[go: up one dir, main page]

US20080163860A1 - Grate Bar and Grate for a Step-Grate Stoker - Google Patents

Grate Bar and Grate for a Step-Grate Stoker Download PDF

Info

Publication number
US20080163860A1
US20080163860A1 US11/912,909 US91290906A US2008163860A1 US 20080163860 A1 US20080163860 A1 US 20080163860A1 US 91290906 A US91290906 A US 91290906A US 2008163860 A1 US2008163860 A1 US 2008163860A1
Authority
US
United States
Prior art keywords
bar
flat part
grate
longitudinal projection
bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/912,909
Inventor
Andre Simper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SARETCO
Original Assignee
SARETCO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SARETCO filed Critical SARETCO
Assigned to SARETCO reassignment SARETCO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIMPER, ANDRE
Publication of US20080163860A1 publication Critical patent/US20080163860A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H17/00Details of grates
    • F23H17/12Fire-bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H1/00Grates with solid bars
    • F23H1/02Grates with solid bars having provision for air supply or air preheating, e.g. air-supply or blast fittings which form a part of the grate structure or serve as supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H15/00Cleaning arrangements for grates; Moving fuel along grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H17/00Details of grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H17/00Details of grates
    • F23H17/08Bearers; Frames; Spacers; Supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H3/00Grates with hollow bars
    • F23H3/04Grates with hollow bars externally cooled, e.g. with water, steam or air

Definitions

  • the subject of this present invention is a grate bar and a grate for a stepped-grate furnace stoker. Its principal application is in the field of furnaces for waste conversion units, such as common refuse, industrial, domestic, or hospital wastes, water treatment sludges, or indeed flour, for example.
  • waste conversion units such as common refuse, industrial, domestic, or hospital wastes, water treatment sludges, or indeed flour, for example.
  • Furnaces that have actually been designed for waste incineration have existed for many years, and have undergone constant development up to the present time. These include known furnaces such as grate furnaces, roller-hearth furnaces or fluidised-bed furnaces for example, in which the waste materials are emptied through a hopper onto a conveyor composed of mobile steps that blend and push the waste materials forward into the combustion chambers. These furnaces thus allow the combustion of the waste materials, and therefore a reduction in the production of pollution.
  • the furnace is the part in which the waste materials are dried and where their combustible content is oxidised.
  • An efficient furnace should be designed so that the waste materials are well distributed over the combustion bed, and are correctly blended. This blending is used to bring the waste materials into contact with the hot air coming from the furnace in order to dry them, to distil the volatile substances, and to break down the products into simple molecules that finish by attaining their ignition temperature.
  • the quality of the combustion is linked mainly to oxygen content, which must be sufficient, to the temperature, which must be high, to the controlled turbulence which must be sufficient for good combustion while avoiding the releases of dusts composed of flying ash, and to an adequate time of presence of the waste materials on the grate.
  • grates include bars whose main section has the shape of an inverted “U”, meaning a flat part and two lateral legs, which are assembled so as to form a mobile step-feed, in which some bars move in limited translation in relation to the others, so as to move the particles forward and to empty them out.
  • U inverted “U”
  • U inverted “U”
  • some bars move in limited translation in relation to the others, so as to move the particles forward and to empty them out.
  • One of the drawbacks of this type of bar is that the path that the particles must travel along the legs of the bars, before they are completely emptied out below these bars, is a long one. It corresponds in fact to the length of the legs of the bar.
  • One of the consequences is therefore that the particles are heated for longer and are liable to stick on, under, or between the bars.
  • these bars do not adequately prevent the progressive accumulation, between and under the bars, of the refractory materials. This accumulation can then, in particular, cause the shuttle motion of the bars to be paralysed. It can also give rise to the amplification of the separations between the bars, which contributes to blocking the movements of the grate and increases the difficulties of adjusting the combustion. In fact this can necessitate shut-down of the production in order to clean or change one or more bars, especially because of mechanical wear following this progressive accumulation of the refractory materials.
  • the problem that then rises is therefore how to prevent the progressive accumulation of the refractory materials between and under the bars, in order to arrange for efficient removal of these refractory materials, and so guarantee the relative movement of the bars, increase the life expectancy of each bar, and facilitate adjustment of the combustion.
  • the purpose of the invention is therefore to provide a solution to the aforementioned problems, amongst others.
  • the invention therefore relates to a grate bar for the firebox of an incineration furnace.
  • the bar includes a flat part whose top surface is intended to receive the incinerated elements and that extends into a rear end and a front end, each forming a return that acts as a support point for the bar.
  • the bar also includes a longitudinal projection located under the flat part, and that extends at least partially between the rear and front ends of the bar.
  • At least one angled cutting element, or knife is located under the flat part, on a first side of the longitudinal projection.
  • the bar of the invention includes at least one second angled cutting element located under the flat part, on a second side of the longitudinal projection.
  • the bar includes a multiplicity of angled cutting elements distributed under the flat part, on a first side or on each side of the longitudinal projection.
  • each of the angled cutting elements is located against the bottom surface of the said flat part and perpendicularly to this bottom surface, and/or each of these angled cutting elements is located against one or other side of the longitudinal projection ( 6 ) and perpendicularly to this side.
  • the angled cutting elements favour the removal of the refractory materials that accumulate progressively between, on, and under the bars.
  • the bar of the invention includes at least one wing positioned under the flat part, on a first side of the longitudinal projection.
  • this wing positioned under the flat part, is provided with at least one lateral hollow-out which, together with the lateral hollow-out of a wing of a first neighbouring bar, forms a passage for channelling the air up to the front end of the bar.
  • the bar of the invention includes at least one second wing positioned under the flat part, on a second side of the longitudinal projection.
  • This second wing is provided with a lateral hollow-out which, together with the lateral hollow-out of a wing of a second neighbouring bar, forms a second passage for channelling the air up to the front end of the bar.
  • the bar includes a multiplicity of wings distributed under the flat part, along the longitudinal projection, on a first side or on each side of this longitudinal projection.
  • These wings are provided with respective lateral hollow-outs which, together with the respective lateral hollow-outs in the wings the neighbouring bar or bars ( 9 , 13 ), form passages.
  • these passages form a channel for guiding the air up to the front end of the bar, on the first or on each side of the longitudinal projection.
  • the passages are outlined at the top, at least partially, by the bottom surface of the flat part, so that the channelled air runs just below this flat part.
  • the base of the front end of the bar has an attack angle a that is greater than 0°.
  • This attack angle a is preferably between 2° and 10°. Preferably again, this attack angle ⁇ is essentially equal to 3°.
  • the front end of the flat part is provided, on at least one of the sides of the longitudinal projection, with a fin for redirection of the air coming from the passage or passages formed by the lateral hollow-outs, to at least one channel located in the top part of the front end of the bar.
  • the channel starts at the bottom surface of the flat part and perpendicularly to the latter, and opens out onto the top of the top surface of the flat part, parallel to the latter.
  • the invention also relates to a grate for the firebox of an incineration furnace that includes at least one bar according to the first aspect of the invention presented above.
  • the grate includes at least one group of three bars according to the first aspect of the invention presented above, with the central bar in this group being mobile in relation to the two lateral bars in the group.
  • the bars in at least one of the groups are assembled by means of a dowelling or pinning technique that locks the two lateral bars in relation to each other, and that leaves the central bar free in translation, between two extreme positions, in relation to the two lateral bars.
  • the invention therefore advantageously allows the removal of refractory materials that accumulate progressively between, on, and under the bars.
  • the structure with a flat part and a longitudinal projection under this flat part that provides the assembly with a main section, in the shape of a “T” results in a short removal path of the particles between each bar
  • the presence of the angled cutting elements results in cutting up any particles that might accumulate between the bars.
  • the presence of wings under the flat part allows the creation, under the grate, of channels that direct the air running under the bars of this grate.
  • the formation of these channels, and therefore the advantageous circulation of the air under a bar thus depends on the juxtaposition of this bar with the adjoining bars. This better circulation of air cools the assembly while also favouring and activating the combustion, since the oxidising air is channelled toward the front end of the bar.
  • the shape, the position, and the number of wings combine to accelerate cooling of the bar from below.
  • the shape of the front end of the bar in particular with the presence of the fin for redirection of the air coming from the passages formed by the lateral hollow-outs, to a channel located in the top part of the front end of the bar, results in efficient blowing of the oxidising air, at the surface of the flat part, toward the rear end of the bar, and therefore of the grate, so that the air is blown in the direction of removal of the products.
  • the angle of attack of the front end of the bar prevents the accumulation of particles at this point and therefore the lifting of the bar.
  • FIG. 1 schematically represents a set of three bars according to the invention, in cross section,
  • FIG. 2 schematically represents a portion of a bar according to the invention, in perspective
  • FIG. 3 a schematically represents a portion of a bar according to the invention, as seen from the side,
  • FIG. 3 b schematically represents a portion of a bar according to the invention, as seen from above and in perspective,
  • FIG. 4 schematically represents the front end of a bar according to the invention, as seen from the side,
  • FIG. 5 a schematically represents a grate formed from several bars assembled according to the invention, as seen from below,
  • FIG. 5 b schematically represents a detail of the assembly of three bars according to the invention, as seen from below.
  • FIG. 1 schematically represents a set of three bars according to the invention, in cross section.
  • each bar has the shape of “T” with, in the case of bar 1 , a flat part 3 that surmounts a longitudinal projection 6 .
  • This main section, in the shape of a “T”, offers, amongst other advantages, an optimised level of geometrical and mechanical precision, and a good resistance to high-temperature deformations, due to its moment of inertia.
  • the material used is preferably a refractory alloy that offers high resistance to abrasion when hot, to corrosion when hot, to oxidation, and to thermal shock.
  • a method of manufacture by casting allows the implementation of such highly alloyed and refractory alloys.
  • the main section, in the shape of a “T”, which is totally removable from its mould, allows the use of a “natural” casting method that has the particular advantage of being comparatively more convenient than other methods of casting that are more complex.
  • a first wing 7 is positioned on a first side 6 a of the longitudinal projection 6
  • a second wing 11 can be positioned on another side 6 b of this longitudinal projection 6
  • the wings 7 , 11 respectively have lateral hollow-outs 7 a , 11 a.
  • the adjoining bars 9 , 13 also respectively have wings 8 , 12 .
  • Wing 8 which is opposite to wing 7 of bar 1
  • Wing 12 has a lateral hollow-out 8 a that is opposite to the lateral hollow-out 7 a of wing 7 of bar 1
  • Wing 12 which is opposite to wing 11 of bar 1
  • a passage 10 is formed between bar 1 and bar 9
  • a passage 14 is formed between bar 1 and bar 13 .
  • the position of the lateral hollow-outs in the wings meaning the top corner opposite to the longitudinal projection of the bar to which each wing belongs, precisely allows the creation of passages just below the respective flat parts of the bars. The purpose of these passages is to channel the air up to the front end of each bar.
  • FIG. 2 schematically represents a portion of a bar according to the invention, in perspective.
  • bar 1 also represented in FIG. 2 , we find the flat part 3 and the longitudinal projection 6 .
  • a bar 1 extends to a front end 5 forming a return that acts as a support point in the case of bar 1 .
  • This figure also shows that the longitudinal projection 6 actually extends under the flat part 3 from the front end 5 in the direction of the rear end (not shown). It could possibly extend only partially under the flat part 3 between the front end and the rear end.
  • wings 7 , 7 ′ and 7 ′′ On one side 6 a or on each side 6 a , 6 b of the longitudinal projection 6 , several wings can be positioned, namely wings 7 , 7 ′ and 7 ′′ on a first side 6 a , and wings 11 , 11 ′ and 11 ′′ on the other side 6 b .
  • Wings 7 , 7 ′ and 7 ′′ respectively have lateral hollow-outs 7 a , 7 a ′, 7 a ′′.
  • Wings 11 , 11 ′, and 11 ′′ respectively have lateral hollow-outs 11 a, 11 a′ , 11 a′′, which are shown only partially due to the perspective view.
  • the succession of lateral hollow-outs on each side of the longitudinal projection 6 in combination with the succession of lateral hollow-outs in the adjoining bars (not shown in FIG. 2 ), form, on each side of this longitudinal projection 6 , and between bar 1 and its adjoining bars, a channel for guiding the air up to the front end 5 .
  • wings 7 , 7 ′ and 7 ′′ and 11 , 11 ′, 11 ′′ are represented perpendicularly to the longitudinal projection 6 , and slightly inclined in relation to the flat part 3 , at the rear end (not shown) of bar 1 .
  • This position is only an example however and does not limit the scope of the invention. In fact, these wings could just as well be positioned in an inclined manner, to the rear for example, in relation to the longitudinal projection 6 , and perpendicularly to the flat part 3 .
  • the position in the example of FIG. 2 nevertheless gives good results in relation to the objective sought, namely cooling of bar 1 by the oxidising air running between the wings.
  • the arrows shown in FIG. 2 symbolise the circulation of this oxidising air between the wings, in order to favour cooling of the bar.
  • FIG. 2 also shows angled cutting elements 15 , 15 ′, 15 ′′, which can also be called just angled elements or knives, on the side 6 a of the longitudinal projection 6 , under the flat part 3 .
  • angled cutting elements 15 , 15 ′, 15 ′′ which can also be called just angled elements or knives, on the side 6 a of the longitudinal projection 6 , under the flat part 3 .
  • An appropriate position is one that results in an effective ability to cut any particles between an angled element of one bar and an angled element of a neighbouring bar.
  • a bar 1 can also have one or more of these angled elements on the other side 6 b of this longitudinal projection 6 , which are not visible here due to the perspective view.
  • these angled elements or knives 15 , 15 ′, 15 ′′ are located against the bottom surface 3 b of the flat part 3 , perpendicularly to the latter.
  • they can be placed against the side 6 a or 6 b of the longitudinal projection 6 , perpendicularly to this side.
  • FIG. 3 a schematically represents a portion of a bar according to the invention, as seen from the side.
  • the angled elements 15 , 15 ′, 15 ′′ are shown by solid lines, and the angled elements on the other side of the longitudinal projection 6 and/or of a neighbouring are shown by broken lines (but not referenced).
  • FIG. 3 b schematically represents a portion of a bar according to the invention, as seen from below and in perspective.
  • the angled elements are positioned precisely under the flat part 3 , against and perpendicularly to the bottom surface 3 b of this flat part 3 . They are distributed on each side of the longitudinal projection 6 , respectively against and perpendicularly to the sides of this longitudinal projection 6 .
  • FIG. 4 schematically represents the front end of a bar according to the invention, as seen from the side.
  • the front end 5 of the bar forms a return whose base 5 a acts as a support point for the bar.
  • This base 5 a has an attack angle ⁇ that is greater than 0°.
  • an effective angle of attack will be between 2° and 10°.
  • a particularly good result is achieved with an angle of attack that is essentially equal to 3°.
  • this front end 5 of the bar also has a fin 16 for redirection of the air (redirection being symbolised by the upwardly-pointing arrow) coming from the passages formed by the lateral hollow-outs in the wings (not shown) along the longitudinal projection 6 .
  • the internal curved shape of this fin 16 actually favours the redirection of the air.
  • This air is redirected to a channel 18 , on one side, or on each side, of the longitudinal projection 6 .
  • This channel 18 starts at the bottom surface 3 b of the flat part 3 , perpendicularly to this flat part 3 . It then emerges at the top of the top surface 3 a of the flat part 3 , parallel to this flat part 3 .
  • the air exiting from this channel 18 is symbolised by the arrow in the direction of the rear end (not shown) of the bar.
  • This channel 18 can have a circular section, possibly with an input diameter, meaning at the bottom surface 3 b of the flat part 3 , that is greater than its output diameter, meaning at the top of the top surface 3 a of the flat part 3 .
  • the oxidising air is blown in an optimised manner to the rear, meaning in the direction of removal of the products.
  • FIG. 5 a schematically represents a grate formed from several bars assembled according to the invention, as seen from below.
  • grate 2 includes two groups 20 , 20 ′ each of three bars, 1 , 9 , 13 and 1 ′, 9 ′, 13 ′ respectively.
  • the central bar 1 or 1 ′ is mobile in relation to the lateral bars 9 , 13 or 9 ′, 13 ′ which remain fixed.
  • the movements of these central bars 1 , 1 ′ relatively to their respective adjoining bars 9 , 13 and 9 ′, 13 ′ are symbolised by arrows in the direction of the longitudinal axis of the bars, in both directions.
  • Assembly of the bars in each group is effected by means of a dowelling or pinning technique 21 , 22 , 23 for group 20 , highlighted in the circled zone D, which will be described in greater detail with reference to FIG. 5 b , and 21 ′, 22 ′ and 23 ′ for group 20 ′.
  • FIG. 5 b therefore schematically represents zone D of the assembly of the three bars 1 , 9 , 13 of group 20 in FIG. 5 a , as seen from below.
  • Assembly is effected at the front ends of the bars by means of a dowelling or pinning technique that include a threaded axial rod 21 and two locking pins, one 22 at the level of a first lateral bar 9 with a right-hand thread, and the other 23 at the other lateral bar 13 with a left-hand thread.
  • the round heads of the pins 22 , 23 each have a locking flat part (reference 25 for pin 22 in FIG. 5 a ), and each fit into a circular housing (reference 26 for the head 24 of pin 22 in FIG. 5 a ) provided in the longitudinal projection of each bar 9 , 13 , with these circular housings each also having a locking flat part.
  • the role of these locking flats is in fact to lock the bars, both in rotation about the axis of the rod 21 , and in the translation of one neighbouring bar 9 in relation to the other neighbouring bar 13 .
  • each bar has a longitudinal extension at the rear in the form of a groove 27 of sufficient width to allow the passage of the rod 21 .
  • this assembly system by means of a dowelling or pinning technique provides for the freedom in translation of the central bar l, 1 ′ in each group 20 , 20 ′, between two extreme positions, in relation to the two lateral 9 , 13 and 9 ′, 13 ′ respectively.
  • the travel in translation of the central bars 1 , 1 ′ is limited by the length of the groove 27 .
  • the limited translation movement described above which is essential for efficient removal of the particles, which must not be pushed to the outside, as well as for effective and well distributed combustion on the grate, is rendered possible and controlled by the assembly system just described. All of the description above is given by way of an example, and does not limit the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)

Abstract

A grate bar and a grate for a stepped-grate furnace stoker. The grate bar includes a flat part whose top surface is used to receive the incinerated elements, and the extends into a rear end and a front end, each forming a return that acts as a support point for the bar. The bar also includes a longitudinal projection located under the flat part, and that extends at least partially between the rear and front ends of the bar. At least one angled cutting element or knife is located under the flat part, on a first side of the longitudinal projection, whose function is to facilitate the removal of the refractory materials that have accumulated progressively. The grate includes at least one bar or group of three bars. In the second case, the central bar in the group is mobile in relation to the two lateral bars.

Description

  • The subject of this present invention is a grate bar and a grate for a stepped-grate furnace stoker. Its principal application is in the field of furnaces for waste conversion units, such as common refuse, industrial, domestic, or hospital wastes, water treatment sludges, or indeed flour, for example.
  • The question of waste incineration has long been a problem in our societies, which are producing more and more of it. Furnaces that have actually been designed for waste incineration have existed for many years, and have undergone constant development up to the present time. These include known furnaces such as grate furnaces, roller-hearth furnaces or fluidised-bed furnaces for example, in which the waste materials are emptied through a hopper onto a conveyor composed of mobile steps that blend and push the waste materials forward into the combustion chambers. These furnaces thus allow the combustion of the waste materials, and therefore a reduction in the production of pollution. Nowadays, we speak of the recovery or re-use of waste materials. In fact, we no longer merely seek to make it disappear or to reduce its volume significantly, but also to recover the energy that comes from the combustion process. In a recovery unit, the furnace is the part in which the waste materials are dried and where their combustible content is oxidised. An efficient furnace should be designed so that the waste materials are well distributed over the combustion bed, and are correctly blended. This blending is used to bring the waste materials into contact with the hot air coming from the furnace in order to dry them, to distil the volatile substances, and to break down the products into simple molecules that finish by attaining their ignition temperature. The quality of the combustion is linked mainly to oxygen content, which must be sufficient, to the temperature, which must be high, to the controlled turbulence which must be sufficient for good combustion while avoiding the releases of dusts composed of flying ash, and to an adequate time of presence of the waste materials on the grate.
  • Most of the known grates include bars whose main section has the shape of an inverted “U”, meaning a flat part and two lateral legs, which are assembled so as to form a mobile step-feed, in which some bars move in limited translation in relation to the others, so as to move the particles forward and to empty them out. One of the drawbacks of this type of bar is that the path that the particles must travel along the legs of the bars, before they are completely emptied out below these bars, is a long one. It corresponds in fact to the length of the legs of the bar. One of the consequences is therefore that the particles are heated for longer and are liable to stick on, under, or between the bars.
  • We know of some grates whose bars have a main section, in the shape of a “T”, meaning with a flat part and a longitudinal part projecting below the flat part. These bars partially limit the aforementioned drawback of the bars whose main section is in the shape of an inverted “U”, since the path travelled by the particles being removed between the bars corresponds to the thickness of the flat part, and therefore is shorter.
  • However, these bars do not adequately prevent the progressive accumulation, between and under the bars, of the refractory materials. This accumulation can then, in particular, cause the shuttle motion of the bars to be paralysed. It can also give rise to the amplification of the separations between the bars, which contributes to blocking the movements of the grate and increases the difficulties of adjusting the combustion. In fact this can necessitate shut-down of the production in order to clean or change one or more bars, especially because of mechanical wear following this progressive accumulation of the refractory materials.
  • The problem that then rises is therefore how to prevent the progressive accumulation of the refractory materials between and under the bars, in order to arrange for efficient removal of these refractory materials, and so guarantee the relative movement of the bars, increase the life expectancy of each bar, and facilitate adjustment of the combustion.
  • The purpose of the invention is therefore to provide a solution to the aforementioned problems, amongst others.
  • According to a first aspect, the invention therefore relates to a grate bar for the firebox of an incineration furnace. The bar includes a flat part whose top surface is intended to receive the incinerated elements and that extends into a rear end and a front end, each forming a return that acts as a support point for the bar. The bar also includes a longitudinal projection located under the flat part, and that extends at least partially between the rear and front ends of the bar.
  • In a characteristic manner, at least one angled cutting element, or knife, is located under the flat part, on a first side of the longitudinal projection.
  • In a first variant, the bar of the invention includes at least one second angled cutting element located under the flat part, on a second side of the longitudinal projection.
  • Preferably, the bar includes a multiplicity of angled cutting elements distributed under the flat part, on a first side or on each side of the longitudinal projection.
  • Again preferably, each of the angled cutting elements is located against the bottom surface of the said flat part and perpendicularly to this bottom surface, and/or each of these angled cutting elements is located against one or other side of the longitudinal projection (6) and perpendicularly to this side.
  • Thus, during the relative movements of a bar in relation to the neighbouring bar, the angled cutting elements favour the removal of the refractory materials that accumulate progressively between, on, and under the bars.
  • In another variant, possibly in combination with one or more of any of the previous variants, the bar of the invention includes at least one wing positioned under the flat part, on a first side of the longitudinal projection.
  • Preferably, this wing, positioned under the flat part, is provided with at least one lateral hollow-out which, together with the lateral hollow-out of a wing of a first neighbouring bar, forms a passage for channelling the air up to the front end of the bar.
  • In another variant, possibly in combination with one or more of any of the previous variants, the bar of the invention includes at least one second wing positioned under the flat part, on a second side of the longitudinal projection. This second wing is provided with a lateral hollow-out which, together with the lateral hollow-out of a wing of a second neighbouring bar, forms a second passage for channelling the air up to the front end of the bar.
  • Preferably, the bar includes a multiplicity of wings distributed under the flat part, along the longitudinal projection, on a first side or on each side of this longitudinal projection. These wings are provided with respective lateral hollow-outs which, together with the respective lateral hollow-outs in the wings the neighbouring bar or bars (9, 13), form passages. In their turn, these passages form a channel for guiding the air up to the front end of the bar, on the first or on each side of the longitudinal projection.
  • In another variant, possibly in combination with one or more of any of the previous variants, the passages are outlined at the top, at least partially, by the bottom surface of the flat part, so that the channelled air runs just below this flat part.
  • In another variant, possibly in combination with one or more of any of the previous variants, the base of the front end of the bar has an attack angle a that is greater than 0°.
  • This attack angle a is preferably between 2° and 10°. Preferably again, this attack angle α is essentially equal to 3°.
  • In another variant, possibly in combination with one or more of any of the previous variants, the front end of the flat part is provided, on at least one of the sides of the longitudinal projection, with a fin for redirection of the air coming from the passage or passages formed by the lateral hollow-outs, to at least one channel located in the top part of the front end of the bar.
  • Preferably, the channel starts at the bottom surface of the flat part and perpendicularly to the latter, and opens out onto the top of the top surface of the flat part, parallel to the latter.
  • According to a second aspect, the invention also relates to a grate for the firebox of an incineration furnace that includes at least one bar according to the first aspect of the invention presented above.
  • In an implementation variant, the grate includes at least one group of three bars according to the first aspect of the invention presented above, with the central bar in this group being mobile in relation to the two lateral bars in the group.
  • Preferably, the bars in at least one of the groups are assembled by means of a dowelling or pinning technique that locks the two lateral bars in relation to each other, and that leaves the central bar free in translation, between two extreme positions, in relation to the two lateral bars.
  • In particular during the relative movements of one bar in relation to the neighbouring bar, the invention therefore advantageously allows the removal of refractory materials that accumulate progressively between, on, and under the bars. In fact, firstly the structure with a flat part and a longitudinal projection under this flat part that provides the assembly with a main section, in the shape of a “T”, results in a short removal path of the particles between each bar, and secondly, during the relative movements of the bars in relation to each other, the presence of the angled cutting elements results in cutting up any particles that might accumulate between the bars.
  • Thus paralysis of the shuttle motion of the bars, amplification of the separations between the bars, and therefore blocking of the movements of the grate, are thus avoided. Adjustment of the combustion is therefore facilitated. In addition, the mechanical wear on the bars is reduced, since this accumulation of the refractory materials is avoided, and the halting of production in order to clean or change one or more bars is therefore less frequent.
  • In addition, the presence of wings under the flat part, as explained earlier, allows the creation, under the grate, of channels that direct the air running under the bars of this grate. The formation of these channels, and therefore the advantageous circulation of the air under a bar, thus depends on the juxtaposition of this bar with the adjoining bars. This better circulation of air cools the assembly while also favouring and activating the combustion, since the oxidising air is channelled toward the front end of the bar.
  • The shape, the position, and the number of wings combine to accelerate cooling of the bar from below.
  • The shape of the front end of the bar, in particular with the presence of the fin for redirection of the air coming from the passages formed by the lateral hollow-outs, to a channel located in the top part of the front end of the bar, results in efficient blowing of the oxidising air, at the surface of the flat part, toward the rear end of the bar, and therefore of the grate, so that the air is blown in the direction of removal of the products.
  • The angle of attack of the front end of the bar prevents the accumulation of particles at this point and therefore the lifting of the bar.
  • All these advantages therefore considerably reduce the risk of blocking the relative movements of the bars, since these movements are essential for efficient removal of the particles, which must not be pushed to the outside, as well as for effective and well distributed combustion on the grate.
  • These limited relative movements are rendered possible and controlled by means of a dowelling or pinning technique.
  • Other characteristics and advantages of the invention will appear more clearly and more completely on reading the description that follows of preferred variants of implementation of the system, which are given by way of non limiting examples and with reference the following appended drawings.
  • FIG. 1 schematically represents a set of three bars according to the invention, in cross section,
  • FIG. 2 schematically represents a portion of a bar according to the invention, in perspective,
  • FIG. 3 a schematically represents a portion of a bar according to the invention, as seen from the side,
  • FIG. 3 b schematically represents a portion of a bar according to the invention, as seen from above and in perspective,
  • FIG. 4 schematically represents the front end of a bar according to the invention, as seen from the side,
  • FIG. 5 a schematically represents a grate formed from several bars assembled according to the invention, as seen from below,
  • FIG. 5 b schematically represents a detail of the assembly of three bars according to the invention, as seen from below.
  • FIG. 1 schematically represents a set of three bars according to the invention, in cross section.
  • Three bars 1, 9, 13 are represented in this figure. It can be seen that the main section of each bar has the shape of “T” with, in the case of bar 1, a flat part 3 that surmounts a longitudinal projection 6. This main section, in the shape of a “T”, offers, amongst other advantages, an optimised level of geometrical and mechanical precision, and a good resistance to high-temperature deformations, due to its moment of inertia.
  • The material used is preferably a refractory alloy that offers high resistance to abrasion when hot, to corrosion when hot, to oxidation, and to thermal shock. A method of manufacture by casting allows the implementation of such highly alloyed and refractory alloys. The main section, in the shape of a “T”, which is totally removable from its mould, allows the use of a “natural” casting method that has the particular advantage of being comparatively more convenient than other methods of casting that are more complex.
  • Under the flat part 3, a first wing 7 is positioned on a first side 6 a of the longitudinal projection 6, and a second wing 11 can be positioned on another side 6 b of this longitudinal projection 6. The wings 7, 11 respectively have lateral hollow- outs 7 a, 11 a. The adjoining bars 9, 13 also respectively have wings 8, 12. Wing 8, which is opposite to wing 7 of bar 1, has a lateral hollow-out 8 a that is opposite to the lateral hollow-out 7 a of wing 7 of bar 1. Wing 12, which is opposite to wing 11 of bar 1, has a lateral hollow-out 12 a that is opposite to the lateral element 11 a of wing 11 of bar 1.
  • Thus, a passage 10 is formed between bar 1 and bar 9, and a passage 14 is formed between bar 1 and bar 13. The position of the lateral hollow-outs in the wings, meaning the top corner opposite to the longitudinal projection of the bar to which each wing belongs, precisely allows the creation of passages just below the respective flat parts of the bars. The purpose of these passages is to channel the air up to the front end of each bar.
  • FIG. 2 schematically represents a portion of a bar according to the invention, in perspective.
  • In bar 1, also represented in FIG. 2, we find the flat part 3 and the longitudinal projection 6. A bar 1 extends to a front end 5 forming a return that acts as a support point in the case of bar 1. This figure also shows that the longitudinal projection 6 actually extends under the flat part 3 from the front end 5 in the direction of the rear end (not shown). It could possibly extend only partially under the flat part 3 between the front end and the rear end.
  • On one side 6 a or on each side 6 a, 6 b of the longitudinal projection 6, several wings can be positioned, namely wings 7, 7′ and 7″ on a first side 6 a, and wings 11, 11′ and 11″ on the other side 6 b. Wings 7, 7′ and 7″ respectively have lateral hollow- outs 7 a, 7 a′, 7 a″. Wings 11, 11′, and 11″ respectively have lateral hollow- outs 11 a, 11 a′, 11 a″, which are shown only partially due to the perspective view.
  • The succession of lateral hollow-outs on each side of the longitudinal projection 6, in combination with the succession of lateral hollow-outs in the adjoining bars (not shown in FIG. 2), form, on each side of this longitudinal projection 6, and between bar 1 and its adjoining bars, a channel for guiding the air up to the front end 5.
  • The number of these wings on each side of the longitudinal projection 6 does not limit the invention of course, since bar 1 is not shown over all of its length. The number of these wings will depend essentially on the length of bar 1. In fact, this is an important parameter for accelerating the cooling of bar 1.
  • In this figure, wings 7, 7′ and 7″ and 11, 11′, 11″ are represented perpendicularly to the longitudinal projection 6, and slightly inclined in relation to the flat part 3, at the rear end (not shown) of bar 1. This position is only an example however and does not limit the scope of the invention. In fact, these wings could just as well be positioned in an inclined manner, to the rear for example, in relation to the longitudinal projection 6, and perpendicularly to the flat part 3. The position in the example of FIG. 2 nevertheless gives good results in relation to the objective sought, namely cooling of bar 1 by the oxidising air running between the wings.
  • The arrows shown in FIG. 2 symbolise the circulation of this oxidising air between the wings, in order to favour cooling of the bar.
  • In addition, FIG. 2 also shows angled cutting elements 15, 15′, 15″, which can also be called just angled elements or knives, on the side 6 a of the longitudinal projection 6, under the flat part 3. Here again, the number and the position of these angled elements place no limitation on the invention. An appropriate position is one that results in an effective ability to cut any particles between an angled element of one bar and an angled element of a neighbouring bar.
  • A bar 1 can also have one or more of these angled elements on the other side 6 b of this longitudinal projection 6, which are not visible here due to the perspective view.
  • Ideally, these angled elements or knives 15, 15′, 15″ are located against the bottom surface 3 b of the flat part 3, perpendicularly to the latter.
  • Preferably, they can be placed against the side 6 a or 6 b of the longitudinal projection 6, perpendicularly to this side.
  • These angled elements, which therefore play the role of knives, are thus used, during the relative movements of the bars in relation to each other, to cut any particles that might accumulate between the bars, by shearing these particles between a knife located on a first side of a given bar and a knife located on the side of a neighbouring bar adjacent to the first side of the given bar.
  • FIG. 3 a schematically represents a portion of a bar according to the invention, as seen from the side.
  • It highlights the inclination of wings 7, 7′ and 7″ under the flat part 3, to the rear end (not shown and inverted in relation to FIG. 2), and perpendicularly to the longitudinal projection 6. The lateral hollow- outs 7 a, 7 a′, 7 a″ are also represented.
  • The angled elements 15, 15′, 15″ are shown by solid lines, and the angled elements on the other side of the longitudinal projection 6 and/or of a neighbouring are shown by broken lines (but not referenced).
  • FIG. 3 b schematically represents a portion of a bar according to the invention, as seen from below and in perspective.
  • It highlights the distribution of the angled elements on each side of the longitudinal projection 6, in one particular embodiment. In the latter, the angled elements are positioned precisely under the flat part 3, against and perpendicularly to the bottom surface 3 b of this flat part 3. They are distributed on each side of the longitudinal projection 6, respectively against and perpendicularly to the sides of this longitudinal projection 6.
  • FIG. 4 schematically represents the front end of a bar according to the invention, as seen from the side.
  • The front end 5 of the bar forms a return whose base 5 a acts as a support point for the bar. This base 5 a has an attack angle α that is greater than 0°. Thus, during the movements in longitudinal translation of the bars in relation to each other, this angle of attack prevents the accumulation of particles under the front end 5 of the bar and therefore the lifting of this bar.
  • Preferably, an effective angle of attack will be between 2° and 10°. A particularly good result is achieved with an angle of attack that is essentially equal to 3°.
  • On one side, or on each side, of the longitudinal projection 6, this front end 5 of the bar also has a fin 16 for redirection of the air (redirection being symbolised by the upwardly-pointing arrow) coming from the passages formed by the lateral hollow-outs in the wings (not shown) along the longitudinal projection 6. The internal curved shape of this fin 16 actually favours the redirection of the air. This air is redirected to a channel 18, on one side, or on each side, of the longitudinal projection 6. This channel 18 starts at the bottom surface 3 b of the flat part 3, perpendicularly to this flat part 3. It then emerges at the top of the top surface 3 a of the flat part 3, parallel to this flat part 3. The air exiting from this channel 18 is symbolised by the arrow in the direction of the rear end (not shown) of the bar.
  • This channel 18 can have a circular section, possibly with an input diameter, meaning at the bottom surface 3 b of the flat part 3, that is greater than its output diameter, meaning at the top of the top surface 3 a of the flat part 3.
  • Thus, the oxidising air is blown in an optimised manner to the rear, meaning in the direction of removal of the products.
  • FIG. 5 a schematically represents a grate formed from several bars assembled according to the invention, as seen from below.
  • In this figure, grate 2 includes two groups 20, 20′ each of three bars, 1, 9, 13 and 1′, 9′, 13′ respectively. In each of these groups, the central bar 1 or 1′ is mobile in relation to the lateral bars 9, 13 or 9′, 13′ which remain fixed. The movements of these central bars 1, 1′ relatively to their respective adjoining bars 9, 13 and 9′, 13′ are symbolised by arrows in the direction of the longitudinal axis of the bars, in both directions.
  • Assembly of the bars in each group is effected by means of a dowelling or pinning technique 21, 22, 23 for group 20, highlighted in the circled zone D, which will be described in greater detail with reference to FIG. 5 b, and 21′, 22′ and 23′ for group 20′.
  • FIG. 5 b therefore schematically represents zone D of the assembly of the three bars 1, 9, 13 of group 20 in FIG. 5 a, as seen from below.
  • Assembly is effected at the front ends of the bars by means of a dowelling or pinning technique that include a threaded axial rod 21 and two locking pins, one 22 at the level of a first lateral bar 9 with a right-hand thread, and the other 23 at the other lateral bar 13 with a left-hand thread. The round heads of the pins 22, 23 (the head of the pin 22 is referenced 24 in FIG. 5 a) each have a locking flat part (reference 25 for pin 22 in FIG. 5 a), and each fit into a circular housing (reference 26 for the head 24 of pin 22 in FIG. 5 a) provided in the longitudinal projection of each bar 9, 13, with these circular housings each also having a locking flat part. The role of these locking flats is in fact to lock the bars, both in rotation about the axis of the rod 21, and in the translation of one neighbouring bar 9 in relation to the other neighbouring bar 13.
  • In addition, the circular housings in the longitudinal projection of each bar have a longitudinal extension at the rear in the form of a groove 27 of sufficient width to allow the passage of the rod 21.
  • Thus, this assembly system by means of a dowelling or pinning technique provides for the freedom in translation of the central bar l, 1′ in each group 20, 20′, between two extreme positions, in relation to the two lateral 9, 13 and 9′, 13′ respectively. In fact the travel in translation of the central bars 1, 1′ is limited by the length of the groove 27. Thus, the limited translation movement described above, which is essential for efficient removal of the particles, which must not be pushed to the outside, as well as for effective and well distributed combustion on the grate, is rendered possible and controlled by the assembly system just described. All of the description above is given by way of an example, and does not limit the scope of the invention.

Claims (16)

1. A bar for a grate in the firebox of an incineration furnace that includes;
a flat part whose top surface is intended to receive the elements to be incinerated, with said flat part extending in a rear end and a front end each forming a return that acts as a support point for said bar,
a longitudinal projection located under said flat part and that extends at least partially between said rear and front ends,
at least one angled cutting element located under said flat part, against and perpendicularly to a first side of said longitudinal projection,
wherein said angled element has a cross section in the shape of an essentially right-angle triangle, with firstly a first face essentially perpendicular to the bottom surface of said flat part forming a cutting angle, and secondly a second face forming an angle non perpendicular to the bottom surface of said flat part forming an expulsion angle.
2. A bar according to claim 1, including at least one second angled cutting element located under said flat part, against and perpendicularly to a second side of said longitudinal projection, with said second angled cutting element having a cross section in the shape of an essentially right-angle triangle, with firstly a first face essentially perpendicular to the bottom surface of said flat part forming a cutting angle, and secondly a second face forming an angle that is not perpendicular to the bottom surface of said flat part, forming an expulsion angle.
3. A bar according to claim 1, including a multiplicity of angled cutting element distributed under said flat part, against and perpendicularly to one or other of the first and second sides of said longitudinal projection, with said angled cutting elements having a cross section in the shape of an essentially right-angle triangle, with firstly a first face that is essentially perpendicular to the bottom surface of said flat part forming a cutting angle, and secondly a second face forming an angle that is not perpendicular to the bottom surface of said flat part, forming an expulsion angle.
4. A bar according to claim 1, including at least one wing positioned under said flat part, on a first side of said longitudinal projection.
5. A bar according to claim 1, wherein said wing is provided with at least one lateral hollow-out so that this lateral hollow-out, together with the lateral hollow-out of a wing of a first adjacent bar of said bar, forms a passage for channelling the air up to said front end of said bar.
6. A bar according to claim 5, including at least one second wing positioned under said flat part, on a second side of said longitudinal projection, with said second wing being provided with a lateral hollow-out which, together with the lateral hollow-out of a wing of a second adjacent bar of said bar, forms a second passage for channelling the air up to said front end of said bar.
7. A bar according to claim 5, including a multiplicity of wings distributed under said flat part, along said longitudinal projection, on a first side or on each side of said longitudinal projection, with said wings being provided with respective lateral hollow-outs which, together with the respective lateral hollow-outs of the wings of the neighbouring bar or bars of said bar, form passages, with said passages forming, on said first side or on each side of said longitudinal projection, a channel for guiding the air up to said front end of the said bar.
8. A bar according to claim 5, wherein said passage or passages are outlined at the top at least partially by the bottom surface of said flat part, so that the channelled air circulates just below said flat part.
9. A bar according to claim 1, wherein the base of said front end of said flat part has an attack angle that is greater than 0°.
10. A bar according to claim 9, wherein said attack angle is between 2° and 10°.
11. A bar according to claim 1, wherein said front end of said flat part is provided, on at least one of the sides of said longitudinal projection, with a fin for redirection of the air coming from said passage or passages, to at least one channel located in the top part of said front end of said flat part.
12. A bar according to claim 11, wherein said channel starts at the bottom surface of said flat part and perpendicularly to said flat part, and opens out onto the top of the top surface of said flat part, parallel to said flat part.
13. A grate for the firebox of an incineration furnace, wherein the grate includes at least one bar according to claim 1.
14. A grate for the firebox of an incineration furnace, wherein the grate includes at least one group of three according to claim 1, with the central bar in said group being mobile in relation to the two lateral bars in said group.
15. A grate for the firebox of an incineration furnace according to claim 14, wherein each angled cutting element on one side of a central bar is symmetrical and offset in relation to the angled cutting element, on the side of a lateral bar, with which it mates when the central bar is in movement in relation to the lateral bar.
16. A grate according to claim 14, wherein said bars in at least one of said groups are assembled by means of a dowelling or pinning technique that locks the two lateral bars in relation to each other, and that leaves the central bar free in translation, between two extreme positions, in relation to the two lateral bars.
US11/912,909 2005-05-03 2006-05-03 Grate Bar and Grate for a Step-Grate Stoker Abandoned US20080163860A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0504504 2005-05-03
FR0504504A FR2885403A1 (en) 2005-05-03 2005-05-03 GRID BAR AND GRID FOR FIREPLACE WITH SOLIDARITY GRADES
PCT/FR2006/000993 WO2006117478A1 (en) 2005-05-03 2006-05-03 Grate bar and grate for a step-grate stoker

Publications (1)

Publication Number Publication Date
US20080163860A1 true US20080163860A1 (en) 2008-07-10

Family

ID=35519958

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/912,909 Abandoned US20080163860A1 (en) 2005-05-03 2006-05-03 Grate Bar and Grate for a Step-Grate Stoker

Country Status (11)

Country Link
US (1) US20080163860A1 (en)
EP (1) EP1877703A1 (en)
JP (1) JP2008540988A (en)
KR (1) KR20080020598A (en)
CN (1) CN101180500A (en)
AU (1) AU2006243134A1 (en)
BR (1) BRPI0610897A2 (en)
CA (1) CA2607137A1 (en)
FR (1) FR2885403A1 (en)
NO (1) NO20076182L (en)
WO (1) WO2006117478A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371996B2 (en) * 2010-09-09 2016-06-21 Tiska Gmbh Grate bar for a furnace comprising air ducts
CN114659111A (en) * 2022-03-07 2022-06-24 北京高安屯垃圾焚烧有限公司 Burn high-efficient structure of burning furnace

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7713314L (en) * 1976-12-17 1978-06-18 Rohm & Haas ARTHROPOD REPELLENTS
CN103791504B (en) * 2014-02-24 2016-03-02 吕英 A kind of environment-friendly high-efficiency garbage incinerating system
FR3084444B1 (en) * 2018-07-27 2020-06-26 Europeenne De Services Techniques Pour L'incineration PROCESS FOR MIDIFICATION OF AN INCINERATION OVEN GRID, BED SUPPORT ELEMENTS AND INCINERATION OVEN
CN110686263B (en) * 2019-10-09 2023-12-22 科能亚太铸造(武汉)有限公司 Fire bar for incinerator
CN110925766B (en) * 2019-12-13 2024-03-22 重庆科技学院 Multi-edge composite fixed fire grate segment
KR102625230B1 (en) * 2023-01-27 2024-01-16 에이치엘에코텍 주식회사 Fire grate block, stocker type fire grate apparatus, stocker type incinerator and system for incinerating waste

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US54349A (en) * 1866-05-01 David houstel
US58252A (en) * 1866-09-25 Grate-bar
US105948A (en) * 1870-08-02 William kearney
US167230A (en) * 1875-08-31 Improvement in furnace grate-bars
US199707A (en) * 1878-01-29 Austeia
US310097A (en) * 1884-12-30 Grate
US325852A (en) * 1885-09-08 Grate-bar
US361397A (en) * 1887-04-19 Grate-bar
US378195A (en) * 1888-02-21 Ieon wobks
US610674A (en) * 1898-09-13 Grate
US1337214A (en) * 1919-06-11 1920-04-20 Joseph J Fowden Fire-grate
US1385876A (en) * 1921-07-26 Sylvania
US1553587A (en) * 1924-06-10 1925-09-15 Balmfirth Alfred Grate
US1823235A (en) * 1928-11-05 1931-09-15 Ernest E Lee Co Furnace grate bar
US1884557A (en) * 1929-02-08 1932-10-25 Firebar Corp Fuel grate
US1912886A (en) * 1930-03-01 1933-06-06 Firebar Corp Furnace grate construction
US2257287A (en) * 1939-06-01 1941-09-30 Comb Eng Co Inc Grate bar
US2372260A (en) * 1942-06-09 1945-03-27 Waugh Equipment Co Grate bar
US2806439A (en) * 1952-11-08 1957-09-17 Detroit Stoker Co Grate
US3014439A (en) * 1960-07-11 1961-12-26 Earland R Mitchell Hollow stoker grate
US4520792A (en) * 1983-08-24 1985-06-04 Martin Gmbh Fur Umwelt- Und Energietechnik Grate bars for use in the grates of industrial furnaces and the like
US20080245355A1 (en) * 2005-05-03 2008-10-09 Andre Simper Grate Bar and Grate for a Step-Grate Stocker with Directed Air Combustion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1409205A (en) * 1918-07-15 1922-03-14 Combustion Eng Corp Furnace grate bar
US1338070A (en) * 1919-04-21 1920-04-27 Marion Foundry Corp Grate-bar
US1715294A (en) * 1927-06-13 1929-05-28 Hulson Grate Company Grate structure
US2527872A (en) * 1945-09-07 1950-10-31 Dorothy B Balmfirth Grate and grate bar
DE1783200C2 (en) * 1968-05-28 1980-07-10 Prvni Brnenska Strojirna, Zavody Klementa Gottwalda, N.P., Bruenn (Tschechoslowakei) Incineration grate for the incineration of urban and industrial waste
DE2808057C2 (en) * 1978-02-24 1980-02-14 Josef Martin Feuerungsbau Gmbh, 8000 Muenchen Grate covering for mechanically moved step-shaped furnace grates of large furnaces
DE3521266A1 (en) * 1985-06-13 1986-12-18 Walter Josef Dipl.-Ing. 8000 München Martin GRATE ROD FOR A FIRING GRATE OF A LARGE BURNER AND BURNING GRATE FOR THIS LARGE BURNER
DE3813441A1 (en) * 1987-04-25 1988-11-03 Mrklas Louis Grating bar element for a thrust grating furnace for refuse incineration

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1385876A (en) * 1921-07-26 Sylvania
US58252A (en) * 1866-09-25 Grate-bar
US105948A (en) * 1870-08-02 William kearney
US167230A (en) * 1875-08-31 Improvement in furnace grate-bars
US199707A (en) * 1878-01-29 Austeia
US310097A (en) * 1884-12-30 Grate
US325852A (en) * 1885-09-08 Grate-bar
US361397A (en) * 1887-04-19 Grate-bar
US378195A (en) * 1888-02-21 Ieon wobks
US610674A (en) * 1898-09-13 Grate
US54349A (en) * 1866-05-01 David houstel
US1337214A (en) * 1919-06-11 1920-04-20 Joseph J Fowden Fire-grate
US1553587A (en) * 1924-06-10 1925-09-15 Balmfirth Alfred Grate
US1823235A (en) * 1928-11-05 1931-09-15 Ernest E Lee Co Furnace grate bar
US1884557A (en) * 1929-02-08 1932-10-25 Firebar Corp Fuel grate
US1912886A (en) * 1930-03-01 1933-06-06 Firebar Corp Furnace grate construction
US2257287A (en) * 1939-06-01 1941-09-30 Comb Eng Co Inc Grate bar
US2372260A (en) * 1942-06-09 1945-03-27 Waugh Equipment Co Grate bar
US2806439A (en) * 1952-11-08 1957-09-17 Detroit Stoker Co Grate
US3014439A (en) * 1960-07-11 1961-12-26 Earland R Mitchell Hollow stoker grate
US4520792A (en) * 1983-08-24 1985-06-04 Martin Gmbh Fur Umwelt- Und Energietechnik Grate bars for use in the grates of industrial furnaces and the like
US20080245355A1 (en) * 2005-05-03 2008-10-09 Andre Simper Grate Bar and Grate for a Step-Grate Stocker with Directed Air Combustion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371996B2 (en) * 2010-09-09 2016-06-21 Tiska Gmbh Grate bar for a furnace comprising air ducts
US9803858B2 (en) 2010-09-09 2017-10-31 Tiska Gmbh Grate bar for a furnace comprising engaging means
US10670266B2 (en) 2010-09-09 2020-06-02 Cronite Cz S.R.O. Grate bar for a furnace comprising engaging means
CN114659111A (en) * 2022-03-07 2022-06-24 北京高安屯垃圾焚烧有限公司 Burn high-efficient structure of burning furnace

Also Published As

Publication number Publication date
WO2006117478A1 (en) 2006-11-09
AU2006243134A1 (en) 2006-11-09
EP1877703A1 (en) 2008-01-16
CA2607137A1 (en) 2006-11-09
FR2885403A1 (en) 2006-11-10
JP2008540988A (en) 2008-11-20
BRPI0610897A2 (en) 2010-08-03
CN101180500A (en) 2008-05-14
KR20080020598A (en) 2008-03-05
NO20076182L (en) 2008-01-30

Similar Documents

Publication Publication Date Title
EP3789672B1 (en) Biomass heating system with secondary air conduit, and components of same
CN100491826C (en) Multi-column segmental drive compound domestic waste incinerator
JP7235799B2 (en) Great Bars, Great Bar Placement, and How to Perform Great Bar Placement
EP3889502B1 (en) Combustor arrangement for a biomass heating system
US20080163860A1 (en) Grate Bar and Grate for a Step-Grate Stoker
US3871287A (en) Combustion grate structure
US20060011114A1 (en) Grate panel, as well as corresponding incineration grate and waste incineration plant
EP3789673A1 (en) Biomass heating system with optimized flue gas treatment
US20080245355A1 (en) Grate Bar and Grate for a Step-Grate Stocker with Directed Air Combustion
US20040261674A1 (en) Grate block for a refuse incineration grate
EP1001218B1 (en) Water-cooled combustion grate, as well as process for incinerating wastes on it
CZ249297A3 (en) Grate plate
KR200286363Y1 (en) Step Type Stoker, Incinerator with the Same, and Grate for the Stoker
JP3732636B2 (en) Stepped stoker
JP7743157B2 (en) grate
JPS5824720A (en) Staged type hollow stoker
KR102597019B1 (en) Air-cooled grate for incinerator
CN118912513B (en) A high-efficiency circulating convection incinerator
KR20030081574A (en) Step Type Stoker, Incinerator with the Same, and Grate for the Stoker
JPH08240305A (en) Garbage incinerator
US42118A (en) Geoege l
TW202413846A (en) Plate-formed grate element for a movable grate of a furnace
JPH074635A (en) Stoker-type incinerator's structure
JP2025083794A (en) Grate and stoker furnace hearths
JPH0599419A (en) Furnace floor structure of dust incinerator

Legal Events

Date Code Title Description
AS Assignment

Owner name: SARETCO, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIMPER, ANDRE;REEL/FRAME:020450/0837

Effective date: 20071219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION