[go: up one dir, main page]

US20080090753A1 - Rapid Acting Injectable Insulin Compositions - Google Patents

Rapid Acting Injectable Insulin Compositions Download PDF

Info

Publication number
US20080090753A1
US20080090753A1 US11/869,693 US86969307A US2008090753A1 US 20080090753 A1 US20080090753 A1 US 20080090753A1 US 86969307 A US86969307 A US 86969307A US 2008090753 A1 US2008090753 A1 US 2008090753A1
Authority
US
United States
Prior art keywords
insulin
acid
chelator
composition
edta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/869,693
Other languages
English (en)
Inventor
Roderike Pohl
Solomon Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albireo Pharma Inc
Original Assignee
Biodel Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/077,604 external-priority patent/US7279457B2/en
Application filed by Biodel Inc filed Critical Biodel Inc
Priority to US11/869,693 priority Critical patent/US20080090753A1/en
Assigned to BIODEL INC. reassignment BIODEL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: POHL, RODERIKE, STEINER, SOLOMON S.
Publication of US20080090753A1 publication Critical patent/US20080090753A1/en
Priority to CA2702057A priority patent/CA2702057A1/fr
Priority to MX2010003776A priority patent/MX2010003776A/es
Priority to CN2008801187605A priority patent/CN101883609A/zh
Priority to PCT/US2008/079213 priority patent/WO2009048959A1/fr
Priority to JP2010529005A priority patent/JP2011500581A/ja
Priority to EP08837728A priority patent/EP2209528A1/fr
Priority to AU2008310900A priority patent/AU2008310900A1/en
Priority to US14/156,307 priority patent/US8933023B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the invention is in the general field of injectable rapid acting drug delivery insulin formulations.
  • Type 2 diabetes Even before any other symptoms are present, one of the first effects of Type 2 diabetes is the loss of the meal-induced first-phase insulin release. In the absence of the first-phase insulin release, the liver will not receive its signal to stop making glucose. As a result, the liver will continue to produce glucose at a time when the body begins to produce new glucose through the digestion of the meal. As a result, the blood glucose level of patients with diabetes goes too high after eating, a condition known as hyperglycemia. Hyperglycemia causes glucose to attach unnaturally to certain proteins in the blood, interfering with the proteins' ability to perform their normal function of maintaining the integrity of the small blood vessels. With hyperglycemia occurring after each meal, the tiny blood vessels eventually break down and leak. The long-term adverse effects of hyperglycemia include blindness, loss of kidney function, nerve damage and loss of sensation and poor circulation in the periphery, potentially requiring amputation of the extremities.
  • an untreated diabetic's blood glucose becomes so elevated that the pancreas receives a signal to secrete an inordinately large amount of insulin.
  • the pancreas can still respond and secretes this large amount of insulin.
  • This inordinately large amount of insulin has two detrimental effects. First, it puts an undue extreme demand on an already compromised pancreas, which may lead to its more rapid deterioration and eventually render the pancreas unable to produce insulin. Second, too much insulin after digestion leads to weight gain, which may further exacerbate the disease condition.
  • Type 1 diabetes Because patients with Type 1 diabetes produce no insulin, the primary treatment for Type 1 diabetes is daily intensive insulin therapy.
  • the treatment of Type 2 diabetes typically starts with management of diet and exercise. Although helpful in the short-run, treatment through diet and exercise alone is not an effective long-term solution for the vast majority of patients with Type 2 diabetes.
  • diet and exercise When diet and exercise are no longer sufficient, treatment commences with various non-insulin oral medications. These oral medications act by increasing the amount of insulin produced by the pancreas, by increasing the sensitivity of insulin-sensitive cells, by reducing the glucose output of the liver or by some combination of these mechanisms. These treatments are limited in their ability to manage the disease effectively and generally have significant side effects, such as weight gain and hypertension. Because of the limitations of non-insulin treatments, many patients with Type 2 diabetes deteriorate over time and eventually require insulin therapy to support their metabolism.
  • Insulin therapy has been used for more than 80 years to treat diabetes. This therapy usually involves administering several injections of insulin each day. These injections consist of administering a long-acting basal injection one or two times per day and an injection of a fast acting insulin at meal-time. Although this treatment regimen is accepted as effective, it has limitations. First, patients generally dislike injecting themselves with insulin due to the inconvenience and pain of needles. As a result, patients tend not to comply adequately with the prescribed treatment regimens and are often improperly medicated.
  • insulin injections do not replicate the natural time-action profile of insulin.
  • the natural spike of the first-phase insulin release in a person without diabetes results in blood insulin levels rising within several minutes of the entry into the blood of glucose from a meal.
  • injected insulin enters the blood slowly, with peak insulin levels occurring within 80 to 100 minutes following the injection of regular human insulin.
  • a potential solution is the injection of insulin directly into the vein of diabetic patients immediately before eating a meal.
  • patients In studies of intravenous injections of insulin, patients exhibited better control of their blood glucose for 3 to 6 hours following the meal.
  • intravenous injection of insulin before each meal is not a practical therapy.
  • hypoglycemia can result in loss of mental acuity, confusion, increased heart rate, hunger, sweating and faintness. At very low glucose levels, hypoglycemia can result in loss of consciousness, coma and even death. According to the American Diabetes Association, or ADA, insulin-using diabetic patients have on average 1.2 serious hypoglycemic events per year, many of which events require hospital emergency room visits by the patients.
  • the formulations may be for subcutaneous, intradermal or intramuscular administration, In the preferred embodiment, the formulations are administered via subcutaneous injection.
  • the formulations contain insulin in combination with a chelator and dissolution agent, and optionally additional excipients.
  • the formulation contains human insulin, a zinc chelator such as EDTA and a dissolution agent such as citric acid. These formulations are rapidly absorbed into the blood stream when administered by subcutaneous injection.
  • the insulin is provided as a dry powder in a sterile vial. This is mixed with a diluent containing a pharmaceutically acceptable carrier, such as water, a zinc chelator such as EDTA and a dissolution agent such as citric acid shortly before or at the time of administration.
  • a pharmaceutically acceptable carrier such as water
  • EDTA zinc chelator
  • a dissolution agent such as citric acid
  • the insulin is stored as a frozen mixture, ready for use upon thawing.
  • FIG. 1 is a three dimensional schematic of insulin showing exposed surface charges and overlaid with molecules (“dissolution and chelating agents”) of appropriate size to mask the charge.
  • FIG. 2 is a schematic diagram of the transwell device 10 used to measure insulin absorption from a donor chamber 12 through 4-5 layers of immortalized oral epithelial cells 14 on a 0.1 micron filter 16 into a receiver chamber 18 .
  • FIGS. 3 a and 3 b are graphs comparing in vitro insulin transport (cumulative insulin in microunits) through oral epithelial cells in the transwell system of FIG. 2 , with and without 0.45 mg EDTA/ml, as a function of acid selected as dissolution agent.
  • EDTA was constant at 0.45 mg/mL while the acid concentrations were varied as follows: FIG. 3 a , Aspartic acid (0.47 mg/mL), Glutamic acid (0.74 mg/mL), Succinic acid (0.41 mg/mL), Adipic acid (0.73 mg/mL) and Citric acid (0.29 mg/mL and 0.56 mg/mL), pH range 3.2-3.8.
  • FIG. 3 a Aspartic acid (0.47 mg/mL), Glutamic acid (0.74 mg/mL), Succinic acid (0.41 mg/mL), Adipic acid (0.73 mg/mL) and Citric acid (0.29 mg/mL and 0.56 mg/mL), pH range
  • FIGS. 4 a and 4 b are graphs of in vitro insulin transport (cumulative insulin in microunits) through oral epithelial cells in the transwell system shown in FIG. 2 , comparing different dissolution agents, with and without 0.56 mg EDTA/mL and acids at the following equimolar (1.50 ⁇ 10 ⁇ 3 Mol) concentrations: Aspartic acid (0.20 mg/mL), Glutamic acid (0.22 mg/mL) and citric acid (0.29 mg/ml) ( FIG. 4 a ) and Citric acid at 1.80 mg/mL ( FIG. 4 b ). Two time periods (10 and 30 min.) were selected for comparative analysis.
  • FIG. 5 is a graph of in vitro insulin transport through oral epithelial cells using the transwell system of FIG. 2 to compare efficacy of different chelators.
  • the chelators were no chelator (control), EDTA, EGTA, DMSA, CDTA, and TSC.
  • FIG. 6 is a graph of the in vivo pharmacodynamic effect of insulin prepared with citric acid and EDTA (12 U) in human subjects, compared to HUMALOG® (12 U) and HUMULIN R®b (12 U), measures as mean GIR/kg.
  • FIG. 8 is a graph of the in vivo pharmacodynamics of insulin prepared with citric acid and EDTA in 16 diabetic type 2 patients; compared to HUMULIN R® and HUMALOG®, plotting blood glucose (mg/dl) over time (minutes).
  • the dosage used in the patient trial was patient specific, adjusted for each patient based on their current insulin therapy.
  • the insulin formulations of injectable human insulin described here are administered immediately prior to a meal or at the end of a meal.
  • the formulation combines recombinant human insulin with specific ingredients generally regarded as safe by the FDA.
  • the formulation is designed to be absorbed into the blood faster than the currently marketed rapid-acting insulin analogs.
  • One of the key features of the formulation of insulin is that it allows the insulin to disassociate, or separate, from the six molecule, or hexameric, form of insulin to the single molecule, or monomeric, form of insulin and prevents re-association to the hexameric form.
  • this formulation allows for more rapid delivery of insulin into the blood as the human body requires insulin to be in the form of a single molecule before it can be absorbed into the body to produce its desired biological effects.
  • Most human insulin that is sold for injection is in the hexameric form. This makes it more difficult for the body to absorb, as the insulin hexamer must first disassociate to form dimers and then monomers.
  • insulin refers to human or non-human, recombinant, purified or synthetic insulin or insulin analogues, unless otherwise specified.
  • Human insulin is the human peptide hormone secreted by the pancreas, whether isolated from a natural source or made by genetically altered microorganisms.
  • non-human insulin is the same as human insulin but from an animal source such as pig or cow.
  • an insulin analogue is an altered insulin, different from the insulin secreted by the pancreas, but still available to the body for performing the same action as natural insulin.
  • the amino acid sequence of insulin can be changed to alter its ADME (absorption, distribution, metabolism, and excretion) characteristics. Examples include insulin lispro, insulin glargine, insulin aspart, insulin glulisine, insulin detemir.
  • the insulin can also be modified chemically, for example, by acetylation.
  • human insulin analogues are altered human insulin which is able to perform the same action as human insulin.
  • a “Chelator” or “chelating agent” refers to a chemical compound that has the ability to form one or more bonds to zinc ions. The bonds are typically ionic or coordination bonds.
  • the chelator can be an inorganic or an organic compound.
  • a chelate complex is a complex in which the metal ion is bound to two or more atoms of the chelating agent.
  • a “solubilizing agent” is a compound that increases the solubility of materials in a solvent, for example, insulin in an aqueous solution.
  • solubilizing agents include surfactants (TWEENS®) solvent, such as ethanol; micelle forming; compounds, such as oxyethylene monostearate; and pH modifying agents.
  • a “dissolution agent” is an acid that, when added to insulin and EDTA, enhances the transport and absorption of insulin relative to HCl and EDTA at the same pH, as measured using the epithelial cell transwell plate assay described in the examples below.
  • HCl is not a dissolution agent but may be a solubilizing agent.
  • Citric acid is a dissolution agent when measured in this assay.
  • an “excipient” is an inactive substance other than a chelator or dissolution agent, used as a carrier for the insulin or used to aid the process by which a product is manufactured. In such cases, the active substance is dissolved or mixed with an excipient.
  • Formulations include insulin, a chelator and a dissolution agent(s) and, optionally, one or more other excipients.
  • the formulations are suitable for subcutaneous administration and are rapidly absorbed into the fatty subcutaneous tissue.
  • At least one of the formulation ingredients is selected to mask any charges on the active agent. This may facilitate the transmembrane transport of the insulin and thereby increase both the onset of action and bioavailability for the insulin.
  • the ingredients are also selected to form compositions that dissolve rapidly in aqueous medium. Preferably the insulin is absorbed and transported to the plasma quickly, resulting in a rapid onset of action (preferably beginning within about 5 minutes following administration and peaking at about 15-30 minutes following administration).
  • the chelator such as EDTA, chelates the zinc in the insulin, thereby removing the zinc from the insulin solution. This causes the insulin to take on its dimeric and monomeric form and retards reassembly into the hexamer state. Since these two forms exist in a concentration-driven equilibrium, as the monomers are absorbed, more monomers are created. Thus, as insulin monomers are absorbed through the subcutaneous tissue, additional dimers dissemble to form more monomers.
  • the monomeric form has a molecular weight that is less than one-sixth the molecular weight of the hexameric form, thereby markedly increasing both the speed and quantity of insulin absorption.
  • the chelator such as EDTA
  • dissolution agent such as citric acid
  • the insulin can be recombinant or purified from a natural source.
  • the insulin can be human or non-human. Human is preferred. In the most preferred embodiment, the insulin is human recombinant insulin. Recombinant human insulin is available from a number of sources.
  • the insulin may also be an insulin analogue which may be based on the amino acid sequence of human insulin but having one or more amino acids differences, or a chemically modified insulin or insulin analog.
  • the dosages of the insulin depends on its bioavailability and the patient to be treated. Insulin is generally included in a dosage range of 1.5-100 IU, preferably 3-50 IU per human dose.
  • Certain acids appear to mask charges on the insulin, enhancing uptake and transport, as shown in FIG. 1 .
  • Those acids which are effective as dissolution agents include acetic acid, ascorbic acid, citric acid, glutamic, aspartic, succinic, fumaric, maleic, and adipic, relative to hydrochloric acid, as measured in the transwell assay described in the examples below.
  • the active agent is insulin
  • a preferred dissolution agent is citric acid.
  • the hydrochloric acid may be used for pH adjustment, in combination with any of the formulations, but is not a dissolution agent.
  • the range of dissolution agent corresponds to an effective amount of citric acid in combination with insulin and EDTA of between 9.37 ⁇ 10 ⁇ 4 M to 9.37 ⁇ 10 ⁇ 2 M citric acid.
  • a zinc chelator is mixed with the active agent.
  • the chelator may be ionic or non-ionic.
  • Suitable chelators include ethylenediaminetetraacetic acid (EDTA), EGTA, alginic acid, alpha lipoic acid, dimercaptosuccinic acid (DMSA), CDTA (1,2-diaminocyclohexanetetraacetic acid), trisodium citrate (TSC).
  • Hydrochloric acid is used in conjunction with TSC to adjust the pH, and in the process gives rise to the formation of citric acid, which is a dissolution agent.
  • the chelator is EDTA.
  • the active agent is insulin
  • the chelator captures the zinc from the insulin, thereby favoring the dimeric form of the insulin over the hexameric form and facilitating absorption of the insulin by the tissues surrounding the site of administration (e.g. mucosa, or fatty tissue).
  • the chelator hydrogen may bond to the active agent, thereby aiding the charge masking of the active agent and facilitating transmembrane transport of the active agent.
  • the range of chelator corresponds to an effective amount of EDTA in combination with insulin and citric acid of between 2.42 ⁇ 10 ⁇ 4 M to 9.68 ⁇ 10 ⁇ 2 M EDTA.
  • compositions may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically.
  • physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically.
  • Formulation of drugs is discussed in, for example, Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. (1975), and Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y. (1980).
  • solubilizing agents are included with the insulin agent to promote rapid dissolution in aqueous media.
  • Suitable solubilizing agents include wetting agents such as polysorbates, glycerin and poloxamers, non-ionic and ionic surfactants, food acids and bases (e.g. sodium bicarbonate), and alcohols, and buffer salts for pH control.
  • Stabilizers are used to inhibit or retard drug decomposition reactions which include, by way of example, oxidative reactions.
  • a number of stabilizers may be used. Suitable stabilizers include polysaccharides, such as cellulose and cellulose derivatives, and simple alcohols, such as glycerol; bacteriostatic agents such as phenol, m-cresol and methylparaben; isotonic agents, such as sodium chloride, glycerol, and glucose; lecithins, such as example natural lecithins (e.g. egg yolk lecithin or soya bean lecithin) and synthetic or semisynthetic lecithins (e.g.
  • the stabilizer may be a combination of glycerol, bacteriostatic agents and isotonic agents.
  • the injectable formulation contains insulin, a chelator, and a dissolution agent.
  • the injectable formulation contains insulin, EDTA, Citric acid and saline and/or glycerol.
  • the subcutaneous injectable formulation is produced by mixing saline and/or glycerol, citric acid and EITA to form a solution and sterilizing the solution (referred to as the “diluent”).
  • the insulin is separately added to sterile water to form a solution, filtered, and a designated amount is placed into each of a number of separate sterile injection bottles.
  • the insulin solution is lyophilized to form a powder and should be stored separately from the diluent to retain its stability. Prior to administration, the diluent is added to the insulin injection bottle. After the predetermined amount of insulin is subcutaneously injected into the patient, the remaining insulin solution may be stored, preferably by refrigeration.
  • the insulin is combined with the diluent, sterile filtered into multi-use injection and frozen prior to use.
  • the formulations may be subcutaneously administration or intramuscularly injection.
  • the formulation is designed to be rapidly absorbed and transported to the plasma for systemic delivery.
  • Formulations containing insulin as the active agent may be administered to a type 1 or type 2 diabetic patient before or during a meal. Due to the rapid absorption, the compositions can shut off the conversion of glycogen to glucose in the liver, thereby preventing hyperglycemia, the main cause of complications from diabetes and the first symptom of type 2 diabetes.
  • Currently available, standard, subcutaneous injections of human insulin must be administered about one half to one hour prior to eating to provide a less than desired effect, because the insulin is absorbed too slowly to shut off the production of glucose in the liver. Additionally, if given early enough in the progression of the disease, the subcutaneous insulin compositions may be able to slow or stop the progression of type 2 diabetes.
  • Oral epithelial cells were grown on transwell inserts for two weeks until multiple (4-5 layer) cell layers had formed, as shown in FIG. 2 .
  • the transport studies were conducted by adding the appropriate solutions to the donor well and removing samples from the receiver well after 10 minutes. Solutions consisted of water, +/ ⁇ EDTA (0.45 mg/ml), NaCl (0.85% w/v), 1 mg/ml insulin and a sufficient amount of acid to maintain the pH at 3.8. Insulin amounts in the receiver wells were assayed using ELISA.
  • FIGS. 3 a and 3 b demonstrate that some acids are more effective at enhancing uptake and transport of insulin through epithelial cells. These can be readily tested and compared to the results obtained using HCl, thereby providing a standard against which any acid can be tested and determined to be a dissolution agent (i.e., enhancing uptake and transport relative to HCl) or not.
  • the preferred acid is citric acid.
  • Example 1 The materials and methods of Example 1 were used with different concentrations of reagents. In the study, equimolar concentrations of acid and chelator were added. Solutions consisted of water, +/ ⁇ EDTA (0.56 mg/mn), NaCl (0.85% w/v), 1 mg/mL insulin and an acid: Aspartic acid (0.20 mg/mL), Glutamic acid (0.22 mg/mL) or citric acid (0.20 mg/ml). Citric acid was tested at a higher concentration of 1.8 mg/mL with and without chelator. This data is shown at two time periods, 10 and 30 minutes, post dosing of cell donor chambers.
  • Oral epithelial cells were grown on transwell inserts for two weeks until multiple (4-5 layer) cell layers had formed.
  • the transport studies were conducted by adding the appropriate solutions to the donor well and removing samples from the receiver well after 10, 20 and 30 minutes.
  • Citric acid at 1.8 mg/ml was dissolved in 0.85% w/v saline and then one of the following chelators was added to this solution at the concentration shown: EDTA at 1.80 mg/ml, EGTA at 1.84 mg/ml, DMSA at 0.88 mg/ml and TSC at 1.42 mg/ml. Because CDTA was used in its liquid form, citric acid was added directly to the CDTA. In each of these cases, the concentration of chelator was constant at 4.84 ⁇ 10 ⁇ 3 moles.
  • Insulin was then added at 1 mg/ml and the pH was re-adjusted to 3.8 if necessary.
  • a control set of samples using only HCl for pH adjustment are included for comparison.
  • pH 3.8 alginic acid solidifies, and therefore, was not included for comparison in this example.
  • Transwell experiments were done by adding 0.2 ml of each solution to the donor wells.
  • Insulin amounts in the receiver wells were assayed using ELISA.
  • FIG. 5 A graph of 30 minute insulin data is shown in FIG. 5 . There was significantly more insulin delivered through the cells when citric or glutamic acid was used, except as compared to results obtained with TSC (trisodium citrate). In the case of TSC, HCl was used for pH adjustment. The adjustment of pH generated citric acid, explaining these results.
  • TSC trisodium citrate
  • Diabetic swine were injected subcutaneously with one of four formulations of insulin.
  • Three formulations contained a chelator (EDTA, EGTA or TSC) and fourth control contained only regular human insulin Humulin R®, no chelator.
  • Citric acid (1.8 mg/ml) was used as the acid in all the chelator formulations, and NaCl and m-cresol were added for isotonicity and formulation sterility in all cases.
  • the chelators were all at the same molar concentration of 4.84 ⁇ 10 ⁇ 3 moles.
  • the aim of this study was to evaluate the pharmacodynamic (PD) properties of a test formulation containing insulin in combination with citric acid and EDTA, “CE”.
  • PD pharmacodynamic
  • FIGS. 6 and 7 The results are shown in FIGS. 6 and 7 .
  • SC injection of CE resulted in a time-action profile that produced a significantly more rapid rise in glucose consumption regular human insulin ( FIG. 6 ).
  • the mean pharmacokinetic data confirm the PD results ( FIG. 7 ).
  • VIAjectTM a very rapid acting formulation of regular human insulin (RHI) combined with citric acid and EDTA, referred to above as CE), RHI, and insulin lispro (Lispro) on postprandial blood glucose (BG) excursions after a standard meal in patients with Type 1 diabetes.
  • BG of 9 patients (5 males and 4 females; age 40 ⁇ 10 yrs, BMI 24.0 ⁇ 2.0 kg/m 2 ) were stabilized by means of a glucose clamp (target BG 120 mg/dl) prior to meal ingestion.
  • the glucose infusion was turned off prior to the standard meal and insulin dosing.
  • VIAjectTM (CE) Lispro or RHI was injected s.c. immediately before the meal.
  • postprandial glucose excursions were continuously monitored for 8 hours and glucose infusion was re-initiated if BG ⁇ 60 mg/dl. Plasma insulin levels were determined throughout the study.
  • the total number of hypoglycemic events (hours requiring glucose infusion) 3 to 8 hours post injection were 13 with RHI, 11 with Lispro and 4 with the CE formulation.
  • the mean total amount of glucose infused to prevent hypoglycemia during this time was six times higher for RHI and twice as much for Lispro than with VIAjectTM (CE).
  • the areas above and below the normal glycemic target zone (BG AUC above 140 and below 80 mg/dL) summed for all patients per group was 81,895 for RHI, 57,423 for Lispro and 38,740 mg/dL*min for VIAjectTM.
  • the mean blood glucose levels are shown in FIG. 8 .
  • VIAjectTM (CE) was the fastest in reversing the rise in blood glucose following the standard meal. Patients treated with VIAjectTM experienced reduced post prandial glucose excursions. In contrast, RHI had the highest glucose excursion, which is consistent with its slower absorption rate. Variability of the glucose levels (mean difference between maximal and minimal values) was significantly less for VIAjectTM than Lispro, demonstrating VIAject's better glycemic control in these patients with Type 1 diabetes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
US11/869,693 2004-03-12 2007-10-09 Rapid Acting Injectable Insulin Compositions Abandoned US20080090753A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US11/869,693 US20080090753A1 (en) 2004-03-12 2007-10-09 Rapid Acting Injectable Insulin Compositions
AU2008310900A AU2008310900A1 (en) 2007-10-09 2008-10-08 Rapid acting injectable insulin compositions
EP08837728A EP2209528A1 (fr) 2007-10-09 2008-10-08 Compositions d'insuline injectable à action rapide
JP2010529005A JP2011500581A (ja) 2007-10-09 2008-10-08 即効型注射可能インスリン組成物
MX2010003776A MX2010003776A (es) 2007-10-09 2008-10-08 Composiciones de insulina inyectables de accion rapida.
CA2702057A CA2702057A1 (fr) 2007-10-09 2008-10-08 Compositions d'insuline injectable a action rapide
CN2008801187605A CN101883609A (zh) 2007-10-09 2008-10-08 可注射的速效胰岛素组合物
PCT/US2008/079213 WO2009048959A1 (fr) 2007-10-09 2008-10-08 Compositions d'insuline injectable à action rapide
US14/156,307 US8933023B2 (en) 2004-03-12 2014-01-15 Rapid acting injectable insulin compositions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US55263704P 2004-03-12 2004-03-12
US60919404P 2004-09-09 2004-09-09
US11/077,604 US7279457B2 (en) 2004-03-12 2005-03-11 Rapid acting drug delivery compositions
US11/869,693 US20080090753A1 (en) 2004-03-12 2007-10-09 Rapid Acting Injectable Insulin Compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/077,604 Continuation-In-Part US7279457B2 (en) 2004-03-12 2005-03-11 Rapid acting drug delivery compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/156,307 Continuation US8933023B2 (en) 2004-03-12 2014-01-15 Rapid acting injectable insulin compositions

Publications (1)

Publication Number Publication Date
US20080090753A1 true US20080090753A1 (en) 2008-04-17

Family

ID=40291063

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/869,693 Abandoned US20080090753A1 (en) 2004-03-12 2007-10-09 Rapid Acting Injectable Insulin Compositions
US14/156,307 Expired - Lifetime US8933023B2 (en) 2004-03-12 2014-01-15 Rapid acting injectable insulin compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/156,307 Expired - Lifetime US8933023B2 (en) 2004-03-12 2014-01-15 Rapid acting injectable insulin compositions

Country Status (8)

Country Link
US (2) US20080090753A1 (fr)
EP (1) EP2209528A1 (fr)
JP (1) JP2011500581A (fr)
CN (1) CN101883609A (fr)
AU (1) AU2008310900A1 (fr)
CA (1) CA2702057A1 (fr)
MX (1) MX2010003776A (fr)
WO (1) WO2009048959A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070235365A1 (en) * 2004-03-12 2007-10-11 Biodel Inc. Rapid Acting Drug Delivery Compositions
US20080039368A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20080039365A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid Acting and Long Acting Insulin Combination Formulations
US20080085298A1 (en) * 2004-03-12 2008-04-10 Biodel, Inc. Rapid Mucosal Gel or Film Insulin Compositions
US20080096800A1 (en) * 2004-03-12 2008-04-24 Biodel, Inc. Rapid mucosal gel or film insulin compositions
US20090137455A1 (en) * 2005-09-29 2009-05-28 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20090175840A1 (en) * 2008-01-04 2009-07-09 Biodel, Inc. Insulin formulations for insulin release as a function of tissue glucose levels
US20100227795A1 (en) * 2009-03-03 2010-09-09 Biodel Inc. Insulin formulations for rapid uptake
EP2471554A1 (fr) * 2010-12-28 2012-07-04 Hexal AG Formulation pharmaceutique comprenant un médicament biopharmaceutique
WO2013158618A1 (fr) 2012-04-16 2013-10-24 Biodel Inc. Compositions de magnésium pour moduler la pharmacocinétique et la pharmacodynamique de l'insuline et d'analogues de l'insuline, et la douleur au site d'injection
US8974826B2 (en) 2010-06-10 2015-03-10 Monosol Rx, Llc Nanoparticle film delivery systems
WO2015106269A3 (fr) * 2014-01-13 2015-10-22 Thermalin Diabetes, Llc Formulations d'insuline à action rapide et systèmes d'administration pharmaceutique
US9399065B2 (en) 2012-04-16 2016-07-26 Biodel Inc. Magnesium compositions for modulating the pharmacokinetics and injection site pain of insulin
US9901623B2 (en) 2015-08-27 2018-02-27 Eli Lilly And Company Rapid-acting insulin compositions
US9993555B2 (en) 2014-12-16 2018-06-12 Eli Lilly And Company Rapid-acting insulin compositions
US10646551B2 (en) 2012-11-13 2020-05-12 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
US11207384B2 (en) 2017-06-01 2021-12-28 Eli Lilly And Company Rapid-acting insulin compositions

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ586590A (en) 2008-01-09 2012-06-29 Sanofi Aventis Deutschland Insulin analogues or derivatives having an extremely delayed time-action profile
PL3228320T3 (pl) 2008-10-17 2020-06-01 Sanofi-Aventis Deutschland Gmbh Kombinacja insuliny i agonisty GLP-1
FR2943538B1 (fr) 2009-03-27 2011-05-20 Adocia Formulation a action rapide d'insuline recombinante humaine
US9018190B2 (en) 2009-03-27 2015-04-28 Adocia Functionalized oligosaccharides
CN103690958A (zh) * 2009-07-06 2014-04-02 赛诺菲-安万特德国有限公司 含有甲硫氨酸的水性胰岛素制备物
EP2451472A1 (fr) * 2009-07-06 2012-05-16 Sanofi-Aventis Deutschland GmbH Préparations d'insuline stables à la chaleur et aux agitations
SI2554183T1 (en) 2009-11-13 2018-08-31 Sanofi-Aventis Deutschland Gmbh A pharmaceutical composition comprising the GLP-1 agonist and insulin and methionine
DK2498801T3 (en) 2009-11-13 2018-05-07 Sanofi Aventis Deutschland PHARMACEUTICAL COMPOSITION INCLUDING desPro36Exendin-4 (1-39) -Lys6-NH2 AND METHIONIN
CA2805031A1 (fr) * 2010-07-07 2012-01-12 Biodel, Inc. Compositions et procedes pour la modulation de la pharmacocinetique et de la pharmacodynamie de l'insuline
KR101823320B1 (ko) 2010-08-30 2018-01-31 사노피-아벤티스 도이칠란트 게엠베하 제2형 진성 당뇨병 치료용 약제를 제조하기 위한 ave0010의 용도
US9821032B2 (en) 2011-05-13 2017-11-21 Sanofi-Aventis Deutschland Gmbh Pharmaceutical combination for improving glycemic control as add-on therapy to basal insulin
DK2750699T3 (en) 2011-08-29 2015-10-26 Sanofi Aventis Deutschland A pharmaceutical combination for use in glycemic control in diabetes type 2 patients
TWI559929B (en) 2011-09-01 2016-12-01 Sanofi Aventis Deutschland Pharmaceutical composition for use in the treatment of a neurodegenerative disease
US20130231281A1 (en) 2011-11-02 2013-09-05 Adocia Rapid acting insulin formulation comprising an oligosaccharide
TWI780236B (zh) 2013-02-04 2022-10-11 法商賽諾菲公司 胰島素類似物及/或胰島素衍生物之穩定化醫藥調配物
WO2015104314A1 (fr) 2014-01-09 2015-07-16 Sanofi Formulations pharmaceutiques stabilisées d'analogues de l'insuline et/ou de dérivés de l'insuline
KR20160104726A (ko) 2014-01-09 2016-09-05 사노피 인슐린 유사체 및/또는 인슐린 유도체의 안정화된 무글리세롤 약제학적 제형
CA2932873A1 (fr) 2014-01-09 2015-07-16 Sanofi Formulations pharmaceutiques stabilisees d'insuline asparte
FR3020947B1 (fr) 2014-05-14 2018-08-31 Adocia Composition aqueuse comprenant au moins une proteine et un agent solubilisant, sa preparation et ses utilisations
US9795678B2 (en) 2014-05-14 2017-10-24 Adocia Fast-acting insulin composition comprising a substituted anionic compound and a polyanionic compound
TN2017000235A1 (en) 2014-12-12 2018-10-19 Sanofi Aventis Deutschland Insulin glargine/lixisenatide fixed ratio formulation
TWI748945B (zh) 2015-03-13 2021-12-11 德商賽諾菲阿凡提斯德意志有限公司 第2型糖尿病病患治療
TW201705975A (zh) 2015-03-18 2017-02-16 賽諾菲阿凡提斯德意志有限公司 第2型糖尿病病患之治療
FR3043557B1 (fr) 2015-11-16 2019-05-31 Adocia Composition a action rapide d'insuline comprenant un citrate substitue
GB201607918D0 (en) 2016-05-06 2016-06-22 Arecor Ltd Novel formulations
IL277721B2 (en) 2018-04-04 2024-03-01 Arecor Ltd Medical infusion pump system for the delivery of an insulin compound
FR3083985A1 (fr) 2018-07-23 2020-01-24 Adocia Dispositif pour injecter une solution d'insuline(s)
FR3083984A1 (fr) 2018-07-23 2020-01-24 Adocia Dispositif pour injecter une solution d'insuline(s)
WO2019243627A1 (fr) 2018-06-23 2019-12-26 Adocia Dispositif pour injecter une solution d'insuline(s)

Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2143590A (en) * 1936-09-26 1939-01-10 Univ Alberta Insulin preparation and process of producing crystals of insulin
US2626228A (en) * 1945-05-17 1953-01-20 Novo Terapeutisk Labor As Method of producing crystalline insulin
US2819999A (en) * 1953-11-13 1958-01-14 Novo Terapeutisk Labor As Process for crystallization of insulin using freeze dried insulin as seeding material
US3683635A (en) * 1970-12-07 1972-08-15 Mario Campanelli Freeze stabilized insulin
US3906950A (en) * 1973-04-04 1975-09-23 Isf Spa Inhaling device for powdered medicaments
US4153689A (en) * 1975-06-13 1979-05-08 Takeda Chemical Industries, Ltd. Stable insulin preparation for nasal administration
US4196196A (en) * 1978-06-19 1980-04-01 Tiholiz Ivan C Divalen/monovalent bipolar cation therapy for enhancement of tissue perfusion and reperfusion in disease states
US4211769A (en) * 1977-08-24 1980-07-08 Takeda Chemical Industries, Ltd. Preparations for vaginal administration
US4272398A (en) * 1978-08-17 1981-06-09 The United States Of America As Represented By The Secretary Of Agriculture Microencapsulation process
US4343898A (en) * 1980-02-11 1982-08-10 Novo Industri A/S Process for preparing esters of human insulin
US4377482A (en) * 1978-04-28 1983-03-22 Salk Institute For Biological Studies Mobile phase for liquid chromatography
US4459159A (en) * 1982-09-29 1984-07-10 Mara William C O Method for making semi-insulating substrate by post-process heating of oxygenated and doped silicon
US4459226A (en) * 1982-02-26 1984-07-10 Eli Lilly And Company Process for recovering insulin
US4511505A (en) * 1979-04-13 1985-04-16 Shionogi & Co., Ltd. Semi-synthesis of human insulin
US4659696A (en) * 1982-04-30 1987-04-21 Takeda Chemical Industries, Ltd. Pharmaceutical composition and its nasal or vaginal use
US4861627A (en) * 1987-05-01 1989-08-29 Massachusetts Institute Of Technology Preparation of multiwall polymeric microcapsules
US4866051A (en) * 1981-10-19 1989-09-12 Glaxo Group Limited Micronised beclomethasone dipropionate monohydrate compositions and methods of use
US4946828A (en) * 1985-03-12 1990-08-07 Novo Nordisk A/S Novel insulin peptides
US5006343A (en) * 1988-12-29 1991-04-09 Benson Bradley J Pulmonary administration of pharmaceutically active substances
US5042975A (en) * 1986-07-25 1991-08-27 Rutgers, The State University Of New Jersey Iontotherapeutic device and process and iontotherapeutic unit dose
US5045454A (en) * 1987-01-09 1991-09-03 Medi-Cult A/S Serum-free growth medium and use thereof
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5188837A (en) * 1989-11-13 1993-02-23 Nova Pharmaceutical Corporation Lipsopheres for controlled delivery of substances
US5204108A (en) * 1987-10-10 1993-04-20 Danbiosyst Uk Ltd. Transmucosal formulations of low molecular weight peptide drugs
US5329976A (en) * 1991-12-09 1994-07-19 Habley Medical Technology Corporation Syringe-filling and medication mixing dispenser
US5482927A (en) * 1991-02-20 1996-01-09 Massachusetts Institute Of Technology Controlled released microparticulate delivery system for proteins
US5484606A (en) * 1994-01-24 1996-01-16 The Procter & Gamble Company Process for reducing the precipitation of difficulty soluble pharmaceutical actives
US5492112A (en) * 1991-05-20 1996-02-20 Dura Pharmaceuticals, Inc. Dry powder inhaler
US5503852A (en) * 1992-03-11 1996-04-02 Pharmaceutical Discovery Corporation Method for making self-assembling diketopiperazine drug delivery system
US5514646A (en) * 1989-02-09 1996-05-07 Chance; Ronald E. Insulin analogs modified at position 29 of the B chain
US5534488A (en) * 1993-08-13 1996-07-09 Eli Lilly And Company Insulin formulation
US5547929A (en) * 1994-09-12 1996-08-20 Eli Lilly And Company Insulin analog formulations
US5650486A (en) * 1994-06-16 1997-07-22 Eli Lilly And Company Monomeric insulin analog formulations
US5653987A (en) * 1995-05-16 1997-08-05 Modi; Pankaj Liquid formulations for proteinic pharmaceuticals
US5653961A (en) * 1995-03-31 1997-08-05 Minnesota Mining And Manufacturing Company Butixocort aerosol formulations in hydrofluorocarbon propellant
US5658878A (en) * 1993-06-24 1997-08-19 Ab Astra Therapeutic preparation for inhalation
US5672359A (en) * 1993-07-21 1997-09-30 The University Of Kentucky Research Foundation Multicompartment hard capsule with control release properties
US5740794A (en) * 1994-09-21 1998-04-21 Inhale Therapeutic Systems Apparatus and methods for dispersing dry powder medicaments
US5747445A (en) * 1993-06-24 1998-05-05 Astra Aktiebolag Therapeutic preparation for inhalation
US5763396A (en) * 1990-10-10 1998-06-09 Autoimmune Inc. Method of treating or preventing type 1 diabetes by oral administration of insulin
US5783556A (en) * 1996-08-13 1998-07-21 Genentech, Inc. Formulated insulin-containing composition
US5785989A (en) * 1985-05-01 1998-07-28 University Utah Research Foundation Compositions and methods of manufacturing of oral dissolvable medicaments
USRE35862E (en) * 1986-08-18 1998-07-28 Emisphere Technologies, Inc. Delivery systems for pharmacological agents encapsulated with proteinoids
US5807315A (en) * 1995-11-13 1998-09-15 Minimed, Inc. Methods and devices for the delivery of monomeric proteins
US5874064A (en) * 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5877174A (en) * 1994-12-01 1999-03-02 Toyama Chemical Co., Ltd. 2,3-diketopiperazine derivatives or their salts
US5888477A (en) * 1993-01-29 1999-03-30 Aradigm Corporation Use of monomeric insulin as a means for improving the bioavailability of inhaled insulin
US5898028A (en) * 1997-03-20 1999-04-27 Novo Nordisk A/S Method for producing powder formulation comprising an insulin
US5901703A (en) * 1995-02-06 1999-05-11 Unisia Jecs Corporation Medicine administering device for nasal cavities
US5912011A (en) * 1991-12-19 1999-06-15 R. P. Scherer Corporation Solvent system to be enclosed in capsules
US5929027A (en) * 1991-06-07 1999-07-27 Teikoku Seiyaku Kabushiki Kaisha Physiologically active polypeptide-containing pharmaceutical composition
US5952008A (en) * 1993-06-24 1999-09-14 Ab Astra Processes for preparing compositions for inhalation
US6051256A (en) * 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US6063910A (en) * 1991-11-14 2000-05-16 The Trustees Of Princeton University Preparation of protein microparticles by supercritical fluid precipitation
US6071497A (en) * 1995-05-15 2000-06-06 Pharmaceutical Discovery Corporation Microparticles for lung delivery comprising diketopiperazine
US6099517A (en) * 1986-08-19 2000-08-08 Genentech, Inc. Intrapulmonary delivery of polypeptide growth factors and cytokines
USRE37053E1 (en) * 1996-05-24 2001-02-13 Massachusetts Institute Of Technology Particles incorporating surfactants for pulmonary drug delivery
US6254854B1 (en) * 1996-05-24 2001-07-03 The Penn Research Foundation Porous particles for deep lung delivery
US6264981B1 (en) * 1999-10-27 2001-07-24 Anesta Corporation Oral transmucosal drug dosage using solid solution
US6294204B1 (en) * 1995-11-24 2001-09-25 Inhale Therapeutic Systems, Inc. Method of producing morphologically uniform microcapsules and microcapsules produced by this method
US20020028767A1 (en) * 2000-06-02 2002-03-07 Jensen Thomas Hoeg Glucose dependent release of insulin from glucose sensing insulin derivatives
US6395774B1 (en) * 1994-09-30 2002-05-28 Emisphere Technologies, Inc. Carbon-substituted diketopiperazine delivery systems
US6395744B1 (en) * 1994-04-22 2002-05-28 Queen's University At Kingston Method and compositions for the treatment or amelioration of female sexual dysfunction
US6432383B1 (en) * 2000-03-30 2002-08-13 Generex Pharmaceuticals Incorporated Method for administering insulin
US6440463B1 (en) * 1999-04-05 2002-08-27 Pharmaceutical Discovery Corporation Methods for fine powder formation
US6444226B1 (en) * 1999-06-29 2002-09-03 Pharmaceutical Discovery Corporation Purification and stabilization of peptide and protein pharmaceutical agents
US6503480B1 (en) * 1997-05-23 2003-01-07 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US6518239B1 (en) * 1999-10-29 2003-02-11 Inhale Therapeutic Systems, Inc. Dry powder compositions having improved dispersivity
US20030064097A1 (en) * 1999-11-23 2003-04-03 Patel Mahesh V. Solid carriers for improved delivery of hydrophobic active ingredients in pharmaceutical compositions
US20030068378A1 (en) * 1999-01-21 2003-04-10 Lavipharm Laboratories Inc. Compositions and methods for mucosal delivery
US6582728B1 (en) * 1992-07-08 2003-06-24 Inhale Therapeutic Systems, Inc. Spray drying of macromolecules to produce inhaleable dry powders
US20030143195A1 (en) * 2002-01-30 2003-07-31 Pinsker Judy Senior Use of histamine as a drug delivery enhancing compound for use in transmucosal or transdermal delivery
US6676931B2 (en) * 1997-10-01 2004-01-13 Novadel Pharma Inc. Buccal, polar and non-polar spray or capsule
US6685967B1 (en) * 1994-03-07 2004-02-03 Nektar Therapeutics Methods and compositions for pulmonary delivery of insulin
US20040151774A1 (en) * 2002-10-31 2004-08-05 Pauletti Giovanni M. Therapeutic compositions for drug delivery to and through covering epithelia
US20040157928A1 (en) * 2003-02-12 2004-08-12 Jae-Hwan Kim Solvent system of hardly soluble drug with improved dissolution rate
US20050080000A1 (en) * 2002-08-01 2005-04-14 Aventis Pharma Deutschland Gmbh Method of purifying preproinsulin
US20050153874A1 (en) * 2004-01-12 2005-07-14 Mannkind Corporation Method of reducing serum proinsulin levels in type 2 diabetics
US20060067891A1 (en) * 2002-02-01 2006-03-30 Generex Pharmaceuticals Incorporated Metered dose spray device for use with macromolecular pharmaceutical agents such as insulin
US7030084B2 (en) * 1999-06-19 2006-04-18 Nobex Corporation Drug-oligomer conjugates with polyethylene glycol components
US7089934B2 (en) * 2000-02-28 2006-08-15 Vectura Limited Delivery of oral drugs
US7192919B2 (en) * 2004-01-07 2007-03-20 Stelios Tzannis Sustained release compositions for delivery of pharmaceutical proteins
US20070086952A1 (en) * 2005-09-29 2007-04-19 Biodel, Inc. Rapid Acting and Prolonged Acting Inhalable Insulin Preparations
US20070134279A1 (en) * 2005-12-09 2007-06-14 Unigene Laboratories, Inc. Fast-acting oral peptide pharmaceutical products
US20070155654A1 (en) * 2002-05-07 2007-07-05 Novo Nordisk A/S Novel formulations
US20080039368A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20080039365A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid Acting and Long Acting Insulin Combination Formulations
US20080085298A1 (en) * 2004-03-12 2008-04-10 Biodel, Inc. Rapid Mucosal Gel or Film Insulin Compositions
US20080096800A1 (en) * 2004-03-12 2008-04-24 Biodel, Inc. Rapid mucosal gel or film insulin compositions

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649456A (en) 1969-09-08 1972-03-14 Rohm & Haas Separation of polypeptide substances with macroreticular resins
GB1479283A (en) 1973-07-23 1977-07-13 Bespak Industries Ltd Inhaler for powdered medicament
DE2629568C3 (de) 1976-07-01 1981-09-10 Hoechst Ag, 6000 Frankfurt Verfahren zur Reinigung von Insulin, seinen Analogen und Derivaten
JPS6034925B2 (ja) 1979-07-31 1985-08-12 帝人株式会社 持続性鼻腔用製剤およびその製造法
DK147437A (en) 1980-02-11 1900-01-01 Process for preparing human insulin or threonine B30 esters of human insulin, or a salt or complex thereof
US4364385A (en) 1981-03-13 1982-12-21 Lossef Steven V Insulin delivery device
ATE23272T1 (de) 1981-07-08 1986-11-15 Draco Ab Pulverinhalator.
US5260306A (en) 1981-07-24 1993-11-09 Fisons Plc Inhalation pharmaceuticals
DK353781A (da) 1981-08-10 1983-02-11 Novo Industri As Fremgangsmaade til fremstilling af insulinderivater
JPS59163313A (ja) 1983-03-09 1984-09-14 Teijin Ltd 経鼻投与用ペプチドホルモン類組成物
PT83613B (en) 1985-10-28 1988-11-21 Lilly Co Eli Process for the selective chemical removal of a protein amino-terminal residue
SE453566B (sv) 1986-03-07 1988-02-15 Draco Ab Anordning vid pulverinhalatorer
JPS6320301A (ja) 1986-07-11 1988-01-28 Dainichi Color & Chem Mfg Co Ltd キトサン微小粒体
IE59720B1 (en) 1986-08-11 1994-03-23 Innovata Biomed Ltd Pharmaceutical formulations comprising microcapsules
EP0360340A1 (fr) 1988-09-19 1990-03-28 Akzo N.V. Composition pour administration par voie nasale contenant un peptide
JPH02104531A (ja) 1988-10-14 1990-04-17 Toyo Jozo Co Ltd 経鼻投与用生理活性ペプチド組成物
JPH0739339B2 (ja) 1989-05-01 1995-05-01 アルカーメス コントロールド セラピューティクス,インコーポレイテッド 生物活性を有する分子の小粒子の製造方法
GB8921222D0 (en) 1989-09-20 1989-11-08 Riker Laboratories Inc Medicinal aerosol formulations
DE3942145A1 (de) 1989-12-20 1991-06-27 Boehringer Mannheim Gmbh T-pa-solubilisierung
GB9001635D0 (en) 1990-01-24 1990-03-21 Ganderton David Aerosol carriers
AU7908791A (en) 1990-05-08 1991-11-27 Liposome Technology, Inc. Direct spray-dried drug/lipid powder composition
US5693338A (en) 1994-09-29 1997-12-02 Emisphere Technologies, Inc. Diketopiperazine-based delivery systems
SE9002895D0 (sv) 1990-09-12 1990-09-12 Astra Ab Inhalation devices for dispensing powders i
GB9024760D0 (en) 1990-11-14 1991-01-02 Riker Laboratories Inc Inhalation device and medicament carrier
DK0592540T3 (da) 1991-07-02 2000-06-26 Inhale Inc Fremgangsmåde og indretning til aflevering af aerosoliserede medikamenter
GB9116610D0 (en) 1991-08-01 1991-09-18 Danbiosyst Uk Preparation of microparticles
CA2127877A1 (fr) 1992-01-21 1993-07-22 Robert M. Platz Procede ameliore pour la preparation de medicaments polypeptidiques microfins
EP0558879B1 (fr) 1992-03-04 1997-05-14 Astra Aktiebolag Inhalateur jetable
AU660824B2 (en) 1992-06-12 1995-07-06 Teijin Limited Pharmaceutical preparation for intra-airway administration
GB9213874D0 (en) 1992-06-30 1992-08-12 Fisons Plc Process to novel medicament form
SK51695A3 (en) 1992-10-19 1995-11-08 Dura Pharma Inc Dry powder medicament inhaler
EP0599303A3 (fr) 1992-11-27 1998-07-29 Takeda Chemical Industries, Ltd. Conjugués peptidiques
US5364838A (en) 1993-01-29 1994-11-15 Miris Medical Corporation Method of administration of insulin
US5562909A (en) 1993-07-12 1996-10-08 Massachusetts Institute Of Technology Phosphazene polyelectrolytes as immunoadjuvants
GB9322014D0 (en) 1993-10-26 1993-12-15 Co Ordinated Drug Dev Improvements in and relating to carrier particles for use in dry powder inhalers
NZ276305A (en) 1993-11-16 1997-10-24 Depotech Corp Controlled release vesicle compositions
EP0655237A1 (fr) 1993-11-27 1995-05-31 Hoechst Aktiengesellschaft Composition d'aerosol medicinal
WO1995031979A1 (fr) 1994-05-19 1995-11-30 R.P. Scherer International Corporation Solutions d'acides alcanoiques a substitution aryle ou heteroaryle dans des solvants lipophiles, et capsules de gelatine molle contenant de telles solutions
IL110024A (en) 1994-06-15 1998-04-05 Yissum Res Dev Co Controlled release oral drug delivery system containing hydrogel- forming polymer
US5474978A (en) 1994-06-16 1995-12-12 Eli Lilly And Company Insulin analog formulations
US5849322A (en) 1995-10-23 1998-12-15 Theratech, Inc. Compositions and methods for buccal delivery of pharmaceutical agents
US5912014A (en) 1996-03-15 1999-06-15 Unigene Laboratories, Inc. Oral salmon calcitonin pharmaceutical products
US5731291A (en) 1996-05-08 1998-03-24 Cypros Pharmaceutical Corp. Partially lyophilized fructose-1,6-diphosphate (FDP) for injection into humans
US5985309A (en) 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
AUPO066096A0 (en) 1996-06-26 1996-07-18 Peptide Delivery Systems Pty Ltd Oral delivery of peptides
US6410511B2 (en) 1997-01-08 2002-06-25 Amylin Pharmaceuticals, Inc. Formulations for amylin agonist peptides
EP0969860B1 (fr) 1997-03-20 2002-07-17 Novo Nordisk A/S Procede de preparation d'une poudre therapeutique par co-precipitation d'insuline et d'un activateur de l'absorption
DE69806362T2 (de) 1997-03-20 2003-01-30 Novo Nordisk A/S, Bagsvaerd Therapeutische pulverformulierung zur pulmonaren anwendung, welche kristallines insulin enthält
EP1005490B1 (fr) 1997-03-20 2006-03-29 Novo Nordisk A/S Cristaux d'insuline depourvus de zinc et utiles dans des compositions pour les voies respiratoires
US6310038B1 (en) 1997-03-20 2001-10-30 Novo Nordisk A/S Pulmonary insulin crystals
CA2340340A1 (fr) 1998-04-09 1999-10-21 Axiva Gmbh Excipient de principe actif particulaire destine a une application pulmonaire
US7464706B2 (en) 1999-07-23 2008-12-16 Mannkind Corporation Unit dose cartridge and dry powder inhaler
CA2379137C (fr) 1999-07-23 2007-01-23 Pharmaceutical Discovery Corporation Capsules a dose unitaire et inhalateur a poudre seche
US6465425B1 (en) 2000-02-10 2002-10-15 Alkermes Controlled Therapeutics, Inc. Microencapsulation and sustained release of biologically active acid-stable or free sulfhydryl-containing proteins
CN1141974C (zh) 2000-06-07 2004-03-17 张昊 结肠定位释放的口服生物制剂
PT1311269E (pt) 2000-08-04 2012-05-10 Dmi Biosciences Inc Método de utilização de dicetopiperazinas e composição que contém as mesmas
DE10114178A1 (de) 2001-03-23 2002-10-10 Aventis Pharma Gmbh Zinkfreie und zinkarme Insulinzubereitungen mit verbesserter Stabilität
RU2279292C2 (ru) 2001-10-24 2006-07-10 Пари Гмбх Набор для приготовления фармацевтической композиции
US20030198666A1 (en) 2002-01-07 2003-10-23 Richat Abbas Oral insulin therapy
WO2003074029A1 (fr) 2002-03-07 2003-09-12 Vectura Limited Formulations a base de particules multiples a fusion rapide pour administration orale
US20030194420A1 (en) 2002-04-11 2003-10-16 Richard Holl Process for loading a drug delivery device
WO2004056314A2 (fr) 2002-12-17 2004-07-08 Nastech Pharmaceutical Company Inc. Compositions et procedes permettant d'ameliorer l'administration aux muqueuses de peptides de liaison du recepteur y2, et procedes pour le traitement et la prevention de l'obesite
US20040171518A1 (en) 2003-02-27 2004-09-02 Medtronic Minimed, Inc. Compounds for protein stabilization and methods for their use
WO2004080401A2 (fr) 2003-03-06 2004-09-23 Emisphere Technologies, Inc. Insulinotherapies orales et protocole
US20050203001A1 (en) 2004-03-05 2005-09-15 Emisphere Technologies, Inc. Oral insulin therapies and protocol
SI1740154T1 (sl) 2004-03-12 2009-10-31 Biodel Inc Insulinski sestavki z izboljšano absorpcijo
WO2006088473A2 (fr) 2004-04-23 2006-08-24 Panduranga Rao Koritala Microparticules et nanoparticules pour l'administration transmuqueuse d'agents therapeutiques et diagnostiques
AU2006304757A1 (en) 2005-10-20 2007-04-26 Nastech Pharmaceutical Company Inc. Intranasal administration of rapid acting insulin
JP2009516711A (ja) 2005-11-22 2009-04-23 ディア ビー テック リミテッド 糖尿病の処置のための組成物および方法

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2143590A (en) * 1936-09-26 1939-01-10 Univ Alberta Insulin preparation and process of producing crystals of insulin
US2626228A (en) * 1945-05-17 1953-01-20 Novo Terapeutisk Labor As Method of producing crystalline insulin
US2819999A (en) * 1953-11-13 1958-01-14 Novo Terapeutisk Labor As Process for crystallization of insulin using freeze dried insulin as seeding material
US3683635A (en) * 1970-12-07 1972-08-15 Mario Campanelli Freeze stabilized insulin
US3906950A (en) * 1973-04-04 1975-09-23 Isf Spa Inhaling device for powdered medicaments
US4153689A (en) * 1975-06-13 1979-05-08 Takeda Chemical Industries, Ltd. Stable insulin preparation for nasal administration
US4211769A (en) * 1977-08-24 1980-07-08 Takeda Chemical Industries, Ltd. Preparations for vaginal administration
US4377482A (en) * 1978-04-28 1983-03-22 Salk Institute For Biological Studies Mobile phase for liquid chromatography
US4196196A (en) * 1978-06-19 1980-04-01 Tiholiz Ivan C Divalen/monovalent bipolar cation therapy for enhancement of tissue perfusion and reperfusion in disease states
US4272398A (en) * 1978-08-17 1981-06-09 The United States Of America As Represented By The Secretary Of Agriculture Microencapsulation process
US4511505A (en) * 1979-04-13 1985-04-16 Shionogi & Co., Ltd. Semi-synthesis of human insulin
US4343898A (en) * 1980-02-11 1982-08-10 Novo Industri A/S Process for preparing esters of human insulin
US4866051A (en) * 1981-10-19 1989-09-12 Glaxo Group Limited Micronised beclomethasone dipropionate monohydrate compositions and methods of use
US4459226A (en) * 1982-02-26 1984-07-10 Eli Lilly And Company Process for recovering insulin
US4659696A (en) * 1982-04-30 1987-04-21 Takeda Chemical Industries, Ltd. Pharmaceutical composition and its nasal or vaginal use
US4459159A (en) * 1982-09-29 1984-07-10 Mara William C O Method for making semi-insulating substrate by post-process heating of oxygenated and doped silicon
US4946828A (en) * 1985-03-12 1990-08-07 Novo Nordisk A/S Novel insulin peptides
US5785989A (en) * 1985-05-01 1998-07-28 University Utah Research Foundation Compositions and methods of manufacturing of oral dissolvable medicaments
US5042975A (en) * 1986-07-25 1991-08-27 Rutgers, The State University Of New Jersey Iontotherapeutic device and process and iontotherapeutic unit dose
USRE35862E (en) * 1986-08-18 1998-07-28 Emisphere Technologies, Inc. Delivery systems for pharmacological agents encapsulated with proteinoids
US6099517A (en) * 1986-08-19 2000-08-08 Genentech, Inc. Intrapulmonary delivery of polypeptide growth factors and cytokines
US5045454A (en) * 1987-01-09 1991-09-03 Medi-Cult A/S Serum-free growth medium and use thereof
US4861627A (en) * 1987-05-01 1989-08-29 Massachusetts Institute Of Technology Preparation of multiwall polymeric microcapsules
US5204108A (en) * 1987-10-10 1993-04-20 Danbiosyst Uk Ltd. Transmucosal formulations of low molecular weight peptide drugs
US5006343A (en) * 1988-12-29 1991-04-09 Benson Bradley J Pulmonary administration of pharmaceutically active substances
US5514646A (en) * 1989-02-09 1996-05-07 Chance; Ronald E. Insulin analogs modified at position 29 of the B chain
US5188837A (en) * 1989-11-13 1993-02-23 Nova Pharmaceutical Corporation Lipsopheres for controlled delivery of substances
US5763396A (en) * 1990-10-10 1998-06-09 Autoimmune Inc. Method of treating or preventing type 1 diabetes by oral administration of insulin
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5482927A (en) * 1991-02-20 1996-01-09 Massachusetts Institute Of Technology Controlled released microparticulate delivery system for proteins
US5492112A (en) * 1991-05-20 1996-02-20 Dura Pharmaceuticals, Inc. Dry powder inhaler
US5929027A (en) * 1991-06-07 1999-07-27 Teikoku Seiyaku Kabushiki Kaisha Physiologically active polypeptide-containing pharmaceutical composition
US6063910A (en) * 1991-11-14 2000-05-16 The Trustees Of Princeton University Preparation of protein microparticles by supercritical fluid precipitation
US5329976A (en) * 1991-12-09 1994-07-19 Habley Medical Technology Corporation Syringe-filling and medication mixing dispenser
US5912011A (en) * 1991-12-19 1999-06-15 R. P. Scherer Corporation Solvent system to be enclosed in capsules
US5503852A (en) * 1992-03-11 1996-04-02 Pharmaceutical Discovery Corporation Method for making self-assembling diketopiperazine drug delivery system
US6582728B1 (en) * 1992-07-08 2003-06-24 Inhale Therapeutic Systems, Inc. Spray drying of macromolecules to produce inhaleable dry powders
US5888477A (en) * 1993-01-29 1999-03-30 Aradigm Corporation Use of monomeric insulin as a means for improving the bioavailability of inhaled insulin
US5747445A (en) * 1993-06-24 1998-05-05 Astra Aktiebolag Therapeutic preparation for inhalation
US5658878A (en) * 1993-06-24 1997-08-19 Ab Astra Therapeutic preparation for inhalation
US5952008A (en) * 1993-06-24 1999-09-14 Ab Astra Processes for preparing compositions for inhalation
US5672359A (en) * 1993-07-21 1997-09-30 The University Of Kentucky Research Foundation Multicompartment hard capsule with control release properties
US5534488A (en) * 1993-08-13 1996-07-09 Eli Lilly And Company Insulin formulation
US5484606A (en) * 1994-01-24 1996-01-16 The Procter & Gamble Company Process for reducing the precipitation of difficulty soluble pharmaceutical actives
US6685967B1 (en) * 1994-03-07 2004-02-03 Nektar Therapeutics Methods and compositions for pulmonary delivery of insulin
US6423344B1 (en) * 1994-03-07 2002-07-23 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US6051256A (en) * 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US6737045B2 (en) * 1994-03-07 2004-05-18 Nektar Therapeutics Methods and compositions for the pulmonary delivery insulin
US6592904B2 (en) * 1994-03-07 2003-07-15 Inhale Therapeutic Systems, Inc. Dispersible macromolecule compositions and methods for their preparation and use
US6395744B1 (en) * 1994-04-22 2002-05-28 Queen's University At Kingston Method and compositions for the treatment or amelioration of female sexual dysfunction
US5650486A (en) * 1994-06-16 1997-07-22 Eli Lilly And Company Monomeric insulin analog formulations
US5547929A (en) * 1994-09-12 1996-08-20 Eli Lilly And Company Insulin analog formulations
US5785049A (en) * 1994-09-21 1998-07-28 Inhale Therapeutic Systems Method and apparatus for dispersion of dry powder medicaments
US5740794A (en) * 1994-09-21 1998-04-21 Inhale Therapeutic Systems Apparatus and methods for dispersing dry powder medicaments
US6395774B1 (en) * 1994-09-30 2002-05-28 Emisphere Technologies, Inc. Carbon-substituted diketopiperazine delivery systems
US5877174A (en) * 1994-12-01 1999-03-02 Toyama Chemical Co., Ltd. 2,3-diketopiperazine derivatives or their salts
US5901703A (en) * 1995-02-06 1999-05-11 Unisia Jecs Corporation Medicine administering device for nasal cavities
US5653961A (en) * 1995-03-31 1997-08-05 Minnesota Mining And Manufacturing Company Butixocort aerosol formulations in hydrofluorocarbon propellant
US6428771B1 (en) * 1995-05-15 2002-08-06 Pharmaceutical Discovery Corporation Method for drug delivery to the pulmonary system
US20030017211A1 (en) * 1995-05-15 2003-01-23 Pharmaceutical Discovery Corporation Method for drug delivery to the pulmonary system
US20040096403A1 (en) * 1995-05-15 2004-05-20 Mannkind Corporation Method for drug delivery to the pulmonary system
US6071497A (en) * 1995-05-15 2000-06-06 Pharmaceutical Discovery Corporation Microparticles for lung delivery comprising diketopiperazine
US5653987A (en) * 1995-05-16 1997-08-05 Modi; Pankaj Liquid formulations for proteinic pharmaceuticals
US5807315A (en) * 1995-11-13 1998-09-15 Minimed, Inc. Methods and devices for the delivery of monomeric proteins
US6294204B1 (en) * 1995-11-24 2001-09-25 Inhale Therapeutic Systems, Inc. Method of producing morphologically uniform microcapsules and microcapsules produced by this method
US5874064A (en) * 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
USRE37053E1 (en) * 1996-05-24 2001-02-13 Massachusetts Institute Of Technology Particles incorporating surfactants for pulmonary drug delivery
US6436443B2 (en) * 1996-05-24 2002-08-20 The Penn Research Foundation, Inc. Porous particles comprising excipients for deep lung delivery
US6447753B2 (en) * 1996-05-24 2002-09-10 The Penn Research Foundation, Inc. Porous particles for deep lung delivery
US6254854B1 (en) * 1996-05-24 2001-07-03 The Penn Research Foundation Porous particles for deep lung delivery
US5783556A (en) * 1996-08-13 1998-07-21 Genentech, Inc. Formulated insulin-containing composition
US5898028A (en) * 1997-03-20 1999-04-27 Novo Nordisk A/S Method for producing powder formulation comprising an insulin
US6503480B1 (en) * 1997-05-23 2003-01-07 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US6676931B2 (en) * 1997-10-01 2004-01-13 Novadel Pharma Inc. Buccal, polar and non-polar spray or capsule
US20030068378A1 (en) * 1999-01-21 2003-04-10 Lavipharm Laboratories Inc. Compositions and methods for mucosal delivery
US6440463B1 (en) * 1999-04-05 2002-08-27 Pharmaceutical Discovery Corporation Methods for fine powder formation
US7030084B2 (en) * 1999-06-19 2006-04-18 Nobex Corporation Drug-oligomer conjugates with polyethylene glycol components
US6444226B1 (en) * 1999-06-29 2002-09-03 Pharmaceutical Discovery Corporation Purification and stabilization of peptide and protein pharmaceutical agents
US20040077528A1 (en) * 1999-06-29 2004-04-22 Mannkind Corporation Purification and stabilization of peptide and protein pharmaceutical agents
US6264981B1 (en) * 1999-10-27 2001-07-24 Anesta Corporation Oral transmucosal drug dosage using solid solution
US6518239B1 (en) * 1999-10-29 2003-02-11 Inhale Therapeutic Systems, Inc. Dry powder compositions having improved dispersivity
US20030064097A1 (en) * 1999-11-23 2003-04-03 Patel Mahesh V. Solid carriers for improved delivery of hydrophobic active ingredients in pharmaceutical compositions
US7089934B2 (en) * 2000-02-28 2006-08-15 Vectura Limited Delivery of oral drugs
US6432383B1 (en) * 2000-03-30 2002-08-13 Generex Pharmaceuticals Incorporated Method for administering insulin
US20020028767A1 (en) * 2000-06-02 2002-03-07 Jensen Thomas Hoeg Glucose dependent release of insulin from glucose sensing insulin derivatives
US20030143195A1 (en) * 2002-01-30 2003-07-31 Pinsker Judy Senior Use of histamine as a drug delivery enhancing compound for use in transmucosal or transdermal delivery
US20060067891A1 (en) * 2002-02-01 2006-03-30 Generex Pharmaceuticals Incorporated Metered dose spray device for use with macromolecular pharmaceutical agents such as insulin
US20070155654A1 (en) * 2002-05-07 2007-07-05 Novo Nordisk A/S Novel formulations
US20050080000A1 (en) * 2002-08-01 2005-04-14 Aventis Pharma Deutschland Gmbh Method of purifying preproinsulin
US20040151774A1 (en) * 2002-10-31 2004-08-05 Pauletti Giovanni M. Therapeutic compositions for drug delivery to and through covering epithelia
US20040157928A1 (en) * 2003-02-12 2004-08-12 Jae-Hwan Kim Solvent system of hardly soluble drug with improved dissolution rate
US7192919B2 (en) * 2004-01-07 2007-03-20 Stelios Tzannis Sustained release compositions for delivery of pharmaceutical proteins
US20050153874A1 (en) * 2004-01-12 2005-07-14 Mannkind Corporation Method of reducing serum proinsulin levels in type 2 diabetics
US20080085298A1 (en) * 2004-03-12 2008-04-10 Biodel, Inc. Rapid Mucosal Gel or Film Insulin Compositions
US20080096800A1 (en) * 2004-03-12 2008-04-24 Biodel, Inc. Rapid mucosal gel or film insulin compositions
US20070086952A1 (en) * 2005-09-29 2007-04-19 Biodel, Inc. Rapid Acting and Prolonged Acting Inhalable Insulin Preparations
US20070134279A1 (en) * 2005-12-09 2007-06-14 Unigene Laboratories, Inc. Fast-acting oral peptide pharmaceutical products
US20080039368A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20080039365A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid Acting and Long Acting Insulin Combination Formulations

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080085298A1 (en) * 2004-03-12 2008-04-10 Biodel, Inc. Rapid Mucosal Gel or Film Insulin Compositions
US20070235365A1 (en) * 2004-03-12 2007-10-11 Biodel Inc. Rapid Acting Drug Delivery Compositions
US20080096800A1 (en) * 2004-03-12 2008-04-24 Biodel, Inc. Rapid mucosal gel or film insulin compositions
US8084420B2 (en) 2005-09-29 2011-12-27 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20090137455A1 (en) * 2005-09-29 2009-05-28 Biodel Inc. Rapid acting and long acting insulin combination formulations
US7713929B2 (en) 2006-04-12 2010-05-11 Biodel Inc. Rapid acting and long acting insulin combination formulations
US7718609B2 (en) 2006-04-12 2010-05-18 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20080039368A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20080039365A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid Acting and Long Acting Insulin Combination Formulations
US20090175840A1 (en) * 2008-01-04 2009-07-09 Biodel, Inc. Insulin formulations for insulin release as a function of tissue glucose levels
US20100227795A1 (en) * 2009-03-03 2010-09-09 Biodel Inc. Insulin formulations for rapid uptake
EP3372238B1 (fr) 2009-03-03 2020-11-18 Eli Lilly and Company Formulations d'insuline pour absorption rapide
US9060927B2 (en) 2009-03-03 2015-06-23 Biodel Inc. Insulin formulations for rapid uptake
US8974826B2 (en) 2010-06-10 2015-03-10 Monosol Rx, Llc Nanoparticle film delivery systems
WO2012089778A1 (fr) * 2010-12-28 2012-07-05 Hexal Ag Formulation pharmaceutique comprenant un médicament biopharmaceutique
US9480743B2 (en) 2010-12-28 2016-11-01 Hexal Ag Pharmaceutical formulation comprising a biopharmaceutical drug
EP2471554A1 (fr) * 2010-12-28 2012-07-04 Hexal AG Formulation pharmaceutique comprenant un médicament biopharmaceutique
WO2013158618A1 (fr) 2012-04-16 2013-10-24 Biodel Inc. Compositions de magnésium pour moduler la pharmacocinétique et la pharmacodynamique de l'insuline et d'analogues de l'insuline, et la douleur au site d'injection
EP3827813A1 (fr) 2012-04-16 2021-06-02 Eli Lilly And Co. Compositions de magnésium pour moduler la pharmacocinétique et la pharmacodynamique de l'insuline, et la douleur au site d'injection
US9381247B2 (en) 2012-04-16 2016-07-05 Biodel Inc. Magnesium compositions for modulating the pharmacokinetics and pharmacodynamics of insulin and insulin analogs, and injection site pain
US9399065B2 (en) 2012-04-16 2016-07-26 Biodel Inc. Magnesium compositions for modulating the pharmacokinetics and injection site pain of insulin
US10646551B2 (en) 2012-11-13 2020-05-12 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
US10881716B2 (en) 2012-11-13 2021-01-05 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
US11324808B2 (en) 2012-11-13 2022-05-10 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
US10561711B2 (en) 2014-01-13 2020-02-18 Thermalin, Inc. Rapid action insulin formulations and pharmaceutical delivery systems
US9901622B2 (en) 2014-01-13 2018-02-27 Thermalin Diabetes, Inc. Rapid action insulin formulations and pharmaceutical delivery systems
AU2015204491B2 (en) * 2014-01-13 2021-01-07 Thermalin Inc. Rapid action insulin formulations and pharmaceutical delivery systems
WO2015106269A3 (fr) * 2014-01-13 2015-10-22 Thermalin Diabetes, Llc Formulations d'insuline à action rapide et systèmes d'administration pharmaceutique
US9993555B2 (en) 2014-12-16 2018-06-12 Eli Lilly And Company Rapid-acting insulin compositions
US11123406B2 (en) 2014-12-16 2021-09-21 Eli Lilly And Company Rapid-acting insulin compositions
US11872266B2 (en) 2014-12-16 2024-01-16 Eli Lilly And Company Rapid-acting insulin compositions
US9901623B2 (en) 2015-08-27 2018-02-27 Eli Lilly And Company Rapid-acting insulin compositions
US10925931B2 (en) 2015-08-27 2021-02-23 Eli Lilly And Company Rapid-acting insulin compositions
US11207384B2 (en) 2017-06-01 2021-12-28 Eli Lilly And Company Rapid-acting insulin compositions

Also Published As

Publication number Publication date
EP2209528A1 (fr) 2010-07-28
JP2011500581A (ja) 2011-01-06
WO2009048959A8 (fr) 2009-05-28
MX2010003776A (es) 2010-06-01
CA2702057A1 (fr) 2009-04-16
US20140135263A1 (en) 2014-05-15
AU2008310900A1 (en) 2009-04-16
WO2009048959A1 (fr) 2009-04-16
US8933023B2 (en) 2015-01-13
CN101883609A (zh) 2010-11-10

Similar Documents

Publication Publication Date Title
US8933023B2 (en) Rapid acting injectable insulin compositions
EP2403520B1 (fr) Formulations d'insuline pour une absorption rapide
AU2013249495B2 (en) Magnesium compositions for modulating the pharmacokinetics and pharmacodynamics of insulin and insulin analogs, and injection site pain
US8084420B2 (en) Rapid acting and long acting insulin combination formulations
US20120178675A1 (en) Compositions And Methods For Modulating The Pharmacokinetics and Pharmacodynamics of Insulin
US20150273022A1 (en) Stabilized ultra-rapid-acting insulin formulations
AU2013249495A1 (en) Magnesium compositions for modulating the pharmacokinetics and pharmacodynamics of insulin and insulin analogs, and injection site pain
US20070275877A1 (en) Methods for Treating or Ameliorating Ghrelin-Associated Diseases and Disorders
HK1150793A (en) Rapid acting injectable insulin compositions

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIODEL INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POHL, RODERIKE;STEINER, SOLOMON S.;REEL/FRAME:020341/0993

Effective date: 20071119

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION