110119A1 (en) * | 2008-03-06 | 2011-07-14 | 富士電機ホールディングス株式会社 | Ferromagnetic tunnel junction device and method for driving ferromagnetic tunnel junction device |
| KR101586271B1 (en) * | 2008-04-03 | 2016-01-20 | 삼성전자주식회사 | Magnetic random access memory device and Data writing and reading method of the Same |
| JP5339272B2 (en) | 2008-06-05 | 2013-11-13 | 国立大学法人東北大学 | Spintronic device and information transmission method |
| US8274818B2 (en) * | 2008-08-05 | 2012-09-25 | Tohoku University | Magnetoresistive element, magnetic memory cell and magnetic random access memory using the same |
| WO2010067520A1 (en) | 2008-12-10 | 2010-06-17 | 株式会社日立製作所 | Magnetoresistance effect element and magnetic memory cell and magnetic random access memory using same |
| JP2010147439A (en) * | 2008-12-22 | 2010-07-01 | Fujitsu Ltd | Multilayer film, magnetic head, and magnetic storage device |
| JP5175750B2 (en) * | 2009-01-19 | 2013-04-03 | 株式会社日立製作所 | Manufacturing method of semiconductor integrated circuit device using magnetic memory element |
| JP2010238956A (en) * | 2009-03-31 | 2010-10-21 | Tdk Corp | Spin conductive device |
| JP5579175B2 (en) * | 2009-05-28 | 2014-08-27 | 株式会社日立製作所 | Magnetoresistive element and random access memory using the same |
| KR101042338B1 (en) * | 2009-10-08 | 2011-06-17 | 한국과학기술연구원 | Magnetic tunnel junction device and manufacturing method thereof |
| KR101096517B1 (en) * | 2009-10-19 | 2011-12-20 | 한국과학기술연구원 | Magnetic Tunnel Junction Structure with Vertical Magnetized Magnetic Layer |
| JP2010016408A (en) * | 2009-10-19 | 2010-01-21 | Toshiba Corp | Magnetoresistive element and magnetic memory |
| JP4903277B2 (en) * | 2010-01-26 | 2012-03-28 | 株式会社日立製作所 | Magnetoresistive element, magnetic memory cell using the same, and random access memory |
| JP2011159891A (en) * | 2010-02-03 | 2011-08-18 | Ricoh Co Ltd | Magnetic sensor |
| US8411497B2 (en) * | 2010-05-05 | 2013-04-02 | Grandis, Inc. | Method and system for providing a magnetic field aligned spin transfer torque random access memory |
| WO2012008349A1 (en) * | 2010-07-16 | 2012-01-19 | 株式会社日立製作所 | Magnetic resistance element, magnetic memory cell and magnetic random access memory |
| JP4945704B2 (en) * | 2010-08-17 | 2012-06-06 | パナソニック株式会社 | Magnetic tunnel junction element |
| JP5786341B2 (en) * | 2010-09-06 | 2015-09-30 | ソニー株式会社 | Memory element and memory device |
| JP2012160681A (en) * | 2011-02-03 | 2012-08-23 | Sony Corp | Memory element, memory device |
| JP5367739B2 (en) * | 2011-02-03 | 2013-12-11 | 株式会社東芝 | Magnetoresistive element and magnetic random access memory using the same |
| JP5558425B2 (en) * | 2011-07-04 | 2014-07-23 | 株式会社東芝 | Magnetoresistive element, magnetic memory, and method of manufacturing magnetoresistive element |
| JP2013033881A (en) * | 2011-08-03 | 2013-02-14 | Sony Corp | Storage element and storage device |
| US9099188B2 (en) * | 2013-03-09 | 2015-08-04 | Yimin Guo | Magnetoresistive element |
| US20160064652A1 (en) * | 2014-09-03 | 2016-03-03 | T3Memory, Inc. | Three-terminal stt-mram and method to make the same |
| US9337415B1 (en) * | 2015-03-20 | 2016-05-10 | HGST Netherlands B.V. | Perpendicular spin transfer torque (STT) memory cell with double MgO interface and CoFeB layer for enhancement of perpendicular magnetic anisotropy |
| TWI616872B (en) * | 2016-09-09 | 2018-03-01 | 國立中興大學 | Heat assisted magnetic recording medium |
| JPWO2018100837A1 (en) * | 2016-12-02 | 2019-10-17 | Tdk株式会社 | Magnetization reversal element, magnetoresistive effect element, integrated element and integrated element manufacturing method |
| US10720570B2 (en) * | 2017-06-12 | 2020-07-21 | Western Digital Technologies, Inc. | Magnetic sensor using spin hall effect |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US226A (en) * | 1837-06-03 | Samuel goss | ||
| US5695864A (en) * | 1995-09-28 | 1997-12-09 | International Business Machines Corporation | Electronic device using magnetic components |
| US6097625A (en) * | 1998-07-16 | 2000-08-01 | International Business Machines Corporation | Magnetic random access memory (MRAM) array with magnetic tunnel junction (MTJ) cells and remote diodes |
| US20010043986A1 (en) * | 2000-04-12 | 2001-11-22 | Alps Electric Co., Ltd. | Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling |
| US6603677B2 (en) * | 2000-12-07 | 2003-08-05 | Commissariat A L'energie Atomique | Three-layered stacked magnetic spin polarization device with memory |
| US20030184921A1 (en) * | 2001-04-24 | 2003-10-02 | Yasunari Sugita | Magnetoresistive element and magnetoresistive magnetic head, magnetic recording apparatus and magnetoresistive memory device using the same |
| US20040041183A1 (en) * | 2002-08-30 | 2004-03-04 | Slaughter Jon M. | Amorphous alloys for magnetic devices |
| US20060093862A1 (en) * | 2004-10-29 | 2006-05-04 | International Business Machines Corporation | MAGNETIC TUNNEL JUNCTIONS WITH HIGH TUNNELING MAGNETORESISTANCE USING NON-bcc MAGNETIC MATERIALS |
| US20060128038A1 (en) * | 2004-12-06 | 2006-06-15 | Mahendra Pakala | Method and system for providing a highly textured magnetoresistance element and magnetic memory |
| US7110285B2 (en) * | 2003-05-21 | 2006-09-19 | Kabushiki Kaisha Toshiba | Magnetic memory device |
| US20060246604A1 (en) * | 2005-04-18 | 2006-11-02 | Samsung Electronics Co., Ltd. | Methods of forming magnetic memory devices and resulting magnetic memory devices |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005116923A (en) * | 2003-10-10 | 2005-04-28 | Hitachi Ltd | Nonvolatile magnetic memory cell using spin torque and magnetic random access memory using the same |
| JP4292128B2 (en) * | 2004-09-07 | 2009-07-08 | キヤノンアネルバ株式会社 | Method for manufacturing magnetoresistive element |
| JP4693450B2 (en) | 2005-03-22 | 2011-06-01 | 株式会社東芝 | Magnetoresistive element and magnetic memory |
| JP2006318983A (en) * | 2005-05-10 | 2006-11-24 | Sony Corp | Magnetic memory element, memory |
-
2006
- 2006-06-30 JP JP2006181979A patent/JP5096702B2/en active Active
- 2006-07-27 US US11/493,892 patent/US7468542B2/en active Active
- 2006-07-28 CN CN2006101089234A patent/CN1905229B/en active Active
-
2008
- 2008-12-15 US US12/335,271 patent/US20090096045A1/en not_active Abandoned
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US226A (en) * | 1837-06-03 | Samuel goss | ||
| US5695864A (en) * | 1995-09-28 | 1997-12-09 | International Business Machines Corporation | Electronic device using magnetic components |
| US6097625A (en) * | 1998-07-16 | 2000-08-01 | International Business Machines Corporation | Magnetic random access memory (MRAM) array with magnetic tunnel junction (MTJ) cells and remote diodes |
| US20010043986A1 (en) * | 2000-04-12 | 2001-11-22 | Alps Electric Co., Ltd. | Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling |
| US6603677B2 (en) * | 2000-12-07 | 2003-08-05 | Commissariat A L'energie Atomique | Three-layered stacked magnetic spin polarization device with memory |
| US20030184921A1 (en) * | 2001-04-24 | 2003-10-02 | Yasunari Sugita | Magnetoresistive element and magnetoresistive magnetic head, magnetic recording apparatus and magnetoresistive memory device using the same |
| US20040041183A1 (en) * | 2002-08-30 | 2004-03-04 | Slaughter Jon M. | Amorphous alloys for magnetic devices |
| US7110285B2 (en) * | 2003-05-21 | 2006-09-19 | Kabushiki Kaisha Toshiba | Magnetic memory device |
| US20060093862A1 (en) * | 2004-10-29 | 2006-05-04 | International Business Machines Corporation | MAGNETIC TUNNEL JUNCTIONS WITH HIGH TUNNELING MAGNETORESISTANCE USING NON-bcc MAGNETIC MATERIALS |
| US20060128038A1 (en) * | 2004-12-06 | 2006-06-15 | Mahendra Pakala | Method and system for providing a highly textured magnetoresistance element and magnetic memory |
| US20060246604A1 (en) * | 2005-04-18 | 2006-11-02 | Samsung Electronics Co., Ltd. | Methods of forming magnetic memory devices and resulting magnetic memory devices |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090219754A1 (en) * | 2005-05-19 | 2009-09-03 | Nec Corporation | Magnetoresistive device and magnetic memory using the same |
| US8513748B2 (en) | 2005-05-19 | 2013-08-20 | Nec Corporation | Magnetoresistive device and magnetic memory using the same |
| US8363462B2 (en) | 2005-10-19 | 2013-01-29 | Kabushiki Kaisha Toshiba | Magnetoresistive element |
| US20100118600A1 (en) * | 2005-10-19 | 2010-05-13 | Toshihiko Nagase | Magnetoresistive element |
| US8036025B2 (en) * | 2005-10-19 | 2011-10-11 | Kabushiki Kaisha Toshiba | Magnetoresistive element |
| US20100178528A1 (en) * | 2007-06-19 | 2010-07-15 | Canon Anelva Corporation | Tunnel magnetoresistive thin film and magnetic multilayer film formation apparatus |
| US20090155629A1 (en) * | 2007-12-18 | 2009-06-18 | Hardayal Singh Gill | Tunnel junction magnetoresistive sensor having a near zero magnetostriction free layer |
| US8270125B2 (en) * | 2007-12-18 | 2012-09-18 | Hitachi Global Storage Technologies Netherlands B.V. | Tunnel junction magnetoresistive sensor having a near zero magnetostriction free layer |
| US20110134689A1 (en) * | 2008-09-22 | 2011-06-09 | Hitachi, Ltd. | Magnetic recording element, magnetic memory cell, and magnetic random access memory |
| US8189370B2 (en) | 2008-09-22 | 2012-05-29 | Hitachi, Ltd. | Magnetic recording element, magnetic memory cell, and magnetic random access memory |
| US20140241047A1 (en) * | 2013-02-25 | 2014-08-28 | T3Memory, Inc. | Self-aligned process for fabricating voltage-gated mram |
| US9087983B2 (en) * | 2013-02-25 | 2015-07-21 | Yimin Guo | Self-aligned process for fabricating voltage-gated MRAM |
| US9130143B2 (en) | 2013-09-10 | 2015-09-08 | Toshihiko Nagase | Magnetic memory and method for manufacturing the same |
| WO2018174877A1 (en) * | 2017-03-23 | 2018-09-27 | Intel Corporation | Spintronic devices, duplexers, transceivers and telecommunication devices |
| CN110447114A (en) * | 2017-03-23 | 2019-11-12 | 英特尔公司 | Spintronic device, duplexer, transceiver, and telecommunication device |
| US11205749B2 (en) | 2017-03-23 | 2021-12-21 | Intel Corporation | Spintronic devices, duplexers, transceivers and telecommunication devices |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2007059879A (en) | 2007-03-08 |
| JP5096702B2 (en) | 2012-12-12 |
| US7468542B2 (en) | 2008-12-23 |
| US20070025029A1 (en) | 2007-02-01 |
| CN1905229B (en) | 2012-05-30 |
| CN1905229A (en) | 2007-01-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7468542B2 (en) | Magnetoresistive device and nonvolatile magnetic memory equipped with the same | |
| US7894244B2 (en) | Tunnel magnetic resistance device, and magnetic memory cell and magnetic random access memory using the same | |
| JP5143444B2 (en) | Magnetoresistive element, magnetic memory cell and magnetic random access memory using the same | |
| JP5123365B2 (en) | Magnetoresistive element and magnetic memory | |
| US8274818B2 (en) | Magnetoresistive element, magnetic memory cell and magnetic random access memory using the same | |
| US9564152B2 (en) | Magnetoresistance effect element and magnetic memory | |
| US8604569B2 (en) | Magnetoresistive element | |
| US8796796B2 (en) | Method and system for providing magnetic junctions having improved polarization enhancement and reference layers | |
| US10953319B2 (en) | Spin transfer MRAM element having a voltage bias control | |
| KR20090059038A (en) | Thermal-Assisted Write Magnetic Element | |
| KR20100131967A (en) | Driving method of ferromagnetic tunnel junction element and ferromagnetic tunnel junction element | |
| KR20150054665A (en) | Method and system for providing a top pinned layer perpendicular magnetic anisotropy magnetic junction usable in spin transfer torque magnetic random access memory applications | |
| US10672977B2 (en) | Perpendicular magnetoresistive elements | |
| KR20150054664A (en) | Method and system for providing a bulk perpendicular magnetic anisotropy free layer in a perpendicular magnetic junction usable in spin transfer torque magnetic random access memory applications | |
| KR20190104865A (en) | Magnetic apparatus having magnetic junctions and hybrid capping layers, magnetic memory using the same, and method for providing the same | |
| JP6427396B2 (en) | Magnetoresistance element and magnetic memory | |
| KR20160004969A (en) | Method and system for providing a thin pinned layer in a perpendicular magnetic junction usable in spin transfer torque magnetic random access memory applications | |
| TWI458087B (en) | The magnetoresistive effect element is used to use the magnetic memory cell and the random access memory | |
| JP2009239122A (en) | Magneto-resistance effect device and spin mos (metal oxide semiconductor) field-effect transistor | |
| JP2013016820A (en) | Tunnel magnetoresistance effect element, and magnetic memory cell and random access memory including the same | |
| US20220246836A1 (en) | Composite recording structure for an improved write profermance | |
| JP5591888B2 (en) | Magnetoresistive element and nonvolatile magnetic memory equipped with the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |