US20080099725A1 - Resin composition and flexible printed circuit board - Google Patents
Resin composition and flexible printed circuit board Download PDFInfo
- Publication number
- US20080099725A1 US20080099725A1 US12/001,006 US100607A US2008099725A1 US 20080099725 A1 US20080099725 A1 US 20080099725A1 US 100607 A US100607 A US 100607A US 2008099725 A1 US2008099725 A1 US 2008099725A1
- Authority
- US
- United States
- Prior art keywords
- resin composition
- thermoplastic resin
- recited
- inorganic filler
- mica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 56
- 239000011256 inorganic filler Substances 0.000 claims abstract description 45
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 45
- 241000276425 Xiphophorus maculatus Species 0.000 claims abstract description 34
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 26
- 239000000057 synthetic resin Substances 0.000 claims abstract description 26
- 238000002844 melting Methods 0.000 claims abstract description 15
- 230000008018 melting Effects 0.000 claims abstract description 15
- 239000006185 dispersion Substances 0.000 claims abstract description 13
- 229920005989 resin Polymers 0.000 claims abstract description 12
- 239000011347 resin Substances 0.000 claims abstract description 12
- 229920005992 thermoplastic resin Polymers 0.000 claims description 26
- 239000010445 mica Substances 0.000 claims description 24
- 229910052618 mica group Inorganic materials 0.000 claims description 24
- 239000004697 Polyetherimide Substances 0.000 claims description 21
- 229920001601 polyetherimide Polymers 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 17
- 229920006259 thermoplastic polyimide Polymers 0.000 claims description 16
- RJDOZRNNYVAULJ-UHFFFAOYSA-L [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] RJDOZRNNYVAULJ-UHFFFAOYSA-L 0.000 claims description 14
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 11
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 229910001593 boehmite Inorganic materials 0.000 claims description 7
- -1 ether ketone Chemical class 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical class [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 229920002492 poly(sulfone) Polymers 0.000 claims description 5
- 239000000454 talc Substances 0.000 claims description 5
- 229910052623 talc Inorganic materials 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052900 illite Inorganic materials 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052622 kaolinite Inorganic materials 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 3
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 3
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 claims description 3
- 238000001479 atomic absorption spectroscopy Methods 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 239000000706 filtrate Substances 0.000 claims description 2
- 150000007524 organic acids Chemical class 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 1
- 239000000047 product Substances 0.000 description 43
- 239000004696 Poly ether ether ketone Substances 0.000 description 28
- 229920002530 polyetherether ketone Polymers 0.000 description 28
- 238000000034 method Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 11
- 238000011068 loading method Methods 0.000 description 10
- 239000009719 polyimide resin Substances 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 7
- 238000004898 kneading Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000004962 Polyamide-imide Substances 0.000 description 6
- 239000004695 Polyether sulfone Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229920002312 polyamide-imide Polymers 0.000 description 6
- 229920006393 polyether sulfone Polymers 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 239000007822 coupling agent Substances 0.000 description 5
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000012760 heat stabilizer Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920006038 crystalline resin Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920006351 engineering plastic Polymers 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920003295 Radel® Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000004963 Torlon Substances 0.000 description 1
- 229920003997 Torlon® Polymers 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/016—Additives defined by their aspect ratio
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0129—Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0141—Liquid crystal polymer [LCP]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0242—Shape of an individual particle
- H05K2201/0245—Flakes, flat particles or lamellar particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/901—Printed circuit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
Definitions
- the present invention relates to a resin composition and a flexible printed circuit board. More particularly, the present invention relates to a resin composition which is excellent in mechanical strength and heat resistance, low in linear expansion coefficient and anisotropy, and little susceptible to deterioration, and also to a flexible printed circuit board using the same.
- Synthetic resins having melting temperatures of 300° C. and above exhibit good heat resistance, mechanical strength, mechanical rigidity, chemical resistance, flame retardance, processability on a molding or extruding machine and the like, and have conventionally achieved wide use for many applications such as in the production of automobile, mechanical, electrical and electronic parts.
- fibrous inorganic fillers such as glass fibers, carbon fibers, wollastonite and potassium titanate fibers
- Resin compositions loaded with such glass fibers or carbon fibers however provide an extremely roughened surface and a poor appearance.
- resin compositions loaded with wollastonite or potassium titanate fibers are highly anisotropic and in some cases yield variations in linear expansion coefficient, among mechanical properties.
- the loading of such inorganic fillers in synthetic resins having melting temperatures of 300° C. and above causes hydrolysis of such synthetic resins, which is considered due to either alkaline contents (e.g., sodium and potassium) liberated from the inorganic fillers, or interlayer water from the inorganic fillers, or weakly acidic or alkaline nature of the inorganic fillers. This is also accompanied by the molecular weight reduction which leads to a drop of molding stability and a loss of desirable properties intrinsic to such synthetic resins, which have been problems.
- Synthetic resins having melting temperatures of 300° C. and above are also being used for heat-resistant films for use in flexible printed circuit boards.
- a polyimide resin is representative of materials useful for such heat-resistant films.
- the polyimide resin because of its high hygroscopicity will likely become insufficient to provide circuit reliability, which will be a problem.
- the polyimide resin film can not be laminated onto a metal foil without the use of an adhesive. These problematically increase a total cost.
- the above-described polyimide resin is a thermosetting polyimide resin.
- a thermoplastic resin such as a thermoplastic polyimide resin
- the use of the thermoplastic polyimide resin or other thermoplastic resins enables recycling and reduction of a total cost since they can be laminated onto a metal foil by a film extrusion technique.
- the sole use of the thermoplastic polyimide resin results in the insufficient mechanical strength and heat resistance.
- the thermoplastic polyimide resin has a high linear expansion coefficient in the range of 4 ⁇ 5 ⁇ 10 ⁇ 5 ° C. ⁇ 1 , curling inevitably occurs when it is laminated onto a metal foil having a linear expansion coefficient of 1 ⁇ 2 ⁇ 10 ⁇ 5 ° C.
- the film is adhered to the metal foil in the laminating process.
- the film differs largely in linear expansion coefficient from the metal foil, a resulting laminate of the film and metal foil when cooled to ambient temperature is curled due to the dimensional difference between the top and bottom.
- thermoplastic resins such as a thermoplastic polyimide resin
- inorganic fillers include powder-form inorganic fillers such as mica, talc and silica; inorganic fibers such as potassium titanate fibers; and the like.
- thermoplastic resins results in the production of rigid, less flexible and thus very brittle films.
- Another problem is the failure to impart the contemplated linear expansion coefficients to resulting films.
- Other problems arise when the above-described hydrolysis of resins is caused to take place by the alkali contents liberated from inorganic fillers. That is, the resulting molecular weight reduction of resins lowers desirable properties intrinsic to such resins and results in the difficulty to take a film off.
- a resin composition in accordance with a first aspect of the present invention is characterized as containing (A) a synthetic resin having a melting temperature of 300° C. or above and (B) a platy inorganic filler incorporated in the resin and having the following properties;
- pH of aqueous dispersion 5.5-8.0
- the incorporation of the platy inorganic filler having the above-specified properties results in the provision of a resin composition which has reduced mold or die shrinkage factor and linear expansion coefficient, satisfactory dimensional stability, improved heat resistance and mechanical strength, and superior processability on a molding or extruding machine. Also if the above-specified pH of aqueous dispersion and amount of extracted alkalis are satisfied, a synthetic resin becomes less susceptible to deterioration and can maintain its intrinsic desirable properties and sustain the effect obtained via loading of the platy inorganic filler for a very long period of time. In the amount of extracted alkalis, Ca may preferably be 10 ppm or below.
- a resin composition in accordance with a second aspect of the present invention is characterized as containing (A) a synthetic resin having a melting temperature of 300° C. or above and (B) a flaky inorganic filler incorporated in the resin and having a pH of aqueous dispersion in the range of 5.5-8.0 and an amount of extracted alkalis, Na: 30-ppm or below and K: 40 ppm or below.
- a synthetic resin becomes less susceptible to deterioration and can maintain its intrinsic desirable properties and sustain the effect obtained via loading of the flaky inorganic filler for a very long period of time.
- Ca may preferably be 10 ppm or below.
- a resin composition in accordance with a third aspect of the present invention is characterized as containing (A) a synthetic resin having a melting temperature of 300° C. or above and (B) a synthetic mica incorporated in the resin and having a maximum diameter a of 20 ⁇ m or below, a thickness b of 0.05-1.0 ⁇ m and an aspect ratio of 20 or above.
- the incorporation of the synthetic mica having the above-specified maximum diameter a, thickness b and aspect ratio results in the provision of a resin composition which is superior in mechanical strength and heat resistance, lower in linear expansion coefficient and anisotropy, less susceptible to deterioration and better processable.
- a 1 g sample is metered into a 100 ml beaker, 100 ml of deionized water is introduced into the beaker, the beaker content is stirred by a magnetic stirrer for 10 minutes and then its pH is measured by a pH meter. The measured pH value is given as the pH of aqueous dispersion.
- a 1 g sample is dispersed in 100 ml water and the resulting aqueous dispersion is stirred at room temperature for 1 hour and filtered using a No. 5 filter paper to obtain a filtrate for subsequent measurement by atomic absorption spectrometry.
- the measured amount of alkalis is given as the amount of extracted alkalis.
- the maximum diameter, thickness and aspect ratio can be measured by observation using a scanning electron microscope and calculated.
- the resin composition of the present invention is useful, for example, for formation into a heat-resistant film for use in a flexible printed circuit board.
- a flexible printed circuit board in accordance with the present invention is characterized as incorporating a heat-resistant film obtained by processing the resin composition of the present invention.
- any platy inorganic substance known in the art, either natural or synthetic, can be used for the platy inorganic filler in the first aspect of the present invention, so long as it has the properties and dimension within the respective ranges as specified above.
- examples of such inorganic substances include flaky or sheetlike mica, sericite, illite, talc, kaolinite, montmorillonite, smectite and vermiculite; and platy or sheetlike titanium dioxide, potassium titanate, lithium titanate, boehmite and alumina.
- flaky or sheetlike mica, and platy or sheetlike titanium dioxide, potassium titanate, lithium titanate, boehmite, ⁇ -alumina and ⁇ -alumina are preferably used.
- platy is used in a generic sence to encompass sheetlike and flaky substances as well as platy substances.
- Flaky or sheetlike mica can be synthesized, for example, by a melting process using internal or external heating, or other processes such as disclosed in Japanese Patent Laid Open No. Hei 5-270815.
- a specific example of such synthetic mica can be represented by the following general formula: X n Y m Z 4 O 10 F 2 (1)
- X indicates K + , Na + , Li + , Ca 2+ , Ba 2+ , Sr 2+ or Rb 2+ ;
- Y indicates Mg 2+ , Fe 2+ , Fe 3+ , Ni 2+ , Ti 2+ , Zn 2+ , Cu 2+ , Mn 2+ , Al 2+ or Co 2+ ;
- Z indicates Al 3+ , Fe 3+ , B 3+ , Si 4+ or Ge 4+ ;
- n denotes a numerical value of 1 ⁇ 3-1; and m denotes a numerical value of 2-3).
- Flaky or sheetlike boehmite and alumina can be synthesized, for example, as by a flux process, a melting process, a hydrothermal synthesis process such as disclosed in Japanese Patent Laid Open No. Hei 9-59018 or a process in which a flaky or sheetlike aluminum-containing compound is subjected to a heat treatment.
- the platy inorganic substance may be treated by a variety of methods known in the art, such as those described below, to render it applicable for the present invention.
- the platy inorganic substance may be treated with an inorganic or organic acid, such as hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid or phosphorous acid, to adjust a pH of its aqueous dispersion and/or an amount of alkalis extracted therefrom.
- the platy inorganic substance may be mixed with an acid in a mixer or tumbler and then fully dried. It may alternatively be immersed in an aqueous acid solution. Subsequent to the acid treatment, the platy inorganic acid may be fully washed with water. Another effective method is to calcine it at 600° C.-1,300° C.
- the platy inorganic substance may be pulverized in accordance with any pulverizing method known in the art to bring its dimension within the specified range.
- the platy inorganic substance may be pulverized, for example, by an air impacting mill such as a jet mill, a media agitating mill such as a ball mill or atomizer, a Dry Micros crusher type mill (product of Nara Machinery Co., Ltd.), an impact shearing mill such as a roller mill or atomizer, a nanomizer (product of Yoshida Kikai Kogyo, Co., Ltd.) or the like.
- the use of the jet mill, media agitating mill and nanomizer is particularly preferred for their ability to achieve pulverization of the platy inorganic substance to a maximum diameter of 10 ⁇ m or below.
- One or more of the substances selected from the group consisting of flaky titanate compounds, mica, sericite, illite, talc, kaolinite, montmorillonite and vermiculite can be used for the flaky inorganic filler in the second aspect. Specifically, those which fall within the category of flaky inorganic filler, among the platy inorganic fillers listed in the first aspect, can be used.
- the maximum diameter a (major diameter) of the platy inorganic filler in the first aspect is preferably 20 ⁇ m or below, more preferably 8 ⁇ m or below.
- its minor diameter is generally 50 ⁇ m or below, preferably in the approximate range of 0.5-50 ⁇ m, more preferably in the range of 1-30 ⁇ m.
- the platy inorganic filler may be treated at its surface with a coupling agent or the like.
- the surface treatment of the platy inorganic filler with the coupling agent or the like further improves its mechanical strength and heat resistance so that a resin becomes less susceptible to deterioration and thus more processable.
- the coupling agent is not particularly specified. Silane, titanate, aluminate and other generally-known coupling agents can be used. Conventional surface treatment processes, both dry and wet, can be utilized. The wet surface treatment process is particularly preferred.
- the flaky inorganic filler in the second aspect and the synthetic mica in the third aspect may also be subjected to a surface treatment with a coupling agent or the like.
- the platy inorganic filler is preferably loaded in the amount of 5-100 parts by weight, more preferably 10-50 parts by weight, based on 100 parts by weight of a synthetic resin which is the (A) component.
- the loading of below 5 parts by weight may result in the insufficient mechanical strength and dimensional accuracy.
- the loading of over 100 parts by weight may reduce the fluidity of the composition or provide a poorer appearance to a resulting product.
- the above-specified loading can also be applied to the flaky inorganic filler in the second aspect and the synthetic mica in the third aspect.
- Preferred among them are polyallyl ether ketone, polyether imide, polyallylate, aromatic polysulfone, liquid crystal polymers and thermoplastic polyimide.
- These synthetic resins may be used alone or in combination, if necessary.
- additives can be added to the resin composition of the present invention within the range that does not impair the desirable properties thereof.
- additives include, for example, heat stabilizers, lubricants, mold releasers, pigments, dyes, UV absorbers, flame retardants, lubricating agents, fillers, reinforcers and the like.
- heat stabilizers among these additives, is preferred.
- any of conventionally-known heat stabilizers can be used, the use of phosphorus acid, hindered phenol, phosphate and the like is particularly suitable.
- the resin composition of the present invention can be produced by various methods known in the art.
- An exemplary production method specifically involves introducing, via a side hopper, a platy inorganic filler, which is the (B) component, and other optional components into a twin-screw mixer or the like in which a synthetic resin, which is the (A) component, is being melt kneaded, thereby achieving mixing thereof.
- a single-screw extruder, co-kneader, multi-screw extruder or the like can also be utilized to achieve the mixing. This enables us to obtain the resin composition in the pellet form.
- the resin composition of the present invention can be readily fabricated into products by various processing methods known in the art, such as extrusion, injection molding and compression molding.
- the resin composition of the present invention can serve as a compound useful for fabrication into a component part which constitutes a part or whole of an article in substantially all the fields in which synthetic resins are applicable. It is applicable, for example, to transport machines such as automobiles, vehicles, marines, aircrafts and motorcycles; electrical and electronic devices such as household appliances, AV devices, OA devices and communication devices; various mechanical products; and the like.
- the resin composition of the present invention is also suitable for formation into a heat-resistant film for a flexible printed circuit board.
- a film-forming method is not particularly specified.
- the resin composition can be formed into any form of a film, either oriented or non-oriented.
- various methods can be utilized, including, for example, a casting method (T-die method) in which the resin composition is melt kneaded in an extruder and extruded from a T-die into a film and then the film cast on a surface of a casting roll is cooled; a tubular method in which the resin composition is extruded from a ring die into a tube which is subsequently cooled with air or water; and the like.
- a method can be utilized in which the non-oriented film fabricated by the casting or tubular method is drawn either monoaxially or biaxially at a drawing temperature of 50-180° C. and optionally heat set at a temperature below a melting point thereof.
- the film obtained with the practice of any of the above-described methods be subjected to recrystallization.
- the film either once taken up or while extruded is either passed through a heating furnace or brought into contact with a heating roller, both set at a temperature several tens ° C. higher than a glass transition point Tg of the crystalline resin used, so that the film can be recrystallized.
- PEEK polyether ether ketone
- PEI polyether imide
- thermoplastic polyimide product name AURUM, product of Mitsui Chemicals, Inc.
- LCP liquid crystal polymer: product name C950, product of Polyplastics Co., Ltd.
- PEN polyethernitrile: product name Idemitsu PEN; RF, product of Idemitsu Petro. Chem. Co., Ltd.
- PAI polyamide-imide
- product name TORLON 4203L product of Teijin-Amoco Engineering Plastics Inc.
- PES polyether sulfone: product name RADEL A-200A, product of Teijin-Amoco Engineering Plastics Inc.
- PI polyimide
- the platy inorganic fillers used in Examples and Comparative Examples are listed below.
- Synthetic mica A synthetic mica (product name: PDM-9WA, product of Topy Industries, Ltd.) was calcined at 1,000° C. and then classified.
- Synthetic mica A synthetic mica (product name: PDM-GUA, product of Topy Industries, Ltd.) was calcined at 1,000° C. and then classified.
- Natural mica The above natural mica (4) was rendered into a 5 weight % slurry in 0.1-N HNO 3 , stirred for 2 hours, filtered and washed with water for neutralization. The resultant was dried at 120° C. for 24 hours, pulverized and then classified.
- Natural mica A natural mica (product name: FSN, product of Sanshin Koko Co., Ltd.) was calcined at 70° C. for 4 hours, rendered into a 5 weight % slurry in 0.1-N HNO 3 , stirred for 2 hours, filtered and washed with water for neutralization. The resultant was dried at 120° C. for 24 hours, pulverized and then classified.
- Natural mica product name HD-0313, product of Nichien Co., Ltd.
- Natural mica product name A-11, product of Yamaguchi Mica Co., Ltd.
- Boehmite (1) 7.8 kg of aluminum hydroxide having an average particle diameter of 0.5 ⁇ m, 39 kg of water, 1.6 kg of calcium nitrate, 0.4 kg of sodium hydroxide and 0.12 kg of calcium hydroxide were introduced as reactants into an autoclave and then caused to react at 170° C. for 7 hours. The reaction product was washed with water, filtered, dried to obtain boehmite. This was further calcined at 600° C. to obtain ⁇ -alumina.
- platy inorganic fillers those designated as (1)-(3), (5), (6) and (9) fall within the specified scope of the present invention, and those designated as (4), (7) and (8) are for comparative purposes.
- Mold shrinkage factor(%) [(dimension of the mold ⁇ dimension of the molded article)/dimension of the mold] ⁇ 100
- the resin compositions of Examples in accordance with the present invention show the smaller changes in kneading torque between after 3 minutes and after 20 minutes, compared to the resin compositions of Comparative Examples, demonstrating their superior melt stability. They are also found to exhibit the superior mechanical strength, dimensional stability and heat resistance.
- the resin compositions of Examples in accordance with the present invention show the smaller changes in kneading torque between after 3 minutes and after 20 minutes, compared to the resin compositions of Comparative Examples, demonstrating their superior melt stability. They are also found to exhibit the superior mechanical strength, dimensional stability and heat resistance.
- the components in the proportions (parts by weight) specified in Table 6 were blended and fed into the double-shaft kneader employed in the above Examples to obtain a pellet-form resin composition.
- the resulting pellet-form resin composition was extruded from a coat hanger die into a 75 ⁇ m thick film. The obtained film was then evaluated in accordance with the following procedures.
- Each film was bent at an angle of 180 degrees and observed if brittle fracture was caused to occur.
- the film was indicated by x if it broke like a glass or a part or whole of its bent portion fractured and by ⁇ if no breakage or fracture was observed.
- Tensile strength The tensile strength was measured by performing a tensile test at a pulling rate of 300 mm/min according to JIS K 7311.
- Linear expansion coefficient An SSC5200H Disk Station, TMA120 thermomechanical analyzer, manufactured by Seiko Instruments Inc., was utilized to measure the linear expansion coefficient in the 20-130° C. temperature range. MD indicates a direction along which the film was taken up and TD indicates a direction transverse thereto.
- TMA elongation A 5 ⁇ 25 mm strip test specimen was placed under a tension load of 50 g and its elongation (%) was measured at a temperature increase of 5° C./min within the range of 20-250° C. using the TMA120 thermomechanical analyzer.
- the resin compositions of Examples in accordance with the present invention are well processable into films. Also, the films obtained via processing of these compositions exhibit the superior mechanical strength, heat resistance and the like. Further, when they are laminated with a copper foil, curling is maintained at a low degree of occurrence.
- the resin compositions of Examples in accordance with the present invention are well processable into films. Also, the films obtained via processing of these compositions exhibit the superior mechanical strength, heat resistance and the like. Further, when they are laminated with a copper foil, curling is maintained at a low degree of occurrence.
- the resin compositions in accordance with the present invention are excellent in mechanical strength and heat resistance, low in linear expansion coefficient and anisotropy, and little susceptible to deterioration. Accordingly, they are applicable for various uses such as automobile parts, mechanical parts, electrical-electronic parts and the like, and particularly suitable for use as a heat-resistant film for a flexible printed circuit board.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A resin composition characterized as containing (A) a synthetic resin having a melting temperature of 300° C. or above and (B) a platy inorganic filler incorporated in the resin and having the following properties; pH of aqueous dispersion: 5.5-8.0, amount of extracted alkalis: Na 30 ppm or below and K 40 ppm or below, maximum diameter a: 50 μm or below, thickness b: 1.0 μm or below, and aspect ratio (a/b): 20 or above.
Description
- The present invention relates to a resin composition and a flexible printed circuit board. More particularly, the present invention relates to a resin composition which is excellent in mechanical strength and heat resistance, low in linear expansion coefficient and anisotropy, and little susceptible to deterioration, and also to a flexible printed circuit board using the same.
- Synthetic resins having melting temperatures of 300° C. and above exhibit good heat resistance, mechanical strength, mechanical rigidity, chemical resistance, flame retardance, processability on a molding or extruding machine and the like, and have conventionally achieved wide use for many applications such as in the production of automobile, mechanical, electrical and electronic parts.
- However, the recent remarkable advances in technology require these synthetic resins to achieve further property improvements, such as in heat resistance, mechanical strength and rigidity, while maintaining the desirable properties they intrinsically possess.
- The loading of fibrous inorganic fillers, such as glass fibers, carbon fibers, wollastonite and potassium titanate fibers, in synthetic resins is known to considerably improve mechanical strength, rigidity, heat resistance and other properties thereof. Resin compositions loaded with such glass fibers or carbon fibers however provide an extremely roughened surface and a poor appearance. Also, resin compositions loaded with wollastonite or potassium titanate fibers are highly anisotropic and in some cases yield variations in linear expansion coefficient, among mechanical properties.
- The loading of powder- or flake-like inorganic fillers such as calcium carbonate, mica and talc, while sufficient to lower a mold or die shrinkage factor, a linear expansion coefficient or the like and thus increase the dimensional stability, is insufficient to achieve improvements in mechanical strength and heat resistance. Also, the loading of such inorganic fillers in synthetic resins having melting temperatures of 300° C. and above causes hydrolysis of such synthetic resins, which is considered due to either alkaline contents (e.g., sodium and potassium) liberated from the inorganic fillers, or interlayer water from the inorganic fillers, or weakly acidic or alkaline nature of the inorganic fillers. This is also accompanied by the molecular weight reduction which leads to a drop of molding stability and a loss of desirable properties intrinsic to such synthetic resins, which have been problems.
- Synthetic resins having melting temperatures of 300° C. and above are also being used for heat-resistant films for use in flexible printed circuit boards. A polyimide resin is representative of materials useful for such heat-resistant films. However, as the technology continues to push up density and integration levels of circuits, the polyimide resin because of its high hygroscopicity will likely become insufficient to provide circuit reliability, which will be a problem. In addition to be high in price, the polyimide resin film can not be laminated onto a metal foil without the use of an adhesive. These problematically increase a total cost.
- The above-described polyimide resin is a thermosetting polyimide resin. The use of a thermoplastic resin, such as a thermoplastic polyimide resin, is now under investigation as a possible alternative. The use of the thermoplastic polyimide resin or other thermoplastic resins enables recycling and reduction of a total cost since they can be laminated onto a metal foil by a film extrusion technique. However, the sole use of the thermoplastic polyimide resin results in the insufficient mechanical strength and heat resistance. Also because the thermoplastic polyimide resin has a high linear expansion coefficient in the range of 4−5×10−5° C.−1, curling inevitably occurs when it is laminated onto a metal foil having a linear expansion coefficient of 1−2×10−5° C.−1, which has been a problem. That is, the film is adhered to the metal foil in the laminating process. In the case where the film differs largely in linear expansion coefficient from the metal foil, a resulting laminate of the film and metal foil when cooled to ambient temperature is curled due to the dimensional difference between the top and bottom.
- Attempts have been made to improve mechanical strength, heat resistance or the like of thermoplastic resins such as a thermoplastic polyimide resin or to reduce their linear expansion coefficients by loading inorganic fillers therein. Examples of proposed inorganic fillers include powder-form inorganic fillers such as mica, talc and silica; inorganic fibers such as potassium titanate fibers; and the like.
- However, the loading of such inorganic fillers in thermoplastic resins results in the production of rigid, less flexible and thus very brittle films. Another problem is the failure to impart the contemplated linear expansion coefficients to resulting films. Other problems arise when the above-described hydrolysis of resins is caused to take place by the alkali contents liberated from inorganic fillers. That is, the resulting molecular weight reduction of resins lowers desirable properties intrinsic to such resins and results in the difficulty to take a film off.
- It is an object of the present invention to provide a resin composition, suitable for use as a heat-resistant film for a flexible printed circuit board, which is superior in mechanical strength and heat resistance, low in coefficient of linear expansion and anisotropy and less susceptible to deterioration, and also provide a flexible printed circuit board.
- A resin composition in accordance with a first aspect of the present invention is characterized as containing (A) a synthetic resin having a melting temperature of 300° C. or above and (B) a platy inorganic filler incorporated in the resin and having the following properties;
- pH of aqueous dispersion: 5.5-8.0,
- amount of extracted alkalis, Na: 30 ppm or below, K: 40 ppm or below,
- maximum diameter a: 50 μm or below,
- thickness b: 1.0 μm or below, and
- aspect ratio (a/b): 20 or above.
- The incorporation of the platy inorganic filler having the above-specified properties results in the provision of a resin composition which has reduced mold or die shrinkage factor and linear expansion coefficient, satisfactory dimensional stability, improved heat resistance and mechanical strength, and superior processability on a molding or extruding machine. Also if the above-specified pH of aqueous dispersion and amount of extracted alkalis are satisfied, a synthetic resin becomes less susceptible to deterioration and can maintain its intrinsic desirable properties and sustain the effect obtained via loading of the platy inorganic filler for a very long period of time. In the amount of extracted alkalis, Ca may preferably be 10 ppm or below.
- A resin composition in accordance with a second aspect of the present invention is characterized as containing (A) a synthetic resin having a melting temperature of 300° C. or above and (B) a flaky inorganic filler incorporated in the resin and having a pH of aqueous dispersion in the range of 5.5-8.0 and an amount of extracted alkalis, Na: 30-ppm or below and K: 40 ppm or below.
- If the above-specified conditions, i.e., pH of aqueous dispersion and amount of extracted alkalis are satisfied, a synthetic resin becomes less susceptible to deterioration and can maintain its intrinsic desirable properties and sustain the effect obtained via loading of the flaky inorganic filler for a very long period of time. In the amount of extracted alkalis, Ca may preferably be 10 ppm or below.
- A resin composition in accordance with a third aspect of the present invention is characterized as containing (A) a synthetic resin having a melting temperature of 300° C. or above and (B) a synthetic mica incorporated in the resin and having a maximum diameter a of 20 μm or below, a thickness b of 0.05-1.0 μm and an aspect ratio of 20 or above.
- The incorporation of the synthetic mica having the above-specified maximum diameter a, thickness b and aspect ratio results in the provision of a resin composition which is superior in mechanical strength and heat resistance, lower in linear expansion coefficient and anisotropy, less susceptible to deterioration and better processable.
- The matters common to plural aspects, among the first, second and third aspects, may be hereinafter referred to as those of the “present invention”.
- In the present invention, a 1 g sample is metered into a 100 ml beaker, 100 ml of deionized water is introduced into the beaker, the beaker content is stirred by a magnetic stirrer for 10 minutes and then its pH is measured by a pH meter. The measured pH value is given as the pH of aqueous dispersion.
- Also, a 1 g sample is dispersed in 100 ml water and the resulting aqueous dispersion is stirred at room temperature for 1 hour and filtered using a No. 5 filter paper to obtain a filtrate for subsequent measurement by atomic absorption spectrometry. The measured amount of alkalis is given as the amount of extracted alkalis.
- The maximum diameter, thickness and aspect ratio can be measured by observation using a scanning electron microscope and calculated.
- The resin composition of the present invention is useful, for example, for formation into a heat-resistant film for use in a flexible printed circuit board.
- A flexible printed circuit board in accordance with the present invention is characterized as incorporating a heat-resistant film obtained by processing the resin composition of the present invention.
- Specifically, any platy inorganic substance known in the art, either natural or synthetic, can be used for the platy inorganic filler in the first aspect of the present invention, so long as it has the properties and dimension within the respective ranges as specified above. Examples of such inorganic substances include flaky or sheetlike mica, sericite, illite, talc, kaolinite, montmorillonite, smectite and vermiculite; and platy or sheetlike titanium dioxide, potassium titanate, lithium titanate, boehmite and alumina. Among them, flaky or sheetlike mica, and platy or sheetlike titanium dioxide, potassium titanate, lithium titanate, boehmite, γ-alumina and α-alumina are preferably used.
- In the present invention, the term platy is used in a generic sence to encompass sheetlike and flaky substances as well as platy substances.
- Flaky or sheetlike mica can be synthesized, for example, by a melting process using internal or external heating, or other processes such as disclosed in Japanese Patent Laid Open No. Hei 5-270815. A specific example of such synthetic mica can be represented by the following general formula:
XnYmZ4O10F2 (1) - (where, X indicates K+, Na+, Li+, Ca2+, Ba2+, Sr2+ or Rb2+; Y indicates Mg2+, Fe2+, Fe3+, Ni2+, Ti2+, Zn2+, Cu2+, Mn2+, Al2+ or Co2+; Z indicates Al3+, Fe3+, B3+, Si4+ or Ge4+; n denotes a numerical value of ⅓-1; and m denotes a numerical value of 2-3).
- Those sold in the market, such as under the product names PDM-9WA and PDM-GUP (products of Topy Industries Ltd.) and MK-100 (product of Corp Chemical Co., Ltd.), can also be used.
- Flaky or sheetlike boehmite and alumina can be synthesized, for example, as by a flux process, a melting process, a hydrothermal synthesis process such as disclosed in Japanese Patent Laid Open No. Hei 9-59018 or a process in which a flaky or sheetlike aluminum-containing compound is subjected to a heat treatment.
- The platy inorganic substance, if it fails to fall within the above-specified range in at least one of the above-itemized properties, may be treated by a variety of methods known in the art, such as those described below, to render it applicable for the present invention. For example, the platy inorganic substance may be treated with an inorganic or organic acid, such as hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid or phosphorous acid, to adjust a pH of its aqueous dispersion and/or an amount of alkalis extracted therefrom. More specifically, the platy inorganic substance may be mixed with an acid in a mixer or tumbler and then fully dried. It may alternatively be immersed in an aqueous acid solution. Subsequent to the acid treatment, the platy inorganic acid may be fully washed with water. Another effective method is to calcine it at 600° C.-1,300° C.
- The platy inorganic substance may be pulverized in accordance with any pulverizing method known in the art to bring its dimension within the specified range. The platy inorganic substance may be pulverized, for example, by an air impacting mill such as a jet mill, a media agitating mill such as a ball mill or atomizer, a Dry Micros crusher type mill (product of Nara Machinery Co., Ltd.), an impact shearing mill such as a roller mill or atomizer, a nanomizer (product of Yoshida Kikai Kogyo, Co., Ltd.) or the like. The use of the jet mill, media agitating mill and nanomizer is particularly preferred for their ability to achieve pulverization of the platy inorganic substance to a maximum diameter of 10 μm or below.
- One or more of the substances selected from the group consisting of flaky titanate compounds, mica, sericite, illite, talc, kaolinite, montmorillonite and vermiculite can be used for the flaky inorganic filler in the second aspect. Specifically, those which fall within the category of flaky inorganic filler, among the platy inorganic fillers listed in the first aspect, can be used.
- Also, those which fall within the category of synthetic mica, among the platy inorganic fillers listed in the first aspect, can be used for the synthetic mica in the third aspect.
- Although described above to be 50 μm or below, the maximum diameter a (major diameter) of the platy inorganic filler in the first aspect is preferably 20 μm or below, more preferably 8 μm or below. Also, its minor diameter is generally 50 μm or below, preferably in the approximate range of 0.5-50 μm, more preferably in the range of 1-30 μm. These two different terms, major and minor diameters, are used herein for convenience of disclosure to define the dimension of the inorganic filler. There accordingly is a case where the major diameter is equal or close to the minor diameter. In such a case, the platy inorganic filler of the present invention has a square or equivalent configuration.
- The platy inorganic filler may be treated at its surface with a coupling agent or the like. The surface treatment of the platy inorganic filler with the coupling agent or the like further improves its mechanical strength and heat resistance so that a resin becomes less susceptible to deterioration and thus more processable. The coupling agent is not particularly specified. Silane, titanate, aluminate and other generally-known coupling agents can be used. Conventional surface treatment processes, both dry and wet, can be utilized. The wet surface treatment process is particularly preferred. The flaky inorganic filler in the second aspect and the synthetic mica in the third aspect may also be subjected to a surface treatment with a coupling agent or the like.
- The platy inorganic filler is preferably loaded in the amount of 5-100 parts by weight, more preferably 10-50 parts by weight, based on 100 parts by weight of a synthetic resin which is the (A) component. The loading of below 5 parts by weight may result in the insufficient mechanical strength and dimensional accuracy. The loading of over 100 parts by weight may reduce the fluidity of the composition or provide a poorer appearance to a resulting product. The above-specified loading can also be applied to the flaky inorganic filler in the second aspect and the synthetic mica in the third aspect.
- In the present invention, specific examples of synthetic resins which have melting temperatures of 300° C. and above include polyallyl ether ketone, polyethersulfone, polysulfone, polyether imide, liquid crystal polymer, thermoplastic polyimide, polyallylate, polyether nitrile, polyphenylene sulfide, polyphenylene ether, polyamide-imide and the like. Preferred among them are polyallyl ether ketone, polyether imide, polyallylate, aromatic polysulfone, liquid crystal polymers and thermoplastic polyimide. These synthetic resins may be used alone or in combination, if necessary.
- One or more of generally-used additives can be added to the resin composition of the present invention within the range that does not impair the desirable properties thereof. Such additives include, for example, heat stabilizers, lubricants, mold releasers, pigments, dyes, UV absorbers, flame retardants, lubricating agents, fillers, reinforcers and the like. The use of heat stabilizers, among these additives, is preferred. Although any of conventionally-known heat stabilizers can be used, the use of phosphorus acid, hindered phenol, phosphate and the like is particularly suitable.
- The resin composition of the present invention can be produced by various methods known in the art. An exemplary production method specifically involves introducing, via a side hopper, a platy inorganic filler, which is the (B) component, and other optional components into a twin-screw mixer or the like in which a synthetic resin, which is the (A) component, is being melt kneaded, thereby achieving mixing thereof. A single-screw extruder, co-kneader, multi-screw extruder or the like can also be utilized to achieve the mixing. This enables us to obtain the resin composition in the pellet form.
- The resin composition of the present invention can be readily fabricated into products by various processing methods known in the art, such as extrusion, injection molding and compression molding.
- The resin composition of the present invention can serve as a compound useful for fabrication into a component part which constitutes a part or whole of an article in substantially all the fields in which synthetic resins are applicable. It is applicable, for example, to transport machines such as automobiles, vehicles, marines, aircrafts and motorcycles; electrical and electronic devices such as household appliances, AV devices, OA devices and communication devices; various mechanical products; and the like.
- The resin composition of the present invention is also suitable for formation into a heat-resistant film for a flexible printed circuit board. A film-forming method is not particularly specified. The resin composition can be formed into any form of a film, either oriented or non-oriented. For the fabrication of the non-oriented film, various methods can be utilized, including, for example, a casting method (T-die method) in which the resin composition is melt kneaded in an extruder and extruded from a T-die into a film and then the film cast on a surface of a casting roll is cooled; a tubular method in which the resin composition is extruded from a ring die into a tube which is subsequently cooled with air or water; and the like.
- For the fabrication of the oriented film, a method can be utilized in which the non-oriented film fabricated by the casting or tubular method is drawn either monoaxially or biaxially at a drawing temperature of 50-180° C. and optionally heat set at a temperature below a melting point thereof.
- In the case where the resin used is a crystalline resin such as polyallyl ether ketone, liquid crystal polymer, thermoplastic polyimide, polyethernitrile or polyphenylene sulfide, it is desirable that the film obtained with the practice of any of the above-described methods be subjected to recrystallization. In accordance with one applicable recrystallizing method, the film either once taken up or while extruded is either passed through a heating furnace or brought into contact with a heating roller, both set at a temperature several tens ° C. higher than a glass transition point Tg of the crystalline resin used, so that the film can be recrystallized.
- The present invention is below described in more detail by way of Examples and Comparative Examples.
- The synthetic resins used in Examples and Comparative Examples are listed below.
- PEEK (polyether ether ketone): product name 450G, product of Victrex Mfg. Ltd.
- PEI (polyether imide): product name ULTEM 1000-1000, product of Japan GE Plastics Inc.
- TPI (thermoplastic polyimide): product name AURUM, product of Mitsui Chemicals, Inc.
- PAR (polyallylate): product name U-10, product of Unitika Ltd.
- LCP (liquid crystal polymer): product name C950, product of Polyplastics Co., Ltd.
- PEN (polyethernitrile): product name Idemitsu PEN; RF, product of Idemitsu Petro. Chem. Co., Ltd.
- PAI (polyamide-imide); product name TORLON 4203L, product of Teijin-Amoco Engineering Plastics Inc.
- PES (polyether sulfone): product name RADEL A-200A, product of Teijin-Amoco Engineering Plastics Inc.
- PI (polyimide): product name U-PILEX R, product of Ube Industries, Ltd.
- The platy inorganic fillers used in Examples and Comparative Examples are listed below.
- (1) Synthetic mica: A synthetic mica (product name: PDM-9WA, product of Topy Industries, Ltd.) was calcined at 1,000° C. and then classified.
- (2) Synthetic mica: A synthetic mica (product name: PDM-GUA, product of Topy Industries, Ltd.) was calcined at 1,000° C. and then classified.
- (3) Synthetic mica; product name PDM-9WA, product of Topy Industries, Ltd.)
- (4) Natural mica; product name Z-20, product of Hikawa Kogyo Co., Ltd.
- (5) Natural mica: The above natural mica (4) was rendered into a 5 weight % slurry in 0.1-N HNO3, stirred for 2 hours, filtered and washed with water for neutralization. The resultant was dried at 120° C. for 24 hours, pulverized and then classified.
- (6) Natural mica: A natural mica (product name: FSN, product of Sanshin Koko Co., Ltd.) was calcined at 70° C. for 4 hours, rendered into a 5 weight % slurry in 0.1-N HNO3, stirred for 2 hours, filtered and washed with water for neutralization. The resultant was dried at 120° C. for 24 hours, pulverized and then classified.
- (7) Natural mica: product name HD-0313, product of Nichien Co., Ltd.
- (8) Natural mica: product name A-11, product of Yamaguchi Mica Co., Ltd.
- (9) Boehmite (1): 7.8 kg of aluminum hydroxide having an average particle diameter of 0.5 μm, 39 kg of water, 1.6 kg of calcium nitrate, 0.4 kg of sodium hydroxide and 0.12 kg of calcium hydroxide were introduced as reactants into an autoclave and then caused to react at 170° C. for 7 hours. The reaction product was washed with water, filtered, dried to obtain boehmite. This was further calcined at 600° C. to obtain γ-alumina.
- The maximum diameter a (μm), thickness b (μm), aspect ratio a/b, pH of aqueous dispersion and amount of extracted alkalis (ppm) are listed in Table 1, for the platy inorganic fillers (1)-(9).
TABLE 1 Amount of Dimension Aspect Aqueous Extracted Alkalis (μm) Ratio Dispersion (ppm) a b a/b pH Na K Ca (1) Synthetic 12 0.5 24 6.3 <0.1 1.2 <0.1 Mica (2) Synthetic 16 0.3 53 7.1 0.2 2.9 0.1 Mica (3) Synthetic 30 0.5 60 6.3 <0.1 1.2 <0.1 Mica (4) Natural 20 0.5 40 10.0 1.8 4.1 12 Mica (5) Natural 20 0.5 40 6.7 0.2 1.7 <0.1 Mica (6) Natural 6.0 0.1 60 6.5 0.2 0.9 <0.1 Mica (7) Natural 64 0.3 210 9.6 1.1 3.1 4.5 Mica (8) Natural 18 0.3 60 9.7 2.9 11.5 3.6 Mica (9) Boehmite 5.0 0.2 25 7.2 2.0 <0.1 7.0 - Among the above-listed platy inorganic fillers, those designated as (1)-(3), (5), (6) and (9) fall within the specified scope of the present invention, and those designated as (4), (7) and (8) are for comparative purposes.
- The above-listed synthetic resins and inorganic fillers in the respective proportions (parts by weight) specified in Table 2 were fed into a double-shaft kneader (product name: KTX46, product of Kobe Steel, Ltd.) to produce the resin compositions of Examples and Comparative Examples in the form of pellets. A kneading torque serving as an indication of melt-stability, flexural strength and flexural modulus serving as an indication of mechanical strength, and a mold shrinkage factor serving as an indication of anisotropy were measured for the compositions obtained. The results are given in Table 3.
- Each sample was charged and kneaded at 400° C. using a Labo Plastomill (product of Toyo Seiki Seisaku-sho, Ltd., chamber32 ml). The kneading torque was measured after the lapse of 3 minutes and 20 minutes from the start of kneading. The flexural strength and flexural modulus were measured according to JIS K 7171. A molded article was produced using a 90.01×49.99×3.20 mm mold with a film gate and the mold shrinkage factor was calculated from the following equation:
Mold shrinkage factor(%)=[(dimension of the mold−dimension of the molded article)/dimension of the mold]×100 - Also, thermal properties were measured according to JIS K 7191 (A method: 1.8 MPa).
TABLE 2 Platy Inorganic Filler Synthetic Natural Natural Synthetic Resin Mica Mica Mica PEEK PEI PAR (1) (5) (4) Ex. 1 85 15 2 70 30 3 85 15 4 85 15 5 42.5 42.5 15 6 35 35 30 7 42.5 42.5 15 8 35 35 30 9 35 35 30 Comp. 1 85 15 Ex. 2 70 30 3 85 15 4 85 15 5 42.5 42.5 15 6 35 35 30 7 35 35 30 -
TABLE 3 Kneading Torque Mold Thermal kg · m Flexural Flexural Shrinkage Property After After Strength Modulus Factor % HDT 3 min. 20 min. MPa GPa MD TD ° C. Ex. 1 1.04 1.22 159 5.2 0.51 0.55 212 2 1.07 1.24 171 9 0.42 0.50 230 3 0.69 0.58 124 5 0.38 0.42 208 4 1.02 1.22 130 5.1 0.37 0.41 183 5 0.83 0.92 146 4.8 0.38 0.42 213 6 0.87 0.98 148 8.2 0.23 0.27 222 7 0.80 0.89 140 4.7 0.32 0.36 212 8 0.93 0.91 145 8 0.22 0.26 220 9 0.91 0.95 150 8.1 0.25 0.30 217 Comp. 1 0.56 0.82 132 3.9 0.72 0.80 180 Ex. 2 0.62 0.88 143 7.2 0.64 0.73 186 3 0.43 0.13 103 3.7 0.50 0.54 172 4 0.51 0.21 106 3.8 0.52 0.58 164 5 0.68 0.47 120 3.5 0.51 0.59 178 6 0.64 0.51 123 6.5 0.46 0.48 188 7 0.71 0.53 127 6.5 0.49 0.56 178 - As indicated in Table 3, the resin compositions of Examples in accordance with the present invention show the smaller changes in kneading torque between after 3 minutes and after 20 minutes, compared to the resin compositions of Comparative Examples, demonstrating their superior melt stability. They are also found to exhibit the superior mechanical strength, dimensional stability and heat resistance.
- The procedure used in the above Examples was followed, except that the components were blended in the proportions (parts by weight) specified in Table 4, to prepare resin compositions. Their properties were evaluated. The results are given in Table 5. Comparative Example 10 was performed using PEEK only.
TABLE 4 Synthetic Resin Platy Inorganic Filler Type Amount Type Amount Ex. 10 PEEK 70 (2) 30 11 PEEK 70 (3) 30 12 PEEK 70 (6) 30 13 PEEK 70 (9) 30 14 PEI 70 (1) 30 15 TPI 70 (1) 30 16 PAR 70 (1) 30 17 LCP 70 (1) 30 18 PEN 70 (1) 30 19 PAI 70 (1) 30 20 PES 70 (1) 30 Comp. 8 PEEK 70 (7) 30 Ex. 9 PEEK 70 (8) 30 10 PEEK 100 — 0 -
TABLE 5 Kneading Torque Mold Thermal kg · m Flexural Flexural Shrinkage Property After After Strength Modulus Factor % HDT 3 min. 20 min. MPa GPa MD TD ° C. Ex. 10 1.09 1.26 173 9.2 0.40 0.48 230 11 1.02 1.22 168 8.8 0.43 0.52 229 12 1.04 1.24 175 9.4 0.38 0.46 231 13 1.03 1.21 165 8.2 0.46 0.54 222 14 0.64 0.56 120 8.1 0.34 0.36 210 15 0.98 0.92 128 8.6 0.32 0.35 240 16 0.82 0.78 130 8.0 0.33 0.36 182 17 0.46 0.42 170 11.0 0.10 0.30 240 18 0.58 0.54 168 7.0 0.38 0.50 232 19 0.52 0.48 166 6.8 0.35 0.42 236 20 0.62 0.59 140 4.6 0.36 0.40 220 Comp. 8 0.60 0.92 132 7.0 0.66 0.75 182 Ex. 9 0.61 0.90 134 7.2 0.64 0.76 183 10 0.98 1.00 146 3.7 1.2 1.7 150 - As apparent from Table 5, the resin compositions of Examples in accordance with the present invention show the smaller changes in kneading torque between after 3 minutes and after 20 minutes, compared to the resin compositions of Comparative Examples, demonstrating their superior melt stability. They are also found to exhibit the superior mechanical strength, dimensional stability and heat resistance.
- The components in the proportions (parts by weight) specified in Table 6 were blended and fed into the double-shaft kneader employed in the above Examples to obtain a pellet-form resin composition. The resulting pellet-form resin composition was extruded from a coat hanger die into a 75 μm thick film. The obtained film was then evaluated in accordance with the following procedures.
- (1) Film extrudability: A melt resin drawn down from a T-die was taken up and indicated by ◯ if it was processed successfully into a film, by Δ if it was successfully taken up but had a poor appearance or produced many bubbles and by x if it failed to be taken up.
- (2) Toughness (flexibility):
- Each film was bent at an angle of 180 degrees and observed if brittle fracture was caused to occur. The film was indicated by x if it broke like a glass or a part or whole of its bent portion fractured and by ◯ if no breakage or fracture was observed.
- (3) Curl behavior of Cu-laminated film: Each film was pressed to a 35 μm thick electrolytic Cu foil under a pressure of 10 kg/cm2 at 210° C. for 30 minutes to achieve press-bonding thereof. The curl behavior of the resulting Cu-laminated film was measured and indicated by ◯ if its radius of curvature was over 200 mm, by Δ if within the range of 100-200 mm and by x if below 100 mm.
- (4) Tensile strength: The tensile strength was measured by performing a tensile test at a pulling rate of 300 mm/min according to JIS K 7311.
- (5) Linear expansion coefficient: An SSC5200H Disk Station, TMA120 thermomechanical analyzer, manufactured by Seiko Instruments Inc., was utilized to measure the linear expansion coefficient in the 20-130° C. temperature range. MD indicates a direction along which the film was taken up and TD indicates a direction transverse thereto.
- (6) TMA elongation: A 5×25 mm strip test specimen was placed under a tension load of 50 g and its elongation (%) was measured at a temperature increase of 5° C./min within the range of 20-250° C. using the TMA120 thermomechanical analyzer.
- (7) Resistance to soldering temperature: Each film was immersed in a 260° C. bath of molten solder for 10 seconds and observed for deformation. The film was indicated by x if it deformed largely, by Δ if deformed moderately and by ◯ if little deformed.
- The results are shown in Table 7.
TABLE 6 Synthetic Resin Synthetic Mica Natural Mica Type Amount (1) (2) (3) (4) (7) (8) Ex. 21 PEEK 70 30 22 PEI 70 30 23 PEEK/PEI 85 15 24 PEEK/PEI 70 30 25 PEEK/PEI 70 30 26 TPI 70 30 27 PAR 70 30 28 LCP 70 30 29 PEN 70 30 30 PAI 70 30 31 PES 70 30 Comp. 11 PEEK 70 30 Ex. 12 PEEK 70 30 13 PEEK/PEI 70 30 14 PEEK/PEI 70 30 15 PI 100 16 PEEK 100 -
TABLE 7 Process- Film Properties ability Curl Linear Film Behavior of Tensile Expansion TMA Resistance Extrud- Toughness Cu-Laminated Strength Coefficient ×10−5/K Elongation to Soldering ability (Flexibility) Film kg/mm2 MD TD % Temp. Ex. 21 ⊚ ◯ ◯ 21.1 1.8 2.4 1.0 ◯ 22 ◯ ◯ ◯ 20.2 1.9 2.5 1.8 ◯ 23 ⊚ ◯ Δ 19.8 2.3 2.8 1.6 ◯ 24 ⊚ ◯ ◯ 20.3 2.0 2.3 1.4 ◯ 25 ⊚ ◯ ◯ 20.9 1.9 2.1 1.2 ◯ 26 ◯ ◯ ◯ 21.4 2.2 2.3 1.7 ◯ 27 ◯ ◯ ◯ 21.2 2.4 2.5 2.0 ◯ 28 ◯ ◯ ◯ 21.8 2.6 2.7 2.2 ◯ 29 ◯ ◯ ◯ 21.0 2.3 2.5 1.9 ◯ 30 ◯ ◯ ◯ 21.3 2.5 2.7 2.3 ◯ 31 ◯ ◯ ◯ 21.2 2.2 2.3 1.8 ◯ Comp. 11 ◯ Δ X 6.2 4.7 5.2 3.8 Δ Ex. 12 Δ X X 4.2 4.9 5.3 4.6 X 13 X X X 3.8 5.4 5.7 7.2 X 14 X X X 3.9 5.3 6.2 8.2 X 15 — ◯ ◯ 30.0 1.3 1.5 0.4 ◯ 16 ⊚ ◯ X 10.0 4.8 5.0 6.2 Δ - As can be clearly seen from the results shown in Table 7, the resin compositions of Examples in accordance with the present invention are well processable into films. Also, the films obtained via processing of these compositions exhibit the superior mechanical strength, heat resistance and the like. Further, when they are laminated with a copper foil, curling is maintained at a low degree of occurrence.
- The procedure used in the above Examples was followed, except that the components were blended in the proportions (parts by weight) specified in Table 8, to prepare resin compositions in accordance with the present invention and produce 75 μm thick films therefrom. Their properties were subsequently evaluated in the same manner as in the above Examples. The results are shown in Table 9. In Table 9, the evaluation results obtained for PI only and PEEK only are also shown.
TABLE 8 Synthetic Resin Platy Inorganic Filler Ex. Type Amount Type Amount 32 PEEK 70 (6) 30 33 PEI 70 (6) 30 34 PEEK/PEI 85 (6) 15 35 PEEK/ PEI 70 (6) 30 36 PEEK/PEI 70 (6) 30 37 TPI 70 (6) 30 38 PAR 70 (6) 30 39 LCP 70 (6) 30 40 PEN 70 (6) 30 41 PAI 70 (6) 30 42 PES 70 (6) 30 43 PEEK 70 (9) 30 44 PEI 70 (9) 30 45 PEEK/PEI 70 (9) 30 -
TABLE 9 Process- Film Properties ability Curl Linear Film Behavior of Tensile Expansion TMA Resistance Extrud- Toughness Cu-Laminated Strength Coefficient ×10−5/K Elongation to Soldering ability (Flexibility) Film kg/mm2 MD TD % Temp. Ex. 32 ⊚ ◯ ◯ 22.5 1.5 2.0 0.9 ◯ 33 ⊚ ◯ ◯ 21.6 1.6 2.1 1.7 ◯ 34 ⊚ ◯ ◯ 21.1 1.9 2.3 1.4 ◯ 35 ⊚ ◯ ◯ 21.7 1.6 1.9 1.2 ◯ 36 ⊚ ◯ ◯ 22.9 1.8 1.9 1.0 ◯ 37 ⊚ ◯ ◯ 22.6 2.0 2.1 1.5 ◯ 38 ⊚ ◯ ◯ 23.3 2.1 2.2 1.8 ◯ 39 ⊚ ◯ ◯ 22.4 1.9 2.1 2.0 ◯ 40 ⊚ ◯ ◯ 22.7 2.1 2.2 1.7 ◯ 41 ⊚ ◯ ◯ 21.9 1.9 2.1 2.1 ◯ 42 ⊚ ◯ ◯ 22.2 2.0 2.1 1.6 ◯ 43 ⊚ ◯ ◯ 24.2 1.7 2.2 1.1 ◯ 44 ⊚ ◯ ◯ 23.3 1.8 2.3 1.9 ◯ 45 ⊚ ◯ ◯ 22.8 2.1 2.5 1.6 ◯ PI — ◯ ◯ 30.0 1.3 1.5 0.4 ◯ PEEK ⊚ ◯ X 10.0 4.8 5.0 6.2 Δ - As can be clearly seen from the results shown in Table 9, the resin compositions of Examples in accordance with the present invention are well processable into films. Also, the films obtained via processing of these compositions exhibit the superior mechanical strength, heat resistance and the like. Further, when they are laminated with a copper foil, curling is maintained at a low degree of occurrence.
- Also, the above-fabricated laminate films with a copper foil were used to produce flexible printed circuit boards. These boards were found to insure high circuit reliability.
- The resin compositions in accordance with the present invention are excellent in mechanical strength and heat resistance, low in linear expansion coefficient and anisotropy, and little susceptible to deterioration. Accordingly, they are applicable for various uses such as automobile parts, mechanical parts, electrical-electronic parts and the like, and particularly suitable for use as a heat-resistant film for a flexible printed circuit board.
Claims (14)
1-10. (canceled)
11. A thermoplastic resin composition comprising:
(A) a thermoplastic resin having a melting temperature of 300° C. or above, and
(B) a platy inorganic filler incorporated in the thermoplastic resin and having the following properties:
pH of aqueous dispersion: which is determined by metering a 1 g sample into a 100 ml beaker, introducing 100 ml of deionized water into the beaker, stirring the beaker content by a magnetic stirrer for 10 minutes, and then measuring its pH by a pH meter: 5.5-8.0;
amount of extracted alkalis: which is determined by dispersing a 1 g sample in 100 ml water and stirring the resulting aqueous dispersion at room temperature for 1 hour and filtering it through a No. 5 filter paper to obtain a filtrate which subsequently is measured by atomic absorption spectrometry: Na 30 ppm or below and K 40 ppm or below;
maximum diameter a: 50 μm or below;
thickness b: 1.0 μm or below; and
aspect ratio (a/b): 20 or above,
wherein said platy inorganic filler is incorporated in said thermoplastic resin, and said resin composition has thermal plasticity.
12. The thermoplastic resin composition as recited in claim 11 , wherein said platy inorganic filler is a flaky mica.
13. The thermoplastic resin composition as recited in claim 11 , wherein said amount of extracted alkalis further includes Ca: 10 ppm or below.
14. A thermoplastic resin composition comprising:
(A) a synthetic resin having a melting temperature of 300° C. or above, and
(B) a flaky inorganic filler incorporated in the resin and having a pH of aqueous dispersion in the range of 5.5-8.0, and an amount of extracted alkalis: Na=30 ppm or below, and K=40 ppm or below.
15. The thermoplastic resin composition as recited in claim 14 , wherein said flaky inorganic filler comprises one or more of substances selected from the group consisting of flaky titanate compounds, mica, sericite, illite, talc, kaolinite, montmorillonite, boehmite, γ-alumina and α-alumina.
16. The thermoplastic resin composition as recited in claim 14 , wherein said flaky inorganic filler is an inorganic filler treated with an inorganic or organic acid to remove the extractable alkalis and/or heat treated at 600-1,300° C.
17. A thermoplastic resin composition comprising:
(A) a thermoplastic resin having a melting temperature of 300° C. or above; and
(B) a synthetic mica incorporated in the resin and having a maximum diameter a of 20 μm or below, a thickness b of 0.05-1.0 μm and an aspect ratio of 20 or above,
wherein said thermoplastic resin composition has thermal plasticity.
18. The thermoplastic resin composition as recited in claim 11 , wherein said thermoplastic resin having a melting temperature of 300° C. or above comprises one or more substances selected from the group consisting of polyallyl ether ketone, polyetherimide, thermoplastic polyimide, polyallylate, aromatic polysulfone and liquid crystal polymer.
19. The thermoplastic resin composition as recited in claim 11 , wherein said resin composition is a resin composition useful for formation into a heat-resistant film for a flexible printed circuit board.
20. The thermoplastic resin composition as recited in claim 14 , wherein said synthetic resin having a melting temperature of 300° C. or above comprises one or more substances selected from the group consisting of polyallyl ether ketone, polyetherimide, thermoplastic polyimide, polyallylate, aromatic polysulfone and liquid crystal polymer.
21. The thermoplastic resin composition as recited in claim 14 , wherein said resin composition is a resin composition useful for formation into a heat-resistant film for a flexible printed circuit board.
22. The thermoplastic resin composition as recited in claim 17 , wherein said thermoplastic resin having a melting temperature of 300° C. or above comprises one or more substances selected from the group consisting of polyallyl ether ketone, polyetherimide, thermoplastic polyimide, polyallylate, aromatic polysulfone and liquid crystal polymer.
23. The thermoplastic resin composition as recited in claim 17 , wherein said thermoplastic resin composition is a thermoplastic resin composition useful for formation into a heat-resistant film for a flexible printed circuit board.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/001,006 US20080099725A1 (en) | 1999-11-30 | 2007-12-07 | Resin composition and flexible printed circuit board |
| US12/390,749 US7737207B2 (en) | 1999-11-30 | 2009-02-23 | Resin composition and flexible printed circuit board |
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34124699 | 1999-11-30 | ||
| JP341246/1999 | 1999-11-30 | ||
| JP341247/1999 | 1999-11-30 | ||
| JP34124799 | 1999-11-30 | ||
| PCT/JP2000/008414 WO2001040380A1 (en) | 1999-11-30 | 2000-11-29 | Resin composition and flexible printed circuit board |
| US10/148,276 US7361705B2 (en) | 1999-11-30 | 2000-11-29 | Resin composition and flexible printed circuit board |
| US12/001,006 US20080099725A1 (en) | 1999-11-30 | 2007-12-07 | Resin composition and flexible printed circuit board |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2000/008414 Division WO2001040380A1 (en) | 1999-11-30 | 2000-11-29 | Resin composition and flexible printed circuit board |
| US10/148,276 Division US7361705B2 (en) | 1999-11-30 | 2000-11-29 | Resin composition and flexible printed circuit board |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/390,749 Continuation US7737207B2 (en) | 1999-11-30 | 2009-02-23 | Resin composition and flexible printed circuit board |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080099725A1 true US20080099725A1 (en) | 2008-05-01 |
Family
ID=26576925
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/148,276 Expired - Fee Related US7361705B2 (en) | 1999-11-30 | 2000-11-29 | Resin composition and flexible printed circuit board |
| US12/001,006 Abandoned US20080099725A1 (en) | 1999-11-30 | 2007-12-07 | Resin composition and flexible printed circuit board |
| US12/390,749 Expired - Fee Related US7737207B2 (en) | 1999-11-30 | 2009-02-23 | Resin composition and flexible printed circuit board |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/148,276 Expired - Fee Related US7361705B2 (en) | 1999-11-30 | 2000-11-29 | Resin composition and flexible printed circuit board |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/390,749 Expired - Fee Related US7737207B2 (en) | 1999-11-30 | 2009-02-23 | Resin composition and flexible printed circuit board |
Country Status (8)
| Country | Link |
|---|---|
| US (3) | US7361705B2 (en) |
| EP (2) | EP1234857B1 (en) |
| JP (1) | JP4017394B2 (en) |
| KR (1) | KR100529640B1 (en) |
| CN (1) | CN1181139C (en) |
| AU (1) | AU1648701A (en) |
| DE (2) | DE60032647T2 (en) |
| WO (1) | WO2001040380A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100300731A1 (en) * | 2007-05-10 | 2010-12-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Flexible circuit board material and method for producing the same |
Families Citing this family (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001040380A1 (en) * | 1999-11-30 | 2001-06-07 | Otsuka Chemical Co., Ltd. | Resin composition and flexible printed circuit board |
| JP2002012778A (en) * | 2000-04-12 | 2002-01-15 | Sumitomo Chem Co Ltd | Liquid crystalline resin composition, film and method for producing them |
| JP2002294034A (en) * | 2001-04-02 | 2002-10-09 | Hitachi Chem Co Ltd | Resin composition, prepreg for printed circuit board using the same and metal-clad laminated plate |
| JP3914858B2 (en) * | 2002-11-13 | 2007-05-16 | 出光興産株式会社 | Titanium oxide for blending thermoplastic resin composition, thermoplastic resin composition and molded article thereof |
| KR20050094048A (en) * | 2003-01-29 | 2005-09-26 | 테사 악티엔게젤샤프트 | Thermo-activated adhesive material for fpcb agglutinations |
| TW200518869A (en) * | 2003-10-06 | 2005-06-16 | Shinko Electric Ind Co | Method for forming via-hole in resin layer |
| JP2005194491A (en) * | 2003-12-09 | 2005-07-21 | Mitsubishi Plastics Ind Ltd | Resin composition and resin film using the same |
| JP2005220335A (en) * | 2004-01-09 | 2005-08-18 | Mitsubishi Plastics Ind Ltd | Resin composition and molded body using the same |
| US7126215B2 (en) * | 2004-03-30 | 2006-10-24 | Intel Corporation | Microelectronic packages including nanocomposite dielectric build-up materials and nanocomposite solder resist |
| KR101146958B1 (en) | 2004-04-02 | 2012-05-22 | 동우 화인켐 주식회사 | Composition, composition solution and shaped article |
| JP2005314523A (en) * | 2004-04-28 | 2005-11-10 | Sumitomo Chemical Co Ltd | Composition, composition solution and molded article |
| JP2006137011A (en) * | 2004-11-10 | 2006-06-01 | Kuraray Co Ltd | Metal-clad laminate and manufacturing method thereof |
| JP4873903B2 (en) * | 2005-08-19 | 2012-02-08 | 三菱樹脂株式会社 | Thermoplastic resin film and method for producing the same |
| US7651744B2 (en) * | 2005-10-19 | 2010-01-26 | Industrial Technology Research Institute | Liquid crystal display |
| US7662449B2 (en) * | 2005-11-22 | 2010-02-16 | Industrial Technology Research Institute | Liquid crystal display |
| KR100791421B1 (en) | 2006-08-10 | 2008-01-07 | 정재현 | Manufacturing method of high quality mica powder |
| WO2008087986A1 (en) * | 2007-01-18 | 2008-07-24 | Nippon Chemical Industrial Co., Ltd. | Inorganic filler and composite dielectric material using the same |
| US8575255B2 (en) * | 2007-10-19 | 2013-11-05 | Saint-Gobain Ceramics & Plastics, Inc. | Applications of shaped nano alumina hydrate as barrier property enhancer in polymers |
| US20110033720A1 (en) * | 2008-04-11 | 2011-02-10 | Jun Fujita | Transparent adhesive sheet and image display device including the same |
| JP2009298832A (en) * | 2008-06-10 | 2009-12-24 | Mitsubishi Plastics Inc | White-colored film and metal laminate |
| WO2010077779A2 (en) * | 2008-12-17 | 2010-07-08 | Saint-Gobain Ceramics & Plastics, Inc. | Applications of shaped nano alumina hydrate in inkjet paper |
| JP2010275333A (en) * | 2009-05-26 | 2010-12-09 | Mitsubishi Plastics Inc | White film, metal laminate, and LED mounting substrate |
| JP2010275331A (en) * | 2009-05-26 | 2010-12-09 | Mitsubishi Plastics Inc | White film, metal laminate, and LED mounting substrate |
| JP5230532B2 (en) * | 2009-05-29 | 2013-07-10 | 三菱樹脂株式会社 | White film, metal laminate, LED mounting substrate and light source device |
| DE102009045892A1 (en) | 2009-10-21 | 2011-04-28 | Evonik Degussa Gmbh | Polyarylene ether ketone film |
| EP2695913B1 (en) | 2011-04-06 | 2017-04-26 | Toray Industries, Inc. | Liquid crystal polyester resin composition and metal composite molding using same |
| DE102011007837A1 (en) * | 2011-04-21 | 2012-10-25 | Evonik Degussa Gmbh | Adhesive-free composite of a polyarylene ether ketone and a metal foil |
| CN104011137B (en) | 2011-12-01 | 2018-12-07 | 东丽株式会社 | Polyphenyl thioether resin composition, its manufacturing method and reflecting plate |
| DE102012008471B4 (en) | 2012-04-27 | 2018-05-24 | Sartorius Stedim Biotech Gmbh | Filter element with improved testability after dry steaming, process for its preparation and its use |
| JP6405818B2 (en) * | 2014-09-16 | 2018-10-17 | 株式会社村田製作所 | Film for electronic circuit board and electronic circuit board |
| CN105916292A (en) * | 2016-06-16 | 2016-08-31 | 常州市超顺电子技术有限公司 | Bendable aluminum-based copper-clad plate and purpose and preparation method thereof |
| KR20220005466A (en) * | 2019-04-19 | 2022-01-13 | 신에츠 폴리머 가부시키가이샤 | Resin film, high frequency circuit board and manufacturing method thereof |
| JP7617563B2 (en) * | 2021-10-27 | 2025-01-20 | 信越ポリマー株式会社 | Resin films, copper-clad laminates, and circuit boards |
| EP4578930A1 (en) | 2023-12-29 | 2025-07-02 | SHPP Global Technologies B.V. | Polymer compositions with improved anti-dent and particulate release performance |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4762643A (en) * | 1984-10-18 | 1988-08-09 | Armstrong World Industries, Inc. | Binders and fibers combined with flocced mineral materials and water-resistant articles made therefrom |
| US4877565A (en) * | 1987-06-19 | 1989-10-31 | Murata Manufacturing Co., Ltd. | Method of manufacturing circuit component such as stator for variable resistor |
| US5330961A (en) * | 1991-09-12 | 1994-07-19 | Konica Corporation | Image receiving sheet for thermal transfer recording and process for preparing the same |
| US5969456A (en) * | 1996-07-19 | 1999-10-19 | Kabushiki Kaisha Toshiba | Electromagnetic equipment |
| US7361705B2 (en) * | 1999-11-30 | 2008-04-22 | Otsuka Chemical Co., Ltd. | Resin composition and flexible printed circuit board |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02133440A (en) * | 1988-11-15 | 1990-05-22 | Matsushita Electric Works Ltd | Production of electrical laminate |
| JP2993065B2 (en) * | 1990-07-27 | 1999-12-20 | 三菱瓦斯化学株式会社 | Metal foil-clad laminate with smooth surface |
| JPH05105425A (en) * | 1991-10-16 | 1993-04-27 | Matsushita Electric Works Ltd | Production of aluminum oxide powder |
| JP3315147B2 (en) * | 1992-03-21 | 2002-08-19 | トピー工業株式会社 | Method for producing synthetic mica |
| DE4344044A1 (en) | 1993-12-23 | 1995-06-29 | Abb Research Ltd | Electrical insulation material and method for producing an electrically insulated conductor |
| JP2873541B2 (en) * | 1994-07-28 | 1999-03-24 | 大塚化学株式会社 | Resin composition for molding antenna substrate material of high frequency communication equipment |
| JP3409957B2 (en) * | 1996-03-06 | 2003-05-26 | 松下電器産業株式会社 | Semiconductor unit and method of forming the same |
| JPH10168784A (en) * | 1996-12-17 | 1998-06-23 | Oji Paper Co Ltd | Electrically insulating laminate base paper |
| JPH10270816A (en) * | 1997-03-25 | 1998-10-09 | Matsushita Electric Ind Co Ltd | Printed wiring board |
| JP3686258B2 (en) * | 1998-06-19 | 2005-08-24 | 株式会社カネカ | Polyimide film and production method |
-
2000
- 2000-11-29 WO PCT/JP2000/008414 patent/WO2001040380A1/en not_active Ceased
- 2000-11-29 CN CNB008163952A patent/CN1181139C/en not_active Expired - Fee Related
- 2000-11-29 DE DE2000632647 patent/DE60032647T2/en not_active Expired - Lifetime
- 2000-11-29 EP EP00979013A patent/EP1234857B1/en not_active Expired - Lifetime
- 2000-11-29 EP EP20040019933 patent/EP1479729B1/en not_active Expired - Lifetime
- 2000-11-29 AU AU16487/01A patent/AU1648701A/en not_active Abandoned
- 2000-11-29 KR KR10-2002-7006957A patent/KR100529640B1/en not_active Expired - Fee Related
- 2000-11-29 JP JP2001541124A patent/JP4017394B2/en not_active Expired - Lifetime
- 2000-11-29 US US10/148,276 patent/US7361705B2/en not_active Expired - Fee Related
- 2000-11-29 DE DE2000622539 patent/DE60022539T2/en not_active Expired - Lifetime
-
2007
- 2007-12-07 US US12/001,006 patent/US20080099725A1/en not_active Abandoned
-
2009
- 2009-02-23 US US12/390,749 patent/US7737207B2/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4762643A (en) * | 1984-10-18 | 1988-08-09 | Armstrong World Industries, Inc. | Binders and fibers combined with flocced mineral materials and water-resistant articles made therefrom |
| US4877565A (en) * | 1987-06-19 | 1989-10-31 | Murata Manufacturing Co., Ltd. | Method of manufacturing circuit component such as stator for variable resistor |
| US5330961A (en) * | 1991-09-12 | 1994-07-19 | Konica Corporation | Image receiving sheet for thermal transfer recording and process for preparing the same |
| US5969456A (en) * | 1996-07-19 | 1999-10-19 | Kabushiki Kaisha Toshiba | Electromagnetic equipment |
| US7361705B2 (en) * | 1999-11-30 | 2008-04-22 | Otsuka Chemical Co., Ltd. | Resin composition and flexible printed circuit board |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100300731A1 (en) * | 2007-05-10 | 2010-12-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Flexible circuit board material and method for producing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| DE60032647D1 (en) | 2007-02-08 |
| DE60022539T2 (en) | 2006-06-29 |
| EP1479729A1 (en) | 2004-11-24 |
| JP4017394B2 (en) | 2007-12-05 |
| US20090159847A1 (en) | 2009-06-25 |
| CN1402760A (en) | 2003-03-12 |
| EP1479729B1 (en) | 2006-12-27 |
| US7737207B2 (en) | 2010-06-15 |
| KR20020058061A (en) | 2002-07-12 |
| CN1181139C (en) | 2004-12-22 |
| US7361705B2 (en) | 2008-04-22 |
| EP1234857B1 (en) | 2005-09-07 |
| EP1234857A1 (en) | 2002-08-28 |
| KR100529640B1 (en) | 2005-11-22 |
| EP1234857A4 (en) | 2003-01-08 |
| DE60022539D1 (en) | 2005-10-13 |
| US20030078333A1 (en) | 2003-04-24 |
| WO2001040380A1 (en) | 2001-06-07 |
| DE60032647T2 (en) | 2007-10-18 |
| AU1648701A (en) | 2001-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7737207B2 (en) | Resin composition and flexible printed circuit board | |
| JPWO2001040380A1 (en) | Resin composition and flexible printed wiring board | |
| EP2810971B1 (en) | Metal foil-clad laminate and printed wiring board using a resin composition | |
| TWI572656B (en) | A resin composition and a prepreg and a laminate using the resin composition | |
| EP3170868B1 (en) | Resin composition, prepreg, metal foil-clad laminate and printed wiring board | |
| WO2002018495A1 (en) | Resin composition, molded object thereof, and use thereof | |
| EP3321325B1 (en) | Resin composition, prepreg, metal foil-clad laminate, and printed circuit board | |
| KR20170116251A (en) | Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate | |
| JP5988176B2 (en) | Resin composition, prepreg and laminate | |
| CN111500058B (en) | Liquid crystal polymer film for flexible printed circuit board | |
| DE112010004512T5 (en) | Dimensionally stable polyimides and related processes | |
| JP2003026914A (en) | Printed wiring board film and printed wiring board | |
| JP6256457B2 (en) | Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards | |
| JP2009046524A (en) | Thermoplastic resin composition, film for electronic material, and reinforcement material for flexible substrate | |
| KR100918914B1 (en) | Nanocomposite Adhesive Compositions for Non-Halogen Coverlay Films | |
| JP2020193244A (en) | Liquid crystalline resin composition, liquid crystalline resin film, method for producing liquid crystalline resin film, liquid crystalline resin film with conductor, and flexible printed wiring board | |
| JP2007197715A (en) | Heat resistant resin composition and print wiring board | |
| JP3875061B2 (en) | Resin composition and molded product | |
| JP2003128944A (en) | Resin composition and molded product | |
| JP2007119507A (en) | Thermosetting polyimide resin composition and molded product and electronic part using the same | |
| JP2004002790A (en) | Manufacturing method of thermoplastic resin composition, and thermoplastic resin composition and material for electronic substrate | |
| JP2003128931A (en) | Resin composition and molded material | |
| JP2005243757A (en) | Flexible printed wiring board reinforcing sheet and flexible printed wiring board using the same | |
| JP4259086B2 (en) | Biaxially oriented polyphenylene sulfide film | |
| TW202538007A (en) | Components for cutting |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |