US20080254127A1 - Inhalation particles incorporating a combination of two or more active ingredients - Google Patents
Inhalation particles incorporating a combination of two or more active ingredients Download PDFInfo
- Publication number
- US20080254127A1 US20080254127A1 US11/806,206 US80620607A US2008254127A1 US 20080254127 A1 US20080254127 A1 US 20080254127A1 US 80620607 A US80620607 A US 80620607A US 2008254127 A1 US2008254127 A1 US 2008254127A1
- Authority
- US
- United States
- Prior art keywords
- particles
- inhalation
- active ingredients
- combination
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 title claims abstract description 152
- 239000004480 active ingredient Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 40
- 238000009826 distribution Methods 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims description 42
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 39
- 239000007788 liquid Substances 0.000 claims description 33
- KUVIULQEHSCUHY-XYWKZLDCSA-N Beclometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O KUVIULQEHSCUHY-XYWKZLDCSA-N 0.000 claims description 28
- 229950000210 beclometasone dipropionate Drugs 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 26
- OBRNDARFFFHCGE-PERKLWIXSA-N (S,S)-formoterol fumarate Chemical compound OC(=O)\C=C\C(O)=O.C1=CC(OC)=CC=C1C[C@H](C)NC[C@@H](O)C1=CC=C(O)C(NC=O)=C1.C1=CC(OC)=CC=C1C[C@H](C)NC[C@@H](O)C1=CC=C(O)C(NC=O)=C1 OBRNDARFFFHCGE-PERKLWIXSA-N 0.000 claims description 22
- 239000012159 carrier gas Substances 0.000 claims description 22
- 229960000193 formoterol fumarate Drugs 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 19
- 239000012717 electrostatic precipitator Substances 0.000 claims description 15
- 239000000654 additive Substances 0.000 claims description 8
- 239000000969 carrier Substances 0.000 claims description 8
- 238000009833 condensation Methods 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 239000003085 diluting agent Substances 0.000 claims description 5
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 3
- 238000009835 boiling Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000003814 drug Substances 0.000 abstract description 28
- 208000006673 asthma Diseases 0.000 abstract description 13
- 229940124630 bronchodilator Drugs 0.000 abstract description 8
- 238000002360 preparation method Methods 0.000 abstract description 8
- 239000002260 anti-inflammatory agent Substances 0.000 abstract description 6
- 229940121363 anti-inflammatory agent Drugs 0.000 abstract description 5
- 208000023504 respiratory system disease Diseases 0.000 abstract description 5
- 229940079593 drug Drugs 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000000443 aerosol Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 239000000556 agonist Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- GIIZNNXWQWCKIB-UHFFFAOYSA-N Serevent Chemical compound C1=C(O)C(CO)=CC(C(O)CNCCCCCCOCCCCC=2C=CC=CC=2)=C1 GIIZNNXWQWCKIB-UHFFFAOYSA-N 0.000 description 6
- 239000008101 lactose Substances 0.000 description 6
- 229960001375 lactose Drugs 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229960004017 salmeterol Drugs 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- 239000000890 drug combination Substances 0.000 description 5
- BPZSYCZIITTYBL-UHFFFAOYSA-N formoterol Chemical compound C1=CC(OC)=CC=C1CC(C)NCC(O)C1=CC=C(O)C(NC=O)=C1 BPZSYCZIITTYBL-UHFFFAOYSA-N 0.000 description 5
- 229960002848 formoterol Drugs 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 239000000168 bronchodilator agent Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229960004436 budesonide Drugs 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003862 glucocorticoid Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229960002052 salbutamol Drugs 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000012387 aerosolization Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229940124599 anti-inflammatory drug Drugs 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000003172 expectorant agent Substances 0.000 description 2
- 238000010812 external standard method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229960000289 fluticasone propionate Drugs 0.000 description 2
- WMWTYOKRWGGJOA-CENSZEJFSA-N fluticasone propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O WMWTYOKRWGGJOA-CENSZEJFSA-N 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 150000005828 hydrofluoroalkanes Chemical class 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229960002288 procaterol Drugs 0.000 description 2
- FKNXQNWAXFXVNW-BLLLJJGKSA-N procaterol Chemical compound N1C(=O)C=CC2=C1C(O)=CC=C2[C@@H](O)[C@@H](NC(C)C)CC FKNXQNWAXFXVNW-BLLLJJGKSA-N 0.000 description 2
- 238000012383 pulmonary drug delivery Methods 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XWTYSIMOBUGWOL-UHFFFAOYSA-N (+-)-Terbutaline Chemical compound CC(C)(C)NCC(O)C1=CC(O)=CC(O)=C1 XWTYSIMOBUGWOL-UHFFFAOYSA-N 0.000 description 1
- PDNHLCRMUIGNBV-UHFFFAOYSA-N 1-pyridin-2-ylethanamine Chemical compound CC(N)C1=CC=CC=N1 PDNHLCRMUIGNBV-UHFFFAOYSA-N 0.000 description 1
- LSLYOANBFKQKPT-DIFFPNOSSA-N 5-[(1r)-1-hydroxy-2-[[(2r)-1-(4-hydroxyphenyl)propan-2-yl]amino]ethyl]benzene-1,3-diol Chemical compound C([C@@H](C)NC[C@H](O)C=1C=C(O)C=C(O)C=1)C1=CC=C(O)C=C1 LSLYOANBFKQKPT-DIFFPNOSSA-N 0.000 description 1
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 description 1
- 235000005156 Brassica carinata Nutrition 0.000 description 1
- 244000257790 Brassica carinata Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 208000024716 acute asthma Diseases 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 229940127003 anti-diabetic drug Drugs 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000000043 antiallergic agent Substances 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940127088 antihypertensive drug Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003435 antirheumatic agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 230000003182 bronchodilatating effect Effects 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229940097217 cardiac glycoside Drugs 0.000 description 1
- 239000002368 cardiac glycoside Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 1
- 229960001117 clenbuterol Drugs 0.000 description 1
- STJMRWALKKWQGH-UHFFFAOYSA-N clenbuterol Chemical compound CC(C)(C)NCC(O)C1=CC(Cl)=C(N)C(Cl)=C1 STJMRWALKKWQGH-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000003419 expectorant effect Effects 0.000 description 1
- 229940066493 expectorants Drugs 0.000 description 1
- 229960001022 fenoterol Drugs 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229960002714 fluticasone Drugs 0.000 description 1
- MGNNYOODZCAHBA-GQKYHHCASA-N fluticasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(O)[C@@]2(C)C[C@@H]1O MGNNYOODZCAHBA-GQKYHHCASA-N 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229960001361 ipratropium bromide Drugs 0.000 description 1
- KEWHKYJURDBRMN-ZEODDXGYSA-M ipratropium bromide hydrate Chemical compound O.[Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 KEWHKYJURDBRMN-ZEODDXGYSA-M 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229960001021 lactose monohydrate Drugs 0.000 description 1
- 239000003199 leukotriene receptor blocking agent Substances 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 229940071648 metered dose inhaler Drugs 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229960001664 mometasone Drugs 0.000 description 1
- QLIIKPVHVRXHRI-CXSFZGCWSA-N mometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CCl)(O)[C@@]1(C)C[C@@H]2O QLIIKPVHVRXHRI-CXSFZGCWSA-N 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 230000000510 mucolytic effect Effects 0.000 description 1
- 229940066491 mucolytics Drugs 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 229960002259 nedocromil sodium Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960004624 perflexane Drugs 0.000 description 1
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 239000003358 phospholipase A2 inhibitor Substances 0.000 description 1
- 239000013312 porous aromatic framework Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 239000002599 prostaglandin synthase inhibitor Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229930002534 steroid glycoside Natural products 0.000 description 1
- 150000008143 steroidal glycosides Chemical class 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229960000195 terbutaline Drugs 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- -1 vaccines Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
- A61K9/0075—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/08—Bronchodilators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/10—Expectorants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/20—Hypnotics; Sedatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/06—Antiarrhythmics
Definitions
- ⁇ 2 -agonists e.g. salbutamol and terbutaline
- long-acting ⁇ 2 -agonists e.g. salmeterol, formoterol and procaterol
- ⁇ 2 -agonists e.g. salmeterol, formoterol and procaterol
- the short-acting nature of the drug requires more frequent drug administrations, which tend to cause patient compliance problem.
- FIG. 5 shows moisture absorption profile of the combination powder of the invention when exposed in different humidity levels.
- the droplets are already suspended in the carrier gas before they are fed into the tubular flow reactor, which is placed in an oven set at a constant temperature.
- the carrier gas flows evenly in the tubular reactor with a constant rate, uniform temperature field and non-circulating flow. Therefore, the temperature history and the residence time of each droplet and product particle can be properly controlled and excellent uniformity of the particles can be ensured. Accordingly, the method provides better control of the droplet size distribution, and thus the particle size distribution such that particles with optimal aerodynamic particle size distribution typically between about 1-5 ⁇ m can be obtained.
- the method allows essentially complete crystallization of the particles.
- the method is able to produce consistent and controlled particle properties, including particle size and size distribution, shape, crystallinity, polymorphic phase, surface roughness and chemical purity.
- the liquid feed stock of step (a) may be prepared by mixing each active ingredient with a suitable liquid solution, e.g. solvent.
- a suitable liquid solution e.g. solvent.
- the two or more liquid feed stocks are then mixed to form a solution, suspension, dispersion, gel, emulsion, slurry or the like, and is preferably homogenous to ensure uniform distribution of the components in the mixture. It is also possible to mix all active ingredients directly in one liquid feed stock.
- the liquid feed stock in the form of a solution is preferred.
- FIG. 1 a shows the experimental set-up of the particle synthesis
- FIGS. 1 b and 1 c show optional configurations used for particle analysis.
- the liquid feed stock described above was atomised using an ultrasonic atomizer ( 2 ), sold under trademark RBI Pyrosol 7901.
- the resulted droplets, which were suspended into a carrier gas, were then passed through a heated tube flow reactor ( 4 ).
- Nitrogen gas was used as a carrier gas, with a constant flow rate of 1.5 l/min.
- the carrier gas was bubbled through ethanol in a saturation bottle ( 1 ) before entering the atomizer.
- a vertical tube which was inserted into an oven ( 3 ), was used to dry up the droplets.
- Condensation particle counter (CPC) model 3022 shown as ( 8 ) in FIG. 1 a , was used to determine efficiency of the ESP. Particles collected were then removed from the plate surface of ESP by scraping, and then placed in a tight glass bottle to avoid moisture penetration or other contamination.
- CPC Condensation particle counter
- Crystallinity of the sample was studied by X-ray powder diffraction (Diffractometer D500, Siemens GmbH, Düsseldorf, Germany).
- a copper target X-ray (wavelength 0.1541 nm) tube was operated with the power of 40 kV ⁇ 40 mA.
- the relative degree crystallinity of the powder was also determined based on the x-ray powder diffraction patterns shown in FIG. 4 , wherein “A” means typical beclomethasone dipropionate, “B” means typical formoterol fumarate and “C” means the (200:6) combination of beclomethasone dipropionate (BDP) and formoterol fumarate. It is noticed that the diffraction pattern of the combination of beclomethasone dipropionate (BDP) and formoterol fumarate resembles very much to the diffraction pattern of pure BDP. Hence, formoterol fumarate may be partly or totally in amorphous state.
- FIG. 1 c individual particles were collected on the surface of a holey carbon film TEM grid ( 14 ) connected to a vacuum ( 15 ) after particle collection.
- the morphology of the particles were then imaged using a field emission low voltage scanning electron microscope (FE-SEM) operated at 2 kV acceleration voltage.
- FIG. 6 is a scanning electron microscope image of the powder (magnification ⁇ 27000). It is shown that the particles are spherical with rough surfaces and diameter of about 2-3 ⁇ m.
- the product purity was analysed using Hewlett_Packard HP 1090 liquid Chromatograph equipped with diode array detector.
- the column used is Hewlett-Packard Hypersil ODS, 5 ⁇ m, 100 ⁇ 2.1 mm.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Pulmonology (AREA)
- Diabetes (AREA)
- Pain & Pain Management (AREA)
- Neurosurgery (AREA)
- Endocrinology (AREA)
- Otolaryngology (AREA)
- Neurology (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Nutrition Science (AREA)
- Emergency Medicine (AREA)
- Anesthesiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Rheumatology (AREA)
- Psychiatry (AREA)
- Immunology (AREA)
- Virology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Crystalline spherical inhalation particles incorporating a combination of two or more different active ingredients and a process for the preparation thereof. The particles have a narrow particle size distribution, rough surfaces and improved stability. The inhalation particles of the invention are particularly useful in the administration of a combination medicament, e.g. a combination of an anti-inflammatory agent and a bronchodilator, by inhalation in the treatment of asthma and other respiratory disorders.
Description
- The present invention relates to inhalation particles and inhalation compositions suitable for pulmonary drug delivery and to methods for the preparation thereof. In particular, the present invention relates to inhalation particles incorporating a combination of two or more different active ingredients. The inhalation particles of the invention are particularly useful in the treatment of asthma and other respiratory disorders.
- Inhalation has become the primary route of administration in the treatment of asthma. This is because, besides providing direct access to the lungs, medication delivered through the respiratory tract provides rapid and predictable onset of action and requires lower dosages compared to the oral route.
- There have been recent advances in the treatment of asthma resulting from the recognition that asthma is a chronic inflammatory disease. Current asthma drugs can be classified into two classes, namely anti-inflammatory agents and bronchodilators. Anti-inflammatory drugs, such as glucocorticosteroids do not relieve asthma symptoms once they occur, rather they are used to control the inflammation. One of the drawbacks of anti-inflammatory drugs is that their onset of action is relatively slow. Therefore, patients often do not recognise any immediate therapeutic effects and tend to stop the medication. This could cause the inflammation uncontrollable. On the other hand, bronchodilators, such as β2-agonists and theophylline, are effective to relieve acute asthma symptoms. They have a potent bronchodilating activity and rapid onset of action. The short-acting inhaled β2-agonists e.g. salbutamol and terbutaline, are important for an immediate symptomatic asthma relieve, while long-acting β2-agonists, e.g. salmeterol, formoterol and procaterol, are important for the treatment of moderate and severe asthma. However, there are currently debates on the safety of a regular use of β2-agonists as well as efficiency of long-acting β2-agonists. Also, the short-acting nature of the drug requires more frequent drug administrations, which tend to cause patient compliance problem.
- To overcome these problems, inhalation compositions comprising a combination of anti-inflammatory and bronchodilator agents have been proposed as described e.g. in patent publications EP 0416950, EP 0416951, WO 93/11773 and WO 98/15280. Such combinations include salmeterol with beclomethasone dipropionate, salmeterol with fluticasone propionate, and formoterol with budesonide. These patent publications disclose a method of mixing mechanically the two drug powders and optionally the carrier material in a certain proportion and placing the resulting inhalation powder into an inhaler device. When these combinations are used in dry powder inhalers, the consistency of drug proportion in each dose cannot be easily controlled. The ratio of drugs in each dose significantly depends on the forces existing in each drug, between the drugs, between the drug and carrier material, and between the drug and the dry powder container of the inhaler device. It is well acknowledged that the current powder manufacturing methods, especially the conventional methods, produce dry powder that is highly charged and therefore very cohesive. Hence, it is not easy to keep the ratio of the drugs in each dose constant. The inconsistency of the dose could cause serious problems especially when a very potent drug is delivered in a much higher amount than expected.
- A method for the preparation of inhalation particles by spray-drying a solution of one or several drugs has been disclosed in U.S. Pat. No. 4,590,206. However, the method produces amorphous particles, which have stability problems and a high, tendency toward moisture re-absorption, which is undesirable for pharmaceutical particles intended for administration by inhalation. Furthermore the size and the morphology of the particles obtained are not optimal for pulmonary delivery.
- The object of the invention is to provide a composition that is better adapted than products of the prior art, for delivery of a drug combination into the lungs.
- It has now been found that, by using an aerosol flow reactor method, it is possible to prepare uncharged, spherical and crystalline inhalation particles incorporating, in an individual particle, a combination of two or more drugs in a predetermined and constant ratio. The particles provide more controlled delivery of combination medicaments by inhalation, since it is now possible to keep the ratio of the drugs in each dose constant. The particles exhibit improved dispersibility and good stability as a result of their crystalline nature. The particles have a narrow aerodynamic particle size distribution, typically between about 1-5 μm, which is especially suitable for the preparation of compositions for dry powder inhalers. Moreover, particle surfaces are spherical and generally rough, which reduces the force required to break-up the aggregates of the particles or detach the particle from a coarse carrier. Furthermore, the method of the invention provides a high purity product since the product purity only depends on the purity of solution precursors. Moreover, the method is simple and can be easily scaled-up to higher production rates.
- In one aspect the present invention provides inhalation particles incorporating a combination of two or more different active ingredients, wherein said particles are spherical and at least one of the active ingredients is in crystalline form. The mean mass aerodynamic diameter of the particles is typically between about 0.5-10 μm, more typically between about 1-5 μm. The aerodynamic particle size distribution of said particles is typically between about 0.5-10 μm, more typically between 1-5 μm.
- In another aspect the present invention provides an inhalation composition comprising particles incorporating a combination of two or more different active ingredients, wherein said particles are spherical and at least one of the active ingredients is in crystalline form. The particles may be formulated into an inhalation composition together with one or more pharmaceutically acceptable additives, diluents or carriers. Preferably, the composition is provided in the form of dry inhalation powder.
- In still another aspect, the present invention provides a method for preparing particles incorporating a combination of two or more different active ingredients, comprising the steps of:
- providing liquid feed stock comprising two or more different active ingredients in a predetermined ratio;
- atomising said liquid feed stock to create droplets;
- suspending said droplets in a carrier gas;
- passing said carrier gas and droplets suspended therein through a heated tube flow reactor under predetermined residence time and temperature history; and collecting the particles produced.
- The present invention is particularly useful in the preparation of combination medicaments, e.g. for the treatment of asthma and other respiratory disorders. Especially preferred drug combination is a combination of an anti-inflammatory agent and a bronchodilator, for example a combination of a glucocorticosteroid and a β2-agonist.
-
FIGS. 1 a, 1 b and 1 c are schematic diagrams showing parts of the apparatus used in the method of the invention. -
FIG. 2 is a schematic diagram of the electrostatic precipitator. -
FIGS. 3 a and 3 b show the normalised and cumulative mass size distribution of the drug combination particles of the invention. -
FIG. 4 shows the XRD pattern of the combination powder of the invention. -
FIG. 5 shows moisture absorption profile of the combination powder of the invention when exposed in different humidity levels. -
FIG. 6 depicts a scanning electron microscopy image of the combination powder of the invention. - The particles of the invention can be used to deliver locally or systemically to a patient a variety of drug combinations. Particularly suitable are drug combinations which are typically used in the pulmonary delivery by inhalation, such as combinations used in the treatment of asthma and other respiratory diseases. These include, but are not limited to, a combination of an anti-inflammatory agent and a bronchodilator, e.g. a combination of a glucocorticosteroid and a β2-agonist. Examples of anti-inflammatory glucocorticosteroids include beclomethasone, budesonide, fluticasone, mometasone, betamethasone, triamcinolone, flunisonide and the like and their salts and hydrates. Examples of β2-agonists include salbutamol, formoterol, fenoterol, procaterol, salmeterol, clenbuterol and the like and their salts and hydrates. Typical combinations include beclomethasone dipropionate and formoterol fumarate, beclomethasone dipropionate and salbutamol, budesonide and formoterol fumarate, fluticasone propionate and salmeterol, beclomethasone dipropionate and salmeterol. Finding suitable ratio of the active ingredients in a given combination is considered to be a routine for one skilled in the art.
- Any inhalable pharmaceutically active compound which can be formulated into a powder is suitable for use in the present invention. Examples of other inhalable drugs include drugs for the treatment of respiratory disorders such as anticholinergic bronchodilators such as ipratropium bromide and the like, anti-allergic drugs such as nedocromil sodium, expectorants, mucolytics, antihistamines, cyclooxygenase inhibitors, leukotriene synthesis inhibitors, leukotriene antagonists, PLA2 inhibitors, PAF antagonists and prophylactics of asthma and combinations thereof. Alternatively, the pharmaceutically active agent can be any of several types of inhalable, systemically active drugs including antiarrhythmic drugs, tranquilizers, cardiac glycosides, hormones, antihypertensive drugs, antidiabetic drugs, anticancer drugs, sedatives, analgesic drugs, antibiotics, antirheumatic drugs, immunotherapeutics, antifungal drugs, vaccines, antiviral drugs, proteins, peptides, vitamins and combinations thereof. A combination of an anti-inflammatory agent and a bronchodilator is particularly preferred.
- The particles of the present invention are preferably prepared using an aerosol flow reactor method (aerosol synthesis method). It is a one-step continuous process, which can directly produce desirable particle size range. The method has been used to produce various materials, e.g. ceramic powder (U.S. Pat. No. 5,061,682) or zirconia powder (U.S. Pat. No. 4,999,182), at high operation temperatures. However, the method has not been used to produce pharmaceutical materials, which requires a significantly lower-temperature operation (less than 300° C.).
- The aerosol flow reactor method comprises generally the following steps; (a) providing liquid feed stock comprising two or more different active ingredients in a predetermined ratio, (b) atomising said liquid feed stock to create droplets, (c) suspending said droplets in a carrier gas, (d) passing said carrier gas and droplets suspended therein through a heated tube flow reactor under predetermined residence time and temperature history, and (e) collecting the particles produced.
- The above method differs significantly from the conventional spray-drying process. In spray-drying, hot gas is used as a source of heat to evaporate the solvent. The spray-drying chamber is only used as a place for the heat transfer to occur, the chamber itself is not heated. The temperature of the gas is changing across the chamber as heat transfer occurs between the cold feed and the hot gas. Furthermore, the evaporation is so rapid that it is not easy to properly control the temperature history and the residence time of each droplet and product particle. The crystallization can not be easily controlled either, and therefore the particles formed are commonly amorphous.
- In the present method, the droplets are already suspended in the carrier gas before they are fed into the tubular flow reactor, which is placed in an oven set at a constant temperature. The carrier gas flows evenly in the tubular reactor with a constant rate, uniform temperature field and non-circulating flow. Therefore, the temperature history and the residence time of each droplet and product particle can be properly controlled and excellent uniformity of the particles can be ensured. Accordingly, the method provides better control of the droplet size distribution, and thus the particle size distribution such that particles with optimal aerodynamic particle size distribution typically between about 1-5 μm can be obtained. Furthermore, in contrast to spray drying, the method allows essentially complete crystallization of the particles. Thus, the method is able to produce consistent and controlled particle properties, including particle size and size distribution, shape, crystallinity, polymorphic phase, surface roughness and chemical purity.
- The liquid feed stock of step (a) may be prepared by mixing each active ingredient with a suitable liquid solution, e.g. solvent. The two or more liquid feed stocks are then mixed to form a solution, suspension, dispersion, gel, emulsion, slurry or the like, and is preferably homogenous to ensure uniform distribution of the components in the mixture. It is also possible to mix all active ingredients directly in one liquid feed stock. The liquid feed stock in the form of a solution is preferred.
- Various solvents may be employed in the preparation of the liquid feed stock, including but not limited to, water, hydrocarbons, halogenated hydrocarbons, alcohols, ketones and the like. Examples of suitable solvents include water, hexane, perfluorohexane, ethanol, methanol, acetone, chloroform, methylene chloride and combinations thereof.
- In case the liquid feed stock is a solution, the active ingredients should be sufficiently soluble in the solvent of the solution so as to obtain, from the atomized droplets of the liquid feed stock, uniform particles with the desired particle size, size distribution and drug ratio. The total solids dissolved may be present in wide range of concentrations, typically from about 0.1% to about 10% by weight, for example from about 1% to about 5% by weight. A liquid feed stock containing relatively low concentration of solids results in particles having relatively small diameter. The finding of suitable liquid feed stock concentrations for each active agents/solvent combinations is considered to be a routine to one skilled in the art. Usually, the liquid feed stock concentration is firstly chosen at its maximum solubility so as to obtain the largest particle size with the atomizer and atomizer conditions used. From the results, the liquid feed stock concentration required to obtain the desired particle size range with the atomizer and the atomizer conditions used can be approximated.
- The liquid feed stock is atomized to create droplets in a suitable atomizer, which are well known in the art, such as a spray nozzle (e.g. a two fluid nozzle), an ultrasonic or air assisted nebuliser or a spinning disc, an ultrasonic nebulizer being preferred. Examples of the devices used in this process include ultrasonic generators sold under trademarks Omron NE-U12 and RBI Pyrosol 7901. While there are no special restrictions placed on the atomisers used in the process, it is recommended to use an atomiser, which can produce uniform droplets of constant composition and in a specific size range. Such devices are suitable to produce dry powders of controlled composition and with particle size range suitable for dry powder inhalation.
- The droplets of the liquid feed stock are suspended in a carrier gas before passing through a heated tube flow reactor. The carrier gas must be inert with respect to the drug molecules and the solvent. It is recommended to use nitrogen gas or other inert gases. The temperature of the carrier gas is typically ambient. To maintain a uniform solution concentration in the droplets in the suspending phase, it is preferred to bubble the carrier gas through a bottle containing the same solvent as the liquid feed stock before entering the atomizer.
- Because the droplets are already suspended in the carrier gas when fed into the reactor (i.e. the droplet generation and flow reactor are separated), the temperature history and residence time of each droplet and product particle can be better controlled than in the conventional spray-drying method. Therefore, excellent uniformity of the resulted particles and narrow particle size distribution can be ensured.
- The droplets suspended in the carrier gas are passed through a tubular flow reactor, which is maintained at a constant temperature. The temperature and the flow rate of the carrier gas are adjusted to evaporate the solvent and to allow the crystallisation process to complete. The particles formed are then collected using an electrostatic precipitator, a cyclone, a planar filter (e.g. nylon) or other particle collecting devices.
- The particle size may be controlled to any expected particle size ranges by selection of the atomizer and concentration of the liquid feed stock. It is also possible to employ a droplet size modification apparatus (e.g. impactor or virtual impactor, or using size selective collection of particles, e.g. a cyclone) upstream and/or downstream of the flow reactor.
- For the tubular flow reactor, while there are no particular restrictions, it is recommended to use a vertical, rather than horizontal configuration in order to minimise buoyancy effects and related losses due to recirculating flow. A laminar flow is preferred. To ensure uniform temperature and flow fields in the hot zone of the reactor, CFD (Computational Fluid Dynamics) calculations have shown that it is preferable that the aerosol flows against gravity. Flow in any other direction tends to produce undesirable reactor conditions. The reactor tube is preferably placed inside an oven to maintain a uniform reactor wall temperature during the process. The oven can be of any kind, which has sufficient temperature control (i.e. +1° C. or less) at low temperatures (less than 300° C.). The temperature of the oven is set such that the materials being processed do not decompose. Typically the select oven temperature is within the range of about 30 to 300° C., more typically between about 70 to 200° C. For the combination of beclomethasone dipropionate and formoterol fumarate, for example, since the melting point of beclomethasone dipropionate is about 210° C. and the melting point of formoterol fumarate is about 138° C., the range of oven temperature used for the combination particle production may vary between 30 to 110° C., preferably between 70 to 100° C.
- While there are no particular restrictions placed on the particle collection, it is recommended to use a system, which can be heated to prevent the re-condensation process. Electrostatic precipitators, cyclones and/or filters can be used for this purpose. Accordingly, the particle collection system and the line from the flow reactor outlet to the particle collection system are preferably heated to a temperature above the boiling point of the solution to prevent the re-condensation process to occur. However, the temperature should not be too high so as to cause material degradation. For example, for the combination of beclomethasone dipropionate and formoterol karate dissolved in ethanol, the temperature of the collection system and the line may be kept constant at a temperature between 80 to 100° C., preferably between 80 and 90° C. To further prevent the re-condensation process to occur, dry carrier gas may be flown to the particle collection system. The carrier gas is preferably heated at a temperature between 80 to 90° C.
- It is preferred that the aerosol flow reactor conditions are selected such that crystalline spherical particles of homogeneous constituents having a narrow particle size distribution and rough surfaces are formed. The particle size of the resulting powder is such that the mean mass aerodynamic diameter of said particles is between about 0.5-10 μm more typically between about 1-5 μm. Particularly it is preferred that more than 98% of the mass is in particles having a diameter of 5 μm or less, and less than about 5% of the mass being in particles having a diameter of 0.5 μm or less. It is particularly preferred that the aerodynamic particle size distribution of said particles is between about 0.5-10 μm, more preferably between about 1-5 μm.
- The particles obtained incorporate, in an individual particle, a combination of two or more drugs. An individual particle means here an unagglomerated particle which have the typical spherical form.
- ID the particle of the invention, at least one of the active ingredients is in a crystalline form, i.e. has a relative degree of crystallinity preferably 90% or higher, more preferably 95% or higher, most preferably 99% or higher. Preferably the aerosol flow reactor conditions are selected such that all active ingredients in the particle are in a crystalline form. The relative degree of crystallinity can be determined based on the x-ray powder diffraction patterns. The value of the relative degree of crystallinity can be estimated by a known method of broadening of the diffraction maxima (FWHM-values).
- The particles of the invention are essentially spherical, i.e. the spherical form is consistent and apparent when examined under a scanning electron microscope. The spherical form reduces the contact areas between particles and thereby improves aerosolization and deagglomeration of the particles upon inhalation.
- Generally, the surface of the spherical particles is rough, i.e. the roughness is consistent over the entire surface of the particle, apparent when examined under the scanning electron microscope, and the ratio of the maximum aid minimum diameter of the particle is between 1.001-1.5, preferably between 1.002-1.2, more preferably between 1.01-1.1. Rough surface is advantageous since it increases the effective separation distance of the particles, and thus improves aerosolization and deagglomeration properties of the particles.
- If desired, various additives known in the art may be additionally incorporated in the particles together with the active ingredients. Such additives include e.g. diluents such as lactose, carriers and stabilizers and the like. In such case the additives are included in the liquid feed stock of the process together with the active ingredients. Also such additives incorporated in the particle are preferably in crystalline form. It is particularly preferred that at least about 90 w-% of the total weight of the particle is in crystalline form.
- However, in order to reduce the amount of material other than the active ingredients potentially reaching the lungs, it is preferred that the active ingredients constitute at least 90 w-%, preferably at least 95 w-%, more preferably at least 99 w-%, of the total weight of particles. Most preferably the particles are free from other material than the active ingredients.
- The particles of the invention may be formulated into an inhalation composition together with one or more pharmaceutically acceptable additives, diluents or carriers. Examples of suitable solid diluents or carriers comprise lactose, dextran, mannitol and glucose, lactose being preferred. Examples of aerosol carriers include non-chlorofluorocarbon-based carriers such as HFA (hydrofluoroalkane). The use of aqueous carriers is also possible. Typical additives include solubilizers, stabilizers, flavouring agents, colorizing agents and preserving agents.
- The particles of the invention are preferably administered in the form of a dry powder composition. The particles obtained are generally in the form of individual (unagglomerated) particles which are well suited for pulmonary drug delivery by inhalation as such, e.g. they can be filled directly into capsules, cartridges, blister packs or reservoirs of dry powder inhalers. However, if desired the particles may be adapted to form loose agglomerates of several individual particles, said agglomerates breaking into individual particles upon dispersion in the inhaled air stream. The particles may also be combined with pharmaceutically acceptable carrier materials or excipients typically used in dry inhalation powders. Such carriers may be used simply as bulking agents or to improve the dispersibility of the powder. For example, the particles may be used in admixture with carrier particles, e.g. lactose, having larger particle size than the active ingredients, typically in the range of 5 to 100 μm. If the composition contains a carrier, the total amount of the active ingredients is typically about 0.1-50% (w/w), preferably about 1-10% (w/w), based on total weight of the composition. Such compositions can be prepared by methods known in the art.
- The particles of the invention can be also administered in the form of pressurized metered dose inhalation suspension, where the particles are suspended in pressurized aerosol carrier and delivered using pressurized metered dose inhaler (pMDI).
- The invention is further illustrated by the following experiments, which are not meant to limit the scope of the invention.
- All compositions produced according to the present invention fulfill the strict specification for content and purity required for pharmaceutical products.
- Preparation of the Liquid Feed Stock
- Beclomethasone dipropionate is an anti-inflammatory glucocorticosteroid, which is practically insoluble in water, freely soluble in acetone and in chloroform, and sparingly soluble in alcohol. Thus, the solvent could be acetone, chloroform, methanol, ethanol, or other alcohols. In the current experiments, ethanol was used as a solvent, not only because ethanol is cheap and readily available but it is also recommended for use in production of pharmaceutical agents because it is non-toxic.
- The beclomethasone dipropionate liquid feed stock was prepared by dissolving 1 gram of beclomethasone dipropionate powder in 40 ml of ethanol (99.5%) at room temperature.
- Formoterol fumarate is a β2-agonist bronchodilator, which is freely soluble in glacial acetic acid, soluble in methanol, sparingly soluble in ethanol. Thus, the solvent could be glacial acetic acid, methanol or ethanol. In the current experiments, ethanol was used as a solvent, not only because ethanol is cheap and readily available but it is also harmless and recommended for use in production of pharmaceuticals.
- The formoterol fumarate liquid feed stock was prepared by dissolving 1 gram of formoterol fumarate powder in 613 ml of ethanol (99.5%) at room temperature.
- The two liquid feed stocks were then mixed in such a way that ratio between beclomethasone dipropionate and formoterol fumarate in the mixture is 200:6 (weight basis), which was considered to be a suitable drug ratio for the treatment of asthma.
- Aerosol Synthesis
-
FIG. 1 a shows the experimental set-up of the particle synthesis, andFIGS. 1 b and 1 c show optional configurations used for particle analysis. The liquid feed stock described above was atomised using an ultrasonic atomizer (2), sold under trademark RBI Pyrosol 7901. The resulted droplets, which were suspended into a carrier gas, were then passed through a heated tube flow reactor (4). Nitrogen gas was used as a carrier gas, with a constant flow rate of 1.5 l/min. To maintain a uniform solution concentration in the atomizer, the carrier gas was bubbled through ethanol in a saturation bottle (1) before entering the atomizer. A vertical tube, which was inserted into an oven (3), was used to dry up the droplets. The oven used was a WTB Binder FD/FED 400, which has temperature variations of ±1 and ±2° C. for temperature at 70 and 110° C., respectively. The tube was made of stainless steel, with an inner diameter and a heated length of 30 and 800 mm, respectively. The oven temperature was set at 100° C. The minimum particle residence time in the heated zone under the selected process conditions was approximately 12 seconds. From the CFD calculation, it is shown that temperature field is uniform and the velocity is fully developed and non-circulating in the heated zone. - The resulted particles were then collected using an electrostatic precipitator (ESP) (5) connected to a high voltage generator (6). A carrier gas, preferably nitrogen gas, may be flown to the ESP to further prevent the re-condensation process to occur. The exhaust gas was led from ESP via a dripping bottle (7) to exit (9).
FIG. 2 shows the schematic diagram of ESP having inlet (16) and exit for exhaust gas (19). The ESP was made of a tubular stainless steel collection plate (20) with inside diameter and length of 10 and 50 cm, respectively. A 0.05 mm diameter tungsten wire was placed on the center axis of the collection plate and a high voltage (18) of 16 kV was applied between the wire and the plate. The high electric field formed a corona discharge (17) on the wire and charged the gas molecules. The gas ions were then formed. These ions migrated across the space between the wire and the plate under the influence of the applied electric field. During the migration, the ions collided with the aerosol particles, which thus acquired charge. The charged particles then migrated toward the grounded surface electrode. When the particles struck the grounded plate, they lost their charges and adhered to the plate surface via surface forces. Therefore, the particles collected were not charged. Dry nitrogen gas with a flow rate of 22.5 l/min was flowed into the ESP and temperature in the ESP and in the line from tubular tube outlet to the ESP were maintained at a constant temperature of 85° C., to avoid condensation of organic vapours and moisture to occur. Condensation particle counter (CPC) model 3022, shown as (8) inFIG. 1 a, was used to determine efficiency of the ESP. Particles collected were then removed from the plate surface of ESP by scraping, and then placed in a tight glass bottle to avoid moisture penetration or other contamination. - Characterisation
- i. Particle Size Analysis
- Referring now to
FIG. 1 b, the particle size distribution was measured by an electrical low pressure impactor (12) (ELPI) connected to a vacuum (13). The particles exiting the tubular tube were passed into a diluter (10), with a dilution ratio of 1:10, before entering the ELPI. Exhaust gas exit (11) was arranged in the diluter. To minimize temperature gradient, and thus to reduce the moisture condensation, the diluter, the line to the diluter and the gas line into the diluter were layered with heating elements, which were kept at a temperature higher than that of the solution dew point.FIGS. 3 a and 3 b show normalised and cumulative mass size distributions of beclomethasone dipropionate/formoterol fumarate particles, respectively, measured gravimetrically. It is shown that a narrow size distribution within the range of aerodynamic particle size of interest, i.e. at around 1-5 μm, was obtained. - ii. Particle Crystallinity
- Crystallinity of the sample was studied by X-ray powder diffraction (Diffractometer D500, Siemens GmbH, Karlsruhe, Germany). A copper target X-ray (wavelength 0.1541 nm) tube was operated with the power of 40 kV×40 mA.
- For x-ray powder diffraction analysis, 500 mg of the powder was mounted to a cylindrical sample stage which has a diameter of 20 mm and height of approximately 2 mm.
- The relative degree crystallinity of the powder was also determined based on the x-ray powder diffraction patterns shown in
FIG. 4 , wherein “A” means typical beclomethasone dipropionate, “B” means typical formoterol fumarate and “C” means the (200:6) combination of beclomethasone dipropionate (BDP) and formoterol fumarate. It is noticed that the diffraction pattern of the combination of beclomethasone dipropionate (BDP) and formoterol fumarate resembles very much to the diffraction pattern of pure BDP. Hence, formoterol fumarate may be partly or totally in amorphous state. For BDP, it can be seen that the maximum intensities were sharp and well above background intensities, which indicates that the BDP in the powder was well crystallised. The determined relative degree of crystallinity for BDP was 100%. The estimation was based on the broadening of the diffraction maxima (FWHM-values) positioned at 11.3° and 18.4°. - iii. Powder Stability
- The ratio of BDP to formoterol fumarate in the powder is 200:6 (formoterol fumarate is about 2.9% w/w). As shown from the XRD pattern, formoterol fumarate in the powder may be in amorphous state. Despite of the small formoterol concentration in the powder, it was desirable to conduct stability tests to ensure that the powder remains stable in various conditions. The stability tests were carried out by observing moisture adsorption profiles of the powder when exposed to different relative humidity levels. From
FIG. 5 , it can be seen that the combination powder of the invention is stable when exposed to different humidity levels, with a maximum weight increase of 0.02% when exposed to 80% relative humidity for 24 h. - iv. Particle Shape and Surface Structure
- Referring now to
FIG. 1 c, individual particles were collected on the surface of a holey carbon film TEM grid (14) connected to a vacuum (15) after particle collection. The morphology of the particles were then imaged using a field emission low voltage scanning electron microscope (FE-SEM) operated at 2 kV acceleration voltage.FIG. 6 is a scanning electron microscope image of the powder (magnification ×27000). It is shown that the particles are spherical with rough surfaces and diameter of about 2-3 μm. - v. Chemical Analysis
- The product purity was analysed using Hewlett_Packard HP 1090 liquid Chromatograph equipped with diode array detector. The column used is Hewlett-Packard Hypersil ODS, 5 μm, 100×2.1 mm.
- To analyse formoterol fumarate, the powder was dissolved into 25 ml of a mixture of water-methanol (25:75). The sample was then analysed using the high performance liquid chromatograph with diode array detector (wavelengths 200 nm and 214 nm), and the quantitative analyses were carried out using external standard method with four standard concentrations. Eluents used were 0.01M ammonium dihydrogen phosphate (NH3 is added to obtain pH 8) (solvent A) and acetonitrile (solvent B) with gradient elution of 40% B for 2 minutes followed by 100% B in 5 minutes. The flow rate and injection volume used were 0.4 ml/min and 5 μl, respectively, and the oven temperature was set to 40° C.
- To analyse beclomethasone dipropionate, the powder was dissolved into 25 ml of a mixture of water-methanol (25:75) and then diluted (1:50) using water-methanol (25:75). Samples were then analysed with the high performance liquid, chromatograph using diode array detector (wavelength 241 nm) and quantitative analyses were carried using external standard method (four different standard concentrations). Eluents used were water (solvent A) and acetonitrile (solvent B) with gradient elution of 65% B for 2 minutes followed by 100% B in 5 minutes. The flow rate and injection volume used were 0.4 ml/min and 8 μl, respectively, and the oven temperature was set to 40° C.
- The analysis results show beclomethasone dipropionate 97.1% and formoterol fumarate 2.9%, the same as concentration of solution precursor.
-
-
Per dose Formoterol fumarate 6 μg Beclomethasone dipropionate 200 μg Lactose monohydrate Ph. Eur. 8 mg - Particles of Example 1 and part of lactose is added into a blender. The powder mixture is mixed until it is homogenous. The mixture is sieved to reduce the number of particle clusters present. Thereafter the rest of lactose is added and the powder is again mixed until it is homogenous. Powder is poured into a supply chamber of the multi-dose powder inhaler Easyhaler (Orion Corporation trademark) for a supply of 200 doses.
Claims (21)
1-21. (canceled)
22. Inhalation particles incorporating, in an unagglomerated individual particle, a combination of two or more different active ingredients, wherein said particles are spherical and at least one of the active ingredients is in crystalline form.
23. Inhalation particles according to claim 22 , wherein the mean mass aerodynamic diameter of said particles is about 1-5 μm.
24. Inhalation particles according to claim 22 , wherein the aerodynamic particle size distribution of said particles is about 0.5-10 μm.
25. Inhalation particles according to claim 22 , wherein the ratio of the active ingredients is constant.
26. Inhalation particles according to claim 22 , wherein the particles have a rough surface.
27. Inhalation particles according to claim 22 , wherein the particles are uncharged.
28. Inhalation particles according to claim 22 , incorporating a combination of beclomethasone dipropionate and formoterol fumarate.
29. An inhalation composition comprising particles incorporating, in an unagglomerated individual particle, a combination of two or more different active ingredients, wherein said particles are spherical and at least one of the active ingredients is in crystalline form.
30. An inhalation composition according to claim 29 additionally comprising one or more pharmaceutically acceptable additives, diluents or carriers.
31. An inhalation composition according to claim 29 in the form of dry inhalation powder.
32. An inhalation composition according to claim 29 in the form of pressurized metered dose inhalation suspension.
33. An inhaler device comprising an inhalation composition according to claim 29 .
34. A method for preparing particles incorporating, in an unagglomerated individual particle, a combination of two or more different active ingredients comprising the steps of:
providing liquid feed stock comprising two or more different active ingredients in a predetermined ratio:
atomising said liquid feed stock to create droplets:
suspending said droplets in a carrier gas;
passing said carrier gas and droplets suspended therein through a heated tube flow reactor under predetermined residence time and temperature history; and
collecting the particles produced.
35. A method of claim 34 wherein the liquid feed stock, comprising two or more different active ingredients in a predetermined ratio, is in the form of a solution.
36. A method according to claim 34 , wherein the carrier gas is selected from nitrogen gas or other inert gas.
37. A method according to claim 34 , wherein the particles are collected using a particle collection system selected from an electrostatic precipitator, a cyclone or a filter.
38. A method according to claim 37 , wherein the particle collection system is heated to a temperature above the boiling point temperature of the solution to prevent condensation.
39. A method according to claim 34 , wherein the liquid feedstock comprises beclomethasone dipropionate and formoterol fumarate as active ingredients.
40. A method according to claim 39 , wherein the liquid feed stock comprises ethanol as a solvent.
41. Inhalation particles according to claim 22 , wherein the aerodynamic particle size distribution of said particles is about 1-5 μm.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/806,206 US20080254127A1 (en) | 2000-10-06 | 2007-05-30 | Inhalation particles incorporating a combination of two or more active ingredients |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FI20002215A FI20002215A0 (en) | 2000-10-06 | 2000-10-06 | Combination Particles |
| FI20002215 | 2000-10-06 | ||
| PCT/FI2001/000863 WO2002028377A1 (en) | 2000-10-06 | 2001-10-05 | Ihnalation particles incorporating a combination of two or more active ingredients |
| US10/398,373 US7267813B2 (en) | 2000-10-06 | 2001-10-05 | Inhalation particles incorporating a combination of two or more active ingredients |
| US11/806,206 US20080254127A1 (en) | 2000-10-06 | 2007-05-30 | Inhalation particles incorporating a combination of two or more active ingredients |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/398,373 Continuation US7267813B2 (en) | 2000-10-06 | 2001-10-05 | Inhalation particles incorporating a combination of two or more active ingredients |
| PCT/FI2001/000863 Continuation WO2002028377A1 (en) | 2000-10-06 | 2001-10-05 | Ihnalation particles incorporating a combination of two or more active ingredients |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080254127A1 true US20080254127A1 (en) | 2008-10-16 |
Family
ID=8559251
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/398,373 Expired - Lifetime US7267813B2 (en) | 2000-10-06 | 2001-10-05 | Inhalation particles incorporating a combination of two or more active ingredients |
| US11/806,206 Abandoned US20080254127A1 (en) | 2000-10-06 | 2007-05-30 | Inhalation particles incorporating a combination of two or more active ingredients |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/398,373 Expired - Lifetime US7267813B2 (en) | 2000-10-06 | 2001-10-05 | Inhalation particles incorporating a combination of two or more active ingredients |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US7267813B2 (en) |
| EP (1) | EP1322300B1 (en) |
| JP (1) | JP4316873B2 (en) |
| AT (1) | ATE284680T1 (en) |
| AU (1) | AU2001293899A1 (en) |
| CA (1) | CA2424620A1 (en) |
| DE (1) | DE60107862T2 (en) |
| FI (1) | FI20002215A0 (en) |
| WO (1) | WO2002028377A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100239507A1 (en) * | 2006-05-03 | 2010-09-23 | David P. Brown | Surface modified aerosol particles, a method and apparatus for production thereof and powders and dispersions containing said particles |
| US7928089B2 (en) | 2003-09-15 | 2011-04-19 | Vectura Limited | Mucoactive agents for treating a pulmonary disease |
| WO2012107765A3 (en) * | 2011-02-09 | 2012-11-15 | Kuecept Ltd | Particle formulation |
| US10716753B2 (en) | 2009-05-29 | 2020-07-21 | Pearl Therapeutics, Inc. | Compositions for pulmonary delivery of long-acting muscarinic antagonists or long-acting B2 adrenergic receptor agonists and associated methods and systems |
| US20240165054A1 (en) * | 2022-08-08 | 2024-05-23 | Verona Pharma Plc | Treatment |
| US12251384B1 (en) | 2023-06-26 | 2025-03-18 | Verona Pharma Plc | Particulate composition |
| US12409180B2 (en) | 2022-02-21 | 2025-09-09 | Verona Pharma Plc | Formulation production process |
Families Citing this family (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FI20002215A0 (en) * | 2000-10-06 | 2000-10-06 | Orion Yhtymae Oyj | Combination Particles |
| FI20002216A0 (en) | 2000-10-06 | 2000-10-06 | Orion Yhtymae Oyj | Combination particles for asthma therapy |
| FI20011386A0 (en) * | 2001-06-28 | 2001-06-28 | Orion Corp | Inhalation particles |
| US20100092562A1 (en) * | 2002-11-26 | 2010-04-15 | Hollenbeck R Gary | Sustained-release drug delivery compositions and methods |
| EP2359817B1 (en) * | 2003-03-28 | 2018-01-10 | Sigmoid Pharma Limited | Solid oral dosage form containing seamless microcapsules |
| EP1688169A4 (en) * | 2003-11-28 | 2008-10-01 | Mitsubishi Chem Corp | METHOD FOR PRODUCING FINE PARTICLES OF AN ORGANIC COMPOUND |
| DE602005010899D1 (en) * | 2004-09-27 | 2008-12-18 | Sigmoid Pharma Ltd | MICRO CAPSULES WITH A METHYLXANTHINE AND A CORTICOSTEROID |
| BRPI0613034A8 (en) | 2005-07-14 | 2018-01-02 | Lipothera Inc | injectable formulation for fat tissue accumulation, injectable formulation and method for treating fat accumulation, and method for reducing fat tissue. |
| EP1906919A4 (en) * | 2005-07-15 | 2012-12-26 | Map Pharmaceuticals Inc | Multiple active pharmaceutical ingredients combined in discrete inhalation particles and formulations thereof |
| MX2009004198A (en) * | 2006-10-17 | 2009-10-19 | Lithera Inc | Methods, compositions, and formulations for the treatment of thyroid eye disease. |
| EP2380564B1 (en) * | 2007-04-04 | 2014-10-22 | Sigmoid Pharma Limited | An oral pharmaceutical composition |
| EP1982709A1 (en) * | 2007-04-19 | 2008-10-22 | CHIESI FARMACEUTICI S.p.A. | Use of a composition comprising formoterol and beclomethasone dipropionate for the prevention or treatment of an acute condition of asthma |
| JP2010527285A (en) | 2007-04-26 | 2010-08-12 | シグモイド・ファーマ・リミテッド | Production of multiple mini capsules |
| CA2685591A1 (en) * | 2007-05-01 | 2008-11-06 | Sigmoid Pharma Limited | Pharmaceutical nimodipine compositions |
| EP2022798A1 (en) | 2007-08-09 | 2009-02-11 | CHIESI FARMACEUTICI S.p.A. | Synthetic pulmonary surfactant peptides |
| WO2009079078A1 (en) | 2007-12-14 | 2009-06-25 | Labogroup S.A.S. | Delivering aerosolizable food products |
| CA2835771C (en) * | 2009-03-18 | 2017-01-24 | Incarda Therapeutics, Inc. | Unit doses, aerosols, kits, and methods for treating heart conditions by pulmonary administration |
| US20100291221A1 (en) * | 2009-05-15 | 2010-11-18 | Robert Owen Cook | Method of administering dose-sparing amounts of formoterol fumarate-budesonide combination particles by inhalation |
| CN105213318A (en) | 2009-05-18 | 2016-01-06 | 希格默伊德药业有限公司 | Comprise the compositions of oil droplet |
| US9132084B2 (en) | 2009-05-27 | 2015-09-15 | Neothetics, Inc. | Methods for administration and formulations for the treatment of regional adipose tissue |
| CN102573802A (en) | 2009-08-12 | 2012-07-11 | 希格默伊德药业有限公司 | Immunomodulatory compositions comprising a polymer matrix and an oil phase |
| GB2477030A (en) * | 2010-01-15 | 2011-07-20 | Lithera Inc | Lyophilised forms of fluticasone, salmeterol and combinations thereof |
| CN102416179B (en) | 2010-09-28 | 2014-05-07 | 益得生物科技股份有限公司 | Inhaled compound composition for asthma |
| GEP201606551B (en) | 2010-11-24 | 2016-10-10 | Novamedica Llc | Selective, lipophilic, and long-acting beta agonists monotherapeutic formulations tions and methods for cosmetic treatment of adiposity and contour bulging |
| GB201020032D0 (en) | 2010-11-25 | 2011-01-12 | Sigmoid Pharma Ltd | Composition |
| JOP20120023B1 (en) | 2011-02-04 | 2022-03-14 | Novartis Ag | Dry powder formulations of particles that contain two or more active ingredients for treating obstructive or inflammatory airways diseases |
| GB201113662D0 (en) * | 2011-08-08 | 2011-09-21 | Prosonix Ltd | Pharmaceutical compositions |
| FI3412277T3 (en) | 2012-01-25 | 2023-03-23 | Chiesi Farm Spa | Dry powder formulation comprising a corticosteroid and a beta-adrenergic for administration by inhalation |
| ES2814336T3 (en) | 2012-04-13 | 2021-03-26 | Glaxosmithkline Ip Dev Ltd | Aggregate particles |
| GB201212010D0 (en) | 2012-07-05 | 2012-08-22 | Sigmoid Pharma Ltd | Formulations |
| US9757395B2 (en) | 2012-12-20 | 2017-09-12 | Otitopic Inc. | Dry powder inhaler and methods of use |
| US9757529B2 (en) | 2012-12-20 | 2017-09-12 | Otitopic Inc. | Dry powder inhaler and methods of use |
| US10149823B2 (en) | 2013-04-30 | 2018-12-11 | Otitopic Inc. | Dry powder formulations and methods of use |
| GB201319791D0 (en) | 2013-11-08 | 2013-12-25 | Sigmoid Pharma Ltd | Formulations |
| DK3107548T3 (en) | 2014-02-20 | 2022-07-18 | Otitopic Inc | DRY POWDER FORMULATIONS FOR INHALATION |
| US9554992B2 (en) | 2014-06-09 | 2017-01-31 | Chiesi Farmaceutici S.P.A. | Inhalation particles comprising a combination of an anticholinergic, a corticosteroid and a beta-adrenergic |
| DK3215127T3 (en) | 2014-11-07 | 2021-02-01 | Sublimity Therapeutics Ltd | COMPOSITIONS INCLUDING CYCLOSPORIN |
| SG11201805788WA (en) | 2016-02-01 | 2018-08-30 | Incarda Therapeutics Inc | Combining electronic monitoring with inhaled pharmacological therapy to manage cardiac arrhythmias including atrial fibrillation |
| WO2019183470A2 (en) | 2018-03-22 | 2019-09-26 | Incarda Therapeutics, Inc. | A novel method to slow ventricular rate |
| US11020384B2 (en) | 2019-08-01 | 2021-06-01 | Incarda Therapeutics, Inc. | Antiarrhythmic formulation |
| BE1027612B1 (en) * | 2019-09-10 | 2021-05-03 | Aquilon Pharmaceuticals | GOLF BALL-SHAPED MICROPARTICLES FOR USE IN THE TREATMENT AND PREVENTION OF PULMONARY DISEASES |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4590206A (en) * | 1981-07-24 | 1986-05-20 | Fisons Plc | Inhalation pharmaceuticals |
| US4999182A (en) * | 1987-12-11 | 1991-03-12 | Rhone-Poulenc Chimie | Stabilized zirconia powders |
| US5637620A (en) * | 1993-08-27 | 1997-06-10 | Astra Aktiebolag | Micro formoterol particles |
| US5674860A (en) * | 1991-12-18 | 1997-10-07 | Astra Aktiebolag | Combination of a bronchodilator and a steroidal anti-inflammatory drug for the treatment of respiratory disorders |
| US6030604A (en) * | 1997-01-20 | 2000-02-29 | Astra Aktiebolag | Formulation for inhalation |
| US6051257A (en) * | 1997-02-24 | 2000-04-18 | Superior Micropowders, Llc | Powder batch of pharmaceutically-active particles and methods for making same |
| US6482438B1 (en) * | 1998-12-24 | 2002-11-19 | Smithkline Beecham Corporation | Apparatus and process for preparing crystalline particles |
| US20040052732A1 (en) * | 2000-10-06 | 2004-03-18 | Wiwik Watanabe | Combination particles for the treatment of asthma |
| US20040096516A1 (en) * | 1999-03-05 | 2004-05-20 | Chiesi Farmaceutici S.P.A. | Modified carrier particles for use in dry powder inhalers |
| US7267813B2 (en) * | 2000-10-06 | 2007-09-11 | Orion Corporation | Inhalation particles incorporating a combination of two or more active ingredients |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5096629A (en) | 1988-08-29 | 1992-03-17 | 501 Nippon Fine Chemical Co., Ltd. | Method for preparing lipid powder for use in preparing liposomes and method for preparing liposomes |
| FR2651678B1 (en) | 1989-09-08 | 1992-04-30 | Glaxo Group Ltd | PHARMACEUTICAL COMPOSITION BASED ON SALMETEROL AND BECLOMETASONE DIPROPIONATE. |
| IL95590A (en) | 1989-09-08 | 1996-06-18 | Glaxo Group Ltd | Pharmaceutical compositions comprising salmeterol and fluticasone propionate |
| IL104068A (en) | 1991-12-12 | 1998-10-30 | Glaxo Group Ltd | Surfactant-free pharmaceutical aerosol formulation comprising 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoro-n- propane as propellant |
| GB9606677D0 (en) | 1996-03-29 | 1996-06-05 | Glaxo Wellcome Inc | Process and device |
| ATE284677T1 (en) * | 1997-03-20 | 2005-01-15 | Schering Corp | PRODUCTION OF POWDER AGGLOMERATES |
| GB9903759D0 (en) | 1999-02-18 | 1999-04-14 | Novartis Ag | Organic compounds |
| FI20002217L (en) * | 1999-12-30 | 2001-07-01 | Orion Yhtymae Oyj | Inhalation particles |
-
2000
- 2000-10-06 FI FI20002215A patent/FI20002215A0/en unknown
-
2001
- 2001-10-05 DE DE60107862T patent/DE60107862T2/en not_active Expired - Lifetime
- 2001-10-05 EP EP01974367A patent/EP1322300B1/en not_active Revoked
- 2001-10-05 CA CA002424620A patent/CA2424620A1/en not_active Abandoned
- 2001-10-05 AT AT01974367T patent/ATE284680T1/en not_active IP Right Cessation
- 2001-10-05 JP JP2002532202A patent/JP4316873B2/en not_active Expired - Lifetime
- 2001-10-05 US US10/398,373 patent/US7267813B2/en not_active Expired - Lifetime
- 2001-10-05 WO PCT/FI2001/000863 patent/WO2002028377A1/en not_active Ceased
- 2001-10-05 AU AU2001293899A patent/AU2001293899A1/en not_active Abandoned
-
2007
- 2007-05-30 US US11/806,206 patent/US20080254127A1/en not_active Abandoned
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4590206A (en) * | 1981-07-24 | 1986-05-20 | Fisons Plc | Inhalation pharmaceuticals |
| US4999182A (en) * | 1987-12-11 | 1991-03-12 | Rhone-Poulenc Chimie | Stabilized zirconia powders |
| US5674860A (en) * | 1991-12-18 | 1997-10-07 | Astra Aktiebolag | Combination of a bronchodilator and a steroidal anti-inflammatory drug for the treatment of respiratory disorders |
| US5972919A (en) * | 1991-12-18 | 1999-10-26 | Astra Aktiebolag | Combination of a bronchodilator and a steroidal anti-inflammatory drug for the treatment of respiratory disorders, as well as its use and the preparation thereof |
| US5637620A (en) * | 1993-08-27 | 1997-06-10 | Astra Aktiebolag | Micro formoterol particles |
| US6287540B1 (en) * | 1997-01-20 | 2001-09-11 | Astra Aktiebolag | Formulation for inhalation |
| US6030604A (en) * | 1997-01-20 | 2000-02-29 | Astra Aktiebolag | Formulation for inhalation |
| US6051257A (en) * | 1997-02-24 | 2000-04-18 | Superior Micropowders, Llc | Powder batch of pharmaceutically-active particles and methods for making same |
| US6482438B1 (en) * | 1998-12-24 | 2002-11-19 | Smithkline Beecham Corporation | Apparatus and process for preparing crystalline particles |
| US20040096516A1 (en) * | 1999-03-05 | 2004-05-20 | Chiesi Farmaceutici S.P.A. | Modified carrier particles for use in dry powder inhalers |
| US20040052732A1 (en) * | 2000-10-06 | 2004-03-18 | Wiwik Watanabe | Combination particles for the treatment of asthma |
| US7172752B2 (en) * | 2000-10-06 | 2007-02-06 | Orion Corporation | Combination particles for the treatment of asthma |
| US7267813B2 (en) * | 2000-10-06 | 2007-09-11 | Orion Corporation | Inhalation particles incorporating a combination of two or more active ingredients |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7928089B2 (en) | 2003-09-15 | 2011-04-19 | Vectura Limited | Mucoactive agents for treating a pulmonary disease |
| US20100239507A1 (en) * | 2006-05-03 | 2010-09-23 | David P. Brown | Surface modified aerosol particles, a method and apparatus for production thereof and powders and dispersions containing said particles |
| US8349295B2 (en) * | 2006-05-03 | 2013-01-08 | Teicos Pharma Oy | Surface modified aerosol particles, a method and apparatus for production thereof and powders and dispersions containing said particles |
| US10716753B2 (en) | 2009-05-29 | 2020-07-21 | Pearl Therapeutics, Inc. | Compositions for pulmonary delivery of long-acting muscarinic antagonists or long-acting B2 adrenergic receptor agonists and associated methods and systems |
| WO2012107765A3 (en) * | 2011-02-09 | 2012-11-15 | Kuecept Ltd | Particle formulation |
| US12409180B2 (en) | 2022-02-21 | 2025-09-09 | Verona Pharma Plc | Formulation production process |
| US20240165054A1 (en) * | 2022-08-08 | 2024-05-23 | Verona Pharma Plc | Treatment |
| US12251384B1 (en) | 2023-06-26 | 2025-03-18 | Verona Pharma Plc | Particulate composition |
Also Published As
| Publication number | Publication date |
|---|---|
| DE60107862T2 (en) | 2005-12-15 |
| AU2001293899A1 (en) | 2002-04-15 |
| CA2424620A1 (en) | 2002-04-11 |
| FI20002215A0 (en) | 2000-10-06 |
| JP2004510731A (en) | 2004-04-08 |
| WO2002028377A1 (en) | 2002-04-11 |
| EP1322300B1 (en) | 2004-12-15 |
| DE60107862D1 (en) | 2005-01-20 |
| US7267813B2 (en) | 2007-09-11 |
| US20040028619A1 (en) | 2004-02-12 |
| ATE284680T1 (en) | 2005-01-15 |
| EP1322300A1 (en) | 2003-07-02 |
| JP4316873B2 (en) | 2009-08-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7267813B2 (en) | Inhalation particles incorporating a combination of two or more active ingredients | |
| US7172752B2 (en) | Combination particles for the treatment of asthma | |
| JP4728558B2 (en) | Method for producing nanoparticles | |
| KR100951750B1 (en) | Spray drying method and composition | |
| CN105101955B (en) | Composition comprising at least two dry powders obtained by spray drying to increase formulation stability | |
| KR20150135328A (en) | Tiotropium dry powders | |
| EP1242048B2 (en) | INHALATION PARTICLES: method of preparation | |
| CN107205936B (en) | Composition comprising at least one dry powder obtained by spray drying to increase formulation stability | |
| EP3689339A1 (en) | Jet milling method | |
| KR102449403B1 (en) | Pharmaceutical composition containing budesonide and formoterol | |
| WO2003002111A1 (en) | Inhalation particles | |
| Venthoye | Characterisation of an amorphous dry powder aerosol system | |
| Geerse et al. | Electrospray as means to produce monodisperse drug particles | |
| Schueller | Effects of particle surface modifications on dry powder formulation performances |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |