US20080149062A1 - Gas Shuttle Valve Provided With an Anti-Corrosive Layer - Google Patents
Gas Shuttle Valve Provided With an Anti-Corrosive Layer Download PDFInfo
- Publication number
- US20080149062A1 US20080149062A1 US11/886,649 US88664906A US2008149062A1 US 20080149062 A1 US20080149062 A1 US 20080149062A1 US 88664906 A US88664906 A US 88664906A US 2008149062 A1 US2008149062 A1 US 2008149062A1
- Authority
- US
- United States
- Prior art keywords
- valve
- gas exchange
- corrosion protection
- cone
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000007789 gas Substances 0.000 claims abstract description 30
- 238000005260 corrosion Methods 0.000 claims abstract description 25
- 230000007797 corrosion Effects 0.000 claims abstract description 25
- 238000006396 nitration reaction Methods 0.000 claims abstract description 21
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 16
- 239000010959 steel Substances 0.000 claims abstract description 16
- 150000004767 nitrides Chemical class 0.000 claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 238000002485 combustion reaction Methods 0.000 claims abstract description 5
- 239000012299 nitrogen atmosphere Substances 0.000 claims abstract 2
- 238000009792 diffusion process Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 claims description 4
- 239000000567 combustion gas Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000007789 sealing Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- -1 carbon nitrides Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/32—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for rotating lift valves, e.g. to diminish wear
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/28—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
- C23C8/30—Carbo-nitriding
- C23C8/32—Carbo-nitriding of ferrous surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/02—Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
- F01L3/04—Coated valve members or valve-seats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/06—Valve members or valve-seats with means for guiding or deflecting the medium controlled thereby, e.g. producing a rotary motion of the drawn-in cylinder charge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a gas exchange valve of an internal combustion engine having a valve cone essentially made of a valve shaft, which passes into a valve disk while forming a hollow cone.
- Gas exchange valves i.e., inlet and outlet valves for opening and closing the gas channel of the internal combustion engine, are subjected to great mechanical and thermal strains and corrosion attacks by the combustion gases. Only high-alloy steels of great heat resistance and good scaling resistance may meet the strains, in particular of the outlet valves.
- valve disk is armored on the sealing face using an especially resistant CrNi alloy.
- the service life of the outlet valve may be increased multiple times in highly-strained engines by a rotating device in the form of a propeller, which is attached to the valve shaft. Because of the forced rotation due to the outflowing exhaust gas, which excites the propeller, the valve shaft ends and disks remain free of deposits and single-sided heating may not cause leaks of the disk.
- the other parts of the gas exchange valve are also subject to varying requirements in regard to heat, fatigue, and corrosion resistance.
- valve disk is produced from a material having high temperature and burn-off resistance
- valve shaft including the propeller comprises a material having lower notch sensitivity and higher fatigue resistance, i.e., has sufficient toughness to counter the bending stresses occurring in this area.
- a further aspect of the strain of a gas exchange valve comprises valve shaft and hollow cone being attacked by wet corrosion (condensation) because the combustion gases fall below the dew point during the engine shutdown.
- plasma nitration/plasma nitro-carburization are understood as hardening of surface layers of steels, nitrogen and/or carbon atoms diffusing in and reacting in a thin surface layer with iron to form nitrides and/or carbon nitrides, the bonding layer (VS).
- the nitrogen is first partially precipitated as a nitride upon cooling and then causes the hardness increase.
- the hardness itself is a function of the types of nitrides.
- Nitration times and layers differ depending on how the nitrogen is caused to react with the steel. In other words, there is diffusion saturation of the boundary layer of a material with nitrogen to increase hardness, wear resistance, fatigue strength, or corrosion resistance.
- the boundary layer comprises an external nitride and/or carbon nitride layer (bonding layer) and an adjoining layer made of mixed crystals enriched with nitrogen and precipitated nitrides (diffusion layer) after the nitration/nitro-carburization.
- the nitration times may be shortened by ionization of the nitrogen by glow discharge, so-called plasma nitration (plasma nitration at 450° C. to 550° C.).
- nitro-carburization in which the treatment agent also contains components discharging carbon in addition to nitrogen, nitro-carburization may be performed in powder, salt bath, gas, or plasma (plasma nitro-carburization at 500° C. to 590° C., preferably at approximately 520° C.).
- valve body of the gas exchange valve is implemented in one piece and the valve disk is armored on the sealing face and/or on the seat area as described at the beginning, the nitride and/or carbon nitride layer is preferably provided completely on the valve shaft and the hollow cone up to the armored sealing face.
- the gas exchange valve in particular an outlet valve ( 1 ) for an internal combustion engine, has a rotating device in the form of a propeller ( 3 ) situated on its valve shaft ( 2 ).
- the valve disk ( 4 ) is armored on its sealing face ( 5 ).
- the wings ( 6 ) of the propeller ( 3 ) are milled out of the rotating shape of the propeller.
- valve disk ( 4 ) is produced from a material having high temperature and burn-off resistance
- valve shaft ( 2 ) including the propeller ( 3 ) comprises a material having lower notch sensitivity and higher fatigue strength, i.e., having sufficient toughness to counter the bending stresses occurring in this area.
- the valve disk ( 4 ) is connected to the valve shaft ( 2 ) by a friction weld ( 7 ).
- the valve cone is provided in at least partial areas with a corrosion protection layer in the form of a nitration layer ( 8 ), the corrosion protection layer being generated by reacting the nitride-forming base alloy by plasma nitration or plasma nitro-carburization in a nitrogen or nitrogen-carbon atmosphere.
- the complete valve shaft ( 2 ) up to the friction weld ( 7 ), at which the hot working steel material is also delimited, is provided with the nitration layer ( 8 ), the area of the hollow cone ( 11 ) remains open.
- the two front faces on the valve disk ( 4 ) and on the valve shaft ( 2 ) may remain left out in regard to the nitride and/or carbon nitride layer ( 8 ).
- the complete valve cone ( 1 ) up to the armored valve seat area ( 5 ) of the valve disk ( 4 ) and also up to its disk floor and the valve shaft front side, may be provided with the nitration layer ( 8 ).
- the surface is converted in such a way that a hard, wear-resistant boundary layer results.
- the valve cone blank is processed, either in the form of the valve shaft or in its entirety with valve shaft ( 2 ) and valve plate ( 4 ), over all manufacturing steps in such a way that it is provided in its final surface roughness, and the plasma nitration and/or plasma nitro-carburization is subsequently performed.
- Post-treatment of the nitrated gas exchange valve is possible but not necessary (however, the post-treatment is not to be performed in the areas of the gas exchange valve to be protected from corrosion so as not to remove the bonding layer generated).
- the valve cone ( 1 ) may be ground after the nitration.
- the nitration layer has a diffusion layer ( 9 ) having a thickness (nitration hardness depth) of 0.1 mm to 0.3 mm and a bonding layer ( 10 ) built up thereon of 3 ⁇ m to 15 ⁇ m and offers a surface hardness greater than 750 HV (Vickers).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Lift Valve (AREA)
Abstract
A gas exchange valve of an internal combustion engine having a valve cone essentially made of a valve shaft, which passes into a valve plate while forming a hollow cone, and the valve cone or at least the valve shaft up into the area of the hollow cone being manufactured from a typical valve steel made of a nitride-forming based alloy, such that its parts which comprise a typical valve steel also have good corrosion protection. The valve cone is provided at least in partial areas with a corrosion protection layer in the form of a nitride layer, and the corrosion protection layer is generated by reacting the nitride-forming based alloy by plasma nitration or plasma nitro-carburization in a nitrogen atmosphere.
Description
- The present invention relates to a gas exchange valve of an internal combustion engine having a valve cone essentially made of a valve shaft, which passes into a valve disk while forming a hollow cone.
- Gas exchange valves, i.e., inlet and outlet valves for opening and closing the gas channel of the internal combustion engine, are subjected to great mechanical and thermal strains and corrosion attacks by the combustion gases. Only high-alloy steels of great heat resistance and good scaling resistance may meet the strains, in particular of the outlet valves.
- Multiple measures have already become known for increasing the service life of such gas exchange valves. Thus, for example, the valve disk is armored on the sealing face using an especially resistant CrNi alloy.
- As suggested in DE 43 41 811 A1, for example, in addition to the armoring described above, the service life of the outlet valve may be increased multiple times in highly-strained engines by a rotating device in the form of a propeller, which is attached to the valve shaft. Because of the forced rotation due to the outflowing exhaust gas, which excites the propeller, the valve shaft ends and disks remain free of deposits and single-sided heating may not cause leaks of the disk.
- However, the other parts of the gas exchange valve are also subject to varying requirements in regard to heat, fatigue, and corrosion resistance.
- Different requirements in regard to the heat, fatigue, and corrosion resistance in the various temperature zones of the valve cone are known to be taken into consideration in that the valve disk is produced from a material having high temperature and burn-off resistance, while the valve shaft including the propeller comprises a material having lower notch sensitivity and higher fatigue resistance, i.e., has sufficient toughness to counter the bending stresses occurring in this area. A material made of a typical valve steel or made of a super alloy, such as NiCr2OTiAl, is preferably used for the valve disk and a material made of a typical valve steel, such as X45CrSi9-3, is preferably used for the valve shaft including propeller. This is because steels made of a nickel-based alloy used to avoid corrosion are known to be very expensive, so that the gas exchange valve is extensively manufactured from the typical valve steel, such as X45CrSi9-3, where this is acceptable.
- Furthermore, it has also already been recognized that a further aspect of the strain of a gas exchange valve comprises valve shaft and hollow cone being attacked by wet corrosion (condensation) because the combustion gases fall below the dew point during the engine shutdown.
- However, hardening methods in the form of plasma nitration or plasma nitro-carburization in nitride-forming steels are already known.
- In general, plasma nitration/plasma nitro-carburization are understood as hardening of surface layers of steels, nitrogen and/or carbon atoms diffusing in and reacting in a thin surface layer with iron to form nitrides and/or carbon nitrides, the bonding layer (VS). In the adjoining diffusion layer (DS), the nitrogen is first partially precipitated as a nitride upon cooling and then causes the hardness increase. The hardness itself is a function of the types of nitrides. Nitration times and layers differ depending on how the nitrogen is caused to react with the steel. In other words, there is diffusion saturation of the boundary layer of a material with nitrogen to increase hardness, wear resistance, fatigue strength, or corrosion resistance. The boundary layer comprises an external nitride and/or carbon nitride layer (bonding layer) and an adjoining layer made of mixed crystals enriched with nitrogen and precipitated nitrides (diffusion layer) after the nitration/nitro-carburization.
- The nitration times may be shortened by ionization of the nitrogen by glow discharge, so-called plasma nitration (plasma nitration at 450° C. to 550° C.).
- In nitro-carburization, in which the treatment agent also contains components discharging carbon in addition to nitrogen, nitro-carburization may be performed in powder, salt bath, gas, or plasma (plasma nitro-carburization at 500° C. to 590° C., preferably at approximately 520° C.).
- Proceeding from this, it is the object of the present invention to refine a gas exchange valve forming the species in such a way that its parts which comprise the typical valve steels described at the beginning also have good corrosion protection.
- This object is achieved by the characterizing features of
claim 1 for a gas exchange valve of the type according to the species. - If the valve body of the gas exchange valve is implemented in one piece and the valve disk is armored on the sealing face and/or on the seat area as described at the beginning, the nitride and/or carbon nitride layer is preferably provided completely on the valve shaft and the hollow cone up to the armored sealing face.
- The present invention is explained on the basis of the single FIGURE:
- The gas exchange valve, in particular an outlet valve (1) for an internal combustion engine, has a rotating device in the form of a propeller (3) situated on its valve shaft (2). The valve disk (4) is armored on its sealing face (5). The wings (6) of the propeller (3) are milled out of the rotating shape of the propeller.
- Furthermore, different requirements in regard to heat, fatigue, and corrosion resistance in the various temperature zones of the valve cone (1) are taken into consideration in that the valve disk (4) is produced from a material having high temperature and burn-off resistance, while the valve shaft (2) including the propeller (3) comprises a material having lower notch sensitivity and higher fatigue strength, i.e., having sufficient toughness to counter the bending stresses occurring in this area. A material made of a typical valve steel or a super alloy, such as NiCr2OTiAl, is preferably used for the valve disk (4) and a material made of a hot forming steel, such as X45CrSi9-3, is preferably used for the valve shaft (2) having propeller (3). The valve disk (4) is connected to the valve shaft (2) by a friction weld (7).
- In the exemplary outlet valve (1) shown here, the valve cone is provided in at least partial areas with a corrosion protection layer in the form of a nitration layer (8), the corrosion protection layer being generated by reacting the nitride-forming base alloy by plasma nitration or plasma nitro-carburization in a nitrogen or nitrogen-carbon atmosphere.
- In a preferred way, in the two-part embodiment of a gas exchange valve here, the complete valve shaft (2) up to the friction weld (7), at which the hot working steel material is also delimited, is provided with the nitration layer (8), the area of the hollow cone (11) remains open. Of course, in general, both in the one-part and also in the multipart embodiment of a gas exchange valve, the two front faces on the valve disk (4) and on the valve shaft (2) may remain left out in regard to the nitride and/or carbon nitride layer (8).
- However, preferably in the one-part embodiment, the complete valve cone (1) up to the armored valve seat area (5) of the valve disk (4) and also up to its disk floor and the valve shaft front side, may be provided with the nitration layer (8).
- In the gas exchange valve according to the present invention, the surface is converted in such a way that a hard, wear-resistant boundary layer results. For this purpose, the valve cone blank is processed, either in the form of the valve shaft or in its entirety with valve shaft (2) and valve plate (4), over all manufacturing steps in such a way that it is provided in its final surface roughness, and the plasma nitration and/or plasma nitro-carburization is subsequently performed. Post-treatment of the nitrated gas exchange valve is possible but not necessary (however, the post-treatment is not to be performed in the areas of the gas exchange valve to be protected from corrosion so as not to remove the bonding layer generated). For example, the valve cone (1) may be ground after the nitration.
- It may be specified as characteristic for the generated corrosion protection layers that the nitration layer has a diffusion layer (9) having a thickness (nitration hardness depth) of 0.1 mm to 0.3 mm and a bonding layer (10) built up thereon of 3 μm to 15 μm and offers a surface hardness greater than 750 HV (Vickers).
- If a thickness around 10 μm is to be achieved for the bonding layer, plasma nitro-carburization with the addition of carbon is preferred.
- Significantly improved corrosion protection and an increase of the alternating fatigue strength are achieved by the plasma nitration and/or plasma nitro-carburization of the valve cone (1), i.e., longer maintenance intervals and/or component service lives are achieved and cracking due to bending strains is counteracted.
Claims (9)
1. A gas exchange valve of an internal combustion engine, comprising:
a valve cone, said valve cone comprising:
a valve shaft and a valve disk, the valve shaft is connected to and extends into the valve disk while forming a hollow cone, at least the valve shaft being manufactured from a valve steel comprised of a nitride-forming based alloy up into an area of the hollow cone; and
a corrosion protection layer provided on at least partial areas of the valve cone, said corrosion protection layer comprising at least one of a nitride and carbon nitride layer;
wherein the corrosion protection layer is generated by reacting the nitride-forming base alloy by one of plasma nitration and plasma nitro-carburization in a nitrogen atmosphere.
2. The gas exchange valve according to claim 1 , wherein the gas exchange valve is a one piece valve; and
wherein the corrosion protection layer is provided on an entire area of the valve cone, extending up to an armored valve seat area of the valve disk and a front side of the valve shaft.
3. The gas exchange valve according to claim 1 , wherein the gas exchange valve is a two-piece valve; and
wherein valve shaft is provided, at least on external faces that contact combustion gases within the engine, with the corrosion protection layer extending completely up to a boundary face between the valve shaft and the valve disk, at which the valve steel material is also delimited, while at least one of the valve disk and the area of the hollow cone remain uncovered by the corrosion protection layer.
4. The gas exchange valve according to claim 1 , wherein the corrosion protection layer has a diffusion layer thickness of 0.1 mm to 0.3 mm and a built up bonding layer on the diffusion layer of 3 μm to 15 μm and a surface hardness greater than 750 HV (Vickers).
5. The gas exchange valve according to claim 4 , wherein the diffusion layer thickness is the nitration hardness depth.
6. The gas exchange valve according to claim 2 , wherein the corrosion protection layer has a diffusion layer thickness of 0.1 mm to 0.3 mm and a built up bonding layer on the diffusion layer of 3 μm to 15 μm and a surface hardness greater than 750 HV (Vickers).
7. The gas exchange valve according to claim 3 , wherein the corrosion protection layer has a diffusion layer thickness of 0.1 mm to 0.3 mm and a built up bonding layer on the diffusion layer of 3 μm to 15 μm and a surface hardness greater than 750 HV (Vickers).
8. The gas exchange valve according to claim 6 , wherein the diffusion layer thickness is the nitration hardness depth.
9. The gas exchange valve according to claim 7 , wherein the diffusion layer thickness is the nitration hardness depth.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102005013088.7 | 2005-03-18 | ||
| DE102005013088A DE102005013088B4 (en) | 2005-03-18 | 2005-03-18 | Gas exchange valve with corrosion protection layer |
| PCT/EP2006/002292 WO2006097264A1 (en) | 2005-03-18 | 2006-03-14 | Gas shuttle valve provided with an anti-corrosive layer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080149062A1 true US20080149062A1 (en) | 2008-06-26 |
Family
ID=36602668
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/886,649 Abandoned US20080149062A1 (en) | 2005-03-18 | 2006-03-14 | Gas Shuttle Valve Provided With an Anti-Corrosive Layer |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US20080149062A1 (en) |
| EP (1) | EP1864003A1 (en) |
| JP (1) | JP2008533372A (en) |
| KR (1) | KR20070112287A (en) |
| CN (1) | CN101142379A (en) |
| CA (1) | CA2601053A1 (en) |
| DE (1) | DE102005013088B4 (en) |
| NO (1) | NO20075320L (en) |
| RU (1) | RU2007138648A (en) |
| WO (1) | WO2006097264A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110061365A1 (en) * | 2008-05-13 | 2011-03-17 | Mads Lytje Christensen | Exhaust valve for a large sized two stroke diesel engine, process for reduction on nox-formation in such an engine and such engine |
| WO2014120670A1 (en) * | 2013-01-31 | 2014-08-07 | Caterpillar Inc. | Valve assembly for fuel system and method |
| US8919316B2 (en) | 2012-02-24 | 2014-12-30 | Mahle International Gmbh | Valve system for controlling the charge exchange |
| US9255559B2 (en) | 2013-02-28 | 2016-02-09 | Mahle International Gmbh | Metallic hollow valve |
| US9611766B2 (en) | 2013-06-11 | 2017-04-04 | Mahle International Gmbh | Gas exchange valve of an internal combustion engine |
| CN111980775A (en) * | 2019-05-23 | 2020-11-24 | 马勒国际有限公司 | Gas exchange valve |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102008018875A1 (en) | 2008-04-14 | 2009-10-15 | Märkisches Werk GmbH | Exhaust valve on a reciprocating engine |
| DE102008061237A1 (en) | 2008-12-09 | 2010-06-10 | Man Diesel Se | Gas exchange valve and method for its production |
| KR101129406B1 (en) * | 2009-01-23 | 2012-03-26 | 맨 디젤 앤드 터보 필리얼 아프 맨 디젤 앤드 터보 에스이 티스크랜드 | A movable wall member in form of an exhaust valve spindle or a piston for an internal combustion engine, and a method of manufacturing such a member |
| KR101274239B1 (en) * | 2010-12-02 | 2013-06-11 | 기아자동차주식회사 | Intake and exhaust valve for vehicle |
| DE102013203443A1 (en) * | 2013-02-28 | 2014-08-28 | Mahle International Gmbh | Metallic hollow valve |
| CN103498711A (en) * | 2013-10-21 | 2014-01-08 | 济南沃德汽车零部件有限公司 | Air valve with alloy arranged on plate conical face in bead-weld mode and nitride layer reserved on alloy layer |
| KR102309162B1 (en) * | 2017-05-17 | 2021-10-05 | 페데랄-모굴 밸브트레인 게엠베하 | POPPET VALVE AND METHOD FOR PRODUCTION THEREOF |
| CN114810270B (en) * | 2022-04-07 | 2023-08-01 | 重庆乐瑞斯科技有限公司 | Valve mechanism with self-adaptive lift adjustment function |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1902676A (en) * | 1929-12-19 | 1933-03-21 | Sutton Hubert | Hardening alloy steels |
| US2745777A (en) * | 1951-12-20 | 1956-05-15 | Armco Steel Corp | Internal combustion engine valves and the like |
| US3748195A (en) * | 1970-07-21 | 1973-07-24 | Nissan Motor | Method for forming a soft nitride layer in a metal surface |
| US5441235A (en) * | 1994-05-20 | 1995-08-15 | Eaton Corporation | Titanium nitride coated valve and method for making |
| US5934238A (en) * | 1998-02-20 | 1999-08-10 | Eaton Corporation | Engine valve assembly |
| US5960760A (en) * | 1998-02-20 | 1999-10-05 | Eaton Corporation | Light weight hollow valve assembly |
| US6318327B1 (en) * | 1999-05-31 | 2001-11-20 | Nippon Piston Ring Co., Ltd. | Valve system for internal combustion engine |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR0148414B1 (en) * | 1992-07-16 | 1998-11-02 | 다나카 미노루 | Titanium alloy bar suitable for producing engine valve |
| JPH06146825A (en) * | 1992-11-04 | 1994-05-27 | Fuji Oozx Inc | Titanium engine valve |
| DE4341811A1 (en) * | 1993-12-08 | 1995-06-14 | Man B & W Diesel Ag | Gas exchange valve for an internal combustion engine |
| DE19618477C2 (en) * | 1996-05-08 | 2000-08-03 | Trw Deutschland Gmbh | Manufacturing process for a nitrided bimetal valve |
| US6602353B1 (en) * | 1999-11-10 | 2003-08-05 | Cemm Co., Ltd. | Method for nitriding-processing iron group series alloy substrate |
| JP2003307105A (en) * | 2002-04-12 | 2003-10-31 | Fuji Oozx Inc | Engine valve |
| SE525291C2 (en) * | 2002-07-03 | 2005-01-25 | Sandvik Ab | Surface-modified stainless steel |
| US6912984B2 (en) * | 2003-03-28 | 2005-07-05 | Eaton Corporation | Composite lightweight engine poppet valve |
-
2005
- 2005-03-18 DE DE102005013088A patent/DE102005013088B4/en not_active Revoked
-
2006
- 2006-03-14 CN CNA2006800086932A patent/CN101142379A/en active Pending
- 2006-03-14 RU RU2007138648/06A patent/RU2007138648A/en not_active Application Discontinuation
- 2006-03-14 JP JP2008501214A patent/JP2008533372A/en not_active Withdrawn
- 2006-03-14 WO PCT/EP2006/002292 patent/WO2006097264A1/en not_active Ceased
- 2006-03-14 CA CA002601053A patent/CA2601053A1/en not_active Abandoned
- 2006-03-14 EP EP06707539A patent/EP1864003A1/en not_active Withdrawn
- 2006-03-14 US US11/886,649 patent/US20080149062A1/en not_active Abandoned
- 2006-03-14 KR KR1020077023714A patent/KR20070112287A/en not_active Withdrawn
-
2007
- 2007-10-17 NO NO20075320A patent/NO20075320L/en not_active Application Discontinuation
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1902676A (en) * | 1929-12-19 | 1933-03-21 | Sutton Hubert | Hardening alloy steels |
| US2745777A (en) * | 1951-12-20 | 1956-05-15 | Armco Steel Corp | Internal combustion engine valves and the like |
| US3748195A (en) * | 1970-07-21 | 1973-07-24 | Nissan Motor | Method for forming a soft nitride layer in a metal surface |
| US5441235A (en) * | 1994-05-20 | 1995-08-15 | Eaton Corporation | Titanium nitride coated valve and method for making |
| US5934238A (en) * | 1998-02-20 | 1999-08-10 | Eaton Corporation | Engine valve assembly |
| US5960760A (en) * | 1998-02-20 | 1999-10-05 | Eaton Corporation | Light weight hollow valve assembly |
| US6318327B1 (en) * | 1999-05-31 | 2001-11-20 | Nippon Piston Ring Co., Ltd. | Valve system for internal combustion engine |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110061365A1 (en) * | 2008-05-13 | 2011-03-17 | Mads Lytje Christensen | Exhaust valve for a large sized two stroke diesel engine, process for reduction on nox-formation in such an engine and such engine |
| US8869511B2 (en) * | 2008-05-13 | 2014-10-28 | Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland | Exhaust valve for a large sized two stroke diesel engine, process for reduction on NOx-formation in such an engine and such engine |
| US8919316B2 (en) | 2012-02-24 | 2014-12-30 | Mahle International Gmbh | Valve system for controlling the charge exchange |
| WO2014120670A1 (en) * | 2013-01-31 | 2014-08-07 | Caterpillar Inc. | Valve assembly for fuel system and method |
| US9051910B2 (en) | 2013-01-31 | 2015-06-09 | Caterpillar Inc. | Valve assembly for fuel system and method |
| CN104956065A (en) * | 2013-01-31 | 2015-09-30 | 卡特彼勒公司 | Valve assembly for fuel system and method |
| US9255559B2 (en) | 2013-02-28 | 2016-02-09 | Mahle International Gmbh | Metallic hollow valve |
| US9611766B2 (en) | 2013-06-11 | 2017-04-04 | Mahle International Gmbh | Gas exchange valve of an internal combustion engine |
| CN111980775A (en) * | 2019-05-23 | 2020-11-24 | 马勒国际有限公司 | Gas exchange valve |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102005013088B4 (en) | 2006-12-28 |
| DE102005013088A1 (en) | 2006-09-21 |
| CA2601053A1 (en) | 2006-09-21 |
| RU2007138648A (en) | 2009-04-27 |
| EP1864003A1 (en) | 2007-12-12 |
| WO2006097264A1 (en) | 2006-09-21 |
| JP2008533372A (en) | 2008-08-21 |
| CN101142379A (en) | 2008-03-12 |
| NO20075320L (en) | 2007-12-13 |
| KR20070112287A (en) | 2007-11-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20080149062A1 (en) | Gas Shuttle Valve Provided With an Anti-Corrosive Layer | |
| US7572344B2 (en) | Method for the production of wear-resistant sides for a keystone ring for internal combustion engine | |
| KR100467112B1 (en) | Combination of cylinder liner and piston ring of internal combustion engine | |
| US8407978B2 (en) | Method for producing a control chain | |
| US20080256794A1 (en) | Method For the Production of a Piston Ring For Internal Combustion Engine and a Piston Ring of this Type | |
| US20090026711A1 (en) | Compression piston ring | |
| FI124577B (en) | Throttle valve and procedure for its manufacture | |
| US20130220263A1 (en) | Valve system for controlling the charge exchange | |
| CN107109614A (en) | Piston ring and internal combustion engine | |
| EP2318668B1 (en) | Cylinder head with valve seat and method for the production thereof | |
| KR101179391B1 (en) | Piston for a reciprocating internal combustion engine having hardened piston ring grooves | |
| KR102625010B1 (en) | Valve trim of cryogenic valves having a high-durability film of austenitic stainless steel surface in cryogenic fluids and surface hardening methods thereof | |
| US10215065B2 (en) | Valve for internal combustion engines | |
| JP5886537B2 (en) | High durability engine valve | |
| EP2324213B1 (en) | Corrosion resistant valve guide | |
| MX2007010382A (en) | Multilayer steel gasket with nitrided metal layer. | |
| JP3143835B2 (en) | Combination of piston rings | |
| CN105033654B (en) | A kind of engine valve tappet and its manufacture method | |
| KR100243840B1 (en) | Wear resistant engine tappets | |
| JP2002226949A (en) | Wear-resistant ring for piston made of aluminum alloy | |
| Larkin | An influence of prequenching on the properties of 15 Kh 16 K 5 N 2 MVFAB steel | |
| KR19980086280A (en) | Engine tappet and method of manufacturing the same | |
| JP2015121228A (en) | High durability engine valve | |
| JPH04232303A (en) | Apex seal of rotary engine | |
| JPS60108550A (en) | Steel piston ring |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MAN DIESEL SE, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUPFERT, ANJA;REEL/FRAME:020389/0565 Effective date: 20071012 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |