US20080300184A1 - Transgenic tieg non-human animals - Google Patents
Transgenic tieg non-human animals Download PDFInfo
- Publication number
- US20080300184A1 US20080300184A1 US11/868,324 US86832407A US2008300184A1 US 20080300184 A1 US20080300184 A1 US 20080300184A1 US 86832407 A US86832407 A US 86832407A US 2008300184 A1 US2008300184 A1 US 2008300184A1
- Authority
- US
- United States
- Prior art keywords
- tieg
- cells
- mice
- expression
- human
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000009261 transgenic effect Effects 0.000 title abstract description 41
- 101150092727 KLF10 gene Proteins 0.000 title 1
- 206010020871 hypertrophic cardiomyopathy Diseases 0.000 claims abstract description 81
- 238000000034 method Methods 0.000 claims abstract description 50
- 230000000694 effects Effects 0.000 claims abstract description 33
- 101001006892 Homo sapiens Krueppel-like factor 10 Proteins 0.000 claims abstract description 9
- 102100027798 Krueppel-like factor 10 Human genes 0.000 claims abstract description 6
- 230000014509 gene expression Effects 0.000 claims description 83
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 62
- 229920001184 polypeptide Polymers 0.000 claims description 58
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 58
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 58
- 241000124008 Mammalia Species 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 25
- 238000012360 testing method Methods 0.000 claims description 20
- 230000000692 anti-sense effect Effects 0.000 claims description 11
- 230000002829 reductive effect Effects 0.000 claims description 11
- 208000024891 symptom Diseases 0.000 claims description 11
- 229940011871 estrogen Drugs 0.000 claims description 7
- 239000000262 estrogen Substances 0.000 claims description 7
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 claims description 6
- 108010049974 Bone Morphogenetic Protein 6 Proteins 0.000 claims description 5
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 claims description 5
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 claims description 4
- 102000009024 Epidermal Growth Factor Human genes 0.000 claims description 4
- 101710098940 Pro-epidermal growth factor Proteins 0.000 claims description 4
- 108020004459 Small interfering RNA Proteins 0.000 claims description 4
- 101100460719 Mus musculus Noto gene Proteins 0.000 claims description 2
- 102100030742 Transforming growth factor beta-1 proprotein Human genes 0.000 claims 1
- 108700028369 Alleles Proteins 0.000 abstract description 20
- 206010007572 Cardiac hypertrophy Diseases 0.000 abstract description 13
- 208000006029 Cardiomegaly Diseases 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 9
- 230000011164 ossification Effects 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 180
- 241000699670 Mus sp. Species 0.000 description 111
- 210000000963 osteoblast Anatomy 0.000 description 66
- 108090000623 proteins and genes Proteins 0.000 description 65
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 61
- 150000007523 nucleic acids Chemical class 0.000 description 51
- 102000039446 nucleic acids Human genes 0.000 description 49
- 108020004707 nucleic acids Proteins 0.000 description 49
- 241001465754 Metazoa Species 0.000 description 34
- 230000004069 differentiation Effects 0.000 description 33
- 238000004458 analytical method Methods 0.000 description 31
- 241000699666 Mus <mouse, genus> Species 0.000 description 29
- 108020004414 DNA Proteins 0.000 description 27
- 101150040424 PTTG1 gene Proteins 0.000 description 26
- 102000004067 Osteocalcin Human genes 0.000 description 23
- 108090000573 Osteocalcin Proteins 0.000 description 23
- 210000002997 osteoclast Anatomy 0.000 description 23
- 108020004999 messenger RNA Proteins 0.000 description 22
- 230000001105 regulatory effect Effects 0.000 description 19
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 18
- 238000010240 RT-PCR analysis Methods 0.000 description 18
- 210000001161 mammalian embryo Anatomy 0.000 description 17
- 239000000074 antisense oligonucleotide Substances 0.000 description 16
- 238000012230 antisense oligonucleotides Methods 0.000 description 16
- 210000004413 cardiac myocyte Anatomy 0.000 description 16
- 206010028980 Neoplasm Diseases 0.000 description 15
- 108010035042 Osteoprotegerin Proteins 0.000 description 15
- 102100032236 Tumor necrosis factor receptor superfamily member 11B Human genes 0.000 description 15
- 239000002773 nucleotide Substances 0.000 description 15
- 125000003729 nucleotide group Chemical group 0.000 description 15
- XXUPLYBCNPLTIW-UHFFFAOYSA-N octadec-7-ynoic acid Chemical compound CCCCCCCCCCC#CCCCCCC(O)=O XXUPLYBCNPLTIW-UHFFFAOYSA-N 0.000 description 15
- 239000002243 precursor Substances 0.000 description 15
- 239000013615 primer Substances 0.000 description 15
- 230000004663 cell proliferation Effects 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 14
- 206010020880 Hypertrophy Diseases 0.000 description 13
- 238000000338 in vitro Methods 0.000 description 13
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 12
- 241000283984 Rodentia Species 0.000 description 12
- 238000011161 development Methods 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- 210000002950 fibroblast Anatomy 0.000 description 12
- 230000006698 induction Effects 0.000 description 12
- 230000035755 proliferation Effects 0.000 description 12
- 201000011510 cancer Diseases 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 101000891649 Homo sapiens Transcription elongation factor A protein-like 1 Proteins 0.000 description 10
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 10
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 10
- 101000596402 Mus musculus Neuronal vesicle trafficking-associated protein 1 Proteins 0.000 description 10
- 101000800539 Mus musculus Translationally-controlled tumor protein Proteins 0.000 description 10
- 108091034117 Oligonucleotide Proteins 0.000 description 10
- 101000781972 Schizosaccharomyces pombe (strain 972 / ATCC 24843) Protein wos2 Proteins 0.000 description 10
- 108010061477 Securin Proteins 0.000 description 10
- 101001009610 Toxoplasma gondii Dense granule protein 5 Proteins 0.000 description 10
- 210000000988 bone and bone Anatomy 0.000 description 10
- 230000002950 deficient Effects 0.000 description 10
- 235000013601 eggs Nutrition 0.000 description 10
- 239000013598 vector Substances 0.000 description 10
- 108700024394 Exon Proteins 0.000 description 9
- 206010016654 Fibrosis Diseases 0.000 description 9
- 238000000636 Northern blotting Methods 0.000 description 9
- -1 Sp-1 Proteins 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 9
- 230000004761 fibrosis Effects 0.000 description 9
- 238000002493 microarray Methods 0.000 description 9
- 210000000107 myocyte Anatomy 0.000 description 9
- 230000037361 pathway Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 210000002435 tendon Anatomy 0.000 description 9
- 108060001084 Luciferase Proteins 0.000 description 8
- 239000005089 Luciferase Substances 0.000 description 8
- 108700020796 Oncogene Proteins 0.000 description 8
- 102000012152 Securin Human genes 0.000 description 8
- 239000004098 Tetracycline Substances 0.000 description 8
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 8
- 238000011835 investigation Methods 0.000 description 8
- 238000010208 microarray analysis Methods 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 230000008685 targeting Effects 0.000 description 8
- 229960002180 tetracycline Drugs 0.000 description 8
- 229930101283 tetracycline Natural products 0.000 description 8
- 235000019364 tetracycline Nutrition 0.000 description 8
- 150000003522 tetracyclines Chemical class 0.000 description 8
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 210000004602 germ cell Anatomy 0.000 description 7
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 7
- 210000005003 heart tissue Anatomy 0.000 description 7
- 238000002744 homologous recombination Methods 0.000 description 7
- 230000006801 homologous recombination Effects 0.000 description 7
- 238000011813 knockout mouse model Methods 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000001582 osteoblastic effect Effects 0.000 description 7
- 230000002018 overexpression Effects 0.000 description 7
- 230000019491 signal transduction Effects 0.000 description 7
- 239000002924 silencing RNA Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- 238000011830 transgenic mouse model Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 208000026310 Breast neoplasm Diseases 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000002105 Southern blotting Methods 0.000 description 6
- 229930003316 Vitamin D Natural products 0.000 description 6
- 239000012190 activator Substances 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 6
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 238000003205 genotyping method Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 6
- 235000019166 vitamin D Nutrition 0.000 description 6
- 239000011710 vitamin D Substances 0.000 description 6
- 150000003710 vitamin D derivatives Chemical class 0.000 description 6
- 229940046008 vitamin d Drugs 0.000 description 6
- 206010006187 Breast cancer Diseases 0.000 description 5
- 102100030608 Mothers against decapentaplegic homolog 7 Human genes 0.000 description 5
- 101700026522 SMAD7 Proteins 0.000 description 5
- 102000007591 Tartrate-Resistant Acid Phosphatase Human genes 0.000 description 5
- 108010032050 Tartrate-Resistant Acid Phosphatase Proteins 0.000 description 5
- 230000027455 binding Effects 0.000 description 5
- 210000002459 blastocyst Anatomy 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 5
- 230000035876 healing Effects 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- 238000011771 FVB mouse Methods 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 102100033004 Securin Human genes 0.000 description 4
- 102000004243 Tubulin Human genes 0.000 description 4
- 108090000704 Tubulin Proteins 0.000 description 4
- 239000011543 agarose gel Substances 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 238000001516 cell proliferation assay Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 210000002808 connective tissue Anatomy 0.000 description 4
- 210000004748 cultured cell Anatomy 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 210000002257 embryonic structure Anatomy 0.000 description 4
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 4
- 229960005542 ethidium bromide Drugs 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000003500 gene array Methods 0.000 description 4
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 4
- 239000003163 gonadal steroid hormone Substances 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000001969 hypertrophic effect Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 210000005240 left ventricle Anatomy 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000520 microinjection Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000000869 mutational effect Effects 0.000 description 4
- 230000024121 nodulation Effects 0.000 description 4
- 230000004962 physiological condition Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 230000003827 upregulation Effects 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 230000002861 ventricular Effects 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- 108020005029 5' Flanking Region Proteins 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 102000003964 Histone deacetylase Human genes 0.000 description 3
- 108090000353 Histone deacetylase Proteins 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 108091093037 Peptide nucleic acid Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 101150089302 SMAD7 gene Proteins 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 102000013814 Wnt Human genes 0.000 description 3
- 108050003627 Wnt Proteins 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000002543 antimycotic Substances 0.000 description 3
- 239000008365 aqueous carrier Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000033558 biomineral tissue development Effects 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000003501 co-culture Methods 0.000 description 3
- 229940104302 cytosine Drugs 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 102000034356 gene-regulatory proteins Human genes 0.000 description 3
- 108091006104 gene-regulatory proteins Proteins 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000000004 hemodynamic effect Effects 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000013164 myectomy Methods 0.000 description 3
- 210000004287 null lymphocyte Anatomy 0.000 description 3
- 210000000287 oocyte Anatomy 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 210000001082 somatic cell Anatomy 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 2
- PEHVGBZKEYRQSX-UHFFFAOYSA-N 7-deaza-adenine Chemical compound NC1=NC=NC2=C1C=CN2 PEHVGBZKEYRQSX-UHFFFAOYSA-N 0.000 description 2
- HCGHYQLFMPXSDU-UHFFFAOYSA-N 7-methyladenine Chemical compound C1=NC(N)=C2N(C)C=NC2=N1 HCGHYQLFMPXSDU-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 240000005020 Acaciella glauca Species 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 2
- 206010065687 Bone loss Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000012422 Collagen Type I Human genes 0.000 description 2
- 108010022452 Collagen Type I Proteins 0.000 description 2
- 239000003155 DNA primer Substances 0.000 description 2
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 2
- 206010017076 Fracture Diseases 0.000 description 2
- 101100456626 Homo sapiens MEF2A gene Proteins 0.000 description 2
- 101001087372 Homo sapiens Securin Proteins 0.000 description 2
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 2
- 208000007177 Left Ventricular Hypertrophy Diseases 0.000 description 2
- 101100234476 Mus musculus Klf10 gene Proteins 0.000 description 2
- 101100079042 Mus musculus Myef2 gene Proteins 0.000 description 2
- 102100021148 Myocyte-specific enhancer factor 2A Human genes 0.000 description 2
- 102000003505 Myosin Human genes 0.000 description 2
- 108060008487 Myosin Proteins 0.000 description 2
- 102000016349 Myosin Light Chains Human genes 0.000 description 2
- 108010067385 Myosin Light Chains Proteins 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 208000001132 Osteoporosis Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108010052090 Renilla Luciferases Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 108091036066 Three prime untranslated region Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 206010070863 Toxicity to various agents Diseases 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 239000000512 collagen gel Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229960003722 doxycycline Drugs 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000000834 fixative Substances 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 210000002064 heart cell Anatomy 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000010231 histologic analysis Methods 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 101150014102 mef-2 gene Proteins 0.000 description 2
- 230000000921 morphogenic effect Effects 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 108700022405 mouse Tieg1 Proteins 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 235000003499 redwood Nutrition 0.000 description 2
- 230000000754 repressing effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000013165 surgical myectomy Methods 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 235000005282 vitamin D3 Nutrition 0.000 description 2
- 239000011647 vitamin D3 Substances 0.000 description 2
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 2
- 229940021056 vitamin d3 Drugs 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- CXNPLSGKWMLZPZ-GIFSMMMISA-N (2r,3r,6s)-3-[[(3s)-3-amino-5-[carbamimidoyl(methyl)amino]pentanoyl]amino]-6-(4-amino-2-oxopyrimidin-1-yl)-3,6-dihydro-2h-pyran-2-carboxylic acid Chemical compound O1[C@@H](C(O)=O)[C@H](NC(=O)C[C@@H](N)CCN(C)C(N)=N)C=C[C@H]1N1C(=O)N=C(N)C=C1 CXNPLSGKWMLZPZ-GIFSMMMISA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- QGVQZRDQPDLHHV-DPAQBDIFSA-N (3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthrene-3-thiol Chemical group C1C=C2C[C@@H](S)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 QGVQZRDQPDLHHV-DPAQBDIFSA-N 0.000 description 1
- UHUHBFMZVCOEOV-UHFFFAOYSA-N 1h-imidazo[4,5-c]pyridin-4-amine Chemical compound NC1=NC=CC2=C1N=CN2 UHUHBFMZVCOEOV-UHFFFAOYSA-N 0.000 description 1
- MXHRCPNRJAMMIM-SHYZEUOFSA-N 2'-deoxyuridine Chemical class C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-SHYZEUOFSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical group NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- 108020005065 3' Flanking Region Proteins 0.000 description 1
- KISUPFXQEHWGAR-RRKCRQDMSA-N 4-amino-5-bromo-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one Chemical compound C1=C(Br)C(N)=NC(=O)N1[C@@H]1O[C@H](CO)[C@@H](O)C1 KISUPFXQEHWGAR-RRKCRQDMSA-N 0.000 description 1
- LUCHPKXVUGJYGU-XLPZGREQSA-N 5-methyl-2'-deoxycytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 LUCHPKXVUGJYGU-XLPZGREQSA-N 0.000 description 1
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- UJBCLAXPPIDQEE-UHFFFAOYSA-N 5-prop-1-ynyl-1h-pyrimidine-2,4-dione Chemical compound CC#CC1=CNC(=O)NC1=O UJBCLAXPPIDQEE-UHFFFAOYSA-N 0.000 description 1
- KXBCLNRMQPRVTP-UHFFFAOYSA-N 6-amino-1,5-dihydroimidazo[4,5-c]pyridin-4-one Chemical compound O=C1NC(N)=CC2=C1N=CN2 KXBCLNRMQPRVTP-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- HRYKDUPGBWLLHO-UHFFFAOYSA-N 8-azaadenine Chemical compound NC1=NC=NC2=NNN=C12 HRYKDUPGBWLLHO-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- OXEUETBFKVCRNP-UHFFFAOYSA-N 9-ethyl-3-carbazolamine Chemical compound NC1=CC=C2N(CC)C3=CC=CC=C3C2=C1 OXEUETBFKVCRNP-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 101710154825 Aminoglycoside 3'-phosphotransferase Proteins 0.000 description 1
- 102000000412 Annexin Human genes 0.000 description 1
- 108050008874 Annexin Proteins 0.000 description 1
- 108050002216 Annexin A8 Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 101150087995 Anxa8 gene Proteins 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 101100215788 Arabidopsis thaliana AKR2B gene Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 101100297347 Caenorhabditis elegans pgl-3 gene Proteins 0.000 description 1
- 102000004631 Calcineurin Human genes 0.000 description 1
- 108010042955 Calcineurin Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 108010016788 Cyclin-Dependent Kinase Inhibitor p21 Proteins 0.000 description 1
- 102000000578 Cyclin-Dependent Kinase Inhibitor p21 Human genes 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 238000003718 Dual-Luciferase Reporter Assay System Methods 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 108010051542 Early Growth Response Protein 1 Proteins 0.000 description 1
- 102100023226 Early growth response protein 1 Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 101001091269 Escherichia coli Hygromycin-B 4-O-kinase Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 101001035237 Homo sapiens Integrin alpha-D Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102100039904 Integrin alpha-D Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 241000581650 Ivesia Species 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 101150023743 KLF9 gene Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 101710166468 Krueppel-like factor 10 Proteins 0.000 description 1
- 102100020684 Krueppel-like factor 9 Human genes 0.000 description 1
- 108010017123 Kruppel-Like Transcription Factors Proteins 0.000 description 1
- 102000004434 Kruppel-Like Transcription Factors Human genes 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- NPPQSCRMBWNHMW-UHFFFAOYSA-N Meprobamate Chemical compound NC(=O)OCC(C)(CCC)COC(N)=O NPPQSCRMBWNHMW-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 101000839083 Mus musculus Homeodomain-only protein Proteins 0.000 description 1
- 102000005604 Myosin Heavy Chains Human genes 0.000 description 1
- 108010084498 Myosin Heavy Chains Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000010498 Receptor Activator of Nuclear Factor-kappa B Human genes 0.000 description 1
- 108010038036 Receptor Activator of Nuclear Factor-kappa B Proteins 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000282695 Saimiri Species 0.000 description 1
- 108010043267 Sp7 Transcription Factor Proteins 0.000 description 1
- 101001091268 Streptomyces hygroscopicus Hygromycin-B 7''-O-kinase Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 206010049418 Sudden Cardiac Death Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 101150003725 TK gene Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 102100032317 Transcription factor Sp7 Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102100036859 Troponin I, cardiac muscle Human genes 0.000 description 1
- 101710128251 Troponin I, cardiac muscle Proteins 0.000 description 1
- 102000004987 Troponin T Human genes 0.000 description 1
- 108090001108 Troponin T Proteins 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Natural products O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 1
- 108010051583 Ventricular Myosins Proteins 0.000 description 1
- 206010047295 Ventricular hypertrophy Diseases 0.000 description 1
- 102100038258 Wnt inhibitory factor 1 Human genes 0.000 description 1
- 101710194167 Wnt inhibitory factor 1 Proteins 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 108010084455 Zeocin Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- RLXCFCYWFYXTON-JTTSDREOSA-N [(3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-16-yl] N-hexylcarbamate Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC(OC(=O)NCCCCCC)[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 RLXCFCYWFYXTON-JTTSDREOSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- XVIYCJDWYLJQBG-UHFFFAOYSA-N acetic acid;adamantane Chemical compound CC(O)=O.C1C(C2)CC3CC1CC2C3 XVIYCJDWYLJQBG-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 229940126574 aminoglycoside antibiotic Drugs 0.000 description 1
- 239000002647 aminoglycoside antibiotic agent Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 208000036878 aneuploidy Diseases 0.000 description 1
- 231100001075 aneuploidy Toxicity 0.000 description 1
- 230000001857 anti-mycotic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 208000025261 autosomal dominant disease Diseases 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- DHCLVCXQIBBOPH-UHFFFAOYSA-N beta-glycerol phosphate Natural products OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 1
- GHRQXJHBXKYCLZ-UHFFFAOYSA-L beta-glycerolphosphate Chemical compound [Na+].[Na+].CC(CO)OOP([O-])([O-])=O GHRQXJHBXKYCLZ-UHFFFAOYSA-L 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- CXNPLSGKWMLZPZ-UHFFFAOYSA-N blasticidin-S Natural products O1C(C(O)=O)C(NC(=O)CC(N)CCN(C)C(N)=N)C=CC1N1C(=O)N=C(N)C=C1 CXNPLSGKWMLZPZ-UHFFFAOYSA-N 0.000 description 1
- 210000004952 blastocoel Anatomy 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000002805 bone matrix Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 229960005084 calcitriol Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 210000001771 cumulus cell Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- MXHRCPNRJAMMIM-UHFFFAOYSA-N desoxyuridine Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-UHFFFAOYSA-N 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical group OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000001378 electrochemiluminescence detection Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 238000013221 female mouse model Methods 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000011331 genomic analysis Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000024348 heart neoplasm Diseases 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 239000012133 immunoprecipitate Substances 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 150000002519 isoleucine derivatives Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000007834 ligase chain reaction Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical group 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000013220 male mouse model Methods 0.000 description 1
- 210000004216 mammary stem cell Anatomy 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 108010059725 myosin-binding protein C Proteins 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 229940037525 nasal preparations Drugs 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000010449 nuclear transplantation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000004072 osteoblast differentiation Effects 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- ONTNXMBMXUNDBF-UHFFFAOYSA-N pentatriacontane-17,18,19-triol Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)C(O)CCCCCCCCCCCCCCCC ONTNXMBMXUNDBF-UHFFFAOYSA-N 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003904 phospholipids Chemical group 0.000 description 1
- SXADIBFZNXBEGI-UHFFFAOYSA-N phosphoramidous acid Chemical compound NP(O)O SXADIBFZNXBEGI-UHFFFAOYSA-N 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001480 pro-metastatic effect Effects 0.000 description 1
- 230000030103 pronuclear fusion Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 108700015048 receptor decoy activity proteins Proteins 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000025053 regulation of cell proliferation Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012340 reverse transcriptase PCR Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 102200136804 rs121913624 Human genes 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000002235 sarcomere Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 150000003568 thioethers Chemical group 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012301 transgenic model Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
- C07K14/4703—Inhibitors; Suppressors
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0276—Knock-out vertebrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/075—Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/035—Animal model for multifactorial diseases
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/035—Animal model for multifactorial diseases
- A01K2267/0375—Animal model for cardiovascular diseases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2517/00—Cells related to new breeds of animals
- C12N2517/02—Cells from transgenic animals
Definitions
- the invention involves methods and materials related to making and using transgenic non-human animals with genomic disruptions affecting the expression of a transforming growth factor ⁇ -inducible early gene.
- the invention also relates to heart conditions and methods for treating heart conditions.
- TGF ⁇ and members of its signaling pathway are tumor suppressors that regulate many diverse tissue and cell processes, including differentiation, apoptosis, and cell proliferation. For example, TGF ⁇ inhibits proliferation, induces cell differentiation and apoptosis, and alters gene expression in different cell types.
- TGF ⁇ -inducible early gene encodes a protein that is rapidly induced (as is its mRNA) by all three isoforms of TGF ⁇ .
- TIEG protein is 480 amino acids in length (72 kDa) and contains a zinc finger region that has homology with the 3-zinc finger family of transcription factors (e.g., Sp-1, BTEB, EGR-1, and the Kruppel-like factors).
- TIEG gene is localized on chromosome 8q22.2.
- TIEG protein has been identified in many human tissues and cell types, including cells in the breast, uterus, brain, pancreas, muscle, and bone.
- TIEG plays a role in TGF ⁇ -induced inhibition of cell proliferation and apoptosis in human osteoblast cells, pancreatic carcinoma cells, and epithelial and liver cancer cells.
- the invention is based, in part, on the discovery that transgenic non-human mammals whose genomes contain a disruption in a nucleic acid encoding TIEG, develop cardiac hypertrophy during the aging process. Such non-human mammals also have defects in osteoblast and osteoclast differentiation and function, which can lead to defects in bone formation. In addition, transgenic non-human mammals whose genomes contain a disruption in a nucleic acid encoding TIEG can exhibit connective tissue defects. As a result, such transgenic mice provide a model to study the biological role of TIEG in diverse biological systems.
- one aspect of the invention features a transgenic rodent whose genome includes a disruption of an endogenous TIEG nucleic acid and progeny and cells of the rodent.
- the transgenic rodent can be a mouse and can have a genetic background selected from the group consisting of B6, 129Sv/J, and FVB.
- the disruption can be heterozygous or homozygous. Osteoblasts or osteoclasts from the rodent can have a decreased ability to differentiate in vitro relative to osteoblasts or osteoclasts from a corresponding control rodent.
- the disruption can result from deletion of a portion of the endogenous TIEG gene (e.g., deletion of exons 1 and 2).
- the transgenic rodent can develop cardiac hypertrophy.
- the rodent can be a male rodent.
- the rodent can exhibit a symptom of human hypertrophic cardiomyopathy.
- the invention features a progeny of the transgenic rodent.
- the invention features cells isolated from the transgenic rodent.
- the cells can be cardiomyocytes, osteoblasts, or osteoclasts.
- the invention features a nucleic acid construct that includes a disrupted TIEG nucleic acid, wherein the disruption prevents the expression of a functional TIEG polypeptide from the nucleic acid.
- Another aspect of the invention features a method for determining whether or not a test compound is a potential treatment compound for human hypertrophic cardiomyopathy.
- the method includes (a) administering the test compound to a male TIEG ⁇ / ⁇ mouse, and (b) determining whether or not the mouse develops symptoms of human hypertrophic cardiomyopathy to a lesser degree than those developed in a control male TIEG ⁇ / ⁇ mouse not receiving the test compound, wherein a lesser degree of symptoms of human hypertrophic cardiomyopathy in the mouse indicates that the test compound is a potential treatment compound for human hypertrophic cardiomyopathy.
- the test compound can be an siRNA or antisense oligo that reduces the expression of a PTTG-1 polypeptide.
- Another aspect of the invention features a method for treating hypertrophic cardiomyopathy in a mammal.
- the method includes administering a TIEG polypeptide, nucleic acid encoding the TIEG polypeptide, or an activator of TIEG polypeptide activity to the mammal under conditions wherein the severity of a symptom of hypertrophic cardiomyopathy is reduced in the mammal.
- the mammal can be a human.
- the TIEG polypeptide can be administered to the mammal.
- the activator of TIEG polypeptide activity can be administered to the mammal.
- Activators of TIEG polypeptide activity can include, without limitation, TGF ⁇ , EGF, BMP-2, BMP-6, or estrogen.
- Another aspect of the invention features a method for treating hypertrophic cardiomyopathy in a mammal.
- the method includes administering a molecule to the mammal under conditions wherein the severity of a symptom of hypertrophic cardiomyopathy is reduced in the mammal, wherein the molecule reduces expression of a PTTG-1 polypeptide in the mammal or inhibits a PTTG-1 polypeptide activity in the mammal.
- the mammal can be a human.
- the molecule can be an siRNA or antisense oligo that reduces the expression of a PTTG-1 polypeptide.
- the molecule can reduce a PTTG-1 polypeptide activity.
- the molecule can be TGF ⁇ , EGF, BMP-2, BMP-6, or estrogen.
- FIG. 1 is a schematic representation of the wild-type allele of the TIEG gene, the targeting vector, and the recombinant allele.
- FIG. 2 is a graph depicting reduced osteoclast differentiation in ⁇ / ⁇ precursors and ST2 support cells.
- FIG. 3 is a graph depicting that loss of TIEG causes differentiation defects in both precursors and support cells.
- FIG. 4 is a graph depicting that the TIEG knockout reduces the RANKL/OPG ratio.
- FIG. 5B is a photograph of a Western blot analysis using anti-FLAG M2, anti-p21, and anti-actin antibodies. Hs578T-Tet-TIEG cells were grown in 10-cm plates and treated with 1 ⁇ g/ ⁇ L doxycycline for the indicated times.
- FIG. 6A is a photograph of a Northern blot analysis of mouse embryo fibroblast (MEF) cells treated with TGF ⁇ 1 (2 ng/mL) for the indicated times. Total RNA was extracted and analyzed by Northern blotting using a TIEG mRNA specific probe. Prior to Northern blotting, the gel was stained with ethidium bromide to verify equal loading.
- FIG. 7A is a bar graph plotting the relative luciferase units for wild-type (+/+) and TIEG null ( ⁇ / ⁇ ) MEF cells grown in the presence (+) or absence ( ⁇ ) of 2 ng/mL TGF ⁇ 1.
- FIG. 7B is a photograph of an RT-PCR experiment.
- RNA isolated from wild-type (+) and TIEG null ( ⁇ ) MEF cells treated with TGF ⁇ 1 for the indicated times was reverse transcribed, and PCRs were performed in duplicate for Smad7 and GAPDH mRNA.
- the PCR products were separated on 1.5% (w/v) agarose gels and visualized with ethidium bromide.
- FIG. 8 is a line graph plotting cell proliferation (absorbance at 490 nm) of TIEG +/+ and TIEG ⁇ / ⁇ calvarial osteoblasts plated onto 96 well plates and grown for 24, 48, and 72 hours at 37° C. An average of six replicates of each were graphed.
- FIG. 9 is a bar graph plotting the relative mRNA expression levels for osteocalcin (OC), ostrix (OSX), type I collagen (Col IA), and alkaline phosphatase (Alk. Phos.) in TIEG +/+ and TIEG ⁇ / ⁇ calvarial osteoblasts grown in culture.
- RT-PCR was performed on five separate calvarial RNA isolates, and the results scanned and quantitated using NIH Image. The data are the mean ⁇ SEM of these analyses normalized to GAPDH expression. * indicates p ⁇ 0.05 comparing TIEG +/+ to TIEG ⁇ / ⁇ calvarial osteoblasts.
- FIG. 10 is a bar graph plotting the number of TRAP+osteoclasts per well for neonatal calvaria-derived osteoblasts from TIEG +/+ or TIEG ⁇ / ⁇ mice cultured with either marrow or spleen osteoclast precursors from TIEG +/+mice in the presence of vitamin D and Dexamethazone for 9 days.
- the data are the mean ⁇ SEM of three replicate wells from one experiment. The experiment was performed 4 times, and these data are representative of the results.
- * indicates p ⁇ 0.05 comparing TIEG +/+ to TIEG ⁇ / ⁇ calvarial cells.
- FIG. 11 is a bar graph plotting the relative expression levels of M-CSF, RANKL, and OPG in TIEG ⁇ / ⁇ cells or TIEG +/+ cells cultured with vitamin D and dexamethazone.
- Real Time PCR was performed to quantitate the M-CSF, RANKL, and OPG expression relative to tubulin, and the ratio of RANKL to OPG was determined. * indicates p ⁇ 0.05 comparing TIEG +/+ to TIEG ⁇ / ⁇ calvarial cells.
- FIG. 12 is a bar graph plotting the number of TRAP+osteoclasts per well for TIEG +/+ and TIEG ⁇ / ⁇ calvarial cells cultured with TIEG +/+marrow in the presence of the indicated hormones or growth factors. * indicates p ⁇ 0.05 comparing TIEG +/+ to TIEG ⁇ / ⁇ calvarial OB cells, and ⁇ indicates p ⁇ 0.05 comparing vitamin D and dexamethazone alone to addition of the indicated hormones or growth factors.
- FIG. 13 is an outline of a gene microarray analysis.
- Panel A Calvarial osteoblasts were isolated from TIEG +/+ and TIEG ⁇ / ⁇ mice and cultured in vitro. Some samples were treated with 2 ng/mL TGF ⁇ for 24 hours in duplicate. RNA was then isolated from TGF ⁇ and vehicle treated samples and subjected to microarray using the MOE430A microarray containing 22,626 total genes. The data was analyzed, and the number of genes expressed and regulated by TGF ⁇ is indicated.
- Panel B is a comparison of the TGF ⁇ -regulated genes between TIEG +/+ and TIEG ⁇ / ⁇ osteoblasts with the data presented as a Venn diagram as to those genes regulated by TGF ⁇ in TIEG +/+ or TIEG ⁇ / ⁇ only, and those regulated in both genotypes.
- Panel C is a comparison of TGF ⁇ regulated genes between osteoblast cells from TIEG +/+mice and TIEG ⁇ / ⁇ mice with the data presented as a Venn diagram as to those genes expressed in TIEG +/+ or TIEG ⁇ / ⁇ cells.
- FIG. 14 is a bar graph plotting duel luciferase activity for AKR2B mouse embryo fibroblasts containing the indicated PTTG promoter or pGL3 basic luciferase construct (1 ⁇ g) with either an empty expression vector (1 ⁇ g) or a vector driving TIEG polypeptide expression (1 ⁇ g).
- a vector driving TIEG polypeptide expression 1 ⁇ g.
- 0.5 ⁇ g of renilla luciferase was also transfected into the cells. The cells were analyzed 24 hours after transfection.
- the invention provides a transgenic non-human animal whose genome contains a disruption in the endogenous TIEG nucleic acid.
- Such transgenic non-human animals develop cardiac hypertrophy (e.g., concentric left ventricular hypertrophy) as they age.
- cardiac hypertrophy e.g., concentric left ventricular hypertrophy
- transgenic non-human animals of the invention have an increase in cardiac myocyte cell number and a decrease in cardiac myocyte cell size and as such, it appears that there is an increase in cardiac myocyte differentiation after the mice are born.
- osteoblasts and osteoclasts from such transgenic non-human animals exhibit defects in differentiation.
- transgenic non-human animals containing a disruption in the endogenous TIEG nucleic acid exhibit connective tissue defects (e.g., less tendon strength than that exhibited in tendons from control animals).
- the transgenic animals (e.g., transgenic mice) of the invention are valuable models for studying the role of TIEG in bone formation, cardiac myocyte differentiation, cell proliferation, cancer, and connective tissue.
- the male transgenic non-human animals provided herein can be used as a model to study hypertrophic cardiomyopathy (HCM) since male transgenic non-human animals containing a disruption in the endogenous TIEG nucleic acid develop, with age and in a non-stress induced manner, the three hallmark symptoms of human HCM: unexplained hypertrophy, myocyte disarray, and fibrosis.
- HCM hypertrophic cardiomyopathy
- the invention features non-human mammals including a disrupted TIEG allele, and progeny and cells of such animals. Disruption of the TIEG gene results in non-human mammals with reduced levels of TIEG when compared with a corresponding wild-type animal.
- TIEG deficient animals can be referred to as “knockout animals.”
- Non-human mammals include, for example, rodents such as rats, guinea pigs, and mice, farm animals such as pigs, sheep, goats, horses, and cattle, and non-human primates (e.g., baboons, squirrel monkeys and chimpanzees).
- TIEG deficient mice are particularly useful.
- Cells and cell lines deficient in TIEG can be derived from TIEG knockout animals, using known techniques. Such animals may be used to derive a cell line that may be used in culture, either a primary culture or for continuous culture.
- Nucleic acid constructs useful for producing knockout animals include a disrupted TIEG nucleic acid.
- disrupted TIEG nucleic acid refers to a modification in the TIEG nucleic acid such that the expression of a functional TIEG polypeptide is reduced or prevented. Modifications that can result in a disrupted TIEG nucleic acid include, without limitation, insertions, deletions, substitutions, and combinations thereof. Modifications can be made in any region of a TIEG allele, including, an intron, exon, promoter, or 5′- or 3′-untranslated regions, and combinations thereof.
- Suitable exons can include any of the four exons (e.g., exons 1 and 2) of the TIEG nucleic acid.
- a stop codon can be introduced into a TIEG nucleic acid or a selectable marker can be substituted for a region of the TIEG gene such that expression of a functional TIEG polypeptide is reduced or prevented. See, Shastry, B. S., Mol. Cell. Biochem., 181(1-2):163-179, 1998, for a review of gene targeting technology.
- TIEG genomic sequences are used in the nucleic acid construct. Genomic sequences can be isolated using known molecular techniques and human or mouse nucleotide sequences as probes and/or as PCR primers. The genomic nucleic acid sequence of TIEG also can be found in GenBank under Accession No. AF049879, AF049880, and AF050110. A human TIEG cDNA and human TIEG amino acid sequence can be found in GenBank Accession No. U21847.
- a nucleic acid sequence encoding a selectable marker generally is used to interrupt the targeted site by homologous recombination.
- the nucleic acid encoding the selectable marker is flanked by sequences homologous to the sequences flanking the desired insertion site. It is not necessary for the flanking sequences to be immediately adjacent to the desired insertion site.
- Suitable nucleic acids encoding selectable markers for positive drug selection include, for example, the aminoglycoside 3′ phosphotransferase gene, which encodes a gene product that imparts resistance to geneticin (G418, an aminoglycoside antibiotic), and the hygromycin-B-phosphotransferase gene, which encodes a gene product that imparts hygromycin resistance.
- selection systems include nucleic acids encoding negative-selection markers such as the thymidine kinase (TK) gene from herpes simplex. Constructs utilizing both positive and negative selection also can be used.
- TK thymidine kinase
- a construct can contain the aminoglycoside phosphotransferase gene and the TK gene. In this system, cells are selected that are resistant to G418 and sensitive to gancyclovir. Any selectable marker suitable for inclusion in a knockout vector is within the scope of the present invention.
- Suitable nucleic acid constructs are amenable to genomic integration by homologous recombination.
- Non-limiting examples of such constructs include pKO Scrambler, pMC1neo, and pMC1-hsv-tk, all from Stratagene (La Jolla, Calif.).
- Cre/lox technology can be used to generate transgenic non-human mammals with conditional TIEG gene deletions. See, Orban, P. C., et al., Proc. Natl. Acad. Sci. USA , (1992) 89 (15): 6861-6865, and U.S. Pat. No. 4,959,317 for a review of Cre/lox technology.
- a targeting construct can be introduced into the pronuclei of fertilized eggs by microinjection.
- Targeting constructs for microinjection can be prepared by any method known in the art. For example, a nucleic acid construct for microinjection can be cleaved with enzymes appropriate for removing the bacterial plasmid sequences, and the resulting DNA fragments gel-purified.
- the developing embryo may carry the introduced gene in all its somatic and germ cells since the zygote is the mitotic progenitor of all cells in the embryo. Since targeted insertion of a knockout construct is a relatively rare event, it is desirable to generate and screen a large number of animals when employing such an approach. Because of this, it can be advantageous to work with the large cell populations and selection criteria that are characteristic of cultured cell systems. However, for production of knockout animals from an initial population of cultured cells, it is necessary that a cultured cell containing the desired knockout construct be capable of generating a whole animal. This is generally accomplished by placing the cell into a developing embryo environment of some sort.
- Pluripotent cells capable of giving rise to at least several differentiated cell types are “pluripotent.” Pluripotent cells capable of giving rise to all cell types of an embryo, including germ cells, are hereinafter termed “totipotent” cells.
- Totipotent murine cell lines embryonic stem, or “ES” cells
- ES cells embryonic stem, or “ES” cells
- Such cells are capable, upon incorporation into an embryo, of differentiating into all cell types, including germ cells, and can be employed to generate animals lacking a functional TIEG gene. That is, cultured ES cells can be transformed with a knockout construct and cells selected in which the TIEG gene is disrupted.
- Nucleic acid constructs can be introduced into ES cells, for example, by electroporation or other standard technique.
- a number of techniques can be used to detect or select homologous recombinants.
- PCR can be used to screen pools of transformant cells for homologous insertion, followed by screening of individual clones.
- PCR refers to a procedure or technique in which target nucleic acids are amplified.
- sequence information from the ends of the region of interest or beyond is employed to design oligonucleotide primers that are identical or similar in sequence to opposite strands of the template to be amplified.
- PCR can be used to amplify specific sequences from DNA as well as RNA (reverse-transcriptase PCR, RT-PCR), including sequences from total genomic DNA or total cellular RNA.
- Primers are typically 14 to 40 nucleotides in length, but can range from 10 nucleotides to hundreds of nucleotides in length. PCR is described, for example in PCR Primer: A Laboratory Manual , Ed. by Dieffenbach, C. and Dveksler, G., Cold Spring Harbor Laboratory Press, 1995.
- Nucleic acids also can be amplified by ligase chain reaction, strand displacement amplification, self-sustained sequence replication or nucleic acid sequence-based amplified. See, for example, Lewis, R.
- positive and/or negative selection techniques can be used to identify clones.
- the ES cells further can be characterized to determine the number of targeting events.
- genomic DNA can be harvested from ES cells and used for Southern analysis. See, for example, Section 9.37-9.52 of Sambrook et al., Molecular Cloning, A Laboratory Manual , second edition, Cold Spring Harbor Press, Plainview; NY, 1989.
- ES cells having at least one inactivated TIEG allele are incorporated into a developing embryo. This can be accomplished through injection into the blastocyst cavity of a murine blastocyst-stage embryo, by injection into a morula-stage embryo, by co-culture of ES cells with a morula-stage embryo, or through fusion of the ES cell with an enucleated zygote. The resulting embryo is raised to sexual maturity and bred in order to obtain founder animals, whose cells (including germ cells) carry the inactivated TIEG allele.
- the original ES cell was heterozygous for the inactivated TIEG allele
- several of these animals can be bred with each other in order to generate animals homozygous for the inactivated allele.
- the founder animals may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal (e.g., a B6, 129Sv/J, or FVB mouse).
- direct microinjection of DNA into eggs can be used to avoid the manipulations required to turn a cultured cell into an animal.
- Fertilized eggs are totipotent, i.e., capable of developing into an adult without further substantive manipulation other than implantation into a surrogate mother.
- Embryos derived from microinjected eggs can be screened for homologous recombination events in several ways. For example, if the TIEG allele is interrupted by a coding region that produces a detectable (e.g., fluorescent) gene product, then the injected eggs are cultured to the blastocyst stage and analyzed for presence of the indicator polypeptide. Embryos with fluorescing cells, for example, are then implanted into a surrogate mother and allowed to develop to term. Alternatively, injected eggs are allowed to develop and DNA from the resulting pups analyzed by PCR or RT-PCR for evidence of homologous recombination.
- a detectable e.g., fluorescent
- Nuclear transplantation also can be used to generate transgenic non-human mammals of the invention.
- fetal fibroblasts can be genetically modified such that they contain an inactivated endogenous TIEG allele thereby preventing TIEG expression, and then fused with enucleated oocytes. After activation of the oocytes, the eggs are cultured to the blastocyst stage, and implanted into a recipient.
- TIEG allele thereby preventing TIEG expression
- enucleated oocytes After activation of the oocytes, the eggs are cultured to the blastocyst stage, and implanted into a recipient.
- adult somatic cells including, for example, cumulus cells and mammary cells, can be used to produce animals such as mice and sheep, respectively. See, for example, Wakayama, T.
- Nuclei can be removed from genetically modified adult somatic cells, and transplanted into enucleated oocytes. After activation, the eggs can be cultured to the 2-8 cell stage, or to the blastocyst stage, and implanted into a suitable recipient. Wakayama, T. et al., 1998, supra. Transgenic non-human mammals heterozygous for a disrupted endogenous TIEG allele can be mated to produce homozygous non-human mammals.
- a transgenic non-human mammal of the invention can be either heterozygous or homozygous for an inactivated TIEG allele.
- Initial screening to determine whether a genome comprises a TIEG nucleic acid construct can be accomplished by Southern blot analysis or PCR techniques. See, for example, sections 9.37-9.52 of Sambrook et al., 1989 , Molecular Cloning, A Laboratory Manual , second edition, Cold Spring Harbor Press, Plainview, N.Y., for a description of Southern analysis.
- endogenous TIEG mRNA expression levels in tissues from a transgenic non-human mammal can be assessed using techniques that include, but are not limited to, Northern blot analysis of tissue samples obtained from the mammal, in situ hybridization analysis, and RT-PCR.
- a sample such as tail tissue can be collected from a transgenic mouse whose genome is suspected to include a TIEG nucleic acid construct.
- Nucleic acid molecules e.g., DNA
- a commercially available kit e.g., the Qiagen DNeasy Tissue Kit.
- the purified nucleic acid molecules can be used to genotype the transgenic mouse, e.g., by hybridizing a labeled probe to the nucleic acid molecule and blotting or by amplifying portions of the TIEG nucleic acid construct.
- Amplified reaction products can be separated by gel electrophoresis, and, based on the presence or absence of genotyping bands, the transgenic mouse can be classified as non-transgenic, heterozygous, or homozygous. Segregation analysis of PCR products can be used to determine heterozygosity or homozygosity.
- a transgenic non-human animal of the invention also can exhibit one or more useful phenotypes.
- a transgenic non-human animal e.g., mammal such as a mouse
- Cells isolated from a transgenic animal of the invention also can have a particular phenotype.
- osteoclasts and osteoblasts isolated from TIEG knockout animals are defective in differentiation. It is understood that the presence of a particular phenotype is assessed by comparing that phenotype to the corresponding phenotype exhibited by a suitable control cell or non-human mammal.
- Suitable control non-human mammals can include wild-type mammals or mammals heterozygous for a disruption in a TIEG allele.
- the transgenic non-human animals provided herein can be used as models for evaluating the role of TIEG in conditions such as cancer, cardiac hypertrophy, bone loss, osteoporosis, fracture repair, and wound healing.
- the role of TIEG in cancer can be evaluated by breeding transgenic non-human animals (e.g., a transgenic non-human mammal) of the invention with transgenic non-human animals that are susceptible or prone to developing cancer (e.g., FVB mice).
- FVB mice are commercially available from Jackson Laboratories and are mildly prone to developing spontaneous breast tumors.
- TIEG ( ⁇ / ⁇ ) mice can be bred with FVB mice, and transgenic mice deficient in TIEG and having the FVB background can be selected. Such mice may have an increased susceptibility to developing tumors or develop spontaneous tumors at an earlier age.
- Transgenic non-human animals e.g., a transgenic non-human mammal
- Transgenic non-human mammals can be used to screen, for example, compounds that alter conditions related to TIEG activity, such as cancer (e.g., prostrate, breast, pancreas, or multiple myeloma), bone loss, osteoporosis, and fracture repair.
- cancer e.g., prostrate, breast, pancreas, or multiple myeloma
- bone loss e.g., osteoporosis
- fracture repair e.g., fracture repair.
- male TIEG knockout mice which develop HCM with age and in a non-stress induced manner, are used to identify compounds capable of preventing or reducing the development of HCM.
- small molecule chemical libraries can be screened for HCM treatment compounds using the male TIEG knockout mice.
- test compounds include, without limitation, biological macromolecules such as RNA or DNA oligonucleotide (e.g., silencing RNA, antisense oligonucleotides, or ribozymes) or a polypeptide of any length; nucleic acid analogs such as morpholinos or peptide nucleic acids (PNAs); chemical compounds; mixtures of chemical compounds; or extracts isolated from bacterial, plant, fungal, or animal matter.
- concentration of the test compound can depend on the type of compound and in vitro test data.
- Transgenic non-human animals can be exposed to test compounds by any route of administration, including enterally (e.g., orally) and parenterally (e.g., subcutaneously, intravascularly, intramuscularly, or intranasally).
- Suitable formulations for oral administration can include tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g.
- magnesium stearate, talc or silica magnesium stearate, talc or silica
- disintegrants e.g., potato starch or sodium starch glycolate
- wetting agents e.g., sodium lauryl sulfate
- Tablets can be coated by methods known in the art. Preparations for oral administration can also be formulated to give controlled release of the compound.
- Compounds can be prepared for parenteral administration in liquid form (e.g., solutions, solvents, suspensions, and emulsions) including sterile aqueous or non-aqueous carriers.
- Aqueous carriers include, without limitation, water, alcohol, saline, and buffered solutions.
- non-aqueous carriers include, without limitation, propylene glycol, polyethylene glycol, vegetable oils, and injectable organic esters.
- Preservatives and other additives such as, for example, antimicrobials, anti-oxidants, chelating agents, inert gases, and the like may also be present.
- Pharmaceutically acceptable carriers for intravenous administration include solutions containing pharmaceutically acceptable salts or sugars.
- Intranasal preparations can be presented in a liquid form (e.g., nasal drops or aerosols) or as a dry product (e.g., a powder). Both liquid and dry nasal preparations can be administered using a suitable inhalation device. Nebulised aqueous suspensions or solutions can also be prepared with or without a suitable pH and/or tonicity adjustment.
- transgenic non-human animals that are deficient in TIEG can develop cardiac hypertrophy with age. In such animals, cardiac hypertrophy appears to result from an increase in cell number. This indicates proliferation can be induced in cardiac myocytes by decreasing TIEG levels in cardiac myocytes. TIEG levels can be decreased in cardiac myocytes, either in vitro or in vivo, by reducing expression of TIEG (e.g., with a silencing RNA (siRNA) or by an antisense oligonucleotide) or inhibiting TIEG.
- siRNA silencing RNA
- siRNAs can be produced using known technology. See, for example, U.S. Pat. Nos. 5,889,136; 4,415,732; and 4,458,066.
- two 21-mer RNA oligomers with two deoxythymidines at the 3′ terminus and 19 nucleotide complementary sequences can be synthesized then mixed to allow them to hybridize.
- the duplex can be mixed with a transfection agent and added to cell culture at concentrations of about 100 nM. Symmetric 3′ overhangs can aid in the formation of approximately equimolar ratios of sense and antisense target RNA-cleaving siRNAs.
- TIEG levels can be reduced by contacting cardiac myocytes with an effective amount of a modulator described above.
- a modulator can be administered to a mammal such as a human patient that has damaged heart tissue (e.g., from ischemic damage, coronary artery disease, infections, inflammatory conditions, drug toxicity such as chemotherapy drug toxicity, viral induced toxicity, lymphocytic induced toxicity, or cancer induced toxicity).
- Modulators can be administered by any route, including orally and parenterally.
- Cells also can be contacted in vitro by adding an effective amount of the modulator to the culture medium. “Effective amount” refers to an amount of a modulator that results in decreased levels of TIEG. Proliferation can be monitored in cells contacted with a modulator using known methods.
- Hypertrophic cardiomyopathy can be treated or prevented by administering a TIEG polypeptide, a nucleic acid encoding a TIEG polypeptide, or an activator of TIEG polypeptide activity to a mammal.
- nucleic acid encoding a TIEG polypeptide can be inserted into a vector (e.g., viral vector) that is administered to a hypertrophic cardiomyopathy patient or person suspected to develop hypertrophic cardiomyopathy.
- a vector can be designed to contain a regulatory sequence (e.g., a promoter sequence) that drives TIEG polypeptide expression in heart cells. Expression of TIEG polypeptides can protect mammals from developing symptoms of hypertrophic cardiomyopathy.
- Any method, including those provided herein, can be used to administer a TIEG polypeptide, a nucleic acid encoding a TIEG polypeptide, or an activator of TIEG polypeptide activity.
- activators of TIEG polypeptide activity can include, without limitation, TGF ⁇ , EGF, BMP-2, BMP-6, and estrogen.
- Hypertrophic cardiomyopathy can be treated or prevented by reducing PTTG-1 polypeptide activity or expression levels within a mammal.
- a molecule that reduces PTTG-1 polypeptide expression or PTTG-1 polypeptide activity can be administered to a hypertrophic cardiomyopathy patient or person suspected to develop hypertrophic cardiomyopathy.
- Such molecules include, without limitation, siRNA molecules, antisense molecules, antigene molecules, TIEG polypeptides, TGF ⁇ polypeptides, EGF polypeptides, BMP-2 polypeptides, BMP-6 polypeptides, and estrogen.
- nucleic acid and amino acid sequences for human and mouse PTTG-1 can be found at GenBank® accession numbers: NM — 004219, NM — 013917, and AF069051.
- Target sites for siRNA against PTTG-1 can be as follows: 5′-AAGACCTGCAAT-AATCCAGAA-3′ (SEQ ID NO:1); 5′-AATGGCTACTCTGATCTATGT-3′ (SEQ ID NO:2); 5′-AAAGCCTTAGATGGGAGATCT-3′ (SEQ ID NO:3); 5′-AAAGGCTTT-GGGAACTGTCAA-3′ (SEQ ID NO:4); 5′-AAGATGACTGAGAAGACTGTT-3′ (SEQ ID NO:5); 5′-AATCTGTTGCAGTCCTTCA-3′ (SEQ ID NO:6); and 5′-AAGCT-CTGTTCCTGCCTC-AGA-3′ (SEQ ID NO:7).
- Antisense oligonucleotides can be used to decrease levels of TIEG and/or PTTG protein.
- the antisense oligonucleotides in accordance with this invention are at least 8 nucleotides in length.
- a nucleic acid can be about 8,9, 10-20 (e.g., 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length), 15 to 20, 18-25, or 20-50 nucleotides in length.
- antisense molecules can be used that are greater than 50 nucleotides in length, including the full-length sequence of a TIEG or PTTG mRNA.
- oligonucleotide refers to an oligomer or polymer of RNA or DNA or analogs thereof.
- Nucleic acid analogs can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, for example, stability, hybridization, or solubility of a nucleic acid. Modifications at the base moiety include substitution of deoxyuridine for deoxythymidine, and 5-methyl-2′-deoxycytidine and 5-bromo-2′-deoxycytidine for deoxycytidine.
- nucleotide bases that can be substituted for a natural base include 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted
- Modifications of the sugar moiety can include modification of the 2′ hydroxyl of the ribose sugar to form 2′-O-methyl or 2′-O-allyl sugars.
- the deoxyribose phosphate backbone can be modified to produce morpholino nucleic acids, in which each base moiety is linked to a six-membered, morpholino ring, or peptide nucleic acids, in which the deoxyphosphate backbone is replaced by a pseudopeptide backbone (e.g., an aminoethylglycine backbone) and the four bases are retained.
- pseudopeptide backbone e.g., an aminoethylglycine backbone
- deoxyphosphate backbone can be replaced with, for example, a phosphorothioate or phosphorodithioate backbone, a phosphoroamidite, or an alkyl phosphotriester backbone. See, for example, U.S. Pat. Nos. 4,469,863, 5,235,033, 5,750,666, and 5,596,086 for methods of preparing oligonucleotides with modified backbones.
- Antisense oligonucleotides of the invention also can be modified by chemical linkage to one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonucleotide.
- moieties include, but are not limited to, lipid moieties (e.g., a cholesterol moiety); cholic acid; a thioether moiety (e.g., hexyl-5-tritylthiol); a thiocholesterol moiety; an aliphatic chain (e.g., dodecandiol or undecyl residues); a phospholipid moiety (e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate); a polyamine or a polyethylene glycol chain; adamantane acetic acid; a palmity
- Antisense oligonucleotides can bind to a nucleic acid encoding TIEG, including DNA encoding TIEG RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA, under physiological conditions (i.e., physiological pH and ionic strength).
- TIEG DNA encoding TIEG RNA
- cDNA derived from such RNA under physiological conditions (i.e., physiological pH and ionic strength).
- an antisense oligonucleotide can hybridize under physiological conditions to the nucleotide sequence set forth in GenBank Accession No. U21847.
- an antisense or antigene PNA oligo can be used to reduce the level of TIEG polypeptide in a mammal (e.g., human).
- sequence of an antisense oligonucleotide need not be 100% complementary to that of its target nucleic acid to be hybridizable under physiological conditions.
- Antisense oligonucleotides hybridize under physiological conditions when binding of the oligonucleotide to the TIEG or PTTG nucleic acid interferes with the normal function of the TIEG or PTTG nucleic acid, and non-specific binding to non-target sequences is minimal.
- Target sites for TIEG and PTTG antisense oligonucleotides include the regions encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene.
- ORF open reading frame
- the ORF has been targeted effectively in antisense technology, as have the 5′ and 3′ untranslated regions.
- antisense oligonucleotides have been successfully directed at intron regions and intron-exon junction regions. Further criteria can be applied to the design of antisense oligonucleotides. Such criteria are well known in the art, and are widely used, for example, in the design of oligonucleotide primers.
- a potential antisense oligonucleotide e.g., an appropriate G and C nucleotide content (e.g., approximately 50%), and the absence of sequence motifs such as single nucleotide repeats (e.g., GGGG runs).
- the effectiveness of antisense oligonucleotides at modulating expression of a TIEG nucleic acid can be evaluated by measuring levels of the TIEG mRNA or protein (e.g., by Northern blotting, RT-PCR, Western blotting, ELISA, or immunohistochemical staining).
- the murine TIEG gene was cloned from a mouse 129/Sv embryonic stem cell (ES cell) library in P1 phage using a PCR-based screen with primers designed to a conserved region of the mouse and human TIEG cDNAs.
- the nucleotide and amino acid sequence of human and mouse TIEG can be found in Genbank accession Nos. AF0501010 and AF049879, respectively.
- the resulting clone was digested with EcoRI to yield a 14 kB fragment containing the full-length coding region.
- the entire fragment was mapped and sequences and found to contain 4 exons and 3 introns covering 7.1 kB, bounded by 6.6 kB of 5′ flanking and 0.9 kB of 3′ flanking sequence (see FIG. 1 ).
- the targeting vector was constructed by ligating a 3.5 kB XbaI fragment of the 5′ flanking region (the 5′ arm) upstream of the neomycin resistance cassette in vector 38locPNeo, and a 3.3 kB MscI-XbaI region containing exons 3 and 4 (the 3′ arm) downstream from Neo (see FIG. 1 ).
- the complete targeting construct of 10.3 kB was excised from the resulting vector, 38loxPNeo/TIEG.
- the 38loxPNeo/TIEG construct was transfected into murine ES cells isolated from the inner cell mass of a 3.5 day 129/SvJ mouse embryo by electroporation. Following expansion in selective growth medium, individual clones were screened by Southern blotting of EcoRI-digested genomic DNA using a probe to a region outside of the targeted locus (5′ probe, see FIG. 1 ) to identify clones that contain the correctly targeted TIEG allele. In addition, a probe to the neomycin resistance gene (Neo r ) also was used.
- Neo r cassette contains a poly A termination signal that terminates transcription of any aberrant mRNA transcript that might be synthesized from the mutant TIEG allele.
- TIEG mutant ES cells were used to generate chimeric animals by injection into C57BL/6 (B6) blastocysts using established protocols. One male chimera was generated and subsequently bred to B6 females. DNA was isolated from tail biopsies of agouti-colored offspring and screened for germline transmission of the null allele by PCR and Southern blotting. Heterozygous male TIEG mutant mice were bred to B6 females to increase the colony size and subsequent heterozygous male and female mice were interbred to generate mouse embryo fibroblasts. Under gross examination, null animals were phenotypically normal. TIEG null mice are fertile and exhibit normal breeding. Fibroblasts from TIEG null mice readily immortalize in culture.
- TIEG null mice develop overall cardiac hypertrophy and in particular, concentric left ventricular hypertrophy, as they age with an increase in purple collagen stain in the cardiac myocytes.
- Upon histological examination of heart tissue there appears to be an increase in cell size and cell number in addition to the left ventricle hypertrophy.
- Calvarial osteoblasts were isolated from 3 day old ⁇ / ⁇ and +/+pups. These cells were cultured in vitro and assayed via RT-PCR for alkaline phosphatase, Cbfa-1, osteocalcin, and osterix gene expression. The ⁇ / ⁇ OB cells displayed a reduced expression of OB differentiation markers. The OB cells were differentiated in vitro with BMP-2 for 18 days. The OB from +/+calvaria displayed several nodules in culture when stained with Alizarin red, whereas the OB from ⁇ / ⁇ calvaria showed no nodule formation. The ⁇ / ⁇ calvaria OB appear to have a defect in mediating the signals to differentiate in culture.
- OC precursor cells were isolated from bone marrow.
- the interactions between OC precursors and calvarial OB from both ⁇ / ⁇ and +/+ mice were characterized.
- Bone marrow containing OC precursors were cultured with calvarial OB or ST2 stromal support cells in the presence of vitamin D (10 ⁇ 8 M) and dexamethazone (10 ⁇ 7 M) to generate OC-like cells.
- Cultures of ⁇ / ⁇ OC precursors with either ST2 or +/+OB cells significantly deceased OC differentiation compared with +/+marrow cells cultured with either support cell type ( FIG. 2 ).
- TIEG Plays a Central Role in the Anti-Proliferative Response to TGF ⁇
- TIEG is critical for the growth inhibitory effect of TGF ⁇ . These results place TIEG as an important regulator of the physiological response to TGF ⁇ and may provide the first insights into the mechanism by which cancer cells shift from a growth inhibitory to pro-metastatic response to TGF ⁇ during the progression of cancer.
- tetracycline inducible TIEG overexpressing Hs578T cells were described previously and were cultured in DMEM/F12 (1:1) medium (Sigma, St. Louis, Mo., USA) containing 10% (v/v) FBS (Bio Whittaker, Walkersville, Md., USA) and 1 ⁇ antibiotic-antimycotic solution (Invitrogen, Carlsbad, Calif., USA), 5 mg/L blasticidin S (Invitrogen) and 500 mg/L Zeocin(Invitrogen; Johnsen et al., Oncogene (2002) 21:5783-5790 and Johnsen et al., J. Cell Biochem . (2002) 87:233-241).
- Hs578T-Tet-TIEG cells were generated though the stable transfection with the tetracycline repressor plasmid pcDNA6/TR (Invitrogen) and a plasmid containing an amino-terminally Flag epitope tagged TIEG under the control of a modified Cytomegalovirus promoter containing three tetracycline operator sites (pcDNA4/TO, Invitrogen).
- Mouse embryo fibroblast cells were cultured in DMEM medium (Sigma) containing 10% FBS (v/v) and 1 ⁇ antibiotic-antimycotic solution (Invitrogen).
- Mouse embryo fibroblast (MEF) isolation The development and description of TIEG null mice is provided herein. MEF cells were prepared from heterozygous TIEG null C57BL6 ⁇ 129/SvJ cross-bred female mice at 15 dpc using standard procedures and were maintained in DMEM medium as described above. MEF cells from wild-type and TIEG null embryos were identified by PCR genotyping and utilized for further studies.
- Hs578T Tet-TIEG cells were seeded at 2,500 cells per well, and MEF cells were seeded at 1,600 cells/well in 96-well plates and incubated at 37° C. for 24 hours in normal culture medium. The medium was then replaced with 100 ⁇ L fresh medium or medium containing 1 ⁇ g/mL tetracycline (for Hs578TTet-TIEG cells) or 2 ng/mL TGF ⁇ (for MEF cells). Cells were grown for an additional 48 hours, and the relative number of viable cells in each well was then determined using the CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega, Madison, Wis., USA).
- Genomic DNA was isolated using the DNeasy Tissue Kit (Qiagen, Valencia, Calif., USA) according to the manufacturer's instructions. DNA was eluted with 100 ⁇ L water, and 2 ⁇ L was used for genotyping by PCR.
- Neo-F 5′-GAATAGCCTCTCCACCCAAGCGG-3′ (SEQ ID NO:8); TIEG-Int2F, 5′-CCTCTAATTCCTCTCCTTGC-3′ (SEQ ID NO:9); and TIEG-Ex3R, 5′-TGGTGGTTGCACAGTTGGGCATCAGCTG-3′ (SEQ ID NO:10); where the wild-type allele produces a 270-bp band from primers TIEG-Int2F and TIEG-Ex3R, and the mutant allele produces a 350-bp band from primers Neo-F and TIEG-Ex3R.
- PCR reactions were performed using 40 cycles of 1 minute at 94° C., 2 minutes at 55° C. and 3 minutes at 72° C. Products were separated on 1.5% (w/v) agarose gels, and bands were visualized under ultraviolet light following staining with ethidium bromide.
- Luciferase promoter reporter assays Cell extracts were harvested using 300 ⁇ L of Passive Lysis Buffer (Promega). Luciferase assays were performed using the Dual-Luciferase Reporter Assay System (Promega), and samples were read on a Turner TD-20/20 luminometer. To correct for differences in transfection efficiency, firefly luciferase units were normalized relative to renilla luciferase units of the same sample. Corrected luciferase values were then expressed as a ratio (fold induction) relative to the vector control transfected cells.
- Northern blot analysis and semi-quantitative RT-PCR Northern blot analysis for TIEG mRNA was performed as described elsewhere (Johnsen et al., J. Cell Biochem . (2002) 87:233-241). Semi-quantitative RT-PCR was performed as described elsewhere (Johnsen et al., J. Cell Biochem . (2002) 87:233-241) using the following primers and cycle numbers.
- Primers used were Smad7-Forward 5′-ACGCGCACCGCGTGC-CTCCTGCT-3′ (SEQ ID NO:11), Smad7-Reverse 5′-CTAAGGTGATGGGGGTTG-CAGCACACCAGCTC-3′ (SEQ ID NO:12), mGAPDH-Forward 5′-CACCATGGAG-AAGGCCGGGG-3′ (SEQ ID NO:13), and mGAPDH-Reverse 5′-GACGGACACATTG-GGGGTAG-3′ (SEQ ID NO:14), and yield products of 201 bp (mTIEG), 236 bp (Smad7), and 418 bp (mGAPDH).
- Actin, p21, and Flag epitope tagged polypeptides were detected with anti-Actin AC-40 (Sigma), anti-p21/Cip1 Ab-1 (Calbiochem, San Diego, Calif., USA), and anti-Flag M2 (Sigma) antibodies, respectively.
- Primary antibodies were detected by enhanced chemiluminescence (Amersham Phaimacia, Piscataway, N.J., USA) using horseradish peroxidase conjugated anti-mouse secondary antibodies (Sigma).
- the Hs578T breast cancer cell line has previously been shown to be growth inhibited by TGF ⁇ (Arteaga et al., Cancer Res . (1988) 48:3898-3904) and was used herein as a model for TGF ⁇ responsive breast cancer.
- a tetracycline inducible Hs578T TIEG over-expressing cell line was used to test the effects of TIEG on cellular proliferation (Johnsen et al., Oncogene (2002) 21:5783-5790). This system allows for the comparison of the same clonal cell line in the absence or presence of TIEG over-expression without the potential for artifacts due to clonal variation as is possible with constitutive over-expressing cell lines.
- TIEG over-expression decreases cellular proliferation by approximately 30 percent ( FIG. 5A ).
- TGF ⁇ regulates cellular proliferation in numerous cell types by inducing cell cycle arrest, at least in part, through the upregulation of the cyclin dependent kinase inhibitor p21 (Moustakas et al., Immunol. Lett .
- TIEG over-expression in Hs578T-Tet-TIEG cells was previously shown to increase moderately the basal expression of p21 and to increase dramatically the TGF ⁇ induction of p21.
- the timecourse of p21 induction by TIEG however, remains unclear.
- TIEG polypeptide levels begin to rise as early as 12 hours following addition of tetracycline to the growth medium and peaking at 24 hours ( FIG. 5B ).
- p21 polypeptide levels exhibited an identical induction pattern of induction, suggesting that TIEG increases p21 polypeptide levels very rapidly, perhaps suggesting that TIEG is directly involved in the regulation of p21 expression.
- Induction of p21 following TGF ⁇ treatment is a complex process involving several individual response elements including Sp1 sequences and Smad polypeptides (Moustakas and Kardassis, Proc.
- TIEG regulates p21 expression in multiple ways by not only increasing the activity of the Smad pathway (Johnsen et al., Oncogene (2002) 21:5783-5790; Johnsen et al., J. Cell Biochem . (2002) 87:233-241; and Johnsen et al., J. Biol. Chem . (2002) 277:30754-30759), but also through the up-regulation of promoter activity at Sp1 sequences (Blok et al., Mol. Endocrinol . (1995) 9:1610-20 and NotI et al., J. Biol. Chem . (2004) 279:26948-58).
- TIEG In order to definitively determine the role of TIEG in regulating TGF ⁇ signaling and cellular proliferation, wild-type and TIEG null MEF cells were obtained from littermates from the crossing of two heterozygous (+/ ⁇ ) TIEG mutant mice. PCR and Southern blot analysis was used to genotype the MEF cells. TIEG is required for inhibition of proliferation by TGF ⁇ . The TIEG null cells exhibited no detectable TIEG mRNA, while the wild-type cells exhibited both basal and TGF ⁇ induced TIEG mRNA expression ( FIG. 6A ). Because TGF ⁇ plays an important role in regulating cellular proliferation, and since over-expression of TIEG also decreases cellular proliferation ( FIG.
- TIEG was tested to determine whether it is required for the inhibition of proliferation by TGF ⁇ . Indeed, while TGF ⁇ decreases proliferation in wild-type MEF cells by 34 percent, TGF ⁇ increases cell proliferation by 31 percent in the TIEG null MEF cells ( FIG. 6B ). These results suggest that TIEG plays an integral role in the regulation of cell proliferation by TGF ⁇ .
- TIEG Over-expression of TIEG enhances the induction of a synthetic Smad binding element reporter construct (CAGA12-MLP-Luc) as well as the induction of endogenous TGF ⁇ regulated genes (Johnsen et al., Oncogene (2002) 21:5783-5790; Johnsen et al., J. Cell Biochem . (2002) 87:233-241; and Johnsen et al., J. Biol. Chem . (2002) 277:30754-30759). Experiments were performed to determine if TGF ⁇ signaling is deregulated in TIEG null cells. The TIEG null MEF cells exhibited decreased basal and TGF ⁇ -induced reporter gene activity compared to wild-type cells ( FIG. 7A ).
- TIEG plays an integral role in the regulation of cellular proliferation by TGF ⁇ . Furthermore, loss of TIEG expression has dramatic effects on the induction of Smad dependent transcription. The results also suggest a mechanism by which the loss of TIEG may lead to, or enhance, the development of breast and other types of cancer. Previous data showed that TIEG polypeptide levels decrease throughout the progression of breast cancer where advanced stages of breast cancer exhibit no detectable TIEG polypeptide expression (Subramaniam et al., J. Cell. Biochem . (1998) 68:226-36).
- TGF ⁇ has been observed to have dramatically different effects on breast cancer cells than normal mammary epithelial cells suggesting that there is an alteration in the responses elicited by TGF ⁇ between normal and cancerous cells (Koli and Arteaga, J. Mammary. Gland. Biol. Neoplasia . (1996) 1:373-380).
- the results provided herein support a hypothesis that the loss of TIEG plays an important role in the loss of the growth inhibitory properties of TGF ⁇ during the progression of cancer. Additional studies using the TIEG null mice can help establish the importance for TIEG in vivo.
- Calvarial Osteoblast isolation Calvarial osteoblasts were isolated from 1-3 day old neonatal mouse pups. In brief, 1-3 day old mouse pups that were born to heterozygous TIEG null C57BL6/129 parents were euthanized using CO 2 . The calvaria was dissected out and washed several times with phosphate buffered saline (PBS) to remove the blood cells. The calvaria were minced and digested in Hank's balanced saline (HBS) containing bovine serum albumin (4 mg/mL) and collagenase type-2 (4 mg/mL) for 10 minutes at 37° C.
- HBS Hank's balanced saline
- the cells obtained from the third digest was centrifuged at 221 ⁇ g for 5 minutes, and the cells were resuspended in ⁇ MEM containing 10% (v/v) fetal bovine serum and grown in culture dishes.
- the calvarial osteoblasts obtained were used as support cells for osteoclast precursors and for osteoblast differentiation studies.
- Osteoblast mineralization studies Primary calvarial osteoblasts obtained from TIEG +/+ and TIEG ⁇ / ⁇ null mice were plated onto 12 well plates at a low density and grown until confluency. The cells were then shifted to differentiation media containing ascorbic acid (50 ⁇ g/mL) and ⁇ -glycerol phosphate (4 mM). The cells were treated with vehicle or bone morphogenic protein-2 (BMP2) (100 ng/mL) every third day and allowed to mineralize for 18 days. Once the bone nodules were visible, the cells were washed twice with PBS and fixed in 10% (v/v) neutral buffered formalin overnight. The fixed cells were stained with 2% (w/v) alizarin red for 10 minutes. Finally, the cells were washed with distilled water to remove excess stain and visualized for bone nodules.
- BMP2 bone morphogenic protein-2
- Northern blot analysis and semi-quantitative RT-PCR Northern blot analysis to measure the TIEG mRNA levels in TIEG +/+ and TIEG ⁇ / ⁇ osteoblasts were performed as described elsewhere (Subramaniam et al., Nucleic Acids Res . (1995) 23:4907-4912). Semi-quantitative RT-PCR was performed to measure the osteoblast specific marker genes in cultured calvarial osteoblasts as described elsewhere (Rickard et al., J. Cell. Biochem . (2003) 89:633-646).
- the primers used were: mTIEG-F 5′-GTCTCAGT-GCTCCCGTCTGT-3′ (SEQ ID NO:15); mTIEG-R 5′-CCACCGCTTCAAAGTCACTC-3′ (SEQ ID NO:16); alkaline phosphatase-F 5′-TCTCAACTGTTCTAGTTCCT-3′ (SEQ ID NO:17); alkaline phosphatase-R 5′-TTGGGTCATTTCCACATGC-3′ (SEQ ID NO:18); Type 1A Col.-F 5′-TCTCCACTCTTCTAGTTCCT-3′ (SEQ ID NO:19); Type 1A Col.-R 5′-TTGGGTCATTTCCACATGC-3′ (SEQ ID NO:20); ostrix F 5′-TGAGGAAGAAGCCCATTCAC-3′ (SEQ ID NO:21); ostrix R 5′-ACTTCTTCTCCCGGGTGTG-3′ (SEQ ID NO:22); osteocalcin F 5′-TCTGACA
- tissue lysate was immunoprecipitated with 8 ⁇ g of TIEG specific polyclonal antibody.
- the immunoprecipitates were separated on 5-15% (w/v) SDS-PAGE, and western blot was performed with a TIEG-specific polyclonal antibody.
- TIEG +/+ and TIEG ⁇ / ⁇ calvarial osteoblasts were seeded at 6400 cells/well on 96 well plates and grown for 24, 48, and 72 hours at 37° C. The proliferation of these cells was measured using the Cell Titer 96 Aqueous One Solution Cell Proliferation Assay (Promega, Madison, Wis.). Average results from six replicates were compared between TIEG +/+ and TIEG ⁇ / ⁇ calvarial osteoblasts.
- Southern blot analysis and genetyping Genomic DNA was isolated from mouse tail using the DNeasy tissue kit (Qiagen, Valencia, Calif.). Twenty micrograms of the genomic DNA was digested with EcoRI and separated on a 0.8% (w/v) Agarose gel. Southern blot analysis was performed from digested DNA as described elsewhere (Sambrook et al., (1982) Molecular cloning: a laboratory manual , p. 382-389. In: Cold Spring Harbor Laboratory Press). The blot was probed with [ 32 P]-labeled 5′-probe: 0.8 kb EcoRI/XbaI fragment from subclone Eco TIEG.
- Genotyping by PCR was performed using the following primers: KONEOF1, 5′-CTAAAGCGCATGCTCCAGACTGCC-3′ (SEQ ID NO:27); Intron 2F, 5′-CCTCTAATTCCTCTCCTTGC-3′ (SEQ ID NO:28); Exon 3R1,5′-TGGTGGTTGCACAGTTGGGCATCAGCTG-3′ (SEQ ID NO:29).
- PCR was performed at 1 minute at 94° C., 2 minutes at 55° C., and 3 minutes at 72° C. for a total of 40 cycles. The PCR products were separated on a 1.5% (w/v) agarose gel, and the gels were stained with ethidium bromide and photographed.
- Calvarial cells were plated at 4 ⁇ 10 4 cells/well on a 48 well plate (Fisher, Pittsburgh, Pa.) 24 hours prior (Day 1) to the addition of osteoclast precursors (1.5 ⁇ 10 6 marrow mononuclear cells or 4.8 ⁇ 10 7 spleen cells per plate) and harvested as described elsewhere (Gingery et al., J. Cell. Biochem . (2003) 89:165-179).
- Precursors were added to the stromal cells (Day O) using ⁇ -modified Minimal Essential Medium (Gibco BRL, Grand Island, N.Y.) supplemented with 10% FBS, 1% antibiotic/antimycotic, 1 ⁇ 10 ⁇ 7 M dexamethazone (Sigma Chemical Co., St Louis, Mo.), and 1 ⁇ 10 ⁇ 5 M vitamin D3 (BioMol, Madison Meeting, Pa.) with or without the addition of 30 ng/mL of RANKL and/or 25 ng/mL M-CSF as indicated in the figure legends. The media was changed every three days.
- Minimal Essential Medium Gibco BRL, Grand Island, N.Y.
- FBS 1% antibiotic/antimycotic
- 1 ⁇ 10 ⁇ 7 M dexamethazone Sigma Chemical Co., St Louis, Mo.
- 1 ⁇ 10 ⁇ 5 M vitamin D3 BioMol, Plymouth Meeting, Pa.
- the co-cultures were washed three times with 1 ⁇ phosphate buffered saline (1 ⁇ PBS—1.7 mM KH 2 PO 4 , 5 mM Na 2 HPO 4 , 150 mM NaCl, pH to 7.4) and fixed with 1% paraformaldehyde in 1 ⁇ PBS. After incubating for 30 minutes at room temperature in fixative, the cells were rinsed with water three times and stored in water at 4° C. until they were evaluated for differentiation as follows.
- 1 ⁇ phosphate buffered saline (1 ⁇ PBS—1.7 mM KH 2 PO 4 , 5 mM Na 2 HPO 4 , 150 mM NaCl, pH to 7.4
- Tartrate resistant acid phosphatase (TRAP) staining was used to visualize differentiated cells according to manufacturer's directions (Sigma Chemical Co., St. Louis, Mo.). The number of mononuclear and multinucleated TRAP positive cells were counted using an Olympus inverted microscope at 200 ⁇ magnification.
- PCR buffer (20 mM Tris-HCl, 50 mM KCl, 3 mM MgCl 2 ), 300 nM of both the upstream and downstream primers, and 1 unit of Taq Polymerase (Promega, Madison, Wis.).
- tubulin was amplified simultaneously in separate reactions. Message levels were examined using the BioRad iCycler according to the manufacturer's specifications. The amount of target cDNA in the sample, relative to tubulin, was calculated using the formula 2 ⁇ Ct , where ⁇ Ct is the fractional cycle number difference between the target and tubulin levels.
- the results were calculated as the relative quantification of the target gene compared to a control (vehicle without vitamin D or dexamethazone) treatment.
- the primers were as follows: M-CSF-F-5′-CTCTGGCTGGCTTGGCTTGG-3′ (SEQ ID NO:30); M-CSF-R-5′-GCAGAAGG-ATGAGGTTGTG-3′ (SEQ ID NO:31); OPG-F-5′-ACGGACAGCTGGCACACCAG-3′ (SEQ ID NO:32); OPG-R-5′-CTC ACACACTCGGTTGTGGG-3′ (SEQ ID NO:33); RANKL-F-5′-GGAGGACCATGAACCCTTTCC-3′ (SEQ ID NO:34); RANKL-R-5′-GCTGGCTGCTGCTTCACTGG-3′ (SEQ ID NO:35); Tubulin-F-5′-CTGCTCATCAGCAAGATCAGAG-3′ (SEQ ID NO:36); and Tubulin-R-5′-
- Phenotype of TIEG null mice Under gross examination, the TIEG null mice were phenotypically normal, and the breeding characteristics appeared to be normal. Detailed examination of all major organs revealed that the TIEG null male mice exhibited hypertropic hearts, but only in the aged mice. Fibroblasts and calvarial osteoblasts generated from the TIEG ⁇ / ⁇ mice were readily immortalized in culture, reflecting the loss or reduction of the TGF ⁇ signaling pathway due to the loss of TIEG. Histomorphometric analysis of bones, obtained from 6-week and 4-month animals, did not reveal a bone phenotype. To further characterize the role of TIEG in osteoblast gene expression and differentiation, calvarial osteoblasts were isolated from TIEG +/+ and TIEG ⁇ / ⁇ mice and cultured in vitro.
- Calvarial osteoblast cell proliferation Calvarial osteoblasts from TIEG +/+ and TIEG ⁇ / ⁇ mice were plated onto a 96-well cell culture dish, and proliferation rates were measured at 24, 48, and 72 hours. The proliferation rate of TIEG ⁇ / ⁇ calvarial osteoblasts were slightly higher than that of TIEG +/+ osteoblasts ( FIG. 8 ).
- TIEG ⁇ / ⁇ Calvarial Cells are Defective in Expression Of Osteoblastic Genes In Vitro: The osteoblastic gene expression patterns of the TIEG +/+ and TIEG ⁇ / ⁇ calvarial cells were examined. Total RNA was used to perform log phase RT-PCR using standard techniques. Analysis was performed on five separate calvarial isolates, and the results scanned and quantitated using NIH Image. The data were normalized to GAPDH expression. Osteocalcin, ostrix, and alkaline phosphatase were significantly lower in the TIEG ⁇ / ⁇ calvarial cells when compared to the TIEG +/+ cells ( FIG. 9 ).
- Osteoblastic cells from TIEG ⁇ / ⁇ mice are defective in supporting osteoclast differentiation: Osteoblastic cells from TIEG +/+ and TIEG ⁇ / ⁇ mice were plated. Marrow or spleen tissues from TIEG +/+ mice were used as a source of wild-type osteoclast precursors. Following co-culture in the presence of vitamin D3 and dexamethazone for 9 days, the number of osteoclasts were determined. Compared to TIEG +/+ osteoblastic cells, cells from TIEG ⁇ / ⁇ mice are significantly less able to support osteoclast differentiation from either marrow or spleen precursors ( FIG. 10 ).
- TIEG +/+ and TIEG ⁇ / ⁇ osteoblasts The transcription factor TIEG affects the expression of genes, such as Smad7 (Johnsen et al., Oncogene (2002) 21:5783-5790) and CD11d promoter (NotI et al., J. Biol. Chem . (2004) 279:26948-58) by binding a specific DNA-binding motif and regulating transcription. The loss of TIEG expression could elicit changes in gene transcription in those genes dependent on TIEG for regulation. The gene expression profiles of calvarial OB cells from TIEG +/+ and TIEG ⁇ / ⁇ mice treated with TGF ⁇ were examined.
- TIEG major role of transcription, since the loss of TIEG results in a decrease in gene repression.
- Twenty-one percent of the TGF ⁇ -regulated genes were commonly regulated by the OB cells of both genotypes, whereas 47% and 32% are regulated exclusively in the TIEG +/+ and TIEG ⁇ / ⁇ OBs, respectively ( FIG. 13B ).
- the loss of TIEG causes the loss of regulation of 126 genes.
- Hypertrophic cardiomyopathy is a disease defined by profound genetic and phenotypic heterogeneity (Arad et al., Human Molecular Genetics (2002) 11:2499; Maron et al., New England Journal of Medicine (1987) 316:780; Maron et al., New England Journal of Medicine (1987) 316:844; and Seidman and Seidman, Cell (2001) 104:557). Presentation and clinical course range from asymptomatic to severe disability to sudden cardiac death most commonly occurring in the young. Currently, there are over 200 mutations in 10 sarcomeric genes reported for this autosomal dominant disease (Vikstrom and Leinwand, Current Opinion in Cell Biology (1996) 8:97).
- Transgenic and knockout mouse models involving signaling pathways for stress induced hypertrophy include calcineurin (Molkentin et al., Cell (1998) 93:215), modulatory calcineurin-interacting protein (MCIP) 1 (Vega et al., Proc. Natl. Acad. Sci. USA (2003) 100:669), class II histone deacetylases (HDACs; Zhang et al., Molec. Cell. Biol . (2002) 22:7302), homeobox only protein (HOP; Kook et al., Journal of Clinical Investigation (2003) 112:863), and MEF2 (Lin et al., Science (1997) 276:1404).
- calcineurin Molkentin et al., Cell (1998) 93:215)
- MCIP modulatory calcineurin-interacting protein
- HDACs class II histone deacetylases
- HDACs homeobox only protein
- HOP homeobox
- TIEG cardiac hypertrophy
- a cohort of unrelated patients with HCM were screened for TIEG mutations.
- a possible functional role of TIEG in the pathogenesis of HCM was examined using TIEG ⁇ / ⁇ mice.
- TIEG1 in HCM Cohort: Informed written consent was obtained. 389 unrelated individuals (age 42.5 ⁇ 18.9 years, 215 males) were evaluated and provided a blood sample for molecular genetic testing. Each of these subjects met the clinical diagnostic criteria for HCM: left ventricular wall thickness (LVWT)>13 mm in the absence of another confounding diagnosis. Purgene® DNA extraction kits (Gentra, Inc., Minneapolis, Minn.) were used to extract genomic DNA from peripheral blood lymphocytes. Primers were used to amplify the four polypeptide-encoding exons of TIEG from genomic DNA by the polymerase chain reaction.
- Sequence variations were detected by denaturing high performance liquid chromatography (DHPLC) (WAVETM, Transgenomic, Omaha, Nebr.; Pei and Melmed, Molecular Endocrinology (1997) 11:433).
- DHPLC denaturing high performance liquid chromatography
- the precise sequence anomaly was determined by automated dye terminator cycle-sequencing using an ABI Prism 377 (Ramos-Morales et al., Oncogene (2000) 19:403).
- mice lacking the TIEG gene were generated as described herein.
- Echocardiography Before sacrificing the TIEG ⁇ / ⁇ mice, epicardial imaging was performed using M-mode ultrasound imaging from parasternal short axis views. All imaging was performed using a Vivid FiVe ultra-sound machine and a 15 MHz multi-frequency phased array probe (GE Vingmed, Horten, Norway). Anterior wall thickness was also measured (Echopac version 6.25b software, GE Vingmed, Horten, Norway).
- Reverse transcriptase polymerase chain reaction (RT-PCR) analysis was performed for the expression of TIEG (Kook et al., Journal of Clinical Investigation (2003) 112:863 and Subramaniam et al., Nucleic Acids Research (1995) 23:4907), HOP (Kook et al., Journal of Clinical Investigation (2003) 112:863), MEF2 (Lin et al., Science (1997) 276:1404), HDACII (Kakar, Gene (1999) 240:317), ANF (Zhou and Olson, Molecular & Cellular Biology (1994)14:6232), BNP (Heaney and Melmed, Best Practice & Research Clinical Endocrinology & Metabolism (1999) 13:367), and Pttg1 (Pe
- TIEG non-synonymous single nucleotide polymorphism
- amino acid variant a non-synonymous single nucleotide polymorphism
- M methionine
- This variant was absent in 400 reference alleles.
- a co-segregation analysis could not be performed to further implicate this specific TIEG variant as a HCM-associated mutation.
- a TIEG knockout mouse was generated and found to recapitulate fully the triad of human HCM: unexplained hypertrophy, myocyte disarray, and fibrosis.
- Cardiac Hypertrophy in the TIEG ⁇ / ⁇ mice All parameters of the TIEG ⁇ / ⁇ mice hearts were compared to the wild type control mice. An initial observation was hypertrophy in the 18-month-old TIEG ⁇ / ⁇ mice. The finding of a striking (214%) increase in cardiac mass was confirmed by the heart weight/body weight ratio TIEG ⁇ / ⁇ (0.944 ⁇ 0.12) versus control (0.44 ⁇ 0.17). A photograph of the longitudinal cross section of the TIEG +/+ mice versus TIEG ⁇ / ⁇ mice demonstrated the septal wall abnormality. The anterior wall septal thickness was measured by m-mode, and an increase was found in the TIEG ⁇ / ⁇ 18-month-old mice.
- the anterior wall measured 1.67 ⁇ 0.35 mm compared to wild type (1.13 ⁇ 0.15, p ⁇ 0.04).
- the TIEG ⁇ / ⁇ mice developed left ventricular cavity obliteration and an increase in wall thickness at 18 months.
- the left ventricular pressure tracings for the TIEG +/+ mice versus TIEG ⁇ / ⁇ mice were then compared. There was no statistical difference in the systolic blood pressures measured in both mouse lines.
- Masson Trichrome and Electron Microscopy of the TIEG mice Low magnification histologic analysis of the experimental TIEG ⁇ / ⁇ mice was compared to that of wild-type mice at age 18 months. A masson trichrome stain demonstrated large areas of fibrosis present in the TIEG ⁇ / ⁇ left ventricle as compared to the wild-type control. An oil immersion, higher magnification of the masson trichrome stain revealed the myocyte disarray in the TIEG ⁇ / ⁇ mice as compared to wild-type mice. Myocyte hypertrophy and disarray as well as fibrosis were universal findings in each 18-month-old TIEG ⁇ / ⁇ mouse studied. Transmission electron microscopy revealed that the TIEG ⁇ / ⁇ mice had a significantly abnormal sarcomeric architecture and myofibrillar disarray.
- RT-PCR was performed for the known stress induced hypertrophy genes. There were no differences in the gene expression for HOP, MEF HDAC, ANF, and BNP in the TIEG ⁇ / ⁇ mice as compared to the results from wild-type mice. As expected, TIEG mRNA was absent in the knockout mice at 18 months. The gene microarray analysis revealed an increase in the expression levels of several genes (Table 1).
- Pttg1 The gene expression of Pttg1 was confirmed in the myocardium, and an increase in Pttg1 in the TIEG ⁇ / ⁇ aged mice was detected as compared to the control. In addition, there is marked increase in protein levels of Pttg1 in the TIEG ⁇ / ⁇ mice as compared to the TIEG +/+ mice at age 18 months. Further, positive Pttg1 protein expression was confirmed in surgical myectomy tissue derived from patients with HCM.
- Masson Trichrome of the Mice and the Human Surgical HCM Specimens The immunohistochemistry and masson trichrome of hearts from mice at age 4, 8, 12, and 18 months were compared to heart tissue from patients with HCM. Beginning at about 8 months of age, the TIEG ⁇ / ⁇ mice start to develop interstitial fibrosis as indicated by blue staining areas. This stain increases dramatically in the TIEG ⁇ / ⁇ mice as the mice age to 18 months. The presence of blue staining fibrosis in the aged mice is similar to the human HCM specimens.
- results demonstrate an involvement of TIEG in the pathogenesis of HCM.
- results presented herein demonstrate that a TIEG null animal fully develops the phenotype of human HCM.
- TIEG knock out mice fully recapitulate the phenotype of human HCM with the development of late onset, severe cardiac hypertrophy (in the absence of hypertension) accompanied by myofibrillar disarray and fibrosis.
- the non-human animals provided herein that lack TIEG polypeptide expression can be used as non-stress induced models to study heart conditions such as HCM.
- Pttg1 polypeptides also known as securing polypeptides
- the gene array results provided herein revealed an upregulation of Pttg1 mRNA.
- TIEG acting as a hypertrophy suppressor signaling molecule normally binds to and down-regulates Pttg1 via binding to Sp1 sites.
- Pttg1 is dramatically up-regulated, and the hypertrophic process ensues.
- TIEG knockout mice TIEG ⁇ / ⁇ mice
- HCM left ventricular hypertrophy
- PTTG-1 is a potent oncogene that is expressed in many cell types, including heart cells, and is an inducer of cell proliferation, cell hypertrophy, and aneuploidy. It regulates the expression/activity of proto-oncogenes, tumor suppressor genes, and growth factors.
- TIEG expression blocks the TGF ⁇ /BMP signaling pathway and results in a marked increase in pttg-1 and other gene expressions (e.g., ⁇ -myosin light chain regulatory protein), loss of cell cycle control, and the development of a severe pattern of late onset asymmetric HCM. Defects in TIEG-1 (or pttg-1) gene expressions may be responsible for the development of HCM in a subset of the human population with this disease.
- the phenotypes of the 4 month old (early stage HCM) and 16 month old (advanced stage HCM) TIEG ⁇ / ⁇ , TIEG +/ ⁇ , and TIEG +/+ male mouse hearts are characterized and compared to assess the penetrance of the TIEG knockout. This includes assessing histology, cardiac MR1, echocardiography, catheter hemodynamics, electrocardiographic monitoring, cell hyperplasia and hypertrophy, and the effects of exercise on the early onset of the disease.
- the molecular phenotypes are compared between the matched age TIEG ⁇ / ⁇ , TIEG +/ ⁇ , and TIEG +/+ male mouse hearts in terms of incidence/frequency of the disease and its expression of HCM related genes using microarray analysis.
- cardiomyocyte cells are isolated from TIEG ⁇ / ⁇ , TIEG +/ ⁇ , or TIEG +/+ hearts, and the cellular and molecular properties of the isolated cells in culture are compared to those observed in vivo in the TIEG ⁇ / ⁇ , TIEG +/ ⁇ , and TIEG +/+ male hearts.
- a sex steroid dependency of the gender-specific (male) phenotype for HCM is examined with emphasis on, for example, estrogen (E).
- E estrogen
- TIEG ⁇ / ⁇ male and female mouse models the incidence of HCM in orchiectomized (ORX) TIEG ⁇ / ⁇ male mice and ovariectomized (OVX) TIEG ⁇ / ⁇ female mice is compared to that observed in intact male TIEG ⁇ / ⁇ mice.
- mice can be tested to determine whether (1) the respective steroid hormone replacement or (2) the E treatment of castrated male mice, or the DHT treatment of castrated female mice, will enhance the incidence of the disease.
- HCM i.e., androgen (DHT) dependency of the HCM
- HCM i.e., E protection against the HCM
- a sex hormone encourages (e.g., DHT) or inhibits (e.g., E) the development of HCM
- the global gene expression is compared by gene microarray together with Pathway Assist analysis to identify the involved signaling pathways for the particular steroid which protects/encourages the development of HCM.
- the in vitro cardiomyocyte culture system described above can be used to determine if cells from female TIEG ⁇ / ⁇ mice are estrogen responsive.
- TIEG ⁇ / ⁇ targets which show potential function and differences in levels of expression. These are pttg-1, the regulatory protein for myosin light chain, and the two Wnt pathway members, Wnt factor-1, and Dikkopf homology protein. The pttg-1 is emphasized due to its 14 fold induction in the absence of TIEG in HCM hearts.
- male TIEG ( ⁇ / ⁇ )/pttg (+/+) mice are cross-breed with TIEG (+/+)/pttg ( ⁇ / ⁇ ) mice to obtain TIEG ( ⁇ / ⁇ )/pttg ( ⁇ / ⁇ ) offspring.
- mice are examined to determine if males develop HCM compared to TIEG ( ⁇ / ⁇ )/pttg (+/+) controls. No HCM incidence in the double knockout would support pttg-1 as the major TIEG target gene in HCM development.
- transgenic TIEG +/+ (normal) male mice which overexpress pttg-1 in the heart tissues can be developed to determine if these animals develop adult male HCM similar to or at a younger age than do TIEG ⁇ / ⁇ male mice.
- TIEG ⁇ / ⁇ cardiomyocytes in culture are used to determine whether or not overexpression of TIEG or a reduction in pttg-1 expression will reverse the hypertrophism in these cells as determined, for example, by decreases in cell size and protein synthesis, reverses the changes in gene expression patterns, and/or reductions in the organization of the sarcomere as observed with TIEG ⁇ / ⁇ myocytes in vivo.
- TIEG +/+cardiomyocytes in culture are used to determine whether or not reduction in TIEG expression or an increase in pttg-1 expression will generate a hypertrophic myocyte. If pttg-1 fails to play a role in the development of HCM, then the role of the regulatory protein for myosin light chain, Wnt factor-1, and Dikkopf homology protein is examined in a similar manner.
- Genomic and proteomic techniques are used to elucidate a TIEG/PTTG1 signaling pathway in human HCM.
- the genomic techniques involve a mutational analysis of TIEG as a candidate gene for human HCM.
- Comprehensive mutational analysis of polypeptide-encoding exons of TIEG is performed on a cohort of over 500 unrelated patients with unequivocal and unexplained cardiac hypertrophy (e.g., human HCM) using denaturing high performance liquid chromatography and direct DNA sequencing.
- Non-synonymous TIEG variants are characterized functionally using a Smad 7 Promoter assay.
- proteomic techniques involve exploration of the relationship between TIEG and PTTG1 at a transcriptional as well as polypeptide level in human myectomy specimens from patients with unequivocal HCM who underwent surgical removal of hypertrophied and obstructive myocardium to alleviate the refractory symptoms.
- the levels of TIEG and Pttg1 mRNA and polypeptide expression is measured in fresh frozen myocardial tissue from 32 HCM patients who received palliative myectomy.
- the tendons were subjected to three loading scenarios: ramp test, stress relaxation test, and stretch-release cyclical test.
- the tail tendon cross sections were also measured using optical and transmission electronic microscopy.
- the control group exhibited higher (about 10%) dynamic and relaxed forces compared to those exhibited in TIEG ⁇ / ⁇ mice. In addition, the tendon strength stress was also higher (about 30%) for the control group.
- the morphological analysis revealed the presence of more connective tissue in TIEG ⁇ / ⁇ mice.
- the size of the collagen bundle was smaller in TIEG ⁇ / ⁇ mice when compared to the size observed in control mice.
- TIEG ⁇ / ⁇ mice While overall growth and development are remarkably normal in TIEG ⁇ / ⁇ mice, the effect of the TIEG ⁇ / ⁇ state, and the resulting interference with normal TGF- ⁇ pathways, on wound healing has not been studied.
- the process of tendon healing follows a pattern similar to that of other healing tissues. Fibroblasts are seeded in collagen gels and allowed to contract around an inner ring. The fibroblasts are obtained from skin and tendon samples from both TIEG ⁇ / ⁇ and wild-type mice. After gel contraction, the rings are subjected to mechanical testing and analyzed histologically. Performing this experiment can allow investigation of the role of TIEG in fibroblast function.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Environmental Sciences (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Animal Husbandry (AREA)
- Gastroenterology & Hepatology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Toxicology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Materials and Methods related to a transgenic non-human animal (e.g., a transgenic non-human mammal) whose genome comprises a disrupted TIEG allele are provided. Methods for making such transgenic non-human animals, and using them to identify and characterize agents that affect conditions related to TIEG activity, such as cardiac hypertrophy and bone formation also are provided. In addition, materials and methods related to the treatment of hypertrophic cardiomyopathy are provided.
Description
- This application is a divisional of U.S. application Ser. No. 10/944,454, filed Sep. 17, 2004, which claims the benefit of U.S. Application No. 60/503,996, filed Sep. 18, 2003.
- Funding for the work described herein was provided in part by the federal government, National Institutes of Health Grant number DE 14036. The federal government may have certain rights in the invention.
- 1. Technical Field
- The invention involves methods and materials related to making and using transgenic non-human animals with genomic disruptions affecting the expression of a transforming growth factor β-inducible early gene. The invention also relates to heart conditions and methods for treating heart conditions.
- 2. Background Information
- TGFβ and members of its signaling pathway are tumor suppressors that regulate many diverse tissue and cell processes, including differentiation, apoptosis, and cell proliferation. For example, TGFβ inhibits proliferation, induces cell differentiation and apoptosis, and alters gene expression in different cell types. TGFβ-inducible early gene (TIEG) encodes a protein that is rapidly induced (as is its mRNA) by all three isoforms of TGFβ. TIEG protein is 480 amino acids in length (72 kDa) and contains a zinc finger region that has homology with the 3-zinc finger family of transcription factors (e.g., Sp-1, BTEB, EGR-1, and the Kruppel-like factors). The TIEG gene is localized on chromosome 8q22.2. TIEG protein has been identified in many human tissues and cell types, including cells in the breast, uterus, brain, pancreas, muscle, and bone. TIEG plays a role in TGFβ-induced inhibition of cell proliferation and apoptosis in human osteoblast cells, pancreatic carcinoma cells, and epithelial and liver cancer cells.
- The invention is based, in part, on the discovery that transgenic non-human mammals whose genomes contain a disruption in a nucleic acid encoding TIEG, develop cardiac hypertrophy during the aging process. Such non-human mammals also have defects in osteoblast and osteoclast differentiation and function, which can lead to defects in bone formation. In addition, transgenic non-human mammals whose genomes contain a disruption in a nucleic acid encoding TIEG can exhibit connective tissue defects. As a result, such transgenic mice provide a model to study the biological role of TIEG in diverse biological systems.
- In general, one aspect of the invention features a transgenic rodent whose genome includes a disruption of an endogenous TIEG nucleic acid and progeny and cells of the rodent. The transgenic rodent can be a mouse and can have a genetic background selected from the group consisting of B6, 129Sv/J, and FVB. The disruption can be heterozygous or homozygous. Osteoblasts or osteoclasts from the rodent can have a decreased ability to differentiate in vitro relative to osteoblasts or osteoclasts from a corresponding control rodent. The disruption can result from deletion of a portion of the endogenous TIEG gene (e.g., deletion of
exons 1 and 2). The transgenic rodent can develop cardiac hypertrophy. The rodent can be a male rodent. The rodent can exhibit a symptom of human hypertrophic cardiomyopathy. - In another embodiment, the invention features a progeny of the transgenic rodent.
- In another embodiment, the invention features cells isolated from the transgenic rodent. The cells can be cardiomyocytes, osteoblasts, or osteoclasts.
- In another aspect, the invention features a nucleic acid construct that includes a disrupted TIEG nucleic acid, wherein the disruption prevents the expression of a functional TIEG polypeptide from the nucleic acid.
- Another aspect of the invention features a method for determining whether or not a test compound is a potential treatment compound for human hypertrophic cardiomyopathy. The method includes (a) administering the test compound to a male TIEG −/− mouse, and (b) determining whether or not the mouse develops symptoms of human hypertrophic cardiomyopathy to a lesser degree than those developed in a control male TIEG −/− mouse not receiving the test compound, wherein a lesser degree of symptoms of human hypertrophic cardiomyopathy in the mouse indicates that the test compound is a potential treatment compound for human hypertrophic cardiomyopathy. The test compound can be an siRNA or antisense oligo that reduces the expression of a PTTG-1 polypeptide.
- Another aspect of the invention features a method for treating hypertrophic cardiomyopathy in a mammal. The method includes administering a TIEG polypeptide, nucleic acid encoding the TIEG polypeptide, or an activator of TIEG polypeptide activity to the mammal under conditions wherein the severity of a symptom of hypertrophic cardiomyopathy is reduced in the mammal. The mammal can be a human. The TIEG polypeptide can be administered to the mammal. The activator of TIEG polypeptide activity can be administered to the mammal. Activators of TIEG polypeptide activity can include, without limitation, TGFβ, EGF, BMP-2, BMP-6, or estrogen.
- Another aspect of the invention features a method for treating hypertrophic cardiomyopathy in a mammal. The method includes administering a molecule to the mammal under conditions wherein the severity of a symptom of hypertrophic cardiomyopathy is reduced in the mammal, wherein the molecule reduces expression of a PTTG-1 polypeptide in the mammal or inhibits a PTTG-1 polypeptide activity in the mammal. The mammal can be a human. The molecule can be an siRNA or antisense oligo that reduces the expression of a PTTG-1 polypeptide. The molecule can reduce a PTTG-1 polypeptide activity. The molecule can be TGFβ, EGF, BMP-2, BMP-6, or estrogen.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
-
FIG. 1 is a schematic representation of the wild-type allele of the TIEG gene, the targeting vector, and the recombinant allele. -
FIG. 2 is a graph depicting reduced osteoclast differentiation in −/− precursors and ST2 support cells. -
FIG. 3 is a graph depicting that loss of TIEG causes differentiation defects in both precursors and support cells. -
FIG. 4 is a graph depicting that the TIEG knockout reduces the RANKL/OPG ratio. -
FIG. 5A is a bar graph plotting the relative number of viable Hs578T-Tet-TIEG cells grown in 96 well plates and measured after 48 hours of tetracycline treatment. Normalized values were graphed in relation to control treated cells (n=12). Error bars indicate S.D. P<0.005.FIG. 5B is a photograph of a Western blot analysis using anti-FLAG M2, anti-p21, and anti-actin antibodies. Hs578T-Tet-TIEG cells were grown in 10-cm plates and treated with 1 μg/μL doxycycline for the indicated times. -
FIG. 6A is a photograph of a Northern blot analysis of mouse embryo fibroblast (MEF) cells treated with TGFβ1 (2 ng/mL) for the indicated times. Total RNA was extracted and analyzed by Northern blotting using a TIEG mRNA specific probe. Prior to Northern blotting, the gel was stained with ethidium bromide to verify equal loading.FIG. 6B is a bar graph plotting relative proliferation of Relative values for a representative experiment are shown (n=12). Error bars indicate S.D. P<0.005. -
FIG. 7A is a bar graph plotting the relative luciferase units for wild-type (+/+) and TIEG null (−/−) MEF cells grown in the presence (+) or absence (−) of 2 ng/mL TGFβ1. The cells were grown in 12-well plates and transfected with the CACA12-MLP-Luc (0.5 μg) reporter construct and the internal control plasmid, phRGTK (50 ng). 24 hours after transfection cells were switched to serum-free medium containing 2 ng/mL TGFβ1. Normalized relative luciferase values are shown for a representative experiment (n=6). Error bars indicate S.D.FIG. 7B is a photograph of an RT-PCR experiment. Total RNA isolated from wild-type (+) and TIEG null (−) MEF cells treated with TGFβ1 for the indicated times was reverse transcribed, and PCRs were performed in duplicate for Smad7 and GAPDH mRNA. The PCR products were separated on 1.5% (w/v) agarose gels and visualized with ethidium bromide. -
FIG. 8 is a line graph plotting cell proliferation (absorbance at 490 nm) of TIEG +/+ and TIEG −/− calvarial osteoblasts plated onto 96 well plates and grown for 24, 48, and 72 hours at 37° C. An average of six replicates of each were graphed. -
FIG. 9 is a bar graph plotting the relative mRNA expression levels for osteocalcin (OC), ostrix (OSX), type I collagen (Col IA), and alkaline phosphatase (Alk. Phos.) in TIEG +/+ and TIEG −/− calvarial osteoblasts grown in culture. RT-PCR was performed on five separate calvarial RNA isolates, and the results scanned and quantitated using NIH Image. The data are the mean ±SEM of these analyses normalized to GAPDH expression. * indicates p<0.05 comparing TIEG +/+ to TIEG −/− calvarial osteoblasts. -
FIG. 10 is a bar graph plotting the number of TRAP+osteoclasts per well for neonatal calvaria-derived osteoblasts from TIEG +/+ or TIEG −/− mice cultured with either marrow or spleen osteoclast precursors from TIEG +/+mice in the presence of vitamin D and Dexamethazone for 9 days. The data are the mean ±SEM of three replicate wells from one experiment. The experiment was performed 4 times, and these data are representative of the results. * indicates p<0.05 comparing TIEG +/+ to TIEG −/− calvarial cells. -
FIG. 11 is a bar graph plotting the relative expression levels of M-CSF, RANKL, and OPG in TIEG −/− cells or TIEG +/+ cells cultured with vitamin D and dexamethazone. Real Time PCR was performed to quantitate the M-CSF, RANKL, and OPG expression relative to tubulin, and the ratio of RANKL to OPG was determined. * indicates p<0.05 comparing TIEG +/+ to TIEG −/− calvarial cells. -
FIG. 12 is a bar graph plotting the number of TRAP+osteoclasts per well for TIEG +/+ and TIEG −/− calvarial cells cultured with TIEG +/+marrow in the presence of the indicated hormones or growth factors. * indicates p<0.05 comparing TIEG +/+ to TIEG −/− calvarial OB cells, and § indicates p<0.05 comparing vitamin D and dexamethazone alone to addition of the indicated hormones or growth factors. -
FIG. 13 is an outline of a gene microarray analysis. Panel A) Calvarial osteoblasts were isolated from TIEG +/+ and TIEG −/− mice and cultured in vitro. Some samples were treated with 2 ng/mL TGFβ for 24 hours in duplicate. RNA was then isolated from TGFβ and vehicle treated samples and subjected to microarray using the MOE430A microarray containing 22,626 total genes. The data was analyzed, and the number of genes expressed and regulated by TGFβ is indicated. Panel B is a comparison of the TGFβ-regulated genes between TIEG +/+ and TIEG −/− osteoblasts with the data presented as a Venn diagram as to those genes regulated by TGFβ in TIEG +/+ or TIEG −/− only, and those regulated in both genotypes. Panel C is a comparison of TGFβ regulated genes between osteoblast cells from TIEG +/+mice and TIEG −/− mice with the data presented as a Venn diagram as to those genes expressed in TIEG +/+ or TIEG −/− cells. -
FIG. 14 is a bar graph plotting duel luciferase activity for AKR2B mouse embryo fibroblasts containing the indicated PTTG promoter or pGL3 basic luciferase construct (1 μg) with either an empty expression vector (1 μg) or a vector driving TIEG polypeptide expression (1 μg). As an internal control for transfection efficiency, 0.5 μg of renilla luciferase was also transfected into the cells. The cells were analyzed 24 hours after transfection. - In general, the invention provides a transgenic non-human animal whose genome contains a disruption in the endogenous TIEG nucleic acid. Such transgenic non-human animals develop cardiac hypertrophy (e.g., concentric left ventricular hypertrophy) as they age. In particular, transgenic non-human animals of the invention have an increase in cardiac myocyte cell number and a decrease in cardiac myocyte cell size and as such, it appears that there is an increase in cardiac myocyte differentiation after the mice are born. In addition, osteoblasts and osteoclasts from such transgenic non-human animals exhibit defects in differentiation. Further, transgenic non-human animals containing a disruption in the endogenous TIEG nucleic acid exhibit connective tissue defects (e.g., less tendon strength than that exhibited in tendons from control animals). The transgenic animals (e.g., transgenic mice) of the invention are valuable models for studying the role of TIEG in bone formation, cardiac myocyte differentiation, cell proliferation, cancer, and connective tissue. In one embodiment, the male transgenic non-human animals provided herein can be used as a model to study hypertrophic cardiomyopathy (HCM) since male transgenic non-human animals containing a disruption in the endogenous TIEG nucleic acid develop, with age and in a non-stress induced manner, the three hallmark symptoms of human HCM: unexplained hypertrophy, myocyte disarray, and fibrosis.
- The invention features non-human mammals including a disrupted TIEG allele, and progeny and cells of such animals. Disruption of the TIEG gene results in non-human mammals with reduced levels of TIEG when compared with a corresponding wild-type animal. TIEG deficient animals can be referred to as “knockout animals.” Non-human mammals include, for example, rodents such as rats, guinea pigs, and mice, farm animals such as pigs, sheep, goats, horses, and cattle, and non-human primates (e.g., baboons, squirrel monkeys and chimpanzees). TIEG deficient mice are particularly useful. Cells and cell lines deficient in TIEG can be derived from TIEG knockout animals, using known techniques. Such animals may be used to derive a cell line that may be used in culture, either a primary culture or for continuous culture.
- Nucleic acid constructs useful for producing knockout animals include a disrupted TIEG nucleic acid. As used herein, “disrupted TIEG nucleic acid” refers to a modification in the TIEG nucleic acid such that the expression of a functional TIEG polypeptide is reduced or prevented. Modifications that can result in a disrupted TIEG nucleic acid include, without limitation, insertions, deletions, substitutions, and combinations thereof. Modifications can be made in any region of a TIEG allele, including, an intron, exon, promoter, or 5′- or 3′-untranslated regions, and combinations thereof. Suitable exons can include any of the four exons (e.g.,
exons 1 and 2) of the TIEG nucleic acid. For example, a stop codon can be introduced into a TIEG nucleic acid or a selectable marker can be substituted for a region of the TIEG gene such that expression of a functional TIEG polypeptide is reduced or prevented. See, Shastry, B. S., Mol. Cell. Biochem., 181(1-2):163-179, 1998, for a review of gene targeting technology. - Typically, TIEG genomic sequences are used in the nucleic acid construct. Genomic sequences can be isolated using known molecular techniques and human or mouse nucleotide sequences as probes and/or as PCR primers. The genomic nucleic acid sequence of TIEG also can be found in GenBank under Accession No. AF049879, AF049880, and AF050110. A human TIEG cDNA and human TIEG amino acid sequence can be found in GenBank Accession No. U21847.
- A nucleic acid sequence encoding a selectable marker generally is used to interrupt the targeted site by homologous recombination. Typically, the nucleic acid encoding the selectable marker is flanked by sequences homologous to the sequences flanking the desired insertion site. It is not necessary for the flanking sequences to be immediately adjacent to the desired insertion site. Suitable nucleic acids encoding selectable markers for positive drug selection include, for example, the
aminoglycoside 3′ phosphotransferase gene, which encodes a gene product that imparts resistance to geneticin (G418, an aminoglycoside antibiotic), and the hygromycin-B-phosphotransferase gene, which encodes a gene product that imparts hygromycin resistance. Other selection systems include nucleic acids encoding negative-selection markers such as the thymidine kinase (TK) gene from herpes simplex. Constructs utilizing both positive and negative selection also can be used. For example, a construct can contain the aminoglycoside phosphotransferase gene and the TK gene. In this system, cells are selected that are resistant to G418 and sensitive to gancyclovir. Any selectable marker suitable for inclusion in a knockout vector is within the scope of the present invention. - Suitable nucleic acid constructs are amenable to genomic integration by homologous recombination. Non-limiting examples of such constructs include pKO Scrambler, pMC1neo, and pMC1-hsv-tk, all from Stratagene (La Jolla, Calif.). In addition, Cre/lox technology can be used to generate transgenic non-human mammals with conditional TIEG gene deletions. See, Orban, P. C., et al., Proc. Natl. Acad. Sci. USA, (1992) 89 (15): 6861-6865, and U.S. Pat. No. 4,959,317 for a review of Cre/lox technology.
- To create animals having a particular gene inactivated in all cells, it is necessary to introduce a knockout construct into the germ cells (sperm or eggs, i.e., the “germ line”) of the desired species. A targeting construct can be introduced into the pronuclei of fertilized eggs by microinjection. Targeting constructs for microinjection can be prepared by any method known in the art. For example, a nucleic acid construct for microinjection can be cleaved with enzymes appropriate for removing the bacterial plasmid sequences, and the resulting DNA fragments gel-purified.
- Following pronuclear fusion, the developing embryo may carry the introduced gene in all its somatic and germ cells since the zygote is the mitotic progenitor of all cells in the embryo. Since targeted insertion of a knockout construct is a relatively rare event, it is desirable to generate and screen a large number of animals when employing such an approach. Because of this, it can be advantageous to work with the large cell populations and selection criteria that are characteristic of cultured cell systems. However, for production of knockout animals from an initial population of cultured cells, it is necessary that a cultured cell containing the desired knockout construct be capable of generating a whole animal. This is generally accomplished by placing the cell into a developing embryo environment of some sort.
- Cells capable of giving rise to at least several differentiated cell types are “pluripotent.” Pluripotent cells capable of giving rise to all cell types of an embryo, including germ cells, are hereinafter termed “totipotent” cells. Totipotent murine cell lines (embryonic stem, or “ES” cells) have been isolated by culture of cells derived from very young embryos (blastocysts). Such cells are capable, upon incorporation into an embryo, of differentiating into all cell types, including germ cells, and can be employed to generate animals lacking a functional TIEG gene. That is, cultured ES cells can be transformed with a knockout construct and cells selected in which the TIEG gene is disrupted.
- Nucleic acid constructs can be introduced into ES cells, for example, by electroporation or other standard technique. A number of techniques can be used to detect or select homologous recombinants. For example, PCR can be used to screen pools of transformant cells for homologous insertion, followed by screening of individual clones. PCR refers to a procedure or technique in which target nucleic acids are amplified. Generally, sequence information from the ends of the region of interest or beyond is employed to design oligonucleotide primers that are identical or similar in sequence to opposite strands of the template to be amplified. PCR can be used to amplify specific sequences from DNA as well as RNA (reverse-transcriptase PCR, RT-PCR), including sequences from total genomic DNA or total cellular RNA. Primers are typically 14 to 40 nucleotides in length, but can range from 10 nucleotides to hundreds of nucleotides in length. PCR is described, for example in PCR Primer: A Laboratory Manual, Ed. by Dieffenbach, C. and Dveksler, G., Cold Spring Harbor Laboratory Press, 1995. Nucleic acids also can be amplified by ligase chain reaction, strand displacement amplification, self-sustained sequence replication or nucleic acid sequence-based amplified. See, for example, Lewis, R. Genetic Engineering News, 12(9):1, 1992; Guatelli et al., Proc. Natl. Acad. Sci. USA, 87:1874-1878, 1990; and Weiss, R., Science, 254:1292, 1991. Alternatively, positive and/or negative selection techniques, including positive and/or negative drug selection techniques, can be used to identify clones.
- The ES cells further can be characterized to determine the number of targeting events. For example, genomic DNA can be harvested from ES cells and used for Southern analysis. See, for example, Section 9.37-9.52 of Sambrook et al., Molecular Cloning, A Laboratory Manual, second edition, Cold Spring Harbor Press, Plainview; NY, 1989.
- To generate a knockout animal, ES cells having at least one inactivated TIEG allele are incorporated into a developing embryo. This can be accomplished through injection into the blastocyst cavity of a murine blastocyst-stage embryo, by injection into a morula-stage embryo, by co-culture of ES cells with a morula-stage embryo, or through fusion of the ES cell with an enucleated zygote. The resulting embryo is raised to sexual maturity and bred in order to obtain founder animals, whose cells (including germ cells) carry the inactivated TIEG allele. If the original ES cell was heterozygous for the inactivated TIEG allele, several of these animals can be bred with each other in order to generate animals homozygous for the inactivated allele. Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal (e.g., a B6, 129Sv/J, or FVB mouse).
- Alternatively, direct microinjection of DNA into eggs can be used to avoid the manipulations required to turn a cultured cell into an animal. Fertilized eggs are totipotent, i.e., capable of developing into an adult without further substantive manipulation other than implantation into a surrogate mother. To enhance the probability of homologous recombination when eggs are directly injected with constructs, it is useful to incorporate at least about 7 kb of homologous DNA into the targeting construct. In addition, it is also useful to prepare the constructs from isogenic DNA.
- Embryos derived from microinjected eggs can be screened for homologous recombination events in several ways. For example, if the TIEG allele is interrupted by a coding region that produces a detectable (e.g., fluorescent) gene product, then the injected eggs are cultured to the blastocyst stage and analyzed for presence of the indicator polypeptide. Embryos with fluorescing cells, for example, are then implanted into a surrogate mother and allowed to develop to term. Alternatively, injected eggs are allowed to develop and DNA from the resulting pups analyzed by PCR or RT-PCR for evidence of homologous recombination.
- Nuclear transplantation also can be used to generate transgenic non-human mammals of the invention. For example, fetal fibroblasts can be genetically modified such that they contain an inactivated endogenous TIEG allele thereby preventing TIEG expression, and then fused with enucleated oocytes. After activation of the oocytes, the eggs are cultured to the blastocyst stage, and implanted into a recipient. See, Cibelli, J. B. et al., Science, (1998) 280:1256-1258. Adult somatic cells, including, for example, cumulus cells and mammary cells, can be used to produce animals such as mice and sheep, respectively. See, for example, Wakayama, T. et al., Nature, (1998) 394(6691):369-374; and Wilmut, I. et al., Nature, (1997) 385(6619):810-813. Nuclei can be removed from genetically modified adult somatic cells, and transplanted into enucleated oocytes. After activation, the eggs can be cultured to the 2-8 cell stage, or to the blastocyst stage, and implanted into a suitable recipient. Wakayama, T. et al., 1998, supra. Transgenic non-human mammals heterozygous for a disrupted endogenous TIEG allele can be mated to produce homozygous non-human mammals.
- A transgenic non-human mammal of the invention can be either heterozygous or homozygous for an inactivated TIEG allele. Initial screening to determine whether a genome comprises a TIEG nucleic acid construct can be accomplished by Southern blot analysis or PCR techniques. See, for example, sections 9.37-9.52 of Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, second edition, Cold Spring Harbor Press, Plainview, N.Y., for a description of Southern analysis. Further, endogenous TIEG mRNA expression levels in tissues from a transgenic non-human mammal can be assessed using techniques that include, but are not limited to, Northern blot analysis of tissue samples obtained from the mammal, in situ hybridization analysis, and RT-PCR. For example, a sample such as tail tissue can be collected from a transgenic mouse whose genome is suspected to include a TIEG nucleic acid construct. Nucleic acid molecules (e.g., DNA) can be purified from the sample using a commercially available kit (e.g., the Qiagen DNeasy Tissue Kit). The purified nucleic acid molecules can be used to genotype the transgenic mouse, e.g., by hybridizing a labeled probe to the nucleic acid molecule and blotting or by amplifying portions of the TIEG nucleic acid construct. Amplified reaction products can be separated by gel electrophoresis, and, based on the presence or absence of genotyping bands, the transgenic mouse can be classified as non-transgenic, heterozygous, or homozygous. Segregation analysis of PCR products can be used to determine heterozygosity or homozygosity.
- In addition to exhibiting a particular genotype, a transgenic non-human animal of the invention also can exhibit one or more useful phenotypes. For example, a transgenic non-human animal (e.g., mammal such as a mouse) can develop cardiac hypertrophy or cancer, or have alterations in bone formation and fracture repair. Cells isolated from a transgenic animal of the invention also can have a particular phenotype. For example, as described herein, osteoclasts and osteoblasts isolated from TIEG knockout animals are defective in differentiation. It is understood that the presence of a particular phenotype is assessed by comparing that phenotype to the corresponding phenotype exhibited by a suitable control cell or non-human mammal. Suitable control non-human mammals can include wild-type mammals or mammals heterozygous for a disruption in a TIEG allele.
- The transgenic non-human animals provided herein can be used as models for evaluating the role of TIEG in conditions such as cancer, cardiac hypertrophy, bone loss, osteoporosis, fracture repair, and wound healing. For example, the role of TIEG in cancer can be evaluated by breeding transgenic non-human animals (e.g., a transgenic non-human mammal) of the invention with transgenic non-human animals that are susceptible or prone to developing cancer (e.g., FVB mice). FVB mice are commercially available from Jackson Laboratories and are mildly prone to developing spontaneous breast tumors. In particular, TIEG (−/−) mice can be bred with FVB mice, and transgenic mice deficient in TIEG and having the FVB background can be selected. Such mice may have an increased susceptibility to developing tumors or develop spontaneous tumors at an earlier age.
- Transgenic non-human animals (e.g., a transgenic non-human mammal) of the invention can be used to screen, for example, compounds that alter conditions related to TIEG activity, such as cancer (e.g., prostrate, breast, pancreas, or multiple myeloma), bone loss, osteoporosis, and fracture repair. In one embodiment, male TIEG knockout mice, which develop HCM with age and in a non-stress induced manner, are used to identify compounds capable of preventing or reducing the development of HCM. For example, small molecule chemical libraries can be screened for HCM treatment compounds using the male TIEG knockout mice.
- As used herein, suitable test compounds include, without limitation, biological macromolecules such as RNA or DNA oligonucleotide (e.g., silencing RNA, antisense oligonucleotides, or ribozymes) or a polypeptide of any length; nucleic acid analogs such as morpholinos or peptide nucleic acids (PNAs); chemical compounds; mixtures of chemical compounds; or extracts isolated from bacterial, plant, fungal, or animal matter. The concentration of the test compound can depend on the type of compound and in vitro test data.
- Transgenic non-human animals (e.g., a transgenic non-human mammal) can be exposed to test compounds by any route of administration, including enterally (e.g., orally) and parenterally (e.g., subcutaneously, intravascularly, intramuscularly, or intranasally). Suitable formulations for oral administration can include tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g. magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulfate). Tablets can be coated by methods known in the art. Preparations for oral administration can also be formulated to give controlled release of the compound.
- Compounds can be prepared for parenteral administration in liquid form (e.g., solutions, solvents, suspensions, and emulsions) including sterile aqueous or non-aqueous carriers. Aqueous carriers include, without limitation, water, alcohol, saline, and buffered solutions. Examples of non-aqueous carriers include, without limitation, propylene glycol, polyethylene glycol, vegetable oils, and injectable organic esters. Preservatives and other additives such as, for example, antimicrobials, anti-oxidants, chelating agents, inert gases, and the like may also be present. Pharmaceutically acceptable carriers for intravenous administration include solutions containing pharmaceutically acceptable salts or sugars. Intranasal preparations can be presented in a liquid form (e.g., nasal drops or aerosols) or as a dry product (e.g., a powder). Both liquid and dry nasal preparations can be administered using a suitable inhalation device. Nebulised aqueous suspensions or solutions can also be prepared with or without a suitable pH and/or tonicity adjustment.
- As described herein, transgenic non-human animals that are deficient in TIEG can develop cardiac hypertrophy with age. In such animals, cardiac hypertrophy appears to result from an increase in cell number. This indicates proliferation can be induced in cardiac myocytes by decreasing TIEG levels in cardiac myocytes. TIEG levels can be decreased in cardiac myocytes, either in vitro or in vivo, by reducing expression of TIEG (e.g., with a silencing RNA (siRNA) or by an antisense oligonucleotide) or inhibiting TIEG.
- siRNAs can be produced using known technology. See, for example, U.S. Pat. Nos. 5,889,136; 4,415,732; and 4,458,066. In general, two 21-mer RNA oligomers with two deoxythymidines at the 3′ terminus and 19 nucleotide complementary sequences can be synthesized then mixed to allow them to hybridize. The duplex can be mixed with a transfection agent and added to cell culture at concentrations of about 100 nM. Symmetric 3′ overhangs can aid in the formation of approximately equimolar ratios of sense and antisense target RNA-cleaving siRNAs.
- TIEG levels can be reduced by contacting cardiac myocytes with an effective amount of a modulator described above. For example, a modulator can be administered to a mammal such as a human patient that has damaged heart tissue (e.g., from ischemic damage, coronary artery disease, infections, inflammatory conditions, drug toxicity such as chemotherapy drug toxicity, viral induced toxicity, lymphocytic induced toxicity, or cancer induced toxicity). Modulators can be administered by any route, including orally and parenterally. Cells also can be contacted in vitro by adding an effective amount of the modulator to the culture medium. “Effective amount” refers to an amount of a modulator that results in decreased levels of TIEG. Proliferation can be monitored in cells contacted with a modulator using known methods.
- Hypertrophic cardiomyopathy can be treated or prevented by administering a TIEG polypeptide, a nucleic acid encoding a TIEG polypeptide, or an activator of TIEG polypeptide activity to a mammal. For example, nucleic acid encoding a TIEG polypeptide can be inserted into a vector (e.g., viral vector) that is administered to a hypertrophic cardiomyopathy patient or person suspected to develop hypertrophic cardiomyopathy. Such a vector can be designed to contain a regulatory sequence (e.g., a promoter sequence) that drives TIEG polypeptide expression in heart cells. Expression of TIEG polypeptides can protect mammals from developing symptoms of hypertrophic cardiomyopathy. Any method, including those provided herein, can be used to administer a TIEG polypeptide, a nucleic acid encoding a TIEG polypeptide, or an activator of TIEG polypeptide activity. Examples of activators of TIEG polypeptide activity can include, without limitation, TGFβ, EGF, BMP-2, BMP-6, and estrogen.
- Hypertrophic cardiomyopathy can be treated or prevented by reducing PTTG-1 polypeptide activity or expression levels within a mammal. For example, a molecule that reduces PTTG-1 polypeptide expression or PTTG-1 polypeptide activity can be administered to a hypertrophic cardiomyopathy patient or person suspected to develop hypertrophic cardiomyopathy. Such molecules include, without limitation, siRNA molecules, antisense molecules, antigene molecules, TIEG polypeptides, TGFβ polypeptides, EGF polypeptides, BMP-2 polypeptides, BMP-6 polypeptides, and estrogen. The nucleic acid and amino acid sequences for human and mouse PTTG-1 can be found at GenBank® accession numbers: NM—004219, NM—013917, and AF069051. Target sites for siRNA against PTTG-1 can be as follows: 5′-AAGACCTGCAAT-AATCCAGAA-3′ (SEQ ID NO:1); 5′-AATGGCTACTCTGATCTATGT-3′ (SEQ ID NO:2); 5′-AAAGCCTTAGATGGGAGATCT-3′ (SEQ ID NO:3); 5′-AAAGGCTTT-GGGAACTGTCAA-3′ (SEQ ID NO:4); 5′-AAGATGACTGAGAAGACTGTT-3′ (SEQ ID NO:5); 5′-AATCTGTTGCAGTCTCCTTCA-3′ (SEQ ID NO:6); and 5′-AAGCT-CTGTTCCTGCCTC-AGA-3′ (SEQ ID NO:7).
- Antisense oligonucleotides can be used to decrease levels of TIEG and/or PTTG protein. The antisense oligonucleotides in accordance with this invention are at least 8 nucleotides in length. For example, a nucleic acid can be about 8,9, 10-20 (e.g., 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length), 15 to 20, 18-25, or 20-50 nucleotides in length. In other embodiments, antisense molecules can be used that are greater than 50 nucleotides in length, including the full-length sequence of a TIEG or PTTG mRNA. As used herein, the term “oligonucleotide” refers to an oligomer or polymer of RNA or DNA or analogs thereof. Nucleic acid analogs can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, for example, stability, hybridization, or solubility of a nucleic acid. Modifications at the base moiety include substitution of deoxyuridine for deoxythymidine, and 5-methyl-2′-deoxycytidine and 5-bromo-2′-deoxycytidine for deoxycytidine. Other examples of nucleotide bases that can be substituted for a natural base include 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Other useful nucleotide bases include those disclosed, for example, in U.S. Pat. No. 3,687,808.
- Modifications of the sugar moiety can include modification of the 2′ hydroxyl of the ribose sugar to form 2′-O-methyl or 2′-O-allyl sugars. The deoxyribose phosphate backbone can be modified to produce morpholino nucleic acids, in which each base moiety is linked to a six-membered, morpholino ring, or peptide nucleic acids, in which the deoxyphosphate backbone is replaced by a pseudopeptide backbone (e.g., an aminoethylglycine backbone) and the four bases are retained. See, for example, Summerton and Weller (1997) Antisense Nucleic Acid Drug Dev. 7:187-195; and Hyrup et al. (1996) Bioorgan. Med. Chem. 4:5-23. In addition, the deoxyphosphate backbone can be replaced with, for example, a phosphorothioate or phosphorodithioate backbone, a phosphoroamidite, or an alkyl phosphotriester backbone. See, for example, U.S. Pat. Nos. 4,469,863, 5,235,033, 5,750,666, and 5,596,086 for methods of preparing oligonucleotides with modified backbones.
- Antisense oligonucleotides of the invention also can be modified by chemical linkage to one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include, but are not limited to, lipid moieties (e.g., a cholesterol moiety); cholic acid; a thioether moiety (e.g., hexyl-5-tritylthiol); a thiocholesterol moiety; an aliphatic chain (e.g., dodecandiol or undecyl residues); a phospholipid moiety (e.g., di-hexadecyl-rac-glycerol or triethyl-
ammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate); a polyamine or a polyethylene glycol chain; adamantane acetic acid; a palmityl moiety; or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety. The preparation of such oligonucleotide conjugates is disclosed in, for example, U.S. Pat. Nos. 5,218,105 and 5,214,136. - Methods for synthesizing antisense oligonucleotides are known, including solid phase synthesis techniques. Equipment for such synthesis is commercially available from several vendors including, for example, Applied Biosystems (Foster City, Calif.). Alternatively, expression vectors that contain a regulatory element that directs production of an antisense transcript can be used to produce antisense molecules.
- Antisense oligonucleotides can bind to a nucleic acid encoding TIEG, including DNA encoding TIEG RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA, under physiological conditions (i.e., physiological pH and ionic strength). For example, an antisense oligonucleotide can hybridize under physiological conditions to the nucleotide sequence set forth in GenBank Accession No. U21847. In one embodiment, an antisense or antigene PNA oligo can be used to reduce the level of TIEG polypeptide in a mammal (e.g., human).
- It is understood in the art that the sequence of an antisense oligonucleotide need not be 100% complementary to that of its target nucleic acid to be hybridizable under physiological conditions. Antisense oligonucleotides hybridize under physiological conditions when binding of the oligonucleotide to the TIEG or PTTG nucleic acid interferes with the normal function of the TIEG or PTTG nucleic acid, and non-specific binding to non-target sequences is minimal.
- Target sites for TIEG and PTTG antisense oligonucleotides include the regions encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. In addition, the ORF has been targeted effectively in antisense technology, as have the 5′ and 3′ untranslated regions. Furthermore, antisense oligonucleotides have been successfully directed at intron regions and intron-exon junction regions. Further criteria can be applied to the design of antisense oligonucleotides. Such criteria are well known in the art, and are widely used, for example, in the design of oligonucleotide primers. These criteria include the lack of predicted secondary structure of a potential antisense oligonucleotide, an appropriate G and C nucleotide content (e.g., approximately 50%), and the absence of sequence motifs such as single nucleotide repeats (e.g., GGGG runs). The effectiveness of antisense oligonucleotides at modulating expression of a TIEG nucleic acid can be evaluated by measuring levels of the TIEG mRNA or protein (e.g., by Northern blotting, RT-PCR, Western blotting, ELISA, or immunohistochemical staining).
- The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
- The murine TIEG gene was cloned from a mouse 129/Sv embryonic stem cell (ES cell) library in P1 phage using a PCR-based screen with primers designed to a conserved region of the mouse and human TIEG cDNAs. The nucleotide and amino acid sequence of human and mouse TIEG can be found in Genbank accession Nos. AF0501010 and AF049879, respectively. The resulting clone was digested with EcoRI to yield a 14 kB fragment containing the full-length coding region. The entire fragment was mapped and sequences and found to contain 4 exons and 3 introns covering 7.1 kB, bounded by 6.6 kB of 5′ flanking and 0.9 kB of 3′ flanking sequence (see
FIG. 1 ). The targeting vector was constructed by ligating a 3.5 kB XbaI fragment of the 5′ flanking region (the 5′ arm) upstream of the neomycin resistance cassette in vector 38locPNeo, and a 3.3 kB MscI-XbaIregion containing exons 3 and 4 (the 3′ arm) downstream from Neo (seeFIG. 1 ). The complete targeting construct of 10.3 kB was excised from the resulting vector, 38loxPNeo/TIEG. - The 38loxPNeo/TIEG construct was transfected into murine ES cells isolated from the inner cell mass of a 3.5 day 129/SvJ mouse embryo by electroporation. Following expansion in selective growth medium, individual clones were screened by Southern blotting of EcoRI-digested genomic DNA using a probe to a region outside of the targeted locus (5′ probe, see
FIG. 1 ) to identify clones that contain the correctly targeted TIEG allele. In addition, a probe to the neomycin resistance gene (Neor) also was used. - One positive clone was identified, expanded, and confirmed by additional Southern analysis with the 3′ probe. As shown in
FIG. 1 , correct homologous recombination results in a null mutation in which 1 and 2, as well as 2.3 kB of 5′ flanking region of mTIEG (including transcription and translational start sites and the first 114 amino acids of the encoded TIEG protein) are replaced with the Neor cassette. In addition, the Neor cassette contains a poly A termination signal that terminates transcription of any aberrant mRNA transcript that might be synthesized from the mutant TIEG allele.exons - TIEG mutant ES cells were used to generate chimeric animals by injection into C57BL/6 (B6) blastocysts using established protocols. One male chimera was generated and subsequently bred to B6 females. DNA was isolated from tail biopsies of agouti-colored offspring and screened for germline transmission of the null allele by PCR and Southern blotting. Heterozygous male TIEG mutant mice were bred to B6 females to increase the colony size and subsequent heterozygous male and female mice were interbred to generate mouse embryo fibroblasts. Under gross examination, null animals were phenotypically normal. TIEG null mice are fertile and exhibit normal breeding. Fibroblasts from TIEG null mice readily immortalize in culture.
- TIEG null mice develop overall cardiac hypertrophy and in particular, concentric left ventricular hypertrophy, as they age with an increase in purple collagen stain in the cardiac myocytes. Upon histological examination of heart tissue, there appears to be an increase in cell size and cell number in addition to the left ventricle hypertrophy. These changes were only seen in one-year old mice (n=3) and not the newborns.
- Calvarial osteoblasts (OB) were isolated from 3 day old −/− and +/+pups. These cells were cultured in vitro and assayed via RT-PCR for alkaline phosphatase, Cbfa-1, osteocalcin, and osterix gene expression. The −/− OB cells displayed a reduced expression of OB differentiation markers. The OB cells were differentiated in vitro with BMP-2 for 18 days. The OB from +/+calvaria displayed several nodules in culture when stained with Alizarin red, whereas the OB from −/− calvaria showed no nodule formation. The −/− calvaria OB appear to have a defect in mediating the signals to differentiate in culture.
- To characterize the osteoclasts (OC) from +/+ and −/− mice, OC precursor cells were isolated from bone marrow. The interactions between OC precursors and calvarial OB from both −/− and +/+ mice were characterized. Bone marrow containing OC precursors were cultured with calvarial OB or ST2 stromal support cells in the presence of vitamin D (10−8 M) and dexamethazone (10−7 M) to generate OC-like cells. Cultures of −/− OC precursors with either ST2 or +/+OB cells significantly deceased OC differentiation compared with +/+marrow cells cultured with either support cell type (
FIG. 2 ). These data support that there is a defect in OC precursors in −/− mice. Cultures of +/+ OC precursors cultured with −/− OB resulted in significantly lower differentiation (FIG. 3 ). - Examination of gene expression by real time PCR of the calvarial OB revealed decreased RANKL (receptor activator of NF-kappaB ligand) and increased OPG (osteoprotegerin) expression in the −/− calvarial OB compared with +/+calvarial OB cells (
FIG. 4 ). These data suggest that the decreased ability of −/− calvarial cells to support OC differentiation is due to a decrease in the ratio of RANKL to OPG in these cells. - To examine TGFβ responses in OC precursors during differentiation, spleen cell were cultured with RANKL and M-CSF during differentiation, with and without TGFβ. In +/+cultures, there was a TGFβ dose-dependent increase in the number of OC. Interestingly, the −/− OC cells showed no impact of TGFβ on OC differentiation. These data support that TGFβ stimulation of OC differentiation is mediated by TIEG gene expression.
- The following experiments provide evidence that expression of TIEG is critical for the growth inhibitory effect of TGFβ. These results place TIEG as an important regulator of the physiological response to TGFβ and may provide the first insights into the mechanism by which cancer cells shift from a growth inhibitory to pro-metastatic response to TGFβ during the progression of cancer.
- The tetracycline inducible TIEG overexpressing Hs578T cells were described previously and were cultured in DMEM/F12 (1:1) medium (Sigma, St. Louis, Mo., USA) containing 10% (v/v) FBS (Bio Whittaker, Walkersville, Md., USA) and 1× antibiotic-antimycotic solution (Invitrogen, Carlsbad, Calif., USA), 5 mg/L blasticidin S (Invitrogen) and 500 mg/L Zeocin(Invitrogen; Johnsen et al., Oncogene (2002) 21:5783-5790 and Johnsen et al., J. Cell Biochem. (2002) 87:233-241). Briefly, the Hs578T-Tet-TIEG cells were generated though the stable transfection with the tetracycline repressor plasmid pcDNA6/TR (Invitrogen) and a plasmid containing an amino-terminally Flag epitope tagged TIEG under the control of a modified Cytomegalovirus promoter containing three tetracycline operator sites (pcDNA4/TO, Invitrogen). Mouse embryo fibroblast cells were cultured in DMEM medium (Sigma) containing 10% FBS (v/v) and 1× antibiotic-antimycotic solution (Invitrogen). For transfections, cells were seeded in 12-well plates and transfected at 50% confluence with plasmid DNA using Lipofectamine Plus (Invitrogen) according to the manufacturer's directions. The CAGA12-MLP-Luc reporter construct has been described elsewhere (Dennler et al., EMBO J. (1998) 17:3091-3100).
- Mouse embryo fibroblast (MEF) isolation: The development and description of TIEG null mice is provided herein. MEF cells were prepared from heterozygous TIEG null C57BL6×129/SvJ cross-bred female mice at 15 dpc using standard procedures and were maintained in DMEM medium as described above. MEF cells from wild-type and TIEG null embryos were identified by PCR genotyping and utilized for further studies.
- Cell proliferation assays: Hs578T Tet-TIEG cells were seeded at 2,500 cells per well, and MEF cells were seeded at 1,600 cells/well in 96-well plates and incubated at 37° C. for 24 hours in normal culture medium. The medium was then replaced with 100 μL fresh medium or medium containing 1 μg/mL tetracycline (for Hs578TTet-TIEG cells) or 2 ng/mL TGFβ (for MEF cells). Cells were grown for an additional 48 hours, and the relative number of viable cells in each well was then determined using the CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega, Madison, Wis., USA). Briefly, 20 μL of Cell Titer 96 AQueous One Solution were added to each well, including three wells containing only medium for background substraction. The cells were then incubated at 37° C. for 30 minutes. The absorbance at 490 mm in each well was then determined using a SpectraMax 340 plate reader/spectrophotometer (Molecular Devices Corp., Sunnyvale, Calif.). This technique was determined to produce a linear relationship between the number of viable cells and the absorbance at 490 nm. Average data and standard deviation from twelve samples were compared to control treated cells and expressed as relative proliferation. Statistical analysis was performed using the student's t test.
- Isolation of genomic DNA and genotyping: Genomic DNA was isolated using the DNeasy Tissue Kit (Qiagen, Valencia, Calif., USA) according to the manufacturer's instructions. DNA was eluted with 100 μL water, and 2 μL was used for genotyping by PCR. Genotyping by PCR was performed using the following primers: Neo-F, 5′-GAATAGCCTCTCCACCCAAGCGG-3′ (SEQ ID NO:8); TIEG-Int2F, 5′-CCTCTAATTCCTCTCCTTGC-3′ (SEQ ID NO:9); and TIEG-Ex3R, 5′-TGGTGGTTGCACAGTTGGGCATCAGCTG-3′ (SEQ ID NO:10); where the wild-type allele produces a 270-bp band from primers TIEG-Int2F and TIEG-Ex3R, and the mutant allele produces a 350-bp band from primers Neo-F and TIEG-Ex3R. PCR reactions were performed using 40 cycles of 1 minute at 94° C., 2 minutes at 55° C. and 3 minutes at 72° C. Products were separated on 1.5% (w/v) agarose gels, and bands were visualized under ultraviolet light following staining with ethidium bromide.
- Luciferase promoter reporter assays: Cell extracts were harvested using 300 μL of Passive Lysis Buffer (Promega). Luciferase assays were performed using the Dual-Luciferase Reporter Assay System (Promega), and samples were read on a Turner TD-20/20 luminometer. To correct for differences in transfection efficiency, firefly luciferase units were normalized relative to renilla luciferase units of the same sample. Corrected luciferase values were then expressed as a ratio (fold induction) relative to the vector control transfected cells.
- Northern blot analysis and semi-quantitative RT-PCR: Northern blot analysis for TIEG mRNA was performed as described elsewhere (Johnsen et al., J. Cell Biochem. (2002) 87:233-241). Semi-quantitative RT-PCR was performed as described elsewhere (Johnsen et al., J. Cell Biochem. (2002) 87:233-241) using the following primers and cycle numbers. Primers used were Smad7-
Forward 5′-ACGCGCACCGCGTGC-CTCCTGCT-3′ (SEQ ID NO:11), Smad7-Reverse 5′-CTAAGGTGATGGGGGTTG-CAGCACACCAGCTC-3′ (SEQ ID NO:12), mGAPDH-Forward 5′-CACCATGGAG-AAGGCCGGGG-3′ (SEQ ID NO:13), and mGAPDH-Reverse 5′-GACGGACACATTG-GGGGTAG-3′ (SEQ ID NO:14), and yield products of 201 bp (mTIEG), 236 bp (Smad7), and 418 bp (mGAPDH). - Western blot analysis: Cell extracts were harvested in RIPA buffer (phosphate buffered saline, 1% (w/v) Nonidet P-40, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS) containing 100 μg/mL PMSF, 2 μg/mL aprotinin, 10 μg/mL leupeptin, and 500 μM sodium orthovanadate. Polypeptides were separated on a
SDS 10% (w/v) polyacrylamide gel and blotted onto Protran nitrocellulose membranes (Schleicher and Schuell, Keene, N.H., USA). Actin, p21, and Flag epitope tagged polypeptides were detected with anti-Actin AC-40 (Sigma), anti-p21/Cip1 Ab-1 (Calbiochem, San Diego, Calif., USA), and anti-Flag M2 (Sigma) antibodies, respectively. Primary antibodies were detected by enhanced chemiluminescence (Amersham Phaimacia, Piscataway, N.J., USA) using horseradish peroxidase conjugated anti-mouse secondary antibodies (Sigma). - The Hs578T breast cancer cell line has previously been shown to be growth inhibited by TGFβ (Arteaga et al., Cancer Res. (1988) 48:3898-3904) and was used herein as a model for TGFβ responsive breast cancer. A tetracycline inducible Hs578T TIEG over-expressing cell line was used to test the effects of TIEG on cellular proliferation (Johnsen et al., Oncogene (2002) 21:5783-5790). This system allows for the comparison of the same clonal cell line in the absence or presence of TIEG over-expression without the potential for artifacts due to clonal variation as is possible with constitutive over-expressing cell lines. In addition, numerous groups have demonstrated that doxycycline treatment alone does not significantly alter cellular proliferation (Burel et al., Mol. Cell. Biol. (2001) 21:5577-5590 and Miyamoto et al., J. Biol. Chem. (2002) 277:4609-4617).
- TIEG over-expression decreases cellular proliferation by approximately 30 percent (
FIG. 5A ). In contrast to other cell types, in which TIEG overexpression induces apoptosis (Bender et al., J. Neurosci. Res. (2004) 75:344-352 and Chalaux et al., FEBS Lett. (1999) 457:478-82), no increase in apoptosis was observed in either cellular morphology studies or in DNA laddering experiments. TGFβ regulates cellular proliferation in numerous cell types by inducing cell cycle arrest, at least in part, through the upregulation of the cyclin dependent kinase inhibitor p21 (Moustakas et al., Immunol. Lett. (2002) 82:85-91). TIEG over-expression in Hs578T-Tet-TIEG cells was previously shown to increase moderately the basal expression of p21 and to increase dramatically the TGFβ induction of p21. The timecourse of p21 induction by TIEG however, remains unclear. - The induction time course of p21 expression in relation to TIEG was compared by inducing the Hs578T-Tet-TIEG cells with tetracycline for various times. TIEG polypeptide levels begin to rise as early as 12 hours following addition of tetracycline to the growth medium and peaking at 24 hours (
FIG. 5B ). Interestingly, p21 polypeptide levels exhibited an identical induction pattern of induction, suggesting that TIEG increases p21 polypeptide levels very rapidly, perhaps suggesting that TIEG is directly involved in the regulation of p21 expression. Induction of p21 following TGFβ treatment is a complex process involving several individual response elements including Sp1 sequences and Smad polypeptides (Moustakas and Kardassis, Proc. Natl. Acad. Sci. USA (1998) 95:6733-8). It is conceivable that TIEG regulates p21 expression in multiple ways by not only increasing the activity of the Smad pathway (Johnsen et al., Oncogene (2002) 21:5783-5790; Johnsen et al., J. Cell Biochem. (2002) 87:233-241; and Johnsen et al., J. Biol. Chem. (2002) 277:30754-30759), but also through the up-regulation of promoter activity at Sp1 sequences (Blok et al., Mol. Endocrinol. (1995) 9:1610-20 and NotI et al., J. Biol. Chem. (2004) 279:26948-58). - In order to definitively determine the role of TIEG in regulating TGFβ signaling and cellular proliferation, wild-type and TIEG null MEF cells were obtained from littermates from the crossing of two heterozygous (+/−) TIEG mutant mice. PCR and Southern blot analysis was used to genotype the MEF cells. TIEG is required for inhibition of proliferation by TGFβ. The TIEG null cells exhibited no detectable TIEG mRNA, while the wild-type cells exhibited both basal and TGFβ induced TIEG mRNA expression (
FIG. 6A ). Because TGFβ plays an important role in regulating cellular proliferation, and since over-expression of TIEG also decreases cellular proliferation (FIG. 5A ), TIEG was tested to determine whether it is required for the inhibition of proliferation by TGFβ. Indeed, while TGFβ decreases proliferation in wild-type MEF cells by 34 percent, TGFβ increases cell proliferation by 31 percent in the TIEG null MEF cells (FIG. 6B ). These results suggest that TIEG plays an integral role in the regulation of cell proliferation by TGFβ. - Over-expression of TIEG enhances the induction of a synthetic Smad binding element reporter construct (CAGA12-MLP-Luc) as well as the induction of endogenous TGFβ regulated genes (Johnsen et al., Oncogene (2002) 21:5783-5790; Johnsen et al., J. Cell Biochem. (2002) 87:233-241; and Johnsen et al., J. Biol. Chem. (2002) 277:30754-30759). Experiments were performed to determine if TGFβ signaling is deregulated in TIEG null cells. The TIEG null MEF cells exhibited decreased basal and TGFβ-induced reporter gene activity compared to wild-type cells (
FIG. 7A ). These results suggest that loss of TIEG abrogates the activity of the Smad pathway in the presence of autocrine or exogenous TGFβ stimulation. Previous reports have indicated that TIEG enhances TGFβ/Smad signaling, at least in part, by transcriptionally repressing Smad7 gene expression (Johnsen et al., Oncogene (2002) 21:5783-5790 and Bender et al., J. Neurosci. Res. (2004) 75:344-352). The effects of loss of TIEG on Smad7 gene expression was tested. In the wild-type MEF cells, Smad7 mRNA levels rapidly increase following TGFβ treatment with levels decreasing by 3-6 hours. In contrast, Smad7 levels remain elevated at 12 and 24 hours in TIEG null cells (FIG. 7B ). These results support a role for TIEG in the regulation of the TGFβ/Smad pathway through the repression of the inhibitory Smad7 gene. - In summary, these results demonstrate that TIEG plays an integral role in the regulation of cellular proliferation by TGFβ. Furthermore, loss of TIEG expression has dramatic effects on the induction of Smad dependent transcription. The results also suggest a mechanism by which the loss of TIEG may lead to, or enhance, the development of breast and other types of cancer. Previous data showed that TIEG polypeptide levels decrease throughout the progression of breast cancer where advanced stages of breast cancer exhibit no detectable TIEG polypeptide expression (Subramaniam et al., J. Cell. Biochem. (1998) 68:226-36). Interestingly, TGFβ has been observed to have dramatically different effects on breast cancer cells than normal mammary epithelial cells suggesting that there is an alteration in the responses elicited by TGFβ between normal and cancerous cells (Koli and Arteaga, J. Mammary. Gland. Biol. Neoplasia. (1996) 1:373-380). The results provided herein support a hypothesis that the loss of TIEG plays an important role in the loss of the growth inhibitory properties of TGFβ during the progression of cancer. Additional studies using the TIEG null mice can help establish the importance for TIEG in vivo.
- This example expands on the information provided in Example 2.
- Calvarial Osteoblast isolation: Calvarial osteoblasts were isolated from 1-3 day old neonatal mouse pups. In brief, 1-3 day old mouse pups that were born to heterozygous TIEG null C57BL6/129 parents were euthanized using CO2. The calvaria was dissected out and washed several times with phosphate buffered saline (PBS) to remove the blood cells. The calvaria were minced and digested in Hank's balanced saline (HBS) containing bovine serum albumin (4 mg/mL) and collagenase type-2 (4 mg/mL) for 10 minutes at 37° C. The cells obtained from the third digest was centrifuged at 221×g for 5 minutes, and the cells were resuspended in αMEM containing 10% (v/v) fetal bovine serum and grown in culture dishes. The calvarial osteoblasts obtained were used as support cells for osteoclast precursors and for osteoblast differentiation studies.
- Osteoblast mineralization studies: Primary calvarial osteoblasts obtained from TIEG +/+ and TIEG −/− null mice were plated onto 12 well plates at a low density and grown until confluency. The cells were then shifted to differentiation media containing ascorbic acid (50 μg/mL) and β-glycerol phosphate (4 mM). The cells were treated with vehicle or bone morphogenic protein-2 (BMP2) (100 ng/mL) every third day and allowed to mineralize for 18 days. Once the bone nodules were visible, the cells were washed twice with PBS and fixed in 10% (v/v) neutral buffered formalin overnight. The fixed cells were stained with 2% (w/v) alizarin red for 10 minutes. Finally, the cells were washed with distilled water to remove excess stain and visualized for bone nodules.
- Northern blot analysis and semi-quantitative RT-PCR: Northern blot analysis to measure the TIEG mRNA levels in TIEG +/+ and TIEG −/− osteoblasts were performed as described elsewhere (Subramaniam et al., Nucleic Acids Res. (1995) 23:4907-4912). Semi-quantitative RT-PCR was performed to measure the osteoblast specific marker genes in cultured calvarial osteoblasts as described elsewhere (Rickard et al., J. Cell. Biochem. (2003) 89:633-646). The primers used were: mTIEG-
F 5′-GTCTCAGT-GCTCCCGTCTGT-3′ (SEQ ID NO:15); mTIEG-R 5′-CCACCGCTTCAAAGTCACTC-3′ (SEQ ID NO:16); alkaline phosphatase-F 5′-TCTCAACTGTTCTAGTTCCT-3′ (SEQ ID NO:17); alkaline phosphatase-R 5′-TTGGGTCATTTCCACATGC-3′ (SEQ ID NO:18); Type 1A Col.-F 5′-TCTCCACTCTTCTAGTTCCT-3′ (SEQ ID NO:19); Type 1A Col.-R 5′-TTGGGTCATTTCCACATGC-3′ (SEQ ID NO:20);ostrix F 5′-TGAGGAAGAAGCCCATTCAC-3′ (SEQ ID NO:21);ostrix R 5′-ACTTCTTCTCCCGGGTGTG-3′ (SEQ ID NO:22);osteocalcin F 5′-TCTGACAAACCTTCATGTCC-3′ (SEQ ID NO:23);osteocalcin R 5′-AAATAGTGATACCGTAGATGCG-3′ (SEQ ID NO:24);GAPDH F 5′-CACCATGGAGAAGGCCGGGG-3′ (SEQ ID NO:25);GAPDH R 5′-GACGGACACATTGGGGGTAG-3′ (SEQ ID NO:26). - Western blot analysis: To determine the levels of TIEG polypeptide in TIEG −/− mice, liver tissue was collected from TIEG +/+ and TIEG −/− mice. Equal amounts of the tissue were homogenized in ice cold buffer containing 1% (v/v) NP40, 10% (v/v) gycerol, 137 mM NaCl, 20 mM Tris pH 7.4, 20 mM NaF, 1 mM sodium pyrophosphate, 1 mM orthovanadate, and protease inhibitor cocktail mix (Roche Diagnostics, Mannheim, Germany). The homogenate was centrifuged at 13,200×g for 20 minutes. The polypeptide quantitation was performed on the supernatant. One mg of the tissue lysate was immunoprecipitated with 8 μg of TIEG specific polyclonal antibody. The immunoprecipitates were separated on 5-15% (w/v) SDS-PAGE, and western blot was performed with a TIEG-specific polyclonal antibody.
- Cell proliferation assay: TIEG +/+ and TIEG −/− calvarial osteoblasts were seeded at 6400 cells/well on 96 well plates and grown for 24, 48, and 72 hours at 37° C. The proliferation of these cells was measured using the Cell Titer 96 Aqueous One Solution Cell Proliferation Assay (Promega, Madison, Wis.). Average results from six replicates were compared between TIEG +/+ and TIEG −/− calvarial osteoblasts.
- Southern blot analysis and genetyping: Genomic DNA was isolated from mouse tail using the DNeasy tissue kit (Qiagen, Valencia, Calif.). Twenty micrograms of the genomic DNA was digested with EcoRI and separated on a 0.8% (w/v) Agarose gel. Southern blot analysis was performed from digested DNA as described elsewhere (Sambrook et al., (1982) Molecular cloning: a laboratory manual, p. 382-389. In: Cold Spring Harbor Laboratory Press). The blot was probed with [32P]-labeled 5′-probe: 0.8 kb EcoRI/XbaI fragment from subclone Eco TIEG. Genotyping by PCR was performed using the following primers: KONEOF1, 5′-CTAAAGCGCATGCTCCAGACTGCC-3′ (SEQ ID NO:27);
Intron 2F, 5′-CCTCTAATTCCTCTCCTTGC-3′ (SEQ ID NO:28); Exon 3R1,5′-TGGTGGTTGCACAGTTGGGCATCAGCTG-3′ (SEQ ID NO:29). PCR was performed at 1 minute at 94° C., 2 minutes at 55° C., and 3 minutes at 72° C. for a total of 40 cycles. The PCR products were separated on a 1.5% (w/v) agarose gel, and the gels were stained with ethidium bromide and photographed. - In vitro Osteoclast Differentiation with Calvarial Support Cells: Calvarial cells were plated at 4×104 cells/well on a 48 well plate (Fisher, Pittsburgh, Pa.) 24 hours prior (Day 1) to the addition of osteoclast precursors (1.5×106 marrow mononuclear cells or 4.8×107 spleen cells per plate) and harvested as described elsewhere (Gingery et al., J. Cell. Biochem. (2003) 89:165-179). Precursors were added to the stromal cells (Day O) using α-modified Minimal Essential Medium (Gibco BRL, Grand Island, N.Y.) supplemented with 10% FBS, 1% antibiotic/antimycotic, 1×10−7 M dexamethazone (Sigma Chemical Co., St Louis, Mo.), and 1×10−5 M vitamin D3 (BioMol, Plymouth Meeting, Pa.) with or without the addition of 30 ng/mL of RANKL and/or 25 ng/mL M-CSF as indicated in the figure legends. The media was changed every three days. On day 9, the co-cultures were washed three times with 1× phosphate buffered saline (1×PBS—1.7 mM KH2PO4, 5 mM Na2HPO4, 150 mM NaCl, pH to 7.4) and fixed with 1% paraformaldehyde in 1×PBS. After incubating for 30 minutes at room temperature in fixative, the cells were rinsed with water three times and stored in water at 4° C. until they were evaluated for differentiation as follows.
- Tartrate resistant acid phosphatase (TRAP) staining was used to visualize differentiated cells according to manufacturer's directions (Sigma Chemical Co., St. Louis, Mo.). The number of mononuclear and multinucleated TRAP positive cells were counted using an Olympus inverted microscope at 200× magnification.
- Real Time Polymerase Chain Reaction Analyses: Calvarial cells were plated into 6 well plates at a density of 6.4×105 cells/well and treated with 10−7 M1,25-dihydroxyvitamin D3 and 10−7 M dexamethazone for 3 days. RNA was isolated using Trizol reagent according to manufacturer's protocol (Invitrogen, Carlesbad, Calif.). Following LiCl precipitation to remove DNA, cDNA was synthesized by standard protocol: One μg total RNA was heat denatured at 68° C. for 15 minutes in reverse transcription reaction buffer (50 mM Tris-HCl, 75 mM KCl, 3 mM MgCl2, 50 mM DTT, 1 μM dNTPs, 500 ng oligo-dT primer). Following heat denaturation, 1 unit of MMLV-RT (Invitrogen) was added, and the mixture incubated at 37° C. for 45 minutes followed by a 68° C. incubation for an additional 15 minutes. Two μL of the resultant cDNA was used for each reaction as follows: PCR buffer (20 mM Tris-HCl, 50 mM KCl, 3 mM MgCl2), 300 nM of both the upstream and downstream primers, and 1 unit of Taq Polymerase (Promega, Madison, Wis.). As a control, tubulin was amplified simultaneously in separate reactions. Message levels were examined using the BioRad iCycler according to the manufacturer's specifications. The amount of target cDNA in the sample, relative to tubulin, was calculated using the
formula 2ΔΔCt, where ΔΔCt is the fractional cycle number difference between the target and tubulin levels. The results were calculated as the relative quantification of the target gene compared to a control (vehicle without vitamin D or dexamethazone) treatment. The primers were as follows: M-CSF-F-5′-CTCTGGCTGGCTTGGCTTGG-3′ (SEQ ID NO:30); M-CSF-R-5′-GCAGAAGG-ATGAGGTTGTG-3′ (SEQ ID NO:31); OPG-F-5′-ACGGACAGCTGGCACACCAG-3′ (SEQ ID NO:32); OPG-R-5′-CTC ACACACTCGGTTGTGGG-3′ (SEQ ID NO:33); RANKL-F-5′-GGAGGACCATGAACCCTTTCC-3′ (SEQ ID NO:34); RANKL-R-5′-GCTGGCTGCTGCTTCACTGG-3′ (SEQ ID NO:35); Tubulin-F-5′-CTGCTCATCAGCAAGATCAGAG-3′ (SEQ ID NO:36); and Tubulin-R-5′-GCATTATAGGGXTCCACCACAG-3′ (SEQ ID NO:37). - Microarray Analysis: Calvarial osteoblasts isolated from TIEG +/+ and TIEG −/− mice were allowed to grow to near confluency and then treated with either vehicle or 2 ng/mL TGFβ for 24 hours in duplicate. Total RNA was isolated using Trizol Reagent (Invitrogen), and 4 μg of RNA was used in microarray analysis on the mouse MOE430A microarray (Affymetrix, Santa Clara, Calif.) containing oligonucleotide probes for approximately 23,000 mouse sequences. Preparation of the Labeled cDNA and Microarray Hybridization was Performed by a Microarray core facility. Analysis of the gene expression profiles was performed using the GeneSpring 6.1 software (Silicon Genetics, Redwood City, Calif.). Only those genes differentially expressed ≦ or ≧2-fold were considered in the analysis.
- Phenotype of TIEG null mice: Under gross examination, the TIEG null mice were phenotypically normal, and the breeding characteristics appeared to be normal. Detailed examination of all major organs revealed that the TIEG null male mice exhibited hypertropic hearts, but only in the aged mice. Fibroblasts and calvarial osteoblasts generated from the TIEG −/− mice were readily immortalized in culture, reflecting the loss or reduction of the TGFβ signaling pathway due to the loss of TIEG. Histomorphometric analysis of bones, obtained from 6-week and 4-month animals, did not reveal a bone phenotype. To further characterize the role of TIEG in osteoblast gene expression and differentiation, calvarial osteoblasts were isolated from TIEG +/+ and TIEG −/− mice and cultured in vitro.
- Calvarial osteoblast cell proliferation: Calvarial osteoblasts from TIEG +/+ and TIEG −/− mice were plated onto a 96-well cell culture dish, and proliferation rates were measured at 24, 48, and 72 hours. The proliferation rate of TIEG −/− calvarial osteoblasts were slightly higher than that of TIEG +/+ osteoblasts (
FIG. 8 ). - Mineralization of calvarial osteoblasts in culture: The treatment of osteoblasts in culture with bone morphogenic protein-2 (BMP2) induces mineralized bone nodule formation. To compare bone nodule formation from TIEG +/+ and TIEG −/− calvarial osteoblasts in culture, the cells were grown in differentiation media for 18 days with BMP2 treatment every third day. The TIEG +/+ osteoblasts generated distinctive nodule formation in culture, whereas the TIEG −/− osteoblasts lacked the capacity to form mineralized nodules.
- TIEG −/− Calvarial Cells Are Defective in Expression Of Osteoblastic Genes In Vitro: The osteoblastic gene expression patterns of the TIEG +/+ and TIEG −/− calvarial cells were examined. Total RNA was used to perform log phase RT-PCR using standard techniques. Analysis was performed on five separate calvarial isolates, and the results scanned and quantitated using NIH Image. The data were normalized to GAPDH expression. Osteocalcin, ostrix, and alkaline phosphatase were significantly lower in the TIEG −/− calvarial cells when compared to the TIEG +/+ cells (
FIG. 9 ). A similar pattern was observed with Cbfa-1, but significant variations in expression between cultures decreased its significance. There was no significant difference in type I Collagen (Col IA) and GAPDH mRNA levels, demonstrating that TIEG regulates only selected genes. These results suggest that the lack of TIEG in the calvarial osteoblast cells reduces the ability of these cells to create bone matrix via a deficiency in the expression of select bone related (osteoblastic) gene expression. - Osteoblastic cells from TIEG −/− mice are defective in supporting osteoclast differentiation: Osteoblastic cells from TIEG +/+ and TIEG −/− mice were plated. Marrow or spleen tissues from TIEG +/+ mice were used as a source of wild-type osteoclast precursors. Following co-culture in the presence of vitamin D3 and dexamethazone for 9 days, the number of osteoclasts were determined. Compared to TIEG +/+ osteoblastic cells, cells from TIEG −/− mice are significantly less able to support osteoclast differentiation from either marrow or spleen precursors (
FIG. 10 ). - The RANKL/OPG Ratio Is Lower In TIEG −/− Cells than in TIEG +/+ Cells: Osteoblastic cells support osteoclast differentiation by producing the enhancers of OC differentiation, M-CSF and RANKL, with a balanced production of the inhibitor of OC differentiation, osteoprotegerin (OPG), a RANKL decoy receptor (Khosla, Endocrinology 2001 142:5050-5055). Since vitamin D and dexamethazone were used to stimulate RANKL and M-CSF expression while repressing OPG expression in support cells, the impact of these hormones on calvarial cell gene expression was examined using Real Time PCR. Reduced levels of RANKL mRNA and increased levels of OPG mRNA were detected in the TIEG −/− calvarial cells as compared to TIEG +/+ cells (
FIG. 11 ). A significant reduction in the RANKL to OPG ratio was detected in the TIEG −/− cells as compared to TIEG +/+ cells. In contrast, there is no apparent impact of lack of TIEG on M-CSF gene expression. Examination of secreted polypeptide levels using a cytokine array (Ray Biotech, CA) revealed that there was 2-fold less OPG in TIEG +/+cultures as compared to TIEG −/− cultures, whereas there was 3.9-fold more M-CSF in the TIEG +/+cultures as compared to TIEG −/− cell cultures. - Replenishing the RANKL Partially Restores the TIEG −/− Calvarial Cell's Ability To Induce Osteoclast Differentiation. The above results suggest that either altering the M-CSF (due to polypeptide secretion differences) or the ratio of RANKL to OPG (due to gene and polypeptide differences) could reverse the reduced capacity of the TIEG −/− calvarial cells to support osteoclast differentiation. To examine these possibilities, TIEG +/+ and TIEG −/− calvarial osteoblast cells were cultured with TIEG +/+marrow in the presence of various combinations of the growth factors. Addition of 30 ng/mL RANKL partially, but not completely, restored differentiation (
FIG. 12 ). Ten ng/mL M-CSF alone or in conjunction with RANKL treatment had no additional impact on osteoclast differentiation over that of the addition of RANKL alone. Additional experiments with higher RANKL concentrations did not increase differentiation above that measured with 30 ng/mL. - Microarray analysis of TIEG +/+ and TIEG −/− osteoblasts: The transcription factor TIEG affects the expression of genes, such as Smad7 (Johnsen et al., Oncogene (2002) 21:5783-5790) and CD11d promoter (NotI et al., J. Biol. Chem. (2004) 279:26948-58) by binding a specific DNA-binding motif and regulating transcription. The loss of TIEG expression could elicit changes in gene transcription in those genes dependent on TIEG for regulation. The gene expression profiles of calvarial OB cells from TIEG +/+ and TIEG −/− mice treated with TGFβ were examined. Only 4-5% of the total genes expressed in OBs from either genotype were regulated at least 2-fold (up or down) by TGFβ treatment (
FIG. 13A ). As expected, 403 genes were repressed by TGFβ treatment in the TIEG +/+ OB cells, while only 149 genes were repressed by TGFβ treatment of the TIEG −/− OB cells. The reverse pattern occurred with the genes that are induced by TGFβ with 138 in the TIEG +/+ OB cells and 260 in the TIEG −/− OB cells. This is expected, since TIEG is reported to be a general repressor of transcription with minor cases of gene induction. This suggests that the major role of TIEG is a repressor of transcription, since the loss of TIEG results in a decrease in gene repression. Twenty-one percent of the TGFβ-regulated genes were commonly regulated by the OB cells of both genotypes, whereas 47% and 32% are regulated exclusively in the TIEG +/+ and TIEG −/− OBs, respectively (FIG. 13B ). Thus, the loss of TIEG causes the loss of regulation of 126 genes. Collectively, these results demonstrate that the loss of TIEG results in a major perturbation in normal TGFβ-dependent gene expression in OBs with a decrease in the number of genes regulated by TGFβ. - These results demonstrate that TIEG expression in osteoblasts is involved in both osteoblast function and OB support of OC differentiation.
- Hypertrophic cardiomyopathy (HCM) is a disease defined by profound genetic and phenotypic heterogeneity (Arad et al., Human Molecular Genetics (2002) 11:2499; Maron et al., New England Journal of Medicine (1987) 316:780; Maron et al., New England Journal of Medicine (1987) 316:844; and Seidman and Seidman, Cell (2001) 104:557). Presentation and clinical course range from asymptomatic to severe disability to sudden cardiac death most commonly occurring in the young. Currently, there are over 200 mutations in 10 sarcomeric genes reported for this autosomal dominant disease (Vikstrom and Leinwand, Current Opinion in Cell Biology (1996) 8:97).
- Transgenic models exist that overexpress mutant myosin heavy chains (Vikstrom et al., Zeitschrift fur Kardiologie (1995) 84:49 and Marian et al., Journal of Clinical Investigation (1999) 104:1683), mutant cardiac troponin T (Oberst et al., Journal of Clinical Investigation 102:1498 and Tardiff et al., Journal of Clinical Investigation (1998) 101:2800), mutant myosin binding protein-C (Yang et al., Journal of Clinical Investigation (1998) 102:1292), or cardiac troponin-I (James et al., Circulation Research (2000) 87:805) and the myosin (Arg403Gln) mutation produced by homologous recombination (Geisterfer-Lowrance et al., Science (1996) 272:731). Transgenic and knockout mouse models involving signaling pathways for stress induced hypertrophy include calcineurin (Molkentin et al., Cell (1998) 93:215), modulatory calcineurin-interacting protein (MCIP) 1 (Vega et al., Proc. Natl. Acad. Sci. USA (2003) 100:669), class II histone deacetylases (HDACs; Zhang et al., Molec. Cell. Biol. (2002) 22:7302), homeobox only protein (HOP; Kook et al., Journal of Clinical Investigation (2003) 112:863), and MEF2 (Lin et al., Science (1997) 276:1404). These important animal models partially recapitulate the classic triad of human HCM: asymmetric septal hypertrophy, myocyte disarray, and fibrosis. Further, these animal models suggest that aberrant activation of calcium-dependent intracellular signaling systems and reprogramming of cardiomyocyte gene expression may represent a final common pathway underlying maladaptive hypertrophy. However, the fundamental cellular mechanisms are not fully known and additional hypertrophic signaling cascades likely exist.
- To assess the role of TIEG in cardiac hypertrophy, a cohort of unrelated patients with HCM were screened for TIEG mutations. In addition, a possible functional role of TIEG in the pathogenesis of HCM was examined using TIEG −/− mice.
- Mutational Analysis of TIEG1 in HCM Cohort: Informed written consent was obtained. 389 unrelated individuals (age 42.5±18.9 years, 215 males) were evaluated and provided a blood sample for molecular genetic testing. Each of these subjects met the clinical diagnostic criteria for HCM: left ventricular wall thickness (LVWT)>13 mm in the absence of another confounding diagnosis. Purgene® DNA extraction kits (Gentra, Inc., Minneapolis, Minn.) were used to extract genomic DNA from peripheral blood lymphocytes. Primers were used to amplify the four polypeptide-encoding exons of TIEG from genomic DNA by the polymerase chain reaction. Sequence variations were detected by denaturing high performance liquid chromatography (DHPLC) (WAVE™, Transgenomic, Omaha, Nebr.; Pei and Melmed, Molecular Endocrinology (1997) 11:433). For samples with an abnormal DHPLC elution profile, the precise sequence anomaly was determined by automated dye terminator cycle-sequencing using an ABI Prism 377 (Ramos-Morales et al., Oncogene (2000) 19:403).
- Generation and Analysis of TIEG −/− Mice: Mice lacking the TIEG gene were generated as described herein.
- Echocardiography: Before sacrificing the TIEG −/− mice, epicardial imaging was performed using M-mode ultrasound imaging from parasternal short axis views. All imaging was performed using a Vivid FiVe ultra-sound machine and a 15 MHz multi-frequency phased array probe (GE Vingmed, Horten, Norway). Anterior wall thickness was also measured (Echopac version 6.25b software, GE Vingmed, Horten, Norway).
- Invasive Hemodynamics: Under ketamine-xylazine anesthestic, right carotid cutdown was performed. Through this arteriotomy, a micromanometer tip pressure catheter (Millar Instruments, Houston, Tex.) was introduced into the left ventricle. The left ventricular pressure recordings were obtained for 20 seconds each and traces were generated.
- Experimental Animal Model: Experimental studies were performed evaluating control mice (TIEG +/+) and TIEG −/− mice. The mice were studied from
age 4 to 18 months (N=20) for each group. The mice were weighed, and an echocardiogram and hemodynamics were performed before sacrifice. Then, the mice were euthanized by CO2. Immediately after dissection, the hearts were weighed. The ventricles were fixed in formalin and embedded in paraffin. Paraffin embedded sections (6 μm) were cut and stained with Masson Trichrome stain for histopathologic examination. Longitudinal sections taken from the heart in systole at the time of sacrifice were placed in Trump's fixative and analyzed for transmission electron microscopy. - Gene MicroArray: Total RNA was isolated using Trizol Reagent (Invitrogen), and 4 micrograms of RNA was used in microarray analysis on the mouse MOE430A microarray (Affymetrix, Santa Clara, Calif.) containing oligonucleotide probes for approximately 23,000 mouse sequences. Analysis of the gene expression profiles was performed using the GeneSpring 6.1 software (Silicon Genetics, Redwood City, Calif.). Only those genes differentially expressed>2-fold were considered in the analysis.
- Reverse Transcriptase Polymerase Chain Reaction: The left ventricles from the 14 to 18 month old mice hearts were frozen immediately for RNA extraction. Total RNA was isolated using the Trizol kit (Introgen). Reverse transcriptase polymerase chain reaction (RT-PCR) analysis was performed for the expression of TIEG (Kook et al., Journal of Clinical Investigation (2003) 112:863 and Subramaniam et al., Nucleic Acids Research (1995) 23:4907), HOP (Kook et al., Journal of Clinical Investigation (2003) 112:863), MEF2 (Lin et al., Science (1997) 276:1404), HDACII (Kakar, Gene (1999) 240:317), ANF (Zhou and Olson, Molecular & Cellular Biology (1994)14:6232), BNP (Heaney and Melmed, Best Practice & Research Clinical Endocrinology & Metabolism (1999) 13:367), and Pttg1 (Pei, Journal of Biological Chemistry (1998) 273:5219). GAPDH expression was tested as a control.
- Immunohistochemistry of Mouse and Human Cardiac Tissues: Immuno-staining of the human myectomy specimens and mouse ventricles was performed to identify Pttg1 (Santa Cruz, Calif.). After fixation, slides were treated sequentially with 3.0% (v/v) H2O2 for 15 minutes and normal mouse serum for 20 minutes, washed with phosphate buffered saline (w/v) (PBS) for 10 minutes, and incubated in 1:50 anti-Pttg1 for 16 hours at 4° C. To develop color, slides were incubated in 3-amino-9-ethylcarbazole (Sigma Chemical Co., St. Louis, Mo.) and washed with H2O for 5 minutes.
- Mutational analysis of TIEG revealed a non-synonymous single nucleotide polymorphism (amino acid variant) in one patient involving a substitution of isoleucine (I) with methionine (M) at residue 470 (1470M). This variant was absent in 400 reference alleles. However, due to unavailability of DNA from first degree relatives, a co-segregation analysis could not be performed to further implicate this specific TIEG variant as a HCM-associated mutation. To further delineate a potential role of TIEG in HCM, a TIEG knockout mouse was generated and found to recapitulate fully the triad of human HCM: unexplained hypertrophy, myocyte disarray, and fibrosis. In addition, microarray analysis of heart tissue-derived mRNA from 18 month old TIEG −/− mice revealed a striking 13.81-fold upregulation in Pttg1. The presence of Pttg1 was confirmed in tissue specimens from patients who underwent a surgical myectomy for their HCM.
- Cardiac Hypertrophy in the TIEG −/− mice: All parameters of the TIEG −/− mice hearts were compared to the wild type control mice. An initial observation was hypertrophy in the 18-month-old TIEG −/− mice. The finding of a striking (214%) increase in cardiac mass was confirmed by the heart weight/body weight ratio TIEG −/− (0.944±0.12) versus control (0.44±0.17). A photograph of the longitudinal cross section of the TIEG +/+ mice versus TIEG −/− mice demonstrated the septal wall abnormality. The anterior wall septal thickness was measured by m-mode, and an increase was found in the TIEG −/−18-month-old mice. The anterior wall measured 1.67±0.35 mm compared to wild type (1.13±0.15, p<0.04). The TIEG −/− mice developed left ventricular cavity obliteration and an increase in wall thickness at 18 months. The left ventricular pressure tracings for the TIEG +/+ mice versus TIEG −/− mice were then compared. There was no statistical difference in the systolic blood pressures measured in both mouse lines.
- Masson Trichrome and Electron Microscopy of the TIEG mice: Low magnification histologic analysis of the experimental TIEG −/− mice was compared to that of wild-type mice at
age 18 months. A masson trichrome stain demonstrated large areas of fibrosis present in the TIEG −/− left ventricle as compared to the wild-type control. An oil immersion, higher magnification of the masson trichrome stain revealed the myocyte disarray in the TIEG −/− mice as compared to wild-type mice. Myocyte hypertrophy and disarray as well as fibrosis were universal findings in each 18-month-old TIEG −/− mouse studied. Transmission electron microscopy revealed that the TIEG −/− mice had a significantly abnormal sarcomeric architecture and myofibrillar disarray. - Gene Array and RT-PCR: RT-PCR was performed for the known stress induced hypertrophy genes. There were no differences in the gene expression for HOP, MEF HDAC, ANF, and BNP in the TIEG −/− mice as compared to the results from wild-type mice. As expected, TIEG mRNA was absent in the knockout mice at 18 months. The gene microarray analysis revealed an increase in the expression levels of several genes (Table 1).
-
TABLE 1 Micro array results. Fold Change Name Accession # Description 13.81 Pttg 1AF069051 Pituitary tumor- transforming 1 5.66 My 17 NM_002879 Myosin light polyypeptide 7, regulatory 10 3.56 1500035H01 NM_023831 RIKEN cDNA 1500035HO1 3.41 Wifl BC004048 Wnt Inhibitory factor 1 3.03 Anxa8 NM_013473 Annexin A8
Pituitary tumor-transforming 1 (Pttg1) was increased 13.8 fold in the TIEG −/− mice. The gene expression of Pttg1 was confirmed in the myocardium, and an increase in Pttg1 in the TIEG −/− aged mice was detected as compared to the control. In addition, there is marked increase in protein levels of Pttg1 in the TIEG −/− mice as compared to the TIEG +/+ mice atage 18 months. Further, positive Pttg1 protein expression was confirmed in surgical myectomy tissue derived from patients with HCM. - Masson Trichrome of the Mice and the Human Surgical HCM Specimens: The immunohistochemistry and masson trichrome of hearts from mice at
4, 8, 12, and 18 months were compared to heart tissue from patients with HCM. Beginning at about 8 months of age, the TIEG −/− mice start to develop interstitial fibrosis as indicated by blue staining areas. This stain increases dramatically in the TIEG −/− mice as the mice age to 18 months. The presence of blue staining fibrosis in the aged mice is similar to the human HCM specimens.age - These results demonstrate an involvement of TIEG in the pathogenesis of HCM. In addition, the results presented herein demonstrate that a TIEG null animal fully develops the phenotype of human HCM. For example, TIEG knock out mice fully recapitulate the phenotype of human HCM with the development of late onset, severe cardiac hypertrophy (in the absence of hypertension) accompanied by myofibrillar disarray and fibrosis. Thus, the non-human animals provided herein that lack TIEG polypeptide expression can be used as non-stress induced models to study heart conditions such as HCM.
- The results provided herein also demonstrate that Pttg1 polypeptides (also known as securing polypeptides) can mediate hypertrophic responses. For example, the gene array results provided herein revealed an upregulation of Pttg1 mRNA. These results suggest a pathway model whereby TIEG acting as a hypertrophy suppressor signaling molecule normally binds to and down-regulates Pttg1 via binding to Sp1 sites. In the absence of TIEG, Pttg1 is dramatically up-regulated, and the hypertrophic process ensues.
- Analysis of TIEG knockout mice (TIEG −/− mice) revealed that TIEG −/− mice develop late onset, non-stress induced severe asymmetric (left) ventricular hypertrophy (HCM) which recapitulates human HCM. There was a 100% penetrance of HCM in the adult male with myofibrillar disarray, fibrosis, and myocyte hypertrophy, but 0% penetrance in the adult female. Using gene arrays (transcriptomes), four regulatory genes were found to be significantly altered in the TIEG −/− HCM hearts. The most pronounced (about 14-fold increase) and relevant alteration was the increase in PTTG-1 expression. PTTG-1 is a potent oncogene that is expressed in many cell types, including heart cells, and is an inducer of cell proliferation, cell hypertrophy, and aneuploidy. It regulates the expression/activity of proto-oncogenes, tumor suppressor genes, and growth factors. One hypothesis is that the inhibition of TIEG expression blocks the TGFβ/BMP signaling pathway and results in a marked increase in pttg-1 and other gene expressions (e.g., α-myosin light chain regulatory protein), loss of cell cycle control, and the development of a severe pattern of late onset asymmetric HCM. Defects in TIEG-1 (or pttg-1) gene expressions may be responsible for the development of HCM in a subset of the human population with this disease.
- The following experiments can be performed to assess the involvement of TIEG, sex hormones, and PTTG-1 in HCM.
- The phenotypes of the 4 month old (early stage HCM) and 16 month old (advanced stage HCM) TIEG −/−, TIEG +/−, and TIEG +/+ male mouse hearts are characterized and compared to assess the penetrance of the TIEG knockout. This includes assessing histology, cardiac MR1, echocardiography, catheter hemodynamics, electrocardiographic monitoring, cell hyperplasia and hypertrophy, and the effects of exercise on the early onset of the disease. The molecular phenotypes are compared between the matched age TIEG −/−, TIEG +/−, and TIEG +/+ male mouse hearts in terms of incidence/frequency of the disease and its expression of HCM related genes using microarray analysis. In addition, an in vitro myocyte culture model is developed. Briefly, cardiomyocyte cells are isolated from TIEG −/−, TIEG +/−, or TIEG +/+ hearts, and the cellular and molecular properties of the isolated cells in culture are compared to those observed in vivo in the TIEG −/−, TIEG +/−, and TIEG +/+ male hearts.
- A sex steroid dependency of the gender-specific (male) phenotype for HCM is examined with emphasis on, for example, estrogen (E). Using, for example, 14 month old TIEG −/− male and female mouse models, the incidence of HCM in orchiectomized (ORX) TIEG −/− male mice and ovariectomized (OVX) TIEG −/− female mice is compared to that observed in intact male TIEG −/− mice. If ORX male mice fail to develop HCM (i.e., androgen (DHT) dependency of the HCM) or if OVX female mice develop HCM (i.e., E protection against the HCM), then mice can be tested to determine whether (1) the respective steroid hormone replacement or (2) the E treatment of castrated male mice, or the DHT treatment of castrated female mice, will enhance the incidence of the disease.
- If a sex hormone encourages (e.g., DHT) or inhibits (e.g., E) the development of HCM, then the global gene expression is compared by gene microarray together with Pathway Assist analysis to identify the involved signaling pathways for the particular steroid which protects/encourages the development of HCM. The in vitro cardiomyocyte culture system described above can be used to determine if cells from female TIEG −/− mice are estrogen responsive.
- The actions of four candidate TIEG −/− targets, which show potential function and differences in levels of expression, is examined. These are pttg-1, the regulatory protein for myosin light chain, and the two Wnt pathway members, Wnt factor-1, and Dikkopf homology protein. The pttg-1 is emphasized due to its 14 fold induction in the absence of TIEG in HCM hearts. First, male TIEG (−/−)/pttg (+/+) mice are cross-breed with TIEG (+/+)/pttg (−/−) mice to obtain TIEG (−/−)/pttg (−/−) offspring. The resulting TIEG (−/−)/pttg (−/−) mice are examined to determine if males develop HCM compared to TIEG (−/−)/pttg (+/+) controls. No HCM incidence in the double knockout would support pttg-1 as the major TIEG target gene in HCM development.
- If pttg-1 appears to play a role in development of HCM in the male TIEG −/− mice, then transgenic TIEG +/+ (normal) male mice which overexpress pttg-1 in the heart tissues can be developed to determine if these animals develop adult male HCM similar to or at a younger age than do TIEG −/− male mice.
- TIEG −/− cardiomyocytes in culture are used to determine whether or not overexpression of TIEG or a reduction in pttg-1 expression will reverse the hypertrophism in these cells as determined, for example, by decreases in cell size and protein synthesis, reverses the changes in gene expression patterns, and/or reductions in the organization of the sarcomere as observed with TIEG −/− myocytes in vivo. In addition, TIEG +/+cardiomyocytes in culture are used to determine whether or not reduction in TIEG expression or an increase in pttg-1 expression will generate a hypertrophic myocyte. If pttg-1 fails to play a role in the development of HCM, then the role of the regulatory protein for myosin light chain, Wnt factor-1, and Dikkopf homology protein is examined in a similar manner.
- Genomic and proteomic techniques are used to elucidate a TIEG/PTTG1 signaling pathway in human HCM. The genomic techniques involve a mutational analysis of TIEG as a candidate gene for human HCM. Comprehensive mutational analysis of polypeptide-encoding exons of TIEG is performed on a cohort of over 500 unrelated patients with unequivocal and unexplained cardiac hypertrophy (e.g., human HCM) using denaturing high performance liquid chromatography and direct DNA sequencing. Non-synonymous TIEG variants are characterized functionally using a Smad 7 Promoter assay. The proteomic techniques involve exploration of the relationship between TIEG and PTTG1 at a transcriptional as well as polypeptide level in human myectomy specimens from patients with unequivocal HCM who underwent surgical removal of hypertrophied and obstructive myocardium to alleviate the refractory symptoms. The levels of TIEG and Pttg1 mRNA and polypeptide expression is measured in fresh frozen myocardial tissue from 32 HCM patients who received palliative myectomy.
- Fascicles from the tail tendons of twelve-week old male and female control (n=5) and TIEG knockout (n=5) mice were tested to compare mechanical properties. Using a micro-mechanical tester, the tendons were subjected to three loading scenarios: ramp test, stress relaxation test, and stretch-release cyclical test. The tail tendon cross sections were also measured using optical and transmission electronic microscopy.
- The control group exhibited higher (about 10%) dynamic and relaxed forces compared to those exhibited in TIEG −/− mice. In addition, the tendon strength stress was also higher (about 30%) for the control group. These results demonstrate that TIEG −/− mice (aged of 12 weeks) exhibit lower mechanical properties than the control group.
- The morphological analysis revealed the presence of more connective tissue in TIEG −/− mice. In addition, the size of the collagen bundle was smaller in TIEG −/− mice when compared to the size observed in control mice. These morphological differences between control and TIEG −/− groups can explain the lower mechanical properties exhibited in TIEG −/− mice.
- While overall growth and development are remarkably normal in TIEG −/− mice, the effect of the TIEG −/− state, and the resulting interference with normal TGF-β pathways, on wound healing has not been studied. The following is performed to study the course of wound healing in a TIEG −/− mouse model as compared to normal mice. Wild-type and TIEG −/− mice undergo incision and repair at
day 0. The mice are further divided into groups varied on the allowed healing time (time=3, 7, and 14 days). The mice are sacrificed, and skin samples, which include the healing wound, are harvested for tensile property and histologic analysis. The disruption of the TGF-β pathway by knocking out TIEG expression can result in an altered healing pattern. - The process of tendon healing follows a pattern similar to that of other healing tissues. Fibroblasts are seeded in collagen gels and allowed to contract around an inner ring. The fibroblasts are obtained from skin and tendon samples from both TIEG −/− and wild-type mice. After gel contraction, the rings are subjected to mechanical testing and analyzed histologically. Performing this experiment can allow investigation of the role of TIEG in fibroblast function.
- The results obtained from gene array analysis comparing the gene expression profiles of TIEG +/+ and TIEG −/− heart tissues revealed that PTTG was highly expressed in TIEG −/− hearts, suggesting that TIEG negatively regulates pttg gene expression. These results were confirmed through RT-PCR analysis. To further determine if the regulation of pttg gene expression by TIEG polypeptide occurs at the promoter level, the pttg promoter containing the 5′-flanking region (−1321 to −3) was cloned in front of a luciferase reporter. This construct was used to perform a transfection analysis. When the pttg promoter construct was transfected into AkR2B mouse embryo fibroblasts, an increased promoter activity was observed as compared to the basic luciferase construct (
FIG. 14 ). When the promoter construct was co-transfected with a TIEG expression vector, a 60-70 percent decrease in the promoter activity was observed. These results demonstrate that TIEG polypeptides can negatively regulate pttg gene expression by possibly binding to the regulatory sequences of a pttg promoter. - It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Claims (7)
1. A method for determining whether or not a test compound is a potential treatment compound for human hypertrophic cardiomyopathy, said method comprising:
(a) administering said test compound to a male TIEG −/− mouse, and
(b) determining whether or not said mouse develops symptoms of human hypertrophic cardiomyopathy to a lesser degree than those developed in a control male TIEG −/− mouse not receiving said test compound, wherein a lesser degree of symptoms of human hypertrophic cardiomyopathy in said mouse indicates that said test compound is a potential treatment compound for human hypertrophic cardiomyopathy.
2. The method of claim 1 , wherein said test compound is an siRNA or antisense oligo that reduces the expression of a PTTG-1 polypeptide.
3. A method for treating hypertrophic cardiomyopathy in a mammal, said method comprising administering a molecule to said mammal under conditions wherein the severity of a symptom of hypertrophic cardiomyopathy is reduced in said mammal, wherein said molecule reduces expression of a PTTG-1 polypeptide in said mammal or inhibits a PTTG-1 polypeptide activity in said mammal.
4. The method of claim 3 , wherein said mammal is a human.
5. The method of claim 3 , wherein said molecule is an siRNA or antisense oligo that reduces the expression of a PTTG-1 polypeptide.
6. The method of claim 3 , wherein said molecule reduces a PTTG-1 polypeptide activity.
7. The method of claim 3 , wherein said molecule is TGFβ, EGF, BMP-2, BMP-6, or estrogen.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/868,324 US20080300184A1 (en) | 2003-09-18 | 2007-10-05 | Transgenic tieg non-human animals |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US50399603P | 2003-09-18 | 2003-09-18 | |
| US10/944,454 US7304203B2 (en) | 2003-09-18 | 2004-09-17 | Transgenic TIEG non-human animals |
| US11/868,324 US20080300184A1 (en) | 2003-09-18 | 2007-10-05 | Transgenic tieg non-human animals |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/944,454 Division US7304203B2 (en) | 2003-09-18 | 2004-09-17 | Transgenic TIEG non-human animals |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080300184A1 true US20080300184A1 (en) | 2008-12-04 |
Family
ID=34375424
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/944,454 Expired - Fee Related US7304203B2 (en) | 2003-09-18 | 2004-09-17 | Transgenic TIEG non-human animals |
| US11/868,324 Abandoned US20080300184A1 (en) | 2003-09-18 | 2007-10-05 | Transgenic tieg non-human animals |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/944,454 Expired - Fee Related US7304203B2 (en) | 2003-09-18 | 2004-09-17 | Transgenic TIEG non-human animals |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US7304203B2 (en) |
| EP (1) | EP1662863A4 (en) |
| WO (1) | WO2005027625A2 (en) |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3687808A (en) * | 1969-08-14 | 1972-08-29 | Univ Leland Stanford Junior | Synthetic polynucleotides |
| US4415732A (en) * | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
| US4458066A (en) * | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
| US4469863A (en) * | 1980-11-12 | 1984-09-04 | Ts O Paul O P | Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof |
| US4959317A (en) * | 1985-10-07 | 1990-09-25 | E. I. Du Pont De Nemours And Company | Site-specific recombination of DNA in eukaryotic cells |
| US5214136A (en) * | 1990-02-20 | 1993-05-25 | Gilead Sciences, Inc. | Anthraquinone-derivatives oligonucleotides |
| US5218105A (en) * | 1990-07-27 | 1993-06-08 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
| US5235033A (en) * | 1985-03-15 | 1993-08-10 | Anti-Gene Development Group | Alpha-morpholino ribonucleoside derivatives and polymers thereof |
| US5464764A (en) * | 1989-08-22 | 1995-11-07 | University Of Utah Research Foundation | Positive-negative selection methods and vectors |
| US5596086A (en) * | 1990-09-20 | 1997-01-21 | Gilead Sciences, Inc. | Modified internucleoside linkages having one nitrogen and two carbon atoms |
| US5750666A (en) * | 1988-05-26 | 1998-05-12 | Competitve Technologies, Inc. | Polynucleotide phosphorodithioate compounds |
| US5889136A (en) * | 1995-06-09 | 1999-03-30 | The Regents Of The University Of Colorado | Orthoester protecting groups in RNA synthesis |
| US20060223063A1 (en) * | 2003-02-20 | 2006-10-05 | Philippe Froguel | Method of diagnosis of type 2 diabetes and early onset thereof |
-
2004
- 2004-09-17 US US10/944,454 patent/US7304203B2/en not_active Expired - Fee Related
- 2004-09-17 WO PCT/US2004/030728 patent/WO2005027625A2/en not_active Ceased
- 2004-09-17 EP EP04788842A patent/EP1662863A4/en not_active Withdrawn
-
2007
- 2007-10-05 US US11/868,324 patent/US20080300184A1/en not_active Abandoned
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3687808A (en) * | 1969-08-14 | 1972-08-29 | Univ Leland Stanford Junior | Synthetic polynucleotides |
| US4458066A (en) * | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
| US4469863A (en) * | 1980-11-12 | 1984-09-04 | Ts O Paul O P | Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof |
| US4415732A (en) * | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
| US5235033A (en) * | 1985-03-15 | 1993-08-10 | Anti-Gene Development Group | Alpha-morpholino ribonucleoside derivatives and polymers thereof |
| US4959317A (en) * | 1985-10-07 | 1990-09-25 | E. I. Du Pont De Nemours And Company | Site-specific recombination of DNA in eukaryotic cells |
| US5750666A (en) * | 1988-05-26 | 1998-05-12 | Competitve Technologies, Inc. | Polynucleotide phosphorodithioate compounds |
| US5464764A (en) * | 1989-08-22 | 1995-11-07 | University Of Utah Research Foundation | Positive-negative selection methods and vectors |
| US5214136A (en) * | 1990-02-20 | 1993-05-25 | Gilead Sciences, Inc. | Anthraquinone-derivatives oligonucleotides |
| US5218105A (en) * | 1990-07-27 | 1993-06-08 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
| US5596086A (en) * | 1990-09-20 | 1997-01-21 | Gilead Sciences, Inc. | Modified internucleoside linkages having one nitrogen and two carbon atoms |
| US5889136A (en) * | 1995-06-09 | 1999-03-30 | The Regents Of The University Of Colorado | Orthoester protecting groups in RNA synthesis |
| US20060223063A1 (en) * | 2003-02-20 | 2006-10-05 | Philippe Froguel | Method of diagnosis of type 2 diabetes and early onset thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1662863A4 (en) | 2009-01-28 |
| US7304203B2 (en) | 2007-12-04 |
| WO2005027625A2 (en) | 2005-03-31 |
| WO2005027625A3 (en) | 2005-10-27 |
| US20060048238A1 (en) | 2006-03-02 |
| EP1662863A2 (en) | 2006-06-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Lydon et al. | Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. | |
| Scarff et al. | Gastric H+, K+-adenosine triphosphatase β subunit is required for normal function, development, and membrane structure of mouse parietal cells | |
| Durkin et al. | DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development | |
| Rosati et al. | Normal long bone growth and development in type X collagen-null mice | |
| Neesen et al. | Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency | |
| Koushik et al. | Targeted inactivation of the sodium‐calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization | |
| Lotz et al. | BRUCE, a giant E2/E3 ubiquitin ligase and inhibitor of apoptosis protein of the trans-Golgi network, is required for normal placenta development and mouse survival | |
| DK2141985T3 (en) | Transgenetic pig model of cystic fibrosis | |
| Jackowski et al. | Disruption of CCTβ2 expression leads to gonadal dysfunction | |
| US7402724B2 (en) | Longevity and PAPP-A | |
| Wang et al. | Expression pattern of serine protease inhibitor kazal type 3 (Spink3) during mouse embryonic development | |
| Li et al. | The full-length isoform of the mouse pleckstrin homology domain-interacting protein (PHIP) is required for postnatal growth | |
| US5955644A (en) | Ku deficient cells and non-human transgenic animals | |
| US7304203B2 (en) | Transgenic TIEG non-human animals | |
| US6909030B2 (en) | PTTG knockout rodent as a model to study mechanisms for various physiological phenomena, including diabetes | |
| Vaquero et al. | Sprouty1 controls genitourinary development via its N-terminal tyrosine | |
| Reid et al. | Generation and characterization of a novel neural crest marker allele, Inka1‐LacZ, reveals a role for Inka1 in mouse neural tube closure | |
| US7446239B2 (en) | SCA2 knockout animal and methods of use | |
| US7504223B2 (en) | Knockout mouse for the tumor suppressor gene ANX7 | |
| US7220892B2 (en) | Transgenic mouse lacking PAPP-A activity | |
| EP1586653B1 (en) | Noc2 knockout mouse | |
| JP2010051277A (en) | Non-human disordered model animal deleted in cytoglobin gene function | |
| US20060064768A1 (en) | Murine Pten null prostate cancer model | |
| Wessling | Gene deletion and functional analysis of fetuin-B | |
| Liu | BIOLOGY OF THE BRAIN and MUSCLE ARNT-LIKE PROTEIN-1 (BMAL1) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE;ASSIGNOR:MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH;REEL/FRAME:021265/0423 Effective date: 20080227 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |