US20090071573A1 - Phosphating solution with hydrogen peroxide and chelating carboxylic acids - Google Patents
Phosphating solution with hydrogen peroxide and chelating carboxylic acids Download PDFInfo
- Publication number
- US20090071573A1 US20090071573A1 US12/055,984 US5598408A US2009071573A1 US 20090071573 A1 US20090071573 A1 US 20090071573A1 US 5598408 A US5598408 A US 5598408A US 2009071573 A1 US2009071573 A1 US 2009071573A1
- Authority
- US
- United States
- Prior art keywords
- phosphating solution
- solution according
- ions
- phosphating
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001735 carboxylic acids Chemical class 0.000 title claims abstract description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims description 71
- 239000002253 acid Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 24
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 23
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 9
- 230000002378 acidificating effect Effects 0.000 claims abstract description 6
- 150000002978 peroxides Chemical class 0.000 claims abstract description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 65
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 36
- 229910019142 PO4 Inorganic materials 0.000 claims description 22
- -1 zinc(II) ions Chemical class 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 12
- 239000010959 steel Substances 0.000 claims description 12
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims description 11
- 150000001768 cations Chemical class 0.000 claims description 11
- 235000015165 citric acid Nutrition 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 8
- 239000012141 concentrate Substances 0.000 claims description 8
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 claims description 8
- 229910001453 nickel ion Inorganic materials 0.000 claims description 8
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 7
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 5
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 5
- 239000008397 galvanized steel Substances 0.000 claims description 5
- 229910001437 manganese ion Inorganic materials 0.000 claims description 5
- 239000011975 tartaric acid Substances 0.000 claims description 5
- 235000002906 tartaric acid Nutrition 0.000 claims description 5
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 4
- 229910001431 copper ion Inorganic materials 0.000 claims description 4
- 239000001630 malic acid Substances 0.000 claims description 4
- 235000011090 malic acid Nutrition 0.000 claims description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 3
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims description 3
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 3
- 239000012895 dilution Substances 0.000 claims description 3
- 125000000864 peroxy group Chemical group O(O*)* 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 239000011701 zinc Substances 0.000 abstract description 14
- 229910052725 zinc Inorganic materials 0.000 abstract description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 11
- 235000021317 phosphate Nutrition 0.000 description 18
- 239000010452 phosphate Substances 0.000 description 16
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 13
- 239000000126 substance Substances 0.000 description 9
- 229910002651 NO3 Inorganic materials 0.000 description 7
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 7
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 5
- 238000001994 activation Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000004922 lacquer Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229910001463 metal phosphate Inorganic materials 0.000 description 4
- 238000002203 pretreatment Methods 0.000 description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M chlorate Inorganic materials [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910000680 Aluminized steel Inorganic materials 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N iron (II) ion Substances [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 description 2
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 229910004074 SiF6 Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- UJJUJHTVDYXQON-UHFFFAOYSA-N nitro benzenesulfonate Chemical compound [O-][N+](=O)OS(=O)(=O)C1=CC=CC=C1 UJJUJHTVDYXQON-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical compound OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 description 1
- MPNNOLHYOHFJKL-UHFFFAOYSA-N peroxyphosphoric acid Chemical compound OOP(O)(O)=O MPNNOLHYOHFJKL-UHFFFAOYSA-N 0.000 description 1
- FHHJDRFHHWUPDG-UHFFFAOYSA-N peroxysulfuric acid Chemical compound OOS(O)(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-N 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
- C23C22/188—Orthophosphates containing manganese cations containing also magnesium cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/12—Orthophosphates containing zinc cations
- C23C22/16—Orthophosphates containing zinc cations containing also peroxy-compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/12—Orthophosphates containing zinc cations
- C23C22/17—Orthophosphates containing zinc cations containing also organic acids
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/364—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
- C23C22/365—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
Definitions
- the invention relates to a phosphating solution and a process for the phosphating of metallic surfaces with aqueous, acidic phosphating solutions that comprise zinc ions and phosphate ions as well as accelerators in free or bonded states, as well as their application as a pre-treatment of metal surfaces for subsequent coating, in particular an electro deposition.
- the process may be used to treat surfaces made from steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel.
- the object of phosphating metals is to produce on the metal surface strongly adhering metal phosphate layers which in themselves improve corrosion resistance and, in conjunction with lacquers and other organic coatings, contribute towards a substantial increase in lacquer adhesion and resistance to corrosive delamination.
- Such phosphating processes have been known for a long time.
- Low-zinc phosphating processes in which the phosphating solutions have relatively low contents of zinc ions of 0.5 to 2 g/l, are particularly suitable for pre-treatment prior to lacquer coating.
- phosphate layers having distinctly improved corrosion protection and lacquer adhesion properties may be formed by also using polyvalent cations other than zinc in the phosphating baths.
- polyvalent cations other than zinc in the phosphating baths.
- low-zinc processes with the addition of, for example, 0.5 to 1.5 g/l of manganese ions and, for example, 0.3 to 2.0 g/l of nickel ions are widely used as the so-called tri-cation process for preparing metal surfaces for lacquer coating, for example for cathodic electrocoating of automotive bodywork.
- phosphating solutions comprise accelerators. They accelerate the layer formation, since they have a “depolarizing” effect in that they oxidize the elementary hydrogen that results from the pickling reaction to form water.
- accelerators such as for example hydroxylamine, can also influence the form of the resulting phosphate crystals.
- Oxidizing accelerators also have the effect of oxidizing iron (II) ions resulting from the pickling reaction on steel surfaces to the trivalent state, so that they precipitate out as iron (III) phosphate.
- a process for zinc phosphating is known from EP 414296, in which a combination of nitrate and hydrogen peroxide is employed as the accelerator.
- the maximum peroxide concentration should be 17 mg/l.
- DE 4243214 describes a phosphating process based on magnesium phosphate, which should be free of those inorganic substances that cannot be precipitated with calcium hydroxide in the neutral or alkaline range.
- H 2 O 2 in amounts of 0.02 to 0.2 g/l, can be comprised as the accelerator.
- zinc phosphate solutions that comprise 0.005 to 0.5 g/l H 2 O 2 together with 0.01 to 10 g/l formate find use.
- WO 97/16581 discloses a process for phosphating steel, galvanized or alloy galvanized steel and/or aluminum or its alloys by treatment with a zinc phosphating solution in dip, spray or spray-dip processes, wherein the zinc phosphating solution exhibits a maximum nitrate ion content of 0.5 g/l and is free of manganese-, nickel- and cobalt ions and that it comprises:
- the phosphating solution when it comprises hydroxylamine as the sole accelerator, should then preferably additionally comprise one or more aliphatic hydroxycarboxylic acids containing 3 to 6 carbon atoms in a total amount of 0.5 to 1.5 g/l.
- hydroxycarboxylic acids are preferably selected from lactic acid, glycolic acid, tartronic acid, malic acid, tartaric acid and citric acid.
- EP 154367 describes a zinc phosphating solution that comprises nitrobenzene sulfonate as the accelerator and that can additionally comprise citrate or tartrate.
- EP 287133 discloses a zinc phosphating solution that comprises 5 to 30 g/l nitrate as the essential accelerator. Preferably, it further comprises 0.5 to 5 g/l iron (II), thereby excluding the presence of an oxidizing accelerator like H 2 O 2 .
- This phosphating solution can further comprise up to 3 g/l tartaric acid or citric acid.
- a phosphating solution is known from EP 433118 which comprises nitrate ions, iron (II)- or iron (III) ions as well as at least one organic chelating agent.
- This chelating agent can be a polyhydroxycarboxylic acid, such as for example tartaric acid or citric acid.
- WO 94/13856 The subject matter of WO 94/13856 is zinc phosphating solutions, particularly for strip processes, which exhibit a relatively high content of free acid (for the definition: see below) of 2 to 6 points.
- These phosphating solutions comprise water-soluble organic acids, whose dissociation constant lies between the dissociation constants of the first and second step of phosphoric acid.
- a whole range of suitable acids are mentioned, among others citric acid.
- the phosphating solution can comprise an oxidizing agent selected from nitrite, chlorate, bromate, hydroxylamine, organic aromatic nitro compounds as well as hydrogen peroxide or peroxy compounds.
- the concentration of the organic acids should be in the range 0.008 to 0.15 mol/l, the concentration of hydrogen peroxide in the range 0.01 to 0.1 g/l. Neither hydrogen peroxide nor citric acid was used in the examples.
- FIG. 1A is a scanning electron microscope photograph of a phosphate layer of Comparative Example 6 at 400 ⁇ magnification.
- FIG. 1B is a scanning electron microscope photograph of a phosphate layer of Comparative Example 6 at 800 ⁇ magnification.
- FIG. 1C is a scanning electron microscope photograph of a phosphate layer of Comparative Example 6 at 2000 ⁇ magnification.
- FIG. 2A is a scanning electron microscope photograph of a phosphate layer of Example 1 at 400 ⁇ magnification.
- FIG. 2B is a scanning electron microscope photograph of a phosphate layer of Example 1 at 800 ⁇ magnification.
- FIG. 2C is a scanning electron microscope photograph of a phosphate layer of Example 1 at 2000 ⁇ magnification.
- the present invention relates to an acidic, aqueous phosphating solution, comprising
- Chelating carboxylic acids are understood to mean carboxylic acids with at least two functional groups (including the carboxyl groups) that possess atoms with at least one free electron pair. Complexes with suitable metal ions, particularly transition metal cations, can be formed through the electron pairs of these functional groups. Chelate complexes result if at least two such functional groups of the same carboxylic acid coordinate the same metal cation, such that a cyclic structure is formed that incorporates the metal cation. Preferably, these rings possess five to seven atoms, including the metal cation.
- the aliphatic chelating carboxylic acids preferably possess at least two carboxyl groups as well as at least one hydroxyl group that is not part of a carboxyl group. They can be selected from tartronic acid, malic acid, tartaric acid and citric acid, for example.
- carboxylic acids in the phosphating solution exist as free acids or as acid anions depends on the acid constant of the particular carboxylic acid and on the pH of the phosphating solution. Generally, a chemical equilibrium between free carboxylic acid and carboxylic acid anions will be reached.
- concentration data are to be understood as the total concentration, i.e. as the sum of the concentrations of the free carboxylic acids and their anions.
- Typical parameters for controlling phosphating baths known to the person skilled in the art are the free acid and total acid contents.
- the term “free acid” is commonly used by the person skilled in the field of phosphating.
- the free acid content is limited to a maximum value of one point. Values of free acid between about 0.3 and 1 point and of total acid between about 15 and about 35 points are suitable in the context of this invention.
- the phosphating solution preferably comprises 20 to 25 mg/l hydrogen peroxide or an equivalent amount of a substance that splits off hydrogen peroxide as a favorable compromise between acceleration, controllability and decomposition losses.
- An equivalent amount will be understood by those of skill in the art to mean the amount of a substance that is the source of the hydrogen peroxide that provides the desired amount of free form H 2 O 2 .
- the phosphating solution further comprises one or more cations that are incorporated into the crystalline phosphate layer. Accordingly, it is also preferred in the context of the invention that the phosphating solution additionally comprises one or more of the following cations:
- the phosphating solution is poor in nickel or free of nickel.
- the positive action of the nickel ions on the paint adhesion and corrosion protection is then assumed by the ecologically less risky copper ions.
- the phosphating solution comprises 0.1 to 4 g/l manganese (II) ions, 0.002 to 0.2 g/l copper ions and not more than 0.05 g/l nickel ions.
- the content of zinc ions is preferably 0.4 to 2 g/l and particularly 0.5 to 1.5 g/l.
- the weight ratio of phosphate ions to zinc ions in the phosphating baths can vary widely in so far as it is the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred.
- phosphating baths which are intended to be suitable for different substrates, one may add free and/or complexed fluoride in quantities of up to 2.5 g/l total fluoride, up to 750 mg/l of which as free fluoride, each calculated as F ⁇ .
- the presence of such quantities of fluoride is advantageous for the inventive phosphating baths.
- the aluminum content of the bath should not exceed 3 mg/l.
- higher Al contents may be tolerated, provided that the concentration of non-complexed Al does not exceed 3 mg/l.
- hydrogen peroxide as such i.e. in free form or also in bound form, for example as ionic peroxide or in the form of peroxy compounds, such as for example peroxydisulfuric acid, Caro's acid or also peroxyphosphoric acid.
- Sodium perborate also is a further carrier for hydrogen peroxide in bound form.
- the phosphating solution could be made up at the point of use by dissolving the individual components in water to the application concentrations. However, in practice this rarely occurs. It is much more usual to provide concentrates for initial use and for the replenishment of a phosphating solution.
- the make-up concentrate is then diluted at the point of use with water to the application concentration, wherein the content of free acid and/or the pH generally have to be adjusted to the application range. Ranges for the free acid content have already been given above.
- the pH is then generally between 2.7 and 3.6.
- the replenishment concentrates are used in order to keep the active substances in a phosphating solution in the prescribed range during operation.
- a further aspect of the present invention also relates to an aqueous concentrate that after dilution with water by a factor between 10 and 100 and adjustment if needed of the free acid content to a value of maximum one point, adjustment of the pH to a working range between 2.7 and 3.6 as well as adjustment if needed of the concentration of H 2 O 2 or of a substance that splits off hydrogen peroxide to the prescribed range, results in an above described phosphating solution.
- Phosphating bath concentrates are generally adjusted to be strongly acidic on the grounds of stability, such that the free acid content after dilution with water is initially significantly above the desired working range.
- the value of free acid is lowered to the required range by adding an alkaline substance such as, for example caustic soda or a sodium carbonate solution.
- H 2 O 2 or a substance that splits off H 2 O 2 as sources of H 2 O 2 , is generally required, as these accelerators are not sufficiently stable in concentrated form in the amounts required for a phosphating bath concentrate.
- the inventive concentrate comprises the active principles of the phosphating solution except for H 2 O 2 or a substance that splits off H 2 O 2 .
- a further aspect of the present invention relates to a process for the phosphating of metal surfaces made of steel, galvanized or alloy galvanized steel and/or of aluminum, in which the metal surfaces are brought into contact with an above described phosphating solution by spraying or dipping or by a combination thereof for a period between 3 seconds and 8 minutes.
- the temperature of the phosphating solution is in the range of about 30 to about 70 and in particular from about 40 to about 60° C. In practice, the temperatures are especially adjusted to the range 50 to 55° C.
- the inventive process is suitable for phosphating surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel.
- bodywork parts can also consist of already pre-treated material, as is the case for example in the Granocoat® process.
- the base material is first pre-treated and then coated with a weldable coating of an organic resin.
- the inventive phosphating process then leads to a phosphating of damaged spots of this pre-treatment layer or of the untreated reverse sides.
- the process can be employed particularly in the automotive construction industry, where treatment times between 1 and 8 minutes are typical. It has been conceived for the treatment of the cited metal surfaces prior to lacquering, especially before a cathodic electrodepositioning, as is typical in the automotive construction industry.
- the phosphating process should be regarded as a partial step of the industrially conventional pre-treatment chain. In this chain, the steps cleaning/degreasing, intermediate rinsing and activation are usually upstream of the phosphating, wherein the activation usually occurs with titanium phosphate-containing activators. However, the activation can also be effected with a suspension of finely divided ( ⁇ 5 ⁇ m) particulate phosphates of divalent or trivalent metals in an alkali metal phosphate solution. This activation process is described, for example in EP 1368508.
- the inventive phosphating can be followed, optionally after an intermediate rinse, by a post-passivation treatment.
- Treatment baths containing chromium salts were widely used for this purpose. However, for reasons of occupational hygiene and environmental protection as well as for disposal, there is the tendency to replace these chromium-containing passivation baths with chromium-free treatment baths. For this, purely inorganic baths, in particular based on zirconium compounds, or also organic baths, for example based on polyvinylphenols, are known. Generally, an intermediate rinse with totally deionized water is carried out between this post-passivation and the typically subsequent electro deposition coating.
- composition of the phosphating bath was as follows:
- layer weight was determined according to DIN 50942 by dissolution in a 5% conc. chromic acid solution.
- Comparative examples 16 and 17 demonstrate that an adequate phosphating result is obtained by the use of nitrite or hydroxylamine as the accelerator even without the addition of a chelating carboxylic acid. However, if one wants to use H 2 O 2 as the accelerator, for example from ecological grounds, then at a free acid content of maximum one point, an adequate phosphating result is obtained only with the addition of the chelating carboxylic acid. On increasing the free acid content to 1.2 points, then rust formation occurs even with a combination of citric acid/H 2 O 2 (see exp. 13 to 15).
- FIG. 1 shows scanning electron microscope photographs of a phosphate layer of Comparative Example 6.
- FIG. 2 shows scanning electron microscope photographs of a phosphate layer of Example 1, according to the invention.
- FIG. 2 shows a complete phosphate layer obtained according to the invention which has significantly smaller and more compact phosphate crystals than FIG. 1 .
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102005047424A DE102005047424A1 (de) | 2005-09-30 | 2005-09-30 | Phosphatierlösung mit Wasserstoffperoxid und chelatbildenden Carbonsäuren |
| DE102005047424.1 | 2005-09-30 | ||
| PCT/EP2006/008063 WO2007039015A1 (de) | 2005-09-30 | 2006-08-16 | Phosphatierlösung mit wasserstoffperoxid und chelatbildenden carbonsäuren |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2006/008063 Continuation WO2007039015A1 (de) | 2005-09-30 | 2006-08-16 | Phosphatierlösung mit wasserstoffperoxid und chelatbildenden carbonsäuren |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090071573A1 true US20090071573A1 (en) | 2009-03-19 |
Family
ID=37668277
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/055,984 Abandoned US20090071573A1 (en) | 2005-09-30 | 2008-03-26 | Phosphating solution with hydrogen peroxide and chelating carboxylic acids |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20090071573A1 (de) |
| EP (1) | EP1929070A1 (de) |
| CN (1) | CN101278075B (de) |
| DE (1) | DE102005047424A1 (de) |
| RU (1) | RU2428518C2 (de) |
| WO (1) | WO2007039015A1 (de) |
| ZA (1) | ZA200802778B (de) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10113070B2 (en) | 2015-11-04 | 2018-10-30 | Ppg Industries Ohio, Inc. | Pretreatment compositions and methods of treating a substrate |
| WO2022135778A1 (de) * | 2020-12-22 | 2022-06-30 | M-M-Morant-Gmbh | Chrom(vi)-freies beschichtungsmittel für metalle |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| PL2503025T3 (pl) * | 2011-03-22 | 2013-12-31 | Henkel Ag & Co Kgaa | Chroniąca przed korozją, wielostopniowa obróbka metalowych elementów konstrukcyjnych o powierzchniach cynkowych |
| CN104278261B (zh) * | 2013-07-12 | 2017-11-07 | 王恩栋 | 用于除锈及磷化的环保型磷酸浓缩液与应用 |
| RU2572688C1 (ru) * | 2014-09-10 | 2016-01-20 | Закрытое акционерное общество "ФК" | Раствор для фосфатирования металлической поверхности |
| CN109504838A (zh) * | 2018-12-25 | 2019-03-22 | 宁波淡水谷金属制线有限公司 | 一种钢丝热处理工艺 |
| CN109504958A (zh) * | 2018-12-25 | 2019-03-22 | 宁波淡水谷金属制线有限公司 | 一种钢材表面酸洗磷化工艺 |
| CN113755777B (zh) * | 2021-09-23 | 2023-01-24 | 马鞍山钢铁股份有限公司 | 一种环保型表面处理的镀锌钢板及其制备方法 |
| CN113832425B (zh) * | 2021-09-23 | 2022-12-27 | 马鞍山钢铁股份有限公司 | 一种具有优良耐黑变性能和胶粘性能的锌镁铝镀层钢板及其制备方法 |
| CN113817973B (zh) * | 2021-09-23 | 2022-12-27 | 马鞍山钢铁股份有限公司 | 改善合金化镀锌热成形钢表面氧化和涂装性能的表面处理液、热成形钢板及制备方法和应用 |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2516139A (en) * | 1948-12-08 | 1950-07-25 | American Chem Paint Co | Method of and material for treating ferriferous metal surfaces with manganese phosphate coating solutions |
| US3307979A (en) * | 1965-10-11 | 1967-03-07 | Lubrizol Corp | Phosphating solutions |
| US3458364A (en) * | 1968-05-01 | 1969-07-29 | Lubrizol Corp | Method for phosphating ferrous metals |
| US4490185A (en) * | 1982-12-03 | 1984-12-25 | Henkel Kommanditgesellschaft Auf Aktien | Phosphating solutions and process |
| US4637838A (en) * | 1984-03-09 | 1987-01-20 | Metallgesellschaft, A.G. | Process for phosphating metals |
| US4838957A (en) * | 1982-08-24 | 1989-06-13 | Amchem Products, Inc. | Phosphate coatings for metal surfaces |
| US5236565A (en) * | 1987-04-11 | 1993-08-17 | Metallgesellschaft Aktiengesellschaft | Process of phosphating before electroimmersion painting |
| US5268041A (en) * | 1990-04-27 | 1993-12-07 | Metallgesellschaft Ag | Process for phosphating metal surfaces |
| US5383982A (en) * | 1992-12-19 | 1995-01-24 | Metallgesellschaft Aktiengesellschaft | Process of producing phosphate coatings |
| US6168974B1 (en) * | 1993-11-16 | 2001-01-02 | Formfactor, Inc. | Process of mounting spring contacts to semiconductor devices |
| US6379474B1 (en) * | 1997-08-06 | 2002-04-30 | Henkel Kommanditgesellschaft Auf Aktien | Phosphating method accelerated by N-oxides |
| US6395105B1 (en) * | 1995-03-29 | 2002-05-28 | Henkel Kommanditgesellschaft Auf Aktien | Phosphating process with a metalliferous re-rinsing stage |
| US20040065389A1 (en) * | 2001-03-06 | 2004-04-08 | Thomas Kolberg | Method for applying a phosphate coating and use of metal parts coated in this manner |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE805343C (de) * | 1950-01-31 | 1951-05-17 | American Chem Paint Co | Verfahren zur Erzeugung von Phosphatueberzuegen auf Metallen, insbesondere Eisen und Stahl |
| DE1208599B (de) * | 1959-11-27 | 1966-01-05 | Metallgesellschaft Ag | Verfahren zum Aufbringen von Phosphatueberzuegen auf Metallen |
| GB1415999A (en) * | 1973-05-29 | 1975-12-03 | Pyrene Chemical Services Ltd | Process for forming phosphate coatings |
| DE2342558C3 (de) * | 1973-08-23 | 1982-11-11 | Metallgesellschaft Ag, 6000 Frankfurt | Verfahren zur Phosphatierung von Metallen |
| GB1591039A (en) * | 1977-05-03 | 1981-06-10 | Pyrene Chemical Services Ltd | Processes and compositions for coating metal surfaces |
| DE4013483A1 (de) * | 1990-04-27 | 1991-10-31 | Metallgesellschaft Ag | Verfahren zur phosphatierung von metalloberflaechen |
| US5261973A (en) * | 1991-07-29 | 1993-11-16 | Henkel Corporation | Zinc phosphate conversion coating and process |
| DE19538778A1 (de) * | 1995-10-18 | 1997-04-24 | Henkel Kgaa | Schichtgewichtssteuerung bei Hydroxylamin-beschleunigten Phosphatiersystemen |
| DE19544614A1 (de) * | 1995-11-30 | 1997-06-05 | Metallgesellschaft Ag | Verfahren zur Phospatierung von Metalloberflächen |
| DE10310680A1 (de) * | 2003-03-12 | 2004-09-23 | Henkel Kgaa | Verfahren zur Phosphatierung mit einer Kombination von Beschleunigern |
| DE10323305B4 (de) * | 2003-05-23 | 2006-03-30 | Chemetall Gmbh | Verfahren zur Beschichtung von metallischen Oberflächen mit einer Wasserstoffperoxid enthaltenden Phosphatierungslösung, Phosphatierlösung und Verwendung der behandelten Gegenstände |
-
2005
- 2005-09-30 DE DE102005047424A patent/DE102005047424A1/de not_active Ceased
-
2006
- 2006-08-16 RU RU2008116542/02A patent/RU2428518C2/ru not_active IP Right Cessation
- 2006-08-16 CN CN2006800364618A patent/CN101278075B/zh not_active Expired - Fee Related
- 2006-08-16 EP EP06776869A patent/EP1929070A1/de not_active Withdrawn
- 2006-08-16 WO PCT/EP2006/008063 patent/WO2007039015A1/de not_active Ceased
-
2008
- 2008-03-26 US US12/055,984 patent/US20090071573A1/en not_active Abandoned
- 2008-03-28 ZA ZA200802778A patent/ZA200802778B/xx unknown
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2516139A (en) * | 1948-12-08 | 1950-07-25 | American Chem Paint Co | Method of and material for treating ferriferous metal surfaces with manganese phosphate coating solutions |
| US3307979A (en) * | 1965-10-11 | 1967-03-07 | Lubrizol Corp | Phosphating solutions |
| US3458364A (en) * | 1968-05-01 | 1969-07-29 | Lubrizol Corp | Method for phosphating ferrous metals |
| US4838957A (en) * | 1982-08-24 | 1989-06-13 | Amchem Products, Inc. | Phosphate coatings for metal surfaces |
| US4490185A (en) * | 1982-12-03 | 1984-12-25 | Henkel Kommanditgesellschaft Auf Aktien | Phosphating solutions and process |
| US4637838A (en) * | 1984-03-09 | 1987-01-20 | Metallgesellschaft, A.G. | Process for phosphating metals |
| US5236565A (en) * | 1987-04-11 | 1993-08-17 | Metallgesellschaft Aktiengesellschaft | Process of phosphating before electroimmersion painting |
| US5268041A (en) * | 1990-04-27 | 1993-12-07 | Metallgesellschaft Ag | Process for phosphating metal surfaces |
| US5383982A (en) * | 1992-12-19 | 1995-01-24 | Metallgesellschaft Aktiengesellschaft | Process of producing phosphate coatings |
| US6168974B1 (en) * | 1993-11-16 | 2001-01-02 | Formfactor, Inc. | Process of mounting spring contacts to semiconductor devices |
| US6395105B1 (en) * | 1995-03-29 | 2002-05-28 | Henkel Kommanditgesellschaft Auf Aktien | Phosphating process with a metalliferous re-rinsing stage |
| US6379474B1 (en) * | 1997-08-06 | 2002-04-30 | Henkel Kommanditgesellschaft Auf Aktien | Phosphating method accelerated by N-oxides |
| US20040065389A1 (en) * | 2001-03-06 | 2004-04-08 | Thomas Kolberg | Method for applying a phosphate coating and use of metal parts coated in this manner |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10113070B2 (en) | 2015-11-04 | 2018-10-30 | Ppg Industries Ohio, Inc. | Pretreatment compositions and methods of treating a substrate |
| WO2022135778A1 (de) * | 2020-12-22 | 2022-06-30 | M-M-Morant-Gmbh | Chrom(vi)-freies beschichtungsmittel für metalle |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1929070A1 (de) | 2008-06-11 |
| ZA200802778B (en) | 2008-12-31 |
| CN101278075A (zh) | 2008-10-01 |
| CN101278075B (zh) | 2012-05-16 |
| RU2008116542A (ru) | 2009-11-10 |
| RU2428518C2 (ru) | 2011-09-10 |
| DE102005047424A1 (de) | 2007-04-05 |
| WO2007039015A1 (de) | 2007-04-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090071573A1 (en) | Phosphating solution with hydrogen peroxide and chelating carboxylic acids | |
| KR101430679B1 (ko) | 강 표면의 부식 제어 처리를 위한 웨트 온 웨트 방법 및 크롬-무함유 산성 용액 | |
| US8435360B2 (en) | Anti-corrosion treatment for conversion layers | |
| CN102066612B (zh) | 用于金属表面的基于Ti/Zr的最佳钝化 | |
| US5976272A (en) | No-rinse phosphating process | |
| JP3883571B2 (ja) | 金属を含有する後濯ぎ工程を有するリン酸塩処理方法 | |
| SK162698A3 (en) | Zinc phosphating with integrated subsequent passivation | |
| KR100327287B1 (ko) | 무니켈 인산처리 방법 | |
| AU2013224115A1 (en) | Pretreating zinc surfaces prior to a passivating process | |
| KR20010072179A (ko) | 인산염 처리, 후세척 처리 및 음극 전착도장 방법 | |
| AU2004241000B2 (en) | Method and solution for coating metal surfaces with a phosphating solution containing water peroxide, produced metal object and use of said object | |
| FI77268C (fi) | Som accelererande och belaeggningsfoerbrande komponent i fosfateringsloesningar anvaendbar foerening eller foereningar. | |
| AU708141B2 (en) | Zinc phosphatizing using low concentrations of copper and manganese | |
| US6379474B1 (en) | Phosphating method accelerated by N-oxides | |
| AU705531B2 (en) | Zinc-phosphatizing using low concentrations of nickel and/or cobalt | |
| US6461450B1 (en) | Method for controlling the coating weight for strip-phosphating | |
| TW500828B (en) | Process for phosphating, after-washing and cathodic electro-dipcoating | |
| US6168674B1 (en) | Process of phosphatizing metal surfaces | |
| EP1453989A1 (de) | Verwendung von substituierten hydroxylaminen bei metallphosphatierungsverfahren | |
| JPH10140366A (ja) | 中温リン酸マンガン化成処理液および化成処理方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN (HENKEL KG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BROUWER, JAN-WILLEM;WAWRZYNIAK, JERSY-TADEUSZ;KROEMER, JENS;AND OTHERS;REEL/FRAME:021216/0652;SIGNING DATES FROM 20080328 TO 20080401 |
|
| AS | Assignment |
Owner name: HENKEL AG & CO. KGAA, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:HENKEL KGAA;REEL/FRAME:024950/0741 Effective date: 20080415 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |