US20080287495A1 - Novel benzo[d][1,3]-dioxol derivatives - Google Patents
Novel benzo[d][1,3]-dioxol derivatives Download PDFInfo
- Publication number
- US20080287495A1 US20080287495A1 US11/498,334 US49833406A US2008287495A1 US 20080287495 A1 US20080287495 A1 US 20080287495A1 US 49833406 A US49833406 A US 49833406A US 2008287495 A1 US2008287495 A1 US 2008287495A1
- Authority
- US
- United States
- Prior art keywords
- compound
- prodrug
- deuterium
- formula
- disorders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- FTNJQNQLEGKTGD-UHFFFAOYSA-N 1,3-benzodioxole Chemical class C1=CC=C2OCOC2=C1 FTNJQNQLEGKTGD-UHFFFAOYSA-N 0.000 title abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 115
- 229910052805 deuterium Inorganic materials 0.000 claims abstract description 112
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims abstract description 110
- 238000000034 method Methods 0.000 claims abstract description 96
- 229940125904 compound 1 Drugs 0.000 claims abstract description 80
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 62
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 claims abstract description 50
- 230000002503 metabolic effect Effects 0.000 claims abstract description 25
- 229940076279 serotonin Drugs 0.000 claims abstract description 23
- 201000010099 disease Diseases 0.000 claims abstract description 17
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 claims abstract description 17
- 230000001965 increasing effect Effects 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims description 315
- 239000003814 drug Substances 0.000 claims description 95
- 150000003839 salts Chemical class 0.000 claims description 76
- 229940002612 prodrug Drugs 0.000 claims description 72
- 239000000651 prodrug Substances 0.000 claims description 72
- 229910052739 hydrogen Inorganic materials 0.000 claims description 45
- 239000001257 hydrogen Substances 0.000 claims description 43
- 208000035475 disorder Diseases 0.000 claims description 42
- 229940124597 therapeutic agent Drugs 0.000 claims description 41
- -1 hydrogen (2R,3R)-tartrate Chemical class 0.000 claims description 39
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 32
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 230000000694 effects Effects 0.000 claims description 27
- 125000004429 atom Chemical group 0.000 claims description 23
- 230000000155 isotopic effect Effects 0.000 claims description 23
- 239000012453 solvate Substances 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 229940044551 receptor antagonist Drugs 0.000 claims description 19
- 239000002464 receptor antagonist Substances 0.000 claims description 19
- 239000003446 ligand Substances 0.000 claims description 17
- 208000019906 panic disease Diseases 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 239000012472 biological sample Substances 0.000 claims description 15
- 230000035882 stress Effects 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 15
- 239000002207 metabolite Substances 0.000 claims description 14
- 102000005962 receptors Human genes 0.000 claims description 14
- 108020003175 receptors Proteins 0.000 claims description 14
- 102000004190 Enzymes Human genes 0.000 claims description 13
- 108090000790 Enzymes Proteins 0.000 claims description 13
- 208000008589 Obesity Diseases 0.000 claims description 13
- 239000002552 dosage form Substances 0.000 claims description 13
- 229940088598 enzyme Drugs 0.000 claims description 13
- 235000020824 obesity Nutrition 0.000 claims description 13
- 208000011580 syndromic disease Diseases 0.000 claims description 13
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 claims description 12
- 206010041250 Social phobia Diseases 0.000 claims description 12
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 claims description 12
- 206010028980 Neoplasm Diseases 0.000 claims description 11
- 230000009471 action Effects 0.000 claims description 11
- 201000011510 cancer Diseases 0.000 claims description 11
- 208000024891 symptom Diseases 0.000 claims description 11
- 208000008811 Agoraphobia Diseases 0.000 claims description 10
- 208000032841 Bulimia Diseases 0.000 claims description 10
- 208000026331 Disruptive, Impulse Control, and Conduct disease Diseases 0.000 claims description 10
- 241000124008 Mammalia Species 0.000 claims description 10
- 206010026749 Mania Diseases 0.000 claims description 10
- 208000019022 Mood disease Diseases 0.000 claims description 10
- 208000028017 Psychotic disease Diseases 0.000 claims description 10
- 150000001408 amides Chemical class 0.000 claims description 10
- 239000003937 drug carrier Substances 0.000 claims description 10
- 206010016256 fatigue Diseases 0.000 claims description 10
- 239000003112 inhibitor Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 230000000144 pharmacologic effect Effects 0.000 claims description 10
- 201000000980 schizophrenia Diseases 0.000 claims description 10
- 208000024827 Alzheimer disease Diseases 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 208000018737 Parkinson disease Diseases 0.000 claims description 9
- 206010036618 Premenstrual syndrome Diseases 0.000 claims description 9
- 230000016571 aggressive behavior Effects 0.000 claims description 9
- 150000002148 esters Chemical class 0.000 claims description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 9
- 206010036596 premature ejaculation Diseases 0.000 claims description 9
- 208000007848 Alcoholism Diseases 0.000 claims description 8
- 208000019901 Anxiety disease Diseases 0.000 claims description 8
- 208000011688 Generalised anxiety disease Diseases 0.000 claims description 8
- 201000007930 alcohol dependence Diseases 0.000 claims description 8
- 230000036506 anxiety Effects 0.000 claims description 8
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 claims description 8
- 208000029364 generalized anxiety disease Diseases 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 229960002715 nicotine Drugs 0.000 claims description 8
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 claims description 8
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 claims description 7
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims description 7
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 7
- 208000024714 major depressive disease Diseases 0.000 claims description 7
- 239000002571 phosphodiesterase inhibitor Substances 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 7
- 206010013954 Dysphoria Diseases 0.000 claims description 6
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 claims description 6
- 208000002193 Pain Diseases 0.000 claims description 6
- PUJDIJCNWFYVJX-UHFFFAOYSA-N benzyl carbamate Chemical compound NC(=O)OCC1=CC=CC=C1 PUJDIJCNWFYVJX-UHFFFAOYSA-N 0.000 claims description 6
- 229960002887 deanol Drugs 0.000 claims description 6
- 230000006735 deficit Effects 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 6
- 230000002708 enhancing effect Effects 0.000 claims description 6
- 229960000304 folic acid Drugs 0.000 claims description 6
- 235000019152 folic acid Nutrition 0.000 claims description 6
- 239000011724 folic acid Substances 0.000 claims description 6
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims description 6
- 201000001881 impotence Diseases 0.000 claims description 6
- GTCAXTIRRLKXRU-UHFFFAOYSA-N methyl carbamate Chemical compound COC(N)=O GTCAXTIRRLKXRU-UHFFFAOYSA-N 0.000 claims description 6
- 208000019899 phobic disease Diseases 0.000 claims description 6
- 230000003389 potentiating effect Effects 0.000 claims description 6
- 208000030507 AIDS Diseases 0.000 claims description 5
- 208000000103 Anorexia Nervosa Diseases 0.000 claims description 5
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 claims description 5
- 208000027448 Attention Deficit and Disruptive Behavior disease Diseases 0.000 claims description 5
- 206010004716 Binge eating Diseases 0.000 claims description 5
- 208000020925 Bipolar disease Diseases 0.000 claims description 5
- 201000006474 Brain Ischemia Diseases 0.000 claims description 5
- 206010048962 Brain oedema Diseases 0.000 claims description 5
- 206010006550 Bulimia nervosa Diseases 0.000 claims description 5
- 208000002177 Cataract Diseases 0.000 claims description 5
- 206010008025 Cerebellar ataxia Diseases 0.000 claims description 5
- 206010008120 Cerebral ischaemia Diseases 0.000 claims description 5
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 claims description 5
- 206010009094 Chronic paroxysmal hemicrania Diseases 0.000 claims description 5
- 208000006561 Cluster Headache Diseases 0.000 claims description 5
- 206010010904 Convulsion Diseases 0.000 claims description 5
- 206010011224 Cough Diseases 0.000 claims description 5
- 206010012289 Dementia Diseases 0.000 claims description 5
- 208000007342 Diabetic Nephropathies Diseases 0.000 claims description 5
- 208000032781 Diabetic cardiomyopathy Diseases 0.000 claims description 5
- 206010012689 Diabetic retinopathy Diseases 0.000 claims description 5
- 238000009007 Diagnostic Kit Methods 0.000 claims description 5
- 208000030814 Eating disease Diseases 0.000 claims description 5
- 208000017701 Endocrine disease Diseases 0.000 claims description 5
- 208000019454 Feeding and Eating disease Diseases 0.000 claims description 5
- 208000001640 Fibromyalgia Diseases 0.000 claims description 5
- 206010019196 Head injury Diseases 0.000 claims description 5
- 206010019233 Headaches Diseases 0.000 claims description 5
- 208000010496 Heart Arrest Diseases 0.000 claims description 5
- 208000023105 Huntington disease Diseases 0.000 claims description 5
- 206010020772 Hypertension Diseases 0.000 claims description 5
- 206010021143 Hypoxia Diseases 0.000 claims description 5
- 208000030990 Impulse-control disease Diseases 0.000 claims description 5
- 208000026139 Memory disease Diseases 0.000 claims description 5
- 208000019695 Migraine disease Diseases 0.000 claims description 5
- 208000001089 Multiple system atrophy Diseases 0.000 claims description 5
- 206010028813 Nausea Diseases 0.000 claims description 5
- 208000037212 Neonatal hypoxic and ischemic brain injury Diseases 0.000 claims description 5
- 206010033864 Paranoia Diseases 0.000 claims description 5
- 208000027099 Paranoid disease Diseases 0.000 claims description 5
- 208000004550 Postoperative Pain Diseases 0.000 claims description 5
- 201000009916 Postpartum depression Diseases 0.000 claims description 5
- 208000036992 Psychogenic pain disease Diseases 0.000 claims description 5
- 208000017442 Retinal disease Diseases 0.000 claims description 5
- 206010038923 Retinopathy Diseases 0.000 claims description 5
- 201000001880 Sexual dysfunction Diseases 0.000 claims description 5
- 208000009106 Shy-Drager Syndrome Diseases 0.000 claims description 5
- 208000005392 Spasm Diseases 0.000 claims description 5
- 206010066218 Stress Urinary Incontinence Diseases 0.000 claims description 5
- 208000006011 Stroke Diseases 0.000 claims description 5
- 206010043118 Tardive Dyskinesia Diseases 0.000 claims description 5
- 208000000323 Tourette Syndrome Diseases 0.000 claims description 5
- 208000016620 Tourette disease Diseases 0.000 claims description 5
- 208000031674 Traumatic Acute Stress disease Diseases 0.000 claims description 5
- 206010046543 Urinary incontinence Diseases 0.000 claims description 5
- 206010047163 Vasospasm Diseases 0.000 claims description 5
- 206010047700 Vomiting Diseases 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 5
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 5
- 239000005557 antagonist Substances 0.000 claims description 5
- 208000022804 avoidant personality disease Diseases 0.000 claims description 5
- 208000014679 binge eating disease Diseases 0.000 claims description 5
- 208000028683 bipolar I disease Diseases 0.000 claims description 5
- 208000029162 bladder disease Diseases 0.000 claims description 5
- 208000030963 borderline personality disease Diseases 0.000 claims description 5
- 208000006752 brain edema Diseases 0.000 claims description 5
- 230000000747 cardiac effect Effects 0.000 claims description 5
- 230000002490 cerebral effect Effects 0.000 claims description 5
- 206010008118 cerebral infarction Diseases 0.000 claims description 5
- 208000022371 chronic pain syndrome Diseases 0.000 claims description 5
- 208000018912 cluster headache syndrome Diseases 0.000 claims description 5
- 230000007278 cognition impairment Effects 0.000 claims description 5
- 230000036461 convulsion Effects 0.000 claims description 5
- 230000006378 damage Effects 0.000 claims description 5
- 208000033679 diabetic kidney disease Diseases 0.000 claims description 5
- 235000014632 disordered eating Nutrition 0.000 claims description 5
- 208000035548 disruptive behavior disease Diseases 0.000 claims description 5
- 231100000869 headache Toxicity 0.000 claims description 5
- 208000013403 hyperactivity Diseases 0.000 claims description 5
- 230000002218 hypoglycaemic effect Effects 0.000 claims description 5
- 230000007954 hypoxia Effects 0.000 claims description 5
- 208000014674 injury Diseases 0.000 claims description 5
- 206010023461 kleptomania Diseases 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- 206010027599 migraine Diseases 0.000 claims description 5
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 claims description 5
- 208000010125 myocardial infarction Diseases 0.000 claims description 5
- 230000008693 nausea Effects 0.000 claims description 5
- 208000004296 neuralgia Diseases 0.000 claims description 5
- 230000004770 neurodegeneration Effects 0.000 claims description 5
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 5
- 230000003961 neuronal insult Effects 0.000 claims description 5
- 208000021722 neuropathic pain Diseases 0.000 claims description 5
- 208000007777 paroxysmal Hemicrania Diseases 0.000 claims description 5
- 239000004031 partial agonist Substances 0.000 claims description 5
- 230000036961 partial effect Effects 0.000 claims description 5
- 208000033300 perinatal asphyxia Diseases 0.000 claims description 5
- 208000022821 personality disease Diseases 0.000 claims description 5
- BSCCSDNZEIHXOK-UHFFFAOYSA-N phenyl carbamate Chemical compound NC(=O)OC1=CC=CC=C1 BSCCSDNZEIHXOK-UHFFFAOYSA-N 0.000 claims description 5
- 230000002035 prolonged effect Effects 0.000 claims description 5
- 239000000018 receptor agonist Substances 0.000 claims description 5
- 229940044601 receptor agonist Drugs 0.000 claims description 5
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 5
- 208000023504 respiratory system disease Diseases 0.000 claims description 5
- 231100000872 sexual dysfunction Toxicity 0.000 claims description 5
- 230000007958 sleep Effects 0.000 claims description 5
- 208000019116 sleep disease Diseases 0.000 claims description 5
- 210000000278 spinal cord Anatomy 0.000 claims description 5
- 208000022170 stress incontinence Diseases 0.000 claims description 5
- 238000001356 surgical procedure Methods 0.000 claims description 5
- 230000028016 temperature homeostasis Effects 0.000 claims description 5
- 208000016686 tic disease Diseases 0.000 claims description 5
- 230000008733 trauma Effects 0.000 claims description 5
- 208000002271 trichotillomania Diseases 0.000 claims description 5
- 208000026533 urinary bladder disease Diseases 0.000 claims description 5
- LVLANIHJQRZTPY-UHFFFAOYSA-N vinyl carbamate Chemical compound NC(=O)OC=C LVLANIHJQRZTPY-UHFFFAOYSA-N 0.000 claims description 5
- 102000003678 AMPA Receptors Human genes 0.000 claims description 4
- 108090000078 AMPA Receptors Proteins 0.000 claims description 4
- 229940123702 Adenosine A2a receptor antagonist Drugs 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 241000282465 Canis Species 0.000 claims description 4
- 208000020446 Cardiac disease Diseases 0.000 claims description 4
- 108010037462 Cyclooxygenase 2 Proteins 0.000 claims description 4
- 102100020756 D(2) dopamine receptor Human genes 0.000 claims description 4
- 201000004624 Dermatitis Diseases 0.000 claims description 4
- 102000002254 Glycogen Synthase Kinase 3 Human genes 0.000 claims description 4
- 108010014905 Glycogen Synthase Kinase 3 Proteins 0.000 claims description 4
- 101000931901 Homo sapiens D(2) dopamine receptor Proteins 0.000 claims description 4
- 102000000521 Immunophilins Human genes 0.000 claims description 4
- 108010016648 Immunophilins Proteins 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- 101150106280 Mchr1 gene Proteins 0.000 claims description 4
- 102100027375 Melanin-concentrating hormone receptor 1 Human genes 0.000 claims description 4
- 108700036626 Melanin-concentrating hormone receptor 1 Proteins 0.000 claims description 4
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 claims description 4
- SBPRIAGPYFYCRT-UHFFFAOYSA-N N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide Chemical compound COC1=CC=CC=C1N1CCN(CCN(C(=O)C2CCCCC2)C=2N=CC=CC=2)CC1 SBPRIAGPYFYCRT-UHFFFAOYSA-N 0.000 claims description 4
- 206010062501 Non-cardiac chest pain Diseases 0.000 claims description 4
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 claims description 4
- 101100244562 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) oprD gene Proteins 0.000 claims description 4
- 229940124639 Selective inhibitor Drugs 0.000 claims description 4
- 206010039966 Senile dementia Diseases 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000002467 adenosine A2a receptor antagonist Substances 0.000 claims description 4
- 239000000556 agonist Substances 0.000 claims description 4
- 239000003288 aldose reductase inhibitor Substances 0.000 claims description 4
- 229940125681 anticonvulsant agent Drugs 0.000 claims description 4
- 239000001961 anticonvulsive agent Substances 0.000 claims description 4
- 239000003693 atypical antipsychotic agent Substances 0.000 claims description 4
- SIKJAQJRHWYJAI-UHFFFAOYSA-N benzopyrrole Natural products C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 230000010261 cell growth Effects 0.000 claims description 4
- 239000000544 cholinesterase inhibitor Substances 0.000 claims description 4
- 239000003246 corticosteroid Substances 0.000 claims description 4
- 108700023159 delta Opioid Receptors Proteins 0.000 claims description 4
- 102000048124 delta Opioid Receptors Human genes 0.000 claims description 4
- 229960003638 dopamine Drugs 0.000 claims description 4
- 239000003136 dopamine receptor stimulating agent Substances 0.000 claims description 4
- 230000001544 dysphoric effect Effects 0.000 claims description 4
- 239000000262 estrogen Substances 0.000 claims description 4
- 208000037870 generalized anxiety Diseases 0.000 claims description 4
- 239000003324 growth hormone secretagogue Substances 0.000 claims description 4
- 208000019622 heart disease Diseases 0.000 claims description 4
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- 230000003463 hyperproliferative effect Effects 0.000 claims description 4
- 229960003444 immunosuppressant agent Drugs 0.000 claims description 4
- 239000003018 immunosuppressive agent Substances 0.000 claims description 4
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 claims description 4
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 claims description 4
- 150000002475 indoles Chemical class 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 4
- 230000029849 luteinization Effects 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 230000003340 mental effect Effects 0.000 claims description 4
- 239000011707 mineral Substances 0.000 claims description 4
- 229960001785 mirtazapine Drugs 0.000 claims description 4
- RONZAEMNMFQXRA-UHFFFAOYSA-N mirtazapine Chemical compound C1C2=CC=CN=C2N2CCN(C)CC2C2=CC=CC=C21 RONZAEMNMFQXRA-UHFFFAOYSA-N 0.000 claims description 4
- XBXCNNQPRYLIDE-UHFFFAOYSA-M n-tert-butylcarbamate Chemical compound CC(C)(C)NC([O-])=O XBXCNNQPRYLIDE-UHFFFAOYSA-M 0.000 claims description 4
- 238000002414 normal-phase solid-phase extraction Methods 0.000 claims description 4
- 229960005017 olanzapine Drugs 0.000 claims description 4
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 claims description 4
- 239000003336 oxytocin antagonist Substances 0.000 claims description 4
- 229940121361 oxytocin antagonists Drugs 0.000 claims description 4
- 230000010118 platelet activation Effects 0.000 claims description 4
- 230000002028 premature Effects 0.000 claims description 4
- JOZPEVMCAKXSEY-UHFFFAOYSA-N pyrimido[5,4-d]pyrimidine Chemical class N1=CN=CC2=NC=NC=C21 JOZPEVMCAKXSEY-UHFFFAOYSA-N 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 claims description 4
- 208000020685 sleep-wake disease Diseases 0.000 claims description 4
- 230000000391 smoking effect Effects 0.000 claims description 4
- 230000003637 steroidlike Effects 0.000 claims description 4
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- TZBGSHAFWLGWBO-ABLWVSNPSA-N (2s)-2-[[4-[(2-amino-4-oxo-5,6,7,8-tetrahydro-1h-pteridin-6-yl)methylamino]benzoyl]amino]-5-methoxy-5-oxopentanoic acid Chemical compound C1=CC(C(=O)N[C@@H](CCC(=O)OC)C(O)=O)=CC=C1NCC1NC(C(=O)NC(N)=N2)=C2NC1 TZBGSHAFWLGWBO-ABLWVSNPSA-N 0.000 claims description 3
- RUJBDQSFYCKFAA-HNNXBMFYSA-N (5r)-1-(3,4-dimethoxyphenyl)-5-ethyl-7,8-dimethoxy-4-methyl-5h-2,3-benzodiazepine Chemical compound C1([C@H](C(=NN=2)C)CC)=CC(OC)=C(OC)C=C1C=2C1=CC=C(OC)C(OC)=C1 RUJBDQSFYCKFAA-HNNXBMFYSA-N 0.000 claims description 3
- TVYLLZQTGLZFBW-ZBFHGGJFSA-N (R,R)-tramadol Chemical compound COC1=CC=CC([C@]2(O)[C@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-ZBFHGGJFSA-N 0.000 claims description 3
- GHAMYXPEZSUOCU-XZOQPEGZSA-N 1-[2-[4-[(1r,3s)-3-(4-fluorophenyl)-2,3-dihydro-1h-inden-1-yl]piperazin-1-yl]ethyl]imidazolidin-2-one Chemical compound C1=CC(F)=CC=C1[C@H]1C2=CC=CC=C2[C@H](N2CCN(CCN3C(NCC3)=O)CC2)C1 GHAMYXPEZSUOCU-XZOQPEGZSA-N 0.000 claims description 3
- YFGHCGITMMYXAQ-UHFFFAOYSA-N 2-[(diphenylmethyl)sulfinyl]acetamide Chemical compound C=1C=CC=CC=1C(S(=O)CC(=O)N)C1=CC=CC=C1 YFGHCGITMMYXAQ-UHFFFAOYSA-N 0.000 claims description 3
- FPDIERBPQFAFSI-UHFFFAOYSA-N 2-hydroxymethylolanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(CO)S2 FPDIERBPQFAFSI-UHFFFAOYSA-N 0.000 claims description 3
- LORDFXWUHHSAQU-UHFFFAOYSA-N 3,4,5-trimethoxybenzoic acid [2-(dimethylamino)-2-phenylbutyl] ester Chemical compound C=1C=CC=CC=1C(CC)(N(C)C)COC(=O)C1=CC(OC)=C(OC)C(OC)=C1 LORDFXWUHHSAQU-UHFFFAOYSA-N 0.000 claims description 3
- 229940118148 Aldose reductase inhibitor Drugs 0.000 claims description 3
- 102100033367 Appetite-regulating hormone Human genes 0.000 claims description 3
- 101710111255 Appetite-regulating hormone Proteins 0.000 claims description 3
- 229940122041 Cholinesterase inhibitor Drugs 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 3
- WPNJAUFVNXKLIM-UHFFFAOYSA-N Moxonidine Chemical compound COC1=NC(C)=NC(Cl)=C1NC1=NCCN1 WPNJAUFVNXKLIM-UHFFFAOYSA-N 0.000 claims description 3
- MVAWJSIDNICKHF-UHFFFAOYSA-N N-acetylserotonin Chemical compound C1=C(O)C=C2C(CCNC(=O)C)=CNC2=C1 MVAWJSIDNICKHF-UHFFFAOYSA-N 0.000 claims description 3
- JNNOSTQEZICQQP-UHFFFAOYSA-N N-desmethylclozapine Chemical compound N=1C2=CC(Cl)=CC=C2NC2=CC=CC=C2C=1N1CCNCC1 JNNOSTQEZICQQP-UHFFFAOYSA-N 0.000 claims description 3
- FASDKYOPVNHBLU-UHFFFAOYSA-N N6-Propyl-4,5,6,7-tetrahydro-1,3-benzothiazole-2,6-diamine Chemical compound C1C(NCCC)CCC2=C1SC(N)=N2 FASDKYOPVNHBLU-UHFFFAOYSA-N 0.000 claims description 3
- 229940099433 NMDA receptor antagonist Drugs 0.000 claims description 3
- WJBLNOPPDWQMCH-MBPVOVBZSA-N Nalmefene Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=C)O)CC1)O)CC1CC1 WJBLNOPPDWQMCH-MBPVOVBZSA-N 0.000 claims description 3
- 229940099547 Neuronal nitric oxide synthase inhibitor Drugs 0.000 claims description 3
- 229940099471 Phosphodiesterase inhibitor Drugs 0.000 claims description 3
- 235000016787 Piper methysticum Nutrition 0.000 claims description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 3
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 claims description 3
- 239000003420 antiserotonin agent Substances 0.000 claims description 3
- 229940127236 atypical antipsychotics Drugs 0.000 claims description 3
- 239000011648 beta-carotene Substances 0.000 claims description 3
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 claims description 3
- 235000013734 beta-carotene Nutrition 0.000 claims description 3
- 229960002747 betacarotene Drugs 0.000 claims description 3
- 229960003237 betaine Drugs 0.000 claims description 3
- 229960004324 betaxolol Drugs 0.000 claims description 3
- CHDPSNLJFOQTRK-UHFFFAOYSA-N betaxolol hydrochloride Chemical compound [Cl-].C1=CC(OCC(O)C[NH2+]C(C)C)=CC=C1CCOCC1CC1 CHDPSNLJFOQTRK-UHFFFAOYSA-N 0.000 claims description 3
- 239000003555 cannabinoid 1 receptor antagonist Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229920002770 condensed tannin Polymers 0.000 claims description 3
- JURKNVYFZMSNLP-UHFFFAOYSA-N cyclobenzaprine Chemical compound C1=CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 JURKNVYFZMSNLP-UHFFFAOYSA-N 0.000 claims description 3
- 229960003572 cyclobenzaprine Drugs 0.000 claims description 3
- BSMNRYCSBFHEMQ-UHFFFAOYSA-N dov-216,303 Chemical compound C1=C(Cl)C(Cl)=CC=C1C1(CNC2)C2C1 BSMNRYCSBFHEMQ-UHFFFAOYSA-N 0.000 claims description 3
- MVKIWCDXKCUDEH-QFIPXVFZSA-N fedotozine Chemical compound C([C@](CC)(N(C)C)C=1C=CC=CC=1)OCC1=CC(OC)=C(OC)C(OC)=C1 MVKIWCDXKCUDEH-QFIPXVFZSA-N 0.000 claims description 3
- 229950008449 fedotozine Drugs 0.000 claims description 3
- MNQZXJOMYWMBOU-UHFFFAOYSA-N glyceraldehyde Chemical compound OCC(O)C=O MNQZXJOMYWMBOU-UHFFFAOYSA-N 0.000 claims description 3
- 230000001861 immunosuppressant effect Effects 0.000 claims description 3
- 229950008734 irindalone Drugs 0.000 claims description 3
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 claims description 3
- 229960001165 modafinil Drugs 0.000 claims description 3
- 229960003938 moxonidine Drugs 0.000 claims description 3
- 239000003703 n methyl dextro aspartic acid receptor blocking agent Substances 0.000 claims description 3
- 229960005297 nalmefene Drugs 0.000 claims description 3
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 claims description 3
- 229960003086 naltrexone Drugs 0.000 claims description 3
- 229940012843 omega-3 fatty acid Drugs 0.000 claims description 3
- 235000020660 omega-3 fatty acid Nutrition 0.000 claims description 3
- 239000006014 omega-3 oil Substances 0.000 claims description 3
- 239000012074 organic phase Substances 0.000 claims description 3
- 230000011164 ossification Effects 0.000 claims description 3
- 210000000963 osteoblast Anatomy 0.000 claims description 3
- FASDKYOPVNHBLU-ZETCQYMHSA-N pramipexole Chemical compound C1[C@@H](NCCC)CCC2=C1SC(N)=N2 FASDKYOPVNHBLU-ZETCQYMHSA-N 0.000 claims description 3
- 229960003089 pramipexole Drugs 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- 239000011669 selenium Substances 0.000 claims description 3
- 239000003727 serotonin 1A antagonist Substances 0.000 claims description 3
- 239000002484 serotonin 2C antagonist Substances 0.000 claims description 3
- 239000003523 serotonin 4 antagonist Substances 0.000 claims description 3
- 229940121356 serotonin receptor antagonist Drugs 0.000 claims description 3
- 230000004936 stimulating effect Effects 0.000 claims description 3
- 230000000638 stimulation Effects 0.000 claims description 3
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 3
- 229960004380 tramadol Drugs 0.000 claims description 3
- TVYLLZQTGLZFBW-GOEBONIOSA-N tramadol Natural products COC1=CC=CC([C@@]2(O)[C@@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-GOEBONIOSA-N 0.000 claims description 3
- 229960005345 trimebutine Drugs 0.000 claims description 3
- 235000019154 vitamin C Nutrition 0.000 claims description 3
- 239000011718 vitamin C Substances 0.000 claims description 3
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 240000005546 Piper methysticum Species 0.000 claims 2
- 208000001132 Osteoporosis Diseases 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 15
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 abstract description 9
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 abstract description 9
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 abstract description 3
- 239000013060 biological fluid Substances 0.000 abstract description 2
- 229960000074 biopharmaceutical Drugs 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000001537 neural effect Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 42
- 235000002639 sodium chloride Nutrition 0.000 description 42
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 39
- 229940079593 drug Drugs 0.000 description 34
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 33
- 239000000243 solution Substances 0.000 description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 27
- 238000011282 treatment Methods 0.000 description 25
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 23
- 239000008194 pharmaceutical composition Chemical class 0.000 description 23
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 22
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 17
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 17
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 16
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- 238000006467 substitution reaction Methods 0.000 description 14
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 12
- 239000000543 intermediate Substances 0.000 description 12
- 230000004060 metabolic process Effects 0.000 description 12
- 229910052770 Uranium Inorganic materials 0.000 description 11
- 239000012267 brine Substances 0.000 description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 11
- 239000000725 suspension Substances 0.000 description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 230000001771 impaired effect Effects 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 239000012044 organic layer Substances 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000003826 tablet Substances 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 239000004480 active ingredient Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- 238000010898 silica gel chromatography Methods 0.000 description 7
- 230000005062 synaptic transmission Effects 0.000 description 7
- 230000002792 vascular Effects 0.000 description 7
- IBGBGRVKPALMCQ-UHFFFAOYSA-N 3,4-dihydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1O IBGBGRVKPALMCQ-UHFFFAOYSA-N 0.000 description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- 208000002705 Glucose Intolerance Diseases 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 6
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 201000009104 prediabetes syndrome Diseases 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 6
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 5
- 102000018832 Cytochromes Human genes 0.000 description 5
- 108010052832 Cytochromes Proteins 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000012458 free base Substances 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 230000005445 isotope effect Effects 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 230000013275 serotonin uptake Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- LDCYZAJDBXYCGN-VIFPVBQESA-N 5-hydroxy-L-tryptophan Chemical compound C1=C(O)C=C2C(C[C@H](N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-VIFPVBQESA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 229940082638 cardiac stimulant phosphodiesterase inhibitors Drugs 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical class [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 3
- PCYGLFXKCBFGPC-UHFFFAOYSA-N 3,4-Dihydroxy hydroxymethyl benzene Natural products OCC1=CC=C(O)C(O)=C1 PCYGLFXKCBFGPC-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 206010002383 Angina Pectoris Diseases 0.000 description 3
- 206010003805 Autism Diseases 0.000 description 3
- 208000020706 Autistic disease Diseases 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- 206010007559 Cardiac failure congestive Diseases 0.000 description 3
- 208000019888 Circadian rhythm sleep disease Diseases 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 208000007590 Disorders of Excessive Somnolence Diseases 0.000 description 3
- 208000012661 Dyskinesia Diseases 0.000 description 3
- 206010048554 Endothelial dysfunction Diseases 0.000 description 3
- 208000008967 Enuresis Diseases 0.000 description 3
- 201000001498 Froelich syndrome Diseases 0.000 description 3
- 206010056438 Growth hormone deficiency Diseases 0.000 description 3
- 206010019280 Heart failures Diseases 0.000 description 3
- 206010060378 Hyperinsulinaemia Diseases 0.000 description 3
- 208000031226 Hyperlipidaemia Diseases 0.000 description 3
- 206010022489 Insulin Resistance Diseases 0.000 description 3
- 208000001456 Jet Lag Syndrome Diseases 0.000 description 3
- 150000007945 N-acyl ureas Chemical class 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 206010036049 Polycystic ovaries Diseases 0.000 description 3
- 201000010769 Prader-Willi syndrome Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 208000005793 Restless legs syndrome Diseases 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 3
- 208000026928 Turner syndrome Diseases 0.000 description 3
- SWKMNJCMLPBWSU-JLLWFIBWSA-N [2H]C1(C)OC2=C\C=C(OC(C)(C)[C@@H]3CNCC[C@H]3C3=CC=C(F)C=C3)/C=C\2O1 Chemical compound [2H]C1(C)OC2=C\C=C(OC(C)(C)[C@@H]3CNCC[C@H]3C3=CC=C(F)C=C3)/C=C\2O1 SWKMNJCMLPBWSU-JLLWFIBWSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010504 bond cleavage reaction Methods 0.000 description 3
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 208000029078 coronary artery disease Diseases 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 238000004807 desolvation Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000009510 drug design Methods 0.000 description 3
- 238000007876 drug discovery Methods 0.000 description 3
- 230000008694 endothelial dysfunction Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 206010061989 glomerulosclerosis Diseases 0.000 description 3
- 230000004153 glucose metabolism Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 201000001421 hyperglycemia Diseases 0.000 description 3
- 230000035879 hyperinsulinaemia Effects 0.000 description 3
- 206010020765 hypersomnia Diseases 0.000 description 3
- 208000006575 hypertriglyceridemia Diseases 0.000 description 3
- 206010022437 insomnia Diseases 0.000 description 3
- 208000033915 jet lag type circadian rhythm sleep disease Diseases 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000002547 new drug Substances 0.000 description 3
- 208000005346 nocturnal enuresis Diseases 0.000 description 3
- JPAWFIIYTJQOKW-UHFFFAOYSA-N olprinone Chemical compound N1C(=O)C(C#N)=CC(C2=CN3C=CN=C3C=C2)=C1C JPAWFIIYTJQOKW-UHFFFAOYSA-N 0.000 description 3
- 229950005421 olprinone Drugs 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000004783 oxidative metabolism Effects 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 125000003386 piperidinyl group Chemical group 0.000 description 3
- 201000010065 polycystic ovary syndrome Diseases 0.000 description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 3
- 208000028173 post-traumatic stress disease Diseases 0.000 description 3
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000000770 proinflammatory effect Effects 0.000 description 3
- OCAAZRFBJBEVPS-UHFFFAOYSA-N prop-2-enyl carbamate Chemical class NC(=O)OCC=C OCAAZRFBJBEVPS-UHFFFAOYSA-N 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 208000037803 restenosis Diseases 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000009097 single-agent therapy Methods 0.000 description 3
- PTLRDCMBXHILCL-UHFFFAOYSA-M sodium arsenite Chemical compound [Na+].[O-][As]=O PTLRDCMBXHILCL-UHFFFAOYSA-M 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- 238000011200 topical administration Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- CABVTRNMFUVUDM-VRHQGPGLSA-N (3S)-3-hydroxy-3-methylglutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@@](O)(CC(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CABVTRNMFUVUDM-VRHQGPGLSA-N 0.000 description 2
- GELRVIPPMNMYGS-JGAGDPRDSA-N (3s,4r)-3-[(2-deuterio-1,3-benzodioxol-5-yl)oxymethyl]-4-(4-fluorophenyl)piperidine;hydrochloride Chemical compound Cl.C1([C@@H]2CCNC[C@H]2COC2=CC=C3OC(OC3=C2)[2H])=CC=C(F)C=C1 GELRVIPPMNMYGS-JGAGDPRDSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- RUZIUYOSRDWYQF-HNNXBMFYSA-N (S)-glaucine Chemical compound CN1CCC2=CC(OC)=C(OC)C3=C2[C@@H]1CC1=C3C=C(OC)C(OC)=C1 RUZIUYOSRDWYQF-HNNXBMFYSA-N 0.000 description 2
- 0 *C1=CC=C(O)C(O)=C1.*C1=CC=C2OC([2H])([Y])OC2=C1.COC.C[Y].II.[2H]C1([Y])OC2=CC=C(O)C=C2O1.[2H]CC Chemical compound *C1=CC=C(O)C(O)=C1.*C1=CC=C2OC([2H])([Y])OC2=C1.COC.C[Y].II.[2H]C1([Y])OC2=CC=C(O)C=C2O1.[2H]CC 0.000 description 2
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- NUHPODZZKHQQET-UHFFFAOYSA-N 1-cyano-2-methyl-3-[4-(4-methyl-6-oxo-4,5-dihydro-1H-pyridazin-3-yl)phenyl]guanidine Chemical compound C1=CC(NC(NC#N)=NC)=CC=C1C1=NNC(=O)CC1C NUHPODZZKHQQET-UHFFFAOYSA-N 0.000 description 2
- RQFCJASXJCIDSX-UHFFFAOYSA-N 14C-Guanosin-5'-monophosphat Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(O)=O)C(O)C1O RQFCJASXJCIDSX-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- JQUKCPUPFALELS-UHFFFAOYSA-N 2-(2-methoxy-4-methylsulfinylphenyl)-3H-imidazo[4,5-c]pyridine Chemical compound COC1=CC(S(C)=O)=CC=C1C1=NC2=CC=NC=C2N1 JQUKCPUPFALELS-UHFFFAOYSA-N 0.000 description 2
- NPFVRBCDMFKOPY-UHFFFAOYSA-N 3-(4-imidazol-1-ylthiophen-2-yl)-4-methyl-4,5-dihydro-1h-pyridazin-6-one Chemical compound CC1CC(=O)NN=C1C1=CC(N2C=NC=C2)=CS1 NPFVRBCDMFKOPY-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 2
- 229940000681 5-hydroxytryptophan Drugs 0.000 description 2
- XZPGINPFWXLYNW-UHFFFAOYSA-N 7-(4-methyl-6-oxo-4,5-dihydro-1h-pyridazin-3-yl)-4h-1,4-benzoxazin-3-one Chemical compound CC1CC(=O)NN=C1C1=CC=C(NC(=O)CO2)C2=C1 XZPGINPFWXLYNW-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- DNJFTXKSFAMXQF-UHFFFAOYSA-N Arecaidine Chemical compound CN1CCC=C(C(O)=O)C1 DNJFTXKSFAMXQF-UHFFFAOYSA-N 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 2
- 102000002045 Endothelin Human genes 0.000 description 2
- 108050009340 Endothelin Proteins 0.000 description 2
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- ZJVFLBOZORBYFE-UHFFFAOYSA-N Ibudilast Chemical compound C1=CC=CC2=C(C(=O)C(C)C)C(C(C)C)=NN21 ZJVFLBOZORBYFE-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- 229910010084 LiAlH4 Inorganic materials 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- 108010045510 NADPH-Ferrihemoprotein Reductase Proteins 0.000 description 2
- 108090000028 Neprilysin Proteins 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 102000003728 Peroxisome Proliferator-Activated Receptors Human genes 0.000 description 2
- 108090000029 Peroxisome Proliferator-Activated Receptors Proteins 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 208000027030 Premenstrual dysphoric disease Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 102000019208 Serotonin Plasma Membrane Transport Proteins Human genes 0.000 description 2
- 108010012996 Serotonin Plasma Membrane Transport Proteins Proteins 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 230000009056 active transport Effects 0.000 description 2
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 2
- 229960003805 amantadine Drugs 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- OTBXOEAOVRKTNQ-UHFFFAOYSA-N anagrelide Chemical compound N1=C2NC(=O)CN2CC2=C(Cl)C(Cl)=CC=C21 OTBXOEAOVRKTNQ-UHFFFAOYSA-N 0.000 description 2
- 229960001694 anagrelide Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000001430 anti-depressive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 229950005840 bemoradan Drugs 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- BAJJBYAYRVQZFB-ICSRJNTNSA-N benzyl (3s,4r)-4-(4-fluorophenyl)-3-(methylsulfonyloxymethyl)piperidine-1-carboxylate Chemical compound C1([C@@H]2CCN(C[C@H]2COS(=O)(=O)C)C(=O)OCC=2C=CC=CC=2)=CC=C(F)C=C1 BAJJBYAYRVQZFB-ICSRJNTNSA-N 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- JPOXNPPZZKNXOV-UHFFFAOYSA-N bromochloromethane Chemical compound ClCBr JPOXNPPZZKNXOV-UHFFFAOYSA-N 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- MCMSJVMUSBZUCN-YYDJUVGSSA-N chembl285913 Chemical compound C1=2C=C(OC)C(OC)=CC=2CCN(C(N2C)=O)C1=C\C2=N/C1=C(C)C=C(C)C=C1C MCMSJVMUSBZUCN-YYDJUVGSSA-N 0.000 description 2
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical compound ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 description 2
- 229960002768 dipyridamole Drugs 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical compound O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 2
- 238000009509 drug development Methods 0.000 description 2
- 230000008406 drug-drug interaction Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- PQLFROTZSIMBKR-UHFFFAOYSA-N ethenyl carbonochloridate Chemical compound ClC(=O)OC=C PQLFROTZSIMBKR-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- ASUTZQLVASHGKV-JDFRZJQESA-N galanthamine Chemical compound O1C(=C23)C(OC)=CC=C2CN(C)CC[C@]23[C@@H]1C[C@@H](O)C=C2 ASUTZQLVASHGKV-JDFRZJQESA-N 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- RQFCJASXJCIDSX-UUOKFMHZSA-N guanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O RQFCJASXJCIDSX-UUOKFMHZSA-N 0.000 description 2
- 150000004820 halides Chemical group 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 229960002491 ibudilast Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 125000002346 iodo group Chemical group I* 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229950011537 isomazole Drugs 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- 210000001853 liver microsome Anatomy 0.000 description 2
- 229950009035 lixazinone Drugs 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 238000005822 methylenation reaction Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000011294 monotherapeutic Methods 0.000 description 2
- 229950002910 motapizone Drugs 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- ZHRDDQVANOLXKJ-UHFFFAOYSA-N n-[2-fluoro-2-[4-[3-(methanesulfonamido)phenyl]phenyl]propyl]propane-2-sulfonamide Chemical compound C1=CC(C(C)(F)CNS(=O)(=O)C(C)C)=CC=C1C1=CC=CC(NS(C)(=O)=O)=C1 ZHRDDQVANOLXKJ-UHFFFAOYSA-N 0.000 description 2
- WUECXCBONAGRSA-UHFFFAOYSA-N n-cyclohexyl-n-methyl-4-[(2-oxo-5,10-dihydro-3h-imidazo[2,1-b]quinazolin-7-yl)oxy]butanamide Chemical compound C=1C=C2NC3=NC(=O)CN3CC2=CC=1OCCCC(=O)N(C)C1CCCCC1 WUECXCBONAGRSA-UHFFFAOYSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- DUQOOLBWGUKRAJ-UHFFFAOYSA-N oxagrelate Chemical compound OCC1=NNC(=O)C2=C(C)C(C(=O)OCC)=C(C)C=C21 DUQOOLBWGUKRAJ-UHFFFAOYSA-N 0.000 description 2
- 229950004599 oxagrelate Drugs 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 229960002888 oxitriptan Drugs 0.000 description 2
- LDCYZAJDBXYCGN-UHFFFAOYSA-N oxitriptan Natural products C1=C(O)C=C2C(CC(N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000002974 pharmacogenomic effect Effects 0.000 description 2
- 238000001050 pharmacotherapy Methods 0.000 description 2
- AHWALFGBDFAJAI-UHFFFAOYSA-N phenyl carbonochloridate Chemical compound ClC(=O)OC1=CC=CC=C1 AHWALFGBDFAJAI-UHFFFAOYSA-N 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical class [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229960002164 pimobendan Drugs 0.000 description 2
- GLBJJMFZWDBELO-UHFFFAOYSA-N pimobendane Chemical compound C1=CC(OC)=CC=C1C1=NC2=CC=C(C=3C(CC(=O)NN=3)C)C=C2N1 GLBJJMFZWDBELO-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- BHZFZYLBVSWUMT-ZCFIWIBFSA-N quazinone Chemical compound C1=CC=C2NC3=NC(=O)[C@@H](C)N3CC2=C1Cl BHZFZYLBVSWUMT-ZCFIWIBFSA-N 0.000 description 2
- 229950005340 quazinone Drugs 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000008521 reorganization Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- 230000000697 serotonin reuptake Effects 0.000 description 2
- 229960000652 sertindole Drugs 0.000 description 2
- GZKLJWGUPQBVJQ-UHFFFAOYSA-N sertindole Chemical compound C1=CC(F)=CC=C1N1C2=CC=C(Cl)C=C2C(C2CCN(CCN3C(NCC3)=O)CC2)=C1 GZKLJWGUPQBVJQ-UHFFFAOYSA-N 0.000 description 2
- 229950003177 siguazodan Drugs 0.000 description 2
- BNRNXUUZRGQAQC-UHFFFAOYSA-N sildenafil Chemical compound CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 BNRNXUUZRGQAQC-UHFFFAOYSA-N 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 2
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 229950004127 trequinsin Drugs 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- 230000031143 xenobiotic glucuronidation Effects 0.000 description 2
- GXFZCDMWGMFGFL-KKXMJGKMSA-N (+)-Tubocurarine chloride hydrochloride Chemical compound [Cl-].[Cl-].C([C@H]1[N+](C)(C)CCC=2C=C(C(=C(OC3=CC=C(C=C3)C[C@H]3C=4C=C(C(=CC=4CC[NH+]3C)OC)O3)C=21)O)OC)C1=CC=C(O)C3=C1 GXFZCDMWGMFGFL-KKXMJGKMSA-N 0.000 description 1
- HMJIYCCIJYRONP-UHFFFAOYSA-N (+-)-Isradipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)C1C1=CC=CC2=NON=C12 HMJIYCCIJYRONP-UHFFFAOYSA-N 0.000 description 1
- PFWMFIWPOORSAH-BFWBPSQCSA-N (2,2-dideuterio-1,3-benzodioxol-5-yl) formate Chemical compound C1=C(OC=O)C=C2OC([2H])([2H])OC2=C1 PFWMFIWPOORSAH-BFWBPSQCSA-N 0.000 description 1
- PFWMFIWPOORSAH-UICOGKGYSA-N (2-deuterio-1,3-benzodioxol-5-yl) formate Chemical compound C1=C(OC=O)C=C2OC([2H])OC2=C1 PFWMFIWPOORSAH-UICOGKGYSA-N 0.000 description 1
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- LLWYXGZWWWNKKJ-RGSQJGBCSA-N (2s)-2-[[(2s)-2-amino-3-(5-hydroxy-1h-indol-3-yl)propanoyl]amino]butanedioic acid;trihydrate Chemical compound O.O.O.C1=C(O)C=C2C(C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(O)=O)=CNC2=C1 LLWYXGZWWWNKKJ-RGSQJGBCSA-N 0.000 description 1
- MOFGVUQTFJGNSG-LBPRGKRZSA-N (2s)-2-acetamido-3-(5-hydroxy-1h-indol-3-yl)propanoic acid Chemical compound C1=C(O)C=C2C(C[C@H](NC(=O)C)C(O)=O)=CNC2=C1 MOFGVUQTFJGNSG-LBPRGKRZSA-N 0.000 description 1
- YWNMBFXNRAQXHP-KRWDZBQOSA-N (2s)-3-(5-hydroxy-1h-indol-3-yl)-2-(phenylmethoxycarbonylamino)propanoic acid Chemical compound N([C@@H](CC=1C2=CC(O)=CC=C2NC=1)C(=O)O)C(=O)OCC1=CC=CC=C1 YWNMBFXNRAQXHP-KRWDZBQOSA-N 0.000 description 1
- CXZNNYJWSRLSNJ-RWIUVBIQSA-N (3r,4r)-1-methyl-4-(2,3,5,6-tetradeuterio-4-fluorophenyl)piperidine-3-carboxylic acid Chemical compound [2H]C1=C(F)C([2H])=C([2H])C([C@H]2[C@H](CN(C)CC2)C(O)=O)=C1[2H] CXZNNYJWSRLSNJ-RWIUVBIQSA-N 0.000 description 1
- VNEKZKGEKGCKLF-KXYYBIGBSA-N (3s,4r)-3-[(2,2-dideuterio-1,3-benzodioxol-5-yl)oxymethyl]-1-methyl-4-(2,3,5,6-tetradeuterio-4-fluorophenyl)piperidine;hydrochloride Chemical compound Cl.[2H]C1=C(F)C([2H])=C([2H])C([C@H]2[C@@H](CN(C)CC2)COC=2C=C3OC([2H])([2H])OC3=CC=2)=C1[2H] VNEKZKGEKGCKLF-KXYYBIGBSA-N 0.000 description 1
- GELRVIPPMNMYGS-VVOWIODVSA-N (3s,4r)-3-[(2,2-dideuterio-1,3-benzodioxol-5-yl)oxymethyl]-4-(2,3,5,6-tetradeuterio-4-fluorophenyl)piperidine;hydrochloride Chemical compound Cl.[2H]C1=C(F)C([2H])=C([2H])C([C@H]2[C@@H](CNCC2)COC=2C=C3OC([2H])([2H])OC3=CC=2)=C1[2H] GELRVIPPMNMYGS-VVOWIODVSA-N 0.000 description 1
- GELRVIPPMNMYGS-JNOZFAJUSA-N (3s,4r)-3-[dideuterio-[(2,2-dideuterio-1,3-benzodioxol-5-yl)oxy]methyl]-4-(4-fluorophenyl)piperidine;hydrochloride Chemical compound Cl.C1([C@@H]2CCNC[C@H]2C([2H])(OC=2C=C3OC([2H])([2H])OC3=CC=2)[2H])=CC=C(F)C=C1 GELRVIPPMNMYGS-JNOZFAJUSA-N 0.000 description 1
- GJOKRYFZGOEKMG-UONOGXRCSA-N (3s,4r)-4-(4-fluorophenyl)-1-[(2-methylpropan-2-yl)oxycarbonyl]piperidine-3-carboxylic acid Chemical compound OC(=O)[C@@H]1CN(C(=O)OC(C)(C)C)CC[C@H]1C1=CC=C(F)C=C1 GJOKRYFZGOEKMG-UONOGXRCSA-N 0.000 description 1
- KKXFMWXZXDUYBF-BDAKNGLRSA-N (3s,5r)-3-(aminomethyl)-5-methyloctanoic acid Chemical compound CCC[C@@H](C)C[C@H](CN)CC(O)=O KKXFMWXZXDUYBF-BDAKNGLRSA-N 0.000 description 1
- GUEQOLSQPOTTME-RQJHMYQMSA-N (3s,5r)-3-amino-5-methylheptanoic acid Chemical compound CC[C@@H](C)C[C@H](N)CC(O)=O GUEQOLSQPOTTME-RQJHMYQMSA-N 0.000 description 1
- XKWDZEJCUWTBOM-BDAKNGLRSA-N (3s,5r)-3-amino-5-methylnonanoic acid Chemical compound CCCC[C@@H](C)C[C@H](N)CC(O)=O XKWDZEJCUWTBOM-BDAKNGLRSA-N 0.000 description 1
- BMHZAHGTGIZZCT-LJQANCHMSA-N (4r)-2-[(4-bromo-2-fluorophenyl)methyl]-6-fluorospiro[isoquinoline-4,3'-pyrrolidine]-1,2',3,5'-tetrone Chemical compound C1([C@]2(C(NC(=O)C2)=O)C2=O)=CC(F)=CC=C1C(=O)N2CC1=CC=C(Br)C=C1F BMHZAHGTGIZZCT-LJQANCHMSA-N 0.000 description 1
- FNKBVTBXFLSTPB-LBPRGKRZSA-N (7s)-7-(dipropylamino)-4-fluoro-5,6,7,8-tetrahydronaphthalen-1-ol Chemical compound C1=CC(O)=C2C[C@@H](N(CCC)CCC)CCC2=C1F FNKBVTBXFLSTPB-LBPRGKRZSA-N 0.000 description 1
- MXZAMPPIKDHMOJ-UHFFFAOYSA-N (8-methyl-8-azabicyclo[3.2.1]octan-3-yl) 6-methoxy-2-oxo-3h-benzimidazole-1-carboxylate;hydrochloride Chemical compound Cl.C1C(N2C)CCC2CC1OC(=O)N1C(=O)NC2=CC=C(OC)C=C21 MXZAMPPIKDHMOJ-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- PYHRZPFZZDCOPH-QXGOIDDHSA-N (S)-amphetamine sulfate Chemical compound [H+].[H+].[O-]S([O-])(=O)=O.C[C@H](N)CC1=CC=CC=C1.C[C@H](N)CC1=CC=CC=C1 PYHRZPFZZDCOPH-QXGOIDDHSA-N 0.000 description 1
- GMDCDXMAFMEDAG-CHHFXETESA-N (S,S)-asenapine maleate Chemical compound OC(=O)\C=C/C(O)=O.O1C2=CC=CC=C2[C@H]2CN(C)C[C@@H]2C2=CC(Cl)=CC=C21 GMDCDXMAFMEDAG-CHHFXETESA-N 0.000 description 1
- SIEDMRDHKJJFRF-WLHGVMLRSA-N (e)-but-2-enedioic acid;8-chloro-5-(4-methylpiperazin-1-yl)pyrido[2,3-b][1,5]benzoxazepine Chemical compound OC(=O)\C=C\C(O)=O.C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2OC2=NC=CC=C12 SIEDMRDHKJJFRF-WLHGVMLRSA-N 0.000 description 1
- YPFDHNVEDLHUCE-JVKIUYSHSA-N 1,1,2,2,3,3-hexadeuterio-1,3-dideuteriooxypropane Chemical compound [2H]OC([2H])([2H])C([2H])([2H])C([2H])([2H])O[2H] YPFDHNVEDLHUCE-JVKIUYSHSA-N 0.000 description 1
- XULIXFLCVXWHRF-UHFFFAOYSA-N 1,2,2,6,6-pentamethylpiperidine Chemical compound CN1C(C)(C)CCCC1(C)C XULIXFLCVXWHRF-UHFFFAOYSA-N 0.000 description 1
- WOAHJDHKFWSLKE-UHFFFAOYSA-N 1,2-benzoquinone Chemical compound O=C1C=CC=CC1=O WOAHJDHKFWSLKE-UHFFFAOYSA-N 0.000 description 1
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- NQPJDJVGBDHCAD-UHFFFAOYSA-N 1,3-diazinan-2-one Chemical class OC1=NCCCN1 NQPJDJVGBDHCAD-UHFFFAOYSA-N 0.000 description 1
- QHHTUAGFGZHPNI-UHFFFAOYSA-N 1,4-dibromo-2,3-dimethoxybenzene Chemical compound COC1=C(Br)C=CC(Br)=C1OC QHHTUAGFGZHPNI-UHFFFAOYSA-N 0.000 description 1
- ABDKAPXRBAPSQN-KCZCTXNHSA-N 1,4-dideuterio-2,3-dimethoxybenzene Chemical compound [2H]C1=CC=C([2H])C(OC)=C1OC ABDKAPXRBAPSQN-KCZCTXNHSA-N 0.000 description 1
- PUMZXCBVHLCWQG-UHFFFAOYSA-N 1-(4-Hydroxyphenyl)-2-aminoethanol hydrochloride Chemical compound [Cl-].[NH3+]CC(O)C1=CC=C(O)C=C1 PUMZXCBVHLCWQG-UHFFFAOYSA-N 0.000 description 1
- DKMFBWQBDIGMHM-UHFFFAOYSA-N 1-(4-fluorophenyl)-4-(4-methyl-1-piperidinyl)-1-butanone Chemical compound C1CC(C)CCN1CCCC(=O)C1=CC=C(F)C=C1 DKMFBWQBDIGMHM-UHFFFAOYSA-N 0.000 description 1
- GRUIIAQNNWQJPW-UHFFFAOYSA-N 1-[1-(3-chlorophenyl)-2-(4-methylpiperazin-1-yl)ethyl]cyclohexan-1-ol Chemical compound C1CN(C)CCN1CC(C1(O)CCCCC1)C1=CC=CC(Cl)=C1 GRUIIAQNNWQJPW-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical class C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- AITNMTXHTIIIBB-RHQRLBAQSA-N 1-bromo-2,3,5,6-tetradeuterio-4-fluorobenzene Chemical compound [2H]C1=C([2H])C(Br)=C([2H])C([2H])=C1F AITNMTXHTIIIBB-RHQRLBAQSA-N 0.000 description 1
- AITNMTXHTIIIBB-UHFFFAOYSA-N 1-bromo-4-fluorobenzene Chemical compound FC1=CC=C(Br)C=C1 AITNMTXHTIIIBB-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- LUSZGTFNYDARNI-APZFVMQVSA-N 2,2-dideuterio-1,3-benzodioxol-5-ol Chemical compound C1=C(O)C=C2OC([2H])([2H])OC2=C1 LUSZGTFNYDARNI-APZFVMQVSA-N 0.000 description 1
- SATCULPHIDQDRE-BFWBPSQCSA-N 2,2-dideuterio-1,3-benzodioxole-5-carbaldehyde Chemical compound C1=C(C=O)C=C2OC([2H])([2H])OC2=C1 SATCULPHIDQDRE-BFWBPSQCSA-N 0.000 description 1
- YPFDHNVEDLHUCE-DICFDUPASA-N 2,2-dideuteriopropane-1,3-diol Chemical compound OCC([2H])([2H])CO YPFDHNVEDLHUCE-DICFDUPASA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- HCSBTDBGTNZOAB-UHFFFAOYSA-N 2,3-dinitrobenzoic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O HCSBTDBGTNZOAB-UHFFFAOYSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- QPTDUOCDEDVWJT-UHFFFAOYSA-N 2,6-bis(2,2-dimethyl-1,3-dioxolan-4-yl)-5-methoxy-4,8-di(piperidin-1-yl)-6h-pyrimido[5,4-d]pyrimidine Chemical compound C12=NC(C3OC(C)(C)OC3)=NC(N3CCCCC3)=C2N(OC)C(C2OC(C)(C)OC2)N=C1N1CCCCC1 QPTDUOCDEDVWJT-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- DPZHKLJPVMYFCU-UHFFFAOYSA-N 2-(5-bromopyridin-2-yl)acetonitrile Chemical compound BrC1=CC=C(CC#N)N=C1 DPZHKLJPVMYFCU-UHFFFAOYSA-N 0.000 description 1
- JXSBZOVCVUSLIO-NQMVMOMDSA-N 2-[(1r,5r,6s)-6-(aminomethyl)-6-bicyclo[3.2.0]heptanyl]acetic acid Chemical compound C1CC[C@H]2[C@@](CN)(CC(O)=O)C[C@H]21 JXSBZOVCVUSLIO-NQMVMOMDSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- BUYWFAJWTSIACV-UHFFFAOYSA-N 2-[3-oxo-4-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]-1,4-benzothiazin-2-yl]acetic acid Chemical compound FC1=CC(F)=C2SC(CN3C4=CC=CC=C4SC(C3=O)CC(=O)O)=NC2=C1F BUYWFAJWTSIACV-UHFFFAOYSA-N 0.000 description 1
- CCTUIQSSWULYEK-UHFFFAOYSA-N 2-[[6-[bis(2-hydroxyethyl)amino]-4,8-di(piperidin-1-yl)pyrimido[5,4-d]pyrimidin-2-yl]-(2-hydroxyethyl)amino]ethyl acetate Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCOC(=O)C)=NC=1N1CCCCC1 CCTUIQSSWULYEK-UHFFFAOYSA-N 0.000 description 1
- OZDAOHVKBFBBMZ-UHFFFAOYSA-N 2-aminopentanedioic acid;hydrate Chemical compound O.OC(=O)C(N)CCC(O)=O OZDAOHVKBFBBMZ-UHFFFAOYSA-N 0.000 description 1
- LUSZGTFNYDARNI-QYKNYGDISA-N 2-deuterio-1,3-benzodioxol-5-ol Chemical compound C1=C(O)C=C2OC([2H])OC2=C1 LUSZGTFNYDARNI-QYKNYGDISA-N 0.000 description 1
- SATCULPHIDQDRE-UICOGKGYSA-N 2-deuterio-1,3-benzodioxole-5-carbaldehyde Chemical compound C1=C(C=O)C=C2OC([2H])OC2=C1 SATCULPHIDQDRE-UICOGKGYSA-N 0.000 description 1
- DZQBJUOWUVDZMW-UHFFFAOYSA-N 2-ethyl-3-phenylpyridine Chemical class CCC1=NC=CC=C1C1=CC=CC=C1 DZQBJUOWUVDZMW-UHFFFAOYSA-N 0.000 description 1
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 1
- LYMBEMCUJNDSBZ-UHFFFAOYSA-N 2-piperidin-1-ylethyl 1h-indole-3-carboxylate;hydrochloride Chemical compound Cl.C=1NC2=CC=CC=C2C=1C(=O)OCCN1CCCCC1 LYMBEMCUJNDSBZ-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- KMUUDIJYIRNGRO-UHFFFAOYSA-N 2h-pyrido[3,2-c]pyridazin-3-one Chemical class N1=CC=CC2=NNC(=O)C=C21 KMUUDIJYIRNGRO-UHFFFAOYSA-N 0.000 description 1
- BCSVCWVQNOXFGL-UHFFFAOYSA-N 3,4-dihydro-4-oxo-3-((5-trifluoromethyl-2-benzothiazolyl)methyl)-1-phthalazine acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(C(F)(F)F)=CC=C2S1 BCSVCWVQNOXFGL-UHFFFAOYSA-N 0.000 description 1
- SHXWCVYOXRDMCX-UHFFFAOYSA-N 3,4-methylenedioxymethamphetamine Chemical compound CNC(C)CC1=CC=C2OCOC2=C1 SHXWCVYOXRDMCX-UHFFFAOYSA-N 0.000 description 1
- OFCNTYBPPAQCRE-UHFFFAOYSA-N 3-(2-aminoethyl)-3h-indol-5-ol Chemical compound C1=C(O)C=C2C(CCN)C=NC2=C1 OFCNTYBPPAQCRE-UHFFFAOYSA-N 0.000 description 1
- MOEZPHHJIZLEKX-UHFFFAOYSA-N 3-[[1-(aminomethyl)cyclohexyl]methyl]-2h-1,2,4-oxadiazol-5-one Chemical compound N=1OC(=O)NC=1CC1(CN)CCCCC1 MOEZPHHJIZLEKX-UHFFFAOYSA-N 0.000 description 1
- OGJGQVFWEPNYSB-UHFFFAOYSA-N 3-[[4-(4-chlorophenyl)-1-piperazinyl]methyl]-1H-pyrrolo[2,3-b]pyridine Chemical compound C1=CC(Cl)=CC=C1N1CCN(CC=2C3=CC=CN=C3NC=2)CC1 OGJGQVFWEPNYSB-UHFFFAOYSA-N 0.000 description 1
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 1
- FTNJQNQLEGKTGD-NMQOAUCRSA-N 4,7-dideuterio-1,3-benzodioxole Chemical class [2H]C1=CC=C([2H])C2=C1OCO2 FTNJQNQLEGKTGD-NMQOAUCRSA-N 0.000 description 1
- AQVKHRQMAUJBBP-UHFFFAOYSA-N 4-Bromocatechol Chemical compound OC1=CC=C(Br)C=C1O AQVKHRQMAUJBBP-UHFFFAOYSA-N 0.000 description 1
- GFNAQGUENCOUHQ-BOXHHOBZSA-N 4-[4-[2-[(1s)-3,4-dihydro-1h-isochromen-1-yl]ethyl]piperazin-1-yl]benzenesulfonamide;methanesulfonic acid Chemical compound CS(O)(=O)=O.C1=CC(S(=O)(=O)N)=CC=C1N1CCN(CC[C@H]2C3=CC=CC=C3CCO2)CC1 GFNAQGUENCOUHQ-BOXHHOBZSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- FFNWMBDISAYHDC-UHFFFAOYSA-N 4-amino-5-chloro-2-methoxybenzoic acid 2-(diethylamino)ethyl ester Chemical compound CCN(CC)CCOC(=O)C1=CC(Cl)=C(N)C=C1OC FFNWMBDISAYHDC-UHFFFAOYSA-N 0.000 description 1
- RLSGBCUXLRMTPF-UHFFFAOYSA-N 4-amino-5-chloro-2-methoxybenzoic acid 3-(1-piperidinyl)propyl ester Chemical compound COC1=CC(N)=C(Cl)C=C1C(=O)OCCCN1CCCCC1 RLSGBCUXLRMTPF-UHFFFAOYSA-N 0.000 description 1
- ODGIHIUVACVQTA-KIIRSEDSSA-N 4-amino-n-[(3s,4r)-1-[4,4-bis(4-fluorophenyl)butyl]-3-methoxypiperidin-4-yl]-5-chloro-2-methoxybenzamide;hydrochloride Chemical compound Cl.C([C@@H]([C@@H](CC1)NC(=O)C=2C(=CC(N)=C(Cl)C=2)OC)OC)N1CCCC(C=1C=CC(F)=CC=1)C1=CC=C(F)C=C1 ODGIHIUVACVQTA-KIIRSEDSSA-N 0.000 description 1
- QISOBCMNUJQOJU-UHFFFAOYSA-N 4-bromo-1h-pyrazole-5-carboxylic acid Chemical compound OC(=O)C=1NN=CC=1Br QISOBCMNUJQOJU-UHFFFAOYSA-N 0.000 description 1
- PXACTUVBBMDKRW-UHFFFAOYSA-M 4-bromobenzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=C(Br)C=C1 PXACTUVBBMDKRW-UHFFFAOYSA-M 0.000 description 1
- PXACTUVBBMDKRW-UHFFFAOYSA-N 4-bromobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(Br)C=C1 PXACTUVBBMDKRW-UHFFFAOYSA-N 0.000 description 1
- SPXOTSHWBDUUMT-UHFFFAOYSA-M 4-nitrobenzenesulfonate Chemical compound [O-][N+](=O)C1=CC=C(S([O-])(=O)=O)C=C1 SPXOTSHWBDUUMT-UHFFFAOYSA-M 0.000 description 1
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 1
- VRWADHKZEMMUGA-UHFFFAOYSA-N 4h-1,3-benzodioxol-5-one Chemical class C1=CC(=O)CC2=C1OCO2 VRWADHKZEMMUGA-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- FTNJQNQLEGKTGD-MICDWDOJSA-N 5-deuterio-1,3-benzodioxole Chemical class [2H]C1=CC=C2OCOC2=C1 FTNJQNQLEGKTGD-MICDWDOJSA-N 0.000 description 1
- RZTAMFZIAATZDJ-HNNXBMFYSA-N 5-o-ethyl 3-o-methyl (4s)-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC(Cl)=C1Cl RZTAMFZIAATZDJ-HNNXBMFYSA-N 0.000 description 1
- SKYGATVDBNOBSE-FZMZJTMJSA-N 6-chloro-n-[[(1s,8s)-2,3,5,6,7,8-hexahydro-1h-pyrrolizin-1-yl]methyl]imidazo[1,2-a]pyridine-8-carboxamide Chemical compound C12=NC=CN2C=C(Cl)C=C1C(=O)NC[C@H]1[C@@H]2CCCN2CC1 SKYGATVDBNOBSE-FZMZJTMJSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- NMTKJEZOWHRAQY-UHFFFAOYSA-N 8-[(6-methoxyisoquinolin-4-yl)methyl]-1-methyl-3-(2-methylpropyl)-7h-purine-2,6-dione Chemical compound CC(C)CN1C(=O)N(C)C(=O)C(N2)=C1N=C2CC1=CN=CC2=CC=C(OC)C=C21 NMTKJEZOWHRAQY-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical class O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 1
- AEOBEOJCBAYXBA-UHFFFAOYSA-N A2P5P Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1OP(O)(O)=O AEOBEOJCBAYXBA-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- IUVMAUQEZFTTFB-YUMQZZPRSA-N Atagabalin Chemical compound C[C@H]1CC(CN)(CC(O)=O)C[C@@H]1C IUVMAUQEZFTTFB-YUMQZZPRSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- ABTSGYZGIFACRS-UHHWJWFCSA-N CC(C)(C)OC(=O)N1CC[C@@H](C2=CC=C(F)C=C2)[C@H](CO)C1.CCCC(=O)C1=CC=C(F)C=C1.CCOC(=O)CC(=O)N(CCC(=O)C1=CC=C(F)C=C1)/P=N\P.O=C1C=C(C2=CC=C(F)C=C2)CCN1/P=N\P.OC(CCOP)C1=CC=C(F)C=C1.OCCCO Chemical compound CC(C)(C)OC(=O)N1CC[C@@H](C2=CC=C(F)C=C2)[C@H](CO)C1.CCCC(=O)C1=CC=C(F)C=C1.CCOC(=O)CC(=O)N(CCC(=O)C1=CC=C(F)C=C1)/P=N\P.O=C1C=C(C2=CC=C(F)C=C2)CCN1/P=N\P.OC(CCOP)C1=CC=C(F)C=C1.OCCCO ABTSGYZGIFACRS-UHHWJWFCSA-N 0.000 description 1
- TYEVHXLZPVERKD-NQFDMLIYSA-N CC(C)(O)[C@@H]1CN([W])CC[C@H]1C1=CC=C(F)C=C1.I.[2H]C1(C)OC2=CC=C(O)C=C2O1.[2H]C1(C)OC2=CC=C(OC(C)(C)[C@@H]3CN([W])CC[C@H]3C3=CC=C(F)C=C3)C=C2O1.[2H]C1(C)OC2=CC=C(OC(C)(C)[C@@H]3CNCC[C@H]3C3=CC=C(F)C=C3)C=C2O1 Chemical compound CC(C)(O)[C@@H]1CN([W])CC[C@H]1C1=CC=C(F)C=C1.I.[2H]C1(C)OC2=CC=C(O)C=C2O1.[2H]C1(C)OC2=CC=C(OC(C)(C)[C@@H]3CN([W])CC[C@H]3C3=CC=C(F)C=C3)C=C2O1.[2H]C1(C)OC2=CC=C(OC(C)(C)[C@@H]3CNCC[C@H]3C3=CC=C(F)C=C3)C=C2O1 TYEVHXLZPVERKD-NQFDMLIYSA-N 0.000 description 1
- YIOKKKXYSKKDMV-HBXGCGKLSA-N COC1=CC(OC[C@@H]2CNCC[C@H]2C2=CC=C(F)C=C2)=CC=C1O.COC1=CC=C(OC[C@@H]2CNCC[C@H]2C2=CC=C(F)C=C2)C=C1O.OC1=CC=C(OC[C@@H]2CNCC[C@H]2C2=CC=C(F)C=C2)C=C1O.OC[C@@H]1CNCC[C@H]1C1=CC=C(F)C=C1 Chemical compound COC1=CC(OC[C@@H]2CNCC[C@H]2C2=CC=C(F)C=C2)=CC=C1O.COC1=CC=C(OC[C@@H]2CNCC[C@H]2C2=CC=C(F)C=C2)C=C1O.OC1=CC=C(OC[C@@H]2CNCC[C@H]2C2=CC=C(F)C=C2)C=C1O.OC[C@@H]1CNCC[C@H]1C1=CC=C(F)C=C1 YIOKKKXYSKKDMV-HBXGCGKLSA-N 0.000 description 1
- 206010071601 CYP2D6 polymorphism Diseases 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241001340526 Chrysoclista linneella Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 102000004328 Cytochrome P-450 CYP3A Human genes 0.000 description 1
- 108010081668 Cytochrome P-450 CYP3A Proteins 0.000 description 1
- 108060006006 Cytochrome-c peroxidase Proteins 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- 206010012335 Dependence Diseases 0.000 description 1
- 208000020401 Depressive disease Diseases 0.000 description 1
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 1
- 239000012848 Dextrorphan Substances 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- VWLHWLSRQJQWRG-UHFFFAOYSA-O Edrophonum Chemical compound CC[N+](C)(C)C1=CC=CC(O)=C1 VWLHWLSRQJQWRG-UHFFFAOYSA-O 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- MOZPSIXKYJUTKI-UHFFFAOYSA-N GR 113808 Chemical compound C12=CC=CC=C2N(C)C=C1C(=O)OCC1CCN(CCNS(C)(=O)=O)CC1 MOZPSIXKYJUTKI-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000699694 Gerbillinae Species 0.000 description 1
- DABPOQZSGVNAAS-UHFFFAOYSA-N Glaucocalactone Natural products O=CC12C3C(C4)OC(=O)C2C(C)(C)CCC1OC(=O)C13CC4C(=C)C1OC(=O)C DABPOQZSGVNAAS-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- 102000008015 Hemeproteins Human genes 0.000 description 1
- 108010089792 Hemeproteins Proteins 0.000 description 1
- 206010019851 Hepatotoxicity Diseases 0.000 description 1
- 101000978418 Homo sapiens Melanocortin receptor 4 Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- GRSZFWQUAKGDAV-KQYNXXCUSA-L IMP(2-) Chemical compound O[C@@H]1[C@H](O)[C@@H](COP([O-])([O-])=O)O[C@H]1N1C(N=CNC2=O)=C2N=C1 GRSZFWQUAKGDAV-KQYNXXCUSA-L 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 238000000023 Kugelrohr distillation Methods 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- VGIGHGMPMUCLIQ-UHFFFAOYSA-N LSM-2183 Chemical compound C1=CC(F)=CC=C1N1CCN(CCCN2S(C=3C=CC=C4C=CC=C2C=34)(=O)=O)CC1 VGIGHGMPMUCLIQ-UHFFFAOYSA-N 0.000 description 1
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 1
- UEQUQVLFIPOEMF-UHFFFAOYSA-N Mianserin Chemical compound C1C2=CC=CC=C2N2CCN(C)CC2C2=CC=CC=C21 UEQUQVLFIPOEMF-UHFFFAOYSA-N 0.000 description 1
- 238000006751 Mitsunobu reaction Methods 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- UMTDAKAAYOXIKU-UHFFFAOYSA-N N-tert-butyl-3-[4-(2-methoxyphenyl)-1-piperazinyl]-2-phenylpropanamide Chemical compound COC1=CC=CC=C1N1CCN(CC(C(=O)NC(C)(C)C)C=2C=CC=CC=2)CC1 UMTDAKAAYOXIKU-UHFFFAOYSA-N 0.000 description 1
- 229940127523 NMDA Receptor Antagonists Drugs 0.000 description 1
- MOFGVUQTFJGNSG-UHFFFAOYSA-N Nalpha-Acetyl-5-hydroxy-tryptophan Natural products C1=C(O)C=C2C(CC(NC(=O)C)C(O)=O)=CNC2=C1 MOFGVUQTFJGNSG-UHFFFAOYSA-N 0.000 description 1
- 108010040718 Neurokinin-1 Receptors Proteins 0.000 description 1
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 description 1
- 102000006538 Nitric Oxide Synthase Type I Human genes 0.000 description 1
- 108010008858 Nitric Oxide Synthase Type I Proteins 0.000 description 1
- PHVGLTMQBUFIQQ-UHFFFAOYSA-N Nortryptiline Chemical compound C1CC2=CC=CC=C2C(=CCCNC)C2=CC=CC=C21 PHVGLTMQBUFIQQ-UHFFFAOYSA-N 0.000 description 1
- 229910004679 ONO2 Inorganic materials 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- PIJVFDBKTWXHHD-UHFFFAOYSA-N Physostigmine Natural products C12=CC(OC(=O)NC)=CC=C2N(C)C2C1(C)CCN2C PIJVFDBKTWXHHD-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 240000007653 Pometia tomentosa Species 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- RVOLLAQWKVFTGE-UHFFFAOYSA-N Pyridostigmine Chemical compound CN(C)C(=O)OC1=CC=C[N+](C)=C1 RVOLLAQWKVFTGE-UHFFFAOYSA-N 0.000 description 1
- BKVIWGRFRKLFIO-UHFFFAOYSA-N RS 39604 Chemical compound COC1=CC(OC)=CC(COC=2C(=CC(Cl)=C(N)C=2)C(=O)CCC2CCN(CCNS(C)(=O)=O)CC2)=C1 BKVIWGRFRKLFIO-UHFFFAOYSA-N 0.000 description 1
- XSVMFMHYUFZWBK-NSHDSACASA-N Rivastigmine Chemical compound CCN(C)C(=O)OC1=CC=CC([C@H](C)N(C)C)=C1 XSVMFMHYUFZWBK-NSHDSACASA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- DYAHQFWOVKZOOW-UHFFFAOYSA-N Sarin Chemical compound CC(C)OP(C)(F)=O DYAHQFWOVKZOOW-UHFFFAOYSA-N 0.000 description 1
- HEMHJVSKTPXQMS-DYCDLGHISA-M Sodium hydroxide-d Chemical compound [Na+].[2H][O-] HEMHJVSKTPXQMS-DYCDLGHISA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- GRXKLBBBQUKJJZ-UHFFFAOYSA-N Soman Chemical compound CC(C)(C)C(C)OP(C)(F)=O GRXKLBBBQUKJJZ-UHFFFAOYSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 102100037346 Substance-P receptor Human genes 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 238000006859 Swern oxidation reaction Methods 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- HTWFXPCUFWKXOP-UHFFFAOYSA-N Tertatalol Chemical compound C1CCSC2=C1C=CC=C2OCC(O)CNC(C)(C)C HTWFXPCUFWKXOP-UHFFFAOYSA-N 0.000 description 1
- KJADKKWYZYXHBB-XBWDGYHZSA-N Topiramic acid Chemical compound C1O[C@@]2(COS(N)(=O)=O)OC(C)(C)O[C@H]2[C@@H]2OC(C)(C)O[C@@H]21 KJADKKWYZYXHBB-XBWDGYHZSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- SECKRCOLJRRGGV-UHFFFAOYSA-N Vardenafil Chemical compound CCCC1=NC(C)=C(C(N=2)=O)N1NC=2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(CC)CC1 SECKRCOLJRRGGV-UHFFFAOYSA-N 0.000 description 1
- ZZXDRXVIRVJQBT-UHFFFAOYSA-M Xylenesulfonate Chemical compound CC1=CC=CC(S([O-])(=O)=O)=C1C ZZXDRXVIRVJQBT-UHFFFAOYSA-M 0.000 description 1
- RRGMXBQMCUKRLH-CTNGQTDRSA-N [(3ar,8bs)-3,4,8b-trimethyl-2,3a-dihydro-1h-pyrrolo[2,3-b]indol-7-yl] n-heptylcarbamate Chemical compound C12=CC(OC(=O)NCCCCCCC)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C RRGMXBQMCUKRLH-CTNGQTDRSA-N 0.000 description 1
- ZOBDWFRKFSPCRB-UNMCSNQZSA-N [(4as,9as)-2,4a,9-trimethyl-4,9a-dihydro-3h-oxazino[6,5-b]indol-6-yl] n-(2-ethylphenyl)carbamate Chemical compound CCC1=CC=CC=C1NC(=O)OC1=CC=C(N(C)[C@@H]2[C@@]3(C)CCN(C)O2)C3=C1 ZOBDWFRKFSPCRB-UNMCSNQZSA-N 0.000 description 1
- MOZPSIXKYJUTKI-RLXJOQACSA-N [1-[2-(methanesulfonamido)ethyl]piperidin-4-yl]methyl 1-(tritritiomethyl)indole-3-carboxylate Chemical compound C12=CC=CC=C2N(C([3H])([3H])[3H])C=C1C(=O)OCC1CCN(CCNS(C)(=O)=O)CC1 MOZPSIXKYJUTKI-RLXJOQACSA-N 0.000 description 1
- IXZQMUWEHPKTOZ-FYKRTSORSA-N [2H]C1(C)OC2=C\C=C(OC(C)(C)[C@@H]3CN([W])CC[C@H]3C3=CC=C(F)C=C3)/C=C\2O1 Chemical compound [2H]C1(C)OC2=C\C=C(OC(C)(C)[C@@H]3CN([W])CC[C@H]3C3=CC=C(F)C=C3)/C=C\2O1 IXZQMUWEHPKTOZ-FYKRTSORSA-N 0.000 description 1
- KUCAUZRYGNPUCW-HWOKJNDTSA-N [2H]C1([2H])OC2=CC=C(OC([2H])([2H])[C@@H]3CNCC[C@H]3C3=CC=C(F)C=C3)C=C2O1.[2H]C1([2H])OC2=CC=C(OC[C@@H]3CNCC[C@H]3C3=CC=C(F)C=C3)C=C2O1.[2H]C1=C([2H])C([C@@H]2CCNC[C@H]2COC2=CC=C3OC([2H])([2H])OC3=C2)=C([2H])C([2H])=C1F Chemical compound [2H]C1([2H])OC2=CC=C(OC([2H])([2H])[C@@H]3CNCC[C@H]3C3=CC=C(F)C=C3)C=C2O1.[2H]C1([2H])OC2=CC=C(OC[C@@H]3CNCC[C@H]3C3=CC=C(F)C=C3)C=C2O1.[2H]C1=C([2H])C([C@@H]2CCNC[C@H]2COC2=CC=C3OC([2H])([2H])OC3=C2)=C([2H])C([2H])=C1F KUCAUZRYGNPUCW-HWOKJNDTSA-N 0.000 description 1
- GTPJMRHVDZUPND-UHFFFAOYSA-M [3-(dimethylcarbamoyloxy)phenyl]-trimethylazanium;hydroxide Chemical compound [OH-].CN(C)C(=O)OC1=CC=CC([N+](C)(C)C)=C1 GTPJMRHVDZUPND-UHFFFAOYSA-M 0.000 description 1
- IBOPBHBOBJYXTD-UHFFFAOYSA-N [4-(4-fluorophenyl)piperidin-3-yl]methanol Chemical compound OCC1CNCCC1C1=CC=C(F)C=C1 IBOPBHBOBJYXTD-UHFFFAOYSA-N 0.000 description 1
- PJVJTCIRVMBVIA-JTQLQIEISA-N [dimethylamino(ethoxy)phosphoryl]formonitrile Chemical compound CCO[P@@](=O)(C#N)N(C)C PJVJTCIRVMBVIA-JTQLQIEISA-N 0.000 description 1
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 1
- 229940124532 absorption promoter Drugs 0.000 description 1
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- YTIVTFGABIZHHX-UHFFFAOYSA-L acetylenedicarboxylate(2-) Chemical compound [O-]C(=O)C#CC([O-])=O YTIVTFGABIZHHX-UHFFFAOYSA-L 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000026345 acute stress disease Diseases 0.000 description 1
- 229950006790 adenosine phosphate Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229940090865 aldose reductase inhibitors used in diabetes Drugs 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 229960002213 alprenolol Drugs 0.000 description 1
- PAZJSJFMUHDSTF-UHFFFAOYSA-N alprenolol Chemical compound CC(C)NCC(O)COC1=CC=CC=C1CC=C PAZJSJFMUHDSTF-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- OMHBPUNFVFNHJK-UHFFFAOYSA-P ambenonium Chemical compound C=1C=CC=C(Cl)C=1C[N+](CC)(CC)CCNC(=O)C(=O)NCC[N+](CC)(CC)CC1=CC=CC=C1Cl OMHBPUNFVFNHJK-UHFFFAOYSA-P 0.000 description 1
- 229960000451 ambenonium Drugs 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 1
- 229960000528 amlodipine Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- QWGDMFLQWFTERH-UHFFFAOYSA-N amoxapine Chemical compound C12=CC(Cl)=CC=C2OC2=CC=CC=C2N=C1N1CCNCC1 QWGDMFLQWFTERH-UHFFFAOYSA-N 0.000 description 1
- 229960002519 amoxapine Drugs 0.000 description 1
- 229950000388 amperozide Drugs 0.000 description 1
- NNAIYOXJNVGUOM-UHFFFAOYSA-N amperozide Chemical compound C1CN(C(=O)NCC)CCN1CCCC(C=1C=CC(F)=CC=1)C1=CC=C(F)C=C1 NNAIYOXJNVGUOM-UHFFFAOYSA-N 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 229960002105 amrinone Drugs 0.000 description 1
- RNLQIBCLLYYYFJ-UHFFFAOYSA-N amrinone Chemical compound N1C(=O)C(N)=CC(C=2C=CN=CC=2)=C1 RNLQIBCLLYYYFJ-UHFFFAOYSA-N 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000007080 aromatic substitution reaction Methods 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- ZDQSOHOQTUFQEM-PKUCKEGBSA-N ascomycin Chemical compound C/C([C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@@H](OC)C[C@@H](C)C\C(C)=C/[C@H](C(C[C@H](O)[C@H]1C)=O)CC)=C\[C@@H]1CC[C@@H](O)[C@H](OC)C1 ZDQSOHOQTUFQEM-PKUCKEGBSA-N 0.000 description 1
- ZDQSOHOQTUFQEM-XCXYXIJFSA-N ascomycin Natural products CC[C@H]1C=C(C)C[C@@H](C)C[C@@H](OC)[C@H]2O[C@@](O)([C@@H](C)C[C@H]2OC)C(=O)C(=O)N3CCCC[C@@H]3C(=O)O[C@H]([C@H](C)[C@@H](O)CC1=O)C(=C[C@@H]4CC[C@@H](O)[C@H](C4)OC)C ZDQSOHOQTUFQEM-XCXYXIJFSA-N 0.000 description 1
- 229960005245 asenapine Drugs 0.000 description 1
- 229960002430 atomoxetine Drugs 0.000 description 1
- VHGCDTVCOLNTBX-QGZVFWFLSA-N atomoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=CC=C1C VHGCDTVCOLNTBX-QGZVFWFLSA-N 0.000 description 1
- 125000005604 azodicarboxylate group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229940054066 benzamide antipsychotics Drugs 0.000 description 1
- 150000003936 benzamides Chemical class 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- HPGINXBYSMWSEL-CEWZUDCGSA-N benzyl (3S,4R)-3-[(2,2-dideuterio-1,3-benzodioxol-5-yl)oxymethyl]-4-(4-fluorophenyl)piperidine-1-carboxylate Chemical compound [2H]C1([2H])Oc2ccc(OC[C@@H]3CN(CC[C@H]3c3ccc(F)cc3)C(=O)OCc3ccccc3)cc2O1 HPGINXBYSMWSEL-CEWZUDCGSA-N 0.000 description 1
- HPGINXBYSMWSEL-OWIPKNQKSA-N benzyl (3S,4R)-3-[(2-deuterio-1,3-benzodioxol-5-yl)oxymethyl]-4-(4-fluorophenyl)piperidine-1-carboxylate Chemical compound [2H]C1Oc2ccc(OC[C@@H]3CN(CC[C@H]3c3ccc(F)cc3)C(=O)OCc3ccccc3)cc2O1 HPGINXBYSMWSEL-OWIPKNQKSA-N 0.000 description 1
- WWQGNHZOLBIUME-HKUYNNGSSA-N benzyl (3s,4r)-4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine-1-carboxylate Chemical compound C1([C@@H]2CCN(C[C@H]2CO)C(=O)OCC=2C=CC=CC=2)=CC=C(F)C=C1 WWQGNHZOLBIUME-HKUYNNGSSA-N 0.000 description 1
- IRJKSAIGIYODAN-ISLYRVAYSA-N benzyl (ne)-n-phenylmethoxycarbonyliminocarbamate Chemical compound C=1C=CC=CC=1COC(=O)/N=N/C(=O)OCC1=CC=CC=C1 IRJKSAIGIYODAN-ISLYRVAYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 1
- 229960002802 bromocriptine Drugs 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical class [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229940081733 cetearyl alcohol Drugs 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 229950002565 chlorisondamine Drugs 0.000 description 1
- DXXUGBPKQDTBQW-UHFFFAOYSA-L chlorisondamine Chemical compound [Cl-].[Cl-].ClC1=C(Cl)C(Cl)=C(Cl)C2=C1C[N+](CC[N+](C)(C)C)(C)C2 DXXUGBPKQDTBQW-UHFFFAOYSA-L 0.000 description 1
- KVSASDOGYIBWTA-UHFFFAOYSA-N chloro benzoate Chemical compound ClOC(=O)C1=CC=CC=C1 KVSASDOGYIBWTA-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229950010851 cimicoxib Drugs 0.000 description 1
- KYXDNECMRLFQMZ-UHFFFAOYSA-N cimicoxib Chemical compound C1=C(F)C(OC)=CC=C1C1=C(Cl)N=CN1C1=CC=C(S(N)(=O)=O)C=C1 KYXDNECMRLFQMZ-UHFFFAOYSA-N 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 229960004170 clozapine Drugs 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 150000001907 coumarones Chemical class 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 150000005378 cyclohexanecarboxylic acids Chemical class 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-M decanoate Chemical compound CCCCCCCCCC([O-])=O GHVNFZFCNZKVNT-UHFFFAOYSA-M 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- RWZVPVOZTJJMNU-UHFFFAOYSA-N demarcarium Chemical compound C=1C=CC([N+](C)(C)C)=CC=1OC(=O)N(C)CCCCCCCCCCN(C)C(=O)OC1=CC=CC([N+](C)(C)C)=C1 RWZVPVOZTJJMNU-UHFFFAOYSA-N 0.000 description 1
- 229960004656 demecarium Drugs 0.000 description 1
- 229960003314 deracoxib Drugs 0.000 description 1
- WAZQAZKAZLXFMK-UHFFFAOYSA-N deracoxib Chemical compound C1=C(F)C(OC)=CC=C1C1=CC(C(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 WAZQAZKAZLXFMK-UHFFFAOYSA-N 0.000 description 1
- 229950011405 deramciclane Drugs 0.000 description 1
- 229960003914 desipramine Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- LFQSCWFLJHTTHZ-WFVSFCRTSA-N deuteriooxyethane Chemical compound [2H]OCC LFQSCWFLJHTTHZ-WFVSFCRTSA-N 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960001985 dextromethorphan Drugs 0.000 description 1
- JAQUASYNZVUNQP-PVAVHDDUSA-N dextrorphan Chemical compound C1C2=CC=C(O)C=C2[C@@]23CCN(C)[C@@H]1[C@H]2CCCC3 JAQUASYNZVUNQP-PVAVHDDUSA-N 0.000 description 1
- 229950006878 dextrorphan Drugs 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 125000002576 diazepinyl group Chemical class N1N=C(C=CC=C1)* 0.000 description 1
- FJBFPHVGVWTDIP-UHFFFAOYSA-N dibromomethane Chemical compound BrCBr FJBFPHVGVWTDIP-UHFFFAOYSA-N 0.000 description 1
- YMWUJEATGCHHMB-DICFDUPASA-N dichloromethane-d2 Chemical compound [2H]C([2H])(Cl)Cl YMWUJEATGCHHMB-DICFDUPASA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229960004154 diflorasone Drugs 0.000 description 1
- WXURHACBFYSXBI-XHIJKXOTSA-N diflorasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H](C)[C@@](C(=O)CO)(O)[C@@]2(C)C[C@@H]1O WXURHACBFYSXBI-XHIJKXOTSA-N 0.000 description 1
- ALSKYCOJJPXPFS-BBRMVZONSA-N dihydro-beta-erythroidine Chemical compound C([C@@H](C[C@@]123)OC)C=C1CCN2CCC1=C3CC(=O)OC1 ALSKYCOJJPXPFS-BBRMVZONSA-N 0.000 description 1
- PXWINCSLFXUWBZ-UHFFFAOYSA-N dihydro-beta-erythroidine Natural products C1C(=O)OCC2=C1C13CC(OC)C=CC1=CCN3CC2 PXWINCSLFXUWBZ-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- MUCZHBLJLSDCSD-UHFFFAOYSA-N diisopropyl fluorophosphate Chemical class CC(C)OP(F)(=O)OC(C)C MUCZHBLJLSDCSD-UHFFFAOYSA-N 0.000 description 1
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 1
- 229960004166 diltiazem Drugs 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-LBPDFUHNSA-N dimethyl carbonate Chemical compound CO[13C](=O)OC IEJIGPNLZYLLBP-LBPDFUHNSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960003530 donepezil Drugs 0.000 description 1
- 239000000386 donor Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 208000024732 dysthymic disease Diseases 0.000 description 1
- 229960003748 edrophonium Drugs 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007247 enzymatic mechanism Effects 0.000 description 1
- CHNUOJQWGUIOLD-NFZZJPOKSA-N epalrestat Chemical compound C=1C=CC=CC=1\C=C(/C)\C=C1/SC(=S)N(CC(O)=O)C1=O CHNUOJQWGUIOLD-NFZZJPOKSA-N 0.000 description 1
- 229950010170 epalrestat Drugs 0.000 description 1
- CHNUOJQWGUIOLD-UHFFFAOYSA-N epalrestate Natural products C=1C=CC=CC=1C=C(C)C=C1SC(=S)N(CC(O)=O)C1=O CHNUOJQWGUIOLD-UHFFFAOYSA-N 0.000 description 1
- 229950010753 eptastigmine Drugs 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- BDIVMECULLJBMU-KSSFIOAISA-N erysodine Chemical compound OC1=C(OC)C=C2[C@]34C[C@@H](OC)C=CC3=CCN4CCC2=C1 BDIVMECULLJBMU-KSSFIOAISA-N 0.000 description 1
- BDIVMECULLJBMU-UHFFFAOYSA-N erysodine Natural products OC1=C(OC)C=C2C34CC(OC)C=CC3=CCN4CCC2=C1 BDIVMECULLJBMU-UHFFFAOYSA-N 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- OPQRBXUBWHDHPQ-UHFFFAOYSA-N etazolate Chemical compound CCOC(=O)C1=CN=C2N(CC)N=CC2=C1NN=C(C)C OPQRBXUBWHDHPQ-UHFFFAOYSA-N 0.000 description 1
- 229950009329 etazolate Drugs 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- CCNWZGXOWHXIJE-UHFFFAOYSA-N ethoxyethane;oxane Chemical compound CCOCC.C1CCOCC1 CCNWZGXOWHXIJE-UHFFFAOYSA-N 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- 229960004945 etoricoxib Drugs 0.000 description 1
- MNJVRJDLRVPLFE-UHFFFAOYSA-N etoricoxib Chemical compound C1=NC(C)=CC=C1C1=NC=C(Cl)C=C1C1=CC=C(S(C)(=O)=O)C=C1 MNJVRJDLRVPLFE-UHFFFAOYSA-N 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- AEKQMJRJRAHOAP-CYBMUJFWSA-N fabesetron Chemical compound N1C=NC(C[C@@H]2C(N3C4=CC=CC=C4C(C)=C3CC2)=O)=C1C AEKQMJRJRAHOAP-CYBMUJFWSA-N 0.000 description 1
- 229950002951 fananserin Drugs 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 229960003580 felodipine Drugs 0.000 description 1
- WAAPEIZFCHNLKK-PELKAZGASA-N fidarestat Chemical compound C([C@@H](OC1=CC=C(F)C=C11)C(=O)N)[C@@]21NC(=O)NC2=O WAAPEIZFCHNLKK-PELKAZGASA-N 0.000 description 1
- 229950007256 fidarestat Drugs 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000001207 fluorophenyl group Chemical group 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- 229960002714 fluticasone Drugs 0.000 description 1
- MGNNYOODZCAHBA-GQKYHHCASA-N fluticasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(O)[C@@]2(C)C[C@@H]1O MGNNYOODZCAHBA-GQKYHHCASA-N 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000012048 forced swim test Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical compound [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229960002870 gabapentin Drugs 0.000 description 1
- 229960003980 galantamine Drugs 0.000 description 1
- ASUTZQLVASHGKV-UHFFFAOYSA-N galanthamine hydrochloride Natural products O1C(=C23)C(OC)=CC=C2CN(C)CCC23C1CC(O)C=C2 ASUTZQLVASHGKV-UHFFFAOYSA-N 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 229950000264 ganstigmine Drugs 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000023611 glucuronidation Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 235000015220 hamburgers Nutrition 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000007686 hepatotoxicity Effects 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- KKLGDUSGQMHBPB-UHFFFAOYSA-N hex-2-ynedioic acid Chemical compound OC(=O)CCC#CC(O)=O KKLGDUSGQMHBPB-UHFFFAOYSA-N 0.000 description 1
- UBHWBODXJBSFLH-UHFFFAOYSA-N hexadecan-1-ol;octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO.CCCCCCCCCCCCCCCCCCO UBHWBODXJBSFLH-UHFFFAOYSA-N 0.000 description 1
- 229950002932 hexamethonium Drugs 0.000 description 1
- 231100000171 higher toxicity Toxicity 0.000 description 1
- 102000057094 human MC4R Human genes 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 229960003162 iloperidone Drugs 0.000 description 1
- XMXHEBAFVSFQEX-UHFFFAOYSA-N iloperidone Chemical compound COC1=CC(C(C)=O)=CC=C1OCCCN1CCC(C=2C3=CC=C(F)C=C3ON=2)CC1 XMXHEBAFVSFQEX-UHFFFAOYSA-N 0.000 description 1
- JXEHXYFSIOYTAH-SFYZADRCSA-N imagabalin Chemical compound CCC[C@@H](C)C[C@H](N)CC(O)=O JXEHXYFSIOYTAH-SFYZADRCSA-N 0.000 description 1
- 150000008624 imidazolidinones Chemical class 0.000 description 1
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 1
- 229960004801 imipramine Drugs 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000937 inactivator Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000008517 inhibition of serotonin uptake Effects 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 229960004427 isradipine Drugs 0.000 description 1
- FPCCSQOGAWCVBH-UHFFFAOYSA-N ketanserin Chemical compound C1=CC(F)=CC=C1C(=O)C1CCN(CCN2C(C3=CC=CC=C3NC2=O)=O)CC1 FPCCSQOGAWCVBH-UHFFFAOYSA-N 0.000 description 1
- 229960005417 ketanserin Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- MWIASLNTAGRGGA-ZJPWWDJASA-N l-368,899 Chemical compound CC1=CC=CC=C1N1CCN(S(=O)(=O)C[C@@]23[C@H](C[C@@H](CC2)C3(C)C)NC(=O)[C@@H](N)CCS(C)(=O)=O)CC1 MWIASLNTAGRGGA-ZJPWWDJASA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 229940083747 low-ceiling diuretics xanthine derivative Drugs 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical compound [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960004090 maprotiline Drugs 0.000 description 1
- QSLMDECMDJKHMQ-GSXCWMCISA-N maprotiline Chemical compound C12=CC=CC=C2[C@@]2(CCCNC)C3=CC=CC=C3[C@@H]1CC2 QSLMDECMDJKHMQ-GSXCWMCISA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- IMYZQPCYWPFTAG-IQJOONFLSA-N mecamylamine Chemical compound C1C[C@@H]2C(C)(C)[C@@](NC)(C)[C@H]1C2 IMYZQPCYWPFTAG-IQJOONFLSA-N 0.000 description 1
- 229960002525 mecamylamine Drugs 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229960001861 melperone Drugs 0.000 description 1
- BUGYDGFZZOZRHP-UHFFFAOYSA-N memantine Chemical compound C1C(C2)CC3(C)CC1(C)CC2(N)C3 BUGYDGFZZOZRHP-UHFFFAOYSA-N 0.000 description 1
- 229960004640 memantine Drugs 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- NTYATEQGMUSJQM-WTIGWPHQSA-N methyl (3s,4r)-1-methyl-4-(2,3,5,6-tetradeuterio-4-fluorophenyl)piperidine-3-carboxylate Chemical compound [2H]C1=C(F)C([2H])=C([2H])C([C@H]2[C@@H](CN(C)CC2)C(=O)OC)=C1[2H] NTYATEQGMUSJQM-WTIGWPHQSA-N 0.000 description 1
- IZYBEMGNIUSSAX-UHFFFAOYSA-N methyl benzenecarboperoxoate Chemical compound COOC(=O)C1=CC=CC=C1 IZYBEMGNIUSSAX-UHFFFAOYSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- 229960001952 metrifonate Drugs 0.000 description 1
- 229960003955 mianserin Drugs 0.000 description 1
- 229960003574 milrinone Drugs 0.000 description 1
- PZRHRDRVRGEVNW-UHFFFAOYSA-N milrinone Chemical compound N1C(=O)C(C#N)=CC(C=2C=CN=CC=2)=C1C PZRHRDRVRGEVNW-UHFFFAOYSA-N 0.000 description 1
- 229950002259 minalrestat Drugs 0.000 description 1
- 229940042472 mineral oil Drugs 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007886 mutagenicity Effects 0.000 description 1
- 231100000299 mutagenicity Toxicity 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- QOBGWWQAMAPULA-RLLQIKCJSA-N n,n-dimethyl-2-[[(1r,3s,4r)-4,7,7-trimethyl-3-phenyl-3-bicyclo[2.2.1]heptanyl]oxy]ethanamine Chemical compound C1([C@@]2([C@]3(C)CC[C@@H](C3(C)C)C2)OCCN(C)C)=CC=CC=C1 QOBGWWQAMAPULA-RLLQIKCJSA-N 0.000 description 1
- YNTOKMNHRPSGFU-UHFFFAOYSA-N n-Propyl carbamate Chemical compound CCCOC(N)=O YNTOKMNHRPSGFU-UHFFFAOYSA-N 0.000 description 1
- KOYCUQMOCJHRJC-MLOZCBHJSA-N n-[(1s,5r)-3,9-dimethyl-3,9-diazabicyclo[3.3.1]nonan-7-yl]-1h-indazole-3-carboxamide;hydron;dichloride Chemical compound Cl.Cl.C1=CC=C2C(C(=O)NC3C[C@H]4CN(C[C@@H](C3)N4C)C)=NNC2=C1 KOYCUQMOCJHRJC-MLOZCBHJSA-N 0.000 description 1
- ULRDYYKSPCRXAJ-KRWDZBQOSA-N n-[(2r)-2-[4-[4-[2-(methanesulfonamido)ethyl]phenyl]phenyl]propyl]propane-2-sulfonamide Chemical compound C1=CC([C@@H](C)CNS(=O)(=O)C(C)C)=CC=C1C1=CC=C(CCNS(C)(=O)=O)C=C1 ULRDYYKSPCRXAJ-KRWDZBQOSA-N 0.000 description 1
- QEZYDSSGVBTNBH-UHFFFAOYSA-N n-[2-[4-(adamantane-1-carbonylamino)piperidin-1-yl]ethyl]-1-propan-2-ylindazole-3-carboxamide Chemical compound C12=CC=CC=C2N(C(C)C)N=C1C(=O)NCCN1CCC(NC(=O)C23CC4CC(CC(C4)C2)C3)CC1 QEZYDSSGVBTNBH-UHFFFAOYSA-N 0.000 description 1
- ULRDYYKSPCRXAJ-UHFFFAOYSA-N n-[2-[4-[4-[2-(methanesulfonamido)ethyl]phenyl]phenyl]propyl]propane-2-sulfonamide Chemical compound C1=CC(C(C)CNS(=O)(=O)C(C)C)=CC=C1C1=CC=C(CCNS(C)(=O)=O)C=C1 ULRDYYKSPCRXAJ-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229960002362 neostigmine Drugs 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 229960001783 nicardipine Drugs 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- 239000000236 nitric oxide synthase inhibitor Substances 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 229960001158 nortriptyline Drugs 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 229960001576 octopamine Drugs 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229940100688 oral solution Drugs 0.000 description 1
- QZYYPQAYSFBKPW-UHFFFAOYSA-N org 12962 Chemical compound N1=C(Cl)C(C(F)(F)F)=CC=C1N1CCNCC1 QZYYPQAYSFBKPW-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 229940053544 other antidepressants in atc Drugs 0.000 description 1
- 229940054010 other antipsychotics in atc Drugs 0.000 description 1
- FDXQKWSTUZCCTM-UHFFFAOYSA-N oxaprotiline Chemical compound C12=CC=CC=C2C2(CC(O)CNC)C3=CC=CC=C3C1CC2 FDXQKWSTUZCCTM-UHFFFAOYSA-N 0.000 description 1
- 238000005895 oxidative decarboxylation reaction Methods 0.000 description 1
- 238000007248 oxidative elimination reaction Methods 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BHAAPTBBJKJZER-UHFFFAOYSA-N p-anisidine Chemical compound COC1=CC=C(N)C=C1 BHAAPTBBJKJZER-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229940055076 parasympathomimetics choline ester Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229950009414 pempidine Drugs 0.000 description 1
- 229960002035 penbutolol Drugs 0.000 description 1
- KQXKVJAGOJTNJS-HNNXBMFYSA-N penbutolol Chemical compound CC(C)(C)NC[C@H](O)COC1=CC=CC=C1C1CCCC1 KQXKVJAGOJTNJS-HNNXBMFYSA-N 0.000 description 1
- 229940083251 peripheral vasodilators purine derivative Drugs 0.000 description 1
- 229950004193 perospirone Drugs 0.000 description 1
- GTAIPSDXDDTGBZ-OYRHEFFESA-N perospirone Chemical compound C1=CC=C2C(N3CCN(CC3)CCCCN3C(=O)[C@@H]4CCCC[C@@H]4C3=O)=NSCC2=C1 GTAIPSDXDDTGBZ-OYRHEFFESA-N 0.000 description 1
- XHNUMAXRQGMHKZ-MTTFKFSHSA-N phenyl (3s,4r)-3-[(2,2-dideuterio-1,3-benzodioxol-5-yl)oxymethyl]-4-(2,3,5,6-tetradeuterio-4-fluorophenyl)piperidine-1-carboxylate Chemical compound [2H]C1=C(F)C([2H])=C([2H])C([C@H]2[C@@H](CN(CC2)C(=O)OC=2C=CC=CC=2)COC=2C=C3OC([2H])([2H])OC3=CC=2)=C1[2H] XHNUMAXRQGMHKZ-MTTFKFSHSA-N 0.000 description 1
- DYUMLJSJISTVPV-UHFFFAOYSA-N phenyl propanoate Chemical compound CCC(=O)OC1=CC=CC=C1 DYUMLJSJISTVPV-UHFFFAOYSA-N 0.000 description 1
- KRIOVPPHQSLHCZ-UHFFFAOYSA-N phenyl propionaldehyde Natural products CCC(=O)C1=CC=CC=C1 KRIOVPPHQSLHCZ-UHFFFAOYSA-N 0.000 description 1
- 229940049953 phenylacetate Drugs 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 229950009215 phenylbutanoic acid Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- PIJVFDBKTWXHHD-HIFRSBDPSA-N physostigmine Chemical compound C12=CC(OC(=O)NC)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C PIJVFDBKTWXHHD-HIFRSBDPSA-N 0.000 description 1
- 229960001697 physostigmine Drugs 0.000 description 1
- KASDHRXLYQOAKZ-ZPSXYTITSA-N pimecrolimus Chemical compound C/C([C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@@H](OC)C[C@@H](C)C/C(C)=C/[C@H](C(C[C@H](O)[C@H]1C)=O)CC)=C\[C@@H]1CC[C@@H](Cl)[C@H](OC)C1 KASDHRXLYQOAKZ-ZPSXYTITSA-N 0.000 description 1
- 229960005330 pimecrolimus Drugs 0.000 description 1
- JZQKKSLKJUAGIC-UHFFFAOYSA-N pindolol Chemical compound CC(C)NCC(O)COC1=CC=CC2=C1C=CN2 JZQKKSLKJUAGIC-UHFFFAOYSA-N 0.000 description 1
- 229960002508 pindolol Drugs 0.000 description 1
- AXKPFOAXAHJUAG-UHFFFAOYSA-N pipamperone Chemical compound C1CC(C(=O)N)(N2CCCCC2)CCN1CCCC(=O)C1=CC=C(F)C=C1 AXKPFOAXAHJUAG-UHFFFAOYSA-N 0.000 description 1
- 229960002776 pipamperone Drugs 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960001233 pregabalin Drugs 0.000 description 1
- AYXYPKUFHZROOJ-ZETCQYMHSA-N pregabalin Chemical compound CC(C)C[C@H](CN)CC(O)=O AYXYPKUFHZROOJ-ZETCQYMHSA-N 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-OUBTZVSYSA-N propane-1,3-diol Chemical compound OC[13CH2]CO YPFDHNVEDLHUCE-OUBTZVSYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-VMIGTVKRSA-N propane-1,3-diol Chemical compound O[13CH2][13CH2][13CH2]O YPFDHNVEDLHUCE-VMIGTVKRSA-N 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- UORVCLMRJXCDCP-UHFFFAOYSA-M propynoate Chemical compound [O-]C(=O)C#C UORVCLMRJXCDCP-UHFFFAOYSA-M 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- BWPIARFWQZKAIA-UHFFFAOYSA-N protriptyline Chemical compound C1=CC2=CC=CC=C2C(CCCNC)C2=CC=CC=C21 BWPIARFWQZKAIA-UHFFFAOYSA-N 0.000 description 1
- 229960002601 protriptyline Drugs 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229960002290 pyridostigmine Drugs 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- ZTHJULTYCAQOIJ-WXXKFALUSA-N quetiapine fumarate Chemical compound [H+].[H+].[O-]C(=O)\C=C\C([O-])=O.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 ZTHJULTYCAQOIJ-WXXKFALUSA-N 0.000 description 1
- 150000008515 quinazolinediones Chemical class 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229960003770 reboxetine Drugs 0.000 description 1
- CBQGYUDMJHNJBX-RTBURBONSA-N reboxetine Chemical compound CCOC1=CC=CC=C1O[C@H](C=1C=CC=CC=1)[C@@H]1OCCNC1 CBQGYUDMJHNJBX-RTBURBONSA-N 0.000 description 1
- 239000002469 receptor inverse agonist Substances 0.000 description 1
- 229940100618 rectal suppository Drugs 0.000 description 1
- 239000006215 rectal suppository Substances 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- VEMKTZHHVJILDY-UHFFFAOYSA-N resmethrin Chemical compound CC1(C)C(C=C(C)C)C1C(=O)OCC1=COC(CC=2C=CC=CC=2)=C1 VEMKTZHHVJILDY-UHFFFAOYSA-N 0.000 description 1
- JZCPYUJPEARBJL-UHFFFAOYSA-N rimonabant Chemical compound CC=1C(C(=O)NN2CCCCC2)=NN(C=2C(=CC(Cl)=CC=2)Cl)C=1C1=CC=C(Cl)C=C1 JZCPYUJPEARBJL-UHFFFAOYSA-N 0.000 description 1
- 229960003015 rimonabant Drugs 0.000 description 1
- 238000003385 ring cleavage reaction Methods 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 229960001534 risperidone Drugs 0.000 description 1
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 description 1
- 229950009626 ritanserin Drugs 0.000 description 1
- JUQLTPCYUFPYKE-UHFFFAOYSA-N ritanserin Chemical compound CC=1N=C2SC=CN2C(=O)C=1CCN(CC1)CCC1=C(C=1C=CC(F)=CC=1)C1=CC=C(F)C=C1 JUQLTPCYUFPYKE-UHFFFAOYSA-N 0.000 description 1
- 229960004136 rivastigmine Drugs 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- HJORMJIFDVBMOB-UHFFFAOYSA-N rolipram Chemical compound COC1=CC=C(C2CC(=O)NC2)C=C1OC1CCCC1 HJORMJIFDVBMOB-UHFFFAOYSA-N 0.000 description 1
- 229950005741 rolipram Drugs 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- CSYSULGPHGCBQD-UHFFFAOYSA-N s-ethylisothiouronium diethylphosphate Chemical compound CCSC(N)=N.CCOP(O)(=O)OCC CSYSULGPHGCBQD-UHFFFAOYSA-N 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 229940035004 seroquel Drugs 0.000 description 1
- 239000003772 serotonin uptake inhibitor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229960003310 sildenafil Drugs 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- IFGCUJZIWBUILZ-UHFFFAOYSA-N sodium 2-[[2-[[hydroxy-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphosphoryl]amino]-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoic acid Chemical compound [Na+].C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O IFGCUJZIWBUILZ-UHFFFAOYSA-N 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000012354 sodium borodeuteride Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- WNUQCGWXPNGORO-NRFANRHFSA-N sonepiprazole Chemical compound C1=CC(S(=O)(=O)N)=CC=C1N1CCN(CC[C@H]2C3=CC=CC=C3CCO2)CC1 WNUQCGWXPNGORO-NRFANRHFSA-N 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- DKGZKTPJOSAWFA-UHFFFAOYSA-N spiperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCC2(C(NCN2C=2C=CC=CC=2)=O)CC1 DKGZKTPJOSAWFA-UHFFFAOYSA-N 0.000 description 1
- 229950001675 spiperone Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- TYFQFVWCELRYAO-UHFFFAOYSA-L suberate(2-) Chemical compound [O-]C(=O)CCCCCCC([O-])=O TYFQFVWCELRYAO-UHFFFAOYSA-L 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229940066765 systemic antihistamines substituted ethylene diamines Drugs 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 229960000835 tadalafil Drugs 0.000 description 1
- IEHKWSGCTWLXFU-IIBYNOLFSA-N tadalafil Chemical compound C1=C2OCOC2=CC([C@@H]2C3=C([C]4C=CC=CC4=N3)C[C@H]3N2C(=O)CN(C3=O)C)=C1 IEHKWSGCTWLXFU-IIBYNOLFSA-N 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- ALBDGYQRKQAUJW-QITGDOJKSA-N tert-butyl (3s,4r)-3-[dideuterio(hydroxy)methyl]-4-(4-fluorophenyl)piperidine-1-carboxylate Chemical compound [2H]C([2H])(O)[C@@H]1CN(C(=O)OC(C)(C)C)CC[C@H]1C1=CC=C(F)C=C1 ALBDGYQRKQAUJW-QITGDOJKSA-N 0.000 description 1
- VMVWGBILQKUTEF-XMMLOOIMSA-N tert-butyl (3s,4r)-3-[dideuterio-[(2,2-dideuterio-1,3-benzodioxol-5-yl)oxy]methyl]-4-(4-fluorophenyl)piperidine-1-carboxylate Chemical compound C1([C@@H]2CCN(C[C@H]2C([2H])(OC=2C=C3OC([2H])([2H])OC3=CC=2)[2H])C(=O)OC(C)(C)C)=CC=C(F)C=C1 VMVWGBILQKUTEF-XMMLOOIMSA-N 0.000 description 1
- ALBDGYQRKQAUJW-ZFWWWQNUSA-N tert-butyl (3s,4r)-4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine-1-carboxylate Chemical compound OC[C@@H]1CN(C(=O)OC(C)(C)C)CC[C@H]1C1=CC=C(F)C=C1 ALBDGYQRKQAUJW-ZFWWWQNUSA-N 0.000 description 1
- LCDXBBXAXHKLCM-ZFWWWQNUSA-N tert-butyl (3s,4r)-4-(4-fluorophenyl)-3-formylpiperidine-1-carboxylate Chemical compound O=C[C@@H]1CN(C(=O)OC(C)(C)C)CC[C@H]1C1=CC=C(F)C=C1 LCDXBBXAXHKLCM-ZFWWWQNUSA-N 0.000 description 1
- 229960003352 tertatolol Drugs 0.000 description 1
- MHXBHWLGRWOABW-UHFFFAOYSA-N tetradecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC MHXBHWLGRWOABW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical class O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229950001953 tilmacoxib Drugs 0.000 description 1
- MIMJSJSRRDZIPW-UHFFFAOYSA-N tilmacoxib Chemical compound C=1C=C(S(N)(=O)=O)C(F)=CC=1C=1OC(C)=NC=1C1CCCCC1 MIMJSJSRRDZIPW-UHFFFAOYSA-N 0.000 description 1
- 229960004394 topiramate Drugs 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- NFACJZMKEDPNKN-UHFFFAOYSA-N trichlorfon Chemical compound COP(=O)(OC)C(O)C(Cl)(Cl)Cl NFACJZMKEDPNKN-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- HALWUDBBYKMYPW-STOWLHSFSA-M trimethaphan camsylate Chemical compound C1C[C@@]2(CS([O-])(=O)=O)C(=O)C[C@@H]1C2(C)C.C12C[S+]3CCCC3C2N(CC=2C=CC=CC=2)C(=O)N1CC1=CC=CC=C1 HALWUDBBYKMYPW-STOWLHSFSA-M 0.000 description 1
- 229940029774 trimethaphan camsylate Drugs 0.000 description 1
- PYIHTIJNCRKDBV-UHFFFAOYSA-L trimethyl-[6-(trimethylazaniumyl)hexyl]azanium;dichloride Chemical compound [Cl-].[Cl-].C[N+](C)(C)CCCCCC[N+](C)(C)C PYIHTIJNCRKDBV-UHFFFAOYSA-L 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 229960001844 tubocurarine Drugs 0.000 description 1
- JFJZZMVDLULRGK-URLMMPGGSA-O tubocurarine Chemical compound C([C@H]1[N+](C)(C)CCC=2C=C(C(=C(OC3=CC=C(C=C3)C[C@H]3C=4C=C(C(=CC=4CCN3C)OC)O3)C=21)O)OC)C1=CC=C(O)C3=C1 JFJZZMVDLULRGK-URLMMPGGSA-O 0.000 description 1
- 229960002655 tubocurarine chloride Drugs 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229960002004 valdecoxib Drugs 0.000 description 1
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 229960002381 vardenafil Drugs 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229940071104 xylenesulfonate Drugs 0.000 description 1
- REZGGXNDEMKIQB-UHFFFAOYSA-N zaprinast Chemical compound CCCOC1=CC=CC=C1C1=NC(=O)C2=NNNC2=N1 REZGGXNDEMKIQB-UHFFFAOYSA-N 0.000 description 1
- 229950005371 zaprinast Drugs 0.000 description 1
- SXONDGSPUVNZLO-UHFFFAOYSA-N zenarestat Chemical compound O=C1N(CC(=O)O)C2=CC(Cl)=CC=C2C(=O)N1CC1=CC=C(Br)C=C1F SXONDGSPUVNZLO-UHFFFAOYSA-N 0.000 description 1
- 229950006343 zenarestat Drugs 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229960000607 ziprasidone Drugs 0.000 description 1
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 description 1
- 229950005346 zopolrestat Drugs 0.000 description 1
- 229960004496 zotepine Drugs 0.000 description 1
- HDOZVRUNCMBHFH-UHFFFAOYSA-N zotepine Chemical compound CN(C)CCOC1=CC2=CC=CC=C2SC2=CC=C(Cl)C=C12 HDOZVRUNCMBHFH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4525—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/02—Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/12—Ophthalmic agents for cataracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/44—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D317/46—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D317/48—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
- C07D317/62—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to atoms of the carbocyclic ring
- C07D317/64—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
Definitions
- the present invention relates to novel isotopologues of Compound 1, its acceptable acid addition salts, solvates, hydrates and polymorphs thereof, substituted with deuterium on the methylene carbon atom situated between the oxygens of the benzodioxol ring, and optionally substituted with additional deuterium and 13 C atoms in place of the normally abundant hydrogen and 12 C, respectively.
- the compounds of this invention are selective serotonin reuptake inhibitors (SSRIs) and are poorer substrates for metabolism by cytochrome 2D6, and possess unique pharmacokinetic and biopharmaceutical properties compared to the corresponding non-isotopically substituted compounds.
- the invention also provides compositions comprising a compound of this invention and the use of such compositions in methods of treating diseases and conditions beneficially treated by SSRIs, particularly those relating to major depressive disorder, obsessive compulsive disorder, panic disorder, social anxiety disorder, generalized anxiety disorder, post-traumatic stress disorder, and premenstrual dysphoric disorder.
- the invention further provides methods for the use of a compound of this invention to determine concentrations of Compound 1, particularly in biological fluids, and to determine metabolism patterns of Compound 1.
- SSRI selective serotonin reuptake inhibitor
- Compound 1 includes methods of inhibiting cancer cell growth, stimulating bone formation by osteoblast stimulation, treatment of dermatological diseases or disorders such as hyperproliferative or inflammatory skin diseases, and treatment of premature female orgasm: see US Patent Applications 20040127573 (Telerman A et. al.); 20040127573 (Stashenko P and Battaglino R); 20050013853 and 20040029860 (Gil-Ad I and Weizman A); and 20050054688 (May K E and Quinn P).
- Compound 1 extends or enhances its utility in the treatment or prevention of depression, hypertension, generalized anxiety disorder, phobias, posttraumatic stress syndrome, avoidant personality disorder, sexual dysfunction, eating disorders (including bulimia, anorexia nervosa, and binge eating), obesity, chemical dependencies, cluster headache, migraine, pain (including neuropathic pain, diabetic nephropathy, post-operative pain, psychogenic pain disorders, and chronic pain syndrome), Alzheimer's disease, obsessive-compulsive disorder, panic disorder with or without agoraphobia, memory disorders, Parkinson's diseases, endocrine disorders, vasospasm, cerebellar ataxia, gastrointestinal tract disorders, negative symptoms of schizophrenia, premenstrual syndrome, Fibromyalgia Syndrome, urinary incontinence (including stress incontinence), Tourette's syndrome, trichotillomania, kleptomania, male impotence, cancer, chronic paroxysmal hemicrania and headache in a mammal,
- Compound 1 with other agents extending or enhancing its utility in the treatment or prevention of autism, dyskinesia, disthymic disorder; obesity due to genetic or environmental causes, polycystic ovary disease, craniopharyngeoma, Prader-Willi Syndrome, Frohlich's Syndrome, Type II diabetes, growth hormone deficiency, Turner's Syndrome; pro-inflammatory cytokine secretion or production, jet lag, insomnia, hypersomnia, nocturnal enuresis, restless-legs syndrome, vaso-occlusive events, hyperglycemia, hyperinsulinaemia, hyperlipidaemia, hypertriglyceridemia, diabetes, insulin resistance, impaired glucose metabolism, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose, glomerulosclerosis, syndrome X, coronary heart disease, angina pectoris, vascular restenosis, endothelial dysfunction, impaired vascular compliance, or congestive heart failure; or to increase the onset of action of
- Compound 1 has been characterized by in vitro studies of binding to rat cortical membranes, wherein radiolabeled Compound 1 was found to bind to a single, high affinity, saturable site. See e.g. Habert E et. al., Eur. J. Pharmacol. 1985 118: 107.
- Compound 1 has also been characterized in a number of animal model systems. For instance, in models of depression, obesity, and anxiety, treatment with Compound 1 accurately produced results that are correlated with human clinical effects. See, e.g. Akegawa Y et. al. Methods Find Exp Clin Pharmacol 1999 21: 599; Lassen J B, U.S. Pat. No. 4,745,122 to Ferrosan; and Hascoet M et. al., Pharmacol. Biochem. Behav. 2000 65: 339.
- Compound 1 demonstrated good tolerability and statistical efficacy in patients suffering from major depression, minor depression and dysthymia, obsessive-compulsive disorder, panic disorder, social anxiety disorder, generalized anxiety disorder, and post-traumatic stress disorder.
- Compound 1 is highly effective, for instance demonstrating superior antidepressant effects to other compounds with the same mechanism of action in a number of direct comparison studies. See, e.g. US Food and Drug Administration product label for New Drug Application (NDA) Nos. 020031, 020710, and 020936; Wagstaff A J et. al., Drugs 2002 62: 655; Katona C and Livingston G, J. Affect. Disord. 2002 69: 47.
- NDA New Drug Application
- cytochrome 2D6 cytochrome 2D6
- Compound 1 also acts as a highly potent, mechanism based inactivator of CYP2D6, possibly through formation of a carbene intermediate during the metabolic oxidation step or by formation of an ortho-quinone and subsequent reaction with active-site nucleophiles.
- Compound 1 displays significantly non-linearity pharmacokinetics, with steady state doses several times the levels expected from a single dose as a result of auto-inhibition of its metabolism.
- Compound 1 also causes a dose-dependent, highly significant reduction in CYP2D6 activity.
- CYP2D6 comprises the main metabolic pathway for a number of other clinically important drugs, including for instance anti-cancer agents, other anti-depressants, and antipsychotics; as well as drugs of abuse such as the widely used drug “Ecstasy”.
- Co-dosing Compound 1 with those agents causes clinically significant increases in their blood levels, leading to the potential for increased toxicity. Jeppesen U et.
- Compound 1 is subject to substantial inter-patient variation. Patients possessing relatively low and relatively high levels of CYP2D6 activity have been shown to metabolize Compound 1 at substantially different rates, leading to an approximately 3-fold longer half-life in a European cohort of poor metabolizers (PMs) with low CYP2D6-mediated oxidative efficiency versus extensive metabolizers (EMs) with higher CYP2D6 activity; Sindrup S H et. al., Clin. Pharmacol. 1992 51: 278.
- PMs poor metabolizers
- EMs extensive metabolizers
- CYP2D6 is the source of substantial variability in the pharmacokinetics of a number of drugs due to well-known polymorphisms resulting in low CYP2D6 activity in a substantial percentage of the population, including about 2% of Asians and 7-8% of Caucasians (Wolf C R and Smith G, IARC Sci. Publ. 1999 148: 209 (chapter 18); Mura C et. al., Br. J. Clin. Pharmacol. 1993 35: 161; Shimizu T et. al., Drug Metab. Pharmacokinet. 2003 18: 48).
- CYP2D6 polymorphisms exist across racial types, and it is possible that the even greater variability may exist in other patient populations with different pharmacogenomic backgrounds. Shimada T et. al., Pharmacogenetics 2001 11: 143.
- a compound of Formula I reduces the efficiency of benzodioxol ring cleavage by CY2D6 and beneficially decreases the rate of mechanism-based CYP2D6 inhibition relative to Compound 1. This beneficially decreases the rates of clearance as compared to Compound 1 and produces a corresponding increase in pharmacokinetic half-life.
- the decreased CYP2D6 inhibition is important in reducing the pharmacokinetic interactions between Compound 1 and other drugs metabolized by that enzyme. This provides increased safety as compared to Compound 1.
- the compounds of the present invention comprising additional deuterium for hydrogen replacement at the methylenedioxy carbon demonstrate the added benefit of reduced metabolism by other cytochrome P450 enzymes. This is important for poor metabolizers of Compound 1, wherein the main metabolic pattern of Compound 1 proceeds largely by scission of the benzodioxol ring, likely due to oxidative attack by another cytochrome enzyme.
- the compounds of this invention, and compositions comprising them, are useful for treating or lessening the severity of disorders characterized by reduced serotonin-dependent neurological activity.
- Preferred applications for compounds of formula I include methods of use in treating depression, anxiety, stress, phobias, panic, dysphoria, and other psychiatric disorders, and pain.
- Compound 1 refers to a compound wherein all hydrogen and all carbon atoms are present at their natural isotopic abundance percentages. It is recognized that some variation of natural isotopic abundance occurs depending upon the origin of chemical materials. The concentration of naturally abundant stable hydrogen and carbon isotopes, notwithstanding this variation, is small and immaterial with respect to the degree of stable isotopic substitution of compounds of this invention. See for instance Wada E and Hanba Y, Seikagaku 1994 66: 15; Ganes L Z et. al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1998 119: 725.
- N-nitrosamines substituted with deuterium can display increased, decreased, or unchanged carcinogenicity depending on where in the compound hydrogen is replaced with deuterium and on the identity of the compound to which substitutions are made (Lijinsky W et. al., Food Cosmet. Toxicol. 1982 20: 393; Lijinsky W et. al., JCNI 1982 69: 1127).
- Deuterium tracers including as deuterium-labeled drugs and doses, in some cases repeatedly, of thousands to tens of thousands of milligrams of deuterated water, are also used in healthy humans of all ages including neonates and pregnant women, without reported incident (e.g. Pons G and Rey E, Pediatrics 1999 104: 633; Coward W A et. al., Lancet 1979 7: 13; Schwarcz H P, Control. Clin. Trials 1984 5 (4 Suppl): 573; Eckhardt C L et. al. Obes. Res. 2003 11: 1553; Rodewald L E et. al., J. Pediatr. 1989 114: 885; Butte N F et. al., Br.
- the compounds of this invention are less effective substrates for CYP2D6 than Compound 1 and therefore display a reduced rate of oxidative metabolism and decreased mechanism-based inactivation of CYP2D6. This reduces the extent of undesirable metabolic drug-drug interactions observed with Compound 1, reducing the need for dose adjustments of other drugs taken by patients treated with these agents.
- the altered properties of the compounds of this invention will not obliterate their ability to bind to their protein target. This is because such binding is primarily dependent upon non-covalent binding between the protein and the inhibitor which may be impacted both positively and negatively by isotopic substitution, depending on the specific substitution involved, and any negative effects that a heavy atom of this invention may have on the highly optimized non-covalent binding between compounds of formula I and serotonin uptake proteins will be relatively minor.
- Major factors contributing to the noncovalent recognition of small molecules by proteins and the binding strength between them include: Van der Waals forces, hydrogen bonds, ionic bonds, molecular reorganization, desolvation energy of the small molecule, hydrophobic interactions and, in certain instances, displacement energy for pre-existing bound ligands.
- the compounds of this invention possess molecular topology that is very similar to Compound 1, since exchange of deuterium for hydrogen does not alter molecular shape and exchange of 13 C for 12 C is conformationally neutral (Holtzer M E et. al., Biophys. J. 2001 80: 939). Deuterium replacement does cause a slight decrease in Van der Waals radius (Wade D, Chem. Biol. Interact. 1999 117: 191); but applicant believes that such decrease will not greatly reduce binding affinity between the molecule and its receptor. Furthermore, the slightly smaller size of the deuterated compounds of this invention prevents their being involved in new undesirable steric clashes with the binding protein relative to the Compound 1.
- deuterium nor 13 C atoms in the compounds of this invention contribute significantly to hydrogen bonding or ionic interactions with the protein receptors. This is because the major hydrogen bond and ionic interactions formed by Compound 1 with serotonin uptake proteins are mediated by the oxygens, nitrogens, and the amine-bound hydrogens within Compound 1. Any deuterium atoms attached to the amine nitrogen will be rapidly exchanged with bulk solvent protons under physiological conditions. Protein reorganization or side chain movement will be identical between a compound of this invention and Compound 1. Desolvation energy of a compound of this invention will be equivalent to or less than that of Compound 1, resulting in neutral or increased binding affinity for the receptor; Turowski M et. al., J. Am. Chem. Soc. 2003 125: 13836. The replacement of 13 C in place of 12 C in compounds of this invention will have no practical change in desolvation.
- a compound of this invention advantageously retains substantial binding to serotonin uptake proteins and is an active inhibitor of serotonin uptake.
- the present invention provides an isolated compound of formula I:
- Y 1 is deuterium
- At least one of Y 2 and Y 3 is independently deuterium. More preferably, both Y 2 and Y 3 are deuterium.
- each of Y 1 , Y 2 and Y 3 is deuterium.
- each hydrogen atom on the fluorophenyl ring is replaced with deuterium.
- the term “compound” as used herein, is intended to include salts, prodrugs, and prodrug salts of a compound of formula I.
- the term also includes any solvates, hydrates, and polymorphs of any of the foregoing.
- the specific recitation of “prodrug,” “prodrug salt,” “solvate,” “hydrate,” or “polymorph” in certain aspects of the invention described in this application shall not be interpreted as an intended omission of these forms in other aspects of the invention where the term “compound” is used without recitation of these other forms.
- a salt of a compound of this invention is formed between an acid and a basic group of the compound, such as an amino functional group, or a base and an acidic group of the compound, such as a carboxyl functional group.
- the compound is a pharmaceutically acceptable acid addition salt.
- prodrug means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide a compound of this invention. Prodrugs may only become active upon such reaction under biological conditions, or they may have activity in their unreacted forms.
- prodrugs contemplated in this invention include, but are not limited to, analogs or derivatives of compounds of any one of the formulae disclosed herein that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues.
- Other examples of prodrugs include derivatives of compounds of any one of the formulae disclosed herein that comprise —NO, —NO 2 , —ONO, or —ONO 2 moieties.
- Prodrugs can typically be prepared using well-known methods, such as those described by Burger's Medicinal Chemistry and Drug Discovery (1995) 172-178, 949-982 (Manfred E. Wolff ed., 5th ed); see also Goodman and Gilman's, The Pharmacological basis of Therapeutics, 8th ed., McGraw-Hill, Int. Ed. 1992, “Biotransformation of Drugs”.
- biohydrolyzable amide As used herein and unless otherwise indicated, the terms “biohydrolyzable amide”, “biohydrolyzable ester”, “biohydrolyzable carbamate”, “biohydrolyzable carbonate”, “biohydrolyzable ureide” and “biohydrolyzable phosphate analogue” mean an amide, ester, carbamate, carbonate, ureide, or phosphate analogue, respectively, that either: 1) does not destroy the biological activity of the compound and confers upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is itself biologically inactive but is converted in vivo to a biologically active compound.
- biohydrolyzable amides include, but are not limited to, lower alkyl amides, ⁇ -amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides.
- biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters.
- biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, amino acids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
- a prodrug salt is a compound formed between an acid and a basic group of the prodrug, such as an amino functional group, or a base and an acidic group of the prodrug, such as a carboxyl functional group.
- the prodrug salt is a pharmaceutically acceptable salt.
- the counterion to the saltable prodrug of the compound of formula I is pharmaceutically acceptable.
- Pharmaceutically acceptable counterions include, for instance, those acids and bases noted herein as being suitable to form pharmaceutically acceptable salts.
- Particularly favored prodrugs and prodrug salts are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a mammal (e.g., by allowing an orally administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the brain or central nervous system) relative to the parent species.
- Preferred prodrugs include derivatives where a group that enhances aqueous solubility or active transport through the gut membrane is appended to the structure of formulae described herein. See, e.g., Alexander, J. et al. Journal of Medicinal Chemistry 1988, 31, 318-322; Bundgaard, H.
- pharmaceutically acceptable refers to a component that is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other mammals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
- pharmaceutically acceptable salt means any non-toxic salt that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound or a prodrug of a compound of this invention.
- pharmaceutically acceptable counterion is an ionic portion of a salt that is not toxic when released from the salt upon administration to a recipient.
- Acids commonly employed to form pharmaceutically acceptable salts include inorganic acids such as hydrogen bisulfide, hydrochloric, hydrobromic, hydroiodic, sulfuric and phosphoric acid, as well as organic acids such as para-toluenesulfonic, salicylic, tartaric, bitartaric, ascorbic, maleic, besylic, fumaric, gluconic, glucuronic, formic, glutamic, methanesulfonic, ethanesulfonic, benzenesulfonic, lactic, oxalic, para-bromophenylsulfonic, carbonic, succinic, citric, benzoic and acetic acid, and related inorganic and organic acids.
- inorganic acids such as hydrogen bisulfide, hydrochloric, hydrobromic, hydroiodic, sulfuric and phosphoric acid
- organic acids such as para-toluenesulfonic, salicylic, tartaric, bitartaric, as
- Such pharmaceutically acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephathalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate
- Suitable bases for forming pharmaceutically acceptable salts with acidic functional groups of prodrugs of this invention include, but are not limited to, hydroxides of alkali metals such as sodium, potassium, and lithium; hydroxides of alkaline earth metal such as calcium and magnesium; hydroxides of other metals, such as aluminum and zinc; ammonia, and organic amines, such as unsubstituted or hydroxy-substituted mono-, di-, or trialkylamines; dicyclohexylamine; tributyl amine; pyridine; N-methyl,N-ethylamine; diethylamine; triethylamine; mono-, bis-, or tris-(2-hydroxy-lower alkyl amines), such as mono-, bis-, or tris-(2-hydroxyethyl)amine, 2-hydroxy-tert-butylamine, or tris-(hydroxymethyl)methylamine, N,N-di-lower alkyl-N-(hydroxy lower alkyl)-
- hydrate means a compound which further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.
- solvate means a compound which further includes a stoichiometric or non-stoichiometric amount of solvent such as water, acetone, ethanol, methanol, dichloromethane, 2-propanol, or the like, bound by non-covalent intermolecular forces.
- polymorph means solid crystalline forms of a compound or complex thereof which may be characterized by physical means such as, for instance, X-ray powder diffraction patterns or infrared spectroscopy. Different polymorphs of the same compound can exhibit different physical, chemical and/or spectroscopic properties. Different physical properties include, but are not limited to stability (e.g., to heat, light or moisture), compressibility and density (important in formulation and product manufacturing), hygroscopicity, solubility, and dissolution rates and solubility (which can affect bioavailability).
- Differences in stability can result from changes in chemical reactivity (e.g., differential oxidation, such that a dosage form discolors more rapidly when comprised of one polymorph than when comprised of another polymorph) or mechanical characteristics (e.g., tablets crumble on storage as a kinetically favored polymorph converts to thermodynamically more stable polymorph) or both (e.g., tablets of one polymorph are more susceptible to breakdown at high humidity).
- chemical reactivity e.g., differential oxidation, such that a dosage form discolors more rapidly when comprised of one polymorph than when comprised of another polymorph
- mechanical characteristics e.g., tablets crumble on storage as a kinetically favored polymorph converts to thermodynamically more stable polymorph
- both e.g., tablets of one polymorph are more susceptible to breakdown at high humidity.
- Different physical properties of polymorphs can affect their processing. For example, one polymorph might be more likely to form solvates or might be more difficult to filter or wash free of impurities than another
- the compounds of the present invention contain one or more asymmetric carbon atoms.
- a compound of this invention can exist as the individual stereoisomers (enantiomers or diastereomers) as well a mixture of stereoisomers.
- a compound of the present invention will include not only a stereoisomeric mixture, but also individual respective stereoisomers substantially free from one another stereoisomers.
- substantially free means less than 25% of other stereoisomers, preferably less than 10% of other stereoisomers, more preferably less than 5% of other stereoisomers and most preferably less than 2% of other stereoisomers, are present.
- Methods of obtaining or synthesizing diastereomers are well known in the art and may be applied as practicable to final compounds or to starting material or intermediates. Other embodiments are those wherein the compound is an isolated compound.
- the compounds of the invention may be synthesized by well-known techniques.
- the starting materials and certain intermediates used in the synthesis of the compounds of this invention are available from commercial sources or may themselves be synthesized using reagents and techniques known in the art, including those synthesis schemes delineated herein. See, for instance, Christensen J A and Squires R F, U.S. Pat. No. 4,007,196, to Ferrosan; Ward N, U.S. Pat. No. 6,172,233, to SmithKline Beecham; Liu L T et. al., U.S. Pat. No. 6,833,458 to Development Center for Biotechnology; Jacewicz V W et. al., U.S. Pat. No.
- a convenient method for producing a compound of formula I is shown graphically in scheme II, wherein D represents deuterium, each Y is independently selected from hydrogen or deuterium, and W is a nitrogen protecting group.
- Nitrogen protecting groups are well known in the art and include, but are not limited to methyl, ethyl benzyl, substituted benzyl, allyl; and C 1-6 alkylene carbamates such as phenyl carbamate, substituted phenyl carbamate, benzyl carbamate, substituted benzyl carbamate, vinyl carbamate, or allyl carbamate.
- Preferred nitrogen protecting groups are methyl, ethyl benzyl, 4-substituted benzyl, tert-butyl carbamate, benzyl carbamate, methyl carbamate, ethyl carbamate, propyl carbamate, vinyl carbamate, and allyl carbamate are preferred. More preferred W groups include methyl, ethyl benzyl, methyl carbamate, ethyl carbamate, vinyl carbamate, allyl carbamate, phenyl carbamate, benzyl carbamate, and tert-butyl carbamate.
- Suitable benzyl substituents include, for instance, C 1-4 alkyl, C 1-4 alkyl-O—, fluoro, chloro, and nitro.
- Each of compounds of formula II, II and VI may optionally be further substituted with deuterium in place of hydrogen and 13 C in place of 12 C.
- Y 1 is preferably deuterium.
- Reaction of compounds of formula VI with compounds of formula II may be carried out in a single step, for instance by the Mitsunobu reaction (see e.g. Mitsunobu O, Synthesis 1981, 1) using a suitable phosphine such as triphenylphosphine or tributylphosphine, among others, and an azodicarboxylates such as, for instance, diethylazodicarboxylate, diisopropylazodicarboxylate, or dibenzylazodicarboxylate.
- a suitable phosphine such as triphenylphosphine or tributylphosphine, among others
- an azodicarboxylates such as, for instance, diethylazodicarboxylate, diisopropylazodicarboxylate, or dibenzylazodicarboxylate.
- the alcohol may be converted to a displaceable electrophile, for instance by producing a sulfate ester or by replacing the oxygen with a halogen such as chloride, bromide, or iodide.
- Suitable sulfate esters include, but are not limited to, tosylate, mesylate, brosylate, nosylate, and triflate.
- a preferred route to compounds of formula III is reaction of compounds of formula VI, wherein W is methyl, with thionyl chloride to give the primary chloride, and displacement with the compound of formula II under basic conditions using an alkali metal base such as sodium or potassium, e.g. in the form of sodium methoxide or sodium ethoxide.
- Compounds of formula III wherein W is methyl or ethyl may be N-deprotected by a 2-step sequence involving first a chloroformate (e.g. phenyl chloroformate, methyl chloroformate, ethyl chloroformate, or vinyl chloroformate, among others) to simultaneously N-dealkylate the piperidine ring and form the carbamate corresponding to the chloroformate used.
- a chloroformate e.g. phenyl chloroformate, methyl chloroformate, ethyl chloroformate, or vinyl chloroformate, among others
- the resulting carbamate is then hydrolyzed with strong base, such as aqueous KOH, to yield the compound of formula I.
- Vinyl carbamates produced upon reacting compounds of formula III with vinyl chloroformate, may be decomposed with acid, such as HCl, to yield the product of formula I.
- acid such as HCl
- W is benzyl or substituted benzyl
- the compound of formula III may be N-deprotected by hydrogenation, for instance using a palladium catalyst such as palladium metal or Pd(OH) 2 on carbon together with either hydrogen gas or an alternate hydrogen donor, such as formic acid or ammonium formate.
- W is benzyl carbamate it may be deprotected in a manner similar to a benzyl group, or removed by acidolysis, for instance using hydrogen bromide.
- the compound of formula III may be N-deprotected by treatment with acid (for example, hydrogen chloride, hydrogen bromide, trifluoroacetic acid, or p-toluenesulfonic acid).
- acid for example, hydrogen chloride, hydrogen bromide, trifluoroacetic acid, or p-toluenesulfonic acid.
- deuterated benzodioxols of formula V are readily available by means known in the art of organic synthesis. For instance, reaction of a deuterated methylenation reagent with an appropriate catechol of formula IV, such as 3,4-dihydroxybromobenzene, 3,4-dihydroxybenzaldehyde, 1-(3,4-dihydroxyphenyl)-oxo-alkanes, or 1-(3,4-dihydroxyphenyl)-oxo-arenes, will result in ring closure to the corresponding benzodioxol.
- catechol of formula IV such as 3,4-dihydroxybromobenzene, 3,4-dihydroxybenzaldehyde, 1-(3,4-dihydroxyphenyl)-oxo-alkanes, or 1-(3,4-dihydroxyphenyl)-oxo-arenes
- deuterated methylenation reagents include, for instance, mono and di-deuterated forms of dihalomethanes such as dichloromethane, dibromomethane, bromochloromethane, or diiodomethane.
- dihalomethanes such as dichloromethane, dibromomethane, bromochloromethane, or diiodomethane.
- benzodioxols from catechol (o-dihydroxyphenyl) precursors is well known in the art and is described for instance by Cabedo N et. al., J. Med. Chem. 2001 44: 1794; Walz A J and Sundberg R J, J. Org. Chem. 2000 65: 8001; Or ⁇ s L et. al., J. Med. Chem. 2002 45: 4128; Chang J et. al., Helv.
- R represents a halide such as bromo, chloro, or iodo; or an oxo group such as formyl, methyl ketone, ethyl ketone, or phenyl ketone;
- D is deuterium;
- Y is hydrogen or deuterium;
- X and X′ are independently halide such as bromo, chloro, or iodo; and
- Z is hydrogen, lower alkyl such as C 1-4 alkyl, or aryl such as phenyl or substituted phenyl.
- deuterium substitution can be accomplished in compounds of formula II.
- halogenation ortho to the hydroxyl group e.g. using N-bromosuccinimide in an ionic liquid, followed by O-protection (for instance with a silyl group such as triethylsilyl or tert-butyldimethylsilyl, among others), halogen-metal exchange and deuterium quench such as with D 2 O, or alternatively catalytic hydrogenation under deuterium gas, produces the 6-deuterobenzodioxol derivative (see e.g. Yadav J S et. al., Adv. Synth. Catal. 2004 346: 77; Kirefu T, et. al.
- 1,3-propanediol is commercially available in numerous isotopic forms, e.g. 1,3-propanediol- 13 C 3 (Sigma Aldrich (ISOTEC), St. Louis, Mo.); 1,3-propanediol-2- 13 C (Sigma Aldrich (ISOTEC), St.
- Deprotection of the secondary alcohol e.g. as a tetrahydropyran ether, by reaction with dihydropyran
- O-deprotection of the primary alcohol e.g. a fluoride source such as KF in dimethylformamide if silyl protection is used
- activation of the resulting primary alcohol e.g. as a chloride using triphenylphosphine/carbon tetrachloride
- reaction with p-anisidine followed by oxidation of the protected secondary alcohol to a ketone
- a ketone e.g. direct oxidation of the THP ether using an acidic oxidizing agent, or hydrolytic removal of the THP ether followed by oxidation
- P represents a suitable oxygen protecting group known in the art of organic synthesis.
- Useful oxygen protecting groups include, but are not limited to, C 1-4 alkylene, benzyl, C 1-2 -oxymethyl, or tri-C 1-6 -silyl.
- PMP represent 4-methoxyphenyl.
- Boc represents tert-butyoxycarbonyl.
- Different molecular positions are labeled to indicate sources of potential isotopic substitution: “*” shows 13 C substitution arising from labeled 1,3-propanediol.
- the piperidine 5 and 6 positions can be deuterium labeled from 1,3-propanediol as well.
- “ ⁇ >” shows deuterium substitution from labeled 4-bromo-fluorobenzene (e.g.
- “ ⁇ ” indicates 13 C or, at the piperidine 3 position, deuterium labels arising from the labeled diethyl malonate (e.g. Aldrich); “ ⁇ ” indicates 13 C or deuterium labels arising, respectively, from carrying out installation of the hydroxymethyl group using a 13 C-labeled acylating group such as dimethyl carbonate- 13 C (readily produced from 13 C-phosgene (e.g. Isotec) and methanol), or by reduction of the resulting ester group with a suitable deuterated “hydride” donor such as deuteroborane (see e.g. Kinugawa Y and Kawashima E, Nucleic Acids Res. Suppl. 2002: 19; Turecek F and Hanus V, Org. Mass Spec. 1980 15: 8).
- a 13 C-labeled acylating group such as dimethyl carbonate- 13 C (readily produced from 13 C-phosgene (e.g. Isotec) and m
- reaction schemes and protocols may be determined by the skilled artisan by use of commercially available structure-searchable database software, for instance, SciFinder® (CAS division of the American Chemical Society), STN® (CAS division of the American Chemical Society), CrossFire Beilstein® (Elsevier MDL), or internet search engines such as Google® or keyword databases such as the US Patent and Trademark Office text database.
- reaction optimization and scale-up may advantageously utilize high-speed parallel synthesis equipment and computer-controlled microreactors (e.g. Design And Optimization in Organic Synthesis, 2 nd Edition , Carlson R, Ed, 2005; Elsevier Science Ltd.; Jähnisch, K et al, Angew. Chem. Int. Ed. Engl. 2004 43: 406; and references therein).
- the synthetic methods described herein may also additionally include steps, either before or after any of the steps described in Schemes II or III, to add or remove suitable protecting groups in order to ultimately allow synthesis of the compound of the formulae described herein.
- the methods delineated herein contemplate converting compounds of one formula to compounds of another formula.
- the process of converting refers to one or more chemical transformations, which can be performed in situ, or with isolation of intermediate compounds.
- the transformations can include reacting the starting compounds or intermediates with additional reagents using techniques and protocols known in the art, including those in the references cited herein.
- Intermediates can be used with or without purification (e.g., filtration, distillation, sublimation, crystallization, trituration, solid phase extraction, chromatography).
- the invention provides an intermediate compound of formula II or formula III, wherein each hydrogen and carbon atom is optionally substituted by deuterium and 13 C, respectively.
- stable refers to compounds which possess stability sufficient to allow manufacture and which maintain the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., formulation into therapeutic products, intermediates for use in production of therapeutic compounds, isolatable or storable intermediate compounds, treating a disease or condition responsive to enhanced serotonin neurotransmission).
- isotopologue refers to species that differ from a specific compound of this invention only in the isotopic composition of their molecules or ions.
- 11 C is not referred to as a light isotope of carbon.
- a specific compound of this invention may also be referred to as a “heavy atom isotopic compound” to distinguish it from its lighter isotopologues when discussing mixtures of isotopologues. This is because a specific compound and all of its lighter isotopologues, except for Compound 1, are compounds of Formula I.
- Compound 1 refers to the free base form of the active serotonin reuptake inhibiting agent of the drug approved by the US FDA in NDA nos. 020710, and 020936.
- Compound 1 inherently comprises small amounts of deuterated and/or 13 C-containing isotopologues.
- the present invention distinguishes such forms having minor amounts of such isotopologues from its scope in that the term “compound” as used in this invention refers to a composition of matter that is predominantly a specific isotopologue.
- a compound, as defined herein, in embodiments contains less than 10%, preferably less than 6%, and more preferably less than 3% of all other isotopologues, including the Compound 1.
- compositions of matter that may contain greater than 10% of all other specific isotopologues combined are referred to herein as mixtures and must meet the parameters set forth below.
- heavy atom refers to isotopes of higher atomic weight than the predominant naturally occurring isotope.
- stable heavy atom refers to non-radioactive heavy atoms.
- Stepoisomer refers to both enantiomers and diastereomers
- PDE refers to cyclic guanosine monophosphate-specific phosphodiesterase
- cGMP refers to cyclic guanosine monophosphate
- 5′-GMP refers to guanosine-5′-monophosphate
- cAMP refers to cyclic adenosine monophosphate
- 5′-AMP refers to adenosine-5′-monophosphate
- EM refers to extensive metabolizer
- AIBN refers to 2,2′-azo-bis(isobutyronitrile)
- Boc refers to tert-butoxycarbonyl
- THP refers to tetrahydropyran
- THF tetrahydrofuran
- DMSO dimethylsulfoxide
- alkylene refers to a straight, branched, or partially or wholly cyclic alkyl group which may contain one or more degrees of unsaturation in the form of cis, trans, or mixed cis, trans-double bonds, or triple bonds
- tert refers to tertiary
- NDA refers to New Drug Application
- AUC refers to area under the plasma-time concentration curve
- CYP3A4 refers to cytochrome P450 oxidase isoform 3A4
- M-4R refers to the human melanocortin-4 receptor
- 5-HT refers to 5-hydroxytryptamine or serotonin
- NEP neutral endopeptidease
- HMG-CoA refers to 3-hydroxy-3-methylglutaryl-coenzyme A
- ETA refers to endothelin subtype A receptors
- ETB refers to endothelin subtype B receptors
- SSRI refers to selective serotonin reuptake inhibitor
- PPAR refers to peroxisome proliferator-activated receptor
- compositions comprising a mixture of a compound of this invention and its lighter isotopologues. These mixtures may occur, for instance, simply as the result of an inefficiency of incorporating an isotope at a given position; intentional or inadvertent exchange of protons for deuterium, e.g. exchange of bulk solvent for heteroatom-attached deuterium; or intentional mixtures of pure compounds.
- such mixtures comprise at least about 50% of the heavy atom isotopic compound (i.e., less than about 50% of lighter isotopologues). More preferable is a mixture comprising at least 80% of the heavy atom isotopic compound. Most preferable is a mixture comprising 90% of the heavy atom isotopic compound.
- the mixture comprises a compound of Formula I and its lighter isotopologues in relative proportions such that at least about 50%, preferably at least 80%, more preferably at least 90%, even more preferably at least 95% and most preferably at least 98% of the compounds in said mixture comprise a heavy atom isotope at each position containing a stable heavy atom isotope in the heavy atom isotopic compound.
- the following exemplifies this definition.
- a hypothetical compound of the invention contains deuterium at positions Y 1 , Y 2 and Y 3 .
- a mixture comprising this compound and all of its potential lighter isotopologues and the relative proportion of each is set forth in the table below.
- the compound plus lighter isotopologues 1, 2 and 4 comprise the isotope deuterium at position Y 1 . These compounds are present in the mixture at relevant amounts of 40%, 15%, 14% and 6%. Thus, 75% of the mixture comprises the isotope at Y 1 that is present in the compound.
- the compound plus lighter isotopologues 1, 3 and 5 comprise the isotope deuterium at position Y 2 . These compounds are present in the mixture at relevant amounts of 40%, 15%, 13% and 5%. Thus, 73% of the mixture comprises the isotope at Y 2 that is present in the compound.
- the compound plus lighter isotopologues 2, 3 and 6 comprise the isotope deuterium at position Y 3 .
- this mixture comprises a compound and its lighter isotopologues in relative proportions such that 71% of the compounds in said mixture comprise an isotope at each position containing a stable heavy atom isotope in the full isotopic compound.
- compositions comprising an effective amount of a compound of any one of formulae I, II or III or a salt thereof; or a prodrug or a salt of a prodrug thereof; or a solvate, hydrate, or polymorph thereof, if applicable; an acceptable carrier.
- the carrier(s) must be “acceptable” in the sense of being compatible with the other ingredients of the formulation.
- the invention provides a composition comprising a compound of formula I, or a pharmaceutically acceptable salt, prodrug or pharmaceutically acceptable prodrug salt thereof; or a solvate, hydrate or polymorph of any of the foregoing and a pharmaceutically acceptable carrier, wherein said composition is formulated for pharmaceutical use (“a pharmaceutical composition”).
- a pharmaceutical composition is a carrier that is compatible with the other ingredients of the composition and not deleterious to the recipient thereof in amounts typically used in medicaments.
- Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
- ion exchangers alumina, aluminum stearate, lecithin
- serum proteins such as human serum albumin
- buffer substances such as phosphat
- compositions of the invention include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration.
- the compound of the formulae herein is administered transdermally (e.g., using a transdermal patch or iontophoretic techniques).
- Other formulations may conveniently be presented in unit dosage form, e.g., tablets and sustained release capsules, and in liposomes, and may be prepared by any methods well known in the art of pharmacy. See, for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa. (17th ed. 1985).
- Such preparative methods include the step of bringing into association with the molecule to be administered ingredients such as the carrier that constitutes one or more accessory ingredients.
- ingredients such as the carrier that constitutes one or more accessory ingredients.
- the compositions are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, liposomes or finely divided solid carriers or both, and then if necessary shaping the product.
- compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion, or packed in liposomes and as a bolus, etc.
- Soft gelatin capsules can be useful for containing such suspensions, which may beneficially increase the rate of compound absorption.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent.
- Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets optionally may be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein.
- carriers that are commonly used include lactose and corn starch.
- Lubricating agents such as magnesium stearate, are also typically added.
- useful diluents include lactose and dried cornstarch.
- emulsifying and suspending agents include lactose and dried cornstarch.
- certain sweetening and/or flavoring and/or coloring agents may be added.
- Surfactants such as sodium lauryl sulfate may be useful to enhance dissolution and absorption.
- compositions suitable for topical administration include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; and pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia.
- compositions suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.
- Such injection solutions may be in the form, for example, of a sterile injectable aqueous or oleaginous suspension.
- This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween80) and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
- the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or diglycerides.
- Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
- These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant such as Ph. Helv or a similar alcohol.
- compositions of this invention may be administered in the form of suppositories for rectal or vaginal administration.
- These compositions can be prepared by mixing a compound of Formula I with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components.
- suitable non-irritating excipient include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
- Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application.
- the pharmaceutical composition will be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier.
- Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water.
- the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier.
- Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
- the pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches and iontophoretic administration are also included in this invention.
- compositions of this invention may be administered by nasal aerosol or inhalation.
- Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
- Such administration is known to be effective with erectile dysfunction drugs: Rabinowitz J D and Zaffaroni A C, U.S. Pat. No. 6,803,031, assigned to Alexza Molecular Delivery Corporation.
- Application of the subject therapeutics may be local, so as to be administered at the site of interest.
- Various techniques can be used for providing the subject pharmaceutical compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pluronic gel, stents, sustained drug release polymers or other device which provides for internal access.
- a compound of Formula I may be incorporated into a pharmaceutical composition for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents, or catheters.
- an implantable medical device such as prostheses, artificial valves, vascular grafts, stents, or catheters.
- Suitable coatings and the general preparation of coated implantable devices are described in U.S. Pat. Nos. 6,099,562; 5,886,026; and 5,304,121.
- the coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof.
- coatings are optionally further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition.
- Coatings for invasive devices are to be included within the definition of pharmaceutically acceptable carrier, adjuvant or vehicle, as those terms are used herein.
- the invention provides a method of coating an implantable medical device comprising the step of contacting said device with the coating composition described above. It will be obvious to those skilled in the art that the coating of the device will occur prior to implantation into a mammal.
- the invention provides a method of impregnating or filling an implantable drug release device comprising the step of contacting said drug release device with a compound of formula I or a pharmaceutical composition of this invention.
- Implantable drug release devices include, but are not limited to, biodegradable polymer capsules or bullets, non-degradable, diffusible polymer capsules and biodegradable polymer wafers.
- the invention provides an implantable medical device coated with a compound of Formula I or a pharmaceutical composition of this invention, such that said compound is therapeutically active.
- the invention provides an implantable drug release device impregnated with or containing a compound of Formula I or a pharmaceutical composition of this invention, such that said compound is released form said device and is therapeutically active.
- organ or tissue may be bathed in a medium containing a pharmaceutical composition of this invention
- a pharmaceutical composition of this invention may be painted onto the organ, or a pharmaceutical composition of this invention may be applied in any other convenient way.
- the present invention further provides pharmaceutical compositions comprising an effective amount of one or more compound of Formula I, in combination with an effective amount of one or more second therapeutic agents useful for treating or preventing a condition selected from depression, hypertension, generalized anxiety disorder, phobias, posttraumatic stress syndrome, avoidant personality disorder, sexual dysfunction; eating disorders including bulimia, anorexia nervosa, and binge eating; obesity, chemical dependencies, cluster headache, migraine; pain, including neuropathic pain, diabetic nephropathy, post-operative pain, psychogenic pain disorders, and chronic pain syndrome; Alzheimer's disease, obsessive-compulsive disorder, panic disorder with or without agoraphobia, memory disorders, Parkinson's diseases, endocrine disorders, vasospasm, cerebellar ataxia, gastrointestinal tract disorders, negative symptoms of schizophrenia, premenstrual syndrome, Fibromyalgia Syndrome; urinary incontinence, including stress incontinence; Tourette's syndrome, trichotillomania, kleptomania, male im
- compositions comprising an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof; or a prodrug or a pharmaceutically acceptable salt of a prodrug thereof; or a solvate, hydrate, or polymorph thereof; in combination with an effective amount of a second therapeutic agent useful for reducing the side effects of Compound 1, for enhancing or potentiating the activity of Compound 1, or for increasing the duration of pharmacological action of Compound 1; and a pharmaceutically acceptable carrier.
- Additional therapeutic agents useful in combination with the compounds of this invention include, but are not limited to: 5-HT 1A antagonist or ligand; an NK 1 -receptor antagonist; a serotonin receptor antagonist; 2-amino-4,5,6,7-tetrahydro-6-propylamino-benzothiazole (pramipexole), the (+)- or ( ⁇ )-enantiomer thereof; a sulfamate anticonvulsant agent; a precursor or prodrug of serotonin, or an intermediate in the biosynthesis of serotonin; selective agonists and antagonists of one or both of the 5-HT 1A and 5-HT 1D receptors; a composition containing dimethylaminoethanol (DMAE), omega 3-fatty acids, betaine, oligomeric proanthocyanidins, folic acid, vitamins C, E, B 12 , B 6 , B 5 and beta-carotene and minerals (calcium, magnesium, zinc and selenium); naltrexone; cyclo
- 5-HT 1A antagonists and ligands include, but are not limited to, alprenolol, WAY 100135, WAY 100635, spiperone, pindolol, (S)-UH-301, penbutolol, propranolol, tertatolol; (R)-5-carbamoyl-8-fluoro-3-N,N-disubstituted-amino-3,4-dihydro-2H-1-benzopyran; and those disclosed in U.S. Pat. Nos.
- NK 1 -receptor antagonists include, but are not limited to, those disclosed in U.S. Pat. Nos. 6,162,805; 6,878,732; US Patent Application 20050137208; as well as CNS-penetrant agents capable of inhibiting NK-1 receptor agonist-induced foot tapping in the gerbil, or attenuating separation-induced vocalizations by guinea-pig pups.
- sulfamate anticonvulsant agents include, but are not limited to, topiramate and those disclosed in and referenced by U.S. Pat. No. 5,384,327.
- precursors or prodrugs of serotonin, and intermediates in the biosynthesis of serotonin include but are not limited to, L-tryptophan, L-5-hydroxytryptophan, diethyl N-benzyloxycarbonyl-5-benzyloxycarbonyloxy-L-tryptophyl-L-aspartate, dibenzyl N-benzyloxycarbonyl-5-hydroxy-L-tryptophanylaspartate, 5-Hydroxy-L-tryptophyl-L-aspartic acid trihydrate, diethyl N-benzyloxycarbonyl-5-hydroxy-L-tryptophyl-L-glutamate, diethyl 5-hydroxy-L-tryptophyl-L-glutamate hydrochloride, dibenzyl L-benzyloxycarbonyl-5-hydroxytryptophyl-L-glutamate, 5-hydroxy-L-tryptophyl-L-glutamic acid, pentachlorophenyl ester
- an atypical antipsychotic agents include, but are not limited to, risperidone, clozapine, seroquel, sertindole, ziprasidone, zotepine, olanzapine, iloperidone, Org 5222, melperone, amperozide, SM-9018, JL-13, and pharmaceutically acceptable salts thereof.
- aldose reductase inhibitors include, but are not limited to, fidarestat, epalrestat, minalrestat, SPR-210, and zenarestat or zopolrestat, or a prodrug thereof.
- Examples of selective agonists and antagonists of one or both of the 5-HT 1A and 5-HT 1D receptors include, but are not limited to, those disclosed in U.S. Pat. No. 6,562,813.
- Type III phosphodiesterase inhibitors include, but are not limited to, bipyridines such as amrinone, milrinone and olprinone; anagrelide, bemoradan, ibudilast, isomazole, lixazinone, motapizone, olprinone, phthalazinol, pimobendan, quazinone, siguazodan and trequinsin
- calcium channel blockers examples include, but are not limited to, amlodipine diltiazem, felodipine, isradipine, nicardipine, nifedipine, and verapamil.
- mixed type III-type IV phosphodiesterase inhibitors include, but are not limited to, anagrelide, bemoradan, ibudilast, isomazole, lixazinone, motapizone, olprinone, phthalazinol, pimobendan, quazinone, siguazodan and trequinsin.
- type IV phosphodiesterase inhibitors include, but are not limited to, pyrrolidinones, in particular rolipram; quinazolinediones, xanthine derivatives, phenyl ethyl pyridines, tetrahydropyrimidones, diazepine derivatives, oxime carbamates, naphthyridinones, benzofurans, naphthalene derivatives, purine derivatives, imidazolidinones, cyclohexane carboxylic acids, benzamides, pyridopyridazinones, benzothiophenes, etazolate, S-(+)-glaucine, substituted phenyl compounds and substituted biphenyl compounds as further disclosed in U.S. Pat. No. 6,403,597.
- type V phosphodiesterase inhibitors include, but are not limited to, sildenafil, vardenafil, tadalafil, zaprinast, dipyridamole, 3-isobutyl-8-(6-methoxy-isoquinolin-4-ylmethyl)-1-methyl-3,7-dihydro-purine-2,6-dione; and those disclosed in US Patent Applications 20030055070; 20040044005; 20030139429.
- substituted indole estrogenic agents include, but are not limited to, those disclosed in and referenced by U.S. Pat. No. 6,369,051.
- DRD2-specific dopamine agonist includes, but is not limited to, bromocriptine.
- 5HT 4 receptor antagonists include, but are not limited to, A-85380, SB 204070, SB 207226, SB 207058, SB 207710, SB 205800, SB 203186, SDZ 205557, N 3389, FK 1052, SC 56184, SC 53606, DAU 6285, GR 125487, GR 113808, RS 23597, RS 39604, LY-353433 and R 50595.
- cyclooxygenase-2 selective inhibitors include, but are not limited to, celecoxib, valdecoxib, deracoxib, rofecoxib, etoricoxib, tilmacoxib, cimicoxib, and those disclosed in and referenced by US Patent Applications 20050080084 and 20050085477.
- 5-HT 2a receptor antagonists include, but are not limited to, those disclosed and referenced by US Patent application 20050070577.
- CB 1 receptor antagonists include, but are not limited to, rimonabant and those disclosed in and referenced by US Patent applications 20040248956, 20050009870, 20050014786, 20050054659, 20050080087, and 20050143381.
- selective MCH-1R receptor antagonists include, but are not limited to, those disclosed in and referenced by US Patent applications 20050009815 and 20050026915.
- tetra-substituted pyrimidopyrimidines include, but are not limited to, dipyridamole, mopidamole, dipyridamole monoacetate, 2,6-di-(2,2-dimethyl-1,3-dioxolan-4-yl)-methoxy-4,8-di-piperidinopyrimido-pyrimidine; 2,6-bis-(2,3-dimethyoxypropoxy)-4,8-di-piperidinopyrimidopyrimidine; 2,6-bis[N,N-di(2-methoxy)ethyl]-4,6-di-piperidinopyrimidopyrimidine-; and 2,6-bis(diethanolamino)-4,8-di-4-methoxybenzylaminopyrimidopyrimidine-.
- selective dopamine D 4 receptor ligands include, but are not limited to, pipamperone, fananserin, L-745,870, PNU-101387G and U-101387.
- NMDA partial receptor agonist includes, but is not limited to, D-cycloserine.
- NMDA receptor antagonists include, but are not limited to, dextromethorphan, dextrorphan, amantadine, and memantine.
- cholinesterase inhibitors include, but are not limited to, tacrine, donepezil, edrophonium, galantamine, physostigmine, eptastigmine, pyridostigmine, neostigmine, ganstigmine, rivastigmine, demecarium, ambenonium, sarin, metrifonate, soman, tabun, and diisopropyl fluorophosphates.
- GSK-3 inhibitors include, but are not limited to, those disclosed and referenced in US Patent Application 20050026946.
- alpha-2-delta ligands include, but are not limited to, gabapentin, pregabalin, [(1R,5R,6S)-6-(aminomethyl)bicyclo[-3.2.0]hept-6-yl]acetic acid, 3-(1-aminomethylcyclohexylmethyl)-4H-[1,2,4]-oxadiazol-5-one, C-[1-(1H-tetrazol-5-ylmethyl)-cycloheptyl]-methylamine, (3S,4S)-(1-aminomethyl-3,4-dimethylcyclopentyl)-acetic acid, (1 ⁇ ,3 ⁇ ,5 ⁇ )(3-aminomethyl-bicyclo[3.2.0]hept-3-yl)-acetic acid, (3S,5R)-3-aminomethyl-5-methyloctanoic acid, (3S,5R)-3-amino-5-methylheptanoic acid, (3S,5R)-3-amino
- norephinephrine reuptake inhibitors include, but are not limited to, desipramine, imipramine, amoxapine, nortriptyline, protriptyline, atomoxetine, oxaprotiline, maprotiline, reboxetine, 1-[1-(3-chlorophenyl)-2-(4-methyl-1-piperazinyl)ethyl]cyclohexanol; and those disclosed in US Patent Application 20050014848.
- corticosteroids examples include, but are not limited to, prednisolone, budesonide, cortisone, dexamethasone, hydrocortisone, methylprednisolone, fluticasone, prednisone, triamcinolone, and diflorasone.
- non-steroidal immunophilin-dependent immunosuppressants include, but are not limited to, cyclosporine, tacrolimus, ISAtx247, ascomycin, pimecrolimus, rapamycin, and everolimus.
- selective neuronal nitric oxide synthase inhibitors include, but are not limited to, those disclosed in US Patent Application 20040229911.
- An example of a selective oxytocin antagonist includes, but is not limited to, L-368,899.
- nicotine receptor antagonists include, but are not limited to, mecamylamine, amantadine, pempidine, dihydro-beta-erythroidine, hexamethonium, erysodine, chlorisondamine, trimethaphan camsylate, tubocurarine chloride, d-tubocurarine, and their optical isomers.
- adenosine A2a receptor antagonists include, but are not limited to, those disclosed in US Patent Application 20030139395.
- 5-HT 2C receptor antagonists examples include, but are not limited to, ketanserin, SB 242084, SB 206553, SB 243213, SB 228356, ritanserin, deramciclane, mirtazepine, mianserine, sertindole, YM 35 992, Ro 60-0795, Org 38457, Org 12962, EGIS 8465 and RS 102221.
- AMPA receptor potentiators include, but are not limited to, [(methylethyl)sulfonyl] ⁇ 2-[4-(4- ⁇ 2-[(methylsulfonyl)amino]ethyl ⁇ phenyl)phenyl]propyl ⁇ amine, ⁇ (2R)-2-[4-(4- ⁇ 2-[(methylsulfonyl)amino]ethyl ⁇ phenyl)phenyl]propyl ⁇ [(methylethyl)sulfonyl]amine, N-2-(4-(3-thienyl)phenylpropyl-2-propanesulfonamide, [2-fluoro-2-(4- ⁇ 3-[(methylsulfonyl)amino]phenyl ⁇ phenyl)propyl][(methylethyl)sulfonyl]amine, and, separately, each enantiomer of [2-fluoro-2-(4- ⁇ 3-[(methylsulfon
- Examples of nicotine receptor partial agonists include, but are not limited to, those disclosed in US Patent Applications 20010036943 and 20030109544.
- delta opioid receptor ligands include, but are not limited to, those disclosed in and referenced by US Patent Application 20020077323.
- growth hormone secretagogues examples include, but are not limited to, those disclosed in US Patent Applications 20020002137 and 20020086865.
- the invention provides separate dosage forms of a compound of Formula I and a second therapeutic agent, wherein said compound and said second therapeutic agent are associated with one another.
- association with one another means that the separate dosage forms are packaged together in the same container (e.g., in separate blister packs attached to one another, in separate compartments of a compartmentalized container, in separate vessels contained in the same box, etc.), or otherwise attached to one another such that it is readily apparent that the separate dosage forms are intended to be sold and administered together (within less than 24 hours of one another, consecutively or simultaneously).
- a compound of Formula I is present in an effective amount.
- the term “effective amount” refers to an amount which, when administered in a proper dosing regimen, is sufficient to reduce or ameliorate the severity, duration or progression, or enhance function compromised by a disorder associated with insufficient neurotransmission of serotonin, prevent the advancement of a disorder characterized by insufficient neurotransmission of serotonin, cause the regression of a disorder characterized by insufficient neurotransmission of serotonin, or enhance or improve the prophylactic or therapeutic effect(s) of another therapy.
- treatment according to the invention provides a reduction in or prevention of at least one symptom or manifestation of a disorder that has been linked insufficient neurotransmission of serotonin, as determined in vivo or in vitro inhibition of at least about 10%, more preferably 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98% or 99% of cellular serotonin uptake.
- the term “effective amount” means an amount that results in a detectable increase in the amount or concentration serotonin in a patient or in a biological sample, the correction of or relief from a behavior, deficit, symptom, syndrome or disease that has been linked to reduced or insufficient neurotransmission of serotonin, alone or in combination with another agent or agents; or the induction of a behavior, activity or response that has been linked to normalized or increased neurotransmission of serotonin.
- An effective amount of a compound of Formula I can range from about 0.001 mg/kg to about 500 mg/kg, more preferably 0.01 mg/kg to about 50 mg/kg, yet more preferably 0.025 mg/kg to about 1.5 mg/kg.
- Effective doses will also vary, as recognized by those skilled in the art, depending on the diseases treated, the severity of the disease, the route of administration, the sex, age and general health condition of the patient, excipient usage, the possibility of co-usage with other therapeutic treatments such as use of other agents and the judgment of the treating physician.
- an effective amount of that second therapeutic agent is between about 20% and 100% of the dosage normally utilized in a monotherapy regime using just that additional agent.
- an effective amount is between about 70% and 100% of the normal monotherapeutic dose.
- the normal monotherapeutic dosages of these second therapeutic agents are well known in the art. See, e.g., Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), each of which references are entirely incorporated herein by reference.
- the present invention provides a method of inhibiting the uptake of serotonin in a subject comprising the step of administering to said subject an effective amount of a compound of Formula I, preferably as part of a composition additionally comprising a pharmaceutically acceptable carrier.
- this method is employed to treat a subject suffering from or susceptible to one or more disease or disorder selected from depression, obsessive-compulsive disorder, generalized anxiety, post-traumatic stress, major depression, panic disorder, social phobia, premenstrual syndrome, cardiac disorders, non-cardiac chest pain; smoking addiction (to cause cessation or prevent relapses); reducing platelet activation states, alcoholism and alcohol dependence; psychiatric syndromes including anger, rejection sensitivity, and lack of mental of physical energy; late luteal phase dysphoric disorder, premature ejaculation, senile dementia, obesity, Parkinson's disease, or canine affective aggression.
- depression obsessive-compulsive disorder
- generalized anxiety post-traumatic stress
- major depression panic disorder
- social phobia social phobia
- premenstrual syndrome cardiac disorders, non-cardiac chest pain
- smoking addiction to cause cessation or prevent relapses
- reducing platelet activation states alcoholism and alcohol dependence
- psychiatric syndromes
- the method can also be employed to treat a subject suffering from or susceptible to inhibition of cancer cell growth, methods for stimulating bone formation by osteoblast stimulation, treatment of dermatological diseases or disorders such as hyperproliferative or inflammatory skin diseases, and treatment of premature female orgasm.
- Other embodiments include any of the methods herein wherein the subject is identified as in need of the indicated treatment.
- this method is employed to treat a subject suffering from or susceptible to one or more disease or disorder selected from major depressive disorder, obsessive compulsive disorder, panic disorder, social anxiety disorder, generalized anxiety disorder, post-traumatic stress disorder, and premenstrual dysphoric disorder
- Another aspect of the invention is a compound of formula I for use in inhibiting the uptake of serotonin in a subject.
- that use is in the treatment or prevention in a subject of a disease, disorder or symptom set forth above.
- Another aspect of the invention is the use of a compound of formula I in the manufacture of a medicament for inhibiting the uptake of serotonin in a subject.
- the medicament is used for treatment or prevention in a subject of a disease, disorder or symptom set forth above.
- the method of treatment further comprises the step of administering to said patient one or more additional therapeutic agents which, alone or in combination with Compound 1, are effective to treat depression, hypertension, generalized anxiety disorder, phobias, posttraumatic stress syndrome, avoidant personality disorder, sexual dysfunction; eating disorders including bulimia, anorexia nervosa, and binge eating; obesity, chemical dependencies, cluster headache, migraine; pain, including neuropathic pain, diabetic nephropathy, post-operative pain, psychogenic pain disorders, and chronic pain syndrome; Alzheimers disease, obsessive-compulsive disorder, panic disorder with or without agoraphobia, memory disorders, Parkinson's diseases, endocrine disorders, vasospasm, cerebellar ataxia, gastrointestinal tract disorders, negative symptoms of schizophrenia, premenstrual syndrome, Fibromyalgia Syndrome; urinary incontinence, including stress incontinence; Tourette's syndrome, trichotillomania, kleptomania, male impotence, cancer, chronic paroxysmal
- the method of treatment comprises the further step of administering to said patient one or more therapeutic agents which, alone or in combination with Compound 1, are effective to treat one or more of autism, dyskinesia, disthymic disorder; obesity due to genetic or environmental causes, polycystic ovary disease, craniopharyngeoma, Prader-Willi Syndrome, Frohlich's Syndrome, Type II diabetes, growth hormone deficiency, Turner's Syndrome; pro-inflammatory cytokine secretion or production, jet lag, insomnia, hypersomnia, nocturnal enuresis, restless-legs syndrome, vaso-occlusive events, hyperglycemia, hyperinsulinaemia, hyperlipidaemia, hypertriglyceridemia, diabetes, insulin resistance, impaired glucose metabolism, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose, glomerulosclerosis, syndrome X, coronary heart disease, angina pectoris, vascular restenosis, endothelial dysfunction, impaired vascular compliance
- the second therapeutic agent or agents may be administered together with a compound of Formula I as part of a single dosage form or as separate dosage forms.
- the second therapeutic agent or agents may be administered prior to, consecutively with, or following the administration of a compound of Formula I.
- both the compounds of this invention and the second therapeutic agent(s) are administered by conventional methods.
- the administration of the second therapeutic agent(s) may occur before, concurrently with, and/or after the administration of the compound of Formula I.
- the two (or more) agents may be administered in a single dosage form (such as a composition of this invention comprising a compound of Formula I, a second therapeutic agent or agents as described above, and a pharmaceutically acceptable carrier), or in separate dosage forms.
- a composition of this invention comprising both a compound of Formula I and a second therapeutic agent(s) to a subject does not preclude the separate administration of said second therapeutic agent(s), any other therapeutic agent or any compound of this invention to said subject at another time during a course of treatment.
- Effective amounts of second therapeutic agent or agents useful in the methods of this invention are well known to those skilled in the art and guidance for dosing may be found in patents referenced herein, as well as in Wells et al., eds., Pharmacotherapy Handbook, 2 nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), and other medical texts. However, it is well within the skilled artisan's purview to determine the optimal effective-amount range of the additional agent(s).
- the effective amount of the compound of Formula I is less than its effective amount would be where the second therapeutic agent(s) are not administered.
- the effective amount of the second therapeutic agent is less than its effective amount would be where the compound of Formula I is not administered (i.e., the amount of each second therapeutic agent(s) administered in a monotherapy). In this way, undesired side effects associated with high doses of either agent may be minimized.
- Other potential advantages including without limitation improved dosing regimens and/or reduced drug cost) will be apparent to those of skill in the art.
- Second therapeutic agents useful in the method of treatment are the same as those described above as part of combination compositions.
- the invention provides a compound of formula I and one or more of the above-described second therapeutic agents, either in a single composition or as separate dosage forms for use in the treatment or prevention in a subject of a disease, disorder or symptom set forth above.
- the invention provides the use of a compound of formula I and one or more of the above-described second therapeutic agents in the manufacture of a medicament, either as a single composition or as separate dosage forms, for treatment or prevention in a subject of a disease, disorder or symptom set forth above.
- the compounds of this invention may be readily assayed for biological activity by known methods. For instance, in vitro methods of determining binding to the serotonin transporter are available using recombinant cell lines, e.g. see Poss M A et. al., U.S. Pat. No. 6,225,324 to Bristol-Myers Squibb; and ex-vivo brain tissue, e.g. see Young J W et. al., U.S. Pat. No. 5,648,396 to Sepracor; and Habert E et. al., Eur. J. Pharmacol 1985 118: 107.
- in vitro methods of determining binding to the serotonin transporter are available using recombinant cell lines, e.g. see Poss M A et. al., U.S. Pat. No. 6,225,324 to Bristol-Myers Squibb; and ex-vivo brain tissue, e.g. see Young J W et. al., U.S. Pat
- the rate of metabolism of compounds of this invention may be determined and compared to that of Compound 1 in the presence, for instance, of heterologously expressed CYP2D6, or human liver microsomes (both available from BD Gentest, Woburn, Mass.).
- the compounds may also be tested in whole animals e.g. by oral or parenteral administration, measuring the disappearance of the administered compound and, if desired, the appearance of metabolites. Means for such measurements are well known, e.g. see Segura M et. al., Rapid Commun. Mass Spectrom. 2003 17: 1455; and Hartter S et. al., Ther. Drug Monit. 1994 16: 400.
- the inactivation of CYP2D6 by compounds of this invention may also be measured by known means to determine relevant enzymatic parameters such as k INACT . See for instance Bertelsen K M et. al., Drug Metab. Dispos. 2003 31: 289.
- the effects of a compound of formula I on other drugs known to be metabolized by cytochrome 2D family enzymes may also be measured and compared to the corresponding effects caused by Compound 1; e.g. see Hashimoto K et. al., Eur. J. Pharmacol. 1993 228: 247. This interaction may be measured after either a single doses of compound 1 and a compound of Formula I, or after repeated doses to measure cumulative cytochrome inactivation.
- the invention provides a method of determining the concentration of Compound 1 in a biological sample, said method comprising the steps of:
- each carbon atom is optionally substituted by 13 C
- Measuring devices that can distinguish Compound 1 from said second compound include any measuring device that can distinguish between two compounds that are of identical structure except that one contains one or more heavy atom isotope versus the other.
- a measuring device is a mass spectrometer.
- At least three combined hydrogen atoms and carbons are, respectively, deuterium and 13 C in said second compound; i.e. (total number of D)+(number of 13 C) ⁇ 3.
- the method comprises the additional step of separating both Compound 1 and said second compound from said biological sample by organic or solid phase extraction prior to step b).
- Compound 1 and the second compound will have similar solubility, extraction, and chromatographic properties, but significantly different molecular mass.
- the second compound is useful as an internal standard in a method that comprises the step of organic or solid phase extraction to measure the efficiency of that extraction and to ensure an accurate determination of the true concentration of Compound 1 (see Tuchman M and McCann M T, Clin. Chem. 1999 45: 571; Leis H J et. al., J. Mass Spectrom. 2001 36: 923; Taylor R L et. al., Clin. Chem. 2002 48: 1511).
- the compounds of the present invention are particularly useful in this method since they are not radioactive and therefore do not pose a hazard to personnel handling the compounds. Thus, these methods do not require precautions beyond those normally applied in clinical sample analysis.
- stably labeled isotopes have long been used to assist in research into the enzymatic mechanism of cytochrome P450 enzymes (e.g. Korzekwa K R et. al., Drug Metab. Rev. 1995 27: 45 and references therein; Kraus J A and Guengerich F P, J. Biol. Chem. 2005 280: 19496; Mitchell K H et. al., Proc. Natl. Acad. Sci. USA 2003 109: 3784).
- the invention provides a diagnostic kit comprising a) one or more diagnostic compounds having the formula I,
- each carbon atom is optionally substituted by 13 C;
- the invention provides a method of evaluating the metabolic stability of a compound of formula I, comprising the steps of contacting the compound of formula I or its acid addition salt with a metabolizing enzyme source for a period of time; and comparing the amount of said compound and metabolic products of said compounds after said period of time.
- the method comprises an additional step of comparing the amount of said compound and said metabolic products of said compounds at an interval during said period of time. This method allows the determination of a rate of metabolism of said compound.
- the method comprises the additional steps of contacting a compound of formula I with said metabolizing enzyme source; comparing the amount of said compound of formula I and metabolic products of said compound of formula I after said period of time determining a rate of metabolism of said compound of formula I; and comparing the metabolic stability of Compound 1 and said compound of formula I.
- This method is useful in determining whether and at which sites on a compound of formula I additional deuterium or 13 C substitution would cause increases in metabolic stability. It is also useful in comparing the metabolic stability of a compound of formula I with the metabolic stability of Compound 1.
- a metabolizing enzyme source may be a purified, isolated or partially purified metabolic protein, such as a cytochrome P450; a biological fraction, such as a liver microsome fraction; or a piece of a metabolizing organ, such as hepatocytes or a liver slice.
- a cytochrome P450 cytochrome P450
- a biological fraction such as a liver microsome fraction
- a piece of a metabolizing organ such as hepatocytes or a liver slice.
- the determination of the amount of compound and its metabolic products is well known in the art. It is typically achieved by removing an aliquot from the reaction mixture and subjecting it to an analysis capable of distinguishing between the compound and its metabolites, such as reversed-phase HPLC with UV absorption or mass spectroscopic detection. Concentrations of both the metabolizing enzyme and the compound may be varied to determine kinetic parameters, for instance, by using appropriate nonlinear regression software such as is known in the art. By comparing the kinetic parameters of both a compound of formula I and Compound 1 an apparent steady-state deuterium isotope effect ( D (V/K)) can be determined as the ratio of products formed in the hydrogen versus deuterium reactions.
- D (V/K) apparent steady-state deuterium isotope effect
- the determination of a rate of metabolism of a compound of formula I may be achieved in a reaction separate from the reaction for determining the metabolism rate of Compound 1.
- Compound 1 may be admixed with a compound of formula I in a competition experiment to determine rates of disappearance of the two compounds, making use of analytical instrumentation capable of differentiating between the two compounds based on their mass differences.
- pre-steady state kinetics such as V 0
- V 0 pre-steady state kinetics
- the invention provides a kit comprising, in separate vessels: a) Compound 1; and b) a metabolizing enzyme source.
- the kit is useful for comparing the metabolic stability of a compound of formula I with Compound 1, as well as evaluating the effect of deuterium and 13 C replacement at various positions on a compound of formula I.
- the kit further comprises instructions for using Compound 1 and said metabolizing enzyme source to evaluate the metabolic stability of a compound of formula I.
- Deuterodibromomethane A solution of 1.1 mole of sodium deuteroxide in 140 mL of deuterium oxide is treated under argon with 116 mmol of arsenious oxide to form a solution of sodium arsenite.
- Bromoform 190 mmol
- 6.5 mL of ethanol-d CH 3 CH 2 OD
- 1 mL of the sodium arsenite solution warmed briefly (heat gun) to initiate reaction.
- the remainder of the sodium arsenite solution is added via dropping funnel at a rate to maintain gentle reflux, then the mixture is heated in a 100° C. oil bath for an additional 4.5 h.
- the mixture is azeotropically distilled, then the distillate is separated and the aqueous layer extracted with 15 mL of pentane.
- the organic layers are combined, dried over CaCl 2 , and distilled to yield the title compound.
- Example 7 An 11.1 mmol portion of the product of Example 7 is reacted with (3S,4R)-benzyl 4-(4-fluorophenyl)-3-((methylsulfonyloxy)methyl)piperidine-1-carboxylate according to the general procedure set forth in Example 8 to yield the crude product which, on purification by silica gel chromatography using ethyl acetate/hexanes eluant, gives the title compound.
- (3S,4R)-tert-butyl 4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine-1-carboxylate A 6.7 mmol portion of (3S,4R)-benzyl 4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine-1-carboxylate (U.S. Pat. No. 6,476,227) is dissolved in 25 mL of dioxane and treated under argon with 7.1 mmol of di-tert-butyl dicarbonate and 200 mg of 10% Pd/C. The mixture is hydrogenated under an atmosphere of hydrogen (balloon) for about 17 h, then filtered and concentrated in vacuo. The residue is purified by silica gel chromatography (methanol/methylene chloride eluant), yielding the title product.
- reaction mixture is partitioned between ether and saturated NH 4 Cl (40 mL each), and the organic layer is washed with water and brine, dried over MgSO 4 , and concentrated in vacuo to yield the title product, which is used without subsequent purification.
- the crude acid chloride is dissolved in 20 mL of ethyl acetate and treated with 7.4 mmol of sodium borodeuteride (Aldrich). The mixture is stirred for 4 h, then cooled in an ice bath and treated dropwise with about 1 mL of 5% KHSO 4 solution. More ethyl acetate is added and the solution is extracted with 5% KHSO 4 , saturated NaHCO 3 , and brine, then dried over MgSO 4 and concentrated in vacuo. Silica gel chromatography (methanol/methylene chloride eluant) yields the title product.
- the mixture is again cooled and the excess LiAlH 4 is quenched by sequential addition of 0.21 mL of water, 0.21 mL of 15% aqueous NaOH, and 0.63 mL of water.
- the resulting suspension is filtered through celite and concentrated in vacuo, and purified by preparative reversed-phase HPLC (water/CH 3 CN gradient with 0.1% TFA) to yield, after formation of the free base (ethyl acetate/saturated NaHCO 3 wash), the title compound.
- Example 11 In vivo antidepressant effects.
- a 15 mg/kg dose of the product of Example 11 (calculated as the free base) causes a statistical reduction in immobility time versus vehicle control animals.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Psychiatry (AREA)
- Endocrinology (AREA)
- Reproductive Health (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Urology & Nephrology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Pain & Pain Management (AREA)
- Epidemiology (AREA)
- Ophthalmology & Optometry (AREA)
- Child & Adolescent Psychology (AREA)
- Gynecology & Obstetrics (AREA)
- Addiction (AREA)
- Emergency Medicine (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Pulmonology (AREA)
- Dermatology (AREA)
- Vascular Medicine (AREA)
- Psychology (AREA)
Abstract
The present invention relates to an isotopologue of Compound 1 substituted with deuterium at the methylene carbon of the benzodioxol ring. The isotopologues of this invention selective serotonin reuptake inhibitors (SSRIs) and possess unique biopharmaceutical and metabolic properties compared to Compound 1. They may also be used to accurately determine the concentration of Compound 1 in biological fluids and to determine metabolic patterns of Compound 1 and its isotopologues. The invention further provides compositions comprising these deuterated isotopologues and methods of treating diseases and conditions that are responsive to increased neuronal serotonin transmission, alone and in combination with additional agents.
Description
- The present invention relates to novel isotopologues of Compound 1, its acceptable acid addition salts, solvates, hydrates and polymorphs thereof, substituted with deuterium on the methylene carbon atom situated between the oxygens of the benzodioxol ring, and optionally substituted with additional deuterium and 13C atoms in place of the normally abundant hydrogen and 12C, respectively. The compounds of this invention are selective serotonin reuptake inhibitors (SSRIs) and are poorer substrates for metabolism by cytochrome 2D6, and possess unique pharmacokinetic and biopharmaceutical properties compared to the corresponding non-isotopically substituted compounds. The invention also provides compositions comprising a compound of this invention and the use of such compositions in methods of treating diseases and conditions beneficially treated by SSRIs, particularly those relating to major depressive disorder, obsessive compulsive disorder, panic disorder, social anxiety disorder, generalized anxiety disorder, post-traumatic stress disorder, and premenstrual dysphoric disorder. The invention further provides methods for the use of a compound of this invention to determine concentrations of Compound 1, particularly in biological fluids, and to determine metabolism patterns of Compound 1.
- Compound 1, chemically described variously as (−)-trans-4R-(4′-fluorophenyl)-3S-[(3′,4′-methylenedioxyphenoxy)methyl]piperidine; (3S,4R)-3-((benzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine; trans-(−)-3-[(1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine, and its pharmaceutically acceptable
- addition salts, hydrates, and polymorphs thereof, are known as a useful selective serotonin reuptake inhibitor (SSRI). This compound and pharmaceutical compositions comprising it have utility in the treatment of depression, obsessive-compulsive disorder, generalized anxiety, post-traumatic stress, major depression, panic disorder, social phobia, premenstrual syndrome, cardiac disorders, non-cardiac chest pain, smoking (both to cause cessation and prevent relapses), reducing platelet activation states, alcoholism and alcohol dependence, psychiatric syndromes (including anger, rejection sensitivity, and lack of mental or physical energy), late luteal phase dysphoric disorder, premature ejaculation, senile dementia, obesity, Parkinson's Disease, and canine affective aggression. See US Food and Drug Administration product label for New Drug Application (NDA) Nos. 020031, 020710, and 020936; Christensen J A and Squires R F, U.S. Pat. No. 4,007,196, to Ferrosan; Lassen J B, U.S. Pat. No. 4,745,122 to Ferrosan; Johnson A M U.S. Pat. No. 5,371,092 to Beecham Group; Crenshaw R T and Wiesner M G, U.S. Pat. No. 5,276,042; Dodman N H, U.S. Pat. Nos. 5,788,986 and 5,554,383 to Trustees of Tufts College; Norden M J U.S. Pat. No. 5,789,449; Gleason M, U.S. Pat. No. 6,121,291 to SmithKline Beecham; Cook L, U.S. Pat. No. 6,071,918 to DuPont Pharmaceuticals; Serebruany V L, U.S. Pat. No. 6,245,782 to Heartdrug Research; Steiner M X, U.S. Pat. No. 6,300,343 to SmithKline Beecham; Krishnan K R et. al., U.S. Pat. No. 6,316,469 to Duke University; Jenner P N, U.S. Pat. No. 6,372,763 to SmithKline Beecham.
- Additionally disclosed uses for Compound 1 include methods of inhibiting cancer cell growth, stimulating bone formation by osteoblast stimulation, treatment of dermatological diseases or disorders such as hyperproliferative or inflammatory skin diseases, and treatment of premature female orgasm: see US Patent Applications 20040127573 (Telerman A et. al.); 20040127573 (Stashenko P and Battaglino R); 20050013853 and 20040029860 (Gil-Ad I and Weizman A); and 20050054688 (May K E and Quinn P).
- Definitions and descriptions of these conditions are known to the skilled practitioner and are further delineated, for instance, in the above patents and patent applications and references contained therein. See also: Harrison's Principles of Internal Medicine 16th Edition, Kasper D L et. al. Eds., 2004, McGraw-Hill Professional; and Robbins & Cotran Pathologic Basis of Disease, Kumar V et. al. Eds., 2004, W.B. Saunders.
- The combination of Compound 1 with additional agents extends or enhances its utility in the treatment or prevention of depression, hypertension, generalized anxiety disorder, phobias, posttraumatic stress syndrome, avoidant personality disorder, sexual dysfunction, eating disorders (including bulimia, anorexia nervosa, and binge eating), obesity, chemical dependencies, cluster headache, migraine, pain (including neuropathic pain, diabetic nephropathy, post-operative pain, psychogenic pain disorders, and chronic pain syndrome), Alzheimer's disease, obsessive-compulsive disorder, panic disorder with or without agoraphobia, memory disorders, Parkinson's diseases, endocrine disorders, vasospasm, cerebellar ataxia, gastrointestinal tract disorders, negative symptoms of schizophrenia, premenstrual syndrome, Fibromyalgia Syndrome, urinary incontinence (including stress incontinence), Tourette's syndrome, trichotillomania, kleptomania, male impotence, cancer, chronic paroxysmal hemicrania and headache in a mammal, sleep-related breathing disorders, cognitive deficits due to aging, stroke, head trauma, neurodegenerative diseases, schizophrenia, anxiety, aggression, stress, disorders of thermoregulation, respiratory disease, bipolar disorder, psychosis, sleep disorders, mania (including acute mania), bladder disorder, genitourinary disorder, cough, emesis, nausea, psychotic disorders such as paranoia and manic-depressive illness, tic disorder, diabetic cardiomyopathy, diabetic retinopathy, cataracts, myocardial infarction, prolonged fatigue, chronic fatigue, chronic fatigue syndrome, premature ejaculation, dysphoria, post partum depression, social phobia, disruptive behavior disorders, impulse control disorders, borderline personality disorder, attention deficit disorders without hyperactivity, Shy-Drager Syndrome, cerebral ischemia, spinal cord trauma, Huntington's Chorea, amyotrophic lateral sclerosis, AIDS-induced dementia, muscular spasms, convulsions, perinatal hypoxia, hypoxia, cardiac arrest, hypoglycemic neuronal damage, ocular damage and retinopathy, brain edema, tardive dyskinesia, cerebral deficits subsequent to cardiac bypass surgery and grafting, affective disorders, mood disorders, agoraphobia without history of panic disorder, and acute stress disorders. These additional agents are also useful for reducing the side effects of Compound 1, enhancing or potentiating its activity, or increasing its duration of pharmacological action. U.S. Pat. Nos. 5,776,969 (James S P) to Eli Lilly; 5,877,171 (McLeod M N); 5,977,099 (Nickolson V J) to Akzo Nobel; 5,962,514 and 6,169,098 (Evenden J and Thorberg S-O) to Astra; 5,958,429 (Wong D T) to Eli Lilly; 5,945,416 (Shannon H E and Womer D E) to Eli Lilly; 6,066,643 (Perry K W) to Eli Lilly; 5,817,665 and 6,034,091 (Dante L G) to Nagle J S; 5,990,159 (Meulemans A L G et. al.) to Janssen Pharmaceutica; 6,001,848 (Noble E P) to The Regents of the University of California; 6,011,054 (Oxenkrug G F and Requintina P J) to St. Elizabeth's Medical Center of Boston; 6,080,736 (Landry D W and Klein D F) to Janus Pharmaceuticals; 6,162,805 (Hefti F F) to Merck Sharp & Dohme; 6,136,861 (Chenard B L) to Pfizer; 6,147,072 (Bymaster F P et. al.) to Eli Lilly; 6,218,395 (Swartz C M); 6,169,105 (Wong D T and Oguiza J I) to Eli Lilly; 6,191,133 (Coppen A J) to Scarista; 6,239,126 and 6,242,448 (Kelly M G et. al.) to American Home Products; 6,372,919 (Lippa A S and Epstein J W) to DOV; 6,369,051 (Jenkins S N) to American Home Products; 6,358,944 (Lederman S et. al.) to Vela Pharmaceuticals; 6,121,259; 6,174,882; 6,348,455; 6,352,984; and 6,468,997 (Yelle W E) to Sepracor; 6,403,597 (Wilson L F et. al.) to Vivus; 6,395,788 and 6,541,523 (Iglehart I W III) to Vela Pharmaceuticals; 6,127,385 and 6,395,752 (Midha K K et. al.) to Pharmaquest Limited; 6,380,200 (Mylari B L) to Pfizer; 6,387,956 (Shapira N A et. al.) to University of Cincinnati; 6,444,665 (Helton D R et. al.) to Eli Lilly; 6,541,478 (O'Malley S et. al.) to Yale University; 6,541,043 (Lang P C) to DexGen Pharmaceuticals; 6,562,813 (Howard H R) to Pfizer; 6,579,899 (Wurtman J J and Wurtman R J) to Massachusetts Institute of Technology; 6,627,653 (Plata-Salaman C R et. al.) to Ortho-McNeil; 6,649,614 (Carlson E J and Rupniak N M) to Merck Sharp & Dohme; 6,667,329 (Maj J) to Boehringer Ingelheim; 6,727,242 (Radulovacki M and Carley D W) to The Board of Trustees of the University of Illinois; 6,656,951; 6,780,860; 6,815,448; 6,821,981; and 6,861,427 (Stack; Gary P et. al.) to Wyeth; 6,878,732 (Wrobleski M L) to Schering Corporation; and 6,894,053 (Childers W E et. al.) to Wyeth.
- Further disclosed are additional combinations of Compound 1 with other agents extending or enhancing its utility in the treatment or prevention of autism, dyskinesia, disthymic disorder; obesity due to genetic or environmental causes, polycystic ovary disease, craniopharyngeoma, Prader-Willi Syndrome, Frohlich's Syndrome, Type II diabetes, growth hormone deficiency, Turner's Syndrome; pro-inflammatory cytokine secretion or production, jet lag, insomnia, hypersomnia, nocturnal enuresis, restless-legs syndrome, vaso-occlusive events, hyperglycemia, hyperinsulinaemia, hyperlipidaemia, hypertriglyceridemia, diabetes, insulin resistance, impaired glucose metabolism, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose, glomerulosclerosis, syndrome X, coronary heart disease, angina pectoris, vascular restenosis, endothelial dysfunction, impaired vascular compliance, or congestive heart failure; or to increase the onset of action of Compound 1. US Patent Applications 20020032197, 20020002137, 20020086865, 20020077323, 20020103249, 20020094960, 20030109544, 20030092770, 20030144270, 20030158173, 20030139395, 20030055070, 20030139429, 20040044005, 20010014678, 20040044005, 20030235631, 20030027817, 20030229001, 20030212060, 20040132797, 20040204469, 20040204401, 20040171664, 20040229940, 20040229941, 20040229942, 20040229911, 20040224943, 20040229866, 20040224942, 20040220153, 20040229849, 20050069596, 20050059654, 20050014848, 20050026915, 20050026946, 20050143350, 20020035105, 20050143314, 20050137208, 20040010035, 20040013741, 20050136127, 20050119248, 20050119160, 20050085477, 20050085475, 20010003749, 20050009815, 20040248956, 20050014786, 20050009870, 20050054659, 20050143381, 20050080087, 20050070577, and 20050080084.
- Compound 1 has been characterized by in vitro studies of binding to rat cortical membranes, wherein radiolabeled Compound 1 was found to bind to a single, high affinity, saturable site. See e.g. Habert E et. al., Eur. J. Pharmacol. 1985 118: 107.
- Compound 1 has also been characterized in a number of animal model systems. For instance, in models of depression, obesity, and anxiety, treatment with Compound 1 accurately produced results that are correlated with human clinical effects. See, e.g. Akegawa Y et. al. Methods Find Exp Clin Pharmacol 1999 21: 599; Lassen J B, U.S. Pat. No. 4,745,122 to Ferrosan; and Hascoet M et. al., Pharmacol. Biochem. Behav. 2000 65: 339.
- In human clinical studies, Compound 1 demonstrated good tolerability and statistical efficacy in patients suffering from major depression, minor depression and dysthymia, obsessive-compulsive disorder, panic disorder, social anxiety disorder, generalized anxiety disorder, and post-traumatic stress disorder. Compound 1 is highly effective, for instance demonstrating superior antidepressant effects to other compounds with the same mechanism of action in a number of direct comparison studies. See, e.g. US Food and Drug Administration product label for New Drug Application (NDA) Nos. 020031, 020710, and 020936; Wagstaff A J et. al., Drugs 2002 62: 655; Katona C and Livingston G, J. Affect. Disord. 2002 69: 47.
- Following oral administration to humans, Compound 1 is well absorbed, after which it undergoes extensive oxidative and phase II metabolism. Its major metabolic pathway proceeds by oxidative cleavage of the benzodioxol ring to forming a catechol metabolite. Subsequent phase II metabolism involves mainly methylation, glucuronidation and sulfation. See Scheme I. In vitro measurements indicate that these metabolites possess <2% of the potency of Compound 1 and therefore do not contribute pharmacodynamically to its action. During a 10-day post-dosing period following a 30 mg oral solution dose of radiolabeled Compound 1 in healthy volunteers, approximately 64% of Compound 1 was found to be excreted in the urine, comprising 2% as the parent compound and 62% as metabolites. About 36% was excreted in the feces, mostly as metabolites and less than 1% as the parent compound during this period. US FDA approved label for NDA #020031, approved Jan. 12, 2005.
- The benzodioxol ring scission is carried out in significant part by cytochrome 2D6 (CYP2D6), which acts as a high affinity, but relatively low capacity, oxidant. Compound 1 also acts as a highly potent, mechanism based inactivator of CYP2D6, possibly through formation of a carbene intermediate during the metabolic oxidation step or by formation of an ortho-quinone and subsequent reaction with active-site nucleophiles. Bertelsen K M et. al., Drug Metab. Dispos. 2003 31: 289; Murray M, Curr. Drug Metab. 2000 1: 67; Ortiz de Montellano and Correi M A in “Cytochrome P450 Structure, Mechanism and Biochemistry” (Ortiz de Montellano P R ed) pp 305-366, 1995 Plenum Press, New York; Wu et. al., Biochem. Pharmacol. 1997 53: 1605; Bolton J L et. al., 1994 Chem. Res. Toxicol. 7: 443.
- Clinically, this mechanism-based inactivation manifests in several ways. For instance, Compound 1 displays significantly non-linearity pharmacokinetics, with steady state doses several times the levels expected from a single dose as a result of auto-inhibition of its metabolism. Compound 1 also causes a dose-dependent, highly significant reduction in CYP2D6 activity. CYP2D6 comprises the main metabolic pathway for a number of other clinically important drugs, including for instance anti-cancer agents, other anti-depressants, and antipsychotics; as well as drugs of abuse such as the widely used drug “Ecstasy”. Co-dosing Compound 1 with those agents causes clinically significant increases in their blood levels, leading to the potential for increased toxicity. Jeppesen U et. al., Eur. J. Clin. Pharmacol. 1996 51: 73; US FDA approved label for NDA #020935, approved Jan. 12, 2005; Laugesen S et. al., Clin Pharmacol Ther. 2005 77: 312; Jin Y et. al., J. Natl. Cancer Inst. 2005 97: 30; Joos A A B et al., Pharmacopsychiat. 1997 30, 266; Segura M et. al., Clin Pharmacokinet. 2005 44: 649.
- Compound 1 is subject to substantial inter-patient variation. Patients possessing relatively low and relatively high levels of CYP2D6 activity have been shown to metabolize Compound 1 at substantially different rates, leading to an approximately 3-fold longer half-life in a European cohort of poor metabolizers (PMs) with low CYP2D6-mediated oxidative efficiency versus extensive metabolizers (EMs) with higher CYP2D6 activity; Sindrup S H et. al., Clin. Pharmacol. 1992 51: 278. Even when measured at steady state, at which time variability is substantially less than on initial dosing, high variability of Compound 1 was observed in a test population (about 30-70% coefficients of variability across maximal and minimal plasma concentrations (Cmax and Cmin) and overall exposure measured as area under the plasma concentration-time curve (AUC∞)). Kaye C M et. al., Acta Psychiatr. Scand. 80 (Suppl. 350): 60.
- CYP2D6 is the source of substantial variability in the pharmacokinetics of a number of drugs due to well-known polymorphisms resulting in low CYP2D6 activity in a substantial percentage of the population, including about 2% of Asians and 7-8% of Caucasians (Wolf C R and Smith G, IARC Sci. Publ. 1999 148: 209 (chapter 18); Mura C et. al., Br. J. Clin. Pharmacol. 1993 35: 161; Shimizu T et. al., Drug Metab. Pharmacokinet. 2003 18: 48). Notably, different CYP2D6 polymorphisms exist across racial types, and it is possible that the even greater variability may exist in other patient populations with different pharmacogenomic backgrounds. Shimada T et. al., Pharmacogenetics 2001 11: 143.
- It is therefore desirable to create a compound displaying the beneficial activities of Compound 1, but with a decreased metabolic liability for CYP2D6, to further extend its pharmacological effective life in extensive metabolizers, decrease population pharmacokinetic variability and/or decrease its potential for dangerous drug-drug interactions.
- The present invention solves the problems set forth above by providing an isolated compound of Formula I:
- or a salt thereof; or a prodrug, or a salt of a prodrug thereof; or a hydrate, solvate, or polymorph thereof; wherein:
-
- D is deuterium;
- each Y is independently selected from deuterium or hydrogen;
- each hydrogen is independently optionally replaced with deuterium; and
- each carbon is independently optionally replaced with 13C.
- A compound of Formula I reduces the efficiency of benzodioxol ring cleavage by CY2D6 and beneficially decreases the rate of mechanism-based CYP2D6 inhibition relative to Compound 1. This beneficially decreases the rates of clearance as compared to Compound 1 and produces a corresponding increase in pharmacokinetic half-life.
- The decreased CYP2D6 inhibition is important in reducing the pharmacokinetic interactions between Compound 1 and other drugs metabolized by that enzyme. This provides increased safety as compared to Compound 1.
- In particular, this would produce benefits in the treatment of co-morbidities and the use of combinations of medications, which is common in patients suffering from depression, anxiety and other psychiatric disorders. Moreover, it would be useful in patients taking Compound 1, while being treated by different healthcare providers without disclosing all of their medications to each of them. It would also be beneficial in patients who are using drugs of abuse while taking Compound 1 without the knowledge of their physician.
- The decreased substrate efficiency for CYP2D6 at the methylenedioxy portion of the benzodioxol ring demonstrated by the compounds of this invention will provide the further benefit of reducing inter-patient pharmacokinetic variability observed for Compound 1.
- The compounds of the present invention comprising additional deuterium for hydrogen replacement at the methylenedioxy carbon demonstrate the added benefit of reduced metabolism by other cytochrome P450 enzymes. This is important for poor metabolizers of Compound 1, wherein the main metabolic pattern of Compound 1 proceeds largely by scission of the benzodioxol ring, likely due to oxidative attack by another cytochrome enzyme. Also, a relatively minor amount of ring scission (complete cleavage of the benzodioxol ring, forming 4-(4-fluorophenyl)-3-hydroxymethylpiperidine) observed in normal metabolizers, which could result from oxidation of the methylene carbon attached to the piperidine ring, may become more predominant if the benzodioxol ring is metabolically stabilized. Therefore, compounds of this invention that are deuterated at that carbon will also be beneficial to the clearance rate of the compound.
- The compounds of this invention, and compositions comprising them, are useful for treating or lessening the severity of disorders characterized by reduced serotonin-dependent neurological activity. Preferred applications for compounds of formula I include methods of use in treating depression, anxiety, stress, phobias, panic, dysphoria, and other psychiatric disorders, and pain.
- The compounds and compositions of this invention are also useful as analytical reagents for determining the concentration of the Compound 1 in solution. “Compound 1” as used herein refers to a compound wherein all hydrogen and all carbon atoms are present at their natural isotopic abundance percentages. It is recognized that some variation of natural isotopic abundance occurs depending upon the origin of chemical materials. The concentration of naturally abundant stable hydrogen and carbon isotopes, notwithstanding this variation, is small and immaterial with respect to the degree of stable isotopic substitution of compounds of this invention. See for instance Wada E and Hanba Y, Seikagaku 1994 66: 15; Ganes L Z et. al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1998 119: 725.
- Incorporation of deuterium in place of hydrogen is known in certain instances to have significant effects on the physiological and pharmacological activities of the substituted compound. For instance, N-nitrosamines substituted with deuterium can display increased, decreased, or unchanged carcinogenicity depending on where in the compound hydrogen is replaced with deuterium and on the identity of the compound to which substitutions are made (Lijinsky W et. al., Food Cosmet. Toxicol. 1982 20: 393; Lijinsky W et. al., JCNI 1982 69: 1127). Similarly, both increases and decreases in bacterial mutagenicity of deuterium-substituted aza-amino acids are known, depending on the identity of the amino acid derivative and position of substitution (Mangold J B et. al., Mutation Res. 1994 308: 33). Reduced hepatotoxicity of certain deuterium-substituted compounds is known (Gordon W P et. al., Drug Metab. Dispos. 1987 15: 589; Thompson D C et. al., Chem. Biol. Interact. 1996 101: 1). Deuterium substitution can affect compound's odors (Turin L, Chem. Senses 1996 21: 773) and plasma protein binding (Echmann M L et. al., J. Pharm. Sci. 1962 51: 66; Chemah Y. et. al., Biomed. Environm. Mass Spectrom. 1987 14: 653; Chemah Y. et. al., Biochem. Pharmacol. 1988 37: 1311). Changes in the biodistribution and clearance of certain deuterium-substituted compounds suggests changes in their recognition by active transport mechanisms (Zello G A et. al., Metabolism 1994 43: 487; Gately S J et. al., J. Nucl. Med. 1986 27: 388; Wade D, Chem. Biol. Interact. 1999 117: 191).
- Replacement of hydrogen with deuterium at sites subject to oxidative metabolism by, for instance, heme proteins such as cytochrome P450 and peroxidase enzymes, is known in certain, but not all, cases to produce a significant reduction in the rate of metabolism due to the primary isotope effect of breaking the C-1H versus C-2H bond (see, e.g., Guengerich F P et. al., J. Biol. Chem. 2002 277: 33711; Kraus, J A and Guengerich, F P, J. Biol. Chem. 2005 280: 19496; Mitchell K H et. al., Proc. Natl. Acad. Sci. USA 2003 109: 3784; Nelson S D and Trager W F, Drug Metab. Dispos. 2003 31: 1481; Hall L R and Hanzlik R P, J. Biol. Chem. 1990 265: 12349; Okazaki O and Guengerich F P, J. Biol. Chem. 268, 1546; Iwamura S et. al., J. Pharmacobio-Dyn. 1987 10: 229). If the C—H bond breaking step is rate-limiting, a substantial isotope effect can be observed. If other steps determine the overall rate of reaction, the isotope effect may be insubstantial. In cases where a rate-limiting step of a reaction involves rehybridization of the attached carbon from sp2 to sp3, deuterium substitution often creates a negative isotope effect, speeding up the reaction rate. Introducing deuterium into a compound at a site subject to enzymatic oxidation does not predictably produce a significant pharmacokinetic change. See for instance Mamada K et. al., Drug Metab. Dispos. 1986 14: 509; Streeter A J et. al., Arch. Toxicol. 1990 64: 109; Morgan D S et. al., Int. Arch. Occup. Environ. Health 1993 65 (1 Suppl.): S139.
- Although incorporation of deuterium into specific organic compounds can change their pharmacological properties, general exposure to and incorporation of deuterium is safe within levels potentially achieved by use of compounds of this invention as medicaments. For instance, the weight percentage of hydrogen in a mammal (approximately 9-10%) and natural abundance of deuterium (approximately 0.015%) indicates, for instance that an average adult US male normally contains approximately 1.2 grams of deuterium (see e.g. Harper V W et. al. “Review of Physiological Chemistry” 16th Edition, 1977 Lange Medical Publications; Ogden C L et. al. CDC Adv. Data 2004 347: 1; www.cdc.gov/nchs/data/ad/ad347.pdf).
- Furthermore, replacement of up to about 15% of normal hydrogen with deuterium has been effected and maintained for a period of days to weeks in mammals, including rodents and dogs, with minimal observed adverse effects (Czajka D M and Finkel A J, Ann. N.Y. Acad. Sci. 1960 84: 770; Thomson J F, Ann. N.Y. Acad. Sci. 1960 84: 736; Czakja D M et. al., Am. J. Physiol. 1961 201: 357). Higher deuterium concentrations, usually in excess of 20%, can be toxic in animals. However, acute replacement of as high as 15%-23% of the hydrogen in humans' fluids with deuterium was found not to cause toxicity (Blagojevic N et. al. in “Dosimetry & Treatment Planning for Neutron Capture Therapy”, Zamenhof R, Solares G and Harling O Eds. 1994. Advanced Medical Publishing, Madison Wis. pp. 125-134). These authors report a clinical protocol in their practice involving oral administration of up to 1 liter per day of deuterated water (D2O) for up to 5 days, followed by intravenous administration of 4 liters of deuterated water prior to radiation procedures; this deuterated water is readily incorporated throughout the body beyond the fluid compartment, including in glucose and glycogen, fats, and cholesterol and thus cell walls (e.g. see Diabetes Metab. 1997 23: 251).
- In a 70 kg human, 15% replacement of the hydrogen in the fluid compartment with deuterium corresponds to incorporation of approximately 1 kg of deuterium or the equivalent of approximately 5 kg of deuterated water. These quantities are orders of magnitude beyond the conceived level of administration of any of the deuterium-containing compounds of this invention.
- Deuterium tracers including as deuterium-labeled drugs and doses, in some cases repeatedly, of thousands to tens of thousands of milligrams of deuterated water, are also used in healthy humans of all ages including neonates and pregnant women, without reported incident (e.g. Pons G and Rey E, Pediatrics 1999 104: 633; Coward W A et. al., Lancet 1979 7: 13; Schwarcz H P, Control. Clin. Trials 1984 5 (4 Suppl): 573; Eckhardt C L et. al. Obes. Res. 2003 11: 1553; Rodewald L E et. al., J. Pediatr. 1989 114: 885; Butte N F et. al., Br. J. Nutr. 1991 65: 3; MacLennan A H et. al., Am. J. Obstet. Gynecol. 1981 139: 948). Thus, it is clear that any deuterium released, for instance during the metabolism of compounds of this invention, poses no health risk.
- The compounds of this invention are less effective substrates for CYP2D6 than Compound 1 and therefore display a reduced rate of oxidative metabolism and decreased mechanism-based inactivation of CYP2D6. This reduces the extent of undesirable metabolic drug-drug interactions observed with Compound 1, reducing the need for dose adjustments of other drugs taken by patients treated with these agents.
- The altered properties of the compounds of this invention will not obliterate their ability to bind to their protein target. This is because such binding is primarily dependent upon non-covalent binding between the protein and the inhibitor which may be impacted both positively and negatively by isotopic substitution, depending on the specific substitution involved, and any negative effects that a heavy atom of this invention may have on the highly optimized non-covalent binding between compounds of formula I and serotonin uptake proteins will be relatively minor. Major factors contributing to the noncovalent recognition of small molecules by proteins and the binding strength between them include: Van der Waals forces, hydrogen bonds, ionic bonds, molecular reorganization, desolvation energy of the small molecule, hydrophobic interactions and, in certain instances, displacement energy for pre-existing bound ligands. See, for instance, Goodman & Gilman's The Pharmacological Basis of Therapeutics, Tenth Edition, Hardman J G and Limbird L E, eds. McGraw-Hill, 2001 and The Organic Chemistry of Drug Design and Drug Action, Silverman R B, 2004, Academic Press.
- The compounds of this invention possess molecular topology that is very similar to Compound 1, since exchange of deuterium for hydrogen does not alter molecular shape and exchange of 13C for 12C is conformationally neutral (Holtzer M E et. al., Biophys. J. 2001 80: 939). Deuterium replacement does cause a slight decrease in Van der Waals radius (Wade D, Chem. Biol. Interact. 1999 117: 191); but applicant believes that such decrease will not greatly reduce binding affinity between the molecule and its receptor. Furthermore, the slightly smaller size of the deuterated compounds of this invention prevents their being involved in new undesirable steric clashes with the binding protein relative to the Compound 1.
- Neither deuterium nor 13C atoms in the compounds of this invention contribute significantly to hydrogen bonding or ionic interactions with the protein receptors. This is because the major hydrogen bond and ionic interactions formed by Compound 1 with serotonin uptake proteins are mediated by the oxygens, nitrogens, and the amine-bound hydrogens within Compound 1. Any deuterium atoms attached to the amine nitrogen will be rapidly exchanged with bulk solvent protons under physiological conditions. Protein reorganization or side chain movement will be identical between a compound of this invention and Compound 1. Desolvation energy of a compound of this invention will be equivalent to or less than that of Compound 1, resulting in neutral or increased binding affinity for the receptor; Turowski M et. al., J. Am. Chem. Soc. 2003 125: 13836. The replacement of 13C in place of 12C in compounds of this invention will have no practical change in desolvation.
- Thus, a compound of this invention advantageously retains substantial binding to serotonin uptake proteins and is an active inhibitor of serotonin uptake.
- The present invention provides an isolated compound of formula I:
- or a salt thereof; or a prodrug, or a salt of a prodrug thereof; or a hydrate, solvate, or polymorph thereof; wherein:
-
- D is deuterium;
- each Y (e.g., Y1, Y2, Y3) is independently selected from deuterium or hydrogen;
- each hydrogen is optionally replaced with deuterium; and
- each carbon is optionally replaced with 13C.
- According to a preferred embodiment, Y1 is deuterium.
- According to another preferred embodiment, at least one of Y2 and Y3 is independently deuterium. More preferably, both Y2 and Y3 are deuterium.
- In another preferred embodiment, each of Y1, Y2 and Y3 is deuterium.
- In yet another preferred embodiment, each hydrogen atom on the fluorophenyl ring is replaced with deuterium.
- The term “compound” as used herein, is intended to include salts, prodrugs, and prodrug salts of a compound of formula I. The term also includes any solvates, hydrates, and polymorphs of any of the foregoing. The specific recitation of “prodrug,” “prodrug salt,” “solvate,” “hydrate,” or “polymorph” in certain aspects of the invention described in this application shall not be interpreted as an intended omission of these forms in other aspects of the invention where the term “compound” is used without recitation of these other forms.
- A salt of a compound of this invention is formed between an acid and a basic group of the compound, such as an amino functional group, or a base and an acidic group of the compound, such as a carboxyl functional group. According to another preferred embodiment, the compound is a pharmaceutically acceptable acid addition salt.
- As used herein and unless otherwise indicated, the term “prodrug” means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide a compound of this invention. Prodrugs may only become active upon such reaction under biological conditions, or they may have activity in their unreacted forms. Examples of prodrugs contemplated in this invention include, but are not limited to, analogs or derivatives of compounds of any one of the formulae disclosed herein that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. Other examples of prodrugs include derivatives of compounds of any one of the formulae disclosed herein that comprise —NO, —NO2, —ONO, or —ONO2 moieties. Prodrugs can typically be prepared using well-known methods, such as those described by Burger's Medicinal Chemistry and Drug Discovery (1995) 172-178, 949-982 (Manfred E. Wolff ed., 5th ed); see also Goodman and Gilman's, The Pharmacological basis of Therapeutics, 8th ed., McGraw-Hill, Int. Ed. 1992, “Biotransformation of Drugs”.
- As used herein and unless otherwise indicated, the terms “biohydrolyzable amide”, “biohydrolyzable ester”, “biohydrolyzable carbamate”, “biohydrolyzable carbonate”, “biohydrolyzable ureide” and “biohydrolyzable phosphate analogue” mean an amide, ester, carbamate, carbonate, ureide, or phosphate analogue, respectively, that either: 1) does not destroy the biological activity of the compound and confers upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is itself biologically inactive but is converted in vivo to a biologically active compound. Examples of biohydrolyzable amides include, but are not limited to, lower alkyl amides, α-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides. Examples of biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters. Examples of biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, amino acids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
- A prodrug salt is a compound formed between an acid and a basic group of the prodrug, such as an amino functional group, or a base and an acidic group of the prodrug, such as a carboxyl functional group. In a preferred embodiment, the prodrug salt is a pharmaceutically acceptable salt. According to another preferred embodiment, the counterion to the saltable prodrug of the compound of formula I is pharmaceutically acceptable. Pharmaceutically acceptable counterions include, for instance, those acids and bases noted herein as being suitable to form pharmaceutically acceptable salts.
- Particularly favored prodrugs and prodrug salts are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a mammal (e.g., by allowing an orally administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the brain or central nervous system) relative to the parent species. Preferred prodrugs include derivatives where a group that enhances aqueous solubility or active transport through the gut membrane is appended to the structure of formulae described herein. See, e.g., Alexander, J. et al. Journal of Medicinal Chemistry 1988, 31, 318-322; Bundgaard, H. Design of Prodrugs; Elsevier: Amsterdam, 1985; pp 1-92; Bundgaard, H.; Nielsen, N. M. Journal of Medicinal Chemistry 1987, 30, 451-454; Bundgaard, H. A Textbook of Drug Design and Development; Harwood Academic Publ.: Switzerland, 1991; pp 113-191; Digenis, G. A. et al. Handbook of Experimental Pharmacology 1975, 28, 86-112; Friis, G. J.; Bundgaard, H. A Textbook of Drug Design and Development; 2 ed.; Overseas Publ.: Amsterdam, 1996; pp 351-385; Pitman, I. H. Medicinal Research Reviews 1981, 1, 189-214.
- The term “pharmaceutically acceptable,” as used herein, refers to a component that is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other mammals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. A “pharmaceutically acceptable salt” means any non-toxic salt that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound or a prodrug of a compound of this invention. A “pharmaceutically acceptable counterion” is an ionic portion of a salt that is not toxic when released from the salt upon administration to a recipient.
- Acids commonly employed to form pharmaceutically acceptable salts include inorganic acids such as hydrogen bisulfide, hydrochloric, hydrobromic, hydroiodic, sulfuric and phosphoric acid, as well as organic acids such as para-toluenesulfonic, salicylic, tartaric, bitartaric, ascorbic, maleic, besylic, fumaric, gluconic, glucuronic, formic, glutamic, methanesulfonic, ethanesulfonic, benzenesulfonic, lactic, oxalic, para-bromophenylsulfonic, carbonic, succinic, citric, benzoic and acetic acid, and related inorganic and organic acids. Such pharmaceutically acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephathalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycolate, maleate, tartrate, methanesulfonate, propanesulfonate, naphthalene-1-sulfonate, naphthalene-2-sulfonate, mandelate and the like salts. Preferred pharmaceutically acceptable acid addition salts include those formed with mineral acids such as hydrochloric acid and hydrobromic acid, and especially those formed with organic acids such as maleic acid.
- Suitable bases for forming pharmaceutically acceptable salts with acidic functional groups of prodrugs of this invention include, but are not limited to, hydroxides of alkali metals such as sodium, potassium, and lithium; hydroxides of alkaline earth metal such as calcium and magnesium; hydroxides of other metals, such as aluminum and zinc; ammonia, and organic amines, such as unsubstituted or hydroxy-substituted mono-, di-, or trialkylamines; dicyclohexylamine; tributyl amine; pyridine; N-methyl,N-ethylamine; diethylamine; triethylamine; mono-, bis-, or tris-(2-hydroxy-lower alkyl amines), such as mono-, bis-, or tris-(2-hydroxyethyl)amine, 2-hydroxy-tert-butylamine, or tris-(hydroxymethyl)methylamine, N,N-di-lower alkyl-N-(hydroxy lower alkyl)-amines, such as N,N-dimethyl-N-(2-hydroxyethyl)amine, or tri-(2-hydroxyethyl)amine; N-methyl-D-glucamine; and amino acids such as arginine, lysine, and the like.
- As used herein, the term “hydrate” means a compound which further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.
- As used herein, the term “solvate” means a compound which further includes a stoichiometric or non-stoichiometric amount of solvent such as water, acetone, ethanol, methanol, dichloromethane, 2-propanol, or the like, bound by non-covalent intermolecular forces.
- As used herein, the term “polymorph” means solid crystalline forms of a compound or complex thereof which may be characterized by physical means such as, for instance, X-ray powder diffraction patterns or infrared spectroscopy. Different polymorphs of the same compound can exhibit different physical, chemical and/or spectroscopic properties. Different physical properties include, but are not limited to stability (e.g., to heat, light or moisture), compressibility and density (important in formulation and product manufacturing), hygroscopicity, solubility, and dissolution rates and solubility (which can affect bioavailability). Differences in stability can result from changes in chemical reactivity (e.g., differential oxidation, such that a dosage form discolors more rapidly when comprised of one polymorph than when comprised of another polymorph) or mechanical characteristics (e.g., tablets crumble on storage as a kinetically favored polymorph converts to thermodynamically more stable polymorph) or both (e.g., tablets of one polymorph are more susceptible to breakdown at high humidity). Different physical properties of polymorphs can affect their processing. For example, one polymorph might be more likely to form solvates or might be more difficult to filter or wash free of impurities than another due to, for example, the shape or size distribution of particles of it.
- The compounds of the present invention contain one or more asymmetric carbon atoms. As such, a compound of this invention can exist as the individual stereoisomers (enantiomers or diastereomers) as well a mixture of stereoisomers. Accordingly, a compound of the present invention will include not only a stereoisomeric mixture, but also individual respective stereoisomers substantially free from one another stereoisomers. The term “substantially free” as used herein means less than 25% of other stereoisomers, preferably less than 10% of other stereoisomers, more preferably less than 5% of other stereoisomers and most preferably less than 2% of other stereoisomers, are present. Methods of obtaining or synthesizing diastereomers are well known in the art and may be applied as practicable to final compounds or to starting material or intermediates. Other embodiments are those wherein the compound is an isolated compound.
- The compounds of the invention may be synthesized by well-known techniques. The starting materials and certain intermediates used in the synthesis of the compounds of this invention are available from commercial sources or may themselves be synthesized using reagents and techniques known in the art, including those synthesis schemes delineated herein. See, for instance, Christensen J A and Squires R F, U.S. Pat. No. 4,007,196, to Ferrosan; Ward N, U.S. Pat. No. 6,172,233, to SmithKline Beecham; Liu L T et. al., U.S. Pat. No. 6,833,458 to Development Center for Biotechnology; Jacewicz V W et. al., U.S. Pat. No. 6,716,985 to SmithKline Beecham; Hoorn H J et. al., U.S. Pat. No. 6,703,408 to Synthon BCT Technologies; Rossi R et. al., U.S. Pat. No. 6,583,287 to Recordati; Brennan J P, U.S. Pat. No. 6,326,496 to Knoll; Murthy K S K and Rey A W, U.S. Pat. No. 5,962,689 to Brantford Chemicals; Adger B M et. al., U.S. Pat. No. 6,066,737 to Chirotech; Lawrie K W M et. al., J. Label. Compd. Radiopharm. 1993 33: 777; Willcocks K et. al., J. Label. Compd. Radiopharm. 1993 33: 777; Zepp C M, U.S. Pat. No. 5,258,517 to Sepracor; Czibula, L et. al., Eur. J. Org. Chem. 2004 15: 3336; Hughes G et. al., J. Am. Chem. Soc. 2003 125: 11253; Johnson T A et. al., J. Am. Chem. Soc. 2001 123: 1004; and US Patent Applications 20030004352, 20030220370, 20040073038, 20040073038, 20030018048, and 20040215020; each of which documents is incorporated herein by reference.
- A convenient method for producing a compound of formula I is shown graphically in scheme II, wherein D represents deuterium, each Y is independently selected from hydrogen or deuterium, and W is a nitrogen protecting group. Nitrogen protecting groups are well known in the art and include, but are not limited to methyl, ethyl benzyl, substituted benzyl, allyl; and C1-6 alkylene carbamates such as phenyl carbamate, substituted phenyl carbamate, benzyl carbamate, substituted benzyl carbamate, vinyl carbamate, or allyl carbamate. Preferred nitrogen protecting groups are methyl, ethyl benzyl, 4-substituted benzyl, tert-butyl carbamate, benzyl carbamate, methyl carbamate, ethyl carbamate, propyl carbamate, vinyl carbamate, and allyl carbamate are preferred. More preferred W groups include methyl, ethyl benzyl, methyl carbamate, ethyl carbamate, vinyl carbamate, allyl carbamate, phenyl carbamate, benzyl carbamate, and tert-butyl carbamate. Suitable benzyl substituents include, for instance, C1-4 alkyl, C1-4 alkyl-O—, fluoro, chloro, and nitro. Each of compounds of formula II, II and VI may optionally be further substituted with deuterium in place of hydrogen and 13C in place of 12C. In each of formulae II and III, Y1 is preferably deuterium.
- Reaction of compounds of formula VI with compounds of formula II may be carried out in a single step, for instance by the Mitsunobu reaction (see e.g. Mitsunobu O, Synthesis 1981, 1) using a suitable phosphine such as triphenylphosphine or tributylphosphine, among others, and an azodicarboxylates such as, for instance, diethylazodicarboxylate, diisopropylazodicarboxylate, or dibenzylazodicarboxylate. Alternatively, the alcohol may be converted to a displaceable electrophile, for instance by producing a sulfate ester or by replacing the oxygen with a halogen such as chloride, bromide, or iodide. Suitable sulfate esters include, but are not limited to, tosylate, mesylate, brosylate, nosylate, and triflate. A preferred route to compounds of formula III is reaction of compounds of formula VI, wherein W is methyl, with thionyl chloride to give the primary chloride, and displacement with the compound of formula II under basic conditions using an alkali metal base such as sodium or potassium, e.g. in the form of sodium methoxide or sodium ethoxide.
- Compounds of formula III wherein W is methyl or ethyl may be N-deprotected by a 2-step sequence involving first a chloroformate (e.g. phenyl chloroformate, methyl chloroformate, ethyl chloroformate, or vinyl chloroformate, among others) to simultaneously N-dealkylate the piperidine ring and form the carbamate corresponding to the chloroformate used. In the case of simple alkyl or aryl chloroformates, the resulting carbamate is then hydrolyzed with strong base, such as aqueous KOH, to yield the compound of formula I. Vinyl carbamates, produced upon reacting compounds of formula III with vinyl chloroformate, may be decomposed with acid, such as HCl, to yield the product of formula I. If W is benzyl or substituted benzyl, the compound of formula III may be N-deprotected by hydrogenation, for instance using a palladium catalyst such as palladium metal or Pd(OH)2 on carbon together with either hydrogen gas or an alternate hydrogen donor, such as formic acid or ammonium formate. If W is benzyl carbamate it may be deprotected in a manner similar to a benzyl group, or removed by acidolysis, for instance using hydrogen bromide. If W is tert-butyl carbamate, the compound of formula III may be N-deprotected by treatment with acid (for example, hydrogen chloride, hydrogen bromide, trifluoroacetic acid, or p-toluenesulfonic acid). The use and removal of nitrogen protecting groups is well known in the art, and many additional methods for protecting and deprotecting the piperidine ring nitrogen will be evident to those of ordinary skill in organic synthesis.
- Compounds of formula II can be readily synthesized by hydrolysis of esters formed by oxidation of the 5-formyl- or 5-keto-1,3-benzodioxols, respectively; by metal-halogen exchange from a 5-halo-1,3-benzodioxol and quenching with water; or by oxidative decarboxylation of 5-benzodioxol acids. See e.g. Borzatta V et. al., PCT International Application W O 2004092106; Kuo L-H et. al., US Patent Application 2002123655, Sinon Corporation Applicant; Pansegrau P D and Munson B P, U.S. Pat. No. 5,840,997 to Dakota Gasification; and Zambrano J L and Dorta R, Synlett 2003 10: 1545. The precursor deuterated benzodioxols of formula V are readily available by means known in the art of organic synthesis. For instance, reaction of a deuterated methylenation reagent with an appropriate catechol of formula IV, such as 3,4-dihydroxybromobenzene, 3,4-dihydroxybenzaldehyde, 1-(3,4-dihydroxyphenyl)-oxo-alkanes, or 1-(3,4-dihydroxyphenyl)-oxo-arenes, will result in ring closure to the corresponding benzodioxol. Examples of suitable deuterated methylenation reagents include, for instance, mono and di-deuterated forms of dihalomethanes such as dichloromethane, dibromomethane, bromochloromethane, or diiodomethane. The synthesis of benzodioxols from catechol (o-dihydroxyphenyl) precursors is well known in the art and is described for instance by Cabedo N et. al., J. Med. Chem. 2001 44: 1794; Walz A J and Sundberg R J, J. Org. Chem. 2000 65: 8001; Orús L et. al., J. Med. Chem. 2002 45: 4128; Chang J et. al., Helv. Chim. Acta 2003 86: 2239; Moreau A et. al., Tetrahedron 2004 60: 6169; and Panseri P et. al., U.S. Pat. No. 5,936,103 to Borregaard Italia. Each of the above-named publications is herein incorporated by reference.
- U.S. Pat. No. 5,936,103 provides an efficient method that can be adapted to the readily available dichlorodideuteromethane to produce preferred compounds of formulae I and III wherein Y is deuterium as set forth in scheme III, below.
- In Scheme III, R represents a halide such as bromo, chloro, or iodo; or an oxo group such as formyl, methyl ketone, ethyl ketone, or phenyl ketone; D is deuterium; Y is hydrogen or deuterium; X and X′ are independently halide such as bromo, chloro, or iodo; and Z is hydrogen, lower alkyl such as C1-4 alkyl, or aryl such as phenyl or substituted phenyl.
- Further deuterium substitution can be accomplished in compounds of formula II. For instance, halogenation ortho to the hydroxyl group, e.g. using N-bromosuccinimide in an ionic liquid, followed by O-protection (for instance with a silyl group such as triethylsilyl or tert-butyldimethylsilyl, among others), halogen-metal exchange and deuterium quench such as with D2O, or alternatively catalytic hydrogenation under deuterium gas, produces the 6-deuterobenzodioxol derivative (see e.g. Yadav J S et. al., Adv. Synth. Catal. 2004 346: 77; Kirefu T, et. al. J. Label. Compd. Radiopharm. 2001 44: 329). Starting from 1,4-dibromo-2,3-dimethoxybenzene, halogen-deuterium exchange by similar means provides 1,2-dimethoxy-3,6-dideuterobenzene (e.g. see Albrecht M, Synthesis 1996: 230). Cleavage of the methoxy groups, for instance with boron tribromide, followed by deuteromethyleneation as described above, yields 2-deuterium substituted 4,7-dideutero-1,3-benzodioxol, which can be converted to 4,7-dideutero derivatives of formula II by known means (see e.g. DePriest R N, U.S. Pat. No. 4,940,807 to Ethyl Corporation; Feugeas C, Bull. Chim. Soc. Fr. 1964: 1982). Other methods of aromatic substitution suitable for incorporation of deuterium are known to those of skill in the art of organic synthesis.
- Isotopic substitution elsewhere in compounds of formula II can also be accomplished by means known in the art. For instance, 1,3-propanediol is commercially available in numerous isotopic forms, e.g. 1,3-propanediol-13C3 (Sigma Aldrich (ISOTEC), St. Louis, Mo.); 1,3-propanediol-2-13C (Sigma Aldrich (ISOTEC), St. Louis, Mo.); 1,3-propanediol-d8 (C/D/N Isotopes, Pointe-Claire, Quebec, Canada); and 1,3-propane-2,2-d2-diol (C/D/N Isotopes, Pointe-Claire, Quebec, Canada). This starting material is readily converted to the known compound 4 as shown below in scheme IV. For example, monodeprotonation of the diol and mono-protection (e.g. with a tert-butyldimethylsilyl group), followed by oxidation of the free alcohol to an aldehyde (e.g. Swern oxidation), and reaction with a 4-metallated-fluorobenzene (e.g. 4-bromofluorobenene deprotonated with n-butyllithium) produces intermediate compound 3.
- Deprotection of the secondary alcohol (e.g. as a tetrahydropyran ether, by reaction with dihydropyran), O-deprotection of the primary alcohol (e.g. a fluoride source such as KF in dimethylformamide if silyl protection is used), activation of the resulting primary alcohol (e.g. as a chloride using triphenylphosphine/carbon tetrachloride) and reaction with p-anisidine, followed by oxidation of the protected secondary alcohol to a ketone (e.g. direct oxidation of the THP ether using an acidic oxidizing agent, or hydrolytic removal of the THP ether followed by oxidation), can be carried out to produce compound 4. Transformation of Compound 4 to Compound 7 (equivalent to formula VI wherein W is tert-butoxycarbonyl) is described by Hughes G et. al., J. Am. Chem. Soc. 2003 125: 11253. Reaction of compound 7 with compounds of formula II and subsequent N-deprotection to yield compounds of formula I can be accomplished analogously to the sequence shown in scheme II although, as will be recognized, without the need for transformation of the N-methyl group to a carbamate as shown in scheme II.
- In Scheme IV, P represents a suitable oxygen protecting group known in the art of organic synthesis. Useful oxygen protecting groups include, but are not limited to, C1-4 alkylene, benzyl, C1-2-oxymethyl, or tri-C1-6-silyl. PMP represent 4-methoxyphenyl. Boc represents tert-butyoxycarbonyl. Different molecular positions are labeled to indicate sources of potential isotopic substitution: “*” shows 13C substitution arising from labeled 1,3-propanediol. The piperidine 5 and 6 positions can be deuterium labeled from 1,3-propanediol as well. “< >” shows deuterium substitution from labeled 4-bromo-fluorobenzene (e.g. C/D/N isotopes). “‡” indicates 13C or, at the piperidine 3 position, deuterium labels arising from the labeled diethyl malonate (e.g. Aldrich); “§” indicates 13C or deuterium labels arising, respectively, from carrying out installation of the hydroxymethyl group using a 13C-labeled acylating group such as dimethyl carbonate-13C (readily produced from 13C-phosgene (e.g. Isotec) and methanol), or by reduction of the resulting ester group with a suitable deuterated “hydride” donor such as deuteroborane (see e.g. Kinugawa Y and Kawashima E, Nucleic Acids Res. Suppl. 2002: 19; Turecek F and Hanus V, Org. Mass Spec. 1980 15: 8).
- It will be recognized that any single step or combination of labeling steps shown in scheme IV are feasible. The synthetic sequence and reagents in scheme IV illustrate the potential for broad incorporation of stable isotopic labels throughout compounds of formula I by known means, but are not intended to limit the scope of the invention. Other means of introducing isotopic labels into compounds of formula I will be apparent to those of skill in organic chemistry, and different approaches to compounds of formula I will enable or simplify labeling of different atoms. Thus, substitution of carbons and hydrogens in compounds of this invention by 13C and deuterium, respectively, is within the means of the ordinarily skilled practitioner of organic synthesis.
- The specific approaches and compounds shown above are not intended to be limiting. Additional methods of synthesizing compounds of formula I and their synthetic precursors, including those within routes not explicitly shown in Schemes herein, are within the means of chemists of ordinary skill in the art. In addition to the synthetic references cited herein, reaction schemes and protocols may be determined by the skilled artisan by use of commercially available structure-searchable database software, for instance, SciFinder® (CAS division of the American Chemical Society), STN® (CAS division of the American Chemical Society), CrossFire Beilstein® (Elsevier MDL), or internet search engines such as Google® or keyword databases such as the US Patent and Trademark Office text database.
- Methods for optimizing reaction conditions, if necessary minimizing competing by-products, are known in the art. Reaction optimization and scale-up may advantageously utilize high-speed parallel synthesis equipment and computer-controlled microreactors (e.g. Design And Optimization in Organic Synthesis, 2nd Edition, Carlson R, Ed, 2005; Elsevier Science Ltd.; Jähnisch, K et al, Angew. Chem. Int. Ed. Engl. 2004 43: 406; and references therein).
- The synthetic methods described herein may also additionally include steps, either before or after any of the steps described in Schemes II or III, to add or remove suitable protecting groups in order to ultimately allow synthesis of the compound of the formulae described herein. The methods delineated herein contemplate converting compounds of one formula to compounds of another formula. The process of converting refers to one or more chemical transformations, which can be performed in situ, or with isolation of intermediate compounds. The transformations can include reacting the starting compounds or intermediates with additional reagents using techniques and protocols known in the art, including those in the references cited herein. Intermediates can be used with or without purification (e.g., filtration, distillation, sublimation, crystallization, trituration, solid phase extraction, chromatography).
- According to another embodiment, the invention provides an intermediate compound of formula II or formula III, wherein each hydrogen and carbon atom is optionally substituted by deuterium and 13C, respectively.
- Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term “stable”, as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintain the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., formulation into therapeutic products, intermediates for use in production of therapeutic compounds, isolatable or storable intermediate compounds, treating a disease or condition responsive to enhanced serotonin neurotransmission).
- The term “isotopologue” refers to species that differ from a specific compound of this invention only in the isotopic composition of their molecules or ions. The terms “lighter isotopologue” and “lighter atom isotopologue” as used herein, refer to species that differs from a compound of this invention in that it comprises one or more light isotopic atoms 1H or 12C at positions occupied by a deuterium or 13C in the specific compound of this invention. For the purposes of this invention, 11C is not referred to as a light isotope of carbon.
- A specific compound of this invention may also be referred to as a “heavy atom isotopic compound” to distinguish it from its lighter isotopologues when discussing mixtures of isotopologues. This is because a specific compound and all of its lighter isotopologues, except for Compound 1, are compounds of Formula I.
- Chemical naming terminology can be complex and different chemical names can often reasonably be applied to the same structure. To avoid any confusion, “Compound 1” refers to the free base form of the active serotonin reuptake inhibiting agent of the drug approved by the US FDA in NDA nos. 020710, and 020936.
- It will be recognized that many commonly occurring atoms in biological systems exist naturally as mixtures of isotopes. Thus, Compound 1 inherently comprises small amounts of deuterated and/or 13C-containing isotopologues. The present invention distinguishes such forms having minor amounts of such isotopologues from its scope in that the term “compound” as used in this invention refers to a composition of matter that is predominantly a specific isotopologue. A compound, as defined herein, in embodiments contains less than 10%, preferably less than 6%, and more preferably less than 3% of all other isotopologues, including the Compound 1. Compositions of matter that may contain greater than 10% of all other specific isotopologues combined are referred to herein as mixtures and must meet the parameters set forth below. These limits of isotopic composition, and all references to isotopic composition herein, refer solely to the active, free base form of the compound of Formula I, and do not include the isotopic composition of hydrolysable portions of prodrugs, or of counterions, certain of which, such as chloride and bromide, exist naturally as mixtures comprising substantial percentages of multiple isotopes.
- The term “heavy atom” refers to isotopes of higher atomic weight than the predominant naturally occurring isotope.
- The term “stable heavy atom” refers to non-radioactive heavy atoms.
- Both “2H” and “D” refer to deuterium.
- “Stereoisomer” refers to both enantiomers and diastereomers
- “Nos.” refers to numbers
- “PDE” refers to cyclic guanosine monophosphate-specific phosphodiesterase
- “cGMP” refers to cyclic guanosine monophosphate
- “5′-GMP” refers to guanosine-5′-monophosphate
- “cAMP” refers to cyclic adenosine monophosphate
- “5′-AMP” refers to adenosine-5′-monophosphate
- “PM” refers to poor metabolizer
- “EM” refers to extensive metabolizer
- “AIBN” refers to 2,2′-azo-bis(isobutyronitrile)
- “Boc” refers to tert-butoxycarbonyl
- “PMP” refers to 4-methoxyphenyl
- “DHP” refers to dihydropyran
- “THP” refers to tetrahydropyran
- “THF” refers to tetrahydrofuran
- “DMF” refers to N,N-dimethylformamide
- “DMSO” refers to dimethylsulfoxide
- “alkylene” refers to a straight, branched, or partially or wholly cyclic alkyl group which may contain one or more degrees of unsaturation in the form of cis, trans, or mixed cis, trans-double bonds, or triple bonds
- “aq.” Refers to aqueous
- “h” refers to hours
- “min” refers to minutes
- “tert” refers to tertiary
- “brine” refers to saturated aqueous sodium chloride
- “US” refers to the United States of America
- “FDA” refers to Food and Drug Administration
- “NDA” refers to New Drug Application
- “AUC” refers to area under the plasma-time concentration curve
- CYP3A4 refers to cytochrome P450 oxidase isoform 3A4
- “MC-4R” refers to the human melanocortin-4 receptor
- “5-HT” refers to 5-hydroxytryptamine or serotonin
- “NEP” refers to neutral endopeptidease (EC 3.4.24.11)
- “HMG-CoA” refers to 3-hydroxy-3-methylglutaryl-coenzyme A
- “ETA” refers to endothelin subtype A receptors
- “ETB” refers to endothelin subtype B receptors
- “SSRI” refers to selective serotonin reuptake inhibitor
- “PPAR” refers to peroxisome proliferator-activated receptor
- “Ed.” refers to editor
- The invention further provides compositions comprising a mixture of a compound of this invention and its lighter isotopologues. These mixtures may occur, for instance, simply as the result of an inefficiency of incorporating an isotope at a given position; intentional or inadvertent exchange of protons for deuterium, e.g. exchange of bulk solvent for heteroatom-attached deuterium; or intentional mixtures of pure compounds.
- In one embodiment, such mixtures comprise at least about 50% of the heavy atom isotopic compound (i.e., less than about 50% of lighter isotopologues). More preferable is a mixture comprising at least 80% of the heavy atom isotopic compound. Most preferable is a mixture comprising 90% of the heavy atom isotopic compound.
- In an alternate embodiment the mixture comprises a compound of Formula I and its lighter isotopologues in relative proportions such that at least about 50%, preferably at least 80%, more preferably at least 90%, even more preferably at least 95% and most preferably at least 98% of the compounds in said mixture comprise a heavy atom isotope at each position containing a stable heavy atom isotope in the heavy atom isotopic compound. The following exemplifies this definition. A hypothetical compound of the invention contains deuterium at positions Y1, Y2 and Y3. A mixture comprising this compound and all of its potential lighter isotopologues and the relative proportion of each is set forth in the table below.
-
TABLE 1 Y1 Y2 Y3 Relative Amt Compound D D D 40% Isotopologue 1 D D H 15% Isotopologue 2 D H D 14% Isotopologue 3 H D D 13% Isotopologue 4 D H H 6% Isotopologue 5 H D H 5% Isotopologue 6 H H D 4% Isotopologue 7 H H H 3% % of compounds (40% + 15% + (40% + 15% + (40% + 14% + comprising an isotope 14% + 6%) = 13% + 5%) = 13% + 4%) = at position indicated 75% 73% 72% position - From the table it can be seen that the compound plus lighter isotopologues 1, 2 and 4 comprise the isotope deuterium at position Y1. These compounds are present in the mixture at relevant amounts of 40%, 15%, 14% and 6%. Thus, 75% of the mixture comprises the isotope at Y1 that is present in the compound. The compound plus lighter isotopologues 1, 3 and 5 comprise the isotope deuterium at position Y2. These compounds are present in the mixture at relevant amounts of 40%, 15%, 13% and 5%. Thus, 73% of the mixture comprises the isotope at Y2 that is present in the compound. The compound plus lighter isotopologues 2, 3 and 6 comprise the isotope deuterium at position Y3. These compounds are present in the mixture at relevant amounts of 40%, 14%, 13% and 4%. Thus, 71% of the mixture comprises the isotope at Y3 that is present in the compound. Accordingly, this mixture comprises a compound and its lighter isotopologues in relative proportions such that 71% of the compounds in said mixture comprise an isotope at each position containing a stable heavy atom isotope in the full isotopic compound.
- The invention also provides compositions comprising an effective amount of a compound of any one of formulae I, II or III or a salt thereof; or a prodrug or a salt of a prodrug thereof; or a solvate, hydrate, or polymorph thereof, if applicable; an acceptable carrier. The carrier(s) must be “acceptable” in the sense of being compatible with the other ingredients of the formulation.
- In a preferred embodiment, the invention provides a composition comprising a compound of formula I, or a pharmaceutically acceptable salt, prodrug or pharmaceutically acceptable prodrug salt thereof; or a solvate, hydrate or polymorph of any of the foregoing and a pharmaceutically acceptable carrier, wherein said composition is formulated for pharmaceutical use (“a pharmaceutical composition”). A “pharmaceutically acceptable carrier” is a carrier that is compatible with the other ingredients of the composition and not deleterious to the recipient thereof in amounts typically used in medicaments.
- Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
- The pharmaceutical compositions of the invention include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. In certain embodiments, the compound of the formulae herein is administered transdermally (e.g., using a transdermal patch or iontophoretic techniques). Other formulations may conveniently be presented in unit dosage form, e.g., tablets and sustained release capsules, and in liposomes, and may be prepared by any methods well known in the art of pharmacy. See, for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa. (17th ed. 1985).
- Such preparative methods include the step of bringing into association with the molecule to be administered ingredients such as the carrier that constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, liposomes or finely divided solid carriers or both, and then if necessary shaping the product.
- In certain preferred embodiments, the compound is administered orally. Compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion, or packed in liposomes and as a bolus, etc. Soft gelatin capsules can be useful for containing such suspensions, which may beneficially increase the rate of compound absorption.
- A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets optionally may be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein. Methods of formulating such slow or controlled release compositions of pharmaceutically active ingredients, such as those herein and other compounds known in the art, are known in the art and described in several issued US patents, some of which include, but are not limited to, U.S. Pat. Nos. 4,369,172; and 4,842,866; 5,807,574; and references cited therein. Coatings can be used for delivery of compounds to the intestine (see, e.g., U.S. Pat. Nos. 6,548,084, 6,638,534, 5,217,720, and 6,569,457, 6,461,631, 6,528,080, 6,800,663, and references cited therein), or they may be non-eroding and designed to allow release of an active agent by extrusion (see, e.g. U.S. Pat. No. 6,706,283). Each of these patents is incorporated herein by reference.
- In the case of tablets for oral use, carriers that are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added. Surfactants such as sodium lauryl sulfate may be useful to enhance dissolution and absorption.
- Compositions suitable for topical administration include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; and pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia.
- Compositions suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.
- Such injection solutions may be in the form, for example, of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant such as Ph. Helv or a similar alcohol.
- The pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal or vaginal administration. These compositions can be prepared by mixing a compound of Formula I with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
- Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application. For application topically to the skin, the pharmaceutical composition will be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. The pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches and iontophoretic administration are also included in this invention.
- The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. Such administration is known to be effective with erectile dysfunction drugs: Rabinowitz J D and Zaffaroni A C, U.S. Pat. No. 6,803,031, assigned to Alexza Molecular Delivery Corporation.
- Application of the subject therapeutics may be local, so as to be administered at the site of interest. Various techniques can be used for providing the subject pharmaceutical compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pluronic gel, stents, sustained drug release polymers or other device which provides for internal access.
- Thus, according to another embodiment, a compound of Formula I may be incorporated into a pharmaceutical composition for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents, or catheters. Suitable coatings and the general preparation of coated implantable devices are described in U.S. Pat. Nos. 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings are optionally further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition. Coatings for invasive devices are to be included within the definition of pharmaceutically acceptable carrier, adjuvant or vehicle, as those terms are used herein.
- According to another embodiment, the invention provides a method of coating an implantable medical device comprising the step of contacting said device with the coating composition described above. It will be obvious to those skilled in the art that the coating of the device will occur prior to implantation into a mammal.
- According to another embodiment, the invention provides a method of impregnating or filling an implantable drug release device comprising the step of contacting said drug release device with a compound of formula I or a pharmaceutical composition of this invention. Implantable drug release devices include, but are not limited to, biodegradable polymer capsules or bullets, non-degradable, diffusible polymer capsules and biodegradable polymer wafers.
- According to another embodiment, the invention provides an implantable medical device coated with a compound of Formula I or a pharmaceutical composition of this invention, such that said compound is therapeutically active.
- According to another embodiment, the invention provides an implantable drug release device impregnated with or containing a compound of Formula I or a pharmaceutical composition of this invention, such that said compound is released form said device and is therapeutically active.
- Where an organ or tissue is accessible because of removal from the patient, such organ or tissue may be bathed in a medium containing a pharmaceutical composition of this invention, a pharmaceutical composition of this invention may be painted onto the organ, or a pharmaceutical composition of this invention may be applied in any other convenient way.
- The present invention further provides pharmaceutical compositions comprising an effective amount of one or more compound of Formula I, in combination with an effective amount of one or more second therapeutic agents useful for treating or preventing a condition selected from depression, hypertension, generalized anxiety disorder, phobias, posttraumatic stress syndrome, avoidant personality disorder, sexual dysfunction; eating disorders including bulimia, anorexia nervosa, and binge eating; obesity, chemical dependencies, cluster headache, migraine; pain, including neuropathic pain, diabetic nephropathy, post-operative pain, psychogenic pain disorders, and chronic pain syndrome; Alzheimer's disease, obsessive-compulsive disorder, panic disorder with or without agoraphobia, memory disorders, Parkinson's diseases, endocrine disorders, vasospasm, cerebellar ataxia, gastrointestinal tract disorders, negative symptoms of schizophrenia, premenstrual syndrome, Fibromyalgia Syndrome; urinary incontinence, including stress incontinence; Tourette's syndrome, trichotillomania, kleptomania, male impotence, cancer, chronic paroxysmal hemicrania and headache in a mammal, sleep-related breathing disorders, cognitive deficits due to aging, stroke, head trauma, neurodegenerative diseases, schizophrenia, anxiety, aggression and stress, disorders of thermoregulation, respiratory disease, bipolar disorder, psychosis, sleep disorder, mania, acute mania, bladder disorder, genitourinary disorder, cough, emesis, nausea, and psychotic disorders such as paranoia and manic-depressive illness, tic disorder, diabetic cardiomyopathy, diabetic retinopathy, cataracts, myocardial infarction, prolonged fatigue, chronic fatigue, chronic fatigue syndrome, premature ejaculation, dysphoria, post partum depression, social phobia, disruptive behavior disorders, impulse control disorders, borderline personality disorder, attention deficit disorders without hyperactivity, Shy-Drager Syndrome, cerebral ischemia, spinal cord trauma, Huntington's Chorea, amyotrophic lateral sclerosis, AIDS-induced dementia, muscular spasms, convulsions, perinatal hypoxia, hypoxia, cardiac arrest, hypoglycemic neuronal damage, ocular damage and retinopathy, brain edema, tardive dyskinesia and cerebral deficits subsequent to cardiac bypass surgery and grafting, affective disorders, mood disorders agoraphobia without history of panic disorder, an acute stress disorder, autism, dyskinesia, disthymic disorder; obesity due to genetic or environmental causes, polycystic ovary disease, craniopharyngeoma, Prader-Willi Syndrome, Frohlich's Syndrome, Type II diabetes, growth hormone deficiency, and Turner's Syndrome; excessive or undesired proinflammatory cytokine secretion or production, jet lag, insomnia, hypersomnia, nocturnal enuresis, restless-legs syndrome, vaso-occlusive events, hyperglycemia, hyperinsulinaemia, hyperlipidaemia, hypertriglyceridemia, diabetes, insulin resistance, impaired glucose metabolism, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose, glomerulosclerosis, syndrome X, coronary heart disease, angina pectoris, vascular restenosis, endothelial dysfunction, impaired vascular compliance, or congestive heart failure; and a pharmaceutically acceptable carrier.
- Also within the scope of this invention are pharmaceutical compositions comprising an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof; or a prodrug or a pharmaceutically acceptable salt of a prodrug thereof; or a solvate, hydrate, or polymorph thereof; in combination with an effective amount of a second therapeutic agent useful for reducing the side effects of Compound 1, for enhancing or potentiating the activity of Compound 1, or for increasing the duration of pharmacological action of Compound 1; and a pharmaceutically acceptable carrier.
- Additional therapeutic agents useful in combination with the compounds of this invention include, but are not limited to: 5-HT1A antagonist or ligand; an NK1-receptor antagonist; a serotonin receptor antagonist; 2-amino-4,5,6,7-tetrahydro-6-propylamino-benzothiazole (pramipexole), the (+)- or (−)-enantiomer thereof; a sulfamate anticonvulsant agent; a precursor or prodrug of serotonin, or an intermediate in the biosynthesis of serotonin; selective agonists and antagonists of one or both of the 5-HT1A and 5-HT1D receptors; a composition containing dimethylaminoethanol (DMAE), omega 3-fatty acids, betaine, oligomeric proanthocyanidins, folic acid, vitamins C, E, B12, B6, B5 and beta-carotene and minerals (calcium, magnesium, zinc and selenium); naltrexone; cyclobenzaprine, or metabolites thereof; olanzapine; olanazapine-N-oxide; 2-hydroxymethylolanzapine; an atypical antipsychotic; tramadol; an aldose reductase inhibitor, or a prodrug thereof; 1-threo-methylphenidate; a Type III, Type IV, mixed Type III-Type IV, or Type V phosphodiesterase inhibitor, or an ester, amide, prodrug, active metabolite, or combination thereof; a substituted indole estrogenic agent; (+)-1-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0]hexane; folic acid; methyltetrahydrofolate; WAY 100635; betaxolol; (R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide hydrogen (2R,3R)-tartrate monohydrate; R-tofisopam; N-acetyl-serotonin; a DRD2-specific dopamine agonist; a 5HT4 receptor antagonist; nalmefene; moxonidine; mirtazapine; chromium; a cyclooxygenase-2 selective inhibitor; a 5HT2A selective receptor antagonist; a CB1 receptor antagonist; a MCH-1R receptor antagonist; a tetra-substituted pyrimidopyrimidine; a selective dopamine D4 receptor ligand; trimebutine, fedotozine and mixtures thereof; an NMDA partial receptor agonist; an NMDA receptor antagonist; a cholinesterase inhibitor; a GSK-3 inhibitor; an alpha-2-delta ligand or a prodrug thereof; an extract of kava; a norephinephrine reuptake inhibitor; a corticosteroid; a non-steroidal immunophilin-dependent immunosuppressant; N-desmethylclozapine; an (R)-2,3-benzodiazepine as disclosed in US Patent Application 20040224943; a selective neuronal nitric oxide synthase inhibitor; modafinil; a selective oxytocin antagonist; a nicotine receptor antagonist; an adenosine A2a receptor antagonist; a 5-HT2C receptor antagonist; an AMPA receptor potentiator; a nicotine partial agonist; irindalone; a delta opioid receptor ligand; a growth hormone secretagogue; p-chloro-N-(2-morpholinoethyl)-benzamide and its metabolites; a pharmaceutically acceptable salt of any of the said additional therapeutic agents; or combinations of two or more of the foregoing.
- Examples of 5-HT1A antagonists and ligands include, but are not limited to, alprenolol, WAY 100135, WAY 100635, spiperone, pindolol, (S)-UH-301, penbutolol, propranolol, tertatolol; (R)-5-carbamoyl-8-fluoro-3-N,N-disubstituted-amino-3,4-dihydro-2H-1-benzopyran; and those disclosed in U.S. Pat. Nos. 5,776,969; 5,958,429; 6,136,861; 6,656,951; 6,780,860; 6,815,448; 6,821,981; 6,861,427; 6,894,053; and US Patent Application 20050085475.
- Examples of NK1-receptor antagonists include, but are not limited to, those disclosed in U.S. Pat. Nos. 6,162,805; 6,878,732; US Patent Application 20050137208; as well as CNS-penetrant agents capable of inhibiting NK-1 receptor agonist-induced foot tapping in the gerbil, or attenuating separation-induced vocalizations by guinea-pig pups.
- Examples of sulfamate anticonvulsant agents include, but are not limited to, topiramate and those disclosed in and referenced by U.S. Pat. No. 5,384,327.
- Examples of precursors or prodrugs of serotonin, and intermediates in the biosynthesis of serotonin, include but are not limited to, L-tryptophan, L-5-hydroxytryptophan, diethyl N-benzyloxycarbonyl-5-benzyloxycarbonyloxy-L-tryptophyl-L-aspartate, dibenzyl N-benzyloxycarbonyl-5-hydroxy-L-tryptophanylaspartate, 5-Hydroxy-L-tryptophyl-L-aspartic acid trihydrate, diethyl N-benzyloxycarbonyl-5-hydroxy-L-tryptophyl-L-glutamate, diethyl 5-hydroxy-L-tryptophyl-L-glutamate hydrochloride, dibenzyl L-benzyloxycarbonyl-5-hydroxytryptophyl-L-glutamate, 5-hydroxy-L-tryptophyl-L-glutamic acid, pentachlorophenyl ester of N-benzyloxycarbonyl-5-hydroxy-L-tryptophan, methyl ester of N-benzyloxycarbonyl-5-hydroxy-L-tryptophyl-L-tyrosine, N-Acetyl-5-hydroxy-L-tryptophan, methyl ester of N-acetyl-5-hydroxy-L-tryptophyl-L-tyrosine, methyl ester of n-acetyl-5-hydroxy-L-tryptophyl-5-hydroxy-L-tryptophan, 5-hydroxy-L-tryptophyl-L-alanine hydrate, 5-hydroxy-L-tryptophan-L-valine, 5-hydroxy-L-tryptophyl-L-leucine, 5-hydroxy-L-tryptophyl-L-proline, 5-hydroxy-L-tryptophyl-L-phenylalanine, 5-hydroxy-L-tryptophyl-5-hydroxy-L-tryptophan, 5-hydroxy-L-tryptophyl-L-tryptophan, 1-5-hydroxytryptophyl-L-serine, 5-hydroxy-L-tryptophyl-L-arginine, 5-hydroxy-L-tryptophylglycine, 5-hydroxy 1-tryptophyl-gamma-aminobutyric acid, 5-hydroxy-L-tryptophanamide hydrate, methyl ester of 5-hydroxy-L-tryptophyl-L-histidine, benzyl ester of L-5-hydroxytryptophan, benzyl ester of N-benzyloxycarbonyl-5-hydroxy-L-tryptophyl-5-hydroxy-L-tryptophan, 5-Hydroxy-L-tryptophyl-5-hydroxy-L-tryptophan hemihydrate, 5-hydroxytryptophan inosinate, theophylline salt of (DL) 5-hydroxytryptophan, and combinations thereof.
- Examples of an atypical antipsychotic agents include, but are not limited to, risperidone, clozapine, seroquel, sertindole, ziprasidone, zotepine, olanzapine, iloperidone, Org 5222, melperone, amperozide, SM-9018, JL-13, and pharmaceutically acceptable salts thereof.
- Examples of aldose reductase inhibitors include, but are not limited to, fidarestat, epalrestat, minalrestat, SPR-210, and zenarestat or zopolrestat, or a prodrug thereof.
- Examples of selective agonists and antagonists of one or both of the 5-HT1A and 5-HT1D receptors include, but are not limited to, those disclosed in U.S. Pat. No. 6,562,813.
- Examples of Type III phosphodiesterase inhibitors include, but are not limited to, bipyridines such as amrinone, milrinone and olprinone; anagrelide, bemoradan, ibudilast, isomazole, lixazinone, motapizone, olprinone, phthalazinol, pimobendan, quazinone, siguazodan and trequinsin
- Examples of calcium channel blockers include, but are not limited to, amlodipine diltiazem, felodipine, isradipine, nicardipine, nifedipine, and verapamil.
- Examples of mixed type III-type IV phosphodiesterase inhibitors include, but are not limited to, anagrelide, bemoradan, ibudilast, isomazole, lixazinone, motapizone, olprinone, phthalazinol, pimobendan, quazinone, siguazodan and trequinsin.
- Examples of type IV phosphodiesterase inhibitors include, but are not limited to, pyrrolidinones, in particular rolipram; quinazolinediones, xanthine derivatives, phenyl ethyl pyridines, tetrahydropyrimidones, diazepine derivatives, oxime carbamates, naphthyridinones, benzofurans, naphthalene derivatives, purine derivatives, imidazolidinones, cyclohexane carboxylic acids, benzamides, pyridopyridazinones, benzothiophenes, etazolate, S-(+)-glaucine, substituted phenyl compounds and substituted biphenyl compounds as further disclosed in U.S. Pat. No. 6,403,597.
- Examples of type V phosphodiesterase inhibitors include, but are not limited to, sildenafil, vardenafil, tadalafil, zaprinast, dipyridamole, 3-isobutyl-8-(6-methoxy-isoquinolin-4-ylmethyl)-1-methyl-3,7-dihydro-purine-2,6-dione; and those disclosed in US Patent Applications 20030055070; 20040044005; 20030139429.
- Examples of substituted indole estrogenic agents include, but are not limited to, those disclosed in and referenced by U.S. Pat. No. 6,369,051.
- An example of a DRD2-specific dopamine agonist includes, but is not limited to, bromocriptine.
- Examples of 5HT4 receptor antagonists include, but are not limited to, A-85380, SB 204070, SB 207226, SB 207058, SB 207710, SB 205800, SB 203186, SDZ 205557, N 3389, FK 1052, SC 56184, SC 53606, DAU 6285, GR 125487, GR 113808, RS 23597, RS 39604, LY-353433 and R 50595.
- Examples of cyclooxygenase-2 selective inhibitors include, but are not limited to, celecoxib, valdecoxib, deracoxib, rofecoxib, etoricoxib, tilmacoxib, cimicoxib, and those disclosed in and referenced by US Patent Applications 20050080084 and 20050085477.
- Examples of 5-HT2a receptor antagonists include, but are not limited to, those disclosed and referenced by US Patent application 20050070577.
- Examples of CB1 receptor antagonists include, but are not limited to, rimonabant and those disclosed in and referenced by US Patent applications 20040248956, 20050009870, 20050014786, 20050054659, 20050080087, and 20050143381.
- Examples of selective MCH-1R receptor antagonists include, but are not limited to, those disclosed in and referenced by US Patent applications 20050009815 and 20050026915.
- Examples of tetra-substituted pyrimidopyrimidines include, but are not limited to, dipyridamole, mopidamole, dipyridamole monoacetate, 2,6-di-(2,2-dimethyl-1,3-dioxolan-4-yl)-methoxy-4,8-di-piperidinopyrimido-pyrimidine; 2,6-bis-(2,3-dimethyoxypropoxy)-4,8-di-piperidinopyrimidopyrimidine; 2,6-bis[N,N-di(2-methoxy)ethyl]-4,6-di-piperidinopyrimidopyrimidine-; and 2,6-bis(diethanolamino)-4,8-di-4-methoxybenzylaminopyrimidopyrimidine-.
- Examples of selective dopamine D4 receptor ligands include, but are not limited to, pipamperone, fananserin, L-745,870, PNU-101387G and U-101387.
- An example of a NMDA partial receptor agonist includes, but is not limited to, D-cycloserine.
- Examples of NMDA receptor antagonists include, but are not limited to, dextromethorphan, dextrorphan, amantadine, and memantine.
- Examples of cholinesterase inhibitors include, but are not limited to, tacrine, donepezil, edrophonium, galantamine, physostigmine, eptastigmine, pyridostigmine, neostigmine, ganstigmine, rivastigmine, demecarium, ambenonium, sarin, metrifonate, soman, tabun, and diisopropyl fluorophosphates.
- Examples of GSK-3 inhibitors include, but are not limited to, those disclosed and referenced in US Patent Application 20050026946.
- Examples of alpha-2-delta ligands include, but are not limited to, gabapentin, pregabalin, [(1R,5R,6S)-6-(aminomethyl)bicyclo[-3.2.0]hept-6-yl]acetic acid, 3-(1-aminomethylcyclohexylmethyl)-4H-[1,2,4]-oxadiazol-5-one, C-[1-(1H-tetrazol-5-ylmethyl)-cycloheptyl]-methylamine, (3S,4S)-(1-aminomethyl-3,4-dimethylcyclopentyl)-acetic acid, (1α,3α,5α)(3-aminomethyl-bicyclo[3.2.0]hept-3-yl)-acetic acid, (3S,5R)-3-aminomethyl-5-methyloctanoic acid, (3S,5R)-3-amino-5-methylheptanoic acid, (3S,5R)-3-amino-5-methylnonanoic acid, and (3S,5R)-3-amino-5-methyloctanoic acid.
- Examples of a norephinephrine reuptake inhibitors include, but are not limited to, desipramine, imipramine, amoxapine, nortriptyline, protriptyline, atomoxetine, oxaprotiline, maprotiline, reboxetine, 1-[1-(3-chlorophenyl)-2-(4-methyl-1-piperazinyl)ethyl]cyclohexanol; and those disclosed in US Patent Application 20050014848.
- Examples of corticosteroids include, but are not limited to, prednisolone, budesonide, cortisone, dexamethasone, hydrocortisone, methylprednisolone, fluticasone, prednisone, triamcinolone, and diflorasone.
- Examples of non-steroidal immunophilin-dependent immunosuppressants include, but are not limited to, cyclosporine, tacrolimus, ISAtx247, ascomycin, pimecrolimus, rapamycin, and everolimus.
- Examples of selective neuronal nitric oxide synthase inhibitors include, but are not limited to, those disclosed in US Patent Application 20040229911.
- An example of a selective oxytocin antagonist includes, but is not limited to, L-368,899.
- Examples of nicotine receptor antagonists include, but are not limited to, mecamylamine, amantadine, pempidine, dihydro-beta-erythroidine, hexamethonium, erysodine, chlorisondamine, trimethaphan camsylate, tubocurarine chloride, d-tubocurarine, and their optical isomers.
- Examples of adenosine A2a receptor antagonists include, but are not limited to, those disclosed in US Patent Application 20030139395.
- Examples of 5-HT2C receptor antagonists, inverse agonists and partial agonists include, but are not limited to, ketanserin, SB 242084, SB 206553, SB 243213, SB 228356, ritanserin, deramciclane, mirtazepine, mianserine, sertindole, YM 35 992, Ro 60-0795, Org 38457, Org 12962, EGIS 8465 and RS 102221.
- Examples of AMPA receptor potentiators include, but are not limited to, [(methylethyl)sulfonyl]{2-[4-(4-{2-[(methylsulfonyl)amino]ethyl}phenyl)phenyl]propyl}amine, {(2R)-2-[4-(4-{2-[(methylsulfonyl)amino]ethyl}phenyl)phenyl]propyl}[(methylethyl)sulfonyl]amine, N-2-(4-(3-thienyl)phenylpropyl-2-propanesulfonamide, [2-fluoro-2-(4-{3-[(methylsulfonyl)amino]phenyl}phenyl)propyl][(methylethyl)sulfonyl]amine, and, separately, each enantiomer of [2-fluoro-2-(4-{3-[(methylsulfonyl)amino]phenyl}phenyl)propyl][(methylethyl)sulfonyl]amine.
- Examples of nicotine receptor partial agonists include, but are not limited to, those disclosed in US Patent Applications 20010036943 and 20030109544.
- Examples delta opioid receptor ligands include, but are not limited to, those disclosed in and referenced by US Patent Application 20020077323.
- Examples of growth hormone secretagogues include, but are not limited to, those disclosed in US Patent Applications 20020002137 and 20020086865.
- In another embodiment, the invention provides separate dosage forms of a compound of Formula I and a second therapeutic agent, wherein said compound and said second therapeutic agent are associated with one another. The term “associated with one another” as used herein means that the separate dosage forms are packaged together in the same container (e.g., in separate blister packs attached to one another, in separate compartments of a compartmentalized container, in separate vessels contained in the same box, etc.), or otherwise attached to one another such that it is readily apparent that the separate dosage forms are intended to be sold and administered together (within less than 24 hours of one another, consecutively or simultaneously).
- In the pharmaceutical compositions of the invention, a compound of Formula I is present in an effective amount. As used herein, the term “effective amount” refers to an amount which, when administered in a proper dosing regimen, is sufficient to reduce or ameliorate the severity, duration or progression, or enhance function compromised by a disorder associated with insufficient neurotransmission of serotonin, prevent the advancement of a disorder characterized by insufficient neurotransmission of serotonin, cause the regression of a disorder characterized by insufficient neurotransmission of serotonin, or enhance or improve the prophylactic or therapeutic effect(s) of another therapy.
- In certain preferred embodiments, treatment according to the invention provides a reduction in or prevention of at least one symptom or manifestation of a disorder that has been linked insufficient neurotransmission of serotonin, as determined in vivo or in vitro inhibition of at least about 10%, more preferably 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98% or 99% of cellular serotonin uptake. With respect to inhibition of serotonin reuptake activity, the term “effective amount” means an amount that results in a detectable increase in the amount or concentration serotonin in a patient or in a biological sample, the correction of or relief from a behavior, deficit, symptom, syndrome or disease that has been linked to reduced or insufficient neurotransmission of serotonin, alone or in combination with another agent or agents; or the induction of a behavior, activity or response that has been linked to normalized or increased neurotransmission of serotonin.
- The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described in Freireich et al., (1966) Cancer Chemother Rep 50: 219. Body surface area may be approximately determined from height and weight of the patient. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardley, N.Y., 1970, 537. An effective amount of a compound of Formula I can range from about 0.001 mg/kg to about 500 mg/kg, more preferably 0.01 mg/kg to about 50 mg/kg, yet more preferably 0.025 mg/kg to about 1.5 mg/kg. Effective doses will also vary, as recognized by those skilled in the art, depending on the diseases treated, the severity of the disease, the route of administration, the sex, age and general health condition of the patient, excipient usage, the possibility of co-usage with other therapeutic treatments such as use of other agents and the judgment of the treating physician.
- For pharmaceutical compositions that comprise a second therapeutic agent, an effective amount of that second therapeutic agent is between about 20% and 100% of the dosage normally utilized in a monotherapy regime using just that additional agent. Preferably, an effective amount is between about 70% and 100% of the normal monotherapeutic dose. The normal monotherapeutic dosages of these second therapeutic agents are well known in the art. See, e.g., Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), each of which references are entirely incorporated herein by reference.
- It is expected that some of the second therapeutic agents listed above will act synergistically with the compounds of this invention. When this occurs, it will allow the effective dosage of the second therapeutic agent and/or the compound of Formula I to be reduced from that required in a monotherapy. This has the advantage of minimizing toxic side effects of either the second therapeutic agent or a compound of Formula I, synergistic improvements in efficacy, improved ease of administration or use and/or reduced overall expense of compound preparation or formulation.
- In one embodiment, the present invention provides a method of inhibiting the uptake of serotonin in a subject comprising the step of administering to said subject an effective amount of a compound of Formula I, preferably as part of a composition additionally comprising a pharmaceutically acceptable carrier. Preferably this method is employed to treat a subject suffering from or susceptible to one or more disease or disorder selected from depression, obsessive-compulsive disorder, generalized anxiety, post-traumatic stress, major depression, panic disorder, social phobia, premenstrual syndrome, cardiac disorders, non-cardiac chest pain; smoking addiction (to cause cessation or prevent relapses); reducing platelet activation states, alcoholism and alcohol dependence; psychiatric syndromes including anger, rejection sensitivity, and lack of mental of physical energy; late luteal phase dysphoric disorder, premature ejaculation, senile dementia, obesity, Parkinson's disease, or canine affective aggression.
- The method can also be employed to treat a subject suffering from or susceptible to inhibition of cancer cell growth, methods for stimulating bone formation by osteoblast stimulation, treatment of dermatological diseases or disorders such as hyperproliferative or inflammatory skin diseases, and treatment of premature female orgasm. Other embodiments include any of the methods herein wherein the subject is identified as in need of the indicated treatment.
- More preferably this method is employed to treat a subject suffering from or susceptible to one or more disease or disorder selected from major depressive disorder, obsessive compulsive disorder, panic disorder, social anxiety disorder, generalized anxiety disorder, post-traumatic stress disorder, and premenstrual dysphoric disorder
- Another aspect of the invention is a compound of formula I for use in inhibiting the uptake of serotonin in a subject. Preferably that use is in the treatment or prevention in a subject of a disease, disorder or symptom set forth above.
- Another aspect of the invention is the use of a compound of formula I in the manufacture of a medicament for inhibiting the uptake of serotonin in a subject. Preferably, the medicament is used for treatment or prevention in a subject of a disease, disorder or symptom set forth above.
- In another embodiment, the method of treatment further comprises the step of administering to said patient one or more additional therapeutic agents which, alone or in combination with Compound 1, are effective to treat depression, hypertension, generalized anxiety disorder, phobias, posttraumatic stress syndrome, avoidant personality disorder, sexual dysfunction; eating disorders including bulimia, anorexia nervosa, and binge eating; obesity, chemical dependencies, cluster headache, migraine; pain, including neuropathic pain, diabetic nephropathy, post-operative pain, psychogenic pain disorders, and chronic pain syndrome; Alzheimers disease, obsessive-compulsive disorder, panic disorder with or without agoraphobia, memory disorders, Parkinson's diseases, endocrine disorders, vasospasm, cerebellar ataxia, gastrointestinal tract disorders, negative symptoms of schizophrenia, premenstrual syndrome, Fibromyalgia Syndrome; urinary incontinence, including stress incontinence; Tourette's syndrome, trichotillomania, kleptomania, male impotence, cancer, chronic paroxysmal hemicrania and headache in a mammal, sleep-related breathing disorders, cognitive deficits due to aging, stroke, head trauma, neurodegenerative diseases, schizophrenia, anxiety, aggression and stress, disorders of thermoregulation, respiratory disease, bipolar disorder, psychosis, sleep disorder; mania, including acute mania; bladder disorder, genitourinary disorder, cough, emesis, nausea, psychotic disorders such as paranoia and manic-depressive illness, tic disorder, diabetic cardiomyopathy, diabetic retinopathy, cataracts, myocardial infarction, prolonged fatigue, chronic fatigue, chronic fatigue syndrome, premature ejaculation, dysphoria, post partum depression, social phobia, disruptive behavior disorders, impulse control disorders, borderline personality disorder, attention deficit disorders without hyperactivity, Shy-Drager Syndrome, cerebral ischemia, spinal cord trauma, Huntington's Chorea, amyotrophic lateral sclerosis, AIDS-induced dementia, muscular spasms, convulsions, perinatal hypoxia, hypoxia, cardiac arrest, hypoglycemic neuronal damage, ocular damage and retinopathy, brain edema, tardive dyskinesia, cerebral deficits subsequent to cardiac bypass surgery and grafting, affective disorders, mood disorders, agoraphobia without history of panic disorder, and acute stress disorders; and for reducing the side effects of Compound 1, enhancing or potentiating the activity of Compound 1, or for increasing the duration of pharmacological action of Compound 1.
- In yet another embodiment, the method of treatment comprises the further step of administering to said patient one or more therapeutic agents which, alone or in combination with Compound 1, are effective to treat one or more of autism, dyskinesia, disthymic disorder; obesity due to genetic or environmental causes, polycystic ovary disease, craniopharyngeoma, Prader-Willi Syndrome, Frohlich's Syndrome, Type II diabetes, growth hormone deficiency, Turner's Syndrome; pro-inflammatory cytokine secretion or production, jet lag, insomnia, hypersomnia, nocturnal enuresis, restless-legs syndrome, vaso-occlusive events, hyperglycemia, hyperinsulinaemia, hyperlipidaemia, hypertriglyceridemia, diabetes, insulin resistance, impaired glucose metabolism, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose, glomerulosclerosis, syndrome X, coronary heart disease, angina pectoris, vascular restenosis, endothelial dysfunction, impaired vascular compliance, or congestive heart failure; or to increase the onset of action of Compound 1.
- In each of the above embodiments, the second therapeutic agent or agents may be administered together with a compound of Formula I as part of a single dosage form or as separate dosage forms. Alternatively, the second therapeutic agent or agents may be administered prior to, consecutively with, or following the administration of a compound of Formula I. In such combination therapy treatment, both the compounds of this invention and the second therapeutic agent(s) are administered by conventional methods. The administration of the second therapeutic agent(s) may occur before, concurrently with, and/or after the administration of the compound of Formula I. When the administration of the second therapeutic agent occurs concurrently with a compound of Formula I, the two (or more) agents may be administered in a single dosage form (such as a composition of this invention comprising a compound of Formula I, a second therapeutic agent or agents as described above, and a pharmaceutically acceptable carrier), or in separate dosage forms. The administration of a composition of this invention comprising both a compound of Formula I and a second therapeutic agent(s) to a subject does not preclude the separate administration of said second therapeutic agent(s), any other therapeutic agent or any compound of this invention to said subject at another time during a course of treatment.
- Effective amounts of second therapeutic agent or agents useful in the methods of this invention are well known to those skilled in the art and guidance for dosing may be found in patents referenced herein, as well as in Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), and other medical texts. However, it is well within the skilled artisan's purview to determine the optimal effective-amount range of the additional agent(s).
- In one embodiment of the invention where one or more second therapeutic agents are administered to an animal, the effective amount of the compound of Formula I is less than its effective amount would be where the second therapeutic agent(s) are not administered. In another embodiment, the effective amount of the second therapeutic agent is less than its effective amount would be where the compound of Formula I is not administered (i.e., the amount of each second therapeutic agent(s) administered in a monotherapy). In this way, undesired side effects associated with high doses of either agent may be minimized. Other potential advantages (including without limitation improved dosing regimens and/or reduced drug cost) will be apparent to those of skill in the art.
- Second therapeutic agents useful in the method of treatment are the same as those described above as part of combination compositions.
- According to another aspect, the invention provides a compound of formula I and one or more of the above-described second therapeutic agents, either in a single composition or as separate dosage forms for use in the treatment or prevention in a subject of a disease, disorder or symptom set forth above.
- In yet another aspect, the invention provides the use of a compound of formula I and one or more of the above-described second therapeutic agents in the manufacture of a medicament, either as a single composition or as separate dosage forms, for treatment or prevention in a subject of a disease, disorder or symptom set forth above.
- The compounds of this invention may be readily assayed for biological activity by known methods. For instance, in vitro methods of determining binding to the serotonin transporter are available using recombinant cell lines, e.g. see Poss M A et. al., U.S. Pat. No. 6,225,324 to Bristol-Myers Squibb; and ex-vivo brain tissue, e.g. see Young J W et. al., U.S. Pat. No. 5,648,396 to Sepracor; and Habert E et. al., Eur. J. Pharmacol 1985 118: 107.
- Animal models of depression provide reproducible readouts that correlate with human clinical response to antidepressant drugs, including serotonin reuptake inhibitors and specifically Compound 1. For instance, see Porsolt R D et. al., Eur. J. Pharmacol. 1979 57: 201; Detke M J et. al., Psychopharmacology 1995 121: 66; “Drug Discovery and Evaluation”, Vogel H G and Vogel W H (eds.), p. 304, 1997, Springer-Verlag, New York; and El Yacoubi M et. al., Proc. Natl. Acad. Sci. USA 2003 100: 6227; for descriptions of the well-known forced swim test and tail suspension test. Each of the compounds of this invention may be tested in such animal models.
- The rate of metabolism of compounds of this invention may be determined and compared to that of Compound 1 in the presence, for instance, of heterologously expressed CYP2D6, or human liver microsomes (both available from BD Gentest, Woburn, Mass.). The compounds may also be tested in whole animals e.g. by oral or parenteral administration, measuring the disappearance of the administered compound and, if desired, the appearance of metabolites. Means for such measurements are well known, e.g. see Segura M et. al., Rapid Commun. Mass Spectrom. 2003 17: 1455; and Hartter S et. al., Ther. Drug Monit. 1994 16: 400. The inactivation of CYP2D6 by compounds of this invention may also be measured by known means to determine relevant enzymatic parameters such as kINACT. See for instance Bertelsen K M et. al., Drug Metab. Dispos. 2003 31: 289. The effects of a compound of formula I on other drugs known to be metabolized by cytochrome 2D family enzymes may also be measured and compared to the corresponding effects caused by Compound 1; e.g. see Hashimoto K et. al., Eur. J. Pharmacol. 1993 228: 247. This interaction may be measured after either a single doses of compound 1 and a compound of Formula I, or after repeated doses to measure cumulative cytochrome inactivation.
- According to another embodiment, the invention provides a method of determining the concentration of Compound 1 in a biological sample, said method comprising the steps of:
-
- a) adding a known concentration of a second compound to said biological sample, said second compound having the formula:
- or a salt thereof, wherein:
-
- D is deuterium;
- each Y is independently selected from deuterium or hydrogen;
- each hydrogen atom is optionally substituted by deuterium; and
- each carbon atom is optionally substituted by 13C
-
- b) subjecting said biological sample to a measuring device that distinguishes Compound 1 from said second compound;
- c) calibrating said measuring device to correlate the detected quantity of Compound 1 with the known concentration of said second compound added to said biological sample; and
- d) determining the concentration of said compound in said biological sample by comparing the detected quantity of Compound 1 with the detected quantity and known concentration of said second compound.
- Measuring devices that can distinguish Compound 1 from said second compound include any measuring device that can distinguish between two compounds that are of identical structure except that one contains one or more heavy atom isotope versus the other. Preferably, such a measuring device is a mass spectrometer.
- In a preferred embodiment, at least three combined hydrogen atoms and carbons are, respectively, deuterium and 13C in said second compound; i.e. (total number of D)+(number of 13C)≧3.
- In another preferred embodiment, the method comprises the additional step of separating both Compound 1 and said second compound from said biological sample by organic or solid phase extraction prior to step b).
- Compound 1 and the second compound will have similar solubility, extraction, and chromatographic properties, but significantly different molecular mass. Thus, the second compound is useful as an internal standard in a method that comprises the step of organic or solid phase extraction to measure the efficiency of that extraction and to ensure an accurate determination of the true concentration of Compound 1 (see Tuchman M and McCann M T, Clin. Chem. 1999 45: 571; Leis H J et. al., J. Mass Spectrom. 2001 36: 923; Taylor R L et. al., Clin. Chem. 2002 48: 1511).
- The compounds of the present invention (the second compound) are particularly useful in this method since they are not radioactive and therefore do not pose a hazard to personnel handling the compounds. Thus, these methods do not require precautions beyond those normally applied in clinical sample analysis.
- Furthermore, stably labeled isotopes have long been used to assist in research into the enzymatic mechanism of cytochrome P450 enzymes (e.g. Korzekwa K R et. al., Drug Metab. Rev. 1995 27: 45 and references therein; Kraus J A and Guengerich F P, J. Biol. Chem. 2005 280: 19496; Mitchell K H et. al., Proc. Natl. Acad. Sci. USA 2003 109: 3784).
- In another embodiment, the invention provides a diagnostic kit comprising a) one or more diagnostic compounds having the formula I,
- or an salt thereof, wherein:
-
- D is deuterium;
- each Y is independently selected from hydrogen or deuterium;
- each hydrogen atom is optionally substituted by deuterium; and
- each carbon atom is optionally substituted by 13C; and
-
- b) instructions for using said compound to determine the concentration of a test compound in a biological sample.
- In another embodiment, the invention provides a method of evaluating the metabolic stability of a compound of formula I, comprising the steps of contacting the compound of formula I or its acid addition salt with a metabolizing enzyme source for a period of time; and comparing the amount of said compound and metabolic products of said compounds after said period of time.
- In one preferred embodiment, the method comprises an additional step of comparing the amount of said compound and said metabolic products of said compounds at an interval during said period of time. This method allows the determination of a rate of metabolism of said compound.
- In another preferred embodiment, the method comprises the additional steps of contacting a compound of formula I with said metabolizing enzyme source; comparing the amount of said compound of formula I and metabolic products of said compound of formula I after said period of time determining a rate of metabolism of said compound of formula I; and comparing the metabolic stability of Compound 1 and said compound of formula I. This method is useful in determining whether and at which sites on a compound of formula I additional deuterium or 13C substitution would cause increases in metabolic stability. It is also useful in comparing the metabolic stability of a compound of formula I with the metabolic stability of Compound 1.
- A metabolizing enzyme source may be a purified, isolated or partially purified metabolic protein, such as a cytochrome P450; a biological fraction, such as a liver microsome fraction; or a piece of a metabolizing organ, such as hepatocytes or a liver slice.
- The determination of the amount of compound and its metabolic products is well known in the art. It is typically achieved by removing an aliquot from the reaction mixture and subjecting it to an analysis capable of distinguishing between the compound and its metabolites, such as reversed-phase HPLC with UV absorption or mass spectroscopic detection. Concentrations of both the metabolizing enzyme and the compound may be varied to determine kinetic parameters, for instance, by using appropriate nonlinear regression software such as is known in the art. By comparing the kinetic parameters of both a compound of formula I and Compound 1 an apparent steady-state deuterium isotope effect (D(V/K)) can be determined as the ratio of products formed in the hydrogen versus deuterium reactions.
- The determination of a rate of metabolism of a compound of formula I may be achieved in a reaction separate from the reaction for determining the metabolism rate of Compound 1. Alternatively, Compound 1 may be admixed with a compound of formula I in a competition experiment to determine rates of disappearance of the two compounds, making use of analytical instrumentation capable of differentiating between the two compounds based on their mass differences.
- In yet another embodiment, pre-steady state kinetics, such as V0, may be determined by means known in the art, for instance, using quench-flow apparatus, by monitoring the quenched reactions at varying times after mixing the compound or isotopologue with the metabolizing enzyme source.
- In a related embodiment, the invention provides a kit comprising, in separate vessels: a) Compound 1; and b) a metabolizing enzyme source. The kit is useful for comparing the metabolic stability of a compound of formula I with Compound 1, as well as evaluating the effect of deuterium and 13C replacement at various positions on a compound of formula I. In a preferred embodiment, the kit further comprises instructions for using Compound 1 and said metabolizing enzyme source to evaluate the metabolic stability of a compound of formula I.
- In order that the invention might be more fully understood, the following examples are set forth. They are not intended to limit the scope of the invention and further examples will be evident to those of ordinary skill in the art. In each example set forth herein, carbon shall be 12C, and hydrogen shall by 1H, each incorporated at its natural abundance, unless otherwise specified.
- Deuterodibromomethane. A solution of 1.1 mole of sodium deuteroxide in 140 mL of deuterium oxide is treated under argon with 116 mmol of arsenious oxide to form a solution of sodium arsenite. Bromoform (190 mmol) is treated under argon with 6.5 mL of ethanol-d (CH3CH2OD) and 1 mL of the sodium arsenite solution and warmed briefly (heat gun) to initiate reaction. The remainder of the sodium arsenite solution is added via dropping funnel at a rate to maintain gentle reflux, then the mixture is heated in a 100° C. oil bath for an additional 4.5 h. The mixture is azeotropically distilled, then the distillate is separated and the aqueous layer extracted with 15 mL of pentane. The organic layers are combined, dried over CaCl2, and distilled to yield the title compound.
- 2-deuterobenzo[d][1,3]dioxole-5-carbaldehyde (Formula V wherein Y═H and R=formyl). A solution of 3,4-dihydroxybenzaldehyde (20 mmol) in 60 mL of dimethylformamide (DMF) is treated under argon with 60 mmol of the product of example 1 and 70 mmol of CsF. The mixture is heated in a 140° C. oil bath for 3 h with vigorous stirring. The mixture is then filtered, concentrated in vacuo, and the residue is purified by silica gel flash chromatography (ether/hexanes eluant), yielding the title product.
- 2-deuterobenzo[d][1,3]dioxol-5-yl formate. A 13.4 mL portion of acetic anhydride is warmed under an argon atmosphere in a 40° C. bath and treated, during 6 h in 3 equal portions, with 10 mmol of 50% hydrogen peroxide. The solution is treated with 10 mmol of the product of example 2, and reaction is allowed to proceed for 2 h at about 40° C. The solvents are removed in vacuo and the residue purified by Kugelrohr distillation at about 2 mm Hg to yield the title product.
- 2-deuterobenzo[d][1,3]dioxol-5-ol (Formula II wherein Y=H). A 6.4 mmol portion of the product of example 3 is dissolved in 2 mL of methanol and the mixture is treated with 21 μL of acetic acid, then heated under reflux for 15 h. The solution is concentrated in vacuo and the residue is Kugelrorh distilled (ca. 2 mm Hg) to yield the title compound.
- 2,2-dideuterobenzo[d][1,3]dioxole-5-carbaldehyde (Formula V wherein Y=D and R=formyl). A simple distillation apparatus with a dry ice condenser is charged in the distillation bulb with 50 mL of 1-methyl-2-pyrrolidinone and 125 mmol of K2CO3. The mixture is heated at 130° C. and to it is added, during 4.5 h with vigorous stirring, 100 mmol of 3,4-dihydroxybenzaldehyde as a solution in 15 mL of 1-methyl-2-pyrrolidinone. Simultaneously, during 3 h, 25 g of dideuterodichloromethane is added via a pressure-tight syringe with the delivery needle well within the stirred solvent. At 3 h, the distilled excess dideuterodichloromethane is drawn from the receiver bulb and re-injected into the reaction in the same manner as above during 1.5 h. This recycling procedure is repeated twice more at one hour intervals (6.5 h reaction time total). The mixture is cooled and filtered, and distilled, first at atmospheric pressure to separate remaining dissolved dideuterodichloromethane, then at approximately 12 torr, yielding the title compound.
- 2,2-dideuterobenzo[d][1,3]dioxol-5-yl formate. A 68 mmol portion of the product of Example 5 is oxidized with peracetic acid according to the general procedure set forth in Example 3 to yield the title compound after vacuum distillation.
- 2,2-dideuterobenzo[d][1,3]dioxol-5-ol (Formula II wherein Y=D). A 52.5 mmol portion of the product of example 6 is reacted methanol and acetic acid according to the general procedure set forth in Example 4 to yield the title compound after vacuum distillation.
- (3S,4R)-benzyl 3-((2-deuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine-1-carboxylate (Formula III wherein Y=H and W is benzyloxycarbonyl). A solution of 2.7 mmol of the product of example 4 in 10 mL of acetone is treated with 4 mmol of finely ground cesium carbonate, followed by 2.7 mmol of (3S,4R)-benzyl 4-(4-fluorophenyl)-3-((methylsulfonyloxy)methyl)piperidine-1-carboxylate (Sugi K et. al. U.S. Pat. No. 6,476,227 to Sumika). The mixture is heated under reflux for about 8 h, then cooled, filtered, and concentrated in vacuo. The residue is partitioned between ethyl acetate and water, the organic layer is washed with brine, dried, and concentrated in vacuo. This residue is used in subsequent reactions without further purification.
- (3S,4R)-3-((2-deuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine hydrochloride (Formula I wherein Y=H). The entire yield of Example 8, except for an approximately 2 mg retained sample, is dissolved in 8 mL of ethanol, treated with a catalytic amount of 10% Pd on carbon (spatula tip) and stirred under an atmosphere on hydrogen (balloon) for about 16 h. The mixture is filtered and concentrated, and the residue taken up in toluene and again concentrated. The residue is dissolved in about 2.5 mL of dry isopropanol and treated with hydrogen chloride gas to form a white precipitate. Excess HCl is blown off by bubbling an argon stream into the solution for about 3 min, then the mixture is filtered, washing with a small amount of isopropanol, yielding the title product.
- (3S,4R)-benzyl 3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine-1-carboxylate (Formula III wherein Y=H and W is benzyloxycarbonyl). An 11.1 mmol portion of the product of Example 7 is reacted with (3S,4R)-benzyl 4-(4-fluorophenyl)-3-((methylsulfonyloxy)methyl)piperidine-1-carboxylate according to the general procedure set forth in Example 8 to yield the crude product which, on purification by silica gel chromatography using ethyl acetate/hexanes eluant, gives the title compound.
- (3S,4R)-3-((2-deuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine hydrochloride (Formula I wherein Y=D). Hydrogenation of a 6.8 mmol portion of the product of Example 10 and hydrochloride salt formation according to the general procedure set forth in Example 9 yields the title compound.
- (3S,4R)-tert-butyl 4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine-1-carboxylate. A 6.7 mmol portion of (3S,4R)-benzyl 4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine-1-carboxylate (U.S. Pat. No. 6,476,227) is dissolved in 25 mL of dioxane and treated under argon with 7.1 mmol of di-tert-butyl dicarbonate and 200 mg of 10% Pd/C. The mixture is hydrogenated under an atmosphere of hydrogen (balloon) for about 17 h, then filtered and concentrated in vacuo. The residue is purified by silica gel chromatography (methanol/methylene chloride eluant), yielding the title product.
- (3S,4R)-tert-butyl 4-(4-fluorophenyl)-3-formylpiperidine-1-carboxylate. A solution of 6.5 mmol of oxalyl chloride in 15 mL of methylene chloride is cooled under argon in a CO2/acetone bath and treated dropwise with 13 mmol of dimethylsulfoxide. To this mixture is added, during about 10 min, a solution of 5.8 mmol of the product of example 12 as a solution in 6 mL of methylene chloride. The resulting solution is stirred for 1.5 h, then treated with 15 mmol of triethylamine. After an additional 15 min the cold bath is removed and stirring is continued an additional 45 min. The reaction mixture is partitioned between ether and saturated NH4Cl (40 mL each), and the organic layer is washed with water and brine, dried over MgSO4, and concentrated in vacuo to yield the title product, which is used without subsequent purification.
- (3S,4R)-1-(tert-butoxycarbonyl)-4-(4-fluorophenyl)piperidine-3-carboxylic acid. One half of the product of Example 13 is dissolved in 12 mL of tert-butyl alcohol and 4 mL of water and 3.3 mmol of KMnO4 are added. The mixture is stirred for 4 h at room temperature, then filtered, washing the solids with water. The mixture is concentrated to about 5 mL in vacuo, and partitioned between 40 mL of ether and 3×10 mL of 1N NaOH. The aqueous layers are combined, cooled in an ice bath, rendered acidic with saturated KHSO4, and extracted with methylene chloride (3×). These organic layers are combined, washed with 50% brine, dried over MgSO4, and concentrated in vacuo, yielding the title compound.
- (3S,4R)-tert-butyl 3-(dideutero(hydroxy)methyl)-4-(4-fluorophenyl)piperidine-1-carboxylate (Formula VI wherein W=tert-butoxycarbonyl and the hydroxymethyl carbon is disubstituted with deuterium). A solution of 3.7 mmol of the product of Example 13 are dissolved in 25 mL of methylene chloride, cooled in an ice bath, and treated with 3.9 mmol of oxalyl chloride and 2 drops of dimethylformamide. The ice bath is removed and the mixture is stirred for about 2.5 h, then concentrated in vacuo. The crude acid chloride is dissolved in 20 mL of ethyl acetate and treated with 7.4 mmol of sodium borodeuteride (Aldrich). The mixture is stirred for 4 h, then cooled in an ice bath and treated dropwise with about 1 mL of 5% KHSO4 solution. More ethyl acetate is added and the solution is extracted with 5% KHSO4, saturated NaHCO3, and brine, then dried over MgSO4 and concentrated in vacuo. Silica gel chromatography (methanol/methylene chloride eluant) yields the title product.
- (3S,4R)-tert-butyl 3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)dideuteromethyl)-4-(4-fluorophenyl)piperidine-1-carboxylate (Formula III wherein Y=D, W=tert-butoxycarbonyl, and both hydrogens on the piperidine-3-methylene carbon are substituted by deuterium). A 1.2 mmol sample of the product of Example 7 is reacted with the product of Example 15 according to the general procedure set forth in Example 8 to yield the crude product which is purified by silica gel chromatography, using ethyl acetate/hexanes eluant, to yield the title compound.
- (3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)dideuteromethyl)-4-(4-fluorophenyl)piperidine hydrochloride (Formula I wherein Y=D and both hydrogens on the piperidine-3-methylene carbon are substituted by deuterium. A 0.87 mmol portion of the product of Example 16 is dissolved in 3 mL of isopropanol, cooled in an ice/water bath under argon, and treated with a slow hydrogen chloride gas stream for about 2 min. The mixture is capped and allowed to stand for 1 hr, then argon is bubbled through the solution for 2 min to blow off excess HCl. The mixture is filtered, washing the filtrate with a small amount of cold isopropanol, yielding the title compound.
- (3R,4R)-4-(4-fluoro-2,3,5,6-tetradeuterophenyl)-1-methylpiperidine-3-carboxylic acid, (2,10)-camphorsultamyl amide. A mixture of 9.4 mmol of Mg turnings in 2 mL of THF is treated with a catalytic amount of iodine (small crystal) and heated in an argon atmosphere under reflux for 30 min. The resulting mixture is treated during 20 min with a solution of 8.5 mmol of 4-fluoro-2,3,5,6-tetradeuterobromobenzene (C/D/N isotopes) in 1.5 mL of THF. The mixture is stirred for an additional 2 h under reflux, then cooled to room temperature. A 7.6 mmol portion of 1-methyl-1,2,5,6-tetrahydropyridine-3-carboxylic acid, (2,10)-camphorsultamyl amide (U.S. Pat. No. 5,962,689) in 30 mL of toluene is cooled in an ice/salt bath under argon, and treated during 20 min with the Grignard reagent prepared above. The mixture is stirred in the cold for 17 h, then quenched with saturated ammonium chloride. The aqueous layer is washed with ethyl acetate and the combined organic layers are washed with water and then brine, dried over MgSO4, and concentrated in vacuo. Silica gel chromatography using ethyl acetate eluant provides the title compound.
- (3S,4R)-methyl 4-(4-fluoro-2,3,5,6-tetradeuterophenyl)-1-methylpiperidine-3-carboxylate. A 1.7 mmol sample of the product of Example 18 is dissolved in 5 mL of toluene and treated with 2.5 mmol of finely ground potassium tert-butoxide and stirred under argon at room temperature for 1 h. Methanol (1 mL) is added and stirring is continued for 5 h, then the mixture is diluted with toluene and washed with water and brine, dried, and concentrated in vacuo. The residue is purified by silica gel chromatography using acetone/chloroform eluant to give the title product.
- ((3S,4R)-4-(4-fluoro-2,3,5,6-tetradeuterophenyl)-1-methylpiperidin-3-yl)methanol (Formula VI wherein W is methyl and each hydrogen on the phenyl ring is substituted with deuterium). A 3.7 mmol portion of the product of Example 19 is dissolved in 5 mL of THF and added dropwise to a cold (ice bath) solution of 5.5 mL of 1 M LiAlH4 in THF during 15 min. The mixture is stirred in the cold for 10 min, then at room temperature for 3 h. The mixture is again cooled and the excess LiAlH4 is quenched by sequential addition of 0.21 mL of water, 0.21 mL of 15% aqueous NaOH, and 0.63 mL of water. The resulting suspension is filtered through celite and concentrated in vacuo, and purified by preparative reversed-phase HPLC (water/CH3CN gradient with 0.1% TFA) to yield, after formation of the free base (ethyl acetate/saturated NaHCO3 wash), the title compound.
- (3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluoro-2,3,5,6-tetradeuterophenyl)-1-methylpiperidine hydrochloride (Formula III wherein Y is deuterium, W is methyl, and each hydrogen on the phenyl ring is substituted with deuterium). A 2.2 mmol sample of the product of Example 20 is dissolved in 4 mL methylene chloride and cooled in an ice/salt bath under argon. The solution is treated during 15 min with 2.3 mmol of methanesulfonyl chloride in 1.5 mL of methylene chloride. The mixture is stirred for 1.5 h in the cold, then concentrated in vacuo. The residue is triturated with isopropyl ether 2× and the resulting solid is partitioned between ether and saturated NaHCO3. The ether layer is washed with brine, dried over MgSO4, concentrated in vacuo and the resulting methanesulfonate free base is used immediately for subsequent reaction. A 2.7 mmol sample of the product of Example 7 is dissolved in 4 mL of DMF and treated with 1.35 mmol of Cs2CO3 as a 20% aqueous solution. The mixture is concentrated in vacuo, treated with 4 mL of DMF, again concentrated in vacuo, and treated with 3 mL of DMF. The entire yield of the above-formed methanesulfonate, save a retained sample of about 3 mg, is dissolved in 3 mL of DMF and added to the DMF solution of the cesium salt. The mixture is stirred for 16 h at room temperature, then concentrated in vacuo. The residue is partitioned between ether and 2N NaOH (2×), the organic layer is washed with water and then brine, dried over MgSO4, filtered, and treated with 2.5 mmol of anhydrous HCl as a 1 M solution in ether. The resulting hydrochloride is filtered, dried, and used directly in subsequent reaction.
- (3S,4R)-phenyl 3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluoro-2,3,5,6-tetradeuterophenyl)piperidine-1-carboxylate (Formula III wherein Y is deuterium, W is phenyl carbamate, and each hydrogen on the phenyl ring is substituted with deuterium). A 1.4 mmol sample of the product of Example 21 is dissolved in 3 mL of methylene chloride and cooled under argon in an ice/water bath. The mixture is treated dropwise with 1.54 mmol of phenyl chloroformate during 5 min. The cold bath is removed and the mixture is stirred for 17 h at room temperature. The reaction mixture is partitioned between 15 mL each of ether and saturated NaHCO3, and the organic layer is washed with 10% KHSO4, water, and brine, then dried over MgSO4 and concentrated in vacuo. Silica gel chromatography using ethyl acetate/hexanes eluant provides the title compound.
- (3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluoro-2,3,5,6-tetradeuterophenyl)piperidine hydrochloride (Formula I wherein Y is deuterium, and each hydrogen on the phenyl ring is substituted with deuterium). 0.8 mmol of the product of Example 22 is suspended in 0.37 mL of 3 N KOH and the mixture is heated under reflux for 4 h. The mixture is cooled, and partitioned between 10 mL each water and methylene chloride. The aqueous portion is extracted again with methylene chloride and the combined organic layers are washed with 50% brine, dried over MgSO4 and concentrated in vacuo. The residue is taken up in 2 mL of isopropanol and treated with 0.9 mmol of anhydrous HCl as a 4.2 N solution in dioxane. The resulting solid is filtered, washed with a small amount of isopropanol, then with ether, and dried to yield the title compound.
- Inhibition of serotonin uptake. Activity of test compounds in inhibiting uptake of [3H]-serotonin in recombinant cells expressing the human serotonin transporter is conducted by MDS Pharma Services using essentially the protocol of Gu H et. al., J. Biol. Chem. 1994 269: 7124, using vehicle as a negative control and fluoxetine as a positive control. This test demonstrates low or sub-nanomolar activity of each tested compound of formula I.
- In vivo antidepressant effects. The product of Example 11 is tested at MDS Pharma by oral administration to mice (n=8) to determine its effect on total immobility time during forced tail suspension, using essentially the procedure of “Drug Discovery and Evaluation”, Vogel H G and Vogel W H (eds.), p. 304, 1997, Springer-Verlag, New York. A 15 mg/kg dose of the product of Example 11 (calculated as the free base) causes a statistical reduction in immobility time versus vehicle control animals.
- All references cited herein, whether in print, electronic, computer readable storage media or other form, are expressly incorporated by reference in their entirety, including but not limited to, abstracts, articles, journals, publications, texts, treatises, technical data sheets, internet web sites, databases, patents, patent applications, and patent publications.
- The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
- Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims (68)
1. An isolated compound of formula I:
or a salt thereof; or a prodrug or a salt of a prodrug thereof; or a hydrate, solvate or polymorph thereof; wherein:
D is deuterium;
each Y is independently selected from deuterium or hydrogen;
each hydrogen is independently optionally replaced with deuterium; and
each carbon is independently optionally replaced with 13C.
2. The compound or prodrug thereof according to claim 1 wherein Y1 is deuterium.
3. The compound according to claim 2 , wherein up to 4 hydrogen atoms are replaced by deuterium.
4. The compound according to claim 3 , wherein 1 carbon atom is 13C.
5. The compound according to claim 1 or 2 , wherein at least one of Y2 and Y3 is independently deuterium.
6. The compound according to claim 1 or 2 , wherein both Y2 and Y3 are independently deuterium.
8. The compound or prodrug according to any one of claims 1 to 4 , or 7, wherein the salt of the compound or the prodrug thereof is a pharmaceutically acceptable salt.
9. The compound or prodrug according to claim 5 , wherein the salt of the compound or the prodrug thereof is a pharmaceutically acceptable salt.
10. The compound or prodrug according to claim 6 , wherein the salt of the compound or the prodrug thereof is a pharmaceutically acceptable salt.
11. A mixture consisting essentially of:
a. a compound of formula I or a salt thereof; or a prodrug, or a salt of a prodrug thereof; or a hydrate, solvate, or polymorph thereof; and
b. lighter isotopologues of said compound of formula I or said prodrug, or said salt of said prodrug; or said hydrate, solvate, or polymorph thereof;
wherein at least 50% of said mixture is said compound of formula I.
12. A mixture consisting essentially of:
a. a compound of formula I or a salt thereof; or a or a prodrug, or a salt of a prodrug thereof; or a hydrate, solvate, or polymorph thereof; and
b. lighter isotopologues of said compound of formula I, said prodrug, said salt of said prodrug thereof; or said hydrate, solvate, or polymorph thereof;
wherein at least 50% of the compounds in said mixture comprise an isotope at each position occupied by an isotope in the compound of formula I.
13. A composition comprising an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof; or a prodrug, or a pharmaceutically acceptable salt of a prodrug thereof; or a hydrate, solvate, or polymorph thereof; and an acceptable carrier.
14. The composition according to claim 13 , wherein said composition is formulated for pharmaceutical use, and wherein the carrier is a pharmaceutically acceptable carrier.
15. The composition according to claim 14 further comprising an effective amount of a second therapeutic agent, wherein said second therapeutic agent is useful alone or in combination with a compound of formula I for treating or preventing a condition selected from depression, hypertension, generalized anxiety disorder, phobias, posttraumatic stress syndrome, avoidant personality disorder, sexual dysfunction; eating disorders including bulimia, anorexia nervosa, and binge eating; obesity, chemical dependencies, cluster headache, migraine; pain, including neuropathic pain, diabetic nephropathy, post-operative pain, psychogenic pain disorders, and chronic pain syndrome; Alzheimers disease, obsessive-compulsive disorder, panic disorder with or without agoraphobia, memory disorders, Parkinson's diseases, endocrine disorders, vasospasm, cerebellar ataxia, gastrointestinal tract disorders, negative symptoms of schizophrenia, Fibromyalgia Syndrome; urinary incontinence, including stress incontinence; Tourette's syndrome, trichotillomania, kleptomania, male impotence, cancer, chronic paroxysmal hemicrania and headache in a mammal, sleep-related breathing disorders, cognitive deficits due to aging, stroke, head trauma, neurodegenerative diseases, schizophrenia, anxiety, aggression and stress, disorders of thermoregulation, respiratory disease, bipolar disorder, psychosis, sleep disorder; mania, including acute mania; bladder disorder, genitourinary disorder, cough, emesis, nausea, psychotic disorders such as paranoia and manic-depressive illness, tic disorder, diabetic cardiomyopathy, diabetic retinopathy, cataracts, myocardial infarction, prolonged fatigue, chronic fatigue, chronic fatigue syndrome, premature ejaculation, dysphoria, post partum depression, premenstrual syndrome, social phobia, disruptive behavior disorders, impulse control disorders, borderline personality disorder, attention deficit disorders without hyperactivity, Shy-Drager Syndrome, cerebral ischemia, spinal cord trauma, Huntington's Chorea, amyotrophic lateral sclerosis, AIDS-induced dementia, muscular spasms, convulsions, perinatal hypoxia, hypoxia, cardiac arrest, hypoglycemic neuronal damage, ocular damage and retinopathy, brain edema, tardive dyskinesia, cerebral deficits subsequent to cardiac bypass surgery and grafting, affective disorders, mood disorders, agoraphobia without history of panic disorder, and acute stress disorders; or wherein said additional therapeutic agent is useful alone or in combination with a compound of formula I for reducing the side effects of Compound 1, enhancing or potentiating its activity, increasing its duration of pharmacological action, or any combination thereof.
16. The composition according to claim 15 , wherein said second therapeutic agent is selected from one or more of a 5-HT1A antagonist or ligand; an NK1-receptor antagonist; a serotonin receptor antagonist; 2-amino-4,5,6,7-tetrahydro-6-propylamino-benzothiazole (pramipexole), the (+)- or (−)-enantiomer thereof; a sulfamate anticonvulsant agent; a precursor or prodrug of serotonin, or an intermediate in the biosynthesis of serotonin; selective agonists and antagonists of one or both of the 5-HT1A and 5-HT1D receptors; a composition containing dimethylaminoethanol (DMAE), omega 3-fatty acids, betaine, oligomeric proanthocyanidins, folic acid, vitamins C, E, B12, B6, B5 and beta-carotene and minerals (calcium, magnesium, zinc and selenium); naltrexone; cyclobenzaprine, or metabolites thereof; olanzapine; olanazapine-N-oxide; 2-hydroxymethylolanzapine; an atypical antipsychotic; tramadol; an aldose reductase inhibitor, or a prodrug thereof; 1-threo-methylphenidate; a Type III, Type IV, mixed Type III-Type IV, or Type V phosphodiesterase inhibitor, or an ester, amide, prodrug, active metabolite, or combination thereof; a substituted indole estrogenic agent; (+)-1-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0]hexane; folic acid; methyltetrahydrofolate; WAY 100635; betaxolol; (R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide hydrogen (2R,3R)-tartrate monohydrate; R-tofisopam; N-acetyl-serotonin; a DRD2-specific dopamine agonist; a 5HT4 receptor antagonist; nalmefene; moxonidine; mirtazapine; chromium; a cyclooxygenase-2 selective inhibitor; a 5HT2A selective receptor antagonist; a CB1 receptor antagonist; a MCH-1R receptor antagonist; a tetra-substituted pyrimidopyrimidine; a selective dopamine D4 receptor ligand; trimebutine, fedotozine and mixtures thereof; an NMDA partial receptor agonist; an NMDA receptor antagonist; a cholinesterase inhibitor; a GSK-3 inhibitor; an alpha-2-delta ligand or a prodrug thereof; an extract of kava; a norephinephrine reuptake inhibitor; a corticosteroid; a non-steroidal immunophilin-dependent immunosuppressant; N-desmethylclozapine; an (R)-2,3-benzodiazepine as disclosed in US Patent Application 20040224943; a selective neuronal nitric oxide synthase inhibitor; modafinil; a selective oxytocin antagonist; a nicotine receptor antagonist; an adenosine A2a receptor antagonist; a 5-HT2C receptor antagonist; an AMPA receptor potentiator; a nicotine partial agonist; irindalone; a delta opioid receptor ligand; a growth hormone secretagogue; p-chloro-N-(2-morpholinoethyl)-benzamide and its metabolites; or a pharmaceutically acceptable salt of any of the said additional therapeutic agents; and combinations thereof.
17. An article of manufacture comprising separate dosage forms of a composition comprising a compound of formula I, or a pharmaceutically acceptable salt thereof; or a prodrug, or a pharmaceutically acceptable salt of a prodrug thereof; or a hydrate, solvate, or polymorph thereof; and an acceptable carrier; and a second therapeutic agent, wherein both dosage forms are in a single container.
18. A method of inhibiting the uptake of serotonin in a subject comprising the step of administering to said subject a composition comprising an effective amount of a compound of formula I; or a pharmaceutically acceptable salt thereof; or a prodrug, or a pharmaceutically acceptable salt of a prodrug thereof; or a hydrate, solvate, or polymorph thereof; and a pharmaceutically acceptable carrier.
19. A method of treating a human or non-human subject suffering from or susceptible to depression, obsessive-compulsive disorder, generalized anxiety, post-traumatic stress, major depression, panic disorder, social phobia, premenstrual syndrome, cardiac disorders, non-cardiac chest pain; smoking to cause cessation or prevent relapses; reducing platelet activation states, alcoholism and alcohol dependence; psychiatric syndromes including anger, rejection sensitivity, and lack of mental of physical energy; late luteal phase dysphoric disorder, premature ejaculation, senile dementia, obesity, Parkinson's disease, canine affective aggression, cancer cell growth, osteoporosis, dermatological diseases or disorders such as hyperproliferative or inflammatory skin diseases, or premature female orgasm; said method comprising the step of administering to said subject a composition comprising an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof; or a prodrug, or a pharmaceutically acceptable salt of a prodrug thereof; or a hydrate, solvate, or polymorph thereof; and an acceptable carrier.
20. The method according to claim 19 , wherein the subject is treated to alleviate or prevent depression.
21. The method according to claim 19 , wherein the subject is treated to alleviate or obsessive-compulsive disorder.
22. The method according to claim 19 , wherein the subject is treated to alleviate or prevent generalized anxiety.
23. The method according to claim 19 , wherein the subject is treated to alleviate or prevent post-traumatic stress.
24. The method according to claim 19 , wherein the subject is treated to alleviate or prevent major depression.
25. The method according to claim 19 , wherein the subject is treated to alleviate or prevent panic disorder.
26. The method according to claim 19 , wherein the subject is treated to alleviate or prevent social phobia.
27. The method according to claim 19 , wherein the subject is treated to alleviate premenstrual syndrome.
28. The method according to claim 19 , wherein the subject is treated to alleviate or prevent cardiac disorders.
29. The method according to claim 19 , wherein the subject is treated to alleviate or prevent non-cardiac chest pain.
30. The method according to claim 19 , wherein the subject is treated to alleviate or prevent smoking, to cause cessation or prevent relapses.
31. The method according to claim 19 , wherein the subject is treated to alleviate or prevent reducing platelet activation states.
32. The method according to claim 19 , wherein the subject is treated to alleviate or prevent alcoholism and alcohol dependence.
33. The method according to claim 19 , wherein the subject is treated to alleviate or prevent psychiatric syndromes including anger, rejection sensitivity, and lack of mental of physical energy.
34. The method according to claim 19 , wherein the subject is treated to alleviate or prevent late luteal phase dysphoric disorder.
35. The method according to claim 19 , wherein the subject is treated to alleviate or prevent premature ejaculation.
36. The method according to claim 19 , wherein the subject is treated to alleviate or prevent senile dementia.
37. The method according to claim 19 , wherein the subject is treated to alleviate or prevent obesity.
38. The method according to claim 19 , wherein the subject is treated to alleviate or prevent Parkinson's disease.
39. The method according to claim 19 , wherein the subject is treated to alleviate or prevent canine affective aggression.
40. The method according to claim 19 , wherein the subject is treated to inhibit cancer cell growth.
41. The method according to claim 19 , wherein the subject is treated to stimulating bone formation by osteoblast stimulation.
42. The method according to claim 19 , wherein the subject is treated to alleviate or prevent dermatological diseases or disorders such as hyperproliferative or inflammatory skin diseases.
43. The method according to claim 19 , wherein the subject is treated to alleviate or prevent premature female orgasm.
44. The method according to claim 19 , comprising the additional step of administering to said patient a second therapeutic agent, wherein said second therapeutic agent is conventionally used, or is effective in combination with a compound of formula I for treating or preventing a condition selected from depression, hypertension, generalized anxiety disorder, phobias, posttraumatic stress syndrome, avoidant personality disorder, sexual dysfunction; eating disorders including bulimia, anorexia nervosa, and binge eating; obesity, chemical dependencies, cluster headache, migraine; pain, including neuropathic pain, diabetic nephropathy, post-operative pain, psychogenic pain disorders, and chronic pain syndrome; Alzheimers disease, obsessive-compulsive disorder, panic disorder with or without agoraphobia, memory disorders, Parkinson's diseases, endocrine disorders, vasospasm, cerebellar ataxia, gastrointestinal tract disorders, negative symptoms of schizophrenia, Fibromyalgia Syndrome; urinary incontinence, including stress incontinence; Tourette's syndrome, trichotillomania, kleptomania, male impotence, cancer, chronic paroxysmal hemicrania and headache in a mammal, sleep-related breathing disorders, cognitive deficits due to aging, stroke, head trauma, neurodegenerative diseases, schizophrenia, anxiety, aggression and stress, disorders of thermoregulation, respiratory disease, bipolar disorder, psychosis, sleep disorder; mania, including acute mania; bladder disorder, genitourinary disorder, cough, emesis, nausea, psychotic disorders such as paranoia and manic-depressive illness, tic disorder, diabetic cardiomyopathy, diabetic retinopathy, cataracts, myocardial infarction, prolonged fatigue, chronic fatigue, chronic fatigue syndrome, premature ejaculation, dysphoria, post partum depression, premenstrual syndrome, social phobia, disruptive behavior disorders, impulse control disorders, borderline personality disorder, attention deficit disorders without hyperactivity, Shy-Drager Syndrome, cerebral ischemia, spinal cord trauma, Huntington's Chorea, amyotrophic lateral sclerosis, AIDS-induced dementia, muscular spasms, convulsions, perinatal hypoxia, hypoxia, cardiac arrest, hypoglycemic neuronal damage, ocular damage and retinopathy, brain edema, tardive dyskinesia, cerebral deficits subsequent to cardiac bypass surgery and grafting, affective disorders, mood disorders, agoraphobia without history of panic disorder, and acute stress disorders; or wherein said second therapeutic agent is useful for reducing the side effects of Compound 1, enhancing or potentiating the activity of Compound 1, increasing the duration of pharmacological action of Compound 1, or any combination thereof.
45. The method according to claim 44 , wherein said additional therapeutic agent is selected from one or more of a 5-HT1A antagonist or ligand; an NK1-receptor antagonist; a serotonin receptor antagonist; 2-amino-4,5,6,7-tetrahydro-6-propylamino-benzothiazole (pramipexole), the (+)- or (−)-enantiomer thereof; a sulfamate anticonvulsant agent; a precursor or prodrug of serotonin, or an intermediate in the biosynthesis of serotonin; selective agonists and antagonists of one or both of the 5-HT1A and 5-HT1D receptors; a composition containing dimethylaminoethanol (DMAE), omega 3-fatty acids, betaine, oligomeric proanthocyanidins, folic acid, vitamins C, E, B12, B6, B5 and beta-carotene and minerals (calcium, magnesium, zinc and selenium); naltrexone; cyclobenzaprine, or metabolites thereof; olanzapine; olanazapine-N-oxide; 2-hydroxymethylolanzapine; an atypical antipsychotic; tramadol; an aldose reductase inhibitor, or a prodrug thereof; 1-threo-methylphenidate; a Type III, Type IV, mixed Type III-Type IV, or Type V phosphodiesterase inhibitor, or an ester, amide, prodrug, active metabolite, or combination thereof; a substituted indole estrogenic agent; (+)-1-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0]hexane; folic acid; methyltetrahydrofolate; WAY 100635; betaxolol; (R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide hydrogen (2R,3R)-tartrate monohydrate; R-tofisopam; N-acetyl-serotonin; a DRD2-specific dopamine agonist; a 5HT4 receptor antagonist; nalmefene; moxonidine; mirtazapine; chromium; a cyclooxygenase-2 selective inhibitor; a 5HT2A selective receptor antagonist; a CB1 receptor antagonist; a MCH-1R receptor antagonist; a tetra-substituted pyrimidopyrimidine; a selective dopamine D4 receptor ligand; trimebutine, fedotozine and mixtures thereof; an NMDA partial receptor agonist; an NMDA receptor antagonist; a cholinesterase inhibitor; a GSK-3 inhibitor; an alpha-2-delta ligand or a prodrug thereof; an extract of kava; a norephinephrine reuptake inhibitor; a corticosteroid; a non-steroidal immunophilin-dependent immunosuppressant; N-desmethylclozapine; an (R)-2,3-benzodiazepine as disclosed in US Patent Application 20040224943; a selective neuronal nitric oxide synthase inhibitor; modafinil; a selective oxytocin antagonist; a nicotine receptor antagonist; an adenosine A2a receptor antagonist; a 5-HT2C receptor antagonist; an AMPA receptor potentiator; a nicotine partial agonist; irindalone; a delta opioid receptor ligand; a growth hormone secretagogue; p-chloro-N-(2-morpholinoethyl)-benzamide and its metabolites; or a pharmaceutically acceptable salt of any of the said second therapeutic agents; of combinations of two or more of said second therapeutic agents or salts thereof.
46. A method of determining the concentration of Compound 1 in a biological sample comprising the steps of:
a. adding a known concentration of a compound of formula I, or a salt thereof, to a biological sample;
b. subjecting said biological sample to a measuring device that distinguishes Compound 1 from said compound of formula I;
c. calibrating said measuring device to correlate the detected quantity of said compound of formula I with the known concentration of said compound of formula I added to said biological sample; and
d. determining the concentration of Compound 1 in said biological sample by comparing the detected quantity of Compound 1 with the detected quantity and known concentration of said compound of formula I.
47. The method according to claim 46 , wherein said compound of formula I contains at least 3 heavy atom isotopes including the explicitly drawn deuterium and wherein each of said additional heavy atom isotopes is chosen independently from deuterium and 13C.
48. The method according to claim 46 , comprising the additional step of separating Compound 1 and said compound of formula I from said biological sample by organic or solid phase extraction prior to step b.
49. A diagnostic kit comprising a compound of formula I or a salt thereof, in a sealed vessel; and instructions for using said compound to determine the concentration of Compound 1 in a biological sample.
50. The kit according to claim 49 , wherein the compound of formula I contains at least 3 heavy atom isotopes including the explicitly drawn deuterium and wherein each of said additional heavy atom isotopes is chosen independently from deuterium and 13C.
51. A method of evaluating the metabolic stability of a compound of formula I, comprising the steps of:
a. contacting the compound of formula I or a salt thereof with a metabolizing enzyme source for a period of time; and
b. comparing the amount of said compound or salt thereof and metabolic products of said compound or salt thereof after said period of time.
52. The method according to claim 51 , wherein the method comprises an additional step of comparing the amount of said compound or salt thereof and said metabolic products of said compound or salt thereof at an interval during said period of time.
53. The method according to claim 51 , wherein the method comprises the additional steps of: c) contacting an isotopologue of said compound or salt thereof with said metabolizing enzyme source; d) comparing the amount of said isotopologue and metabolic products of said isotopologue after said period of time; and e) comparing the metabolic stability of said compound or salt thereof and said isotopologue, wherein steps c and d are performed before, simultaneously with in a different reaction vessel from, simultaneously with in the same reaction vessel as, or after, steps a and b.
54. The method according to claim 53 , wherein said isotopologue is Compound 1 or a salt of Compound 1.
55. A diagnostic kit comprising, in separate vessels, Compound 1 and a metabolizing enzyme source.
56. The diagnostic kit according to claim 55 , further comprising instructions for using said kit to compare the metabolic stability of one or more compounds of formula I with the metabolic stability of Compound 1.
58. The compound according to claim 57 , wherein Y1 is deuterium.
59. The compound according to claim 57 , wherein Y1 is deuterium and each hydrogen directly attached to the aromatic ring is deuterium.
60. The compound according to claim 57 , wherein all hydrogen atoms and all carbon atoms, are present at their natural isotopic abundance.
62. The compound according to claim 61 , wherein Y1 is deuterium
63. The compound according to claim 61 , wherein at least one of at least one of Y1 and Y2 is independently deuterium.
64. The compound according to claim 61 , wherein both of Y1 and Y2 are independently deuterium.
65. The compound according to claim 61 , wherein each of Y1, Y2, and Y3 independently is each deuterium.
66. The compound according to claim 61 , wherein up to 4 hydrogen atoms are replaced by deuterium.
67. The compound according claim 62 , wherein all hydrogen atom not explicitly designated as deuterium, and all carbons, are present at their natural isotopic abundance.
68. The compound according to any one of claims 61 -67, wherein W is chosen from methyl, benzyl, methyl carbamate, ethyl carbamate, vinyl carbamate, phenyl carbamate, benzyl carbamate, and tert-butyl carbamate.
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/498,334 US20080287495A1 (en) | 2005-07-29 | 2006-07-31 | Novel benzo[d][1,3]-dioxol derivatives |
| US11/704,554 US7678914B2 (en) | 2005-07-29 | 2007-02-08 | Deuterated benzo[D][1,3]-dioxol derivatives |
| US11/775,857 US20080033011A1 (en) | 2005-07-29 | 2007-07-10 | Novel benzo[d][1,3]-dioxol derivatives |
| US12/688,466 US8450492B2 (en) | 2005-07-29 | 2010-01-15 | Deuterated benzo[D][1,3]-dioxol derivatives |
| US13/901,651 US20140018390A1 (en) | 2005-07-29 | 2013-05-24 | Deuterated benzo[d][1,3]-dioxol derivatives |
| US14/644,012 US20150196544A1 (en) | 2005-07-29 | 2015-03-10 | NOVEL BENZO[d][1,3]-DIOXOL DERIVATIVES |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US70407305P | 2005-07-29 | 2005-07-29 | |
| US11/498,334 US20080287495A1 (en) | 2005-07-29 | 2006-07-31 | Novel benzo[d][1,3]-dioxol derivatives |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/704,554 Continuation-In-Part US7678914B2 (en) | 2005-07-29 | 2007-02-08 | Deuterated benzo[D][1,3]-dioxol derivatives |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080287495A1 true US20080287495A1 (en) | 2008-11-20 |
Family
ID=37709249
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/498,334 Abandoned US20080287495A1 (en) | 2005-07-29 | 2006-07-31 | Novel benzo[d][1,3]-dioxol derivatives |
| US11/704,554 Expired - Fee Related US7678914B2 (en) | 2005-07-29 | 2007-02-08 | Deuterated benzo[D][1,3]-dioxol derivatives |
| US12/688,466 Expired - Fee Related US8450492B2 (en) | 2005-07-29 | 2010-01-15 | Deuterated benzo[D][1,3]-dioxol derivatives |
| US13/901,651 Abandoned US20140018390A1 (en) | 2005-07-29 | 2013-05-24 | Deuterated benzo[d][1,3]-dioxol derivatives |
| US14/644,012 Abandoned US20150196544A1 (en) | 2005-07-29 | 2015-03-10 | NOVEL BENZO[d][1,3]-DIOXOL DERIVATIVES |
Family Applications After (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/704,554 Expired - Fee Related US7678914B2 (en) | 2005-07-29 | 2007-02-08 | Deuterated benzo[D][1,3]-dioxol derivatives |
| US12/688,466 Expired - Fee Related US8450492B2 (en) | 2005-07-29 | 2010-01-15 | Deuterated benzo[D][1,3]-dioxol derivatives |
| US13/901,651 Abandoned US20140018390A1 (en) | 2005-07-29 | 2013-05-24 | Deuterated benzo[d][1,3]-dioxol derivatives |
| US14/644,012 Abandoned US20150196544A1 (en) | 2005-07-29 | 2015-03-10 | NOVEL BENZO[d][1,3]-DIOXOL DERIVATIVES |
Country Status (12)
| Country | Link |
|---|---|
| US (5) | US20080287495A1 (en) |
| EP (1) | EP1910322B1 (en) |
| JP (1) | JP5301991B2 (en) |
| KR (1) | KR101380190B1 (en) |
| CN (1) | CN101273024A (en) |
| AU (1) | AU2006275595B2 (en) |
| BR (1) | BRPI0615973A2 (en) |
| CA (1) | CA2616383C (en) |
| EA (1) | EA014432B1 (en) |
| ES (1) | ES2396365T3 (en) |
| WO (1) | WO2007016431A2 (en) |
| ZA (1) | ZA200800785B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070112031A1 (en) * | 2005-11-14 | 2007-05-17 | Gant Thomas G | Substituted phenylpiperidines with serotoninergic activity and enhanced therapeutic properties |
| US20090143432A1 (en) * | 2007-09-13 | 2009-06-04 | Concert Pharmaceuticals, Inc. | Synthesis of deuterated catechols and benzo[D][1,3]dioxoles and derivatives thereof |
| US20150204893A1 (en) * | 2012-07-19 | 2015-07-23 | Chiron As | Test kit for the quantitative determination of narcotic drugs |
Families Citing this family (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5301991B2 (en) * | 2005-07-29 | 2013-09-25 | コンサート ファーマシューティカルズ インコーポレイテッド | Novel benzo [d] [1,3] -dioxole derivatives |
| CN101460461B (en) * | 2006-04-03 | 2012-10-03 | 弗·哈夫曼-拉罗切有限公司 | Process for preparation of enantiomerically enriched cyclic beta-aryl or heteroaryl carboxylic acids |
| CA2703011A1 (en) * | 2006-10-23 | 2008-10-23 | Concert Pharmaceuticals Inc. | Oxazolidinone derivatives and methods of use |
| ES2395241T3 (en) * | 2007-03-07 | 2013-02-11 | Concert Pharmaceuticals Inc. | Deuterated piperazine derivatives as antianginal compounds |
| DK2522668T3 (en) | 2007-05-01 | 2015-05-26 | Concert Pharmaceuticals Inc | MORPHINANE COMPOUNDS |
| CN101687868B (en) * | 2007-05-01 | 2012-12-12 | 康塞特医药品公司 | Morphinan compounds |
| AU2008247805A1 (en) * | 2007-05-01 | 2008-11-13 | Concert Pharmaceuticals Inc. | Naphthyl(ethyl) acetamides |
| AU2008266124A1 (en) * | 2007-06-13 | 2008-12-24 | Auspex Pharmaceuticals, Inc. | Substituted piperazines |
| BRPI0916769A2 (en) * | 2008-07-15 | 2017-09-26 | Theracos Inc | deuterated benzylbenzene derivatives and methods of use |
| WO2010010141A1 (en) * | 2008-07-25 | 2010-01-28 | Boehringer Ingelheim International Gmbh | Pramipexole for treating cardiomyopathy |
| US20100093721A1 (en) * | 2008-10-13 | 2010-04-15 | Barbay J Kent | PHENYL AND HETEROARYL SUBSTITUTED THIENO[2,3-d]PYRIMIDINES AND THEIR USE AS ADENOSINE A2a RECEPTOR ANTAGONISTS |
| EA020117B1 (en) * | 2008-11-14 | 2014-08-29 | Консерт Фармасьютикалс Инк. | Substituted dioxopiperidinyl phthalimide derivaties |
| US9045453B2 (en) | 2008-11-14 | 2015-06-02 | Concert Pharmaceuticals, Inc. | Substituted dioxopiperidinyl phthalimide derivatives |
| WO2010077730A2 (en) * | 2008-12-09 | 2010-07-08 | Auspex Pharmaceutical, Inc | Indanone inhibitors of acetylcholinesterase |
| US20100159034A1 (en) * | 2008-12-15 | 2010-06-24 | Auspex Pharmaceuticals, Inc. | Pyrrolidinone inhibitors of pde-4 |
| BR112012009784A2 (en) * | 2009-10-26 | 2016-05-17 | Otsuka Pharma Co Ltd | benzazepine compound |
| WO2011159920A1 (en) * | 2010-06-17 | 2011-12-22 | Concert Pharmaceuticals, Inc. | [5,6]-dihydro-2h-pyran-2-one derivatives |
| SI2720989T1 (en) | 2011-06-20 | 2016-11-30 | H. Lundbeck A/S | Deuterated 1-piperazino-3-phenyl indanes for treatment of schizophrenia |
| JP6055784B2 (en) | 2012-01-31 | 2016-12-27 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Paroxetine derivative |
| US8586552B2 (en) | 2012-02-03 | 2013-11-19 | Selectx Pharmaceuticals, Inc. | 4,6-substituted 2,5-dideoxystreptamine aminoglycoside antibiotics |
| WO2014066243A1 (en) | 2012-10-22 | 2014-05-01 | Concert Pharmaceuticals, Inc. | Solid forms of {s-3-(4-amino-1-oxo-isoindolin-2yl)(piperidine-3,4,4,5,5-d5)-2,6-dione} |
| AR094054A1 (en) * | 2012-12-19 | 2015-07-08 | H Lundbeck As | 6-CHLORINE-3- (FENIL-D₅) -INDEN-1-ONA AND USE OF THE SAME |
| AU2014243869A1 (en) | 2013-03-13 | 2015-09-24 | Boston Biomedical, Inc. | 3-(aryl or heteroaryl) methyleneindolin-2-one derivatives as inhibitors of cancer stem cell pathway kinases for the treatment of cancer |
| SG11201509186TA (en) * | 2013-06-27 | 2016-01-28 | Pfizer | Heteroaromatic compounds and their use as dopamine d1 ligands |
| CN104059030B (en) | 2014-05-30 | 2016-05-04 | 镇江圣安医药有限公司 | Derivative and pharmaceutical composition and the purposes of [(benzene sulfanyl)-phenyl] piperazine |
| JP6917144B2 (en) | 2014-07-29 | 2021-08-11 | シンセン ハイタイド バイオファーマシューティカル リミテッド | Berberine salt, ursodeoxycholic acid salt and combination, preparation and application method thereof |
| US10037449B1 (en) | 2015-09-29 | 2018-07-31 | Amazon Technologies, Inc. | Inventory tracking using RFID |
| US10089505B1 (en) | 2015-09-29 | 2018-10-02 | Amazon Technologies, Inc. | Inventory tracking using RFID |
| ES2849560T3 (en) | 2016-05-04 | 2021-08-19 | Genoscience Pharma Sas | Substituted 2,4-diamino-quinoline derivatives for use in the treatment of proliferative diseases |
| CA3023648C (en) | 2016-05-10 | 2023-11-28 | Shenzhen Hightide Biopharmaceutical, Ltd. | Pharmaceutical composition of berberine with epa and dha |
| JP2020501503A (en) | 2016-12-15 | 2020-01-23 | ソシエテ・デ・プロデュイ・ネスレ・エス・アー | Compositions and methods for modulating phosphorus or enzymes in companion animals |
| CN108864077B (en) | 2017-05-12 | 2020-05-22 | 深圳君圣泰生物技术有限公司 | Solid form of berberine organic acid salt and preparation method thereof |
| CN109134432B (en) * | 2017-06-15 | 2021-06-11 | 北京君科华元医药科技有限公司 | Deuterated antidepressant |
| EP3675860B1 (en) | 2017-08-28 | 2023-03-08 | Zhihong, Chen | Substituted pyrimidines, pharmaceutical compositions and therapeutic methods thereof |
| CN107970243B (en) * | 2017-10-30 | 2020-07-28 | 江苏理工学院 | A kind of new use of norclozapine |
| TWI851577B (en) | 2018-06-07 | 2024-08-11 | 美商思進公司 | Camptothecin conjugates |
| CN118406052A (en) | 2018-11-01 | 2024-07-30 | 凌科药业(杭州)有限公司 | Tricyclic JANUS kinase 1 inhibitors and compositions and methods thereof |
| JP7583719B2 (en) | 2018-12-03 | 2024-11-14 | ハー・ルンドベック・アクチエゼルスカベット | Prodrugs of 4-((1R,3S)-6-chloro-3-phenyl-2,3-dihydro-1H-inden-1-yl)-1,2,2-trimethylpiperazine and 4-((1R,3S)-6-chloro-3-(phenyl-d5)-2,3-dihydro-1H-inden-1-yl)-2,2-dimethyl-1-(methyl-d3)piperazine |
| WO2020146845A1 (en) | 2019-01-11 | 2020-07-16 | University Of Rochester | Compositions and methods for treating prostate cancer with enzalutamide and an inhibitor of monoamin oxidase a |
| CA3135161A1 (en) | 2019-02-01 | 2020-08-06 | Canwell Biotech Limited | Imidazoquinoline amine derivatives, pharmaceutical composition, use thereof |
| EP3921322B1 (en) | 2019-02-07 | 2025-09-03 | Canwell Biotech Limited | Phosphorus imidazoquinoline amine derivatives, pharmaceutical compositions and therapeutic methods thereof |
| CN110283156B (en) * | 2019-07-29 | 2020-06-30 | 河北省农林科学院经济作物研究所 | Novel hypolipidemic compound extracted from acanthopanax senticosus |
| US20240277860A1 (en) | 2019-10-04 | 2024-08-22 | Seagen Inc. | Camptothecin peptide conjugates |
| WO2021216325A1 (en) | 2020-04-22 | 2021-10-28 | University Of Rochester | Compositions and methods for treating metabolic and cardiovascular diseases |
| JP2022100060A (en) * | 2020-12-23 | 2022-07-05 | 大陽日酸株式会社 | Mono-deuterated di-halogenated methanes, deuterated cyclopropane compounds, and production methods thereof |
| US20240099992A1 (en) | 2021-02-02 | 2024-03-28 | Yanping Kong | Compositions and methods for treating cancer |
| EP4358957A1 (en) | 2021-06-22 | 2024-05-01 | Dana-Farber Cancer Institute, Inc. | (1h-pyrrolo[2,3-b]pyridin-1-yl)pyrimidin-2-yl-amino-phenyl--acrylamide inhibitors of egfr for use in the treatment of brain tumors |
| WO2025126109A1 (en) | 2023-12-15 | 2025-06-19 | Ensem Therapeutics, Inc. | Anilino-pyrazole derivatives, compositions and methods thereof |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4007196A (en) * | 1973-01-30 | 1977-02-08 | A/S Ferrosan | 4-Phenylpiperidine compounds |
| US5167948A (en) * | 1987-08-07 | 1992-12-01 | Mallinckrodt Medical, Inc. | Diagnostic or radiotherapeutic composition comprising a hydrogen containing compound |
| US5597826A (en) * | 1994-09-14 | 1997-01-28 | Pfizer Inc. | Compositions containing sertraline and a 5-HT1D receptor agonist or antagonist |
| US5874447A (en) * | 1997-06-10 | 1999-02-23 | Synthon B. V. | 4-Phenylpiperidine compounds for treating depression |
| US20020013372A1 (en) * | 2000-03-14 | 2002-01-31 | Sean Ekins | Pharmacophore models for the identification of the CYP2D6 inhibitory potency of selective serotonin reuptake inhibitors |
| US6436938B1 (en) * | 2001-01-22 | 2002-08-20 | Pfizer Inc. | Combination treatment for depression |
| US6720003B2 (en) * | 2001-02-16 | 2004-04-13 | Andrx Corporation | Serotonin reuptake inhibitor formulations |
| US20070112031A1 (en) * | 2005-11-14 | 2007-05-17 | Gant Thomas G | Substituted phenylpiperidines with serotoninergic activity and enhanced therapeutic properties |
| US20070191432A1 (en) * | 2005-07-29 | 2007-08-16 | Concert Pharmaceuticals Inc. | Novel benzo[D][1,3]-dioxol derivatives |
| US20080033011A1 (en) * | 2005-07-29 | 2008-02-07 | Concert Pharmaceuticals Inc. | Novel benzo[d][1,3]-dioxol derivatives |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB8430581D0 (en) | 1984-12-04 | 1985-01-09 | Ferrosan As | Treatment |
| ES2293638T3 (en) * | 1994-03-25 | 2008-03-16 | Isotechnika, Inc. | IMPROVEMENT OF THE EFFECTIVENESS OF PHARMACOS BY DEUTERATION. |
| US6221335B1 (en) * | 1994-03-25 | 2001-04-24 | Isotechnika, Inc. | Method of using deuterated calcium channel blockers |
| US6440710B1 (en) * | 1998-12-10 | 2002-08-27 | The Scripps Research Institute | Antibody-catalyzed deuteration, tritiation, dedeuteration or detritiation of carbonyl compounds |
| EP1104760B1 (en) * | 1999-12-03 | 2003-03-12 | Pfizer Products Inc. | Sulfamoylheteroaryl pyrazole compounds as anti-inflammatory/analgesic agents |
| TW200413273A (en) * | 2002-11-15 | 2004-08-01 | Wako Pure Chem Ind Ltd | Heavy hydrogenation method of heterocyclic rings |
| AU2006299424A1 (en) * | 2005-10-06 | 2007-04-12 | Auspex Pharmaceuticals, Inc. | Deuterated inhibitors of gastric H+, K+-ATPase with enhanced therapeutic properties |
| US7750168B2 (en) * | 2006-02-10 | 2010-07-06 | Sigma-Aldrich Co. | Stabilized deuteroborane-tetrahydrofuran complex |
| JO2630B1 (en) | 2006-04-13 | 2012-06-17 | نوفارتيس ايه جي | Organic Compounds |
| US20080103122A1 (en) * | 2006-09-05 | 2008-05-01 | Schering Corporation | Pharmaceutical combinations for lipid management and in the treatment of atherosclerosis and hepatic steatosis |
| JP5647519B2 (en) * | 2007-09-13 | 2014-12-24 | コンサート ファーマシューティカルズ インコーポレイテッド | Synthesis of deuterated catechol and benzo [d] [1,3] dioxole and its derivatives |
-
2006
- 2006-07-28 JP JP2008524227A patent/JP5301991B2/en not_active Expired - Fee Related
- 2006-07-28 CN CNA2006800351923A patent/CN101273024A/en active Pending
- 2006-07-28 AU AU2006275595A patent/AU2006275595B2/en not_active Ceased
- 2006-07-28 KR KR1020087004867A patent/KR101380190B1/en not_active Expired - Fee Related
- 2006-07-28 WO PCT/US2006/029599 patent/WO2007016431A2/en not_active Ceased
- 2006-07-28 BR BRPI0615973-7A patent/BRPI0615973A2/en not_active IP Right Cessation
- 2006-07-28 ES ES06813250T patent/ES2396365T3/en active Active
- 2006-07-28 CA CA2616383A patent/CA2616383C/en active Active
- 2006-07-28 EA EA200800490A patent/EA014432B1/en not_active IP Right Cessation
- 2006-07-28 EP EP06813250A patent/EP1910322B1/en active Active
- 2006-07-31 US US11/498,334 patent/US20080287495A1/en not_active Abandoned
-
2007
- 2007-02-08 US US11/704,554 patent/US7678914B2/en not_active Expired - Fee Related
-
2008
- 2008-01-25 ZA ZA200800785A patent/ZA200800785B/en unknown
-
2010
- 2010-01-15 US US12/688,466 patent/US8450492B2/en not_active Expired - Fee Related
-
2013
- 2013-05-24 US US13/901,651 patent/US20140018390A1/en not_active Abandoned
-
2015
- 2015-03-10 US US14/644,012 patent/US20150196544A1/en not_active Abandoned
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4007196A (en) * | 1973-01-30 | 1977-02-08 | A/S Ferrosan | 4-Phenylpiperidine compounds |
| US5167948A (en) * | 1987-08-07 | 1992-12-01 | Mallinckrodt Medical, Inc. | Diagnostic or radiotherapeutic composition comprising a hydrogen containing compound |
| US5597826A (en) * | 1994-09-14 | 1997-01-28 | Pfizer Inc. | Compositions containing sertraline and a 5-HT1D receptor agonist or antagonist |
| US5874447A (en) * | 1997-06-10 | 1999-02-23 | Synthon B. V. | 4-Phenylpiperidine compounds for treating depression |
| US20020013372A1 (en) * | 2000-03-14 | 2002-01-31 | Sean Ekins | Pharmacophore models for the identification of the CYP2D6 inhibitory potency of selective serotonin reuptake inhibitors |
| US6436938B1 (en) * | 2001-01-22 | 2002-08-20 | Pfizer Inc. | Combination treatment for depression |
| US6720003B2 (en) * | 2001-02-16 | 2004-04-13 | Andrx Corporation | Serotonin reuptake inhibitor formulations |
| US20070191432A1 (en) * | 2005-07-29 | 2007-08-16 | Concert Pharmaceuticals Inc. | Novel benzo[D][1,3]-dioxol derivatives |
| US20080033011A1 (en) * | 2005-07-29 | 2008-02-07 | Concert Pharmaceuticals Inc. | Novel benzo[d][1,3]-dioxol derivatives |
| US20070112031A1 (en) * | 2005-11-14 | 2007-05-17 | Gant Thomas G | Substituted phenylpiperidines with serotoninergic activity and enhanced therapeutic properties |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070112031A1 (en) * | 2005-11-14 | 2007-05-17 | Gant Thomas G | Substituted phenylpiperidines with serotoninergic activity and enhanced therapeutic properties |
| US20090143432A1 (en) * | 2007-09-13 | 2009-06-04 | Concert Pharmaceuticals, Inc. | Synthesis of deuterated catechols and benzo[D][1,3]dioxoles and derivatives thereof |
| US8822498B2 (en) | 2007-09-13 | 2014-09-02 | Concert Pharmaceuticals, Inc. | Synthesis of deuterated catechols and benzo[D][1,3]dioxoles and derivatives thereof |
| US9315483B2 (en) | 2007-09-13 | 2016-04-19 | Concert Pharmaceuticals, Inc. | Synthesis of deuterated catechols and benzo[D][1,3]dioxoles and derivatives thereof |
| US20150204893A1 (en) * | 2012-07-19 | 2015-07-23 | Chiron As | Test kit for the quantitative determination of narcotic drugs |
| US9347961B2 (en) * | 2012-07-19 | 2016-05-24 | Chiron As | Test kit for the quantitative determination of narcotic drugs |
Also Published As
| Publication number | Publication date |
|---|---|
| US20100222589A1 (en) | 2010-09-02 |
| EA014432B1 (en) | 2010-12-30 |
| EP1910322B1 (en) | 2012-09-05 |
| BRPI0615973A2 (en) | 2011-05-31 |
| KR20080039949A (en) | 2008-05-07 |
| HK1117532A1 (en) | 2009-01-16 |
| WO2007016431A2 (en) | 2007-02-08 |
| ZA200800785B (en) | 2009-01-28 |
| JP2009502963A (en) | 2009-01-29 |
| ES2396365T3 (en) | 2013-02-21 |
| JP5301991B2 (en) | 2013-09-25 |
| US20140018390A1 (en) | 2014-01-16 |
| US8450492B2 (en) | 2013-05-28 |
| EA200800490A1 (en) | 2008-08-29 |
| US20150196544A1 (en) | 2015-07-16 |
| KR101380190B1 (en) | 2014-04-11 |
| AU2006275595B2 (en) | 2012-08-16 |
| WO2007016431A3 (en) | 2007-07-12 |
| EP1910322A4 (en) | 2010-09-22 |
| EP1910322A2 (en) | 2008-04-16 |
| CN101273024A (en) | 2008-09-24 |
| AU2006275595A1 (en) | 2007-02-08 |
| CA2616383C (en) | 2015-06-09 |
| CA2616383A1 (en) | 2007-02-08 |
| US7678914B2 (en) | 2010-03-16 |
| US20070191432A1 (en) | 2007-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7678914B2 (en) | Deuterated benzo[D][1,3]-dioxol derivatives | |
| US20080033011A1 (en) | Novel benzo[d][1,3]-dioxol derivatives | |
| US7863274B2 (en) | Deuterium enriched analogues of tadalafil as PDE5 inhibitors | |
| US20070037815A1 (en) | Novel pharmaceutical compounds | |
| AU2008299921B2 (en) | Synthesis of deuterated catechols and benzo[d][1,3] dioxoles and derivatives thereof | |
| HK1117532B (en) | Novel deuterated benzo [d][1,3]-dioxol derivatives as serotonin reuptake inhibitors | |
| HK1013819A1 (en) | Physical form of dihidro-2,3-benzodiazepine derivative |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CONCERT PHARMACEUTICALS INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TUNG, ROGER;REEL/FRAME:023157/0993 Effective date: 20090713 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |