US20080127371A1 - Genes encoding 4-hydroxyphenylpyruvate dioxygenase (hppd) enzymes for plant metabolic engineering - Google Patents
Genes encoding 4-hydroxyphenylpyruvate dioxygenase (hppd) enzymes for plant metabolic engineering Download PDFInfo
- Publication number
- US20080127371A1 US20080127371A1 US11/943,493 US94349307A US2008127371A1 US 20080127371 A1 US20080127371 A1 US 20080127371A1 US 94349307 A US94349307 A US 94349307A US 2008127371 A1 US2008127371 A1 US 2008127371A1
- Authority
- US
- United States
- Prior art keywords
- seq
- identity
- sequence
- nucleotide sequence
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 title claims abstract description 225
- 102100028626 4-hydroxyphenylpyruvate dioxygenase Human genes 0.000 title claims abstract description 208
- 102000004190 Enzymes Human genes 0.000 title claims description 42
- 108090000790 Enzymes Proteins 0.000 title claims description 42
- 108090000623 proteins and genes Proteins 0.000 title abstract description 182
- 238000012269 metabolic engineering Methods 0.000 title 1
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 315
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 285
- 229920001184 polypeptide Polymers 0.000 claims abstract description 278
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims abstract description 108
- 229930003799 tocopherol Natural products 0.000 claims abstract description 104
- 239000011732 tocopherol Substances 0.000 claims abstract description 104
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims abstract description 83
- 235000010384 tocopherol Nutrition 0.000 claims abstract description 64
- 229960001295 tocopherol Drugs 0.000 claims abstract description 64
- 230000000694 effects Effects 0.000 claims abstract description 50
- 241000196324 Embryophyta Species 0.000 claims description 316
- 108091033319 polynucleotide Proteins 0.000 claims description 228
- 102000040430 polynucleotide Human genes 0.000 claims description 228
- 239000002157 polynucleotide Substances 0.000 claims description 228
- 125000003729 nucleotide group Chemical group 0.000 claims description 173
- 239000002773 nucleotide Substances 0.000 claims description 167
- 210000004027 cell Anatomy 0.000 claims description 105
- 238000000034 method Methods 0.000 claims description 88
- 230000014509 gene expression Effects 0.000 claims description 74
- 210000001519 tissue Anatomy 0.000 claims description 54
- 230000001965 increasing effect Effects 0.000 claims description 45
- 101710202365 Napin Proteins 0.000 claims description 31
- 108010031100 chloroplast transit peptides Proteins 0.000 claims description 31
- 244000068988 Glycine max Species 0.000 claims description 27
- 229930003802 tocotrienol Natural products 0.000 claims description 26
- 239000011731 tocotrienol Substances 0.000 claims description 26
- 235000019148 tocotrienols Nutrition 0.000 claims description 26
- 235000010469 Glycine max Nutrition 0.000 claims description 24
- 101100339555 Zymoseptoria tritici HPPD gene Proteins 0.000 claims description 17
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 13
- GJJVAFUKOBZPCB-UHFFFAOYSA-N 2-methyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol Chemical compound OC1=CC=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-UHFFFAOYSA-N 0.000 claims description 12
- 210000000056 organ Anatomy 0.000 claims description 11
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 9
- 240000000385 Brassica napus var. napus Species 0.000 claims description 8
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 7
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 7
- 108010057392 tocopherol cyclase Proteins 0.000 claims description 7
- 101000895629 Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6) Geranylgeranyl pyrophosphate synthase Proteins 0.000 claims description 6
- 244000060924 Brassica campestris Species 0.000 claims description 4
- 235000005637 Brassica campestris Nutrition 0.000 claims description 4
- 101710089395 Oleosin Proteins 0.000 claims description 4
- 108010025790 chlorophyllase Proteins 0.000 claims description 4
- 230000001131 transforming effect Effects 0.000 claims description 3
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 230000006696 biosynthetic metabolic pathway Effects 0.000 abstract description 9
- 102000004169 proteins and genes Human genes 0.000 description 104
- 235000018102 proteins Nutrition 0.000 description 78
- 239000012634 fragment Substances 0.000 description 59
- 108020004414 DNA Proteins 0.000 description 58
- IGMNYECMUMZDDF-UHFFFAOYSA-N homogentisic acid Chemical compound OC(=O)CC1=CC(O)=CC=C1O IGMNYECMUMZDDF-UHFFFAOYSA-N 0.000 description 56
- 239000013612 plasmid Substances 0.000 description 46
- 239000013598 vector Substances 0.000 description 45
- 125000002640 tocopherol group Chemical class 0.000 description 42
- 229940088598 enzyme Drugs 0.000 description 40
- 235000019149 tocopherols Nutrition 0.000 description 40
- 230000002068 genetic effect Effects 0.000 description 36
- 239000000427 antigen Substances 0.000 description 32
- 108091007433 antigens Proteins 0.000 description 32
- 102000036639 antigens Human genes 0.000 description 32
- 230000015572 biosynthetic process Effects 0.000 description 32
- 238000003752 polymerase chain reaction Methods 0.000 description 30
- 239000013615 primer Substances 0.000 description 30
- 235000004835 α-tocopherol Nutrition 0.000 description 30
- 229920000742 Cotton Polymers 0.000 description 28
- 241000219146 Gossypium Species 0.000 description 28
- 241000193388 Bacillus thuringiensis Species 0.000 description 26
- 229940097012 bacillus thuringiensis Drugs 0.000 description 26
- 101150083154 tyrA gene Proteins 0.000 description 24
- 239000002076 α-tocopherol Substances 0.000 description 23
- 230000009466 transformation Effects 0.000 description 22
- 240000003768 Solanum lycopersicum Species 0.000 description 21
- 229940087168 alpha tocopherol Drugs 0.000 description 21
- 239000003795 chemical substances by application Substances 0.000 description 21
- 239000003921 oil Substances 0.000 description 21
- 235000019198 oils Nutrition 0.000 description 21
- 229960000984 tocofersolan Drugs 0.000 description 21
- 241000219195 Arabidopsis thaliana Species 0.000 description 20
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 20
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 20
- 241000588724 Escherichia coli Species 0.000 description 19
- 235000001014 amino acid Nutrition 0.000 description 19
- 238000003786 synthesis reaction Methods 0.000 description 19
- 230000009261 transgenic effect Effects 0.000 description 19
- 241000219194 Arabidopsis Species 0.000 description 18
- 235000010382 gamma-tocopherol Nutrition 0.000 description 18
- 230000037361 pathway Effects 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- GZIFEOYASATJEH-VHFRWLAGSA-N δ-tocopherol Chemical compound OC1=CC(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1 GZIFEOYASATJEH-VHFRWLAGSA-N 0.000 description 18
- 235000010389 delta-tocopherol Nutrition 0.000 description 17
- 239000000499 gel Substances 0.000 description 17
- 210000002706 plastid Anatomy 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000002299 complementary DNA Substances 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- WGVKWNUPNGFDFJ-DQCZWYHMSA-N β-tocopherol Chemical compound OC1=CC(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C WGVKWNUPNGFDFJ-DQCZWYHMSA-N 0.000 description 16
- 240000002791 Brassica napus Species 0.000 description 15
- 235000007680 β-tocopherol Nutrition 0.000 description 15
- GJJVAFUKOBZPCB-ZGRPYONQSA-N (r)-3,4-dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2h-1-benzopyran-6-ol Chemical class OC1=CC=C2OC(CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-ZGRPYONQSA-N 0.000 description 14
- 241000589158 Agrobacterium Species 0.000 description 14
- 150000001413 amino acids Chemical class 0.000 description 14
- 238000003556 assay Methods 0.000 description 14
- 239000000284 extract Substances 0.000 description 14
- 229940068778 tocotrienols Drugs 0.000 description 14
- 241000219198 Brassica Species 0.000 description 13
- 240000008042 Zea mays Species 0.000 description 13
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 13
- KKADPXVIOXHVKN-UHFFFAOYSA-N 4-hydroxyphenylpyruvic acid Chemical compound OC(=O)C(=O)CC1=CC=C(O)C=C1 KKADPXVIOXHVKN-UHFFFAOYSA-N 0.000 description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 description 12
- 125000003275 alpha amino acid group Chemical group 0.000 description 12
- -1 for example Substances 0.000 description 12
- 230000001404 mediated effect Effects 0.000 description 12
- 108091008146 restriction endonucleases Proteins 0.000 description 12
- 230000035882 stress Effects 0.000 description 12
- 235000019145 α-tocotrienol Nutrition 0.000 description 12
- QUEDXNHFTDJVIY-DQCZWYHMSA-N γ-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-DQCZWYHMSA-N 0.000 description 12
- 108010084884 GDP-mannose transporter Proteins 0.000 description 11
- NUHSROFQTUXZQQ-UHFFFAOYSA-N Isopentenyl diphosphate Natural products CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 11
- 240000007594 Oryza sativa Species 0.000 description 11
- 235000007164 Oryza sativa Nutrition 0.000 description 11
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 11
- 235000005822 corn Nutrition 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 102000039446 nucleic acids Human genes 0.000 description 11
- 108020004707 nucleic acids Proteins 0.000 description 11
- 150000007523 nucleic acids Chemical class 0.000 description 11
- 230000001105 regulatory effect Effects 0.000 description 11
- 235000009566 rice Nutrition 0.000 description 11
- 239000002478 γ-tocopherol Substances 0.000 description 11
- 235000019144 δ-tocotrienol Nutrition 0.000 description 11
- LLXVXPPXELIDGQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)benzoate Chemical compound C=1C=CC(N2C(C=CC2=O)=O)=CC=1C(=O)ON1C(=O)CCC1=O LLXVXPPXELIDGQ-UHFFFAOYSA-N 0.000 description 10
- 235000011331 Brassica Nutrition 0.000 description 10
- 244000299507 Gossypium hirsutum Species 0.000 description 10
- 235000009432 Gossypium hirsutum Nutrition 0.000 description 10
- 108700019146 Transgenes Proteins 0.000 description 10
- 230000012010 growth Effects 0.000 description 10
- 239000004009 herbicide Substances 0.000 description 10
- IJBLJLREWPLEPB-IQSNHBBHSA-N plastoquinol-9 Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC1=CC(O)=C(C)C(C)=C1O IJBLJLREWPLEPB-IQSNHBBHSA-N 0.000 description 10
- 235000019151 β-tocotrienol Nutrition 0.000 description 10
- 235000019150 γ-tocotrienol Nutrition 0.000 description 10
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 9
- 108091026890 Coding region Proteins 0.000 description 9
- 108020004705 Codon Proteins 0.000 description 9
- GZIFEOYASATJEH-UHFFFAOYSA-N D-delta tocopherol Natural products OC1=CC(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 GZIFEOYASATJEH-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 108700026244 Open Reading Frames Proteins 0.000 description 9
- 235000021307 Triticum Nutrition 0.000 description 9
- 241000209140 Triticum Species 0.000 description 9
- 229930003427 Vitamin E Natural products 0.000 description 9
- 210000003763 chloroplast Anatomy 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- WKFUDLTXRQQGHB-UHFFFAOYSA-N plastoquinol-1 Chemical class CC(C)=CCC1=CC(O)=C(C)C(C)=C1O WKFUDLTXRQQGHB-UHFFFAOYSA-N 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 229940046009 vitamin E Drugs 0.000 description 9
- 235000019165 vitamin E Nutrition 0.000 description 9
- 239000011709 vitamin E Substances 0.000 description 9
- 239000002446 δ-tocopherol Substances 0.000 description 9
- 108700037728 Glycine max beta-conglycinin Proteins 0.000 description 8
- 101150012639 HPPD gene Proteins 0.000 description 8
- 208000030036 Hypertelorism-preauricular sinus-punctual pits-deafness syndrome Diseases 0.000 description 8
- 241000192581 Synechocystis sp. Species 0.000 description 8
- RZFHLOLGZPDCHJ-DLQZEEBKSA-N alpha-Tocotrienol Natural products Oc1c(C)c(C)c2O[C@@](CC/C=C(/CC/C=C(\CC/C=C(\C)/C)/C)\C)(C)CCc2c1C RZFHLOLGZPDCHJ-DLQZEEBKSA-N 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 235000013399 edible fruits Nutrition 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 229930027917 kanamycin Natural products 0.000 description 8
- 229960000318 kanamycin Drugs 0.000 description 8
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 8
- 229930182823 kanamycin A Natural products 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 238000007069 methylation reaction Methods 0.000 description 8
- 239000011590 β-tocopherol Substances 0.000 description 8
- 150000003789 δ-tocopherols Chemical class 0.000 description 8
- 150000003790 δ-tocotrienols Chemical class 0.000 description 8
- 235000011293 Brassica napus Nutrition 0.000 description 7
- 108010028143 Dioxygenases Proteins 0.000 description 7
- 102000016680 Dioxygenases Human genes 0.000 description 7
- 241000192584 Synechocystis Species 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 230000002363 herbicidal effect Effects 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 230000011987 methylation Effects 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 230000008685 targeting Effects 0.000 description 7
- 150000003773 α-tocotrienols Chemical class 0.000 description 7
- 150000003781 β-tocopherols Chemical class 0.000 description 7
- 150000003782 β-tocotrienols Chemical class 0.000 description 7
- 150000003785 γ-tocopherols Chemical class 0.000 description 7
- 150000003786 γ-tocotrienols Chemical class 0.000 description 7
- OTXNTMVVOOBZCV-UHFFFAOYSA-N 2R-gamma-tocotrienol Natural products OC1=C(C)C(C)=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 OTXNTMVVOOBZCV-UHFFFAOYSA-N 0.000 description 6
- 235000004431 Linum usitatissimum Nutrition 0.000 description 6
- 240000006240 Linum usitatissimum Species 0.000 description 6
- 108060004795 Methyltransferase Proteins 0.000 description 6
- 102000016397 Methyltransferase Human genes 0.000 description 6
- 101710095856 Napin-3 Proteins 0.000 description 6
- 108010035004 Prephenate Dehydrogenase Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 108010039811 Starch synthase Proteins 0.000 description 6
- 108010043934 Sucrose synthase Proteins 0.000 description 6
- 229940066595 beta tocopherol Drugs 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 108020001507 fusion proteins Proteins 0.000 description 6
- 102000037865 fusion proteins Human genes 0.000 description 6
- 239000002054 inoculum Substances 0.000 description 6
- FPWMCUPFBRFMLH-UHFFFAOYSA-N prephenic acid Chemical compound OC1C=CC(CC(=O)C(O)=O)(C(O)=O)C=C1 FPWMCUPFBRFMLH-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 150000003505 terpenes Chemical class 0.000 description 6
- 150000003772 α-tocopherols Chemical class 0.000 description 6
- 108700001566 Bacteria TyrA Proteins 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 5
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 5
- 108010068370 Glutens Proteins 0.000 description 5
- 235000003222 Helianthus annuus Nutrition 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 244000061456 Solanum tuberosum Species 0.000 description 5
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 101150118992 dxr gene Proteins 0.000 description 5
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 5
- 210000001161 mammalian embryo Anatomy 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 5
- RZFHLOLGZPDCHJ-XZXLULOTSA-N α-Tocotrienol Chemical compound OC1=C(C)C(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1C RZFHLOLGZPDCHJ-XZXLULOTSA-N 0.000 description 5
- 239000011730 α-tocotrienol Substances 0.000 description 5
- 235000017060 Arachis glabrata Nutrition 0.000 description 4
- 244000105624 Arachis hypogaea Species 0.000 description 4
- 235000010777 Arachis hypogaea Nutrition 0.000 description 4
- 235000018262 Arachis monticola Nutrition 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 4
- 244000020518 Carthamus tinctorius Species 0.000 description 4
- 244000020551 Helianthus annuus Species 0.000 description 4
- 240000005979 Hordeum vulgare Species 0.000 description 4
- 235000007340 Hordeum vulgare Nutrition 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 240000007377 Petunia x hybrida Species 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000002595 Solanum tuberosum Nutrition 0.000 description 4
- 244000062793 Sorghum vulgare Species 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 229940064063 alpha tocotrienol Drugs 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 230000001588 bifunctional effect Effects 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000021615 conjugation Effects 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 101150056470 dxs gene Proteins 0.000 description 4
- 210000002257 embryonic structure Anatomy 0.000 description 4
- 230000003053 immunization Effects 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 235000012054 meals Nutrition 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229930182817 methionine Natural products 0.000 description 4
- 108010058731 nopaline synthase Proteins 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- 235000020232 peanut Nutrition 0.000 description 4
- 230000000243 photosynthetic effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000004007 reversed phase HPLC Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000007363 ring formation reaction Methods 0.000 description 4
- 239000013605 shuttle vector Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 4
- 229940088594 vitamin Drugs 0.000 description 4
- 229930003231 vitamin Natural products 0.000 description 4
- 235000013343 vitamin Nutrition 0.000 description 4
- 239000011782 vitamin Substances 0.000 description 4
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 3
- WTFXTQVDAKGDEY-UHFFFAOYSA-N (-)-chorismic acid Natural products OC1C=CC(C(O)=O)=CC1OC(=C)C(O)=O WTFXTQVDAKGDEY-UHFFFAOYSA-N 0.000 description 3
- FGYKUFVNYVMTAM-UHFFFAOYSA-N (R)-2,5,8-trimethyl-2-(4,8,12-trimethyl-trideca-3t,7t,11-trienyl)-chroman-6-ol Natural products OC1=CC(C)=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1C FGYKUFVNYVMTAM-UHFFFAOYSA-N 0.000 description 3
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 3
- ODADKLYLWWCHNB-UHFFFAOYSA-N 2R-delta-tocotrienol Natural products OC1=CC(C)=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 ODADKLYLWWCHNB-UHFFFAOYSA-N 0.000 description 3
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 3
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 3
- 235000007319 Avena orientalis Nutrition 0.000 description 3
- 241000209763 Avena sativa Species 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 235000003351 Brassica cretica Nutrition 0.000 description 3
- 235000003343 Brassica rupestris Nutrition 0.000 description 3
- 241000088885 Chlorops Species 0.000 description 3
- 235000003901 Crambe Nutrition 0.000 description 3
- 241000220246 Crambe <angiosperm> Species 0.000 description 3
- 241000195493 Cryptophyta Species 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 235000001950 Elaeis guineensis Nutrition 0.000 description 3
- 239000005562 Glyphosate Substances 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 241000209510 Liliopsida Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 3
- 240000000528 Ricinus communis Species 0.000 description 3
- 235000004443 Ricinus communis Nutrition 0.000 description 3
- 240000000111 Saccharum officinarum Species 0.000 description 3
- 235000007201 Saccharum officinarum Nutrition 0.000 description 3
- 241000209056 Secale Species 0.000 description 3
- 235000007238 Secale cereale Nutrition 0.000 description 3
- 235000003434 Sesamum indicum Nutrition 0.000 description 3
- 244000040738 Sesamum orientale Species 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 3
- 241000790234 Sphingomonas elodea Species 0.000 description 3
- 235000009337 Spinacia oleracea Nutrition 0.000 description 3
- 244000300264 Spinacia oleracea Species 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 101100278777 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) dxs1 gene Proteins 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- FGYKUFVNYVMTAM-YMCDKREISA-N beta-Tocotrienol Natural products Oc1c(C)c2c(c(C)c1)O[C@@](CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)(C)CC2 FGYKUFVNYVMTAM-YMCDKREISA-N 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 229930002875 chlorophyll Natural products 0.000 description 3
- 235000019804 chlorophyll Nutrition 0.000 description 3
- WTFXTQVDAKGDEY-HTQZYQBOSA-N chorismic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1OC(=C)C(O)=O WTFXTQVDAKGDEY-HTQZYQBOSA-N 0.000 description 3
- 235000012343 cottonseed oil Nutrition 0.000 description 3
- 101150005884 ctp1 gene Proteins 0.000 description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- BTNBMQIHCRIGOU-UHFFFAOYSA-N delta-tocotrienol Natural products CC(=CCCC(=CCCC(=CCCOC1(C)CCc2cc(O)cc(C)c2O1)C)C)C BTNBMQIHCRIGOU-UHFFFAOYSA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000006353 environmental stress Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- FGYKUFVNYVMTAM-MUUNZHRXSA-N epsilon-Tocopherol Natural products OC1=CC(C)=C2O[C@@](CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1C FGYKUFVNYVMTAM-MUUNZHRXSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 235000004426 flaxseed Nutrition 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- OTXNTMVVOOBZCV-YMCDKREISA-N gamma-Tocotrienol Natural products Oc1c(C)c(C)c2O[C@@](CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)(C)CCc2c1 OTXNTMVVOOBZCV-YMCDKREISA-N 0.000 description 3
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 3
- 229940097068 glyphosate Drugs 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 235000010460 mustard Nutrition 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 3
- 238000003976 plant breeding Methods 0.000 description 3
- 230000008635 plant growth Effects 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 230000004481 post-translational protein modification Effects 0.000 description 3
- 229940079877 pyrogallol Drugs 0.000 description 3
- 230000008117 seed development Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 239000003104 tissue culture media Substances 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000011426 transformation method Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 239000011723 β-tocotrienol Substances 0.000 description 3
- FGYKUFVNYVMTAM-WAZJVIJMSA-N β-tocotrienol Chemical compound OC1=CC(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1C FGYKUFVNYVMTAM-WAZJVIJMSA-N 0.000 description 3
- 239000011722 γ-tocotrienol Substances 0.000 description 3
- OTXNTMVVOOBZCV-WAZJVIJMSA-N γ-tocotrienol Chemical compound OC1=C(C)C(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 OTXNTMVVOOBZCV-WAZJVIJMSA-N 0.000 description 3
- 239000011729 δ-tocotrienol Substances 0.000 description 3
- ODADKLYLWWCHNB-LDYBVBFYSA-N δ-tocotrienol Chemical compound OC1=CC(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 ODADKLYLWWCHNB-LDYBVBFYSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- LWTDZKXXJRRKDG-KXBFYZLASA-N (-)-phaseollin Chemical compound C1OC2=CC(O)=CC=C2[C@H]2[C@@H]1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-KXBFYZLASA-N 0.000 description 2
- HGVJFBSSLICXEM-UHNVWZDZSA-N (2s,3r)-2-methylbutane-1,2,3,4-tetrol Chemical compound OC[C@@](O)(C)[C@H](O)CO HGVJFBSSLICXEM-UHNVWZDZSA-N 0.000 description 2
- AJPADPZSRRUGHI-RFZPGFLSSA-L 1-deoxy-D-xylulose 5-phosphate(2-) Chemical compound CC(=O)[C@@H](O)[C@H](O)COP([O-])([O-])=O AJPADPZSRRUGHI-RFZPGFLSSA-L 0.000 description 2
- 101150090724 3 gene Proteins 0.000 description 2
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 101100375585 Arabidopsis thaliana YAB1 gene Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000007558 Avena sp Nutrition 0.000 description 2
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 2
- 235000006463 Brassica alba Nutrition 0.000 description 2
- 244000140786 Brassica hirta Species 0.000 description 2
- 101100494448 Caenorhabditis elegans cab-1 gene Proteins 0.000 description 2
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- 101000867231 Chlamydomonas reinhardtii Homogentisate solanesyltransferase, chloroplastic Proteins 0.000 description 2
- 101710148983 Chlorophyllase-1 Proteins 0.000 description 2
- 101710148904 Chlorophyllase-2 Proteins 0.000 description 2
- 108010049994 Chloroplast Proteins Proteins 0.000 description 2
- 241000192700 Cyanobacteria Species 0.000 description 2
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 108090000204 Dipeptidase 1 Proteins 0.000 description 2
- 244000127993 Elaeis melanococca Species 0.000 description 2
- 244000004281 Eucalyptus maculata Species 0.000 description 2
- 108010074122 Ferredoxins Proteins 0.000 description 2
- 102000027487 Fructose-Bisphosphatase Human genes 0.000 description 2
- 108010017464 Fructose-Bisphosphatase Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 229930191978 Gibberellin Natural products 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 102100024319 Intestinal-type alkaline phosphatase Human genes 0.000 description 2
- 101710184243 Intestinal-type alkaline phosphatase Proteins 0.000 description 2
- HGVJFBSSLICXEM-UHFFFAOYSA-N L-2-methyl-erythritol Natural products OCC(O)(C)C(O)CO HGVJFBSSLICXEM-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 235000008119 Larix laricina Nutrition 0.000 description 2
- 241000218653 Larix laricina Species 0.000 description 2
- 238000001295 Levene's test Methods 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000220225 Malus Species 0.000 description 2
- 235000011430 Malus pumila Nutrition 0.000 description 2
- 235000015103 Malus silvestris Nutrition 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 240000004658 Medicago sativa Species 0.000 description 2
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 2
- 240000005561 Musa balbisiana Species 0.000 description 2
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 2
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 2
- 108010016852 Orthophosphate Dikinase Pyruvate Proteins 0.000 description 2
- 241000588912 Pantoea agglomerans Species 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 241000219833 Phaseolus Species 0.000 description 2
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 2
- 241000018646 Pinus brutia Species 0.000 description 2
- 235000011613 Pinus brutia Nutrition 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 108700001094 Plant Genes Proteins 0.000 description 2
- FKUYMLZIRPABFK-UHFFFAOYSA-N Plastoquinone 9 Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCC1=CC(=O)C(C)=C(C)C1=O FKUYMLZIRPABFK-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 2
- 108010016634 Seed Storage Proteins Proteins 0.000 description 2
- 241000736131 Sphingomonas Species 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 101100126492 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) ispG1 gene Proteins 0.000 description 2
- 235000021536 Sugar beet Nutrition 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 108010055615 Zein Proteins 0.000 description 2
- 230000036579 abiotic stress Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000004716 alpha keto acids Chemical class 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 101150099875 atpE gene Proteins 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 235000010633 broth Nutrition 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 229930002868 chlorophyll a Natural products 0.000 description 2
- 229930002869 chlorophyll b Natural products 0.000 description 2
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000008645 cold stress Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 230000024346 drought recovery Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 241001233957 eudicotyledons Species 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010230 functional analysis Methods 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 239000003448 gibberellin Substances 0.000 description 2
- IXORZMNAPKEEDV-OBDJNFEBSA-N gibberellin A3 Chemical class C([C@@]1(O)C(=C)C[C@@]2(C1)[C@H]1C(O)=O)C[C@H]2[C@]2(C=C[C@@H]3O)[C@H]1[C@]3(C)C(=O)O2 IXORZMNAPKEEDV-OBDJNFEBSA-N 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 150000003278 haem Chemical class 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000007407 health benefit Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000015784 hyperosmotic salinity response Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 101150081094 ispG gene Proteins 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- KXFJZKUFXHWWAJ-UHFFFAOYSA-N p-hydroxybenzoylformic acid Natural products OC(=O)C(=O)C1=CC=C(O)C=C1 KXFJZKUFXHWWAJ-UHFFFAOYSA-N 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- FKUYMLZIRPABFK-IQSNHBBHSA-N plastoquinone-9 Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC1=CC(=O)C(C)=C(C)C1=O FKUYMLZIRPABFK-IQSNHBBHSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000010152 pollination Effects 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 2
- 239000008057 potassium phosphate buffer Substances 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 230000002786 root growth Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 239000003656 tris buffered saline Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 125000001020 α-tocopherol group Chemical group 0.000 description 2
- MDSIZRKJVDMQOQ-GORDUTHDSA-N (2E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate Chemical compound OCC(/C)=C/COP(O)(=O)OP(O)(O)=O MDSIZRKJVDMQOQ-GORDUTHDSA-N 0.000 description 1
- MAKBWIUHFAVVJP-HAXARLPTSA-N (2R,3S)-pentane-1,2,3,4-tetrol phosphoric acid Chemical compound OP(O)(O)=O.CC(O)[C@H](O)[C@H](O)CO MAKBWIUHFAVVJP-HAXARLPTSA-N 0.000 description 1
- FCHBECOAGZMTFE-ZEQKJWHPSA-N (6r,7r)-3-[[2-[[4-(dimethylamino)phenyl]diazenyl]pyridin-1-ium-1-yl]methyl]-8-oxo-7-[(2-thiophen-2-ylacetyl)amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=CC=[N+]1CC1=C(C([O-])=O)N2C(=O)[C@@H](NC(=O)CC=3SC=CC=3)[C@H]2SC1 FCHBECOAGZMTFE-ZEQKJWHPSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-L (R)-2-Hydroxy-3-(phosphonooxy)-propanal Natural products O=C[C@H](O)COP([O-])([O-])=O LXJXRIRHZLFYRP-VKHMYHEASA-L 0.000 description 1
- KJTLQQUUPVSXIM-ZCFIWIBFSA-M (R)-mevalonate Chemical compound OCC[C@](O)(C)CC([O-])=O KJTLQQUUPVSXIM-ZCFIWIBFSA-M 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- IGUZJYCAXLYZEE-RFZPGFLSSA-N 1-deoxy-D-xylulose Chemical compound CC(=O)[C@@H](O)[C@H](O)CO IGUZJYCAXLYZEE-RFZPGFLSSA-N 0.000 description 1
- 108010068049 1-deoxy-D-xylulose 5-phosphate reductoisomerase Proteins 0.000 description 1
- 101710094045 1-deoxy-D-xylulose-5-phosphate synthase Proteins 0.000 description 1
- 101150028074 2 gene Proteins 0.000 description 1
- XMWHRVNVKDKBRG-UHNVWZDZSA-N 2-C-methyl-D-erythritol 4-(dihydrogen phosphate) Chemical compound OC[C@@](O)(C)[C@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-UHNVWZDZSA-N 0.000 description 1
- OINNEUNVOZHBOX-QIRCYJPOSA-N 2-trans,6-trans,10-trans-geranylgeranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP(O)(=O)OP(O)(O)=O OINNEUNVOZHBOX-QIRCYJPOSA-N 0.000 description 1
- OINNEUNVOZHBOX-QIRCYJPOSA-K 2-trans,6-trans,10-trans-geranylgeranyl diphosphate(3-) Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O OINNEUNVOZHBOX-QIRCYJPOSA-K 0.000 description 1
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 1
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 1
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical compound O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 1
- HTJXTKBIUVFUAR-XHIBXCGHSA-N 4-CDP-2-C-methyl-D-erythritol 2-phosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@](CO)(OP(O)(O)=O)C)O[C@H]1N1C(=O)N=C(N)C=C1 HTJXTKBIUVFUAR-XHIBXCGHSA-N 0.000 description 1
- HZWWPUTXBJEENE-UHFFFAOYSA-N 5-amino-2-[[1-[5-amino-2-[[1-[2-amino-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoic acid Chemical compound C1CCC(C(=O)NC(CCC(N)=O)C(=O)N2C(CCC2)C(=O)NC(CCC(N)=O)C(O)=O)N1C(=O)C(N)CC1=CC=C(O)C=C1 HZWWPUTXBJEENE-UHFFFAOYSA-N 0.000 description 1
- WFPZSXYXPSUOPY-ROYWQJLOSA-N ADP alpha-D-glucoside Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WFPZSXYXPSUOPY-ROYWQJLOSA-N 0.000 description 1
- 108010000700 Acetolactate synthase Proteins 0.000 description 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 1
- 108010006229 Acetyl-CoA C-acetyltransferase Proteins 0.000 description 1
- 241000234282 Allium Species 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 235000021411 American diet Nutrition 0.000 description 1
- 102100034613 Annexin A2 Human genes 0.000 description 1
- 108090000668 Annexin A2 Proteins 0.000 description 1
- 102100034612 Annexin A4 Human genes 0.000 description 1
- 108090000669 Annexin A4 Proteins 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 101000768857 Arabidopsis thaliana 3-phosphoshikimate 1-carboxyvinyltransferase, chloroplastic Proteins 0.000 description 1
- 101100282455 Arabidopsis thaliana AMP1 gene Proteins 0.000 description 1
- 101100121722 Arabidopsis thaliana GGH2 gene Proteins 0.000 description 1
- 101100204308 Arabidopsis thaliana SUC2 gene Proteins 0.000 description 1
- 241000710139 Artichoke mottled crinkle virus Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 229930192334 Auxin Natural products 0.000 description 1
- 101150077012 BEL1 gene Proteins 0.000 description 1
- 108090000145 Bacillolysin Proteins 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101100453077 Botryococcus braunii HDR gene Proteins 0.000 description 1
- 235000011371 Brassica hirta Nutrition 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- 239000005489 Bromoxynil Substances 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 101100327819 Caenorhabditis elegans chl-1 gene Proteins 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 235000009467 Carica papaya Nutrition 0.000 description 1
- 240000006432 Carica papaya Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 108010007108 Chloroplast Thioredoxins Proteins 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 241001112695 Clostridiales Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 235000019750 Crude protein Nutrition 0.000 description 1
- 244000241257 Cucumis melo Species 0.000 description 1
- 235000009847 Cucumis melo var cantalupensis Nutrition 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- IMXSCCDUAFEIOE-UHFFFAOYSA-N D-Octopin Natural products OC(=O)C(C)NC(C(O)=O)CCCN=C(N)N IMXSCCDUAFEIOE-UHFFFAOYSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- LMKYZBGVKHTLTN-NKWVEPMBSA-N D-nopaline Chemical compound NC(=N)NCCC[C@@H](C(O)=O)N[C@@H](C(O)=O)CCC(O)=O LMKYZBGVKHTLTN-NKWVEPMBSA-N 0.000 description 1
- IMXSCCDUAFEIOE-RITPCOANSA-N D-octopine Chemical compound [O-]C(=O)[C@@H](C)[NH2+][C@H](C([O-])=O)CCCNC(N)=[NH2+] IMXSCCDUAFEIOE-RITPCOANSA-N 0.000 description 1
- YAHZABJORDUQGO-NQXXGFSBSA-N D-ribulose 1,5-bisphosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)C(=O)COP(O)(O)=O YAHZABJORDUQGO-NQXXGFSBSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 235000001815 DL-alpha-tocopherol Nutrition 0.000 description 1
- 239000011627 DL-alpha-tocopherol Substances 0.000 description 1
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 description 1
- 108020001019 DNA Primers Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 241001523681 Dendrobium Species 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 101100125027 Dictyostelium discoideum mhsp70 gene Proteins 0.000 description 1
- 108010006731 Dimethylallyltranstransferase Proteins 0.000 description 1
- 102000005454 Dimethylallyltranstransferase Human genes 0.000 description 1
- 235000005903 Dioscorea Nutrition 0.000 description 1
- 244000281702 Dioscorea villosa Species 0.000 description 1
- 235000000504 Dioscorea villosa Nutrition 0.000 description 1
- 102000057412 Diphosphomevalonate decarboxylases Human genes 0.000 description 1
- AHMIDUVKSGCHAU-UHFFFAOYSA-N Dopaquinone Natural products OC(=O)C(N)CC1=CC(=O)C(=O)C=C1 AHMIDUVKSGCHAU-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 240000003133 Elaeis guineensis Species 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 101100509137 Escherichia coli (strain K12) ispD gene Proteins 0.000 description 1
- 101100397294 Escherichia coli (strain K12) ispE gene Proteins 0.000 description 1
- 101100397366 Escherichia coli (strain K12) ispF gene Proteins 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 101150020286 FIS2 gene Proteins 0.000 description 1
- 108010046335 Ferredoxin-NADP Reductase Proteins 0.000 description 1
- 241000234642 Festuca Species 0.000 description 1
- 241000701484 Figwort mosaic virus Species 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- OINNEUNVOZHBOX-XBQSVVNOSA-N Geranylgeranyl diphosphate Natural products [P@](=O)(OP(=O)(O)O)(OC/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)O OINNEUNVOZHBOX-XBQSVVNOSA-N 0.000 description 1
- 108030000372 Geranylgeranyl diphosphate reductases Proteins 0.000 description 1
- 102100039291 Geranylgeranyl pyrophosphate synthase Human genes 0.000 description 1
- 108010066605 Geranylgeranyl-Diphosphate Geranylgeranyltransferase Proteins 0.000 description 1
- 241000245654 Gladiolus Species 0.000 description 1
- 108010061711 Gliadin Proteins 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 239000005561 Glufosinate Substances 0.000 description 1
- 235000009438 Gossypium Nutrition 0.000 description 1
- 101150031823 HSP70 gene Proteins 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 241000208818 Helianthus Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000985215 Homo sapiens 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 description 1
- 101000827338 Homo sapiens Mitochondrial fission 1 protein Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 108030006697 Homogentisate phytyltransferases Proteins 0.000 description 1
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 description 1
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 description 1
- 108010000775 Hydroxymethylglutaryl-CoA synthase Proteins 0.000 description 1
- 102100028888 Hydroxymethylglutaryl-CoA synthase, cytoplasmic Human genes 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 101100288095 Klebsiella pneumoniae neo gene Proteins 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- MIEILDYWGANZNH-DSQUFTABSA-N L-arogenic acid Chemical compound OC(=O)[C@@H](N)CC1(C(O)=O)C=CC(O)C=C1 MIEILDYWGANZNH-DSQUFTABSA-N 0.000 description 1
- AHMIDUVKSGCHAU-LURJTMIESA-N L-dopaquinone Chemical compound [O-]C(=O)[C@@H]([NH3+])CC1=CC(=O)C(=O)C=C1 AHMIDUVKSGCHAU-LURJTMIESA-N 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 240000004322 Lens culinaris Species 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 240000004296 Lolium perenne Species 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical group COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 108700040132 Mevalonate kinases Proteins 0.000 description 1
- 102100023845 Mitochondrial fission 1 protein Human genes 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101000958834 Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) Diphosphomevalonate decarboxylase mvd1 Proteins 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 108010033272 Nitrilase Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 101000958925 Panax ginseng Diphosphomevalonate decarboxylase 1 Proteins 0.000 description 1
- 101710091688 Patatin Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 101100056487 Petunia hybrida EPSPS gene Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 101710163504 Phaseolin Proteins 0.000 description 1
- 102100024279 Phosphomevalonate kinase Human genes 0.000 description 1
- 108030003938 Phytol kinases Proteins 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 240000003889 Piper guineense Species 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 101150090155 R gene Proteins 0.000 description 1
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- 101710154134 Stearoyl-[acyl-carrier-protein] 9-desaturase, chloroplastic Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 102000003673 Symporters Human genes 0.000 description 1
- 108090000088 Symporters Proteins 0.000 description 1
- 101000898020 Synechocystis sp. (strain PCC 6803 / Kazusa) Homogentisate phytyltransferase Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108010089860 Thylakoid Membrane Proteins Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 240000001717 Vaccinium macrocarpon Species 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 101001036768 Zea mays Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic/amyloplastic Proteins 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- XMWHRVNVKDKBRG-CRCLSJGQSA-N [(2s,3r)-2,3,4-trihydroxy-3-methylbutyl] dihydrogen phosphate Chemical compound OC[C@](O)(C)[C@@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-CRCLSJGQSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- HLVPIMVSSMJFPS-UHFFFAOYSA-N abscisic acid beta-D-glucopyranosyl ester Natural products O1C(CO)C(O)C(O)C(O)C1OC(=O)C=C(C)C=CC1(O)C(C)=CC(=O)CC1(C)C HLVPIMVSSMJFPS-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229960001570 ademetionine Drugs 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 108010050181 aleurone Proteins 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- LTVDFSLWFKLJDQ-DKGMKSHISA-N alpha-Tocopherolquinone Natural products CC(C)CCC[C@H](C)CCC[C@@H](C)CCC[C@@](C)(O)CCC1=C(C)C(=O)C(C)=C(C)C1=O LTVDFSLWFKLJDQ-DKGMKSHISA-N 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 101150090348 atpC gene Proteins 0.000 description 1
- 101150035600 atpD gene Proteins 0.000 description 1
- 101150103189 atpG gene Proteins 0.000 description 1
- 101150048329 atpH gene Proteins 0.000 description 1
- 239000002363 auxin Substances 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RIOXQFHNBCKOKP-UHFFFAOYSA-N benomyl Chemical compound C1=CC=C2N(C(=O)NCCCC)C(NC(=O)OC)=NC2=C1 RIOXQFHNBCKOKP-UHFFFAOYSA-N 0.000 description 1
- MITFXPHMIHQXPI-UHFFFAOYSA-N benzoxaprofen Natural products N=1C2=CC(C(C(O)=O)C)=CC=C2OC=1C1=CC=C(Cl)C=C1 MITFXPHMIHQXPI-UHFFFAOYSA-N 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000000081 body of the sternum Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 201000011529 cardiovascular cancer Diseases 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- 244000038559 crop plants Species 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- UQHKFADEQIVWID-UHFFFAOYSA-N cytokinin Natural products C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1CC(O)C(CO)O1 UQHKFADEQIVWID-UHFFFAOYSA-N 0.000 description 1
- 239000004062 cytokinin Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- MHUWZNTUIIFHAS-CLFAGFIQSA-N dioleoyl phosphatidic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC MHUWZNTUIIFHAS-CLFAGFIQSA-N 0.000 description 1
- 235000004879 dioscorea Nutrition 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 101150052825 dnaK gene Proteins 0.000 description 1
- 230000008641 drought stress Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000004186 food analysis Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 108010021759 gamma-tocopherol methyltransferase Proteins 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 238000001948 isotopic labelling Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000001325 log-rank test Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 101150037888 mdv1 gene Proteins 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 235000013622 meat product Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012577 media supplement Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000000442 meristematic effect Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000001035 methylating effect Effects 0.000 description 1
- 102000002678 mevalonate kinase Human genes 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- YCIMNLLNPGFGHC-UHFFFAOYSA-N o-dihydroxy-benzene Natural products OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000001936 parietal effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- LWTDZKXXJRRKDG-UHFFFAOYSA-N phaseollin Natural products C1OC2=CC(O)=CC=C2C2C1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 108091000116 phosphomevalonate kinase Proteins 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 239000005648 plant growth regulator Substances 0.000 description 1
- 238000004161 plant tissue culture Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 101150096384 psaD gene Proteins 0.000 description 1
- 101150032357 psaE gene Proteins 0.000 description 1
- 101150027686 psaF gene Proteins 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000011833 salt mixture Substances 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical compound OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 230000025366 tissue development Effects 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 101150007587 tpx gene Proteins 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 101150101900 uidA gene Proteins 0.000 description 1
- 235000019195 vitamin supplement Nutrition 0.000 description 1
- 108700026215 vpr Genes Proteins 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 241000960357 x Tritordeum Species 0.000 description 1
- 101150074257 xylE gene Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0069—Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Definitions
- the present invention is in the field of plant genetics and biochemistry. More specifically, the present invention relates to genes and polypeptides associated with the tocopherol biosynthesis pathway, namely those encoding 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) activity, and uses thereof.
- HPPD 4-Hydroxyphenylpyruvate Dioxygenase
- Tocopherols are an important component of mammalian diets. Epidemiological evidence indicates that tocopherol supplementation can result in decreased risk for cardiovascular disease and cancer, can aid in immune function, and is associated with prevention or retardation of a number of degenerative disease processes in humans (Traber and Sies, Annu. Rev. Nutr., 16:321-347, 1996). Tocopherol functions, in part, by stabilizing the lipid bilayer of biological membranes (Skrypin and Kagan, Biochim. Biophys. Acta., 815:209, 1995; Kagan, N.Y. Acad. Sci., p. 121, 1989; Gomez-Femandez et al., Ann. N.Y. Acad.
- the compound ⁇ -tocopherol which is often referred to as vitamin E, belongs to a class of lipid-soluble antioxidants that includes ⁇ , ⁇ , ⁇ , and ⁇ -tocopherols and ⁇ , ⁇ , ⁇ , and ⁇ -tocotrienols.
- ⁇ , ⁇ , ⁇ , and ⁇ -tocopherols and ⁇ , ⁇ , ⁇ , and ⁇ -tocotrienols are sometimes referred to collectively as “vitamin E”.
- Vitamin E is more appropriately defined chemically as the beneficial activity for animals and humans which can be e.g., determined in the rat fetal absorption and hemolysis assays (Chow, Vitamin E , In: Handbook of Vitamins ISBN:0-8247-0428-2).
- ⁇ -Tocopherol has the highest vitamin E activity, in part because it is readily absorbed and retained by the body (Traber and Sics, Annu. Rev. Nutr., 16:321-347, 1996).
- tocopherols and tocotrienols such as ⁇ , ⁇ , ⁇ -tocopherols and ⁇ , ⁇ , ⁇ , ⁇ -tocotrienols also have significant health and nutritional benefits.
- Leaf tissue can contain from 10-50 ⁇ g of total tocopherols per gram fresh weight, but the edible parts of most of the world's major staple crops (e.g., rice, corn, wheat, potato) produce low to extremely low levels of total tocopherols, of which only a small percentage is ⁇ -tocopherol (Hess, Vitamin E, ⁇ -tocopherol, In: Antioxidants in Higher Plants, R. Alscher and J. Hess, Eds., CRC Press, Boca Raton, Fla., pp. 11′-134, 1993). Oil seed crops generally contain much higher levels of total tocopherols, but ⁇ -tocopherol is present only as a minor component in most oilseeds (Taylor and Barnes, Chemy Ind., 722-726, 1981).
- tocopherols In addition to the health benefits of tocopherols, increased tocopherol levels in crops have been associated with enhanced stability and extended shelf life of plant products (Peterson, Cereal - Chem., 72(1):21-24, 1995; Ball, Fat - soluble vitamin assays in food analysis. A comprehensive review , London, Elsevier Science Publishers Ltd., 1988). Further, tocopherol supplementation of swine, beef, and poultry feeds has been shown to significantly increase meat quality and extend the shelf life of post-processed meat products by retarding post-processing lipid oxidation, which contributes to undesirable flavor components (Sante and Lacourt, J. Sci. Food Agric., 65(4):503-507, 1994; Buckley et al., J. of Animal Science, 73:3122-3130, 1995).
- HPPD HPPD
- FIG. 1 The tocopherol biosynthetic pathway in higher plants involves several enzymes including HPPD ( FIG. 1 ) (Fiedler et al., Planta, 155:511-515, 1982; Soll et al., Arch. Biochem. Biophys., 204:544-550, 1980; Marshall et al., Phytochem., 24:1705-1711, 1985).
- HPPD also known as 4-HPPD, is a mononuclear, non-heme, iron-containing enzyme which is a member of the family of 2-oxoacid dependent dioxygenases (Ryle et al., Curr. Opin. Chem. Biol., 6:193-201, 2002).
- HPPD catalyzes the conversion of 4-hydroxyphenylpyruvate to homogentisic acid and is a key enzyme involved in the synthesis of tocopherol and plastoquinone.
- HPPD is an enzyme central to the biosynthesis of the essential quinoid-compounds derived from the amino acid tyrosine, such as plastoquinones or tocopherols. Because plastoquinones and tocopherols are essential molecules for plants, inhibitors of HPPD are useful as herbicides (U.S. Pat. Nos. 5,786,513 and 6,555,714; PCT Publication WO 97/49816). HPPDs can also be used to make plants tolerant to certain herbicides by mutating the target enzyme into a functional enzyme that is less sensitive to the herbicide, or to its active metabolite, such as, for example, the enzymes for tolerance to glyphosate (EP 293356; S. R.
- Another means of producing herbicide tolerant plants is by over-expression of an herbicide sensitive HPPD or polypeptide having HPPD activity in a transformed plant so as to produce quantities of the target HPPD enzyme in the plant which are sufficient, given the kinetic constants of HPPD, so as to have enough of the functional HPPD enzyme available despite the presence of its inhibitor (U.S. Pat. No. 6,245,968).
- the present invention includes and provides a substantially purified polynucleotide molecule comprising:
- a polynucleotide molecule comprising a nucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, nucleotide sequences having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a
- a polynucleotide molecule encoding a 4-hydroxyphenylpyruvate dioxygenase (“HPPD”) polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO:
- a polynucleotide molecule comprising a polynucleotide sequence encoding a polypeptide comprising a sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and
- a polynucleotide molecule comprising a polynucleotide sequence encoding a 4-hydroxyphenylpyruvate dioxygenase (“HPPD”) polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22,
- the substantially purified polynucleotide molecule of the present invention is operably linked to a heterologous promoter that functions in plants, including seed-preferred promoters, and including the napin, 7S alpha, 7S alpha′ 7S beta, USP 88, enhanced USP 88, Arcelin 5, and oleosin promoters.
- a substantially purified polynucleotide molecule of the present invention is operably linked to a polynucleotide encoding a chloroplast transit peptide.
- a plasmid comprises a substantially purified polynucleotide molecule of the present invention.
- a chimeric gene comprises a substantially purified polynucleotide molecule of the present invention operably linked to at least one regulatory sequence not associated in nature with the substantially purified polynucleotide molecule.
- the present invention comprises a microbial host transformed with the chimeric gene.
- the present invention comprises a plant host cell transformed with the chimeric gene.
- the present invention includes and provides a substantially purified polypeptide comprising:
- SEQ ID NO: 4 a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24; or
- HPPD 4-hydroxyphenylpyruvate dioxygenase
- polypeptide comprises a sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 4, SEQ ID NO: 4, a polypeptide sequence having at
- the present invention includes and provides a method of producing a transformed plant cell, plant tissue, plant organ, or plant comprising at least one of an increased tocopherol level and increased tocotrienol level relative to a wild type plant cell, plant tissue, plant organ, or plant comprising:
- HPPD 4-hydroxyphenylpyruvate dioxygenase
- a polynucleotide molecule comprising a polynucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO:
- a polynucleotide molecule comprising a polynucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO:
- a polynucleotide molecule comprising a polynucleotide sequence encoding a HPPD polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleo
- a polynucleotide molecule comprising a polynucleotide sequence encoding an HPPD polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleot
- polypeptide sequence having at least 58% identity to SEQ ID NO: 4 a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 93% identity to SEQ ID NO: 22, SEQ ID NO: 22, a polypeptide sequence having at least 93% identity
- polypeptide sequence having at least 58% identity to SEQ ID NO: 4 a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least
- At least one additional polynucleotide molecule encoding an enzyme selected from the group consisting of MT1, tMT2, GMT, tyrA, HPT, tocopherol cyclase, chlorophyllase, dxs, dxr, GGPPS, AANT1, LTT1, IDI, and GGH is introduced into the plant.
- the at least one additional polynucleotide molecule is selected from the group consisting of SEQ ID NOs: 25, 26, and 27.
- the method produces a transformed plant selected from the group consisting of alfalfa, Arabidopsis thaliana , barley, Brassica campestris , oilseed rape, broccoli, cabbage, citrus, canola, cotton, garlic, oat, Allium , flax, an ornamental plant, peanut, pepper, potato, rapeseed, rice, rye, sorghum, strawberry, sugarcane, sugarbeet, tomato, wheat, poplar, pine, fir, eucalyptus, apple, lettuce, lentils, grape, banana, tea, turf grasses, sunflower, soybean, chick peas, corn, Phaseolus , crambe, mustard, castor bean, sesame, cottonseed, linseed, safflower, and oil palm.
- the transformed plant is selected from the group consisting of canola, oilseed rape, and soybean.
- the present invention includes and provides a method for producing a transformed plant which comprises tissue with at least one of increased ⁇ -tocopherol, ⁇ -tocotrienol, ⁇ -tocopherol, ⁇ -tocotrienol, ⁇ -tocopherol, ⁇ -tocotrienol, ⁇ -tocopherol, and ⁇ -tocotrienol levels relative to a plant with a similar genetic background but lacking said introduced polynucleotide molecule.
- the introduced polynucleotide molecule is operably linked to a promoter, including a seed preferred promoter, including the napin, 7S alpha, 7S alpha′, USP 88, enhanced USP 88, Arcelin 5, and Oleosin promoters.
- a promoter including a seed preferred promoter, including the napin, 7S alpha, 7S alpha′, USP 88, enhanced USP 88, Arcelin 5, and Oleosin promoters.
- the tissue comprises a seed.
- the present invention includes and provides a method for increasing the ability of a plant to withstand a stress, the method comprising incorporating into one or more cells of the plant a DNA construct comprising:
- the DNA encoding an HPPD is selected from the group consisting of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23.
- the present invention includes and provides a plant cell transformed with a DNA construct encoding an HPPD that confers stress tolerance to a plant regenerated from said plant cell as well as a transgenic plant regenerated from such plant cell.
- transformed plants produced by the methods of the present invention, seed from the transformed plants, oil from the seeds of the transformed plants, and meal from the seed of the transformed plants.
- the present invention includes and provides an antibody capable of binding a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NOs: 4, 6, 8, 10, 12, 16, 18, 20, 22, and 24.
- the present invention includes and provides a method for screening for agents that alter tocopherol levels in a plant comprising: (a) providing a plant lacking a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO:
- the present invention includes isolated nucleic acid primer sequences comprising one or more of SEQ ID NOs: 28-36, or the complement thereof.
- the present invention includes a method to detect or identify, in the genome of a transformed plant or progeny thereof, a heterologous polynucleotide molecule encoding a plant HPPD polypeptide, or a plant polypeptide having HPPD activity of the present invention, comprising a polynucleotide molecule selected from the group consisting of SEQ ID NOs: 28-36, wherein said polynucleotide molecule is used as a DNA primer in a DNA amplification method.
- FIG. 1 illustrates a schematic representation of the tocopherol biosynthesis pathway.
- FIG. 2 illustrates polynucleotide primer sequences.
- FIG. 3 illustrates the plasmid map of pMON78601.
- FIG. 4 illustrates the plasmid map of pMON78622.
- FIG. 5 illustrates the plasmid map of pMON78602.
- FIG. 6 illustrates the plasmid map of pMON78603.
- FIG. 7 illustrates the plasmid map of pMON78604.
- FIG. 8 illustrates the plasmid map of pMON64352.
- FIG. 9 illustrates the plasmid map of pMON77624.
- FIG. 10 illustrates the plasmid map of pMON77612.
- FIG. 11 illustrates the plasmid map of pMON77611.
- FIG. 12 illustrates the plasmid map of pMON77617.
- FIG. 13 illustrates the plasmid map of pMON77609.
- FIG. 14 illustrates the plasmid map of pMON77618.
- FIG. 15 illustrates the plasmid map of pMON36524.
- FIG. 16 illustrates the plasmid map of pMON77619.
- FIG. 17 illustrates the plasmid map of pMON77620.
- FIG. 18 illustrates the plasmid map of pMON77621.
- FIG. 19 illustrates the plasmid map of pMON77622.
- FIG. 20 illustrates the plasmid map of pMON77616.
- FIG. 21 illustrates the plasmid map of pMON69909.
- FIG. 22 illustrates the plasmid map of pMON69907.
- FIG. 23 illustrates the plasmid map of pMON78623.
- SEQ ID NO: 1 represents a polynucleotide sequence encoding a Synechocystis sp. PCC6803 HPPD.
- SEQ ID NO: 2 represents a polynucleotide sequence encoding an Arabidopsis thaliana HPPD.
- SEQ ID NO: 3 represents a polynucleotide sequence encoding a Bacillus thuringiensis HPPD.
- SEQ ID NO: 4 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 5 represents a polynucleotide sequence encoding a Bacillus thuringiensis.
- SEQ ID NO: 6 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 7 represents a polynucleotide sequence encoding a Bacillus thuringiensis HPPD.
- SEQ ID NO: 8 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 9 represents a polynucleotide sequence encoding a Bacillus thuringiensis HPPD.
- SEQ ID NO: 10 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 11 represents a polynucleotide sequence encoding a Bacillus thuringiensis HPPD.
- SEQ ID NO: 12 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 13 represents a polynucleotide sequence encoding a modified Bacillus thuringiensis HPPD.
- SEQ ID NO: 14 represents a modified Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 15 represents a polynucleotide sequence encoding a Gossypium hirsutum HPPD.
- SEQ ID NO: 16 represents a Gossypium hirsutum HPPD polypeptide.
- SEQ ID NO: 17 represents a polynucleotide sequence encoding a Gossypium hirsutum HPPD.
- SEQ ID NO: 18 represents a Gossypium hirsutum HPPD polypeptide.
- SEQ ID NO: 19 represents a polynucleotide molecule sequence encoding a Brassica napus HPPD.
- SEQ ID NO: 20 represents a Brassica napus HPPD polypeptide.
- SEQ ID NO: 21 represents a polynucleotide sequence encoding a Lycopersicon esculentum HPPD.
- SEQ ID NO: 22 represents a Lycopersicon esculentum HPPD polypeptide.
- SEQ ID NO: 23 represents a polynucleotide sequence encoding a Sphingomonas elodea HPPD.
- SEQ ID NO: 24 represents a Sphingomonas elodea HPPD polypeptide.
- SEQ ID NO: 25 represents a polynucleotide sequence of an Erwinia herbicola tyrA.
- SEQ ID NO: 26 represents a polynucleotide sequence of an Arabidopsis thaliana HPT.
- SEQ ID NO: 27 represents a polynucleotide sequence of an Arabidopsis thaliana GGH.
- SEQ ID NO: 28 represents a Bt forward (f) Bt-HX-1-f PCR primer sequence.
- SEQ ID NO: 29 represents a Bt forward (f) Bt-HX-2-f PCR primer sequence.
- SEQ ID NO: 30 represents a Bt reverse (r) Bt-HX-3-r PCR primer sequence.
- SEQ ID NO: 31 represents a cotton forward (f) Gh-1-f PCR primer sequence.
- SEQ ID NO: 32 represents a cotton reverse (r) Gh-1-r PCR primer sequence.
- SEQ ID NO: 33 represents a Brassica forward (f) Bn-1-f PCR primer sequence.
- SEQ ID NO: 34 represents a Brassica reverse (r) Bn-2-r PCR primer sequence.
- SEQ ID NO: 35 represents a tomato forward (f) PCR primer sequence.
- SEQ ID NO: 36 represents a tomato reverse (r) PCR primer sequence.
- SEQ ID NO: 37 represents an Arabidopsis thaliana HPPD polypeptide.
- SEQ ID NO: 38 represents an Arabidopsis thaliana HPPD polypeptide antigen.
- SEQ ID NO: 39 represents an Arabidopsis thaliana HPPD polypeptide antigen.
- SEQ ID NO: 40 represents a Synechocystis sp. HPPD polypeptide.
- SEQ ID NO: 41 represents a Synechocystis sp. HPPD polypeptide antigen.
- SEQ ID NO: 42 represents a Bacillus thuringiensis HPPD polypeptide antigen.
- SEQ ID NO: 43 represents a Uni-HPPD polypeptide antigen.
- SEQ ID NO: 44 represents a Bacillus thuringiensis HPPD polynucleotide sequence.
- the present invention provides a number of agents, for example, polynucleotide molecules and polypeptides associated with the synthesis of tocopherol and tocotrienol, and provides uses of such agents.
- HPPD a mononuclear, non-heme, iron containing enzyme that is a member of the family of 2-oxoacid dependent dioxygenases.
- HPPD catalyzes the conversion of 4-hydroxphenylpyruvate to homogentisic acid and is a key enzyme involved in the synthesis of ⁇ -tocopherol and plastoquinone. “Having HPPD activity” means that the HPPD enzyme (EC 1.13.11.27) uses molecular oxygen to oxygenate 4-hydroxyphenylpyruvate to yield CO 2 and homogentisic acid.
- the present invention is useful for: 1) increasing tocopherol and tocotrienol production in plants; 2) enhancing the nutritional quality of human food and animal feed; 3) enhancing tolerance in plants to abiotic stresses such as heat and drought; and 4) increasing the tolerance of plants to certain classes of herbicides.
- Tocopherols are involved in the response of plants to oxidative stresses (Porfirova et al., PNAS, 99(19):12495-12500, 2002). Therefore, expression or over-expression in a transformed plant of an HPPD or polypeptide having HPPD activity of the present invention, in combination with other tocopherol pathway enzymes, may provide tolerance to a variety of stresses, e.g., oxidative stress tolerance such as to drought, oxygen or ozone, UV tolerance, cold tolerance, or fungal/microbial pathogen tolerance.
- Environmental stresses such as drought, increased salinity of soil, and extreme temperature, are major factors in limiting plant growth and productivity.
- the plastids of higher plants exhibit interconnected biochemical pathways leading to secondary metabolites including tocopherols as illustrated in FIG. 1 .
- the various genes and their encoded proteins involved in tocopherol biosynthesis are listed in Table 1 below.
- the tocopherol biosynthetic pathway in higher plants involves condensation of homogentisic acid and phytylpyrophosphate to form 2-methylphytylplastoquinol (Fiedler et al., Planta, 155:511-515, 1982; Soll et al., Arch. Biochem. Biophys., 204:544-550, 1980; Marshall et al., Phytochem., 24:1705-1711, 1985).
- This plant tocopherol pathway can be divided into four parts: 1) synthesis of homogentisic acid (HGA), which contributes to the aromatic ring of tocopherol; 2) synthesis of phytylpyrophosphate, which contributes to the side chain of tocopherol; 3) joining of HGA and phytylpyrophosphate via a prenyltransferase followed by a methylation reaction, and a subsequent cyclization; and 4) another S-adenosyl methionine dependent methylation of an aromatic ring, which affects the relative abundance of each of the tocopherol species.
- HGA homogentisic acid
- phytylpyrophosphate which contributes to the side chain of tocopherol
- Homogentisic acid is the common precursor to both tocopherols and plastoquinones ( FIG. 1 ). In at least some bacteria, the synthesis of homogentisic acid is reported to occur via the conversion of chorismate to prephenate and then to p-hydroxyphenylpyruvate via a bifunctional prephenate dehydrogenase.
- bifunctional bacterial prephenate dehydrogenase enzymes include, for example, the proteins encoded by the tyrA genes of Erwinia herbicola (SEQ ID NO: 25) and Escherichia coli .
- the tyrA gene product catalyzes the production of prephenate from chorismate, as well as the subsequent dehydrogenation of prephenate to form p-hydroxyphenylpyruvate (p-HPP), the immediate precursor to homogentisic acid.
- p-HPP is then converted to homogentisic acid by p-hydroxyphenylpyruvate dioxygenase (HPPD).
- HPPD p-hydroxyphenylpyruvate dioxygenase
- plants are believed to lack prephenate dehydrogenase activity, and it is generally believed that the synthesis of homogentisic acid from chorismate occurs via the synthesis and conversion of the intermediates arogenate, tyrosine, and p-hydroxyphenylpyruvate.
- Tocopherols are a member of the class of compounds referred to as the isoprenoids.
- Other isoprenoids include carotenoids, gibberellins, terpenes, chlorophyll, and abscisic acid.
- a central intermediate in the production of isoprenoids is isopentenyl diphosphate (IPP). Cytoplasmic and plastid-based pathways to generate IPP have been reported. The cytoplasmic based pathway involves the enzymes acetoacetyl CoA thiolase, HMGCoA synthase, HMGCoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate pyrophosphate decarboxylase.
- Genes reported to be in the MEP pathway also include ygbP, which catalyzes the conversion of 2-C-methyl-D-erythritol 4-phosphate into its respective cytidyl pyrophosphate derivative.
- the translation product of ychB catalyzes the conversion of 4-phosphocytidyl-2-C-methyl-D-erythritol into 4-diphosphocytidyl-2-C-methyl-D-erythritol-2 phosphate.
- the latter compound is converted by the action of the translation product of ygbB into 2-C-methyl-D-erythritol,2,4-cyclodiphosphate.
- 2-C-methyl-D-erythritol,2,4-cyclodiphosphate is converted by the translation product of gcpE to (E)-1-(4-hydroxy-3-methylbut-2-enyl) diphosphate.
- the latter compound is converted by the action of LytB to IPP and DMAPP (Herz et al., Proc. Natl. Acad. Sci . ( U.S.A .), 97(6):2485-2490, 2000).
- IPP is formed by the MEP pathway, it is converted to GGDP by GGPPS synthase, and then to phytylpyrophosphate (Phytyl-PP), which is the central constituent of the tocopherol side chain.
- Phytyl-PP is a substrate for HPT, the enzyme immediately succeeding HPPD in the tocopherol biosynthetic pathway. Therefore, it is useful to combine the expression of genes encoding HPT and HPPD to enhanced production of tocopherol.
- HPPD enzymatic activity provides Homogentisic acid, which is combined with either phytylpyrophosphate or solanyl-pyrophosphate by homogentisate prenyl transferase forming 2-methylphytyl plastoquinol or 2-methylsolanyl plastoquinol, respectively.
- 2-Methylsolanyl plastoquinol is a precursor to the biosynthesis of plastoquinones, while 2-methylphytyl plastoquinol is ultimately converted to tocopherol. It has been suggested that homogentisic acid, when combined with geranylgeranylpyrophosphate, will lead to the formation of tocotrienols.
- the substrates for the completion of tocopherol biosynthesis are produced by the enzymatic activities of GGH, LTT1, HPPD, and HPT.
- the major structural differences between each of the tocopherol subtypes are then determined by the position of the methyl groups around the phenyl ring.
- Both 2-methylphytyl plastoquinol and 2-methylsolanyl plastoquinol serve as substrates for the plant enzyme 2-methylphytylplastoquinol/2-methylsolanylplastoquinol methyltransferase (2-methylphytylplastoquinol methyltransferase; methylphytylplastoquinol methyltransferase; MT2; tMT2), which is capable of methylating a tocopherol precursor to form 2,3-dimethyl-5-phytylplastoquinol, the cyclization of which by tocopherol cyclase yields ⁇ -tocopherol (Cheng et al., Plant Cell, 15:2343-2356, 1983).
- a possible alternate pathway for the generation of ⁇ -tocopherol involves the generation of ⁇ -tocopherol via the cyclization of 2-methylphytylplastoquinol by tocopherol cyclase. ⁇ -tocopherol is then converted to ⁇ -tocopherol via the methylation of the 5 position by GMT. ⁇ -tocopherol can be converted to ⁇ -tocopherol via the methylation of the 3 position by tMT2, followed by methylation of the 5 position by GMT.
- ⁇ -tocopherol is directly converted to ⁇ -tocopherol by tMT2 via the methylation of the 3 position (see, for example, Biochemical Society Transactions, 11:504-510, 1983 ; Introduction to Plant Biochemistry, 2 nd edition, Chapter 11, 1983 ; Vitamin Hormone, 29:153-200, 1971 ; Biochemical Journal, 109:577, 1968 ; Biochemical and Biophysical Research Communication, 28(3):295, 1967). Since all potential mechanisms for the generation of ⁇ -tocopherol involve catalysis by tMT2, plants that are deficient in this activity accumulate ⁇ -tocopherol and ⁇ -tocopherol. Plants that have increased tMT2 activity tend to accumulate ⁇ -tocopherol and ⁇ -tocopherol. Since there is a low level of GMT activity in the seeds of many plants, these plants tend to accumulate ⁇ -tocopherol.
- the agents of the present invention will preferably be “biologically active” with respect to either a structural attribute, such as the capacity of a polynucleotide to hybridize to another polynucleotide molecule, or the ability of a protein to be bound by an antibody (or to compete with another molecule for such binding). Alternatively, such an attribute may be catalytic and thus involve the capacity of the agent to mediate a chemical reaction or response.
- the agents will preferably be “substantially purified.”
- the term “substantially purified,” as used herein, refers to a molecule separated from substantially all other molecules normally associated with it in its native environmental conditions. More preferably a substantially purified molecule is the predominant species present in a preparation.
- a substantially purified molecule may be greater than about 60% free, preferably about 75% free, more preferably about 90% free, and most preferably about 95% free from the other molecules (exclusive of solvent) present in the natural mixture.
- the term “substantially purified” is not intended to encompass molecules present in their native environmental conditions.
- agents of the present invention may also be recombinant.
- the term recombinant means any agent (e.g., DNA, peptide, etc.), that is, or results, however indirectly, from human manipulation of a polynucleotide molecule.
- the agents of the present invention may also contain native or heterologous chloroplast transit peptides (CTP).
- CTP chloroplast transit peptides
- Many chloroplast-localized proteins are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP) that is removed during the import steps.
- chloroplast proteins include the small subunit (SSU) of Ribulose-1,5,-bisphosphate carboxylase (rubisco), Ferredoxin, Ferredoxin oxidoreductase, the light-harvesting complex protein I and protein II, and Thioredoxin F.
- non-chloroplast proteins may be targeted to plastids, e.g., chloroplasts, by use of protein fusions with a CTP and that a CTP sequence is sufficient to target a protein to the chloroplast.
- Chloroplast transit peptides can also be engineered to be fused to the N terminus of a HPPD molecule to direct HPPD enzymes into the plant chloroplast.
- the native CTP may be substituted with a heterologous CTP during construction of a transgene plant expression cassette.
- a suitable chloroplast transit peptide such as, the Arabidopsis thaliana EPSPS CTP (CTP2, Klee et al., Mol.
- the agents of the present invention may be labeled with reagents that facilitate detection of the agent (e.g., fluorescent labels, Prober et al., Science, 238:336-340, 1987; Albarella et al., European Patent 144914; chemical labels, Sheldon et al., U.S. Pat. No. 4,582,789; Albarella et al., U.S. Pat. No. 4,563,417; modified bases, Miyoshi et al., European Patent 119448).
- fluorescent labels e.g., fluorescent labels, Prober et al., Science, 238:336-340, 1987; Albarella et al., European Patent 144914
- chemical labels Sheldon et al., U.S. Pat. No. 4,582,789; Albarella et al., U.S. Pat. No. 4,563,417; modified bases, Miyoshi et al., European Patent 119448).
- a tolerance or resistance to stress is determined by the ability of a plant, when challenged by a stress such as drought, to produce a plant having a higher yield or to a plant being less susceptible to an environmentally induced phenotype such as wilting, than one without such tolerance or resistance to stress.
- the tolerance or resistance to stress is measured relative to a plant with a similar genetic background to the tolerant or resistance plant except that the plant expresses or over expresses a protein or fragment thereof of the present invention.
- the present invention includes and provides polynucleotide molecules encoding a polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs: 4, 6, 10, 12, 16, 18, 20, 22, and 24.
- the present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 58%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 4, 6, 10, or 12.
- the present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 16.
- the present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 18.
- the present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 93%, 95%, or 99% identity to SEQ ID NO: 20.
- the present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 79%, 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 22.
- the present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 54%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 24.
- the present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 3, 5, 9, 11, or 13 and sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequences.
- the present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 15 and sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 15.
- the present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 17 and sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 17.
- the present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 19 and sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 19.
- the present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 21 and sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 21.
- the present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 23 and sequences having at least 90%, 95%, or 99% identity to SEQ ID NO: 23.
- the present invention includes and provides polynucleotide molecules described above and further comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 25, 26, and 27.
- a polynucleotide molecule comprises nucleotide sequences encoding a plastid transit peptide operably fused to a polynucleotide molecule that encodes a protein or fragment of the present invention.
- polynucleotide sequences of the present invention can encode a protein that differs from any of the proteins in that one or more amino acids have been deleted, substituted, or added without altering the function.
- codons capable of coding for such conservative amino acid substitutions are known in the art.
- polynucleotide of the present invention are said to be introduced polynucleotide molecules.
- a polynucleotide molecule is said to be “introduced” if it is inserted into a cell or organism as a result of human manipulation, no matter how indirect.
- introduced polynucleotide molecules include, without limitation, polynucleotides that have been introduced into cells via transformation, transfection, injection, and projection, and those that have been introduced into an organism via conjugation, endocytosis, phagocytosis, etc.
- fragment polynucleotide molecules may consist of significant portion(s) of, or indeed most of, the polynucleotide molecules of the present invention, such as those specifically disclosed.
- the fragments may comprise smaller oligonucleotides (having from about 15 to about 400 nucleotide residues and more preferably, about 15 to about 30 nucleotide residues, or about 50 to about 100 nucleotide residues, or about 100 to about 200 nucleotide residues, or about 200 to about 400 nucleotide residues, or about 275 to about 350 nucleotide residues).
- a fragment of one or more of the polynucleotide molecules of the present invention may be a probe and specifically a PCR probe.
- a PCR probe is a polynucleotide molecule capable of initiating a polymerase activity while in a double-stranded structure with another polynucleotide.
- Various methods for determining the structure of PCR probes and PCR techniques exist in the art.
- Polynucleotide molecules or fragments thereof of the present invention are capable of specifically hybridizing to other polynucleotide molecules under certain circumstances.
- Polynucleotide molecules of the present invention include those that specifically hybridize to polynucleotide molecules having a polynucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a
- Polynucleotide molecules of the present invention also include those that specifically hybridize to polynucleotide molecules encoding a polypeptide sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a
- two polynucleotide molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded polynucleotide structure.
- a polynucleotide molecule is said to be the “complement” of another polynucleotide molecule if they exhibit complete complementarity.
- molecules are said to exhibit “complete complementarity” when every nucleotide of one of the molecules is complementary to a nucleotide of the other.
- Two molecules are said to be “minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional “low-stringency” conditions.
- the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional “high-stringency” conditions.
- Appropriate stringency conditions which promote DNA hybridization are, for example, 6.0 ⁇ sodium chloride/sodium citrate (SSC) at about 45° C., followed by a wash of 2.0 ⁇ SSC at 20-25° C., are known to those skilled in the art or can be found in Current Protocols in Molecular Biology , John Wiley & Sons, New York, 1989, 6.3.1-6.3.6.
- the salt concentration in the wash step can be selected from a low stringency of about 2.0 ⁇ SSC at 50° C. to a high stringency of about 0.2 ⁇ SSC at 65° C.
- the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22° C., to high stringency conditions at about 65° C. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed.
- a polynucleotide of the present invention will specifically hybridize to one or more of the polynucleotide molecules set forth in: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 1, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO:
- a polynucleotide of the present invention will include those polynucleotide molecules that specifically hybridize to one or more of the polynucleotide molecules set forth in: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide
- any of the polynucleotide sequences or polypeptide sequences, or fragments of either, of the present invention can be used to search for related sequences.
- search for related sequences means any method of determining relatedness between two sequences, including, but not limited to, searches that compare sequence homology: for example, a PBLAST search of a database for relatedness to a single polypeptide sequence.
- Other searches may be conducted using profile based methods, such as the HMM (Hidden Markov model) META-MEME, which is maintained by South Dakota State University, SD, and PSI-BLAST, which is maintained by the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NCBI).
- a polynucleotide molecule can encode for a substantially identical or substantially homologous polypeptide molecule.
- the degree of identity or homology is determined by use of computer software such as the WISCONSIN PACKAGE Gap Program.
- the Gap program in the WISCONSIN PACKAGE version 10.0-UNIX from Genetics Computer Group, Inc. is based on the method of Needleman and Wunsch, J. Mol. Biol., 48:443-453, 1970.
- the E-value, or expectation value represents the number of different alignments with scores equivalent to or better than the raw alignment score, S, that are expected to occur in a database search by chance. The lower the E-value, the more significant the match.
- Percent identity refers to the percentage of identically matched amino acid residues that exist along the length of that portion of the sequences which is aligned by the BLAST algorithm. In a preferred embodiment the percent identity calculations are performed using BLASTN or BLASTP (default, parameters, version 2.0.8, Altschul et al., Nucleic Acids Res., 25:3389-3402, 1997).
- a polynucleotide molecule of the present invention can also encode a homolog polypeptide.
- a homolog polypeptide molecule or fragment thereof is a counterpart protein molecule or fragment thereof in a second species (e.g., corn rubisco small subunit is a homolog of Arabidopsis rubisco small subunit).
- a homolog can also be generated by molecular evolution or DNA shuffling techniques, so that the molecule retains at least one functional or structure characteristic of the original polypeptide (see, for example, U.S. Pat. No. 5,811,238).
- Agents of the present invention include polynucleotide molecules that encode polypeptides having at least about a contiguous 10 amino acid region of a polypeptide of the present invention, more preferably having at least about a contiguous 25, 40, 50, 100, or 125 amino acid region of a polypeptide of the present invention, preferably a polypeptide comprising SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at
- any of the polynucleotide molecules of the present invention can be operably linked to a promoter region that functions in a plant cell to cause the production of an mRNA molecule, where the polynucleotide molecule that is linked to the promoter is heterologous with respect to that promoter.
- heterologous means not naturally occurring together.
- a class of agents includes one or more of the polypeptide molecules encoded by a polynucleotide agent of the present invention.
- a particular preferred class of polypeptides is that having a polypeptide sequence of SEQ ID NO: 4, 6, 10, or 12, or a sequence having at least 58%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- a particular preferred class of polypeptides are those having a polypeptide sequence of SEQ ID NO: 16 or a sequence having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof, those having a polypeptide sequence of SEQ ID NO: 18 or a sequence having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof, those having a polypeptide sequence of SEQ ID NO: 20 or a sequence having at least 93%, 95%, or 99% identity to such sequence, or fragments thereof, those having a polypeptide sequence of SEQ ID NO: 22 or a sequence having at least 79%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof, or those having a polypeptide sequence of SEQ ID NO: 24 or a sequence having at least 54%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof
- the HPPD polypeptide, or a polypeptide having HPPD activity comprises a polypeptide sequence selected from the group consisting of SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least
- Polypeptide agents may have C-terminal or N-terminal amino acid sequence extensions.
- One class of N-terminal extensions employed in a preferred embodiment are plastid transit peptides.
- plastid transit peptides can be operatively linked to the N-terminal sequence, thereby permitting the localization of the agent polypeptides to plastids.
- any suitable plastid targeting sequence can be used (see, e.g., U.S. Pat. Nos. 5,776,760; 6,489,542; and 5,717,084).
- a plastid targeting sequence can be substituted for a native plastid targeting sequence.
- any suitable, modified plastid targeting sequence can be used.
- the plastid targeting sequence is a CTP1 sequence (U.S. Pat. No. 5,776,760) or a CTP2 sequence (U.S. Pat. No. 5,463,175).
- protein As used herein, the terms “protein,” “peptide molecule,” or “polypeptide” includes any molecule that comprises five or more amino acids. It is well known in the art that protein, peptide, or polypeptide molecules may undergo modification, including post-translational modifications, such as, but not limited to, disulfide bond formation, glycosylation, phosphorylation, or oligomerization. Thus, as used herein, the terms “protein,” “peptide molecule,” or “polypeptide” includes any protein that is modified by any biological or non-biological process.
- amino acid and “amino acids” refer to all naturally occurring L-amino acids. This definition is meant to include norleucine, norvaline, ornithine, homocysteine, and homoserine.
- a “protein fragment” is a peptide or polypeptide molecule whose amino acid sequence comprises a subset of the amino acid sequence of that protein.
- a protein or fragment thereof that comprises one or more additional peptide regions not derived from that protein is a “fusion” protein.
- Such molecules may be derivatized to contain carbohydrate or other moieties (such as keyhole limpet hemocyanin). Fusion protein or peptide molecules of the present invention are preferably produced via recombinant means.
- Exogenous genetic material may be transferred into a plant cell and the plant cell regenerated into a whole, fertile, or sterile plant.
- Exogenous genetic material is any genetic material, whether naturally occurring or otherwise, from any source that is capable of being inserted into any organism.
- the exogenous genetic material comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 3, 5, 9, 11, and 13, and sequences having at least 80%, 85%, 90%, 95%, or 99% identity to at least one of SEQ ID NOs: 3, 5, 9, 11, and 13, or complements thereof and fragments of either.
- the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 4, 6, 10, or 12, and sequences having at least 58%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 15, or polynucleotide sequences having at least 87%, 90%, 95%, or 99% identity to such sequence, or complements thereof and fragments of either.
- the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 16, and sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 17, or polynucleotide sequences having at least 87%, 90%, 95%, or 99% identity to such sequence, or complements thereof and fragments of either.
- the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 18, and sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 19, or polynucleotide sequences having at least 91%, 95%, or 99% identity to such sequence, or complements thereof and fragments of either.
- the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 20, and sequences having a least 93%, 95%, or 99% identity to such sequence, or fragments thereof.
- the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 21, or polynucleotide sequences having at least 91%, 95%, or 99% identity to such sequence, or complements thereof and fragments of either.
- the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 22, and sequences having at least 79%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 23, or polynucleotide sequences having at least 90% identity to such sequence, or complements thereof and fragments of either.
- the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 24, and sequences having at least 54%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- polynucleotide sequences of the present invention also encode peptides involved in intracellular localization, export, or post-translational modification.
- the term “gene” includes a nucleic acid molecule that provides regulation of transcription that includes a promoter that functions in plants, 5′ untranslated molecules, e.g., introns and leader sequences, a transcribed nucleic acid molecule and a 3′ transcriptional termination molecule.
- construct is a plant expression cassette that includes all of the DNA regulatory molecules operably linked to the target molecule to provide expression in plants.
- exogenous genetic material encoding an HPPD or fragment thereof is introduced into a plant with one or more additional genes.
- preferred combinations of genes include a polynucleotide molecule of the present invention and one or more of the following genes: tyrA (e.g., PCT Publication WO 02/089561 incorporated herein by reference; Xia et al., J. Gen.
- tocopherol cyclase e.g., PCT Publication WO 01/79472, incorporated herein by reference; Cyanobase—the genome database for cyanobacteria, which is maintained by the Department of Plant Gene Research, Kazusa DNA Research Institute, Japan), dxs (e.g., Lois et al., Proc. Natl. Acad. Sci. (U.S.A.), 95(5):2105-2110, 1998), dxr (e.g., U.S. Publication 2002/0108148A, incorporated herein by reference; Takahashi et al., Proc. Natl. Acad. Sci.
- Cyanobase the genome database for cyanobacteria, which is maintained by the Department of Plant Gene Research, Kazusa DNA Research Institute, Japan
- dxs e.g., Lois et al., Proc. Natl. Acad. Sci. (U.S.A.), 95(5):2105-2110, 1998)
- chlorophyllase e.g., Arabidopsis chlorophyllase 1 , gi:30912637 and Arabidopsis chlorophyllase 2, gi:6729677; U.S. patent application Ser. No. 10/634,548, incorporated herein by reference.
- a preferred promoter is a napin promoter and a plastid targeting sequence is a CTP 1 or CTP2 sequence.
- Gene products may be targeted to the plastid. Alternatively, one or more of the gene products can be localized in the cytoplasm.
- the gene products of tyrA and HPPD are targeted to the plastids.
- tyrA and HPPD are targeted to the cytoplasm.
- genes can be introduced, for example, on a single construct, introduced on different constructs but the same transformation event, or introduced into separate plants followed by one or more crosses to generate the desired combination of genes.
- a preferred promoter is a napin promoter (U.S. Pat. No. 5,420,034), a 7S alpha promoter (U.S.
- a preferred plastid targeting sequence is a CTP1 or CTP2 sequence.
- the seed-specific promoters that include the 5′ regulatory regions of the napin gene provide expression of transgenes in seed tissues (U.S. Pat. Nos. 5,420,034 and 6,459,018, herein incorporated by reference).
- 7S refers to ⁇ -conglycinin, a major class of seed storage proteins.
- the trimeric ⁇ -conglycinin is comprised of the ⁇ , ⁇ ′, and ⁇ subunits. Expression of 7S ⁇ ′ has been well studied by many researchers over the years. The 7S ⁇ ′ subunit is expressed at mid to late stages of seed development. A transgene encoding the ⁇ ′-subunit of soybean ⁇ -conglycinin showed seed-specific expression in petunia (Beachy et al., EMBO J., 4:3047-3053, 1985).
- a polynucleotide molecule of the present invention and a polynucleotide molecule encoding tyrA are introduced into a plant.
- Such genetic material may be transferred into either monocotyledons or dicotyledons including, but not limited to alfalfa, apple, Arabidopsis , banana, Brassica campestris , canola, castor bean, coffee, corn, cotton, cottonseed, chrysanthemum, crambe , cucumber, dendrobium, dioscorea, eucalyptus, fescue, flax, gladiolus, liliacea, linseed, millet, muskmelon, mustard, oat, oil palms, oilseed rape, peanut, perennial ryegrass, Phaseolus , rapeseed, rice, sorghum, soybean, rye, tritordeum, turfgrass, wheat, safflower, sesame, sugarbeet, sugarcane, cranberry, papaya, safflower, and sunflower (Christou, In: Particle Bombardment for Genetic Engineering of Plants , Bio
- Transfer of a polynucleotide molecule that encodes a protein can result in expression or overexpression of that polypeptide in a transformed cell or transgenic plant.
- One or more of the proteins or fragments thereof encoded by polynucleotide molecules of the present invention may be overexpressed in a transformed cell or transformed plant.
- DNA constructs of the present invention comprising SEQ ID NO: 3, 5, 7, 9, 11, or 13, or sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 15, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 15, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 17, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 17, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 19, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 19, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 21, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 21, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 23, or sequences having at least 90%, 95%, or 99% identity to SEQ ID NO: 23, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols.
- tocopherols include ⁇ -tocopherols, ⁇ -tocopherols, ⁇ -tocopherols, and ⁇ -tocopherols as well as ⁇ -tocotrienols, ⁇ -tocotrienols, ⁇ -tocotrienols, and ⁇ -tocotrienols.
- DNA constructs of the present invention comprising SEQ ID NO: 3, 5, 7, 9, 11, or 13, or sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequences provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- DNA constructs of the present invention comprising SEQ ID NO: 15, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 15, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- DNA constructs of the present invention comprising SEQ ID NO: 17, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 17, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- DNA constructs of the present invention comprising SEQ ID NO: 19, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 19, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- DNA constructs of the present invention comprising SEQ ID NO: 21, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 21, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- DNA constructs of the present invention comprising SEQ ID NO: 23, or sequences having at least 90%, 95%, or 99% identity to SEQ ID NO: 23, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- DNA constructs of the present invention comprising polynucleotide molecules encoding a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at
- tocopherols include ⁇ -tocopherols, ⁇ -tocopherols, ⁇ -tocopherols, and ⁇ -tocopherols as well as ⁇ -tocotrienols, ⁇ -tocotrienols, ⁇ -tocotrienols, and ⁇ -tocotrienols.
- DNA constructs of the present invention comprising polynucleotide molecules encoding polypeptides of the present invention provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- DNA constructs of the present invention comprising a polynucleotide selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, nucleotide sequences having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide
- an increase in ⁇ -tocopherol, ⁇ -tocopherol, or both can lead to a decrease in the relative proportion of ⁇ -tocopherol, ⁇ -tocopherol, or both.
- an increase in ⁇ -tocotrienol, ⁇ -tocotrienol, or both can lead to a decrease in the relative proportion of ⁇ -tocotrienol, ⁇ -tocotrienol, or both.
- the levels of one or more products of the tocopherol biosynthesis pathway including any one or more of tocopherols, ⁇ -tocopherols, ⁇ -tocopherols, ⁇ -tocopherols, ⁇ -tocopherols, tocotrienols, ⁇ -tocotrienols, ⁇ -tocotrienols, ⁇ -tocotrienols, ⁇ -tocotrienols are measurably increased.
- the levels of products may be increased throughout an organism such as a plant or localized in one or more specific organs or tissues of the organism.
- the levels of products may be increased in one or more of the tissues and organs of a plant including without limitation: roots, tubers, stems, leaves, stalks, fruit, berries, nuts, bark, pods, seeds, and flowers.
- a preferred organ is a seed.
- expression of enzymes involved in tocopherol, tocotrienol, or plastoquinol synthesis in the seed will result in an increase in ⁇ -tocopherol levels due to the absence of significant levels of GMT activity in those tissues.
- expression of enzymes involved in tocopherol, tocotrienol, or plastoquinol synthesis in photosynthetic tissues will result in an increase in ⁇ -tocopherol due to the higher levels of GMT activity in those tissues relative to the same activity in seed tissue.
- the expression of enzymes involved in tocopherol, tocotrienol, or plastoquinol synthesis in the seed will result in an increase in the total tocopherol, tocotrienol, or plastoquinol level in the plant.
- the levels of tocopherols or a species such as ⁇ -tocopherol may be altered.
- the levels of tocotrienols may be altered. Such alteration can be compared to a plant with a similar genetic background but lacking the introduction of a polynucleotide sequence of the present invention.
- either the ⁇ -tocopherol level, ⁇ -tocotrienol level, or both of plants that natively produce high levels of either ⁇ -tocopherol, ⁇ -tocotrienol or both can be increased by the introduction of a polynucleotide of the present invention.
- nucleotide sequence of HPPD and nucleotide sequences encoding HPPD polypeptides and polypeptides having HPPD activity can also be used to obtain transgenic seed that predominantly accumulate tocotrienols.
- Tocotrienols can be obtained in dicotyledonous seed that carry seed-specific expression constructs for the prephenate dehydrogenase (tyrA) and the HPPD (PCT Publication WO 02/089561).
- tyrA prephenate dehydrogenase
- HPPD PCT Publication WO 02/089561
- a higher purity of tocotrienols may be obtained in such seed by reducing the production of tocopherols while increasing the production of tocotrienols.
- Gene replacement technology can be used to increase expression of a given gene.
- Gene replacement technology is based upon homologous recombination (see, Schnable et al., Curr. Opinions Plant Biol., 1:123, 1998).
- the polynucleotide of the enzyme of interest can be manipulated by mutagenesis (e.g., insertions, deletions, duplications, or replacements) to either increase or decrease enzymatic function.
- the altered sequence can be introduced into the genome to replace the existing, e.g., wild-type, gene via homologous recombination (Puchta and Hohn, Trends Plant Sci., 1:340, 1996; Kempin et al., Nature, 389:802, 1997).
- a similar genetic background is a background where the organisms being compared share about 50% or greater of their nuclear genetic material. In a more preferred aspect a similar genetic background is a background where the organisms being compared share about 75% or greater, even more preferably about 90% or greater of their nuclear genetic material. In another even more preferable aspect, a similar genetic background is a background where the organisms being compared are plants, and the plants are isogenic except for any genetic material originally introduced using plant transformation techniques.
- Exogenous genetic material may be transferred into a host plant cell by the use of a DNA vector or construct designed for such a purpose. Design of such a vector is generally within the skill of the art (see, Plant Molecular Biology: A Laboratory Manual , Clark (ed.), Springer, N.Y., 1997).
- a construct or vector may include a plant promoter to express an mRNA that is translated into the polypeptide of choice.
- any polynucleotide molecules described herein can be operably linked to a promoter region that functions in a plant cell to cause the production of an mRNA molecule.
- any promoter that functions in a plant cell to cause the production of an mRNA molecule such as those promoters described herein, without limitation, can be used.
- the promoter is a plant promoter or a plant virus promoter.
- promoters that are active in plant cells have been described in the literature. These include the 7S alpha′ promoter, the USP 88 promoter (U.S. patent application Ser. No. 10/429,516, filed May 5, 2003), the nopaline synthase (NOS) promoter (Ebert et al., Proc. Natl. Acad. Sci . ( U.S.A .), 84:5745-5749, 1987), the octopine synthase (OCS) promoter which is carried on tumor-inducing plasmids of Agrobacterium tumefaciens .
- NOS nopaline synthase
- OCS octopine synthase
- constitutive promoters that are active in plant cells include, but are not limited to the nopaline synthase (P—NOS) promoters; the cauliflower mosaic virus (P—CaMV) 19S and 35S (P—CaMV35S, U.S. Pat. No. 5,858,642) and enhanced versions of the CaMV 35S promoter (P—CaMV35S-enh, U.S. Pat. No. 5,322,938); the figwort mosaic virus promoter (P-FMV35S, U.S. Pat. Nos. 6,051,753 and 6,018,100); actin promoters, such as the rice actin promoter (P-Os.Act1, U.S. Pat. No.
- promoters utilized For the purpose of expression in source tissues of the plant, such as the leaf, seed, root, or stem, it is preferred that the promoters utilized have relatively high expression in these specific tissues. Tissue-specific expression of a protein of the present invention is a particularly preferred embodiment. For this purpose, one may choose from a number of promoters for genes with tissue- or cell-specific or enhanced expression. Examples of such promoters reported in the literature include the chloroplast glutamine synthetase GS2 promoter from pea (Edwards et al., Proc. Natl. Acad. Sci .
- the promoters utilized in the present invention have relatively high expression in these specific tissues.
- a number of promoters for genes with tuber-specific or tuber-enhanced expression are known, including the class I patatin promoter (Bevan et al., EMBO J., 8:1899-1906, 1986; Jefferson et al., Plant Mol.
- the promoter for the potato tuber ADPGPP genes both the large and small subunits, the sucrose synthase promoter (Salanoubat and Belliard, Gene, 60:47-56, 1987; Salanoubat and Belliard, Gene, 84:181-185, 1989), the promoter for the major tuber proteins including the 22 kd protein complexes and protease inhibitors (Hannapel, Plant Physiol., 101:703-704, 1993), the promoter for the granule-bound starch synthase gene (GBSS) (Visser et al., Plant Mol.
- promoters can also be used to express a polypeptide in specific tissues, such as seeds or fruits.
- the promoter used is a seed specific promoter.
- promoters include the 5′ regulatory regions from such genes as napin (Kridl et al., Seed Sci. Res., 1:209-219, 1991), phaseolin (Bustos et al., Plant Cell, 1(9):839-853, 1989), soybean trypsin inhibitor (Riggs et al., Plant Cell, 1(6):609-621, 1989), ACP (Baerson et al., Plant Mol.
- zeins are a group of storage proteins, found in corn endosperm. Genomic clones for zein genes have been isolated (Pedersen et al., Cell, 29:1015-1026, 1982; Russell et al., Transgenic Res., 6(2):157-168, 1997), and the promoters from these clones, including the 15 kD, 16 kD, 19 kD, 22 kD, 27 kD, and genes, could also be used.
- promoters known to function, for example, in corn include the promoters for the following genes: waxy, Brittle, Shrunken 2, Branching enzymes I and II, starch synthases, debranching enzymes, oleosins, glutelins, and sucrose synthases.
- a particularly preferred promoter for corn endosperm expression is the promoter for the glutelin gene from rice, more particularly the Osgt-1 promoter (Zheng et al., Mol. Cell. Biol., 13:5829-5842, 1993).
- promoters suitable for expression in wheat include those promoters for the ADP glucose pyrosynthase (ADPGPP) subunits, the granule bound and other starch synthase, the branching and debranching enzymes, the embryogenesis-abundant proteins, the gliadins and the glutenins.
- promoters in rice include those promoters for the ADPGPP subunits, the granule bound and other starch synthase, the branching enzymes, the debranching enzymes, sucrose synthases, and the glutelins.
- a particularly preferred promoter is the promoter for rice glutelin, Osgt-1.
- promoters for barley include those for the ADPGPP subunits, the granule bound and other starch synthase, the branching enzymes, the debranching enzymes, sucrose synthases, the hordeins, the embryo globulins, and the aleurone specific proteins.
- the seed-specific promoters that include the 5′ regulatory regions of the napin gene provide expression of transgenes in seed tissues (U.S. Pat. Nos. 5,420,034 and 6,459,018, herein incorporated by reference).
- 7S refers to ⁇ -conglycinin, a major class of seed storage proteins.
- the trimeric ⁇ -conglycinin is comprised of the ⁇ , ⁇ ′, and ⁇ subunits. Expression of 7S ⁇ ′ has been well studied by many researchers over the years. The 7S ⁇ ′ subunit is expressed at mid to late stages of seed development.
- a transgene encoding the ⁇ ′-subunit of soybean ⁇ -conglycinin showed seed-specific expression in petunia (Beachy et al., EMBO J., 4:3047-3053, 1985). Functional analysis of the regulatory elements indicated that a 900 bp upstream fragment of the 7S ⁇ ′ promoter contains the necessary elements to produce seed-specific expression in transgenic petunia (Chen et al., Proc. Natl. Acad. Sci . ( U.S.A .), 83:8560-8564, 1986).
- the ovule-specific promoter for BEL1 gene can also be used (Reiser et al., Cell, 83:735-742, 1995; GenBank No.
- a preferred promoter for expression in the seed is a napin promoter.
- Another preferred promoter for expression is an Arcelin5 promoter (U.S. Publication 2003/0046727). Additional promoters that may be utilized are described, for example, in U.S. Pat. Nos. 5,378,619; 5,391,725; 5,428,147; 5,447,858; 5,608,144; 5,608,144; 5,614,399; 5,633,441; 5,633,435; and 4,633,436.
- Constructs or vectors may also include, with the coding region of interest, a polynucleotide sequence that acts, in whole or in part, to terminate transcription of that region.
- a polynucleotide sequence that acts, in whole or in part, to terminate transcription of that region.
- Tr7 3′ sequence and the NOS 3′ sequence (Ingelbrecht et al., The Plant Cell, 1:671-680, 1989; Bevan et al., Nucleic Acids Res., 11:369-385, 1983).
- Regulatory transcript termination regions can be provided in plant expression constructs of this present invention as well.
- Transcript termination regions can be provided by the DNA sequence encoding the gene of interest or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region that is naturally associated with the transcript initiation region.
- transcript termination region that is capable of terminating transcription in a plant cell can be employed in the constructs of the present invention, e.g., TML 3′ from Agrobacterium tumefaciens Ti plasmid.
- a vector or construct may also include regulatory elements.
- regulatory elements include the Adh intron 1 (Callis et al., Genes and Develop., 1: 1183-1200, 1987), the sucrose synthase intron (Vasil et al., Plant Physiol., 91:1575-1579, 1989), hsp70 (U.S. Pat. No. 5,859,347), and the TMV omega element (Gallie et al., The Plant Cell, 1:301-311, 1989). These and other regulatory elements may be included when appropriate.
- a vector or construct may also include a selectable marker.
- Selectable markers may also be used to select for plants or plant cells that contain the exogenous genetic material. Examples of such include, but are not limited to: a neo gene (Potrykus et al., Mol. Gen.
- a vector or construct may also include a screenable marker.
- Screenable markers may be used to monitor expression.
- Exemplary screenable markers include: a ⁇ -glucuronidase or uidA gene (GUS) which encodes an enzyme for which various chromogenic substrates are known (Jefferson, Plant Mol.
- selectable or screenable marker genes are also genes that encode a secretable marker whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers that encode a secretable antigen that can be identified by antibody interaction, or even secretable enzymes that can be detected catalytically.
- Secretable proteins fall into a number of classes, including small, diffusible proteins that are detectable, (e.g., by ELISA), small active enzymes that are detectable in extracellular solution (e.g., ⁇ -amylase, ⁇ -lactamase, phosphinothricin transferase), or proteins that are inserted or trapped in the cell wall (such as proteins that include a leader sequence such as that found in the expression unit of extension or tobacco PR-S).
- ⁇ -amylase e.g., ⁇ -lactamase, phosphinothricin transferase
- proteins that are inserted or trapped in the cell wall such as proteins that include a leader sequence such as that found in the expression unit of extension or tobacco PR-S.
- Other possible selectable and/or screenable marker genes will be apparent to those of skill in the art.
- a transgenic plant expressing the desired protein is to be produced.
- Various methods for the introduction of a desired polynucleotide sequence encoding the desired protein into plant cells include, but are not limited to: (1) physical methods such as microinjection, electroporation, and microprojectile mediated delivery (biolistics or gene gun technology); (2) virus mediated delivery methods; and (3) Agrobacterium -mediated transformation methods.
- plant plastids such as chloroplasts or amyloplasts
- plant plastids may be transformed utilizing a microprojectile-mediated delivery of the desired polynucleotide.
- Arabidopsis embryos have been transformed by an Agrobacterium mediated vacuum infiltration method described by Bechtold, N. et al., CR Acad Sci Paris Sciences di la vie/life sciences, 316:1194-1199, 1993. This method has been modified for use with the constructs of the present invention to provide a rapid and efficient method to transform Arabidopsis and select for an herbicide tolerant phenotype.
- the methods for introducing transgenes into plants by Agrobacterium -mediated transformation utilize a T-DNA (transfer DNA) that incorporates the genetic elements of the transgene and transfers those genetic elements into the genome of a plant.
- T-DNA transfer DNA
- the transgene(s) bordered by a right border DNA molecule (RB) and a left border DNA molecule (LB) is (are) transferred into the plant genome at a single locus.
- T-DNA molecule refers to a DNA molecule that integrates into a plant genome via an Agrobacterium mediated transformation method.
- the ends of the T-DNA molecule are defined in the present invention as being flanked by the border regions of the T-DNA from Agrobacterium Ti plasmids. These border regions are generally referred to as the Right border (RB) and Left border (LB) regions and exist as variations in nucleotide sequence and length depending on whether they are derived from nopaline or octopine producing strains of Agrobacterium .
- RB Right border
- LB Left border
- T-DNA molecules generally contain one or more plant expression cassettes.
- An Agrobacterium strain ABI containing a DNA construct is prepared as inoculum by growing it in a culture tube containing 10 mls Luria Broth and antibiotics, for example, 1 ml/L each of spectinomycin (100 mg/ml), chloramphenicol (25 mg/ml), kanamycin (50 mg/ml), or the appropriate antibiotics as determined by those skilled in the art.
- the culture is shaken in the dark at 28° C. for approximately 16-20 hours.
- the Agrobacterium inoculum is pelleted by centrifugation and resuspended in 25 ml Infiltration Medium (MS Basal Salts 0.5%, Gamborg's B-5 Vitamins 1%, Sucrose 5%, MES 0.5 g/L, pH 5.7) with 0.44 nM benzylaminopurine (10 ul of a 1.0 mg/L stock in DMSO per liter) and 0.02% Silwet L-77 to an OD 600 of 0.6.
- Mature flowering Arabidopsis plants are vacuum infiltrated in a vacuum chamber with the Agrobacterium inoculum by inverting the pots containing the plants into the inoculum. The chamber is sealed, a vacuum is applied for several minutes, and released suddenly. The pots are blotted to remove excess inoculum, then covered with plastic domes and placed in a growth chamber at 21° C., 16 hours light, and 70% humidity. Approximately 2 weeks after vacuum infiltration of the inoculum, each plant is covered with a Lawson 511 pollination bag. Approximately 4 weeks post infiltration, water is withheld from the plants to permit dry down. The seed is harvested approximately 2 weeks after dry down.
- particles are coated with polynucleotides and delivered into cells by a propelling force.
- Exemplary particles include those comprised of tungsten, platinum, and preferably, gold.
- An illustrative embodiment of a method for delivering DNA into plant cells by acceleration is the Biolistics Particle Delivery System (BioRad, Hercules, Calif.), which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with monocot plant cells cultured in suspension.
- Biolistics Particle Delivery System BioRad, Hercules, Calif.
- Microprojectile bombardment techniques are widely applicable, and may be used to transform virtually any plant species.
- species that have been transformed by microprojectile bombardment include monocot species such as maize (PCT Publication WO 95/06128), barley, wheat (U.S. Pat. No. 5,563,055, incorporated herein by reference in its entirety), rice, oat, rye, sugarcane, and sorghum; as well as a number of dicots including tobacco, soybean (U.S. Pat. No. 5,322,783, incorporated herein by reference in its entirety), sunflower, peanut, cotton, tomato, and legumes in general (U.S. Pat. No. 5,563,055, incorporated herein by reference in its entirety).
- the DNA introduced into the cell contains a gene that functions in a regenerable plant tissue to produce a compound that confers upon the plant tissue resistance to an otherwise toxic compound.
- Genes of interest for use as a selectable, screenable, or scorable marker would include but are not limited to GUS, green fluorescent protein (GFP), luciferase (LUX), antibiotic or herbicide tolerance genes.
- GUS green fluorescent protein
- LUX luciferase
- antibiotic resistance genes include the penicillins, kanamycin (and neomycin, G418, bleomycin); methotrexate (and trimethoprim); chloramphenicol; kanamycin and tetracycline.
- This regeneration and growth process typically includes the steps of selecting transformed cells and culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage.
- Transgenic embryos and seeds are similarly regenerated.
- the resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
- Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in media that supports regeneration of plants.
- Developing plantlets are transferred to soil-less plant growth mix, and hardened off, prior to transfer to a greenhouse or growth chamber for maturation.
- transformable as used herein is meant a cell or tissue that is capable of further propagation to give rise to a plant.
- Those of skill in the art recognize that a number of plant cells or tissues are transformable in which after insertion of exogenous DNA and appropriate culture conditions the plant cells or tissues can form into a differentiated plant.
- Tissue suitable for these purposes can include but is not limited to immature embryos, scutellar tissue, suspension cell cultures, immature inflorescence, shoot meristem, nodal explants, callus tissue, hypocotyl tissue, cotyledons, roots, and leaves.
- Any suitable plant culture medium can be used.
- suitable media would include but are not limited to MS-based media (Murashige and Skoog, Physiol. Plant, 15:473-497, 1962) or N6-based media (Chu et al., Scientia Sinica, 18:659, 1975) supplemented with additional plant growth regulators including but not limited to auxins, cytokinins, ABA, and gibberellins.
- additional plant growth regulators including but not limited to auxins, cytokinins, ABA, and gibberellins.
- tissue culture media can either be purchased as a commercial preparation, or custom prepared and modified.
- media and media supplements such as nutrients and growth regulators for use in transformation and regeneration and other culture conditions such as light intensity during incubation, pH, and incubation temperatures that can be optimized for the particular variety of interest.
- any of the polynucleotide molecules of the present invention may be introduced into a plant cell in a permanent or transient manner in combination with other genetic elements such as vectors, promoters, enhancers, etc. Further, any of the polynucleotide molecules of the present invention may be introduced into a plant cell in a manner that allows for expression or overexpression of the protein or fragment thereof encoded by the polynucleotide molecule.
- Antibodies have been expressed in plants (Hiatt et al., Nature, 342:76-78, 1989; Conrad and Fielder, Plant Mol. Biol., 26:1023-1030, 1994). Cytoplasmic expression of a scFv (single-chain Fv antibody) has been reported to delay infection by artichoke mottled crinkle virus. Transgenic plants that express antibodies directed against endogenous proteins may exhibit a physiological effect (Philips et al., EMBO J., 16:4489-4496, 1997; Marion-Poll, Trends in Plant Science, 2:447-448, 1997). For example, expressed anti-abscisic antibodies have been reported to result in a general perturbation of seed development (Philips et al., EMBO J., 16:4489-4496, 1997).
- Antibodies that are catalytic may also be expressed in plants (abzymes).
- abzymes The principle behind abzymes is that since antibodies may be raised against many molecules, this recognition ability can be directed toward generating antibodies that bind transition states to force a chemical reaction forward (Persidas, Nature Biotechnology, 15:1313-1315, 1997; Baca et al., Ann. Rev. Biophys. Biomol. Struct., 26:461-493, 1997).
- the catalytic abilities of abzymes may be enhanced by site directed mutagenesis. Examples of abzymes are, for example, set forth in U.S. Pat. Nos.
- any of the antibodies of the present invention may be expressed in plants and that such expression can result in a physiological effect. It is also understood that any of the expressed antibodies may be catalytic.
- the present invention also provides for parts of the plants, particularly reproductive or storage parts, of the present invention.
- Plant parts include seed, endosperm, ovule, pollen, and tubers.
- the plant part is a seed.
- the seed (or grain) is a constituent of animal feed.
- the plant part is a fruit, more preferably a fruit with enhanced shelf life.
- the fruit has increased levels of a tocopherol.
- the fruit has increased levels of a tocotrienol.
- any of the plants or parts thereof of the present invention may be processed to produce a feed, meal, protein, or oil preparation, including oil preparations high in total tocopherol content and oil preparations high in any one or more of each tocopherol component listed herein.
- a particularly preferred plant part for this purpose is a seed.
- the feed, meal, protein, or oil preparation is designed for livestock animals or humans, or both.
- Methods to produce feed, meal, protein, and oil preparations are known in the art. See, for example, U.S. Pat. Nos. 4,957,748; 5,100,679; 5,219,596; 5,936,069; 6,005,076; 6,146,669; and 6,156,227.
- the protein preparation is a high protein preparation.
- a high protein preparation preferably has a protein content of greater than about 5% w/v, more preferably 10% w/v, and even more preferably 15% w/v.
- the oil preparation is a high oil preparation with an oil content derived from a plant or part thereof of the present invention of greater than 5% w/v, more preferably 10% w/v, and even more preferably 15% w/v.
- the oil preparation is a liquid and of a volume greater than about 1, 5, 10, or 50 liters.
- the present invention provides for oil produced from plants of the present invention or generated by a method of the present invention. Such an oil may exhibit enhanced oxidative stability.
- oil may be a minor or major component of any resultant product.
- oil may be blended with other oils.
- the oil produced from plants of the present invention or generated by a method of the present invention constitutes greater than about 0.5%, 1%, 5%, 10%, 25%, 50%, 75%, or 90% by volume or weight of the oil component of any product.
- the oil preparation may be blended and can constitute greater than about 10%, 25%, 35%, 50%, or 75% of the blend by volume.
- Oil produced from a plant of the present invention can be admixed with one or more organic solvents or petroleum distillates.
- a transgenic plant of the present invention may also be reproduced using apomixis.
- Apomixis is a genetically controlled method of reproduction in plants where the embryo is formed without union of an egg and a sperm.
- Apomixis is economically important, especially in transgenic plants, because it causes any genotype, no matter how heterozygous, to breed true.
- heterozygous transgenic plants can maintain their genetic fidelity throughout repeated life cycles.
- Methods for the production of apomictic plants are known in the art, e.g., U.S. Pat. No. 5,811,636.
- a polynucleotide of the present invention may be introduced into any cell or organism such as a mammalian cell, mammal, fish cell, fish, bird cell, bird, algae cell, algae, fungal cell, fungi, or bacterial cell.
- a protein of the present invention may be produced in an appropriate cell or organism.
- Preferred host and transformants include: fungal cells such as Aspergillus , yeasts, mammals, particularly bovine and porcine, insects, bacteria, and algae.
- Particularly preferred bacteria are Agrobacteruim tumefaciens and E. coli.
- DNA constructs of the present invention comprising SEQ ID NO: 3, 5, 7, 9, 11, or 13, or sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequences, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 15, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 15, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 17, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 17, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 19, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 19, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 21, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 21, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising SEQ ID NO: 23, or sequences having at least 90%, 95%, or 99% identity to SEQ ID NO: 23, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols.
- DNA constructs of the present invention comprising polynucleotide molecules encoding a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at
- tocopherols include ⁇ -tocopherols, ⁇ -tocopherols, ⁇ -tocopherols, and ⁇ -tocopherols as well as ⁇ -tocotrienols, ⁇ -tocotrienols, ⁇ -tocotrienols, and ⁇ -tocotrienols.
- DNA constructs of the present invention comprising polynucleotide molecules encoding polypeptides of the present invention provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of plastoquinols.
- any of a variety of methods may be used to obtain one or more of the above-described polynucleotide molecules (Zamechik et al., Proc. Natl. Acad. Sci . ( U.S.A .), 83:4143-4146, 1986; Goodchild et al., Proc. Natl. Acad. Sci . ( U.S.A .), 85:5507-5511, 1988; Wickstrom et al., Proc. Natl. Acad. Sci . ( U.S.A .), 85:1028-1032, 1988; Holt et al., Molec. Cell.
- Promoter sequences and other genetic elements, including but not limited to transcriptional regulatory flanking sequences, associated with one or more of the disclosed polynucleotide sequences can also be obtained using the disclosed polynucleotide sequence provided herein.
- such sequences are obtained by incubating polynucleotide molecules of the present invention with members of genomic libraries and recovering clones that hybridize to such polynucleotide molecules thereof.
- methods of “chromosome walking” or inverse PCR may be used to obtain such sequences (Frohman et al., Proc. Natl. Acad. Sci . ( U.S.A .), 85:8998-9002, 1988; Ohara et al., Proc. Natl.
- chromosome walking means a process of extending a genetic map by successive hybridization steps.
- polynucleotide molecules of the present invention includes polynucleotide molecules that are markers.
- the markers can be used in a number of conventional ways in the field of molecular genetics.
- Such markers include polynucleotide molecules homologous or complementary to SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, nucleotide sequences having at least 80% identity to f SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ
- polynucleotide molecules of the present invention may be used as molecular markers. It is also understood that one or more of the protein molecules of the present invention may be used as molecular markers.
- one or more of the nucleic molecules of the present invention are used to determine the level of expression (i.e., the concentration of mRNA in a sample, etc.) in a plant (preferably canola, corn, Brassica campestris , oilseed rape, rapeseed, soybean, crambe , mustard, castor bean, peanut, sesame, cottonseed, linseed, safflower, oil palm, flax, or sunflower) or pattern (i.e., the kinetics of expression, rate of decomposition, stability profile, etc.) of the expression of a protein encoded in part or whole by one or more of the polynucleotide molecule of the present invention.
- a plant preferably canola, corn, Brassica campestris , oilseed rape, rapeseed, soybean, crambe , mustard, castor bean, peanut, sesame, cottonseed, linseed, safflower, oil palm, flax, or
- a number of methods can be used to compare the expression between two or more samples of cells or tissue. These methods include hybridization assays, such as northerns, RNAse protection assays, and in situ hybridization. Alternatively, the methods include PCR-type assays. In a preferred method, the expression response is compared by hybridizing polynucleotides from the two or more samples to an array of polynucleotides. The array contains a plurality of suspected sequences known or suspected of being present in the cells or tissue of the samples.
- One aspect of the present invention concerns antibodies, single-chain antigen binding molecules, or other proteins that specifically bind to one or more of the protein or peptide molecules of the present invention and their homologs, fusions, or fragments.
- the antibody specifically binds to a polypeptide comprising a polypeptide sequence set forth in SEQ ID NO: 4, 6, 8, 10, 12, 16, 18, 20, 22, or 24, or fragments thereof.
- Antibodies of the present invention may be used to quantitatively or qualitatively detect the protein or peptide molecules of the present invention, or to detect post translational modifications of the proteins.
- an antibody or peptide is said to “specifically bind” to a protein or peptide molecule of the present invention if such binding is not competitively inhibited by the presence of non-related molecules.
- Nucleic acid molecules that encode all or part of the protein of the present invention can be expressed, via recombinant means, to yield protein or peptides that can in turn be used to elicit antibodies that are capable of binding the expressed protein or peptide. Such antibodies may be used in immunoassays for that protein.
- Such protein-encoding molecules or their fragments may be a “fusion” molecule (i.e., a part of a larger nucleic acid molecule) such that, upon expression, a fusion protein is produced. It is understood that any of the nucleic acid molecules of the present invention may be expressed, via recombinant means, to yield proteins or peptides encoded by these nucleic acid molecules.
- the antibodies that specifically bind proteins and protein fragments of the present invention may be polyclonal or monoclonal and may comprise intact immunoglobulins, or antigen binding portions of immunoglobulins fragments (such as (F(ab′), F(ab′) 2 ), or single-chain immunoglobulins producible, for example, via recombinant means. It is understood that practitioners are familiar with the standard resource materials that describe specific conditions and procedures for the construction, manipulation, and isolation of antibodies (see, for example, Harlow and Lane, In: Antibodies: A Laboratory Manual , Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988).
- antibody molecules or their fragments may be used for diagnostic purposes.
- a ligand group such as biotin
- a detectable marker group such as a fluorescent group, a radioisotope, or an enzyme
- the ability to produce antibodies that bind the protein or peptide molecules of the present invention permits the identification of mimetic compounds derived from those molecules. These mimetic compounds may contain a fragment of the protein or peptide or merely a structurally similar region and nonetheless exhibits an ability to specifically bind to antibodies directed against that compound.
- This example sets forth the isolation of HPPD DNA coding region sequences.
- BlastN protocol Altschul et al., J. Mol. Biol., 403-410, 1990; National Center Biotechnology Information
- the HPPD DNA sequences from Synechocystis sp. PCC6803 SEQ ID NO: 1
- Arabidopsis thaliana SEQ ID NO: 2
- Candidate gene sequences with an E-value score of 1e ⁇ 8 or lower were obtained from a cotton ‘seed coat’ cDNA library, a cotton leaf cDNA library, a Brassica napus silique cDNA library (as used herein, a silique is a slender elongated two-valved dehiscent many-seeded fruit capsule that is characteristic of the mustard family, which opens by sutures at either margin, and has two parietal placentas), a soybean seed cDNA library, a tomato cDNA library, a Bacillus thuringiensis (Bt) genomic DNA library, and a Sphingomonas elodea genomic DNA library.
- a silique is a slender elongated two-valved dehiscent many-seeded fruit capsule that is characteristic of the mustard family, which opens by sutures at either margin, and has two parietal placentas
- a soybean seed cDNA library a tomato c
- the cotton ‘seed coat’ cDNA library was constructed from seed coats isolated from cotton bolls 15-16 days post anthesis. No attempt was made to separate the fiber from the coat tissue.
- the cotton leaf cDNA library was made from leaf tissue isolated from the eighth cotton node from plants at full flower 2 months after planting.
- the Brassica napus cDNA library was made from silique tissue isolated 40 days after pollination.
- the soybean seed cDNA library was made from developing embryos isolated 16-18 days after flowering.
- the tomato flower cDNA library was made from tissue isolated from flowering tomato plants.
- the plant cDNA libraries and bacterial genomic DNA libraries were constructed using isolated mRNA or total genomic DNA, respectively, by methods well known in the art (Sambrook et al., 2001).
- the plant cDNA library clones were sequenced to yield full-length or partial ‘expressed sequenced tags’ (ESTs). Where applicable, bacterial genomic DNA sequences were electronically and manually assembled into longer sequences (‘contigs’).
- Design of polymerase chain reaction (PCR) polynucleotide primer molecules for isolating polynucleotide sequences of the present invention was based on the polynucleotide sequence information provided in the sequence listing for each of the respective polynucleotides described below.
- Bt Strain EG10650 is a derivative of Bt strain EG10368 (U.S. Pat. Nos. 5,759,538 and 5,962,264, herein incorporated by reference) that is deficient in neutral and alkaline protease activities and contains only one known extrachromosomal plasmid element of 7.5 kb.
- This nucleotide sequence (SEQ ID NO: 3) contained 4 methionine-encoding ATG potential start codons located within 78 nucleotides of each other.
- the potential start codons encoding methionine (Met) were located at polynucleotide positions 232-234 (Met 1), 274-276 (Met 14), 286-288 (Met 19), and 307-309 (Met 26).
- the largest ORF identified (SEQ ID NO: 5), starting at polynucleotide position 232-234 (Met 1), was determined to encode a protein of 385 amino acids (SEQ ID NOs: 4 and 6).
- SEQ ID NO: 7 An open reading frame starting at Met-14 (SEQ ID NO: 7), encoding a polypeptide of 372 amino acids (SEQ ID NO: 8), another starting at Met-19 (SEQ ID NO: 9), encoding a polypeptide of 367 amino acids (SEQ ID NO: 10), and another starting at Met-26 (SEQ ID NO: 11), encoding a polypeptide of 360 amino acids (SEQ ID NO: 12) were identified in this genomic region.
- the ORF encoding SEQ ID NO: 7 was identified with the aid of the GeneMark gene recognition program (Borodovsky et al., Computers and Chemistry, 17(19):123-133, 1993), as containing the likely initiator methionine in the native Bt strain.
- SEQ ID NOs: 28 and 30 were designed to amplify, by PCR, the Met 14 Bt HPPD sequence (SEQ ID NO: 7, Bt.Met14.HPPD).
- the SEQ ID NO: 28 primer was designed to add a NcoI site to the resulting PCR product by the addition of a GCG codon 3′ to the native ATG start codon, causing the addition of an alanine following the initiator methionine of the encoded polypeptide.
- the SEQ ID NO: 30 primer was modified to replace the TAA stop codon with a TGA stop codon.
- the SEQ ID NO: 30 primer was further designed to contain an XhoI restriction site by addition of CTCGAG 3′ to the TGA stop codon and then reverse-complemented to make the primer.
- Primer SEQ ID NO: 29, also adding a NcoI site, and primer SEQ ID NO: 30 were used to amplify, by PCR′ the Bt.Met26.HPPD encoding sequence (SEQ ID NO: 11).
- the sequence of all polynucleotide primer molecules of the present invention are listed in FIG. 2 .
- the PCR was performed using genomic DNA isolated from Bt strain EG10650 and the SEQ ID NOs: 28 and 30 primer pairs, and separately, the SEQ ID NOs: 29 and 30 primer pairs, using Expand Hi-Fidelity DNA polymerase (Boehringer-Mannheim Corp., Indianapolis, Ind.), and the reagents and directions provided by the manufacturer.
- the PCR conditions were as follows: 95° C. for 2 minutes, followed by 25 cycles of 30 seconds at 94° C., 45 seconds at 45° C., 90 seconds at 72° C., and finally 5 minutes at 72° C.
- Polynucleotide products of approximately 1.2 kb were obtained, and after enzymatic digestion with NcoI/XhoI, were cloned into a similarly digested pET24d plasmid (Novagen, Madison, Wis.).
- the pET24d plasmid is a T7 promoter based E. coli expression vector.
- the resulting plasmids containing the Bt HPPD sequences were named pMON78601 ( FIG. 3 ) and pMON78622 ( FIG. 4 ).
- the polynucleotide sequences of the inserts in these plasmids were confirmed as SEQ ID NOs: 11 and 44, respectively.
- HPPD activity was measured qualitatively by colorimetric reaction or quantitatively by RP-HPLC analysis of HPPD reaction products as described in Example 2.
- CTP chloroplast transit peptides
- the coding regions for cotton Gh1.HPPD (SEQ ID NO: 15) and Gh2.HPPD (SEQ ID NO: 17) were amplified using the identified cotton EST clones as the template DNA source.
- PCR was performed using SEQ ID NOs: 31 and 32 as primers, using Expand Hi-Fidelity DNA polymerase (Boehringer-Mannheim Corp., Indianapolis, Ind.), and the reagents and directions provided by the manufacturer.
- the SEQ ID NO: 31 primer was designed to add a NcoI restriction site, an ATG start side, and a GCC codon for alanine, followed by codon 24 of either sequence (i.e., following the predicted CTP cleavage site).
- the SEQ ID NO: 32 primer was designed to put an XhoI restriction site immediately following the TGA stop codon at the 3′ end of the gene.
- the PCR conditions were as follows: 95° C. for 2 minutes, followed by 25 cycles of 30 seconds at 94° C., 45 seconds at 45° C., 90 seconds at 72° C., and finally 5 minutes at 72° C.
- the resulting products of the reaction were purified and isolated using standard methodologies well known in the art and cloned into a NcoI and XhoI restriction enzyme digested pET24d plasmid for transformation into E. coli .
- the resulting plasmids containing the mature cotton HPPD sequences were named pMON78602 ( FIG. 5 ) and pMON78603 ( FIG. 6 ). HPPD activity was measured as described in Example 2.
- the full-length coding region for the Brassica HPPD was amplified by PCR using Brassica cDNA and SEQ ID NOs: 33 and 34 as primers, and using Expand Hi-Fidelity DNA polymerase (Boehringer-Mannheim Corp., Indianapolis, Ind.), and the reagents and directions provided by the manufacturer.
- the PCR conditions were as follows: 95° C. for 2 minutes, followed by 25 cycles of 30 seconds at 94° C., 45 seconds at 45° C., 90 seconds at 72° C., and finally 5 minutes at 72° C.
- the resulting products of the reaction were purified and isolated using standard methodologies well known in the art, restriction enzyme digested with NcoI and XhoI, and subsequently cloned into the similarly digested plasmid, pET24d.
- the resulting plasmid was named pMON78604 ( FIG. 7 ). HPPD activity was measured as described in Example 2.
- a tomato HPPD gene was also identified from a cDNA library.
- the full-length sequence of this clone is shown in SEQ ID NO: 21.
- Analysis of the deduced amino acid sequence shows an ORF encoding a protein of 437 amino acids (SEQ ID NO: 22).
- the initiator methionine codon is absent in this clone, although the predicted N-terminal sequence was determined to contain a CTP when analyzed using the ChloroP program.
- the coding region for the mature tomato HPPD (i.e., following the predicted CTP cleavage site) was amplified by PCR using tomato cDNA, and SEQ ID NOs: 35 and 36 as primers and the conditions set forth in Table 2.
- Plasmid pMON64352 was transformed into an E. coli expression host Tuner (DE3) (Novagen, Wis.) and HGA activity measured as described in Example 2.
- Sphingomonas HPPD gene was also identified from a compilation of sequence contigs derived from a Sphingomonas genomic library. The less than full length sequence of this HPPD gene is shown in SEQ ID NO: 23 (Sph.HPPD). Analysis of the deduced polypeptide sequence shows an open-reading frame encoding a protein of 337 amino acids (SEQ ID NO: 24).
- This example sets forth the analysis of HPPD activity in cell free extracts of transformed E. coli cells.
- Polynucleotide sequences encoding HPPD enzymes from Arabidopsis (SEQ ID NO: 2), Bt (SEQ ID NO: 7), Brassica (SEQ ID NO: 19), cotton (SEQ ID NOs: 15 and 17), Synechocystis (SEQ ID NO: 1), and tomato (SEQ ID NO: 21) were expressed in E. coli and their resulting HPPD enzyme activity measured qualitatively by colorimetric reaction or analytically by reverse phase-high performance liquid chromatography (RP-HPLC).
- RP-HPLC reverse phase-high performance liquid chromatography
- HPPDs Enzymatically active HPPDs, isolated from a number of plant and bacterial sources, have been shown to cause a brown coloration to the broth when expressed in heterologous expression systems such as E. coli .
- the brown coloration is due to a melanin-related pigment that results from the accumulation and cellular excretion of homogentisic acid (HGA), and its subsequent non-enzymatic oxidation and polymerization (Denoya et al., J. Bacteriol., 176:5312-5319, 1994).
- HGA homogentisic acid
- E. coli cell free extracts of select HPPD constructs were prepared by transformation of E. coli Tuner (DE3) cells with a pET-expression plasmid containing a recombinant HPPD using standard heat shock transformation procedures as described by Sambrook et al., 2001.
- the transformed cells were then grown at 37° C. on LB agar media containing 50 ⁇ g/mL kanamycin. Single colonies were chosen to inoculate an overnight LB preculture. Three mL of this preculture were used to inoculate a 125 mL LB culture with 50 ⁇ g/mL kanamycin. This culture was incubated at 37° C.
- Induced cells were harvested by centrifugation (20,000 ⁇ g) for 10 minutes and the pellet was resuspended in 6 mL of buffer A (50 mM KP i at pH 7.4, 1 mM DTT, 100 ⁇ m Pefablock (Boehringer-Mannheim, Germany), 1 ⁇ M Leupeptin (Boehringer-Mannheim, Germany), 0.1 ⁇ M Aprotinin (Boehringer-Mannheim), 50 mM NaCl and 1 mM MgCl 2 ). All other reagents were from Sigma-Aldrich Chemical Company, St. Louis, Mo.). Cells were lysed in the presence of 50 units of DNAase by two passages through a French Press at a pressure of 130 MPa. The extracts were then centrifuged at 100,000 ⁇ g for 1 hour to yield a cell-free extract.
- buffer A 50 mM KP i at pH 7.4, 1 mM DTT, 100 ⁇ m Pefablock (Boehringer-
- a quantitative method of determining HPPD enzyme activity is based on spectrophotometric analysis of HPLC purified HPPD metabolites, in particular HGA, according to a modified method as described (Secor, J., Plant Physiol., 106:1429-1433, 1994; Garcia et al., Plant Physiol., 119:1507-1516, 1999).
- the assay was performed in 50 mM potassium phosphate, pH 7.4, containing 50 mM ascorbic acid, 5000 units of catalase, 100 ⁇ M ferrous sulfate, 0.1 to 0.5 mM 4-hydroxyphenylpyruvic acid (HPPA), and an empirically determined volume of cell free bacterial extract containing recombinant expressed HPPD.
- the final assay volume was 200 ⁇ L.
- a HPPA stock solution (2.5-10 mM) was freshly prepared in potassium phosphate buffer, pH 7.4, and allowed to equilibrate for 2 hours at room temperature prior to each assay.
- the HPPD reaction was initiated by addition of HPPA and incubated for 15 minutes at 30° C. The reaction was terminated by adding 20 ⁇ L of 70% (w/v) perchloric acid. Precipitated salt and proteins were removed by 5 minutes centrifugation in an Eppendorff desktop centrifuge at 14,000 rpm. The assay supernatant was filtered through a 0.22 ⁇ m PTFE syringe filter and used for HPLC analysis.
- HGA Quantification of HGA was performed by RP-HPLC analysis using a Hewlett Packard 1100 series HPLC with HP interface 35900E. HGA and HPPA were identified by comparison with pure standards (Aldrich-Sigma Chemical Company, Missouri). HGA was quantified by comparison with a HGA standard curve in the range of 0.5 to 1000 ⁇ M at 288 nm. Samples (90 ⁇ L) were loaded onto a Waters Pico Tag (C18, 4 ⁇ , 3.9 ⁇ 150 mm) column for separation (Waters Corporation, Milford, Mass.).
- Buffers A (0.1% (v/v) trifluoroacetic acid (TFA) in H 2 O) and B (0.07% (v/v) TFA in 80% CH 3 CN) were used at a flow rate of 1 mL/min to create linear gradients of 0 to 40% B from 0 min to 10 min, followed by an increase of buffer B from 40 to 100% in 1 min, and 100 to 0% B in 1 min, followed by 0% B for 3 minutes.
- TFA trifluoroacetic acid
- This example sets forth the construction of plant transformation vectors containing tocopherol pathway genes in combination with HPPD genes to increase seed tocopherol levels.
- HPPD sequences from Arabidopsis thaliana, Bacillus thuringiensis, Gossypium hirsutum , and Synechocystis sp. PCC6803, the aforementioned genes were cloned under the control of a napin promoter (U.S. Pat. No.
- This expression cassette was excised by a restriction digest of pMON77617 using NotI and Bsp120I restriction enzymes.
- the 4442 bp fragment encoding the Bt.HPPD expression cassette was gel purified as described above.
- pMON77609 FIG. 13
- a shuttle vector containing napin promoter driven expression cassettes for the Erwinia herbicola tyrA, and the A. thaliana HPT (At.Atpt2) was digested with a Bsp120I restriction enzyme, dephosphorylated with calf intestinal alkaline phosphatase (Roche Applied Science, Indianapolis, Ind.), and gel purified using a Qiagen spin column kit.
- the purified dephosphorylated vector was ligated with the purified napin promoter driven HPPD expression cassette to form the triple gene shuttle vector pMON77618 ( FIG. 14 ).
- the latter vector served as a source for the three napin promoter driven expression cassettes for Bt.Met14.HPPD, Eh.tyrA, and At.Atpt2, which were isolated from pMON77618 as a single 13144-bp fragment via a Bsp120I/NotI double restriction digest.
- the large fragment was gel purified as described, and ligated with NotI digested, dephosphorylated (as described) and gel purified pMON36524 ( FIG. 15 ).
- the resulting plant binary vector containing the three napin promoter controlled expression constructs was designated pMON77619 ( FIG. 16 ).
- a triple gene vector containing a napin promoter driven cotton HPPD construct in addition to a napin promoter driven HPT and tyrA expression cassette was constructed as follows: the cotton HPPD (Gh1.HPPD) (SEQ ID NO: 15) was isolated by NcoI and XhoI restriction enzyme digestion of pMON78602 ( FIG. 5 ). The 1247-bp fragment was gel purified using Qiagen spin columns, and ligated into the XhoI and NcoI restriction enzyme, digested, and gel purified backbone of plasmid, pMON77611 ( FIG. 11 ). The resulting 6980-bp vector was designated pMON77620 ( FIG.
- the three expression cassettes for Gh1.HPPD, Eh.tyrA, and At.Atpt2 present in pMON77621 were released as a single 13267-bp-fragment by a Bsp120I and NotI double restriction enzyme digest, gel purified as described, and ligated into a NotI-digested, CIP treated, and gel purified pMON36524 ( FIG. 13 ), resulting in the formation of pMON77622 ( FIG. 19 ).
- triple gene vector containing a napin promoter driven expression cassette for the Synechocystis HPPD (SEQ ID NO: 1), the Erwinia herbicola tyrA, and the Arabidopsis thaliana At.Atpt2 was constructed using pMON77612 ( FIG. 10 ) as the gene source.
- the resulting binary vector was designated pMON77616 ( FIG. 20 ).
- the binary vectors pMON69907 ( FIG. 22 ), pMON69909 ( FIG. 21 ), pMON77616 ( FIG. 20 ), pMON77619 ( FIG. 16 ), and pMON77622 ( FIG. 19 ) were transformed into Arabidopsis thaliana , using the Agrobacterium -mediated method described in Example 4. T1 seed from transformed Arabidopsis plants were germinated under kanamycin antibiotic selection, and subsequently T2 seed from the Arabidopsis transformation events were used for tocopherol analysis. The total tocopherol level of any one event was divided by the mean tocopherol content of the control population and expressed as the fold increase in tocopherol level of the event relative to their respective control population.
- Transgenic Arabidopsis thaliana plants may be obtained by Agrobacterium -mediated transformation as described by Valverkens et al., Proc. Nat. Acad. Sci . ( U.S.A .), 85:5536-5540, 1988, or as described by Bent et al., Science, 265:1856-1860, 1994; or Bechtold et al., C.R. Acad.
- Soybean plants are transformed using an Agrobacterium -mediated transformation method, as described (U.S. Pat. No. 6,384,301, herein incorporated by reference). For this method, overnight cultures of Agrobacterium tumefaciens containing the plasmid that includes a gene of interest, are grown to log phase and then diluted to a final optical density of 0.3 to 0.6 using standard methods known to one skilled in the art. These cultures are used to inoculate the soybean embryo explants prepared as described below.
- the method is a direct germline transformation into individual soybean cells in the meristem of an excised soybean embryo.
- the soybean embryo is removed after surface sterilization and germination of the seed.
- the explants are then plated on OR media, a standard MS medium as modified according to Barwale et al., Plants, 167:473-481, 1986, plus 3 mg/L BAP, 200 mg/L Carbenicillin, 62.5 mg/L Cefotaxime, 60 mg/L Benomyl, and stored at 15° C. overnight in the dark.
- the following day the explants are wounded with a scalpel blade and inoculated with the Agrobacterium culture prepared as described above. The inoculated explants are then cultured for 3 days at room temperature.
- the meristematic region is then cultured on standard plant tissue culture media in the presence of the herbicide glyphosate (Monsanto Company, St. Louis, Mo.), which acts as both a selection agent and a shoot-inducing hormone.
- the herbicide glyphosate (Monsanto Company, St. Louis, Mo.), which acts as both a selection agent and a shoot-inducing hormone.
- Media compositions and culture lengths are detailed in the aforementioned U.S. Pat. No. 6,384,301.
- the surviving explants that have a positive phenotype are transferred to soil and grown under greenhouse conditions. Plants are grown to maturity; seed is collected and analyzed for increased tocopherol levels as described in Example 5.
- This example sets forth the analysis of plant tissues for enhanced tocopherol production.
- Plants transformed with constructs for the sense or antisense expression of the tocopherol pathway enzymes, including HPPD are analyzed by HPLC for altered levels of total tocopherols and tocotrienols, as well as altered levels of specific tocopherols and tocotrienols (e.g., ⁇ , ⁇ , ⁇ , and ⁇ -tocopherol/tocotrienol).
- Extracts of seeds are prepared for HPLC as follows.
- For Arabidopsis seeds 12 mg of seeds is added to a 1.4 mL Screen Mates tube with a 1 ⁇ 8′′ steel ball. The tubes are capped and the plate frozen at ⁇ 80° C. for one hour. The plate, with up to 96 tubes, is shaken for 60 seconds on the ‘Megagrinder’ at 1000 rpm.
- a ‘Megagrinder’ is a tissue pulverizer, developed in-house, that operates by use of high speed shaking ball bearings.
- For soybean seeds 5 seeds are placed in a 30 mL polypropylene tube with a 3 ⁇ 4 inch steel ball, and ground on the Megagrinder for 30 seconds at 1200 rpm.
- Leaf extracts are prepared by mixing 30-50 mg of leaf tissue with 1 g microbeads and freezing in liquid nitrogen until extraction. For extraction, 500 ⁇ l 1% pyrogallol in ethanol is added to the leaf/bead mixture and shaken for 2 ⁇ 45 seconds using a FastPrep shaker at speed 6.5. The resulting mixture is centrifuged for 4 minutes at 14,000 rpm and filtered through a 0.2 um PTFE filter prior to HPLC analysis.
- HPLC is performed on a Zorbax silica HPLC column (4.6 mm ⁇ 250 mm) (Bodman Industries, Aston, Pa.), using a fluorescent detection monitor, with excitation and emission spectra set at 290 nm and 336 nm, respectively.
- Solvent A is hexane and solvent B is methyl-t-butyl ether.
- the injection volume is 20 ⁇ L, the flow rate is 1.5 mL/min, the run time is 12 min (40° C.) as described in Table 6.
- Tocopherol and tocotrienol standards in 1% pyrogallol/ethanol are also run for comparison ( ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, and corresponding tocotrienols (all from Calbiochem, La Jolla, Calif.).
- Standard curves for ⁇ , ⁇ , ⁇ , and ⁇ -tocopherol and ⁇ , ⁇ , ⁇ , and ⁇ -tocotrienol are calculated using Chemstation software (Agilent Technologies, Palo Alto, Calif.). Tocopherol and tocotrienol values are expressed as ng/mg tissue.
- Bt.Mod.HPPD polynucleotide molecule modified for expression in soybean. It is well known in the art that native Bt protein encoding sequences do not express well in plants (U.S. Pat. No. 5,880,275, herein incorporated by reference). Therefore, using a native Bt.Met14.HPPD polypeptide sequence (SEQ ID NO: 8), an artificial Bt protein encoding DNA sequence is designed and constructed by 1) using a codon usage bias similar to that of highly expressed soybean seed proteins, and 2) removal of RNA destabilizing elements previously characterized and known to affect mRNA stability in planta (U.S. Pat. No. 5,880,275). The resulting modified Bt HPPD (SEQ ID NO: 13), designated Bt.Mod.HPPD, encodes a polypeptide designated SEQ ID NO: 14, which is identical in sequence to Bt.Met14.HPPD (SEQ ID NO: 8).
- An artificial DNA sequence for Bt.Mod.HPPD (SEQ ID NO: 13) is assembled by methods known in the art (e.g., Withers-Martinez et al., PCR - based gene synthesis as an efficient approach for expression of the A+T - rich malaria genome, Protein Engineering, 12:1113-1120, 1999), or is ordered commercially (Blue Heron Biotechnology, Bothell, Wash.).
- the DNA sequence is cloned as an NcoI-EcoRI restriction fragment into the E. coli expression vector pET24d(+) (Novagen, Madison, Wis.) to create pMON78623 ( FIG. 23 ).
- the recombinant plasmid is digested with EcoRI, the EcoRI overhang blunted with a fill-in reaction with T4 DNA polymerase (Sambrook et al., 2001), the plasmid subsequently digested with NcoI, and the approximately 1.1 kilobase insert isolated.
- a vector containing a napin promoter, TS-At.RbcS4, and a napin 3′-UTR flanked by a NotI restriction site and a Bsp120I restriction site (pMON77611) ( FIG.
- the expression cassette containing the Bt.Mod.HPPD gene driven by the napin promoter at its 5′-end and by a napin 3′-UTR, is excised by a restriction digest of the plasmid using NotI and Bsp120I restriction enzymes.
- the fragment encoding the Bt.Mod.HPPD expression cassette is gel purified as described in Example 3.
- pMON77609 FIG. 13
- a shuttle vector containing a napin promoter driven expression cassette for the Erwinia herbicola tyrA SEQ ID NO: 25
- thaliana HPT (At.Atpt2) (SEQ ID NO: 26) is digested with a Bsp120I restriction enzyme, dephosphorylated with calf intestinal alkaline phosphatase (Roche Applied Science, Indianapolis, Ind.), and gel purified using a Qiagen spin column kit as described in Example 3.
- the purified dephosphorylated vector is ligated with the purified napin promoter driven HPPD expression cassette to form the triple gene shuttle vector, with the genes in the desired orientation, preferably all head-to-tail.
- the latter vector serves as a source for the three napin promoter driven expression cassettes for Bt.Mod.HPPD, Eh.tyrA, and At.Atpt2, which are isolated from the plasmid as a single fragment via a Bsp1201NotI double restriction digest.
- the large fragment is gel purified as described above, and ligated with NotI digested, dephosphorylated and gel purified pMON36524 ( FIG. 15 ).
- the resulting plant binary vector containing the three napin promoter controlled expression constructs is used for transformation as described in Example 4, plants are grown to maturity, seed is collected, and analyzed for increased tocopherol levels as described in Example 5.
- This example sets forth the environmental stress tests for drought tolerance, cold tolerance, and salt tolerance, each of which is used alone or in combination to show that plants transformed with tocopherol pathway genes such as HPPD (SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23) alone or in combination with other tocopherol pathway genes such as tyrA (SEQ ID NO: 25), HPT (SEQ ID NO: 26), and GGH (SEQ ID NO: 27), under the control of a constitutive promoter, e.g., CAMV.35S, are more tolerant to environmental stresses relative to control plants that were not transformed with HPPD genes.
- HPPD tocopherol pathway genes
- tyrA SEQ ID NO: 25
- HPT SEQ ID NO: 26
- GGH GGH
- HPPD polynucleotide sequences and other tocopherol pathway sequences are cloned into plant binary vectors that contain the glufosinate resistance selection marker.
- the study design for the stress assays is a single factor design, with the HPPD construct being the factor, where all experimental plants are exposed to a period of drought stress during flowering.
- resistance to cold stress is determined based on the HPPD transformed plant's rate of development, root growth, and chlorophyll accumulation under low temperature conditions relative to control plants that were not transformed with the HPPD genes.
- All seedlings used in the experiment are grown at 8° C. Seeds are first surface disinfested using chlorine gas and then seeded on assay plates containing an aqueous solution of 1 ⁇ 2 ⁇ Gamborg's B-5 Basal Salt Mixture (Sigma-Aldrich Corp., St. Louis, Mo. O G-5788), 1% PhytagelTM (Sigma-Aldrich, P-8169), and 10 ug/ml BASTATM (Bayer Crop Science, Frankfurt, Germany), with the final pH adjusted to 5.8 using KOH. BASTATM serves as the selection agent for positively transformed plants.
- Test plates are held vertically for 28 days at a constant temperature of 8° C., a photoperiod of 16 hr, and average light intensity of approximately 100 ⁇ mol/m 2 /s.
- Racks holding the plates vertically are rotated daily within the growth chamber.
- root length is measured, the visual color is assessed, and a whole plate photograph is taken.
- the results show plants transformed with HPPD gene constructs are significantly resistant to cold stress.
- resistance to high salt stress is based on the plant's rate of development, root growth, and chlorophyll accumulation under high salt conditions relative to control plants that were not transformed with HPPD genes.
- All seedlings used in the experiment are grown at a temperature of 22° C. day and 20° C. night, a 16-hour photoperiod, an average light intensity of approximately 120 ⁇ mol/m 2 and a high salinity level (90 mM NaCl). Seeds are seeded onto BASTATM plates and selected as described in above. The test lasts 11 days. On day 14 (including 3 days of seed stratification) plants are scored for primary root length, growth stage, visual color, and fresh weight. A photograph of the whole plate is also taken on day 14. The results show that under high salinity conditions, seedlings not transformed with HPPD become stunted, chlorotic, and have less biomass accumulation when compared to transformed plants expressing HPPD genes.
- the peptide antigen, SEQ ID NO: 38 contained a native N-terminal cysteine.
- the peptide antigen, SEQ ID NO: 39 did not contain an N-terminal cysteine so one was added. Both peptide antigens were produced by the m-Maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) method. (Antigen Design & Sera Purification Tech Sheet, Sigma-Genosys).
- Target HPPD polypeptides antigen sequences and methods used for their production.
- Target HPPD Polypeptide Antigen Sequence Method Arabidopsis thaliana HPPD CMMKDEEGKAYQSGG MBS (SEQ ID NO: 37) (SEQ ID NO: 38) Arabidopsis thaliana HPPD CRTLREMRKRSSIGG MBS (SEQ ID NO: 37) (SEQ ID NO: 39) Bacillus thuringiensis HPPD GILVDRDDEGYLLQIFTKPC KLH/MBS (SEQ ID NO: 8) (SEQ ID NO: 42) Synechocystis sp.
- HPPD EILLDDQDNTGERLL EDC (SEQ ID NO: 40) (SEQ ID NO: 41) UNI-HPPD-1 GILVDRDDQGTLLQIFTKPC KLH/MBS (SEQ ID NOs: 37, 18, 20, and 22) (SEQ ID NO: 43)
- the polypeptide sequence for Synechocystis sp. HPPD (SEQ ID NO: 40) was analyzed by Sigma-Genosys to identify the peptide antigen (SEQ ID NO: 41).
- the peptide antigen was produced by the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) method.
- the sequence for the Bacillus thuringiensis peptide antigen was based on a Bacillus thuringiensis HPPD polypeptide sequence (SEQ ID NO: 8).
- the peptide antigen was produced by the m-Maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) method.
- MFS m-Maleimidobenzoyl-N-hydroxysuccinimide ester
- the sequence for the Uni-HPPD peptide antigen was made by identification of a peptide fragment common to the polypeptide sequences of Arabidopsis thaliana HPPD (SEQ ID NO: 37), Brassica napus HPPD (SEQ ID NO: 20), Gossypium hirsutum HPPD (SEQ ID NO: 18), and Lycopersicon esculentum (SEQ ID NO: 22).
- a C-terminal cysteine was added to the peptide antigen.
- the peptide was produced by the m-Maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) method.
- each peptide antigen SEQ ID NOs: 38, 39, 41, 42, and 43 was synthesized.
- the synthesized peptide antigens were analyzed by mass spectral and HPLC analyses to ensure sequence integrity and purity prior to conjugation.
- the peptides were conjugated to 2-3 mg of Keyhole Limpet Hemocyanin (KLH) or Bovine Serum Albumin (BSA).
- KLH Keyhole Limpet Hemocyanin
- BSA Bovine Serum Albumin
- the peptide-protein conjugates were purified by gel filtration and freeze dried. Rabbits were then immunized by subcutaneous injection of the conjugated peptides (Table 8).
- the initial immunization was given in Complete Freund's Adjuvant with all subsequent immunizations given in Incomplete Freund's Adjuvant.
- the unconjugated peptides, the pre-immune bleeds and the first production bleeds were obtained and used in the experiments described below.
- Antisera were unpurified and contained a number of different isotypes (IgG, IgM, IgA). Total sera of 15-25 mL per rabbit per bleed were obtained (120 mL of total sera).
- the aforementioned antibodies were used in a Western blot analysis to test for expression of HPPD protein in E. coli bacteria, and in Arabidopsis thaliana and Glycine max plants transformed to express HPPD polynucleotide sequences.
- Total protein extracts from E. coli were obtained by boiling induced cells in 1 ⁇ Laemelli gel sample buffer.
- Total protein from A. thaliana seeds was obtained by pulverizing the seeds in a BIO101/Savant FastPrepTM FP120 high-speed reciprocating cell membrane disruptor (Qbiogene, Inc., Carlsbad, Calif.).
- Total protein from Glycine max was obtained from lyophilized seed powder prepared as described in Example 5.
- the crude protein extracts were solubilized in 300 to 500 ⁇ L of 100 mM potassium phosphate buffer, pH 7.0, or Tris buffered saline (TBS), pH 8.0.
- Solubilized extracts contained a proteinase inhibitor cocktail added according to the manufacturer's specification (CompleteTM Protease Inhibitor Cocktail, Boehringer Mannheim, Mannheim, Germany). Between 6 and 20 ⁇ g of extracted total protein from A. thalina or soybean seed was separated by electrophoresis (Proteins and Proteomics: A Laboratory Manual, 2002. Simpson and Hotchkiss, eds.) using a 4 to 15% or 4 to 20% polyacrylamide gradient gel containing SDS.
- HPPD polynucleotide sequences expressed in E. coli included Arabidopsis thaliana (SEQ ID NO: 2), Bacillus thuringiensis (SEQ ID NO: 7), Brassica napus (SEQ ID NO: 19), Gossypium hirsutum (SEQ ID NO: 15), Synechocystis sp. (SEQ ID NO: 1), Lycopersicon esculentum (SEQ ID NO: 21), a Bacillus thuringiensis (SEQ ID NO: 7)/TyrA (SEQ ID NO: 25) fusion protein and a Gossypium hirsulum (SEQ ID NO: 15)/TyrA (SEQ ID NO: 25) fusion protein.
- Arabidopsis thaliana SEQ ID NO: 2
- Bacillus thuringiensis SEQ ID NO: 7
- Brassica napus SEQ ID NO: 19
- Gossypium hirsutum SEQ ID NO
- HPPD detected Arabidopsis thaliana (SEQ ID NO: 2) Yes Bacillus thuringiensis (SEQ ID NO: 7) Yes Brassica napus (SEQ ID NO: 19) No Gossypium hirsutum (SEQ ID NO: 15) Yes Synechocystis (SEQ ID NO: 1) No Bacillus thuringiensis (SEQ ID NO: 7)/TyrA (SEQ ID Yes NO: 25) fusion protein Gossypium hirsutum (SEQ ID NO: 15)/TyrA (SEQ ID Yes NO: 25) fusion protein Lycopersicon esculentum (SEQ ID NO: 21) Yes TyrA (SEQ ID NO: 25) No Empty vector No
- the Arabidopsis HPPD polynucleotide sequence (SEQ ID NO: 2) was also expressed in transformed A. thaliana and G. max plants. After isolation as described in Example 5, the electrophoresed proteins were blotted onto PVDF membrane, and probed with the anti- Arabidopsis HPPD rabbit primary antibody described above. Sixteen transformed Arabidopsis lines were tested using the anti-Arabidopsis HPPD antibody. One line, as well as the wild-type untransformed control, tested negative for HPPD protein. Fifteen lines produced a positive response. Similarly, seven Glycine max lines transformed with the Arabidopsis thaliana HPPD (SEQ ID NO: 2) were tested using the anti-Arabidopsis HPPD antibody. One line, as well as the wild-type untransformed control, tested negative for the HPPD protein. Six lines tested positive for the HPPD protein.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Nutrition Science (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention is in the field of plant genetics and biochemistry. More specifically, the present invention relates to genes and polypeptides associated with the tocopherol biosynthesis pathway, namely those encoding 4-Hydroxyphenylpyruvate Dioxygenase activity, and uses thereof.
Description
- This application claims priority to U.S. Provisional Application No. 60/539,309 filed Jan. 26, 2004, the disclosure of which is incorporated herein by reference in its entirety.
- The present invention is in the field of plant genetics and biochemistry. More specifically, the present invention relates to genes and polypeptides associated with the tocopherol biosynthesis pathway, namely those encoding 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) activity, and uses thereof.
- Tocopherols are an important component of mammalian diets. Epidemiological evidence indicates that tocopherol supplementation can result in decreased risk for cardiovascular disease and cancer, can aid in immune function, and is associated with prevention or retardation of a number of degenerative disease processes in humans (Traber and Sies, Annu. Rev. Nutr., 16:321-347, 1996). Tocopherol functions, in part, by stabilizing the lipid bilayer of biological membranes (Skrypin and Kagan, Biochim. Biophys. Acta., 815:209, 1995; Kagan, N.Y. Acad. Sci., p. 121, 1989; Gomez-Femandez et al., Ann. N.Y. Acad. Sci., p. 109, 1989), reducing polyunsaturated fatty acid (PUFA) free radicals generated by lipid oxidation (Fukuzawa et al., Lipids, 17:511-513, 1982), and scavenging oxygen free radicals, lipid peroxy radicals and singlet oxygen species (Diplock et al., Ann. N.Y. Acad. Sci., 570:72, 1989; Fryer, Plant Cell Environ., 15(4):381-392, 1992).
- The compound α-tocopherol, which is often referred to as vitamin E, belongs to a class of lipid-soluble antioxidants that includes α, β, γ, and δ-tocopherols and α, β, γ, and δ-tocotrienols. α, β, γ, and δ-tocopherols and α, β, γ, and δ-tocotrienols are sometimes referred to collectively as “vitamin E”. Vitamin E is more appropriately defined chemically as the beneficial activity for animals and humans which can be e.g., determined in the rat fetal absorption and hemolysis assays (Chow, Vitamin E, In: Handbook of Vitamins ISBN:0-8247-0428-2). α-Tocopherol has the highest vitamin E activity, in part because it is readily absorbed and retained by the body (Traber and Sics, Annu. Rev. Nutr., 16:321-347, 1996). However, other tocopherols and tocotrienols such as α, γ, δ-tocopherols and α, β, γ, δ-tocotrienols also have significant health and nutritional benefits.
- Only plants and certain other photosynthetic organisms, including cyanobacteria, synthesize tocopherols. As a result, mammalian dietary tocopherols are obtained almost exclusively from these sources. Plant tissues vary considerably in total tocopherol content and tocopherol composition but α-tocopherol is the predominant tocopherol species found in green, photosynthetic plant tissues. Leaf tissue can contain from 10-50 μg of total tocopherols per gram fresh weight, but the edible parts of most of the world's major staple crops (e.g., rice, corn, wheat, potato) produce low to extremely low levels of total tocopherols, of which only a small percentage is α-tocopherol (Hess, Vitamin E, α-tocopherol, In: Antioxidants in Higher Plants, R. Alscher and J. Hess, Eds., CRC Press, Boca Raton, Fla., pp. 11′-134, 1993). Oil seed crops generally contain much higher levels of total tocopherols, but α-tocopherol is present only as a minor component in most oilseeds (Taylor and Barnes, Chemy Ind., 722-726, 1981).
- The recommended daily dietary intake of 15-30 IU of vitamin E is quite difficult to achieve from the average American diet. For example, it would take over 750 grams of spinach leaves, in which α-tocopherol comprises 60% of total tocopherols, or 200-400 grams of soybean oil to satisfy this recommended daily vitamin E intake. While it is possible to augment the diet with supplements, most of these supplements contain primarily synthetic vitamin E, having eight stereoisomers, whereas natural vitamin E is predominantly composed of only a single, more active, isomer. Furthermore, supplements tend to be relatively expensive, and the general population is disinclined to take vitamin supplements on a regular basis. Therefore, there is a need in the art for compositions and methods that either increase the total tocopherol production or increase the relative percentage of α-tocopherol produced by plants.
- In addition to the health benefits of tocopherols, increased tocopherol levels in crops have been associated with enhanced stability and extended shelf life of plant products (Peterson, Cereal-Chem., 72(1):21-24, 1995; Ball, Fat-soluble vitamin assays in food analysis. A comprehensive review, London, Elsevier Science Publishers Ltd., 1988). Further, tocopherol supplementation of swine, beef, and poultry feeds has been shown to significantly increase meat quality and extend the shelf life of post-processed meat products by retarding post-processing lipid oxidation, which contributes to undesirable flavor components (Sante and Lacourt, J. Sci. Food Agric., 65(4):503-507, 1994; Buckley et al., J. of Animal Science, 73:3122-3130, 1995).
- The tocopherol biosynthetic pathway in higher plants involves several enzymes including HPPD (
FIG. 1 ) (Fiedler et al., Planta, 155:511-515, 1982; Soll et al., Arch. Biochem. Biophys., 204:544-550, 1980; Marshall et al., Phytochem., 24:1705-1711, 1985). HPPD, also known as 4-HPPD, is a mononuclear, non-heme, iron-containing enzyme which is a member of the family of 2-oxoacid dependent dioxygenases (Ryle et al., Curr. Opin. Chem. Biol., 6:193-201, 2002). HPPD catalyzes the conversion of 4-hydroxyphenylpyruvate to homogentisic acid and is a key enzyme involved in the synthesis of tocopherol and plastoquinone. - In plant tissues, HPPD is an enzyme central to the biosynthesis of the essential quinoid-compounds derived from the amino acid tyrosine, such as plastoquinones or tocopherols. Because plastoquinones and tocopherols are essential molecules for plants, inhibitors of HPPD are useful as herbicides (U.S. Pat. Nos. 5,786,513 and 6,555,714; PCT Publication WO 97/49816). HPPDs can also be used to make plants tolerant to certain herbicides by mutating the target enzyme into a functional enzyme that is less sensitive to the herbicide, or to its active metabolite, such as, for example, the enzymes for tolerance to glyphosate (EP 293356; S. R. Padgette et al., J. Biol. Chem., 266:22364-22369, 1991). Another means of producing herbicide tolerant plants is by over-expression of an herbicide sensitive HPPD or polypeptide having HPPD activity in a transformed plant so as to produce quantities of the target HPPD enzyme in the plant which are sufficient, given the kinetic constants of HPPD, so as to have enough of the functional HPPD enzyme available despite the presence of its inhibitor (U.S. Pat. No. 6,245,968).
- There is a need in the art for polynucleotide molecules encoding enzymes involved in tocopherol biosynthesis, as well as related enzymes for the enhancement or alteration of tocopherol production in plants. There is a further need for transgenic organisms expressing those polynucleotide molecules involved in tocopherol biosynthesis which are capable of nutritionally enhancing food and feed sources.
- The present invention includes and provides a substantially purified polynucleotide molecule comprising:
- (a) a polynucleotide molecule comprising a nucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, nucleotide sequences having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23;
- (b) a polynucleotide molecule encoding a 4-hydroxyphenylpyruvate dioxygenase (“HPPD”) polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23;
- (c) a polynucleotide molecule comprising a polynucleotide sequence encoding a polypeptide comprising a sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24; or
- (d) a polynucleotide molecule comprising a polynucleotide sequence encoding a 4-hydroxyphenylpyruvate dioxygenase (“HPPD”) polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24.
- In one embodiment, the substantially purified polynucleotide molecule of the present invention is operably linked to a heterologous promoter that functions in plants, including seed-preferred promoters, and including the napin, 7S alpha, 7S alpha′ 7S beta, USP 88, enhanced USP 88, Arcelin 5, and oleosin promoters.
- In one embodiment, a substantially purified polynucleotide molecule of the present invention is operably linked to a polynucleotide encoding a chloroplast transit peptide. In one embodiment, a plasmid comprises a substantially purified polynucleotide molecule of the present invention.
- In one embodiment, a chimeric gene comprises a substantially purified polynucleotide molecule of the present invention operably linked to at least one regulatory sequence not associated in nature with the substantially purified polynucleotide molecule. In one embodiment, the present invention comprises a microbial host transformed with the chimeric gene. In one embodiment, the present invention comprises a plant host cell transformed with the chimeric gene.
- The present invention includes and provides a substantially purified polypeptide comprising:
- (a) SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24; or
- (b) a 4-hydroxyphenylpyruvate dioxygenase (“HPPD”) polypeptide or polypeptide having HPPD activity wherein the polypeptide comprises a sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24.
- The present invention includes and provides a method of producing a transformed plant cell, plant tissue, plant organ, or plant comprising at least one of an increased tocopherol level and increased tocotrienol level relative to a wild type plant cell, plant tissue, plant organ, or plant comprising:
- (1) transforming a plant cell, plant tissue, plant organ, or plant with an introduced polynucleotide molecule comprising a polynucleotide sequence encoding a 4-hydroxyphenylpyruvate dioxygenase (“HPPD”) polypeptide or polypeptide having HPPD activity comprising:
- (a) a polynucleotide molecule comprising a polynucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23;
- (b) a polynucleotide molecule comprising a polynucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23, wherein the substantially purified polynucleotide molecule is operably linked to a polynucleotide encoding a chloroplast transit peptide;
- (c) a polynucleotide molecule comprising a polynucleotide sequence encoding a HPPD polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23;
- (d) a polynucleotide molecule comprising a polynucleotide sequence encoding an HPPD polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23; wherein the substantially purified polynucleotide molecule is operably linked to a polynucleotide encoding a chloroplast transit peptide;
- (e) a polynucleotide molecule comprising a polynucleotide sequence encoding a polypeptide sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24; or
- (f) polynucleotide molecules comprising a polynucleotide sequence encoding a polypeptide sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24, wherein the substantially purified polynucleotide molecule is operably linked to a polynucleotide encoding a chloroplast transit peptide;
- (2) regenerating a plant from the cell, tissue, organ, or plant; and
- (3) growing the plant.
- In one embodiment, at least one additional polynucleotide molecule encoding an enzyme selected from the group consisting of MT1, tMT2, GMT, tyrA, HPT, tocopherol cyclase, chlorophyllase, dxs, dxr, GGPPS, AANT1, LTT1, IDI, and GGH is introduced into the plant. In one embodiment the at least one additional polynucleotide molecule is selected from the group consisting of SEQ ID NOs: 25, 26, and 27.
- In one embodiment, the method produces a transformed plant selected from the group consisting of alfalfa, Arabidopsis thaliana, barley, Brassica campestris, oilseed rape, broccoli, cabbage, citrus, canola, cotton, garlic, oat, Allium, flax, an ornamental plant, peanut, pepper, potato, rapeseed, rice, rye, sorghum, strawberry, sugarcane, sugarbeet, tomato, wheat, poplar, pine, fir, eucalyptus, apple, lettuce, lentils, grape, banana, tea, turf grasses, sunflower, soybean, chick peas, corn, Phaseolus, crambe, mustard, castor bean, sesame, cottonseed, linseed, safflower, and oil palm. In one embodiment, the transformed plant is selected from the group consisting of canola, oilseed rape, and soybean.
- The present invention includes and provides a method for producing a transformed plant which comprises tissue with at least one of increased α-tocopherol, α-tocotrienol, β-tocopherol, β-tocotrienol, γ-tocopherol, γ-tocotrienol, δ-tocopherol, and δ-tocotrienol levels relative to a plant with a similar genetic background but lacking said introduced polynucleotide molecule. In one method of the present invention, the introduced polynucleotide molecule is operably linked to a promoter, including a seed preferred promoter, including the napin, 7S alpha, 7S alpha′, USP 88, enhanced USP 88,
Arcelin 5, and Oleosin promoters. - In one method of the present invention, the tissue comprises a seed.
- The present invention includes and provides a method for increasing the ability of a plant to withstand a stress, the method comprising incorporating into one or more cells of the plant a DNA construct comprising:
- (a) an heterologous promoter;
- (b) a DNA encoding an HPPD; and
- (c) a 3′ untranslated region containing a functional polyadenylation signal wherein expression of the DNA construct increases the ability of the plant to withstand the stress.
- In one embodiment, the DNA encoding an HPPD is selected from the group consisting of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23. The present invention includes and provides a plant cell transformed with a DNA construct encoding an HPPD that confers stress tolerance to a plant regenerated from said plant cell as well as a transgenic plant regenerated from such plant cell.
- Also encompassed within the present invention are the transformed plants produced by the methods of the present invention, seed from the transformed plants, oil from the seeds of the transformed plants, and meal from the seed of the transformed plants.
- The present invention includes and provides an antibody capable of binding a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NOs: 4, 6, 8, 10, 12, 16, 18, 20, 22, and 24.
- The present invention includes and provides a method for screening for agents that alter tocopherol levels in a plant comprising: (a) providing a plant lacking a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24; (b) exposing the plant to a test agent; and (c) assaying tocopherol levels in the plant. The agents include, e.g., polynucleotide primers, polynucleotide fragments, and antibodies.
- The present invention includes isolated nucleic acid primer sequences comprising one or more of SEQ ID NOs: 28-36, or the complement thereof.
- The present invention includes a method to detect or identify, in the genome of a transformed plant or progeny thereof, a heterologous polynucleotide molecule encoding a plant HPPD polypeptide, or a plant polypeptide having HPPD activity of the present invention, comprising a polynucleotide molecule selected from the group consisting of SEQ ID NOs: 28-36, wherein said polynucleotide molecule is used as a DNA primer in a DNA amplification method.
-
FIG. 1 illustrates a schematic representation of the tocopherol biosynthesis pathway. -
FIG. 2 illustrates polynucleotide primer sequences. -
FIG. 3 illustrates the plasmid map of pMON78601. -
FIG. 4 illustrates the plasmid map of pMON78622. -
FIG. 5 illustrates the plasmid map of pMON78602. -
FIG. 6 illustrates the plasmid map of pMON78603. -
FIG. 7 illustrates the plasmid map of pMON78604. -
FIG. 8 illustrates the plasmid map of pMON64352. -
FIG. 9 illustrates the plasmid map of pMON77624. -
FIG. 10 illustrates the plasmid map of pMON77612. -
FIG. 11 illustrates the plasmid map of pMON77611. -
FIG. 12 illustrates the plasmid map of pMON77617. -
FIG. 13 illustrates the plasmid map of pMON77609. -
FIG. 14 illustrates the plasmid map of pMON77618. -
FIG. 15 illustrates the plasmid map of pMON36524. -
FIG. 16 illustrates the plasmid map of pMON77619. -
FIG. 17 illustrates the plasmid map of pMON77620. -
FIG. 18 illustrates the plasmid map of pMON77621. -
FIG. 19 illustrates the plasmid map of pMON77622. -
FIG. 20 illustrates the plasmid map of pMON77616. -
FIG. 21 illustrates the plasmid map of pMON69909. -
FIG. 22 illustrates the plasmid map of pMON69907. -
FIG. 23 illustrates the plasmid map of pMON78623. - SEQ ID NO: 1 represents a polynucleotide sequence encoding a Synechocystis sp. PCC6803 HPPD.
- SEQ ID NO: 2 represents a polynucleotide sequence encoding an Arabidopsis thaliana HPPD.
- SEQ ID NO: 3 represents a polynucleotide sequence encoding a Bacillus thuringiensis HPPD.
- SEQ ID NO: 4 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 5 represents a polynucleotide sequence encoding a Bacillus thuringiensis.
- SEQ ID NO: 6 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 7 represents a polynucleotide sequence encoding a Bacillus thuringiensis HPPD.
- SEQ ID NO: 8 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 9 represents a polynucleotide sequence encoding a Bacillus thuringiensis HPPD.
- SEQ ID NO: 10 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 11 represents a polynucleotide sequence encoding a Bacillus thuringiensis HPPD.
- SEQ ID NO: 12 represents a Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 13 represents a polynucleotide sequence encoding a modified Bacillus thuringiensis HPPD.
- SEQ ID NO: 14 represents a modified Bacillus thuringiensis HPPD polypeptide.
- SEQ ID NO: 15 represents a polynucleotide sequence encoding a Gossypium hirsutum HPPD.
- SEQ ID NO: 16 represents a Gossypium hirsutum HPPD polypeptide.
- SEQ ID NO: 17 represents a polynucleotide sequence encoding a Gossypium hirsutum HPPD.
- SEQ ID NO: 18 represents a Gossypium hirsutum HPPD polypeptide.
- SEQ ID NO: 19 represents a polynucleotide molecule sequence encoding a Brassica napus HPPD.
- SEQ ID NO: 20 represents a Brassica napus HPPD polypeptide.
- SEQ ID NO: 21 represents a polynucleotide sequence encoding a Lycopersicon esculentum HPPD.
- SEQ ID NO: 22 represents a Lycopersicon esculentum HPPD polypeptide.
- SEQ ID NO: 23 represents a polynucleotide sequence encoding a Sphingomonas elodea HPPD.
- SEQ ID NO: 24 represents a Sphingomonas elodea HPPD polypeptide.
- SEQ ID NO: 25 represents a polynucleotide sequence of an Erwinia herbicola tyrA.
- SEQ ID NO: 26 represents a polynucleotide sequence of an Arabidopsis thaliana HPT.
- SEQ ID NO: 27 represents a polynucleotide sequence of an Arabidopsis thaliana GGH.
- SEQ ID NO: 28 represents a Bt forward (f) Bt-HX-1-f PCR primer sequence.
- SEQ ID NO: 29 represents a Bt forward (f) Bt-HX-2-f PCR primer sequence.
- SEQ ID NO: 30 represents a Bt reverse (r) Bt-HX-3-r PCR primer sequence.
- SEQ ID NO: 31 represents a cotton forward (f) Gh-1-f PCR primer sequence.
- SEQ ID NO: 32 represents a cotton reverse (r) Gh-1-r PCR primer sequence.
- SEQ ID NO: 33 represents a Brassica forward (f) Bn-1-f PCR primer sequence.
- SEQ ID NO: 34 represents a Brassica reverse (r) Bn-2-r PCR primer sequence.
- SEQ ID NO: 35 represents a tomato forward (f) PCR primer sequence.
- SEQ ID NO: 36 represents a tomato reverse (r) PCR primer sequence.
- SEQ ID NO: 37 represents an Arabidopsis thaliana HPPD polypeptide.
- SEQ ID NO: 38 represents an Arabidopsis thaliana HPPD polypeptide antigen.
- SEQ ID NO: 39 represents an Arabidopsis thaliana HPPD polypeptide antigen.
- SEQ ID NO: 40 represents a Synechocystis sp. HPPD polypeptide.
- SEQ ID NO: 41 represents a Synechocystis sp. HPPD polypeptide antigen.
- SEQ ID NO: 42 represents a Bacillus thuringiensis HPPD polypeptide antigen.
- SEQ ID NO: 43 represents a Uni-HPPD polypeptide antigen.
- SEQ ID NO: 44 represents a Bacillus thuringiensis HPPD polynucleotide sequence.
- The present invention provides a number of agents, for example, polynucleotide molecules and polypeptides associated with the synthesis of tocopherol and tocotrienol, and provides uses of such agents.
- The tocopherol biosynthetic pathway in higher plants involves several enzymes (Fiedler et al., Planta, 155:511-515, 1982; Soll et al., Arch. Biochem. Biophys., 204:544-550, 1980; Marshall et al., Phytochem., 24:1705-1711, 1985) including HPPDs of the present invention. As used herein, an HPPD is a mononuclear, non-heme, iron containing enzyme that is a member of the family of 2-oxoacid dependent dioxygenases. HPPD catalyzes the conversion of 4-hydroxphenylpyruvate to homogentisic acid and is a key enzyme involved in the synthesis of α-tocopherol and plastoquinone. “Having HPPD activity” means that the HPPD enzyme (EC 1.13.11.27) uses molecular oxygen to oxygenate 4-hydroxyphenylpyruvate to yield CO2 and homogentisic acid.
- The present invention is useful for: 1) increasing tocopherol and tocotrienol production in plants; 2) enhancing the nutritional quality of human food and animal feed; 3) enhancing tolerance in plants to abiotic stresses such as heat and drought; and 4) increasing the tolerance of plants to certain classes of herbicides.
- Tocopherols are involved in the response of plants to oxidative stresses (Porfirova et al., PNAS, 99(19):12495-12500, 2002). Therefore, expression or over-expression in a transformed plant of an HPPD or polypeptide having HPPD activity of the present invention, in combination with other tocopherol pathway enzymes, may provide tolerance to a variety of stresses, e.g., oxidative stress tolerance such as to drought, oxygen or ozone, UV tolerance, cold tolerance, or fungal/microbial pathogen tolerance. Environmental stresses, such as drought, increased salinity of soil, and extreme temperature, are major factors in limiting plant growth and productivity. The worldwide loss in yield of three major cereal crops, rice, maize (corn), and wheat due to water stress (drought) has been estimated to be over ten billion dollars annually. However, conventional breeding is a slow process for generating crop varieties with improved tolerance to stress conditions. Limited germplasm resources for stress tolerance and incompatibility in crosses between distantly related plant species are additional problems encountered in conventional breeding. Recent progress in plant genetic transformation and availability of potentially useful genes characterized from different sources make it possible to generate stress-tolerant crops using transgenic approaches (U.S. Pat. No. 5,981,842). Since HPPD plays a key role in the production of plant tocopherols, compositions of the present invention can be used to produce plants that are more tolerant of abiotic stresses.
- The plastids of higher plants exhibit interconnected biochemical pathways leading to secondary metabolites including tocopherols as illustrated in
FIG. 1 . The various genes and their encoded proteins involved in tocopherol biosynthesis are listed in Table 1 below. -
TABLE 1 Tocopherol biosynthetic coding regions and enzymes Coding region or Enzyme Abbreviation Enzyme name tyrA Mono or bifunctional prephenate dehydrogenase HPT Homogentisate prenyl transferase DXS 1-Deoxyxylulose-5-phosphate synthase DXR 1-Deoxyxylulose-5-phosphate reductoisomerase GGPPS Geranylgeranyl pyrophosphate synthase HPPD p-Hydroxyphenylpyruvate dioxygenase AANT1 Adenylate transporter IDI Isopentenyl diphosphate isomerase MT1 Bacterial 2-methylphytylplastoquinol methyltransferase tMT2 Plant 2-methylphytylplastoquinol methyltransferase GGH Geranylgeranyl diphosphate reductase slr1737 Tocopherol cyclase GMT Tocopherol gamma methyl transferase LTT1 Phytol kinase Chl1 and Chl2 Chlorophyllase 1 and 2 - The tocopherol biosynthetic pathway in higher plants involves condensation of homogentisic acid and phytylpyrophosphate to form 2-methylphytylplastoquinol (Fiedler et al., Planta, 155:511-515, 1982; Soll et al., Arch. Biochem. Biophys., 204:544-550, 1980; Marshall et al., Phytochem., 24:1705-1711, 1985). This plant tocopherol pathway can be divided into four parts: 1) synthesis of homogentisic acid (HGA), which contributes to the aromatic ring of tocopherol; 2) synthesis of phytylpyrophosphate, which contributes to the side chain of tocopherol; 3) joining of HGA and phytylpyrophosphate via a prenyltransferase followed by a methylation reaction, and a subsequent cyclization; and 4) another S-adenosyl methionine dependent methylation of an aromatic ring, which affects the relative abundance of each of the tocopherol species.
- Homogentisic acid is the common precursor to both tocopherols and plastoquinones (
FIG. 1 ). In at least some bacteria, the synthesis of homogentisic acid is reported to occur via the conversion of chorismate to prephenate and then to p-hydroxyphenylpyruvate via a bifunctional prephenate dehydrogenase. Examples of bifunctional bacterial prephenate dehydrogenase enzymes include, for example, the proteins encoded by the tyrA genes of Erwinia herbicola (SEQ ID NO: 25) and Escherichia coli. The tyrA gene product catalyzes the production of prephenate from chorismate, as well as the subsequent dehydrogenation of prephenate to form p-hydroxyphenylpyruvate (p-HPP), the immediate precursor to homogentisic acid. p-HPP is then converted to homogentisic acid by p-hydroxyphenylpyruvate dioxygenase (HPPD). In contrast, plants are believed to lack prephenate dehydrogenase activity, and it is generally believed that the synthesis of homogentisic acid from chorismate occurs via the synthesis and conversion of the intermediates arogenate, tyrosine, and p-hydroxyphenylpyruvate. Since pathways involved in homogentisic acid synthesis are also responsible for tyrosine formation, any alterations in these pathways can also result in the alteration in tyrosine synthesis and the synthesis of other aromatic amino acids. Therefore, it is useful for the enhancement of tocopherol production to combine the expression of genes encoding HPPD and tyrA. - Tocopherols are a member of the class of compounds referred to as the isoprenoids. Other isoprenoids include carotenoids, gibberellins, terpenes, chlorophyll, and abscisic acid. A central intermediate in the production of isoprenoids is isopentenyl diphosphate (IPP). Cytoplasmic and plastid-based pathways to generate IPP have been reported. The cytoplasmic based pathway involves the enzymes acetoacetyl CoA thiolase, HMGCoA synthase, HMGCoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate pyrophosphate decarboxylase.
- Recently, evidence for the existence of an alternative, plastid based, isoprenoid biosynthetic pathway emerged from studies in the research groups of Rohmer and Arigoni (Eisenreich et al., Chem. Bio., 5:R221-R233, 1998; Rohmer, Prog. Drug. Res., 50:135-154, 1998; Rohmer, Comprehensive Natural Products Chemistry, 2:45-68, Barton and Nakanishi Eds., Pergamon Press, Oxford, England, 1999), who found that the isotope labeling patterns observed in studies on certain eubacterial and plant terpenoids could not be explained in terms of the mevalonate pathway. Arigoni and coworkers subsequently showed that 1-deoxyxylulose, or a derivative thereof, serves as an intermediate of the novel pathway, now referred to as the Methylerythritol phosphate (MEP) pathway (Rohmer et al., Biochem. J., 295:517-524, 1993; Schwarz, Ph.D. thesis, Eidgenössiche Technische Hochschule, Zurich, Switzerland, 1994). Recent studies showed the formation of 1-deoxyxylulose 5-phosphate and pyruvate (Broers, Ph.D. thesis, Eidgenössiche Technische Hochschule, Zurich, Switzerland, 1994) from one molecule each of glyceraldehyde 3-phosphate and pyruvate (Rohmer, Comprehensive Natural Products Chemistry, 2:45-68; Barton and Nakanishi, Eds., Pergamon Press, Oxford, England, 1999; Eisenreich et al., Chem. Biol., 5:R223-R233, 1998; Schwarz supra; Rohmer et al., J. Am. Chem. Soc., 118:2564-2566, 1996; Sprenger et al., Proc. Natl. Acad. Sci. (U.S.A.), 94:12857-12862, 1997) by an enzyme encoded by the dxs gene (Lois et al., Proc. Natl. Acad. Sci. (U.S.A.), 95:2105-2110, 1997; U.S. Publication 2003/0125573; Lange et al., Proc. Natl. Acad. Sci. (U.S.A.), 95:2100-2104, 1998). 1-Deoxyxylulose 5-phosphate can be further converted into 2-C-methylerythritol 4-phosphate (Arigoni et al., Proc. Natl. Acad. Sci. (U.S.A.), 94:10600-10605, 1997) by a reductoisomerase encoded by the dxr gene (Bouvier et al., Plant Physiol., 117:1421-1431, 1998; Rohdich et al., Proc. Natl. Acad. Sci. (U.S.A.), 96:11758-11763, 1999).
- Genes reported to be in the MEP pathway also include ygbP, which catalyzes the conversion of 2-C-methyl-D-erythritol 4-phosphate into its respective cytidyl pyrophosphate derivative. The translation product of ychB, in turn catalyzes the conversion of 4-phosphocytidyl-2-C-methyl-D-erythritol into 4-diphosphocytidyl-2-C-methyl-D-erythritol-2 phosphate. The latter compound is converted by the action of the translation product of ygbB into 2-C-methyl-D-erythritol,2,4-cyclodiphosphate. Subsequently, 2-C-methyl-D-erythritol,2,4-cyclodiphosphate is converted by the translation product of gcpE to (E)-1-(4-hydroxy-3-methylbut-2-enyl) diphosphate. The latter compound is converted by the action of LytB to IPP and DMAPP (Herz et al., Proc. Natl. Acad. Sci. (U.S.A.), 97(6):2485-2490, 2000).
- Once IPP is formed by the MEP pathway, it is converted to GGDP by GGPPS synthase, and then to phytylpyrophosphate (Phytyl-PP), which is the central constituent of the tocopherol side chain. Phytyl-PP is a substrate for HPT, the enzyme immediately succeeding HPPD in the tocopherol biosynthetic pathway. Therefore, it is useful to combine the expression of genes encoding HPT and HPPD to enhanced production of tocopherol.
- HPPD enzymatic activity provides Homogentisic acid, which is combined with either phytylpyrophosphate or solanyl-pyrophosphate by homogentisate prenyl transferase forming 2-methylphytyl plastoquinol or 2-methylsolanyl plastoquinol, respectively. 2-Methylsolanyl plastoquinol is a precursor to the biosynthesis of plastoquinones, while 2-methylphytyl plastoquinol is ultimately converted to tocopherol. It has been suggested that homogentisic acid, when combined with geranylgeranylpyrophosphate, will lead to the formation of tocotrienols.
- The substrates for the completion of tocopherol biosynthesis are produced by the enzymatic activities of GGH, LTT1, HPPD, and HPT. The major structural differences between each of the tocopherol subtypes are then determined by the position of the methyl groups around the phenyl ring. Both 2-methylphytyl plastoquinol and 2-methylsolanyl plastoquinol serve as substrates for the plant enzyme 2-methylphytylplastoquinol/2-methylsolanylplastoquinol methyltransferase (2-methylphytylplastoquinol methyltransferase; methylphytylplastoquinol methyltransferase; MT2; tMT2), which is capable of methylating a tocopherol precursor to form 2,3-dimethyl-5-phytylplastoquinol, the cyclization of which by tocopherol cyclase yields γ-tocopherol (Cheng et al., Plant Cell, 15:2343-2356, 1983). Subsequent methylation of γ-tocopherol by γ-tocopherol methyl-transferase (GMT) generates γ-tocopherol (Shintani et al., Science, 282:2098-2100, 1998).
- A possible alternate pathway for the generation of α-tocopherol involves the generation of δ-tocopherol via the cyclization of 2-methylphytylplastoquinol by tocopherol cyclase. δ-tocopherol is then converted to β-tocopherol via the methylation of the 5 position by GMT. δ-tocopherol can be converted to α-tocopherol via the methylation of the 3 position by tMT2, followed by methylation of the 5 position by GMT. In a possible alternative pathway, β-tocopherol is directly converted to α-tocopherol by tMT2 via the methylation of the 3 position (see, for example, Biochemical Society Transactions, 11:504-510, 1983; Introduction to Plant Biochemistry, 2nd edition, Chapter 11, 1983; Vitamin Hormone, 29:153-200, 1971; Biochemical Journal, 109:577, 1968; Biochemical and Biophysical Research Communication, 28(3):295, 1967). Since all potential mechanisms for the generation of α-tocopherol involve catalysis by tMT2, plants that are deficient in this activity accumulate δ-tocopherol and β-tocopherol. Plants that have increased tMT2 activity tend to accumulate γ-tocopherol and α-tocopherol. Since there is a low level of GMT activity in the seeds of many plants, these plants tend to accumulate γ-tocopherol.
- The agents of the present invention will preferably be “biologically active” with respect to either a structural attribute, such as the capacity of a polynucleotide to hybridize to another polynucleotide molecule, or the ability of a protein to be bound by an antibody (or to compete with another molecule for such binding). Alternatively, such an attribute may be catalytic and thus involve the capacity of the agent to mediate a chemical reaction or response. The agents will preferably be “substantially purified.” The term “substantially purified,” as used herein, refers to a molecule separated from substantially all other molecules normally associated with it in its native environmental conditions. More preferably a substantially purified molecule is the predominant species present in a preparation. A substantially purified molecule may be greater than about 60% free, preferably about 75% free, more preferably about 90% free, and most preferably about 95% free from the other molecules (exclusive of solvent) present in the natural mixture. The term “substantially purified” is not intended to encompass molecules present in their native environmental conditions.
- The agents of the present invention may also be recombinant. As used herein, the term recombinant means any agent (e.g., DNA, peptide, etc.), that is, or results, however indirectly, from human manipulation of a polynucleotide molecule.
- The agents of the present invention may also contain native or heterologous chloroplast transit peptides (CTP). Many chloroplast-localized proteins are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP) that is removed during the import steps. Examples of such chloroplast proteins include the small subunit (SSU) of Ribulose-1,5,-bisphosphate carboxylase (rubisco), Ferredoxin, Ferredoxin oxidoreductase, the light-harvesting complex protein I and protein II, and Thioredoxin F. It has been demonstrated in vivo and in vitro that non-chloroplast proteins may be targeted to plastids, e.g., chloroplasts, by use of protein fusions with a CTP and that a CTP sequence is sufficient to target a protein to the chloroplast. Chloroplast transit peptides can also be engineered to be fused to the N terminus of a HPPD molecule to direct HPPD enzymes into the plant chloroplast. The native CTP may be substituted with a heterologous CTP during construction of a transgene plant expression cassette. For example, incorporation of a suitable chloroplast transit peptide, such as, the Arabidopsis thaliana EPSPS CTP (CTP2, Klee et al., Mol. Gen. Genet., 210:437-442, 1987), or the Petunia hybrida EPSPS CTP (CTP1, della-Cioppa et al., Proc. Natl. Acad. Sci. (U.S.A.), 83:6873-6877, 1986) has been shown to target heterologous EPSPS protein sequences to chloroplasts in transgenic plants. Those skilled in the art will recognize that various chimeric constructs can be made that utilize the functionality of a particular CTP to import HPPD enzymes into the plant cell chloroplast.
- It is understood that the agents of the present invention may be labeled with reagents that facilitate detection of the agent (e.g., fluorescent labels, Prober et al., Science, 238:336-340, 1987; Albarella et al., European Patent 144914; chemical labels, Sheldon et al., U.S. Pat. No. 4,582,789; Albarella et al., U.S. Pat. No. 4,563,417; modified bases, Miyoshi et al., European Patent 119448).
- As used herein in a preferred aspect, a tolerance or resistance to stress is determined by the ability of a plant, when challenged by a stress such as drought, to produce a plant having a higher yield or to a plant being less susceptible to an environmentally induced phenotype such as wilting, than one without such tolerance or resistance to stress. In a particularly preferred aspect of the present invention, the tolerance or resistance to stress is measured relative to a plant with a similar genetic background to the tolerant or resistance plant except that the plant expresses or over expresses a protein or fragment thereof of the present invention.
- The present invention includes and provides polynucleotide molecules encoding a polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs: 4, 6, 10, 12, 16, 18, 20, 22, and 24.
- The present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 58%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 4, 6, 10, or 12.
- The present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 16.
- The present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 18.
- The present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 93%, 95%, or 99% identity to SEQ ID NO: 20.
- The present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 79%, 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 22.
- The present invention includes and provides a polynucleotide molecule encoding an HPPD polypeptide, or a polypeptide having HPPD activity, comprising a polypeptide sequence having at least 54%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to SEQ ID NO: 24.
- The present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 3, 5, 9, 11, or 13 and sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequences.
- The present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 15 and sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 15.
- The present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 17 and sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 17.
- The present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 19 and sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 19.
- The present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 21 and sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 21.
- The present invention includes and provides polynucleotide molecules comprising SEQ ID NO: 23 and sequences having at least 90%, 95%, or 99% identity to SEQ ID NO: 23.
- The present invention includes and provides polynucleotide molecules described above and further comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 25, 26, and 27.
- In another preferred aspect of the present invention a polynucleotide molecule comprises nucleotide sequences encoding a plastid transit peptide operably fused to a polynucleotide molecule that encodes a protein or fragment of the present invention.
- It is understood that in a further aspect of polynucleotide sequences of the present invention, the polynucleotides can encode a protein that differs from any of the proteins in that one or more amino acids have been deleted, substituted, or added without altering the function. For example, it is understood that codons capable of coding for such conservative amino acid substitutions are known in the art.
- In one aspect of the present invention the polynucleotide of the present invention are said to be introduced polynucleotide molecules. A polynucleotide molecule is said to be “introduced” if it is inserted into a cell or organism as a result of human manipulation, no matter how indirect. Examples of introduced polynucleotide molecules include, without limitation, polynucleotides that have been introduced into cells via transformation, transfection, injection, and projection, and those that have been introduced into an organism via conjugation, endocytosis, phagocytosis, etc.
- One subset of the polynucleotide molecules of the present invention is fragment polynucleotide molecules. Fragment polynucleotide molecules may consist of significant portion(s) of, or indeed most of, the polynucleotide molecules of the present invention, such as those specifically disclosed. Alternatively, the fragments may comprise smaller oligonucleotides (having from about 15 to about 400 nucleotide residues and more preferably, about 15 to about 30 nucleotide residues, or about 50 to about 100 nucleotide residues, or about 100 to about 200 nucleotide residues, or about 200 to about 400 nucleotide residues, or about 275 to about 350 nucleotide residues).
- A fragment of one or more of the polynucleotide molecules of the present invention may be a probe and specifically a PCR probe. A PCR probe is a polynucleotide molecule capable of initiating a polymerase activity while in a double-stranded structure with another polynucleotide. Various methods for determining the structure of PCR probes and PCR techniques exist in the art.
- Polynucleotide molecules or fragments thereof of the present invention are capable of specifically hybridizing to other polynucleotide molecules under certain circumstances. Polynucleotide molecules of the present invention include those that specifically hybridize to polynucleotide molecules having a polynucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23, and complements thereof. Polynucleotide molecules of the present invention also include those that specifically hybridize to polynucleotide molecules encoding a polypeptide sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24, and fragments thereof.
- As used herein, two polynucleotide molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded polynucleotide structure.
- A polynucleotide molecule is said to be the “complement” of another polynucleotide molecule if they exhibit complete complementarity. As used herein, molecules are said to exhibit “complete complementarity” when every nucleotide of one of the molecules is complementary to a nucleotide of the other. Two molecules are said to be “minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional “low-stringency” conditions. Similarly, the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional “high-stringency” conditions. Conventional stringency conditions are described by Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 2001, and by Haymes et al., Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, D.C., 1985. Departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure. Thus, in order for a polynucleotide molecule to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed.
- Appropriate stringency conditions which promote DNA hybridization are, for example, 6.0× sodium chloride/sodium citrate (SSC) at about 45° C., followed by a wash of 2.0×SSC at 20-25° C., are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1989, 6.3.1-6.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0×SSC at 50° C. to a high stringency of about 0.2×SSC at 65° C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22° C., to high stringency conditions at about 65° C. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed.
- In a preferred embodiment, a polynucleotide of the present invention will specifically hybridize to one or more of the polynucleotide molecules set forth in: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 1, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23, and complements thereof, under moderately stringent conditions, for example at about 2.0×SSC and about 65° C.
- In a particularly preferred embodiment, a polynucleotide of the present invention will include those polynucleotide molecules that specifically hybridize to one or more of the polynucleotide molecules set forth in: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23, and complements thereof, under high stringency conditions such as 0.2×SSC and about 65° C.
- In one embodiment of a method of the present invention, any of the polynucleotide sequences or polypeptide sequences, or fragments of either, of the present invention can be used to search for related sequences. As used herein, “search for related sequences” means any method of determining relatedness between two sequences, including, but not limited to, searches that compare sequence homology: for example, a PBLAST search of a database for relatedness to a single polypeptide sequence. Other searches may be conducted using profile based methods, such as the HMM (Hidden Markov model) META-MEME, which is maintained by South Dakota State University, SD, and PSI-BLAST, which is maintained by the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NCBI).
- A polynucleotide molecule can encode for a substantially identical or substantially homologous polypeptide molecule. The degree of identity or homology is determined by use of computer software such as the WISCONSIN PACKAGE Gap Program. The Gap program in the WISCONSIN PACKAGE version 10.0-UNIX from Genetics Computer Group, Inc. is based on the method of Needleman and Wunsch, J. Mol. Biol., 48:443-453, 1970. For comparisons described herein, the following sets of default parameters for pairwise comparisons were used: for amino acid sequence comparisons the Gap Creation Penalty=8 and the Gap Extension Penalty=2; for nucleotide sequence comparisons the Gap Creation Penalty=50 and the Gap Extension Penalty=3. Using the TBLASTN program in the BLAST 2.2.1 software suite (Altschul et al., Nucleic Acids Res., 25:3389-3402, 1997), or using BLOSUM62 matrix (Henikoff and Henikoff, Proc. Natl. Acad. Sci. (U.S.A.), 89:10915-10919, 1992), the set of default parameters for pairwise comparisons were: the gap creation cost=11 and the gap extension cost=1. In BLAST, the E-value, or expectation value, represents the number of different alignments with scores equivalent to or better than the raw alignment score, S, that are expected to occur in a database search by chance. The lower the E-value, the more significant the match. Because database size is an element in E-value calculations, E-values obtained by “BLASTing” against public databases, such as GenBank, have generally increased over time for any given query/entry match. “Percent identity” refers to the percentage of identically matched amino acid residues that exist along the length of that portion of the sequences which is aligned by the BLAST algorithm. In a preferred embodiment the percent identity calculations are performed using BLASTN or BLASTP (default, parameters, version 2.0.8, Altschul et al., Nucleic Acids Res., 25:3389-3402, 1997).
- A polynucleotide molecule of the present invention can also encode a homolog polypeptide. As used herein, a homolog polypeptide molecule or fragment thereof is a counterpart protein molecule or fragment thereof in a second species (e.g., corn rubisco small subunit is a homolog of Arabidopsis rubisco small subunit). A homolog can also be generated by molecular evolution or DNA shuffling techniques, so that the molecule retains at least one functional or structure characteristic of the original polypeptide (see, for example, U.S. Pat. No. 5,811,238).
- Agents of the present invention include polynucleotide molecules that encode polypeptides having at least about a contiguous 10 amino acid region of a polypeptide of the present invention, more preferably having at least about a contiguous 25, 40, 50, 100, or 125 amino acid region of a polypeptide of the present invention, preferably a polypeptide comprising SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24.
- In a preferred embodiment, any of the polynucleotide molecules of the present invention can be operably linked to a promoter region that functions in a plant cell to cause the production of an mRNA molecule, where the polynucleotide molecule that is linked to the promoter is heterologous with respect to that promoter. As used herein, “heterologous” means not naturally occurring together.
- A class of agents includes one or more of the polypeptide molecules encoded by a polynucleotide agent of the present invention. A particular preferred class of polypeptides is that having a polypeptide sequence of SEQ ID NO: 4, 6, 10, or 12, or a sequence having at least 58%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof. A particular preferred class of polypeptides are those having a polypeptide sequence of SEQ ID NO: 16 or a sequence having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof, those having a polypeptide sequence of SEQ ID NO: 18 or a sequence having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof, those having a polypeptide sequence of SEQ ID NO: 20 or a sequence having at least 93%, 95%, or 99% identity to such sequence, or fragments thereof, those having a polypeptide sequence of SEQ ID NO: 22 or a sequence having at least 79%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof, or those having a polypeptide sequence of SEQ ID NO: 24 or a sequence having at least 54%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- In another aspect of the present invention, the HPPD polypeptide, or a polypeptide having HPPD activity, comprises a polypeptide sequence selected from the group consisting of SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24.
- Polypeptide agents may have C-terminal or N-terminal amino acid sequence extensions. One class of N-terminal extensions employed in a preferred embodiment are plastid transit peptides. When employed, plastid transit peptides can be operatively linked to the N-terminal sequence, thereby permitting the localization of the agent polypeptides to plastids. In an embodiment of the present invention, any suitable plastid targeting sequence can be used (see, e.g., U.S. Pat. Nos. 5,776,760; 6,489,542; and 5,717,084). Where suitable, a plastid targeting sequence can be substituted for a native plastid targeting sequence. In a further embodiment, any suitable, modified plastid targeting sequence can be used. In another embodiment, e.g., the plastid targeting sequence is a CTP1 sequence (U.S. Pat. No. 5,776,760) or a CTP2 sequence (U.S. Pat. No. 5,463,175).
- As used herein, the terms “protein,” “peptide molecule,” or “polypeptide” includes any molecule that comprises five or more amino acids. It is well known in the art that protein, peptide, or polypeptide molecules may undergo modification, including post-translational modifications, such as, but not limited to, disulfide bond formation, glycosylation, phosphorylation, or oligomerization. Thus, as used herein, the terms “protein,” “peptide molecule,” or “polypeptide” includes any protein that is modified by any biological or non-biological process. The phrases “amino acid” and “amino acids” refer to all naturally occurring L-amino acids. This definition is meant to include norleucine, norvaline, ornithine, homocysteine, and homoserine.
- A “protein fragment” is a peptide or polypeptide molecule whose amino acid sequence comprises a subset of the amino acid sequence of that protein. A protein or fragment thereof that comprises one or more additional peptide regions not derived from that protein is a “fusion” protein. Such molecules may be derivatized to contain carbohydrate or other moieties (such as keyhole limpet hemocyanin). Fusion protein or peptide molecules of the present invention are preferably produced via recombinant means.
- One or more of the polynucleotide molecules of the present invention may be used in plant transformation or transfection. Exogenous genetic material may be transferred into a plant cell and the plant cell regenerated into a whole, fertile, or sterile plant. Exogenous genetic material is any genetic material, whether naturally occurring or otherwise, from any source that is capable of being inserted into any organism.
- In an aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 3, 5, 9, 11, and 13, and sequences having at least 80%, 85%, 90%, 95%, or 99% identity to at least one of SEQ ID NOs: 3, 5, 9, 11, and 13, or complements thereof and fragments of either. In a further aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 4, 6, 10, or 12, and sequences having at least 58%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- In a preferred aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 15, or polynucleotide sequences having at least 87%, 90%, 95%, or 99% identity to such sequence, or complements thereof and fragments of either. In a further aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 16, and sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- In a preferred aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 17, or polynucleotide sequences having at least 87%, 90%, 95%, or 99% identity to such sequence, or complements thereof and fragments of either. In a further aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 18, and sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- In a preferred aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 19, or polynucleotide sequences having at least 91%, 95%, or 99% identity to such sequence, or complements thereof and fragments of either. In a further aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 20, and sequences having a least 93%, 95%, or 99% identity to such sequence, or fragments thereof.
- In a preferred aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 21, or polynucleotide sequences having at least 91%, 95%, or 99% identity to such sequence, or complements thereof and fragments of either. In a further aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 22, and sequences having at least 79%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- In a preferred aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence of SEQ ID NO: 23, or polynucleotide sequences having at least 90% identity to such sequence, or complements thereof and fragments of either. In a further aspect of the present invention, the exogenous genetic material comprises a polynucleotide sequence encoding a polypeptide sequence of SEQ ID NO: 24, and sequences having at least 54%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to such sequence, or fragments thereof.
- In a further aspect of the present invention, the polynucleotide sequences of the present invention also encode peptides involved in intracellular localization, export, or post-translational modification.
- As used herein, the term “gene” includes a nucleic acid molecule that provides regulation of transcription that includes a promoter that functions in plants, 5′ untranslated molecules, e.g., introns and leader sequences, a transcribed nucleic acid molecule and a 3′ transcriptional termination molecule.
- As used herein, the term “construct” is a plant expression cassette that includes all of the DNA regulatory molecules operably linked to the target molecule to provide expression in plants.
- In an embodiment of the present invention, exogenous genetic material encoding an HPPD or fragment thereof is introduced into a plant with one or more additional genes. In one embodiment, preferred combinations of genes include a polynucleotide molecule of the present invention and one or more of the following genes: tyrA (e.g., PCT Publication WO 02/089561 incorporated herein by reference; Xia et al., J. Gen. Microbiol., 138:1309-1316, 1992), tocopherol cyclase (e.g., PCT Publication WO 01/79472, incorporated herein by reference; Cyanobase—the genome database for cyanobacteria, which is maintained by the Department of Plant Gene Research, Kazusa DNA Research Institute, Japan), dxs (e.g., Lois et al., Proc. Natl. Acad. Sci. (U.S.A.), 95(5):2105-2110, 1998), dxr (e.g., U.S. Publication 2002/0108148A, incorporated herein by reference; Takahashi et al., Proc. Natl. Acad. Sci. (U.S.A.), 95(17):9879-9884, 1998), GGPPS (e.g., Bartley and Scolnik, Plant Physiol., 104:1469-1470, 1994), GMT (e.g., U.S. patent application Ser. No. 10/219,810, filed Aug. 16, 2002, incorporated herein by reference; PCT Publications WO 03/016482; WO 00/32757; and WO 00/10380), HPT (U.S. Pat. No. 6,541,259, incorporated herein by reference; PCT Publications WO 00/68393 and WO 00/63391; Smith et al., Plant J., 11:83-92, 1997), tMT2 (e.g., U.S. patent application Ser. No. 10/279,029, filed Oct. 24, 2002, incorporated herein by reference; PCT Publication WO 03/034812), AANT1 (e.g., PCT Publication WO 02/090506, incorporated herein by reference; Saint Guily et al., Plant Physiol., 100(2):1069-1071, 1992), IDI (E.C.:5.3.3.2; ExPASy Molecular Biology Server; Blanc et al., In: Plant Gene Register, PRG96-036; Sato et al., DNA Res., 4:215-230, 1997), GGH (Grasses et al., Planta, 213:620-628, 2001), or a plant ortholog and an antisense construct for homogentisic acid dioxygenase (Kridl et al., Seed Sci. Res., 1:209-219, 1991; Sato et al., J. DNA Res., 7(1):31-63, 2000; Keegstra, Cell, 56(2):247-53, 1989; Nawrath et al., Proc. Natl. Acad. Sci. (U.S.A.), 91:12760-12764, 1994), MT1 (e.g., PCT Publication WO 00/10380), gcpE (e.g. PCT Publication WO 02/12478, incorporated herein by reference), Ltt1 (e.g., U.S. patent application Ser. No. 10/634,548, filed Aug. 5, 2003, incorporated herein by reference), and chlorophyllase (e.g., Arabidopsis chlorophyllase 1 , gi:30912637 and Arabidopsis chlorophyllase 2, gi:6729677; U.S. patent application Ser. No. 10/634,548, incorporated herein by reference). In such combinations, in some crop plants, e.g., canola, a preferred promoter is a napin promoter and a plastid targeting sequence is a
CTP 1 or CTP2 sequence. Gene products may be targeted to the plastid. Alternatively, one or more of the gene products can be localized in the cytoplasm. In one embodiment, the gene products of tyrA and HPPD are targeted to the plastids. In a second embodiment, tyrA and HPPD are targeted to the cytoplasm. Such genes can be introduced, for example, on a single construct, introduced on different constructs but the same transformation event, or introduced into separate plants followed by one or more crosses to generate the desired combination of genes. In such combinations, a preferred promoter is a napin promoter (U.S. Pat. No. 5,420,034), a 7S alpha promoter (U.S. Publication 2003/0093828), the 7S beta promoter (Lessard et al., Plant Molecular Biology, 22(5):873-875, 1993), theArcelin 5 promoter (PCT Publication WO 02/50295), the USP 88 promoter (U.S. patent application Ser. No. 10/429,516, filed May 6, 2003), and a preferred plastid targeting sequence is a CTP1 or CTP2 sequence. The seed-specific promoters that include the 5′ regulatory regions of the napin gene provide expression of transgenes in seed tissues (U.S. Pat. Nos. 5,420,034 and 6,459,018, herein incorporated by reference). In soybean, 7S refers to β-conglycinin, a major class of seed storage proteins. The trimeric β-conglycinin is comprised of the α, α′, and β subunits. Expression of 7Sα′ has been well studied by many researchers over the years. The 7Sα′ subunit is expressed at mid to late stages of seed development. A transgene encoding the α′-subunit of soybean β-conglycinin showed seed-specific expression in petunia (Beachy et al., EMBO J., 4:3047-3053, 1985). Functional analysis of the regulatory elements indicated that a 900 bp upstream fragment of the 7Sα′ promoter contains the necessary elements to produce seed-specific expression in transgenic petunia (Chen et al., Proc. Natl. Acad. Sci. (U.S.A.), 83:8560-8564, 1986). The sequences of the promoters disclosed in these referenced patents are herein incorporated by reference. - In a preferred combination, a polynucleotide molecule of the present invention and a polynucleotide molecule encoding any of the following enzymes: tyrA (SEQ ID NO: 25), HPT (SEQ ID NO: 26), tocopherol cyclase, chlorophyllase, LTT1, dxs, dxr, GGPPS, tMT2, AANT1, IDI, GMT, GGH (SEQ ID NO: 27), or a plant ortholog and an antisense construct for homogentisic acid dioxygenase are introduced into a plant.
- In a preferred combination, a polynucleotide molecule of the present invention and a polynucleotide molecule encoding tyrA (SEQ ID NO: 25), HPT (SEQ ID NO: 26), GGH (SEQ ID NO: 27), GMT, and tMT2 are introduced into a plant.
- Such genetic material may be transferred into either monocotyledons or dicotyledons including, but not limited to alfalfa, apple, Arabidopsis, banana, Brassica campestris, canola, castor bean, coffee, corn, cotton, cottonseed, chrysanthemum, crambe, cucumber, dendrobium, dioscorea, eucalyptus, fescue, flax, gladiolus, liliacea, linseed, millet, muskmelon, mustard, oat, oil palms, oilseed rape, peanut, perennial ryegrass, Phaseolus, rapeseed, rice, sorghum, soybean, rye, tritordeum, turfgrass, wheat, safflower, sesame, sugarbeet, sugarcane, cranberry, papaya, safflower, and sunflower (Christou, In: Particle Bombardment for Genetic Engineering of Plants, Biotechnology Intelligence Unit. Academic Press, San Diego, Calif., 1996). In a preferred embodiment, the genetic material is transferred into canola. In another more preferred embodiment, the genetic material is transferred into oilseed rape. In another particularly preferred embodiment, the genetic material is transferred into soybean.
- Transfer of a polynucleotide molecule that encodes a protein can result in expression or overexpression of that polypeptide in a transformed cell or transgenic plant. One or more of the proteins or fragments thereof encoded by polynucleotide molecules of the present invention may be overexpressed in a transformed cell or transformed plant.
- In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 3, 5, 7, 9, 11, or 13, or sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequence, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 15, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 15, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 17, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 17, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 19, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 19, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 21, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 21, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 23, or sequences having at least 90%, 95%, or 99% identity to SEQ ID NO: 23, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols. As used in this paragraph, tocopherols include α-tocopherols, β-tocopherols, δ-tocopherols, and γ-tocopherols as well as α-tocotrienols, β-tocotrienols, δ-tocotrienols, and γ-tocotrienols.
- In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 3, 5, 7, 9, 11, or 13, or sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequences provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 15, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 15, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 17, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 17, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 19, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 19, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 21, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 21, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 23, or sequences having at least 90%, 95%, or 99% identity to SEQ ID NO: 23, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- In a preferred embodiment, DNA constructs of the present invention comprising polynucleotide molecules encoding a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24; and provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of tocopherols. As used in this paragraph, tocopherols include α-tocopherols, β-tocopherols, δ-tocopherols, and γ-tocopherols as well as α-tocotrienols, β-tocotrienols, δ-tocotrienols, and γ-tocotrienols.
- In a preferred embodiment, DNA constructs of the present invention comprising polynucleotide molecules encoding polypeptides of the present invention provide in a transformed plant, relative to an untransformed plant with a similar genetic background, an increased level of plastoquinols.
- In one embodiment, DNA constructs of the present invention comprising a polynucleotide selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, nucleotide sequences having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23, provide in a transformed plant, relative to an untransformed plant with a similar genetic background, a decreased level of tocopherols, α-tocopherols, γ-tocopherols, δ-tocopherols, β-tocopherols, tocotrienols, α-tocotrienols, γ-tocotrienols, δ-tocotrienols, β-tocotrienols, and/or plastoquinols.
- In any of the embodiments described herein, an increase in γ-tocopherol, α-tocopherol, or both can lead to a decrease in the relative proportion of β-tocopherol, δ-tocopherol, or both. Similarly, an increase in γ-tocotrienol, α-tocotrienol, or both can lead to a decrease in the relative proportion of β-tocotrienol, δ-tocotrienol, or both.
- In some embodiments, the levels of one or more products of the tocopherol biosynthesis pathway, including any one or more of tocopherols, α-tocopherols, γ-tocopherols, δ-tocopherols, β-tocopherols, tocotrienols, α-tocotrienols, γ-tocotrienols, δ-tocotrienols, β-tocotrienols are measurably increased. The levels of products may be increased throughout an organism such as a plant or localized in one or more specific organs or tissues of the organism. For example the levels of products may be increased in one or more of the tissues and organs of a plant including without limitation: roots, tubers, stems, leaves, stalks, fruit, berries, nuts, bark, pods, seeds, and flowers. A preferred organ is a seed. In a preferred embodiment, expression of enzymes involved in tocopherol, tocotrienol, or plastoquinol synthesis in the seed will result in an increase in γ-tocopherol levels due to the absence of significant levels of GMT activity in those tissues. In another preferred embodiment, expression of enzymes involved in tocopherol, tocotrienol, or plastoquinol synthesis in photosynthetic tissues will result in an increase in α-tocopherol due to the higher levels of GMT activity in those tissues relative to the same activity in seed tissue.
- In another preferred embodiment, the expression of enzymes involved in tocopherol, tocotrienol, or plastoquinol synthesis in the seed will result in an increase in the total tocopherol, tocotrienol, or plastoquinol level in the plant.
- In some embodiments, the levels of tocopherols or a species such as α-tocopherol may be altered. In some embodiments, the levels of tocotrienols may be altered. Such alteration can be compared to a plant with a similar genetic background but lacking the introduction of a polynucleotide sequence of the present invention.
- In another embodiment, either the α-tocopherol level, α-tocotrienol level, or both of plants that natively produce high levels of either α-tocopherol, α-tocotrienol or both (e.g., sunflowers), can be increased by the introduction of a polynucleotide of the present invention.
- As tocotrienols have their own health benefits, the nucleotide sequence of HPPD and nucleotide sequences encoding HPPD polypeptides and polypeptides having HPPD activity can also be used to obtain transgenic seed that predominantly accumulate tocotrienols. Tocotrienols can be obtained in dicotyledonous seed that carry seed-specific expression constructs for the prephenate dehydrogenase (tyrA) and the HPPD (PCT Publication WO 02/089561). A higher purity of tocotrienols may be obtained in such seed by reducing the production of tocopherols while increasing the production of tocotrienols.
- Gene replacement technology can be used to increase expression of a given gene. Gene replacement technology is based upon homologous recombination (see, Schnable et al., Curr. Opinions Plant Biol., 1:123, 1998). The polynucleotide of the enzyme of interest can be manipulated by mutagenesis (e.g., insertions, deletions, duplications, or replacements) to either increase or decrease enzymatic function. The altered sequence can be introduced into the genome to replace the existing, e.g., wild-type, gene via homologous recombination (Puchta and Hohn, Trends Plant Sci., 1:340, 1996; Kempin et al., Nature, 389:802, 1997).
- In a preferred aspect, a similar genetic background is a background where the organisms being compared share about 50% or greater of their nuclear genetic material. In a more preferred aspect a similar genetic background is a background where the organisms being compared share about 75% or greater, even more preferably about 90% or greater of their nuclear genetic material. In another even more preferable aspect, a similar genetic background is a background where the organisms being compared are plants, and the plants are isogenic except for any genetic material originally introduced using plant transformation techniques.
- Exogenous genetic material may be transferred into a host plant cell by the use of a DNA vector or construct designed for such a purpose. Design of such a vector is generally within the skill of the art (see, Plant Molecular Biology: A Laboratory Manual, Clark (ed.), Springer, N.Y., 1997).
- A construct or vector may include a plant promoter to express an mRNA that is translated into the polypeptide of choice. In a preferred embodiment, any polynucleotide molecules described herein can be operably linked to a promoter region that functions in a plant cell to cause the production of an mRNA molecule. For example, any promoter that functions in a plant cell to cause the production of an mRNA molecule, such as those promoters described herein, without limitation, can be used. In a preferred embodiment, the promoter is a plant promoter or a plant virus promoter.
- A number of promoters that are active in plant cells have been described in the literature. These include the 7S alpha′ promoter, the USP 88 promoter (U.S. patent application Ser. No. 10/429,516, filed May 5, 2003), the nopaline synthase (NOS) promoter (Ebert et al., Proc. Natl. Acad. Sci. (U.S.A.), 84:5745-5749, 1987), the octopine synthase (OCS) promoter which is carried on tumor-inducing plasmids of Agrobacterium tumefaciens. Examples of constitutive promoters that are active in plant cells include, but are not limited to the nopaline synthase (P—NOS) promoters; the cauliflower mosaic virus (P—CaMV) 19S and 35S (P—CaMV35S, U.S. Pat. No. 5,858,642) and enhanced versions of the CaMV 35S promoter (P—CaMV35S-enh, U.S. Pat. No. 5,322,938); the figwort mosaic virus promoter (P-FMV35S, U.S. Pat. Nos. 6,051,753 and 6,018,100); actin promoters, such as the rice actin promoter (P-Os.Act1, U.S. Pat. No. 5,641,876), the Adh promoter (Walker et al., Proc. Natl. Acad. Sci. (U.S.A.), 84:6624-6628, 1987), the sucrose synthase promoter (Yang et al., Proc. Natl. Acad. Sci. (U.S.A.), 87:4144-4148, 1990), the R gene complex promoter (Chandler et al., The Plant Cell, 1:1175-1183, 1989); and the chlorophyll a/b binding protein gene promoter, etc. These promoters have been used to create DNA constructs that have been expressed in plants. Promoters known or found to cause transcription of DNA in plant cells can be used in the present invention. The sequences of the promoters disclosed in these referenced patents are herein incorporated by reference.
- For the purpose of expression in source tissues of the plant, such as the leaf, seed, root, or stem, it is preferred that the promoters utilized have relatively high expression in these specific tissues. Tissue-specific expression of a protein of the present invention is a particularly preferred embodiment. For this purpose, one may choose from a number of promoters for genes with tissue- or cell-specific or enhanced expression. Examples of such promoters reported in the literature include the chloroplast glutamine synthetase GS2 promoter from pea (Edwards et al., Proc. Natl. Acad. Sci. (U.S.A.), 87:3459-3463, 1990), the chloroplast fructose-1,6-biphosphatase (FBPase) promoter from wheat (Lloyd et al., Mol. Gen. Genet., 225:209-216, 1991), the nuclear photosynthetic ST-LS1 promoter from potato (Stockhaus et al., EMBO J., 8:2445-2451, 1989), the serine/threonine kinase promoter (Hardie DG (1999), Ann Rev Plant Physiol Plant Mol. Biol., 50:97-131; U.S. Pat. No. 6,653,533) and the glucoamylase promoter (Henricksen et al., Microbiology-UK, 145:729-734 Part 3 (1999). Also reported to be active in photosynthetically active tissues are the ribulose-1,5-bisphosphate carboxylase (RbcS) promoter from eastern larch (Larix laricina), the promoter for the cab gene, cab6, from pine (Yamamoto et al., Plant Cell Physiol., 35:773-778, 1994), the promoter for the cab1 gene from wheat (Fejes et al., Plant Mol. Biol., 15:921-932, 1990), the promoter for the cab1 gene from spinach (Lubberstedt et al., Plant Physiol., 104:997-1006, 1994), the promoter for the cab1R gene from rice (Luan et al., Plant Cell., 4:971-981, 1992), the pyruvate, orthophosphate dikinase (PPDK) promoter from corn (Matsuoka et al., Proc. Natl. Acad. Sci. (U.S.A.), 90:9586-9590, 1993), the promoter for the tobacco Lhcb1*2 gene (Cerdan et al., Plant Mol. Biol., 33:245-255, 1997), the Arabidopsis thaliana SUC2 sucrose-H+ symporter promoter (Truernit et al., Planta., 196:564-570, 1995), and the promoter for the thylakoid membrane proteins from spinach (psaD, psaF, psaE, PC, FNR, atpC, atpD, cab, rbcS). Other promoters for the chlorophyll a/b-binding proteins may also be utilized in the present invention, such as the promoters for LhcB gene and PsbP gene from white mustard (Sinapis alba; Kretsch et al., Plant Mol. Biol., 28:219-229, 1995).
- For the purpose of expression in sink tissues of the plant, such as the tuber of the potato plant, the fruit of tomato, or the seed of corn, wheat, rice, and barley, it is preferred that the promoters utilized in the present invention have relatively high expression in these specific tissues. A number of promoters for genes with tuber-specific or tuber-enhanced expression are known, including the class I patatin promoter (Bevan et al., EMBO J., 8:1899-1906, 1986; Jefferson et al., Plant Mol. Biol., 14:995-1006, 1990), the promoter for the potato tuber ADPGPP genes, both the large and small subunits, the sucrose synthase promoter (Salanoubat and Belliard, Gene, 60:47-56, 1987; Salanoubat and Belliard, Gene, 84:181-185, 1989), the promoter for the major tuber proteins including the 22 kd protein complexes and protease inhibitors (Hannapel, Plant Physiol., 101:703-704, 1993), the promoter for the granule-bound starch synthase gene (GBSS) (Visser et al., Plant Mol. Biol., 17:691-699, 1991), and other class I and II patatins promoters (Koster-Topfer et al., Mol. Gen. Genet., 219:390-396, 1989; Mignery et al., Gene, 62:27-44, 1988).
- Other promoters can also be used to express a polypeptide in specific tissues, such as seeds or fruits. Indeed, in a preferred embodiment, the promoter used is a seed specific promoter. Examples of such promoters include the 5′ regulatory regions from such genes as napin (Kridl et al., Seed Sci. Res., 1:209-219, 1991), phaseolin (Bustos et al., Plant Cell, 1(9):839-853, 1989), soybean trypsin inhibitor (Riggs et al., Plant Cell, 1(6):609-621, 1989), ACP (Baerson et al., Plant Mol. Biol., 22(2):255-267, 1993), stearoyl-ACP desaturase (Slocombe et al., Plant Physiol., 104(4): 167-176, 1994), soybean a′ subunit of β-conglycinin (Chen et al., Proc. Natl. Acad. Sci. (U.S.A.), 83:8560-8564, 1986), and oleosin (see, for example, Hong et al., Plant Mol. Biol., 34(3):549-555, 1997). Further examples include the promoter for β-conglycinin (Chen et al., Dev. Genet., 10:112-122, 1989). Also included are the zeins, which are a group of storage proteins, found in corn endosperm. Genomic clones for zein genes have been isolated (Pedersen et al., Cell, 29:1015-1026, 1982; Russell et al., Transgenic Res., 6(2):157-168, 1997), and the promoters from these clones, including the 15 kD, 16 kD, 19 kD, 22 kD, 27 kD, and genes, could also be used. Other promoters known to function, for example, in corn include the promoters for the following genes: waxy, Brittle,
Shrunken 2, Branching enzymes I and II, starch synthases, debranching enzymes, oleosins, glutelins, and sucrose synthases. A particularly preferred promoter for corn endosperm expression is the promoter for the glutelin gene from rice, more particularly the Osgt-1 promoter (Zheng et al., Mol. Cell. Biol., 13:5829-5842, 1993). Examples of promoters suitable for expression in wheat include those promoters for the ADP glucose pyrosynthase (ADPGPP) subunits, the granule bound and other starch synthase, the branching and debranching enzymes, the embryogenesis-abundant proteins, the gliadins and the glutenins. Examples of such promoters in rice include those promoters for the ADPGPP subunits, the granule bound and other starch synthase, the branching enzymes, the debranching enzymes, sucrose synthases, and the glutelins. A particularly preferred promoter is the promoter for rice glutelin, Osgt-1. Examples of such promoters for barley include those for the ADPGPP subunits, the granule bound and other starch synthase, the branching enzymes, the debranching enzymes, sucrose synthases, the hordeins, the embryo globulins, and the aleurone specific proteins. - The seed-specific promoters that include the 5′ regulatory regions of the napin gene provide expression of transgenes in seed tissues (U.S. Pat. Nos. 5,420,034 and 6,459,018, herein incorporated by reference). In soybean, 7S refers to β-conglycinin, a major class of seed storage proteins. The trimeric β-conglycinin is comprised of the α, α′, and β subunits. Expression of 7Sα′ has been well studied by many researchers over the years. The 7Sα′ subunit is expressed at mid to late stages of seed development. A transgene encoding the α′-subunit of soybean β-conglycinin showed seed-specific expression in petunia (Beachy et al., EMBO J., 4:3047-3053, 1985). Functional analysis of the regulatory elements indicated that a 900 bp upstream fragment of the 7Sα′ promoter contains the necessary elements to produce seed-specific expression in transgenic petunia (Chen et al., Proc. Natl. Acad. Sci. (U.S.A.), 83:8560-8564, 1986). The ovule-specific promoter for BEL1 gene can also be used (Reiser et al., Cell, 83:735-742, 1995; GenBank No. U39944; Ray et al, Proc. Natl. Acad. Sci. (U.S.A.), 91:5761-5765, 1994). The egg and central cell specific MEA (FIS1) and (FIS2) promoters are also useful reproductive tissue-specific promoters (Luo et al., Proc. Natl. Acad. Sci. (U.S.A.), 97:10637-10642, 2000; Vielle-Calzada et al., Genes Dev., 13:2971-2982, 1999). Additional promoters useful for driving expression of a transgene in seed tissues are described in numerous references, for example, U.S. Pat. Nos. 6,437,220; 6,426,447; 6,342,657; 6,410,828; 5,767,363; and 5,623,067, herein incorporated by reference.
- A preferred promoter for expression in the seed is a napin promoter. Another preferred promoter for expression is an Arcelin5 promoter (U.S. Publication 2003/0046727). Additional promoters that may be utilized are described, for example, in U.S. Pat. Nos. 5,378,619; 5,391,725; 5,428,147; 5,447,858; 5,608,144; 5,608,144; 5,614,399; 5,633,441; 5,633,435; and 4,633,436.
- Constructs or vectors may also include, with the coding region of interest, a polynucleotide sequence that acts, in whole or in part, to terminate transcription of that region. A number of such sequences have been isolated, including the
Tr7 3′ sequence and theNOS 3′ sequence (Ingelbrecht et al., The Plant Cell, 1:671-680, 1989; Bevan et al., Nucleic Acids Res., 11:369-385, 1983). Regulatory transcript termination regions can be provided in plant expression constructs of this present invention as well. Transcript termination regions can be provided by the DNA sequence encoding the gene of interest or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region that is naturally associated with the transcript initiation region. The skilled artisan will recognize that any convenient transcript termination region that is capable of terminating transcription in a plant cell can be employed in the constructs of the present invention, e.g.,TML 3′ from Agrobacterium tumefaciens Ti plasmid. - A vector or construct may also include regulatory elements. Examples of such include the Adh intron 1 (Callis et al., Genes and Develop., 1: 1183-1200, 1987), the sucrose synthase intron (Vasil et al., Plant Physiol., 91:1575-1579, 1989), hsp70 (U.S. Pat. No. 5,859,347), and the TMV omega element (Gallie et al., The Plant Cell, 1:301-311, 1989). These and other regulatory elements may be included when appropriate.
- A vector or construct may also include a selectable marker. Selectable markers may also be used to select for plants or plant cells that contain the exogenous genetic material. Examples of such include, but are not limited to: a neo gene (Potrykus et al., Mol. Gen. Genet., 199:183-188, 1985), which codes for kanamycin resistance and can be selected for using kanamycin, nptII, G418, hpt, etc.; a bar gene, which codes for bialaphos resistance; a mutant EPSP synthase gene (Hinchee et al., Bio/Technology, 6:915-922, 1988; Reynaerts et al., Selectable and Screenable Markers. In Gelvin and Schilperoort. Plant Molecular Biology Manual, Kluwer, Dordrecht, 1988; Jones et al., Mol. Gen. Genet., 1987), which encodes glyphosate resistance; a nitrilase gene which confers resistance to bromoxynil (Stalker et al., J. Biol. Chem., 263:6310-6314, 1988); a mutant acetolactate synthase gene (ALS) which confers imidazolinone or sulphonylurea resistance (EP 154204 (Sep. 11, 1985); D'Halluin et al., Bio/Technology, 10:309-314, 1992); and a methotrexate resistant DHFR gene (Thillet et al., J. Biol. Chem., 263:12500-12508, 1988).
- A vector or construct may also include a screenable marker. Screenable markers may be used to monitor expression. Exemplary screenable markers include: a β-glucuronidase or uidA gene (GUS) which encodes an enzyme for which various chromogenic substrates are known (Jefferson, Plant Mol. Biol, Rep., 5:387-405, 1987; Jefferson et al., EMBO J., 6:3901-3907, 1987); an R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues (Dellaporta et al., Stadler Symposium, 11:263-282, 1988); a β-lactamase gene (Sutcliffe et al., Proc. Natl. Acad. Sci. (U.S.A.), 75:3737-3741, 1978); a gene which encodes an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin); a luciferase gene (Ow et al., Science, 234:856-859, 1986); a xylE gene (Zukowsky et al., Proc. Natl. Acad. Sci. (U.S.A.), 80:1101-1105, 1983) which encodes a catechol dioxygenase that can convert chromogenic catechols; an α-amylase gene (Ikatu et al., Bio/Technol., 8:241-242, 1990); a tyrosinase gene (Katz et al., J. Gen. Microbiol., 129:2703-2714, 1983) which encodes an enzyme capable of oxidizing tyrosine to DOPA and dopaquinone which in turn condenses to melanin; an α-galactosidase, which will turn a chromogenic α-galactose substrate. Included within the terms “selectable or screenable marker genes” are also genes that encode a secretable marker whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers that encode a secretable antigen that can be identified by antibody interaction, or even secretable enzymes that can be detected catalytically. Secretable proteins fall into a number of classes, including small, diffusible proteins that are detectable, (e.g., by ELISA), small active enzymes that are detectable in extracellular solution (e.g., α-amylase, β-lactamase, phosphinothricin transferase), or proteins that are inserted or trapped in the cell wall (such as proteins that include a leader sequence such as that found in the expression unit of extension or tobacco PR-S). Other possible selectable and/or screenable marker genes will be apparent to those of skill in the art. In a preferred embodiment of the present invention, a transgenic plant expressing the desired protein is to be produced. Various methods for the introduction of a desired polynucleotide sequence encoding the desired protein into plant cells are available and known to those of skill in the art and include, but are not limited to: (1) physical methods such as microinjection, electroporation, and microprojectile mediated delivery (biolistics or gene gun technology); (2) virus mediated delivery methods; and (3) Agrobacterium-mediated transformation methods.
- The most commonly used methods for transformation of plant cells are the Agrobacterium-mediated DNA transfer process and the biolistics or microprojectile bombardment mediated process (i.e., the gene gun). Typically, nuclear transformation is desired but where it is desirable to specifically transform plastids, such as chloroplasts or amyloplasts, plant plastids may be transformed utilizing a microprojectile-mediated delivery of the desired polynucleotide.
- Arabidopsis embryos have been transformed by an Agrobacterium mediated vacuum infiltration method described by Bechtold, N. et al., CR Acad Sci Paris Sciences di la vie/life sciences, 316:1194-1199, 1993. This method has been modified for use with the constructs of the present invention to provide a rapid and efficient method to transform Arabidopsis and select for an herbicide tolerant phenotype. The methods for introducing transgenes into plants by Agrobacterium-mediated transformation utilize a T-DNA (transfer DNA) that incorporates the genetic elements of the transgene and transfers those genetic elements into the genome of a plant. Generally, the transgene(s) bordered by a right border DNA molecule (RB) and a left border DNA molecule (LB) is (are) transferred into the plant genome at a single locus.
- “T-DNA molecule” refers to a DNA molecule that integrates into a plant genome via an Agrobacterium mediated transformation method. The ends of the T-DNA molecule are defined in the present invention as being flanked by the border regions of the T-DNA from Agrobacterium Ti plasmids. These border regions are generally referred to as the Right border (RB) and Left border (LB) regions and exist as variations in nucleotide sequence and length depending on whether they are derived from nopaline or octopine producing strains of Agrobacterium. The border regions commonly used in DNA constructs designed for transferring transgenes into plants are often several hundred polynucleotides in length and comprise a nick site where an endonuclease digests the DNA to provide a site for insertion into the genome of a plant. T-DNA molecules generally contain one or more plant expression cassettes.
- An Agrobacterium strain ABI containing a DNA construct is prepared as inoculum by growing it in a culture tube containing 10 mls Luria Broth and antibiotics, for example, 1 ml/L each of spectinomycin (100 mg/ml), chloramphenicol (25 mg/ml), kanamycin (50 mg/ml), or the appropriate antibiotics as determined by those skilled in the art. The culture is shaken in the dark at 28° C. for approximately 16-20 hours.
- The Agrobacterium inoculum is pelleted by centrifugation and resuspended in 25 ml Infiltration Medium (MS Basal Salts 0.5%, Gamborg's B-5
Vitamins 1%,Sucrose 5%, MES 0.5 g/L, pH 5.7) with 0.44 nM benzylaminopurine (10 ul of a 1.0 mg/L stock in DMSO per liter) and 0.02% Silwet L-77 to an OD600 of 0.6. - Mature flowering Arabidopsis plants are vacuum infiltrated in a vacuum chamber with the Agrobacterium inoculum by inverting the pots containing the plants into the inoculum. The chamber is sealed, a vacuum is applied for several minutes, and released suddenly. The pots are blotted to remove excess inoculum, then covered with plastic domes and placed in a growth chamber at 21° C., 16 hours light, and 70% humidity. Approximately 2 weeks after vacuum infiltration of the inoculum, each plant is covered with a Lawson 511 pollination bag. Approximately 4 weeks post infiltration, water is withheld from the plants to permit dry down. The seed is harvested approximately 2 weeks after dry down.
- With respect to microprojectile bombardment (U.S. Pat. Nos. 5,550,318; 5,538,880; and 5,610,042; each of which is specifically incorporated herein by reference in its entirety), particles are coated with polynucleotides and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, platinum, and preferably, gold.
- An illustrative embodiment of a method for delivering DNA into plant cells by acceleration is the Biolistics Particle Delivery System (BioRad, Hercules, Calif.), which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with monocot plant cells cultured in suspension.
- Microprojectile bombardment techniques are widely applicable, and may be used to transform virtually any plant species. Examples of species that have been transformed by microprojectile bombardment include monocot species such as maize (PCT Publication WO 95/06128), barley, wheat (U.S. Pat. No. 5,563,055, incorporated herein by reference in its entirety), rice, oat, rye, sugarcane, and sorghum; as well as a number of dicots including tobacco, soybean (U.S. Pat. No. 5,322,783, incorporated herein by reference in its entirety), sunflower, peanut, cotton, tomato, and legumes in general (U.S. Pat. No. 5,563,055, incorporated herein by reference in its entirety).
- To select or score for transformed plant cells regardless of transformation methodology, the DNA introduced into the cell contains a gene that functions in a regenerable plant tissue to produce a compound that confers upon the plant tissue resistance to an otherwise toxic compound. Genes of interest for use as a selectable, screenable, or scorable marker would include but are not limited to GUS, green fluorescent protein (GFP), luciferase (LUX), antibiotic or herbicide tolerance genes. Examples of antibiotic resistance genes include the penicillins, kanamycin (and neomycin, G418, bleomycin); methotrexate (and trimethoprim); chloramphenicol; kanamycin and tetracycline.
- The regeneration, development, and cultivation of plants from various transformed explants are well documented in the art. This regeneration and growth process typically includes the steps of selecting transformed cells and culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage.
- Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil. Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in media that supports regeneration of plants. Developing plantlets are transferred to soil-less plant growth mix, and hardened off, prior to transfer to a greenhouse or growth chamber for maturation.
- The present invention can be used with any transformable cell or tissue. By transformable as used herein is meant a cell or tissue that is capable of further propagation to give rise to a plant. Those of skill in the art recognize that a number of plant cells or tissues are transformable in which after insertion of exogenous DNA and appropriate culture conditions the plant cells or tissues can form into a differentiated plant. Tissue suitable for these purposes can include but is not limited to immature embryos, scutellar tissue, suspension cell cultures, immature inflorescence, shoot meristem, nodal explants, callus tissue, hypocotyl tissue, cotyledons, roots, and leaves.
- Any suitable plant culture medium can be used. Examples of suitable media would include but are not limited to MS-based media (Murashige and Skoog, Physiol. Plant, 15:473-497, 1962) or N6-based media (Chu et al., Scientia Sinica, 18:659, 1975) supplemented with additional plant growth regulators including but not limited to auxins, cytokinins, ABA, and gibberellins. Those of skill in the art are familiar with the variety of tissue culture media, which when supplemented appropriately, support plant tissue growth and development and are suitable for plant transformation and regeneration. These tissue culture media can either be purchased as a commercial preparation, or custom prepared and modified. Those of skill in the art are aware that media and media supplements such as nutrients and growth regulators for use in transformation and regeneration and other culture conditions such as light intensity during incubation, pH, and incubation temperatures that can be optimized for the particular variety of interest.
- Any of the polynucleotide molecules of the present invention may be introduced into a plant cell in a permanent or transient manner in combination with other genetic elements such as vectors, promoters, enhancers, etc. Further, any of the polynucleotide molecules of the present invention may be introduced into a plant cell in a manner that allows for expression or overexpression of the protein or fragment thereof encoded by the polynucleotide molecule.
- Antibodies have been expressed in plants (Hiatt et al., Nature, 342:76-78, 1989; Conrad and Fielder, Plant Mol. Biol., 26:1023-1030, 1994). Cytoplasmic expression of a scFv (single-chain Fv antibody) has been reported to delay infection by artichoke mottled crinkle virus. Transgenic plants that express antibodies directed against endogenous proteins may exhibit a physiological effect (Philips et al., EMBO J., 16:4489-4496, 1997; Marion-Poll, Trends in Plant Science, 2:447-448, 1997). For example, expressed anti-abscisic antibodies have been reported to result in a general perturbation of seed development (Philips et al., EMBO J., 16:4489-4496, 1997).
- Antibodies that are catalytic may also be expressed in plants (abzymes). The principle behind abzymes is that since antibodies may be raised against many molecules, this recognition ability can be directed toward generating antibodies that bind transition states to force a chemical reaction forward (Persidas, Nature Biotechnology, 15:1313-1315, 1997; Baca et al., Ann. Rev. Biophys. Biomol. Struct., 26:461-493, 1997). The catalytic abilities of abzymes may be enhanced by site directed mutagenesis. Examples of abzymes are, for example, set forth in U.S. Pat. Nos. 5,658,753; 5,632,990; 5,631,137; 5,602,015; 5,559,538; 5,576,174; 5,500,358; 5,318,897; 5,298,409; 5,258,289; and 5,194,585.
- It is understood that any of the antibodies of the present invention may be expressed in plants and that such expression can result in a physiological effect. It is also understood that any of the expressed antibodies may be catalytic.
- The present invention also provides for parts of the plants, particularly reproductive or storage parts, of the present invention. Plant parts, without limitation, include seed, endosperm, ovule, pollen, and tubers. In a particularly preferred embodiment of the present invention, the plant part is a seed. In one embodiment the seed (or grain) is a constituent of animal feed.
- In another embodiment, the plant part is a fruit, more preferably a fruit with enhanced shelf life. In another preferred embodiment, the fruit has increased levels of a tocopherol. In another preferred embodiment, the fruit has increased levels of a tocotrienol.
- Any of the plants or parts thereof of the present invention may be processed to produce a feed, meal, protein, or oil preparation, including oil preparations high in total tocopherol content and oil preparations high in any one or more of each tocopherol component listed herein. A particularly preferred plant part for this purpose is a seed. In a preferred embodiment the feed, meal, protein, or oil preparation is designed for livestock animals or humans, or both. Methods to produce feed, meal, protein, and oil preparations are known in the art. See, for example, U.S. Pat. Nos. 4,957,748; 5,100,679; 5,219,596; 5,936,069; 6,005,076; 6,146,669; and 6,156,227. In a preferred embodiment, the protein preparation is a high protein preparation. Such a high protein preparation preferably has a protein content of greater than about 5% w/v, more preferably 10% w/v, and even more preferably 15% w/v. In a preferred oil preparation, the oil preparation is a high oil preparation with an oil content derived from a plant or part thereof of the present invention of greater than 5% w/v, more preferably 10% w/v, and even more preferably 15% w/v. In a preferred embodiment the oil preparation is a liquid and of a volume greater than about 1, 5, 10, or 50 liters. The present invention provides for oil produced from plants of the present invention or generated by a method of the present invention. Such an oil may exhibit enhanced oxidative stability. Also, such oil may be a minor or major component of any resultant product. Moreover, such oil may be blended with other oils. In a preferred embodiment, the oil produced from plants of the present invention or generated by a method of the present invention constitutes greater than about 0.5%, 1%, 5%, 10%, 25%, 50%, 75%, or 90% by volume or weight of the oil component of any product. In another embodiment, the oil preparation may be blended and can constitute greater than about 10%, 25%, 35%, 50%, or 75% of the blend by volume. Oil produced from a plant of the present invention can be admixed with one or more organic solvents or petroleum distillates.
- Descriptions of breeding methods that are commonly used for different traits and crops can be found in one of several reference books (e.g., Hayward, Plant Breeding: Principles and Prospects, Vol. 1, Chapman & Hall, ISBN: 0412433907, 1993; Richards, A. J., Plant Breeding Systems, Stanley Thornes Pub Ltd; 2nd ed., ISBN: 0412574500, 1997; Allard, R. W., Principles of Plant Breeding, 2nd ed., John Wiley & Sons, ISBN: 0471023094, 1999).
- A transgenic plant of the present invention may also be reproduced using apomixis. Apomixis is a genetically controlled method of reproduction in plants where the embryo is formed without union of an egg and a sperm. Apomixis is economically important, especially in transgenic plants, because it causes any genotype, no matter how heterozygous, to breed true. Thus, with apomictic reproduction, heterozygous transgenic plants can maintain their genetic fidelity throughout repeated life cycles. Methods for the production of apomictic plants are known in the art, e.g., U.S. Pat. No. 5,811,636.
- A polynucleotide of the present invention may be introduced into any cell or organism such as a mammalian cell, mammal, fish cell, fish, bird cell, bird, algae cell, algae, fungal cell, fungi, or bacterial cell. A protein of the present invention may be produced in an appropriate cell or organism. Preferred host and transformants include: fungal cells such as Aspergillus, yeasts, mammals, particularly bovine and porcine, insects, bacteria, and algae. Particularly preferred bacteria are Agrobacteruim tumefaciens and E. coli.
- Methods to transform such cells or organisms are known in the art (EP 0 238 023; Yelton et al., Proc. Natl. Acad. Sci. (U.S.A.), 81:1470-1474, 1984; Malardier et al., Gene, 78:147-156, 1989; Becker and Guarente, In: Abelson and Simon Eds., Guide to Yeast Genetics and Molecular Biology, Method Enzymol., 194:182-187, Academic Press, Inc., New York; Ito et al., J. Bacteriology, 153:163, 1983; Hinnen et al., Proc. Natl. Acad. Sci. (U.S.A.), 75:1920, 1978; Bennett and LaSure Eds., More Gene Manipulations in Fungi, Academic Press, California, 1991). Methods to produce proteins of the present invention are also known (Kudla et al., EMBO, 9:1355-1364, 1990; Jarai and Buxton, Current Genetics, 26:2238-2244, 1994; Verdier, Yeast, 6:271-297, 1990; MacKenzie et al., Journal of Gen. Microbiol., 139:2295-2307, 1993; Hartl et al., TIBS, 19:20-25, 1994; Bergenron et al., TIBS, 19:124-128, 1994; Demolder et al., J. Biotechnology, 32:179-189, 1994; Craig, Science, 260:1902-1903, 1993; Gething and Sambrook, Nature, 355:33-45, 1992; Puig and Gilbert, J. Biol. Chem., 269:7764-7771, 1994; Wang and Tsou, FASEB Journal, 7:1515-1517, 1993; Robinson et al., Bio/Technology, 1:381-384, 1994; Enderlin and Ogrydziak, Yeast, 10:67-79, 1994; Fuller et al., Proc. Natl. Acad. Sci. (U.S.A.), 86:1434-1438, 1989; Julius et al., Cell, 37:1075-1089, 1984; Julius et al., Cell, 32:839-852, 1983).
- In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 3, 5, 7, 9, 11, or 13, or sequences having at least 80%, 85%, 90%, 95%, or 99% identity to such sequences, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 15, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 15, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 17, or sequences having at least 87%, 90%, 95%, or 99% identity to SEQ ID NO: 17, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 19, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 19, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 21, or sequences having at least 91%, 95%, or 99% identity to SEQ ID NO: 21, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising SEQ ID NO: 23, or sequences having at least 90%, 95%, or 99% identity to SEQ ID NO: 23, provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols. In a preferred embodiment, DNA constructs of the present invention comprising polynucleotide molecules encoding a polypeptide comprising a polypeptide sequence selected from the group consisting of SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24; and provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of tocopherols. As used in this paragraph, tocopherols include α-tocopherols, β-tocopherols, δ-tocopherols, and γ-tocopherols as well as α-tocotrienols, β-tocotrienols, δ-tocotrienols, and γ-tocotrienols.
- In a preferred embodiment, DNA constructs of the present invention comprising polynucleotide molecules encoding polypeptides of the present invention provide in a transformed cell, relative to an untransformed cell with a similar genetic background, an increased level of plastoquinols.
- Any of a variety of methods may be used to obtain one or more of the above-described polynucleotide molecules (Zamechik et al., Proc. Natl. Acad. Sci. (U.S.A.), 83:4143-4146, 1986; Goodchild et al., Proc. Natl. Acad. Sci. (U.S.A.), 85:5507-5511, 1988; Wickstrom et al., Proc. Natl. Acad. Sci. (U.S.A.), 85:1028-1032, 1988; Holt et al., Molec. Cell. Biol., 8:963-973, 1988; Gerwirtz et al., Science, 242:1303-1306, 1988; Anfossi et al., Proc. Natl. Acad. Sci. (U.S.A.), 86:3379-3383, 1989; Becker et al., EMBO J., 8:3685-3691, 1989). Automated polynucleotide synthesizers may be employed for this purpose. In lieu of such synthesis, the disclosed polynucleotide molecules may be used to define a pair of primers that can be used with the polymerase chain reaction (Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263-273, 1986; Erlich et al., European Patents 50424; 84796; 258017; and 237362; Mullis, European Patent 201184; Mullis et al., U.S. Pat. No. 4,683,202; Erlich, U.S. Pat. No. 4,582,788; Saiki et al., U.S. Pat. No. 4,683,194) to amplify and obtain any desired polynucleotide molecule or fragment.
- Promoter sequences and other genetic elements, including but not limited to transcriptional regulatory flanking sequences, associated with one or more of the disclosed polynucleotide sequences can also be obtained using the disclosed polynucleotide sequence provided herein. In one embodiment, such sequences are obtained by incubating polynucleotide molecules of the present invention with members of genomic libraries and recovering clones that hybridize to such polynucleotide molecules thereof. In a second embodiment, methods of “chromosome walking” or inverse PCR may be used to obtain such sequences (Frohman et al., Proc. Natl. Acad. Sci. (U.S.A.), 85:8998-9002, 1988; Ohara et al., Proc. Natl. Acad. Sci. (U.S.A.), 86:5673-5677, 1989; Pang et al., Biotechniques, 22:1046-1048, 1977; Huang et al., Methods Mol. Biol., 69:89-96, 1997; Huang et al., Method Mol. Biol., 67:287-294, 1997; Benkel et al., Genet. Anal., 13:123-127, 1996; Hartl et al., Methods Mol. Biol., 58:293-301, 1996). The phrase “chromosome walking” means a process of extending a genetic map by successive hybridization steps.
- Another subset of the polynucleotide molecules of the present invention includes polynucleotide molecules that are markers. The markers can be used in a number of conventional ways in the field of molecular genetics. Such markers include polynucleotide molecules homologous or complementary to SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, nucleotide sequences having at least 80% identity to f SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23, and fragments thereof that can act as markers and other polynucleotide molecules of the present invention that can act as markers.
- It is understood that one or more of the polynucleotide molecules of the present invention may be used as molecular markers. It is also understood that one or more of the protein molecules of the present invention may be used as molecular markers.
- In an aspect of the present invention, one or more of the nucleic molecules of the present invention are used to determine the level of expression (i.e., the concentration of mRNA in a sample, etc.) in a plant (preferably canola, corn, Brassica campestris, oilseed rape, rapeseed, soybean, crambe, mustard, castor bean, peanut, sesame, cottonseed, linseed, safflower, oil palm, flax, or sunflower) or pattern (i.e., the kinetics of expression, rate of decomposition, stability profile, etc.) of the expression of a protein encoded in part or whole by one or more of the polynucleotide molecule of the present invention. A number of methods can be used to compare the expression between two or more samples of cells or tissue. These methods include hybridization assays, such as northerns, RNAse protection assays, and in situ hybridization. Alternatively, the methods include PCR-type assays. In a preferred method, the expression response is compared by hybridizing polynucleotides from the two or more samples to an array of polynucleotides. The array contains a plurality of suspected sequences known or suspected of being present in the cells or tissue of the samples.
- One aspect of the present invention concerns antibodies, single-chain antigen binding molecules, or other proteins that specifically bind to one or more of the protein or peptide molecules of the present invention and their homologs, fusions, or fragments. In a particularly preferred embodiment, the antibody specifically binds to a polypeptide comprising a polypeptide sequence set forth in SEQ ID NO: 4, 6, 8, 10, 12, 16, 18, 20, 22, or 24, or fragments thereof. Antibodies of the present invention may be used to quantitatively or qualitatively detect the protein or peptide molecules of the present invention, or to detect post translational modifications of the proteins. As used herein, an antibody or peptide is said to “specifically bind” to a protein or peptide molecule of the present invention if such binding is not competitively inhibited by the presence of non-related molecules.
- Nucleic acid molecules that encode all or part of the protein of the present invention can be expressed, via recombinant means, to yield protein or peptides that can in turn be used to elicit antibodies that are capable of binding the expressed protein or peptide. Such antibodies may be used in immunoassays for that protein. Such protein-encoding molecules or their fragments may be a “fusion” molecule (i.e., a part of a larger nucleic acid molecule) such that, upon expression, a fusion protein is produced. It is understood that any of the nucleic acid molecules of the present invention may be expressed, via recombinant means, to yield proteins or peptides encoded by these nucleic acid molecules.
- The antibodies that specifically bind proteins and protein fragments of the present invention may be polyclonal or monoclonal and may comprise intact immunoglobulins, or antigen binding portions of immunoglobulins fragments (such as (F(ab′), F(ab′)2), or single-chain immunoglobulins producible, for example, via recombinant means. It is understood that practitioners are familiar with the standard resource materials that describe specific conditions and procedures for the construction, manipulation, and isolation of antibodies (see, for example, Harlow and Lane, In: Antibodies: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988).
- As discussed below, such antibody molecules or their fragments may be used for diagnostic purposes. Where the antibodies are intended for diagnostic purposes, it may be desirable to derivatize them, for example with a ligand group (such as biotin) or a detectable marker group (such as a fluorescent group, a radioisotope, or an enzyme).
- The ability to produce antibodies that bind the protein or peptide molecules of the present invention permits the identification of mimetic compounds derived from those molecules. These mimetic compounds may contain a fragment of the protein or peptide or merely a structurally similar region and nonetheless exhibits an ability to specifically bind to antibodies directed against that compound. Having now generally described the present invention, the same will be more readily understood through reference to the following examples that are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.
- This example sets forth the isolation of HPPD DNA coding region sequences. Using the BlastN protocol (Altschul et al., J. Mol. Biol., 403-410, 1990; National Center Biotechnology Information), the HPPD DNA sequences from Synechocystis sp. PCC6803 (SEQ ID NO: 1), and Arabidopsis thaliana (SEQ ID NO: 2) were used as search queries against bacterial and plant polynucleotide databases. Candidate gene sequences with an E-value score of 1e−8 or lower were obtained from a cotton ‘seed coat’ cDNA library, a cotton leaf cDNA library, a Brassica napus silique cDNA library (as used herein, a silique is a slender elongated two-valved dehiscent many-seeded fruit capsule that is characteristic of the mustard family, which opens by sutures at either margin, and has two parietal placentas), a soybean seed cDNA library, a tomato cDNA library, a Bacillus thuringiensis (Bt) genomic DNA library, and a Sphingomonas elodea genomic DNA library.
- The cotton ‘seed coat’ cDNA library was constructed from seed coats isolated from cotton bolls 15-16 days post anthesis. No attempt was made to separate the fiber from the coat tissue. The cotton leaf cDNA library was made from leaf tissue isolated from the eighth cotton node from plants at
full flower 2 months after planting. The Brassica napus cDNA library was made from silique tissue isolated 40 days after pollination. The soybean seed cDNA library was made from developing embryos isolated 16-18 days after flowering. The tomato flower cDNA library was made from tissue isolated from flowering tomato plants. - The plant cDNA libraries and bacterial genomic DNA libraries were constructed using isolated mRNA or total genomic DNA, respectively, by methods well known in the art (Sambrook et al., 2001). The plant cDNA library clones were sequenced to yield full-length or partial ‘expressed sequenced tags’ (ESTs). Where applicable, bacterial genomic DNA sequences were electronically and manually assembled into longer sequences (‘contigs’). Design of polymerase chain reaction (PCR) polynucleotide primer molecules for isolating polynucleotide sequences of the present invention was based on the polynucleotide sequence information provided in the sequence listing for each of the respective polynucleotides described below. Reaction conditions were determined as described in the art (PCR Strategies, Innis et al., 1995; PCR Protocols, Innis et al, 1990). All reagents for isolating polynucleotide molecules of the present invention were obtained from Gibco BRL Life Technologies, Gaithersburg, Md.
- Using the GCG Wisconsin Package® (Accelrys Inc., San Diego, Calif.) a large DNA segment of 1686 nucleotides (SEQ ID NO: 3) that contained several putative HPPD open reading frames (ORF) was identified from a Bt genomic library constructed from Bt strain EG10650. Bt Strain EG10650 is a derivative of Bt strain EG10368 (U.S. Pat. Nos. 5,759,538 and 5,962,264, herein incorporated by reference) that is deficient in neutral and alkaline protease activities and contains only one known extrachromosomal plasmid element of 7.5 kb. This nucleotide sequence (SEQ ID NO: 3) contained 4 methionine-encoding ATG potential start codons located within 78 nucleotides of each other. The potential start codons encoding methionine (Met) were located at polynucleotide positions 232-234 (Met 1), 274-276 (Met 14), 286-288 (Met 19), and 307-309 (Met 26). The largest ORF identified (SEQ ID NO: 5), starting at polynucleotide position 232-234 (Met 1), was determined to encode a protein of 385 amino acids (SEQ ID NOs: 4 and 6). An open reading frame starting at Met-14 (SEQ ID NO: 7), encoding a polypeptide of 372 amino acids (SEQ ID NO: 8), another starting at Met-19 (SEQ ID NO: 9), encoding a polypeptide of 367 amino acids (SEQ ID NO: 10), and another starting at Met-26 (SEQ ID NO: 11), encoding a polypeptide of 360 amino acids (SEQ ID NO: 12) were identified in this genomic region. The ORF encoding SEQ ID NO: 7 was identified with the aid of the GeneMark gene recognition program (Borodovsky et al., Computers and Chemistry, 17(19):123-133, 1993), as containing the likely initiator methionine in the native Bt strain.
- Primers SEQ ID NOs: 28 and 30, were designed to amplify, by PCR, the Met 14 Bt HPPD sequence (SEQ ID NO: 7, Bt.Met14.HPPD). The SEQ ID NO: 28 primer was designed to add a NcoI site to the resulting PCR product by the addition of a
GCG codon 3′ to the native ATG start codon, causing the addition of an alanine following the initiator methionine of the encoded polypeptide. The SEQ ID NO: 30 primer was modified to replace the TAA stop codon with a TGA stop codon. The SEQ ID NO: 30 primer was further designed to contain an XhoI restriction site by addition ofCTCGAG 3′ to the TGA stop codon and then reverse-complemented to make the primer. Primer SEQ ID NO: 29, also adding a NcoI site, and primer SEQ ID NO: 30 were used to amplify, by PCR′ the Bt.Met26.HPPD encoding sequence (SEQ ID NO: 11). The sequence of all polynucleotide primer molecules of the present invention are listed inFIG. 2 . - The PCR was performed using genomic DNA isolated from Bt strain EG10650 and the SEQ ID NOs: 28 and 30 primer pairs, and separately, the SEQ ID NOs: 29 and 30 primer pairs, using Expand Hi-Fidelity DNA polymerase (Boehringer-Mannheim Corp., Indianapolis, Ind.), and the reagents and directions provided by the manufacturer. The PCR conditions were as follows: 95° C. for 2 minutes, followed by 25 cycles of 30 seconds at 94° C., 45 seconds at 45° C., 90 seconds at 72° C., and finally 5 minutes at 72° C. Polynucleotide products of approximately 1.2 kb were obtained, and after enzymatic digestion with NcoI/XhoI, were cloned into a similarly digested pET24d plasmid (Novagen, Madison, Wis.). The pET24d plasmid is a T7 promoter based E. coli expression vector. The resulting plasmids containing the Bt HPPD sequences were named pMON78601 (
FIG. 3 ) and pMON78622 (FIG. 4 ). The polynucleotide sequences of the inserts in these plasmids were confirmed as SEQ ID NOs: 11 and 44, respectively. HPPD activity was measured qualitatively by colorimetric reaction or quantitatively by RP-HPLC analysis of HPPD reaction products as described in Example 2. - Using the tBLASTn protocol, two cotton HPPD genes were identified from the cotton seed and leaf EST libraries, which contained full-length coding sequences. The full-length sequences of these clones are shown in SEQ ID NOs: 15 and 17. Analysis of the deduced amino acid sequences identified two ORFs encoding proteins of 436 amino acids each (SEQ ID NOs: 16 and 18). Cotton HPPD SEQ ID NOs: 15 and 17 were 98.3% identical to each other at the DNA level. Their respective predicted amino acid sequences, SEQ ID NOs: 16 and 18 were 98.6% identical to each other. The two cotton HPPD DNA sequences were designated as cotton Gh1.HPPD (SEQ ID NO: 15) and cotton Gh2.HPPD (SEQ ID NO: 17). Analysis of the deduced amino acid sequences using the ChloroP program (Emanuelson et al., Protein Science, 8:978-984, 1999) indicated that the first 23 amino acids in both sequences are likely chloroplast transit peptides (CTP). Such CTPs have not been noted in other plant HPPDs. In fact, the Arabidopsis and carrot genes, which are targeted to the cytoplasm, do not contain a CTP (Garcia et al., Biochem. J., 325:761-769, 1997; Garcia et al., Plant Phys., 119:1507-1516, 1999).
- The coding regions for cotton Gh1.HPPD (SEQ ID NO: 15) and Gh2.HPPD (SEQ ID NO: 17) were amplified using the identified cotton EST clones as the template DNA source. For expression in E. coli, PCR was performed using SEQ ID NOs: 31 and 32 as primers, using Expand Hi-Fidelity DNA polymerase (Boehringer-Mannheim Corp., Indianapolis, Ind.), and the reagents and directions provided by the manufacturer. The SEQ ID NO: 31 primer was designed to add a NcoI restriction site, an ATG start side, and a GCC codon for alanine, followed by codon 24 of either sequence (i.e., following the predicted CTP cleavage site). The SEQ ID NO: 32 primer was designed to put an XhoI restriction site immediately following the TGA stop codon at the 3′ end of the gene. The PCR conditions were as follows: 95° C. for 2 minutes, followed by 25 cycles of 30 seconds at 94° C., 45 seconds at 45° C., 90 seconds at 72° C., and finally 5 minutes at 72° C. The resulting products of the reaction were purified and isolated using standard methodologies well known in the art and cloned into a NcoI and XhoI restriction enzyme digested pET24d plasmid for transformation into E. coli. The resulting plasmids containing the mature cotton HPPD sequences were named pMON78602 (
FIG. 5 ) and pMON78603 (FIG. 6 ). HPPD activity was measured as described in Example 2. - Using the tBLASTn protocol, a Brassica HPPD gene was also identified from a cDNA library. The full-length sequence of this clone is shown in SEQ ID NO: 19. Analysis of the deduced amino acid sequence shows an ORF encoding a protein of 440 amino acids (SEQ ID NO: 20). Analysis of the predicted amino acid sequence (SEQ ID NO: 20) from the Brassica HPPD using the ChloroP program did not detect an N-terminal CTP sequence on the protein. The full-length coding region for the Brassica HPPD was amplified by PCR using Brassica cDNA and SEQ ID NOs: 33 and 34 as primers, and using Expand Hi-Fidelity DNA polymerase (Boehringer-Mannheim Corp., Indianapolis, Ind.), and the reagents and directions provided by the manufacturer. The PCR conditions were as follows: 95° C. for 2 minutes, followed by 25 cycles of 30 seconds at 94° C., 45 seconds at 45° C., 90 seconds at 72° C., and finally 5 minutes at 72° C. The resulting products of the reaction were purified and isolated using standard methodologies well known in the art, restriction enzyme digested with NcoI and XhoI, and subsequently cloned into the similarly digested plasmid, pET24d. The resulting plasmid was named pMON78604 (
FIG. 7 ). HPPD activity was measured as described in Example 2. - Using the tBLASTn protocol, a tomato HPPD gene was also identified from a cDNA library. The full-length sequence of this clone is shown in SEQ ID NO: 21. Analysis of the deduced amino acid sequence shows an ORF encoding a protein of 437 amino acids (SEQ ID NO: 22). The initiator methionine codon is absent in this clone, although the predicted N-terminal sequence was determined to contain a CTP when analyzed using the ChloroP program. The coding region for the mature tomato HPPD (i.e., following the predicted CTP cleavage site) was amplified by PCR using tomato cDNA, and SEQ ID NOs: 35 and 36 as primers and the conditions set forth in Table 2. The resulting fragments were digested with NdeI and XhoI, and subsequently cloned into the similarly NdeI/XhoI digested pET24a plasmid resulting in plasmid pMON64352 (
FIG. 8 ). Plasmid pMON64352 was transformed into an E. coli expression host Tuner (DE3) (Novagen, Wis.) and HGA activity measured as described in Example 2. -
TABLE 2 PCR conditions used for isolation of the Tomato HPPD gene Step Temp/ Degrees Centigrade Time 1 94 2 minutes 2 94 15 seconds 3 50 30 seconds 4 72 1 minute 5 Go to step 2 nine times (total of 10 cycles of steps 2-4) 6 94 15 seconds 7 50 30 seconds 8 72 1 minute + 5 seconds/cycle 9 Go to step 6 nineteen times (for a total of 20 cycles of steps 6-8) 10 72 7 minutes 11 4 Hold - Using the tBLASTn protocol, a Sphingomonas HPPD gene was also identified from a compilation of sequence contigs derived from a Sphingomonas genomic library. The less than full length sequence of this HPPD gene is shown in SEQ ID NO: 23 (Sph.HPPD). Analysis of the deduced polypeptide sequence shows an open-reading frame encoding a protein of 337 amino acids (SEQ ID NO: 24).
- This example sets forth the analysis of HPPD activity in cell free extracts of transformed E. coli cells. Polynucleotide sequences encoding HPPD enzymes from Arabidopsis (SEQ ID NO: 2), Bt (SEQ ID NO: 7), Brassica (SEQ ID NO: 19), cotton (SEQ ID NOs: 15 and 17), Synechocystis (SEQ ID NO: 1), and tomato (SEQ ID NO: 21), were expressed in E. coli and their resulting HPPD enzyme activity measured qualitatively by colorimetric reaction or analytically by reverse phase-high performance liquid chromatography (RP-HPLC). In the case of SEQ ID NOs: 15, 17, and 21, the 5′ sequences encoding the CTPs were removed as described in Example 1.
- Enzymatically active HPPDs, isolated from a number of plant and bacterial sources, have been shown to cause a brown coloration to the broth when expressed in heterologous expression systems such as E. coli. The brown coloration is due to a melanin-related pigment that results from the accumulation and cellular excretion of homogentisic acid (HGA), and its subsequent non-enzymatic oxidation and polymerization (Denoya et al., J. Bacteriol., 176:5312-5319, 1994).
- To determine HPPD activity colormetrically, E. coli cell free extracts of select HPPD constructs were prepared by transformation of E. coli Tuner (DE3) cells with a pET-expression plasmid containing a recombinant HPPD using standard heat shock transformation procedures as described by Sambrook et al., 2001. The transformed cells were then grown at 37° C. on LB agar media containing 50 μg/mL kanamycin. Single colonies were chosen to inoculate an overnight LB preculture. Three mL of this preculture were used to inoculate a 125 mL LB culture with 50 μg/mL kanamycin. This culture was incubated at 37° C. and shaken at 225 revolutions per minute (rpm) until an Optical Density (OD)600 of 0.6 to 0.8 was obtained. Subsequently, the culture was induced with 0.5 mM isopropyl-β-D-thiogalactoside (IPTG) (final concentration) and the incubation was continued for 4 hours at 25° C. Induced cells were harvested by centrifugation (20,000×g) for 10 minutes and the pellet was resuspended in 6 mL of buffer A (50 mM KPi at pH 7.4, 1 mM DTT, 100 μm Pefablock (Boehringer-Mannheim, Germany), 1 μM Leupeptin (Boehringer-Mannheim, Germany), 0.1 μM Aprotinin (Boehringer-Mannheim), 50 mM NaCl and 1 mM MgCl2). All other reagents were from Sigma-Aldrich Chemical Company, St. Louis, Mo.). Cells were lysed in the presence of 50 units of DNAase by two passages through a French Press at a pressure of 130 MPa. The extracts were then centrifuged at 100,000×g for 1 hour to yield a cell-free extract.
- After growth and induction, followed by 24 hr. incubation at 30° C., culture broths containing HPPD expressing cells transformed with single gene constructs of Arabidopsis thaliana (SEQ ID NO: 2), Bt (SEQ ID NO: 7), Brassica (SEQ ID NO: 19), cotton (SEQ ID NOs: 15 and 17), Synechocystis (SEQ ID NO: 1), or tomato (SEQ ID NO: 21) produced a characteristic brown coloration with a broad absorption maximum at 400 nM showing that the HPPD genes encoded active HPPD enzymes. See Table 3.
-
TABLE 3 The mean absorbance at 400 nanometers of culture supernatants of E. coli expressing recombinant HPPD Std Std Err Signi- HPPD Source Plasmid N Mean Dev Mean ficance Empty vector pET21d 6 0.00 0.04 0.02 Arabidopsis pMON77624 5 0.63 0.01 0.00 A Brassica pMON78604 5 0.05 0.02 0.01 A Bt (Met-14) pMON78601 5 0.57 0.03 0.01 A Cotton Gh1.HPPD pMON78602 5 0.57 0.01 0.00 A Cotton Gh2.HPPD pMON78603 5 0.58 0.01 0.00 A Synechocystis pMON77612 5 0.39 0.04 0.02 A Tomato pMON64352 5 0.56 0.02 0.01 A Comparisons with a control (empty vector) using Dunnett's Method, Alpha = 0.05. Means followed by a significance of “A” are significantly different from the pET empty vector control. A mean of 0.00 results from rounding error. N denotes the number of replicate assays used to calculate mean absorbance. The mean optical density for each HPPD source was observed at an absorbance of 400 nm. - A quantitative method of determining HPPD enzyme activity is based on spectrophotometric analysis of HPLC purified HPPD metabolites, in particular HGA, according to a modified method as described (Secor, J., Plant Physiol., 106:1429-1433, 1994; Garcia et al., Plant Physiol., 119:1507-1516, 1999). The assay was performed in 50 mM potassium phosphate, pH 7.4, containing 50 mM ascorbic acid, 5000 units of catalase, 100 μM ferrous sulfate, 0.1 to 0.5 mM 4-hydroxyphenylpyruvic acid (HPPA), and an empirically determined volume of cell free bacterial extract containing recombinant expressed HPPD. The final assay volume was 200 μL. A HPPA stock solution (2.5-10 mM) was freshly prepared in potassium phosphate buffer, pH 7.4, and allowed to equilibrate for 2 hours at room temperature prior to each assay. The HPPD reaction was initiated by addition of HPPA and incubated for 15 minutes at 30° C. The reaction was terminated by adding 20 μL of 70% (w/v) perchloric acid. Precipitated salt and proteins were removed by 5 minutes centrifugation in an Eppendorff desktop centrifuge at 14,000 rpm. The assay supernatant was filtered through a 0.22 μm PTFE syringe filter and used for HPLC analysis.
- Quantification of HGA was performed by RP-HPLC analysis using a Hewlett Packard 1100 series HPLC with HP interface 35900E. HGA and HPPA were identified by comparison with pure standards (Aldrich-Sigma Chemical Company, Missouri). HGA was quantified by comparison with a HGA standard curve in the range of 0.5 to 1000 μM at 288 nm. Samples (90 μL) were loaded onto a Waters Pico Tag (C18, 4μ, 3.9×150 mm) column for separation (Waters Corporation, Milford, Mass.). Buffers A (0.1% (v/v) trifluoroacetic acid (TFA) in H2O) and B (0.07% (v/v) TFA in 80% CH3CN) were used at a flow rate of 1 mL/min to create linear gradients of 0 to 40% B from 0 min to 10 min, followed by an increase of buffer B from 40 to 100% in 1 min, and 100 to 0% B in 1 min, followed by 0% B for 3 minutes.
- Protein concentrations were determined using the Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., Hercules, Calif.). Bovine serum albumin (BSA) was used as the protein standard. HPPD activity was calculated based on the amount of detectable homogentisic acid (HGA) in the assay supernatant. The results are shown in Table 4 below with specific activity expressed as nanomoles HGA produced minute−1 milligram protein−1. Data was analyzed using JMP statistical software (SAS Institute, Cary, N.C.). Data was first tested for homogeneity of variances using Levene's test and then the means were compared using the standard least squares method with planned contrasts. Any HPPD Source mean with a Prob>|t| of 0.05 or smaller is considered significantly different from the vector control.
-
TABLE 4 The specific activity of HPPD in cell free extracts of recombinant HPPDs expressed in E. coli Mean Specific Std Err HPPD Source Plasmid N Activity Std Dev Mean Significance Vector control (Pet21d) Empty vector 10 0.00 0.00 0.00 Arabidopsis pMON77624 3 570.28 51.40 29.68 3.00 E-19 Brassica pMON78604 3 0.78 0.34 0.20 0.9629 Bt (Met-14) pMON78601 3 1429.49 54.10 31.24 3.00E-27 Cotton Gh1.HPPD pMON78602 2 116.65 38.56 27.27 7.40 E-06 Synechocystis pMON77612 2 10.97 0.92 0.65 0.5793 Tomato pMON64352 3 11.93 1.45 0.83 0.479 Variances not equal, Levene's method, P < 0.0001. There is an effect due to treatment, SLS, P < 0.0001. Means with a Prob > |t| value <0.05 are significantly different from the empty vector, Planned Contrasts. N denotes the number of replicate assays used to calculate each specific activity. - This example sets forth the construction of plant transformation vectors containing tocopherol pathway genes in combination with HPPD genes to increase seed tocopherol levels. To test the in planta performance of HPPD sequences from Arabidopsis thaliana, Bacillus thuringiensis, Gossypium hirsutum, and Synechocystis sp. PCC6803, the aforementioned genes were cloned under the control of a napin promoter (U.S. Pat. No. 5,420,034, herein incorporated by reference) in a 3-gene vector containing an HPPD, a bifunctional prephenate dehydrogenase Eh.tyrA) (SEQ ID NO: 25), and a homogentisate phytyltransferase (At.Atpt2) (SEQ ID NO: 26). The 3-gene vector containing the Bacillus thuringiensis HPPD (Bt.Met14.HPPD) (SEQ ID NO: 7) was generated as follows: pMON78601 (
FIG. 3 ) was subjected to a double restriction enzyme digest with NcoI and XhoI, and the 1124 bp fragment containing the coding region of the Bt.HPPD-gene was subsequently gel-purified, using a Qiagen spin column kit and the manufacturers directions (Qiagen Inc., Valencia, Calif.). In parallel, a vector containing a napin promoter and anapin 3′-UTR flanked by a NotI restriction site and a Bsp120I restriction site (pMON77611) (FIG. 11 ) was digested with NcoI and XhoI, and the 5733 bp vector backbone containing a napin promoter, TS-At.RbcS4 (CTP2), and anapin 3′-UTR was gel purified using Qiagen spin columns. The purified fragments were ligated with Ligase (New England Biolabs, Beverly, Mass.), resulting in the formation of pMON77617 (FIG. 12 ). This vector contained the Bt.Met14.HPPD flanked by a napin promoter at the 5′-end, TS-At.Rbsc4, and by anapin 3′-UTR at the 3′-end. This expression cassette was excised by a restriction digest of pMON77617 using NotI and Bsp120I restriction enzymes. The 4442 bp fragment encoding the Bt.HPPD expression cassette was gel purified as described above. In parallel, pMON77609 (FIG. 13 ), a shuttle vector containing napin promoter driven expression cassettes for the Erwinia herbicola tyrA, and the A. thaliana HPT (At.Atpt2) was digested with a Bsp120I restriction enzyme, dephosphorylated with calf intestinal alkaline phosphatase (Roche Applied Science, Indianapolis, Ind.), and gel purified using a Qiagen spin column kit. The purified dephosphorylated vector was ligated with the purified napin promoter driven HPPD expression cassette to form the triple gene shuttle vector pMON77618 (FIG. 14 ). The latter vector served as a source for the three napin promoter driven expression cassettes for Bt.Met14.HPPD, Eh.tyrA, and At.Atpt2, which were isolated from pMON77618 as a single 13144-bp fragment via a Bsp120I/NotI double restriction digest. The large fragment was gel purified as described, and ligated with NotI digested, dephosphorylated (as described) and gel purified pMON36524 (FIG. 15 ). The resulting plant binary vector containing the three napin promoter controlled expression constructs was designated pMON77619 (FIG. 16 ). - Similarly, a triple gene vector containing a napin promoter driven cotton HPPD construct in addition to a napin promoter driven HPT and tyrA expression cassette was constructed as follows: the cotton HPPD (Gh1.HPPD) (SEQ ID NO: 15) was isolated by NcoI and XhoI restriction enzyme digestion of pMON78602 (
FIG. 5 ). The 1247-bp fragment was gel purified using Qiagen spin columns, and ligated into the XhoI and NcoI restriction enzyme, digested, and gel purified backbone of plasmid, pMON77611 (FIG. 11 ). The resulting 6980-bp vector was designated pMON77620 (FIG. 17 ), where the coding region of mature Gh1.HPPD is connected to the TS-At.RbcS4 CTP and the napin promoter. The latter vector was digested with Bsp 1201 and NotI restriction enzymes and the resulting 4565-bp Gh1.HPPD-expression cassette gel purified as described, and ligated into a Bsp120I restriction enzyme digested, CIP treated, and gel purified pMON77609 (FIG. 13 ) vector backbone, resulting in the formation of pMON77621 (FIG. 18 ). The three expression cassettes for Gh1.HPPD, Eh.tyrA, and At.Atpt2 present in pMON77621 were released as a single 13267-bp-fragment by a Bsp120I and NotI double restriction enzyme digest, gel purified as described, and ligated into a NotI-digested, CIP treated, and gel purified pMON36524 (FIG. 13 ), resulting in the formation of pMON77622 (FIG. 19 ). - Following the same procedures described for construction of the triple gene vectors pMON77622 and pMON77619, a triple gene vector containing a napin promoter driven expression cassette for the Synechocystis HPPD (SEQ ID NO: 1), the Erwinia herbicola tyrA, and the Arabidopsis thaliana At.Atpt2 was constructed using pMON77612 (
FIG. 10 ) as the gene source. The resulting binary vector was designated pMON77616 (FIG. 20 ). - A triple gene binary vector containing a napin promoter driven expression cassette of the Arabidopsis thaliana HPPD (SEQ ID NO: 2), plus the napin promoter driven expression cassettes for the Erwinia herbicola tyrA, and the Arabidopsis thaliana At.Atpt2 (pMON69909,
FIG. 21 ), and a double gene vector containing a napin promoter driven expression cassette for Eh.tyrA, and At.Atpt2 (pMON69907,FIG. 15 ) were used as control vectors. - The binary vectors pMON69907 (
FIG. 22 ), pMON69909 (FIG. 21 ), pMON77616 (FIG. 20 ), pMON77619 (FIG. 16 ), and pMON77622 (FIG. 19 ) were transformed into Arabidopsis thaliana, using the Agrobacterium-mediated method described in Example 4. T1 seed from transformed Arabidopsis plants were germinated under kanamycin antibiotic selection, and subsequently T2 seed from the Arabidopsis transformation events were used for tocopherol analysis. The total tocopherol level of any one event was divided by the mean tocopherol content of the control population and expressed as the fold increase in tocopherol level of the event relative to their respective control population. Data were analyzed using JMP statistical software (SAS Institute, Cary, N.C.). Data was first tested for homogeneity of variances using Levene's test and then the means were compared using the standard least squares method with planned contrasts. Any mean with a Prob>|t| of 0.05 or smaller is considered significantly different from the pMON69907 control. These results are summarized in Table 5. This data shows that additional expression of an HPPD enzyme in the tyrA and At.Atpt2 double gene vector resulted in an increase in the average seed tocopherol content. The most dramatic effects were obtained when the Arabidopsis or the cotton HPPD was used in the triple gene combination. -
TABLE 5 Tocopherol content of transgenic Arabidopsis seed obtained by transformation with pMON69907, pMON69909, pMON77616, pMON77619, or pMON77622. Std Std Err pMON Gene Combinations N Mean Dev Mean Prob > |t| pMON69907 Eh.tyrA:: At.Atpt2 30 1.80 0.38 0.07 pMON69909 At.HPPD::Eh.tyrA::At.Atpt2 20 2.97 0.72 0.16 6.00E-11 pMON77616 Syn.HPPD::Eh.tyrA:: At.Atpt2 36 2.06 0.47 0.08 0.0685 pMON77619 Bt.Met14.HPPD::Eh.tyrA:: At.Atpt2 35 2.07 0.41 0.07 0.0631 pMON77622 Gh1.HPPD::Eh.tyrA:: At.Atpt2 32 2.66 0.84 0.15 2.80E-08 Variances not equal, Levene's method, P < 0.0001. There is an effect due to treatment, SLS, P < 0.0001. Means with a Prob > |t| value <0.05 are significantly different from pMON69907, Planned Contrasts. Species abbreviations are as follows: At. is Arabidopsis thaliana; Bt. is Bacillus thuringiensis; Eh. is Erwinia herbicola; Gh. is Gossypium hirsutum and Syn is Synechocystis. Enzyme abbreviations are in Table 1. - This example sets forth the transformation of plants with DNA constructs that provide enhanced tocopherol levels. The DNA constructs include but are not limited to pMON69907, pMON69909, pMON77616, pMON77618, pMON77619, pMON77621, and pMON77622. Transgenic Arabidopsis thaliana plants may be obtained by Agrobacterium-mediated transformation as described by Valverkens et al., Proc. Nat. Acad. Sci. (U.S.A.), 85:5536-5540, 1988, or as described by Bent et al., Science, 265:1856-1860, 1994; or Bechtold et al., C.R. Acad. Sci., Life Sciences, 316:1194-1199, 1993. Other plant species may be similarly transformed using related techniques. Alternatively, microprojectile bombardment methods, such as described by Klein et al., Bio/Technology, 10:286-291, 1992, may also be used to obtain nuclear transformed plants.
- Soybean plants are transformed using an Agrobacterium-mediated transformation method, as described (U.S. Pat. No. 6,384,301, herein incorporated by reference). For this method, overnight cultures of Agrobacterium tumefaciens containing the plasmid that includes a gene of interest, are grown to log phase and then diluted to a final optical density of 0.3 to 0.6 using standard methods known to one skilled in the art. These cultures are used to inoculate the soybean embryo explants prepared as described below.
- Briefly, the method is a direct germline transformation into individual soybean cells in the meristem of an excised soybean embryo. The soybean embryo is removed after surface sterilization and germination of the seed. The explants are then plated on OR media, a standard MS medium as modified according to Barwale et al., Plants, 167:473-481, 1986, plus 3 mg/L BAP, 200 mg/L Carbenicillin, 62.5 mg/L Cefotaxime, 60 mg/L Benomyl, and stored at 15° C. overnight in the dark. The following day the explants are wounded with a scalpel blade and inoculated with the Agrobacterium culture prepared as described above. The inoculated explants are then cultured for 3 days at room temperature.
- Following the post-transformation culture, the meristematic region is then cultured on standard plant tissue culture media in the presence of the herbicide glyphosate (Monsanto Company, St. Louis, Mo.), which acts as both a selection agent and a shoot-inducing hormone. Media compositions and culture lengths are detailed in the aforementioned U.S. Pat. No. 6,384,301. After 5 to 6 weeks, the surviving explants that have a positive phenotype are transferred to soil and grown under greenhouse conditions. Plants are grown to maturity; seed is collected and analyzed for increased tocopherol levels as described in Example 5.
- This example sets forth the analysis of plant tissues for enhanced tocopherol production. Plants transformed with constructs for the sense or antisense expression of the tocopherol pathway enzymes, including HPPD, are analyzed by HPLC for altered levels of total tocopherols and tocotrienols, as well as altered levels of specific tocopherols and tocotrienols (e.g., α, β, γ, and δ-tocopherol/tocotrienol).
- Extracts of seeds are prepared for HPLC as follows. For Arabidopsis seeds, 12 mg of seeds is added to a 1.4 mL Screen Mates tube with a ⅛″ steel ball. The tubes are capped and the plate frozen at −80° C. for one hour. The plate, with up to 96 tubes, is shaken for 60 seconds on the ‘Megagrinder’ at 1000 rpm. As used herein, a ‘Megagrinder’ is a tissue pulverizer, developed in-house, that operates by use of high speed shaking ball bearings. For soybean seeds, 5 seeds are placed in a 30 mL polypropylene tube with a ¾ inch steel ball, and ground on the Megagrinder for 30 seconds at 1200 rpm. Twenty-five to forty mg of ground soybean seeds is placed in each 1.4 mL Screen Mates tube. For either type of seed the preparation continues as follows. To each tube is added 500
μL 1% pyrogallol ethanol (Sigma-Aldrich Chemical Company, St. Louis, Mo.), and the plate is shaken on a multitube vortexer (VWR #58816-115) for 15 minutes at speed 10. The extracts are filtered through a 0.2 μm well plate filter into an autosampler well plate. The filtered extracts are then used in HPLC analysis described below. - Leaf extracts are prepared by mixing 30-50 mg of leaf tissue with 1 g microbeads and freezing in liquid nitrogen until extraction. For extraction, 500
μl 1% pyrogallol in ethanol is added to the leaf/bead mixture and shaken for 2×45 seconds using a FastPrep shaker at speed 6.5. The resulting mixture is centrifuged for 4 minutes at 14,000 rpm and filtered through a 0.2 um PTFE filter prior to HPLC analysis. - HPLC is performed on a Zorbax silica HPLC column (4.6 mm×250 mm) (Bodman Industries, Aston, Pa.), using a fluorescent detection monitor, with excitation and emission spectra set at 290 nm and 336 nm, respectively. Solvent A is hexane and solvent B is methyl-t-butyl ether. The injection volume is 20 μL, the flow rate is 1.5 mL/min, the run time is 12 min (40° C.) as described in Table 6.
-
TABLE 6 Solvent and run-time conditions for HPLC analysis of tocopherols and tocotrienols. Time Solvent A Solvent B 0 minutes 90% 10% 10 minutes 90% 10% 11 minutes 25% 75% 12 minutes 90% 10% - Tocopherol and tocotrienol standards in 1% pyrogallol/ethanol are also run for comparison (α-tocopherol, γ-tocopherol, β-tocopherol, δ-tocopherol, and corresponding tocotrienols (all from Calbiochem, La Jolla, Calif.).
- Standard curves for α, β, δ, and γ-tocopherol and α, β, δ, and γ-tocotrienol are calculated using Chemstation software (Agilent Technologies, Palo Alto, Calif.). Tocopherol and tocotrienol values are expressed as ng/mg tissue.
- This example sets forth the design and construction of a Bt.Mod.HPPD polynucleotide molecule modified for expression in soybean. It is well known in the art that native Bt protein encoding sequences do not express well in plants (U.S. Pat. No. 5,880,275, herein incorporated by reference). Therefore, using a native Bt.Met14.HPPD polypeptide sequence (SEQ ID NO: 8), an artificial Bt protein encoding DNA sequence is designed and constructed by 1) using a codon usage bias similar to that of highly expressed soybean seed proteins, and 2) removal of RNA destabilizing elements previously characterized and known to affect mRNA stability in planta (U.S. Pat. No. 5,880,275). The resulting modified Bt HPPD (SEQ ID NO: 13), designated Bt.Mod.HPPD, encodes a polypeptide designated SEQ ID NO: 14, which is identical in sequence to Bt.Met14.HPPD (SEQ ID NO: 8).
- An artificial DNA sequence for Bt.Mod.HPPD (SEQ ID NO: 13) is assembled by methods known in the art (e.g., Withers-Martinez et al., PCR-based gene synthesis as an efficient approach for expression of the A+T-rich malaria genome, Protein Engineering, 12:1113-1120, 1999), or is ordered commercially (Blue Heron Biotechnology, Bothell, Wash.). The DNA sequence is cloned as an NcoI-EcoRI restriction fragment into the E. coli expression vector pET24d(+) (Novagen, Madison, Wis.) to create pMON78623 (
FIG. 23 ). For assembly into a plant expression cassette, the recombinant plasmid is digested with EcoRI, the EcoRI overhang blunted with a fill-in reaction with T4 DNA polymerase (Sambrook et al., 2001), the plasmid subsequently digested with NcoI, and the approximately 1.1 kilobase insert isolated. In parallel, a vector containing a napin promoter, TS-At.RbcS4, and anapin 3′-UTR flanked by a NotI restriction site and a Bsp120I restriction site (pMON77611) (FIG. 11 ) is digested with XhoI, the XhoI overhang blunted with T4 DNA polymerase, the plasmid subsequently digested with NcoI, and the approximately 5.7 kb vector backbone containing a napin promoter plus anapin 3′-UTR gel purified using Qiagen spin columns as described in Example 3. The purified fragments are ligated with Ligase (New England Biolabs, Beverly, Mass.) and transformed into E. coli, and the correct construct identified and verified by restriction mapping. - To construct a multigene plant transformation vector, the expression cassette, containing the Bt.Mod.HPPD gene driven by the napin promoter at its 5′-end and by a
napin 3′-UTR, is excised by a restriction digest of the plasmid using NotI and Bsp120I restriction enzymes. The fragment encoding the Bt.Mod.HPPD expression cassette is gel purified as described in Example 3. In parallel, pMON77609 (FIG. 13 ), a shuttle vector containing a napin promoter driven expression cassette for the Erwinia herbicola tyrA (SEQ ID NO: 25), and the A. thaliana HPT (At.Atpt2) (SEQ ID NO: 26) is digested with a Bsp120I restriction enzyme, dephosphorylated with calf intestinal alkaline phosphatase (Roche Applied Science, Indianapolis, Ind.), and gel purified using a Qiagen spin column kit as described in Example 3. The purified dephosphorylated vector is ligated with the purified napin promoter driven HPPD expression cassette to form the triple gene shuttle vector, with the genes in the desired orientation, preferably all head-to-tail. The latter vector serves as a source for the three napin promoter driven expression cassettes for Bt.Mod.HPPD, Eh.tyrA, and At.Atpt2, which are isolated from the plasmid as a single fragment via a Bsp1201NotI double restriction digest. The large fragment is gel purified as described above, and ligated with NotI digested, dephosphorylated and gel purified pMON36524 (FIG. 15 ). The resulting plant binary vector containing the three napin promoter controlled expression constructs is used for transformation as described in Example 4, plants are grown to maturity, seed is collected, and analyzed for increased tocopherol levels as described in Example 5. - This example sets forth the environmental stress tests for drought tolerance, cold tolerance, and salt tolerance, each of which is used alone or in combination to show that plants transformed with tocopherol pathway genes such as HPPD (SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23) alone or in combination with other tocopherol pathway genes such as tyrA (SEQ ID NO: 25), HPT (SEQ ID NO: 26), and GGH (SEQ ID NO: 27), under the control of a constitutive promoter, e.g., CAMV.35S, are more tolerant to environmental stresses relative to control plants that were not transformed with HPPD genes. The aforementioned HPPD polynucleotide sequences and other tocopherol pathway sequences are cloned into plant binary vectors that contain the glufosinate resistance selection marker. The study design for the stress assays is a single factor design, with the HPPD construct being the factor, where all experimental plants are exposed to a period of drought stress during flowering.
- For the drought tolerance test, seeds are stratified in 0.1% phytagar at 4° C. in the dark for 3 days and then sown in flats filled with Metro-Mix® 200 (The Scotts® Company, U.S.A.). Humidity domes are then added to each flat and flats are assigned locations and placed in climate-controlled growth chambers. Plants are grown under a temperature regime of 22° C. day and 20° C. night, with a photoperiod of 16 hours and average light intensity of 170 μmol/m2/s.
- After the first true leaves appear, humidity domes are removed and the plants are sprayed with BASTA™ herbicide in Silwet™ L-77 (OSI Specialties Inc., U.S.A.) at a mixture rate of 8.28 mL BASTA™ containing 18.2% active ingredient and 1 mL Silwet diluted to 20 L. After spraying, plants are put back in the growth chamber for 3 additional days. Flats are watered for 1 hour the week following the BASTA™ treatment. Watering is continued every seven days until the flower bud primordia become apparent (growth stage 5.10), at which time plants are watered for the last time. After the last watering, plants are covered with ARACON® (DuPont Company, U.S.A.) sleeves and placed on growth chamber drying racks.
- Beginning ten days after the last watering, plants are examined daily until 4 plants/line are wilted. The proportions of wilted and non-wilted HPPD transgenic and control plants are compared over each of the next six days and an overall log rank test is performed to compare the two survival curves using S-PLUS statistical software (S-
PLUS 6, Guide to Statistics, Insightful, Seattle, Wash.). The results of that analysis show that the HPPD plants are significantly more tolerant to drought than the control plants, which are not transformed with HPPD genes. - For the cold tolerance test, resistance to cold stress is determined based on the HPPD transformed plant's rate of development, root growth, and chlorophyll accumulation under low temperature conditions relative to control plants that were not transformed with the HPPD genes.
- All seedlings used in the experiment are grown at 8° C. Seeds are first surface disinfested using chlorine gas and then seeded on assay plates containing an aqueous solution of ½× Gamborg's B-5 Basal Salt Mixture (Sigma-Aldrich Corp., St. Louis, Mo. O G-5788), 1% Phytagel™ (Sigma-Aldrich, P-8169), and 10 ug/ml BASTA™ (Bayer Crop Science, Frankfurt, Germany), with the final pH adjusted to 5.8 using KOH. BASTA™ serves as the selection agent for positively transformed plants. Test plates are held vertically for 28 days at a constant temperature of 8° C., a photoperiod of 16 hr, and average light intensity of approximately 100 μmol/m2/s. Racks holding the plates vertically are rotated daily within the growth chamber. At 28 days post germination, root length is measured, the visual color is assessed, and a whole plate photograph is taken. The results show plants transformed with HPPD gene constructs are significantly resistant to cold stress.
- For the salt tolerance test, resistance to high salt stress is based on the plant's rate of development, root growth, and chlorophyll accumulation under high salt conditions relative to control plants that were not transformed with HPPD genes.
- All seedlings used in the experiment are grown at a temperature of 22° C. day and 20° C. night, a 16-hour photoperiod, an average light intensity of approximately 120 μmol/m2 and a high salinity level (90 mM NaCl). Seeds are seeded onto BASTA™ plates and selected as described in above. The test lasts 11 days. On day 14 (including 3 days of seed stratification) plants are scored for primary root length, growth stage, visual color, and fresh weight. A photograph of the whole plate is also taken on day 14. The results show that under high salinity conditions, seedlings not transformed with HPPD become stunted, chlorotic, and have less biomass accumulation when compared to transformed plants expressing HPPD genes.
- This example sets forth the production of HPPD peptide antigens and antibodies. Polyclonal antibodies (pAb), with specificity for select HPPD antigens, were made by a commercial antisera service, Sigma-Genosys (Sigma-Aldrich, Woodlands, Tex.). Sigma-Genosys performed custom peptide synthesis, conjugation, immunization, and sera collection. The custom peptides were made as follows and are described in Table 7. The polypeptide sequence for Arabidopsis thaliana HPPD (SEQ ID NO: 37) was analyzed by Sigma-Genosys to identify the peptide antigens SEQ ID NOs: 38 and 39. The peptide antigen, SEQ ID NO: 38, contained a native N-terminal cysteine. The peptide antigen, SEQ ID NO: 39, did not contain an N-terminal cysteine so one was added. Both peptide antigens were produced by the m-Maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) method. (Antigen Design & Sera Purification Tech Sheet, Sigma-Genosys).
-
TABLE 7 Target HPPD polypeptides, antigen sequences and methods used for their production. Target HPPD Polypeptide Antigen Sequence Method Arabidopsis thaliana HPPD CMMKDEEGKAYQSGG MBS (SEQ ID NO: 37) (SEQ ID NO: 38) Arabidopsis thaliana HPPD CRTLREMRKRSSIGG MBS (SEQ ID NO: 37) (SEQ ID NO: 39) Bacillus thuringiensis HPPD GILVDRDDEGYLLQIFTKPC KLH/MBS (SEQ ID NO: 8) (SEQ ID NO: 42) Synechocystis sp. HPPD EILLDDQDNTGERLL EDC (SEQ ID NO: 40) (SEQ ID NO: 41) UNI-HPPD-1 GILVDRDDQGTLLQIFTKPC KLH/MBS (SEQ ID NOs: 37, 18, 20, and 22) (SEQ ID NO: 43) - The polypeptide sequence for Synechocystis sp. HPPD (SEQ ID NO: 40) was analyzed by Sigma-Genosys to identify the peptide antigen (SEQ ID NO: 41). The peptide antigen was produced by the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) method.
- The sequence for the Bacillus thuringiensis peptide antigen (SEQ ID NO: 42) was based on a Bacillus thuringiensis HPPD polypeptide sequence (SEQ ID NO: 8). The peptide antigen was produced by the m-Maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) method. An N-terminal cysteine amino acid was added to the native peptide sequence.
- The sequence for the Uni-HPPD peptide antigen (SEQ ID NO: 43) was made by identification of a peptide fragment common to the polypeptide sequences of Arabidopsis thaliana HPPD (SEQ ID NO: 37), Brassica napus HPPD (SEQ ID NO: 20), Gossypium hirsutum HPPD (SEQ ID NO: 18), and Lycopersicon esculentum (SEQ ID NO: 22). A C-terminal cysteine was added to the peptide antigen. The peptide was produced by the m-Maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) method.
- The protocol for antigen synthesis and conjugation as described by the manufacturer is provided below. Approximately 10 mg of each peptide antigen (SEQ ID NOs: 38, 39, 41, 42, and 43) was synthesized. The synthesized peptide antigens were analyzed by mass spectral and HPLC analyses to ensure sequence integrity and purity prior to conjugation. The peptides were conjugated to 2-3 mg of Keyhole Limpet Hemocyanin (KLH) or Bovine Serum Albumin (BSA). The peptide-protein conjugates were purified by gel filtration and freeze dried. Rabbits were then immunized by subcutaneous injection of the conjugated peptides (Table 8). The initial immunization was given in Complete Freund's Adjuvant with all subsequent immunizations given in Incomplete Freund's Adjuvant. The unconjugated peptides, the pre-immune bleeds and the first production bleeds were obtained and used in the experiments described below. Antisera were unpurified and contained a number of different isotypes (IgG, IgM, IgA). Total sera of 15-25 mL per rabbit per bleed were obtained (120 mL of total sera).
-
TABLE 8 The Immunization and Bleed Protocol. Day Procedure 0 Pre-bleed, Antigen injection 14 Antigen injection 28 Antigen injection 42 Antigen injection 49 Bleed 56 Antigen injection 63 Bleed 70 Antigen injection 77 Bleed End of standard protocol - The aforementioned antibodies were used in a Western blot analysis to test for expression of HPPD protein in E. coli bacteria, and in Arabidopsis thaliana and Glycine max plants transformed to express HPPD polynucleotide sequences. Total protein extracts from E. coli were obtained by boiling induced cells in 1× Laemelli gel sample buffer. Total protein from A. thaliana seeds was obtained by pulverizing the seeds in a BIO101/Savant FastPrep™ FP120 high-speed reciprocating cell membrane disruptor (Qbiogene, Inc., Carlsbad, Calif.). Total protein from Glycine max was obtained from lyophilized seed powder prepared as described in Example 5. In all cases, the crude protein extracts were solubilized in 300 to 500 μL of 100 mM potassium phosphate buffer, pH 7.0, or Tris buffered saline (TBS), pH 8.0. Solubilized extracts contained a proteinase inhibitor cocktail added according to the manufacturer's specification (Complete™ Protease Inhibitor Cocktail, Boehringer Mannheim, Mannheim, Germany). Between 6 and 20 μg of extracted total protein from A. thalina or soybean seed was separated by electrophoresis (Proteins and Proteomics: A Laboratory Manual, 2002. Simpson and Hotchkiss, eds.) using a 4 to 15% or 4 to 20% polyacrylamide gradient gel containing SDS.
- The HPPD polynucleotide sequences expressed in E. coli included Arabidopsis thaliana (SEQ ID NO: 2), Bacillus thuringiensis (SEQ ID NO: 7), Brassica napus (SEQ ID NO: 19), Gossypium hirsutum (SEQ ID NO: 15), Synechocystis sp. (SEQ ID NO: 1), Lycopersicon esculentum (SEQ ID NO: 21), a Bacillus thuringiensis (SEQ ID NO: 7)/TyrA (SEQ ID NO: 25) fusion protein and a Gossypium hirsulum (SEQ ID NO: 15)/TyrA (SEQ ID NO: 25) fusion protein. Empty vector and TyrA (SEQ ID NO: 25) constructs were included as controls. After electrophoresis, the proteins were transferred to a polyvinylidene fluoride (PVDF) membrane (Millipore, Immobilon-P, #IPVH304F0, Bedford, Mass.) and the membrane probed with a primary antibody (1:5000 dilution) produced from a rabbit injected with a combination of Bacillus thuringiensis (SEQ ID NO: 42) and UNI-HPPD-1 (SEQ ID NO: 43) peptide fragments. An anti-rabbit IgG secondary antibody (Sigma-Aldrich, #A3687) was used to visualize HPPD-proteins. The results of the Western analysis are shown in Table 9.
-
TABLE 9 Detection of HPPD protein in extracts of E. coli expressed HPPD Source HPPD detected Arabidopsis thaliana (SEQ ID NO: 2) Yes Bacillus thuringiensis (SEQ ID NO: 7) Yes Brassica napus (SEQ ID NO: 19) No Gossypium hirsutum (SEQ ID NO: 15) Yes Synechocystis (SEQ ID NO: 1) No Bacillus thuringiensis (SEQ ID NO: 7)/TyrA (SEQ ID Yes NO: 25) fusion protein Gossypium hirsutum (SEQ ID NO: 15)/TyrA (SEQ ID Yes NO: 25) fusion protein Lycopersicon esculentum (SEQ ID NO: 21) Yes TyrA (SEQ ID NO: 25) No Empty vector No - The Arabidopsis HPPD polynucleotide sequence (SEQ ID NO: 2) was also expressed in transformed A. thaliana and G. max plants. After isolation as described in Example 5, the electrophoresed proteins were blotted onto PVDF membrane, and probed with the anti-Arabidopsis HPPD rabbit primary antibody described above. Sixteen transformed Arabidopsis lines were tested using the anti-Arabidopsis HPPD antibody. One line, as well as the wild-type untransformed control, tested negative for HPPD protein. Fifteen lines produced a positive response. Similarly, seven Glycine max lines transformed with the Arabidopsis thaliana HPPD (SEQ ID NO: 2) were tested using the anti-Arabidopsis HPPD antibody. One line, as well as the wild-type untransformed control, tested negative for the HPPD protein. Six lines tested positive for the HPPD protein.
- Having illustrated and described the principles of the present invention, it should be apparent to persons skilled in the art that the present invention can be modified in arrangement and detail without departing from such principles. We claim all modifications that are within the spirit and scope of the appended claims.
- All publications and published patent documents cited in this specification are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Claims (20)
1. A substantially purified polynucleotide molecule comprising:
(a) a polynucleotide molecule comprising a nucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23;
(b) a polynucleotide molecule encoding a 4-hydroxyphenylpyruvate dioxygenase (“HPPD”) polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23;
(c) a polynucleotide molecule comprising a polynucleotide sequence encoding a polypeptide comprising a sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24; or
(d) a polynucleotide molecule comprising a polynucleotide sequence encoding a 4-hydroxyphenylpyruvate dioxygenase (“HPPD”) polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24.
2. A DNA construct comprising the substantially purified polynucleotide molecule of claim 1 .
3. The DNA construct of claim 2 , further comprising a seed-preferred promoter operably linked to the polynucleotide molecule.
4. The DNA construct of claim 3 , wherein the seed-preferred promoter is selected from the group consisting of: napin, 7S alpha, 7S alpha′, 7S beta, USP 88, enhanced USP 88, Arcelin 5, and oleosin.
5. The DNA construct of claim 2 , further comprising a polynucleotide encoding a chloroplast transit peptide.
6. A plant cell transformed with the DNA construct of claim 2 .
7. The DNA construct of claim 2 wherein the substantially purified polynucleotide molecule comprises the polynucleotide sequence of SEQ ID NO: 15.
8. A method of producing a transformed plant cell, plant tissue, plant organ, or plant comprising at least one of an increased tocopherol level and increased tocotrienol level relative to a wild type plant cell, plant tissue, plant organ, or plant comprising: (1) transforming a plant cell, plant tissue, plant organ, or plant with an introduced polynucleotide molecule encoding a 4-hydroxyphenylpyruvate dioxygenase (“HPPD”) polypeptide or polypeptide having HPPD activity comprising:
(a) a polynucleotide molecule comprising a polynucleotide sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 11, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23;
(b) a polynucleotide molecule comprising a polynucleotide sequence encoding a HPPD polypeptide or polypeptide having HPPD activity comprising a sequence selected from the group consisting of: SEQ ID NO: 3, a nucleotide sequence having at least 80% identity to SEQ ID NO: 3, SEQ ID NO: 5, a nucleotide sequence having at least 80% identity to SEQ ID NO: 5, SEQ ID NO: 7, a nucleotide sequence having at least 80% identity to SEQ ID NO: 7, SEQ ID NO: 9, a nucleotide sequence having at least 80% identity to SEQ ID NO: 9, SEQ ID NO: 1, a nucleotide sequence having at least 80% identity to SEQ ID NO: 11, SEQ ID NO: 13, a nucleotide sequence having at least 80% identity to SEQ ID NO: 13, SEQ ID NO: 15, a nucleotide sequence having at least 87% identity to SEQ ID NO: 15, SEQ ID NO: 17, a nucleotide sequence having at least 87% identity to SEQ ID NO: 17, SEQ ID NO: 19, a nucleotide sequence having at least 91% identity to SEQ ID NO: 19, SEQ ID NO: 21, a nucleotide sequence having at least 91% identity to SEQ ID NO: 21, SEQ ID NO: 23, and a nucleotide sequence having at least 90% identity to SEQ ID NO: 23;
(c) a polynucleotide molecule comprising a polynucleotide sequence encoding a polypeptide sequence selected from the group consisting of: SEQ ID NO: 4, a polypeptide sequence having at least 58% identity to SEQ ID NO: 4, SEQ ID NO: 6, a polypeptide sequence having at least 58% identity to SEQ ID NO: 6, SEQ ID NO: 8, a polypeptide sequence having at least 58% identity to SEQ ID NO: 8, SEQ ID NO: 10, a polypeptide sequence having at least 58% identity to SEQ ID NO: 10, SEQ ID NO: 12, a polypeptide sequence having at least 58% identity to SEQ ID NO: 12, SEQ ID NO: 16, a polypeptide sequence having at least 80% identity to SEQ ID NO: 16, SEQ ID NO: 18, a polypeptide sequence having at least 80% identity to SEQ ID NO: 18, SEQ ID NO: 20, a polypeptide sequence having at least 93% identity to SEQ ID NO: 20, SEQ ID NO: 22, a polypeptide sequence having at least 79% identity to SEQ ID NO: 22, SEQ ID NO: 24, and a polypeptide sequence having at least 54% identity to SEQ ID NO: 24;
(2) regenerating a plant from the cell, tissue, organ or plant; and
(3) growing the plant.
9. The method of claim 8 , wherein the substantially purified polynucleotide molecule is operably linked to a polynucleotide encoding a chloroplast transit peptide.
10. The method of claim 8 further comprising introducing at least one additional polynucleotide molecule encoding an enzyme selected from the group consisting of MT1, tMT2, GMT, tyrA, HPT, tocopherol cyclase, chlorophyllase, dxs, dxr, GGPPS, AANT1, LITT1, IDI, and GGH.
11. The method of claim 10 , wherein the at least one additional nucleotide molecule is selected from the group consisting of: SEQ ID NOs: 25, 26, and 27.
12. The method of claim 8 , wherein said plant is selected from the group consisting of Brassica campestris, canola, oilseed rape, and soybean.
13. The method of claim 8 , wherein said plant tissue is seed tissue.
14. The method of claim 8 , wherein the polynucleotide sequence comprises SEQ ID NO: 15.
15. The method of sequence 10 wherein the additional polynucleotide molecule comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 25, 26, and 27.
16. A method for increasing the ability of a plant to withstand a stress comprising transforming the plant with a DNA construct comprising a polynucleotide encoding an HPPD, wherein expression of the polynucleotide increases the ability of the plant to withstand the stress.
17. The method of claim 16 wherein said polynucleotide encoding an HPPD is selected from the group consisting of: SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23.
18. The method of claim 16 wherein the stress is selected from the group consisting of salt, drought, or cold.
19. A transformed plant produced from the method of claim 16 , wherein the plant comprises the DNA construct comprising a polynucleotide encoding an HPPD.
20. A seed from the transformed plant of claim 19 , wherein the seed comprises the DNA construct comprising a polynucleotide encoding an HPPD.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/943,493 US20080127371A1 (en) | 2004-01-26 | 2007-11-20 | Genes encoding 4-hydroxyphenylpyruvate dioxygenase (hppd) enzymes for plant metabolic engineering |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US53930904P | 2004-01-26 | 2004-01-26 | |
| US11/043,542 US7297541B2 (en) | 2004-01-26 | 2005-01-26 | Genes encoding 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzymes for plant metabolic engineering |
| US11/943,493 US20080127371A1 (en) | 2004-01-26 | 2007-11-20 | Genes encoding 4-hydroxyphenylpyruvate dioxygenase (hppd) enzymes for plant metabolic engineering |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/043,542 Division US7297541B2 (en) | 2004-01-26 | 2005-01-26 | Genes encoding 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzymes for plant metabolic engineering |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080127371A1 true US20080127371A1 (en) | 2008-05-29 |
Family
ID=35507695
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/043,542 Expired - Lifetime US7297541B2 (en) | 2004-01-26 | 2005-01-26 | Genes encoding 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzymes for plant metabolic engineering |
| US11/943,493 Abandoned US20080127371A1 (en) | 2004-01-26 | 2007-11-20 | Genes encoding 4-hydroxyphenylpyruvate dioxygenase (hppd) enzymes for plant metabolic engineering |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/043,542 Expired - Lifetime US7297541B2 (en) | 2004-01-26 | 2005-01-26 | Genes encoding 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzymes for plant metabolic engineering |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US7297541B2 (en) |
Families Citing this family (60)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7700838B1 (en) * | 1999-09-17 | 2010-04-20 | Monsanto Technology Llc | Bacillus thuringiensis chromosomal genome sequences and uses thereof |
| DE10201458A1 (en) * | 2001-04-11 | 2002-10-17 | Adelbert Bacher | New proteins involved in isoprenoid biosynthesis, useful in screening for inhibitors, also new intermediates, potential therapeutic agents, nucleic acids and antibodies |
| US8097712B2 (en) | 2007-11-07 | 2012-01-17 | Beelogics Inc. | Compositions for conferring tolerance to viral disease in social insects, and the use thereof |
| WO2009124225A1 (en) * | 2008-04-03 | 2009-10-08 | E. I. Du Pont De Nemours And Company | Multizymes |
| NZ588554A (en) | 2008-04-29 | 2013-03-28 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
| CA2726087A1 (en) | 2008-06-03 | 2009-12-10 | Tariq Ghayur | Dual variable domain immunoglobulins and uses thereof |
| CA2749383A1 (en) | 2009-07-10 | 2011-06-09 | Syngenta Participations Ag | Novel hydroxyphenylpyruvate dioxygenase polypeptides and methods of use |
| US8962584B2 (en) | 2009-10-14 | 2015-02-24 | Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. | Compositions for controlling Varroa mites in bees |
| EP2531601B1 (en) | 2010-02-02 | 2016-11-16 | Bayer Intellectual Property GmbH | Soybean transformation using HPPD inhibitors as selection agents |
| BR112012022570A2 (en) | 2010-03-08 | 2015-10-06 | Monsato Technology Llc | polynucleotide molecules for gene regulation in plants. |
| US20130053243A1 (en) | 2010-05-04 | 2013-02-28 | Basf Se | Plants having increased tolerance to herbicides |
| UY33492A (en) | 2010-07-09 | 2012-01-31 | Abbott Lab | IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME |
| AU2011285852B2 (en) | 2010-08-03 | 2014-12-11 | Abbvie Inc. | Dual variable domain immunoglobulins and uses thereof |
| CN103237894A (en) | 2010-08-13 | 2013-08-07 | 先锋国际良种公司 | Compositions and methods comprising sequences having hydroxyphenylpyruvate dioxygenase (HPPD) activity |
| US10829828B2 (en) | 2011-09-13 | 2020-11-10 | Monsanto Technology Llc | Methods and compositions for weed control |
| EP2755467B1 (en) | 2011-09-13 | 2017-07-19 | Monsanto Technology LLC | Methods and compositions for weed control |
| US10806146B2 (en) | 2011-09-13 | 2020-10-20 | Monsanto Technology Llc | Methods and compositions for weed control |
| CN103957696B (en) | 2011-09-13 | 2019-01-18 | 孟山都技术公司 | Methods and compositions for weed control |
| EP2756083B1 (en) * | 2011-09-13 | 2020-08-19 | Monsanto Technology LLC | Methods and compositions for weed control |
| US9840715B1 (en) | 2011-09-13 | 2017-12-12 | Monsanto Technology Llc | Methods and compositions for delaying senescence and improving disease tolerance and yield in plants |
| WO2013040033A1 (en) | 2011-09-13 | 2013-03-21 | Monsanto Technology Llc | Methods and compositions for weed control |
| US10760086B2 (en) | 2011-09-13 | 2020-09-01 | Monsanto Technology Llc | Methods and compositions for weed control |
| UA116093C2 (en) | 2011-09-13 | 2018-02-12 | Монсанто Текнолоджи Ллс | Methods and compositions for weed control |
| US9920326B1 (en) | 2011-09-14 | 2018-03-20 | Monsanto Technology Llc | Methods and compositions for increasing invertase activity in plants |
| US10240161B2 (en) | 2012-05-24 | 2019-03-26 | A.B. Seeds Ltd. | Compositions and methods for silencing gene expression |
| US9624500B2 (en) | 2012-08-02 | 2017-04-18 | The Curators Of The University Of Missouri | Metabolic engineering of plants for increased homogentisate and tocochromanol production |
| BR112015008706A2 (en) | 2012-10-18 | 2018-02-06 | Monsanto Technology Llc | methods and compositions for plant pest control |
| US10683505B2 (en) | 2013-01-01 | 2020-06-16 | Monsanto Technology Llc | Methods of introducing dsRNA to plant seeds for modulating gene expression |
| WO2014106838A2 (en) | 2013-01-01 | 2014-07-10 | A.B. Seeds Ltd. | Methods of introducing dsrna to plant seeds for modulating gene expression |
| US10000767B2 (en) | 2013-01-28 | 2018-06-19 | Monsanto Technology Llc | Methods and compositions for plant pest control |
| EP2971185A4 (en) | 2013-03-13 | 2017-03-08 | Monsanto Technology LLC | Methods and compositions for weed control |
| MX2015012334A (en) | 2013-03-13 | 2016-02-05 | Monsanto Technology Llc | Methods and compositions for weed control. |
| US20140283211A1 (en) | 2013-03-14 | 2014-09-18 | Monsanto Technology Llc | Methods and Compositions for Plant Pest Control |
| US10568328B2 (en) | 2013-03-15 | 2020-02-25 | Monsanto Technology Llc | Methods and compositions for weed control |
| EP2992102A4 (en) | 2013-04-30 | 2016-12-28 | Basf Se | Plants having increased tolerance to herbicides |
| US9850496B2 (en) | 2013-07-19 | 2017-12-26 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
| JP6668236B2 (en) | 2013-07-19 | 2020-03-18 | モンサント テクノロジー エルエルシー | Composition for controlling LEPTINOTARSA and method therefor |
| AU2014341879B2 (en) | 2013-11-04 | 2020-07-23 | Greenlight Biosciences, Inc. | Compositions and methods for controlling arthropod parasite and pest infestations |
| UA119253C2 (en) | 2013-12-10 | 2019-05-27 | Біолоджикс, Інк. | METHOD FOR VARROA TREATMENT AND VEGETABLES |
| US10334848B2 (en) | 2014-01-15 | 2019-07-02 | Monsanto Technology Llc | Methods and compositions for weed control using EPSPS polynucleotides |
| BR112016022711A2 (en) | 2014-04-01 | 2017-10-31 | Monsanto Technology Llc | compositions and methods for insect pest control |
| AU2015280252A1 (en) | 2014-06-23 | 2017-01-12 | Monsanto Technology Llc | Compositions and methods for regulating gene expression via RNA interference |
| WO2015200539A1 (en) | 2014-06-25 | 2015-12-30 | Monsanto Technology Llc | Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression |
| UA125244C2 (en) | 2014-07-29 | 2022-02-09 | Монсанто Текнолоджі Елелсі | Compositions and methods for controlling insect pests |
| US10968449B2 (en) | 2015-01-22 | 2021-04-06 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
| KR101824698B1 (en) * | 2015-04-02 | 2018-02-02 | 한국생명공학연구원 | IbHPPD gene from sweetpotato controlling environmental stress tolerance of plant and uses thereof |
| EP3302053B1 (en) | 2015-06-02 | 2021-03-17 | Monsanto Technology LLC | Compositions and methods for delivery of a polynucleotide into a plant |
| US10655136B2 (en) | 2015-06-03 | 2020-05-19 | Monsanto Technology Llc | Methods and compositions for introducing nucleic acids into plants |
| US20200157086A1 (en) | 2017-05-30 | 2020-05-21 | Basf Se | Benzamide compounds and their use as herbicides |
| US20210179569A1 (en) | 2017-05-30 | 2021-06-17 | Basf Se | Benzamide compounds and their use as herbicides ii |
| AR112112A1 (en) | 2017-06-20 | 2019-09-18 | Basf Se | BENZAMIDE COMPOUNDS AND THEIR USE AS HERBICIDES |
| WO2019016385A1 (en) | 2017-07-21 | 2019-01-24 | Basf Se | Benzamide compounds and their use as herbicides |
| CA3080432A1 (en) | 2017-11-29 | 2019-06-06 | Basf Se | Benzamide compounds and their use as herbicides |
| WO2019122347A1 (en) | 2017-12-22 | 2019-06-27 | Basf Se | N-(1,2,5-oxadiazol-3-yl)-benzamide compounds and their use as herbicides |
| WO2019122345A1 (en) | 2017-12-22 | 2019-06-27 | Basf Se | Benzamide compounds and their use as herbicides |
| EP3508480A1 (en) | 2018-01-08 | 2019-07-10 | Basf Se | Benzamide compounds and their use as herbicides |
| WO2019162308A1 (en) | 2018-02-21 | 2019-08-29 | Basf Se | Benzamide compounds and their use as herbicides |
| WO2019162309A1 (en) | 2018-02-21 | 2019-08-29 | Basf Se | Benzamide compounds and their use as herbicides |
| CN112745377B (en) * | 2020-07-22 | 2021-09-03 | 宁夏农林科学院农业生物技术研究中心(宁夏农业生物技术重点实验室) | Application of potato tonoplast monosaccharide transporter StTMT2 gene in improving plant photosynthetic rate |
| WO2025072809A2 (en) * | 2023-09-30 | 2025-04-03 | Texas Tech University System | Herbicide resistant hppd variants identified via directed evolution |
Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5759538A (en) * | 1995-03-31 | 1998-06-02 | Monsanto Company | Bacillus thuringiensis apr and npr genes, apr and npr B.t. strains, and method of use |
| US5786513A (en) * | 1993-02-25 | 1998-07-28 | Hoechst Aktiengesellschaft | Inhibitors of hydroxyphenylpyruvate dioxygenase and an assay for identification of inhibitors |
| US6245968B1 (en) * | 1997-11-07 | 2001-06-12 | Aventis Cropscience S.A. | Mutated hydroxyphenylpyruvate dioxygenase, DNA sequence and isolation of plants which contain such a gene and which are tolerant to herbicides |
| US6384301B1 (en) * | 1999-01-14 | 2002-05-07 | Monsanto Technology Llc | Soybean agrobacterium transformation method |
| US20030125573A1 (en) * | 1998-07-06 | 2003-07-03 | Dcv, Inc., D/B/A Bio-Technical Resources | Method of vitamin production |
| US20030150015A1 (en) * | 2001-10-25 | 2003-08-07 | Norris Susan R. | Aromatic methyltransferases and uses thereof |
| US20030148300A1 (en) * | 2001-05-09 | 2003-08-07 | Valentin Henry E. | Metabolite transporters |
| US20030154513A1 (en) * | 2001-08-17 | 2003-08-14 | Eenennaam Alison Van | Methyltransferase genes and uses thereof |
| US20030176675A1 (en) * | 2001-05-09 | 2003-09-18 | Valentin Henry E. | TyrA genes and uses thereof |
| US20040045051A1 (en) * | 2002-08-05 | 2004-03-04 | Norris Susan R. | Tocopherol biosynthesis related genes and uses thereof |
| US6768044B1 (en) * | 2000-05-10 | 2004-07-27 | Bayer Cropscience Sa | Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance |
| US6822142B2 (en) * | 2001-01-05 | 2004-11-23 | Monsanto Company | Transgenic plants containing altered levels of steroid compounds |
| US6825398B2 (en) * | 2001-09-05 | 2004-11-30 | Monsanto Company | Seed specific 7Sα promoter for expressing genes in plants |
| US7112717B2 (en) * | 2002-03-19 | 2006-09-26 | Monsanto Technology Llc | Homogentisate prenyl transferase gene (HPT2) from arabidopsis and uses thereof |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BE1000563A6 (en) | 1987-05-18 | 1989-02-07 | Cedres Castro Herminio S | Accessory device, retractable in a traditional wc type for hygiene body. |
| US6087563A (en) | 1996-01-29 | 2000-07-11 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Cloned arabidopsis p-hydroxyphenyl pyruvic acid dioxygenase DNA |
| WO1997049816A1 (en) | 1996-06-27 | 1997-12-31 | E.I. Du Pont De Nemours And Company | Plant gene for p-hydroxyphenylpyruvate dioxygenase |
-
2005
- 2005-01-26 US US11/043,542 patent/US7297541B2/en not_active Expired - Lifetime
-
2007
- 2007-11-20 US US11/943,493 patent/US20080127371A1/en not_active Abandoned
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5786513A (en) * | 1993-02-25 | 1998-07-28 | Hoechst Aktiengesellschaft | Inhibitors of hydroxyphenylpyruvate dioxygenase and an assay for identification of inhibitors |
| US6555714B1 (en) * | 1993-02-25 | 2003-04-29 | Hoechst Aktiengesellschaft | Inhibitors of hydroxyphenylpyruvate dioxygenase and an assay for identification of inhibitors |
| US5759538A (en) * | 1995-03-31 | 1998-06-02 | Monsanto Company | Bacillus thuringiensis apr and npr genes, apr and npr B.t. strains, and method of use |
| US5962264A (en) * | 1995-03-31 | 1999-10-05 | Monsanto Company | Method of reducing the proteolytic degradation of bacillus thuringiensis insecticidal toxic protein |
| US6245968B1 (en) * | 1997-11-07 | 2001-06-12 | Aventis Cropscience S.A. | Mutated hydroxyphenylpyruvate dioxygenase, DNA sequence and isolation of plants which contain such a gene and which are tolerant to herbicides |
| US20030125573A1 (en) * | 1998-07-06 | 2003-07-03 | Dcv, Inc., D/B/A Bio-Technical Resources | Method of vitamin production |
| US6384301B1 (en) * | 1999-01-14 | 2002-05-07 | Monsanto Technology Llc | Soybean agrobacterium transformation method |
| US6768044B1 (en) * | 2000-05-10 | 2004-07-27 | Bayer Cropscience Sa | Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance |
| US6822142B2 (en) * | 2001-01-05 | 2004-11-23 | Monsanto Company | Transgenic plants containing altered levels of steroid compounds |
| US20030148300A1 (en) * | 2001-05-09 | 2003-08-07 | Valentin Henry E. | Metabolite transporters |
| US20030176675A1 (en) * | 2001-05-09 | 2003-09-18 | Valentin Henry E. | TyrA genes and uses thereof |
| US20030154513A1 (en) * | 2001-08-17 | 2003-08-14 | Eenennaam Alison Van | Methyltransferase genes and uses thereof |
| US6825398B2 (en) * | 2001-09-05 | 2004-11-30 | Monsanto Company | Seed specific 7Sα promoter for expressing genes in plants |
| US20030150015A1 (en) * | 2001-10-25 | 2003-08-07 | Norris Susan R. | Aromatic methyltransferases and uses thereof |
| US7112717B2 (en) * | 2002-03-19 | 2006-09-26 | Monsanto Technology Llc | Homogentisate prenyl transferase gene (HPT2) from arabidopsis and uses thereof |
| US20040045051A1 (en) * | 2002-08-05 | 2004-03-04 | Norris Susan R. | Tocopherol biosynthesis related genes and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US7297541B2 (en) | 2007-11-20 |
| US20050289664A1 (en) | 2005-12-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7297541B2 (en) | Genes encoding 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzymes for plant metabolic engineering | |
| US7230165B2 (en) | Tocopherol biosynthesis related genes and uses thereof | |
| US7605244B2 (en) | Gamma tocopherol methyltransferase coding sequence from Brassica and uses thereof | |
| US7262339B2 (en) | Tocopherol methyltransferase tMT2 and uses thereof | |
| CA2443865C (en) | Tyra genes and uses thereof | |
| US7112717B2 (en) | Homogentisate prenyl transferase gene (HPT2) from arabidopsis and uses thereof | |
| AU2002342114A1 (en) | Aromatic methyltransferases and uses thereof | |
| US7947873B2 (en) | Compositions and methods for regulation of plant gamma-tocopherol methyltransferase | |
| US7161061B2 (en) | Metabolite transporters | |
| CN1688697B (en) | Homogentisate prenyl transferase ('HPT') nucleic acids and polypeptides, and uses thereof | |
| AU2003225879C1 (en) | Homogentisate prenyl transferase ("HPT") nucleic acids and polypeptides, and uses thereof | |
| EP1897952A2 (en) | Methyltransferasegenes and uses thereof | |
| EP1950305A1 (en) | Tyr a genes and uses thereof | |
| EP1411761A2 (en) | Metabolite transporters |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |