US20080089834A1 - Reactive Working Material for Use in Hydrogen Production by Decompostion of Water - Google Patents
Reactive Working Material for Use in Hydrogen Production by Decompostion of Water Download PDFInfo
- Publication number
- US20080089834A1 US20080089834A1 US11/662,127 US66212704A US2008089834A1 US 20080089834 A1 US20080089834 A1 US 20080089834A1 US 66212704 A US66212704 A US 66212704A US 2008089834 A1 US2008089834 A1 US 2008089834A1
- Authority
- US
- United States
- Prior art keywords
- zirconia
- ferrite
- fine powder
- working material
- stabilized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000008207 working material Substances 0.000 title claims abstract description 38
- 239000001257 hydrogen Substances 0.000 title claims abstract description 37
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 37
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title abstract description 19
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 169
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 73
- 238000006243 chemical reaction Methods 0.000 claims abstract description 51
- 239000000843 powder Substances 0.000 claims abstract description 48
- 239000010987 cubic zirconia Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 10
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 156
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 claims description 15
- 239000000919 ceramic Substances 0.000 claims description 13
- 229910002078 fully stabilized zirconia Inorganic materials 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000000292 calcium oxide Substances 0.000 claims description 8
- 235000012255 calcium oxide Nutrition 0.000 claims description 8
- 239000000084 colloidal system Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 239000012266 salt solution Substances 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 2
- 239000011363 dried mixture Substances 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 230000005587 bubbling Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 claims 1
- 238000002844 melting Methods 0.000 abstract description 9
- 230000008018 melting Effects 0.000 abstract description 9
- 238000007711 solidification Methods 0.000 abstract description 4
- 230000008023 solidification Effects 0.000 abstract description 4
- 125000004122 cyclic group Chemical group 0.000 abstract description 2
- 239000002440 industrial waste Substances 0.000 abstract description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 60
- 239000012071 phase Substances 0.000 description 42
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 37
- 239000013078 crystal Substances 0.000 description 36
- 238000000354 decomposition reaction Methods 0.000 description 23
- 238000006722 reduction reaction Methods 0.000 description 22
- 239000000523 sample Substances 0.000 description 22
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- 229910052742 iron Inorganic materials 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000006104 solid solution Substances 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 8
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- -1 iron ions Chemical class 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910001448 ferrous ion Inorganic materials 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910002079 cubic stabilized zirconia Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 229910000357 manganese(II) sulfate Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/061—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
- C01B3/063—Cyclic methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Definitions
- the present invention relates to a technique of producing hydrogen by splitting water through the utilization of solar heat, industrial waste heat or the like, and more particularly to a hydrogen production process based on a two-step thermochemical water-splitting cycle and a reactive working material for use in the hydrogen production process.
- this hydrogen production process comprises a first step of reducing a metal oxide MOox to form a reduced metal oxide MOred and produce oxygen through a high-temperature thermal decomposition reaction, and a second step of reacting the reduced metal oxide with water to oxidize the reduced metal oxide to a metal oxide and produce hydrogen.
- magnetite Fe 3 O 4 which is known and described as “iron-based oxide” or “ferrite”, is used as the metal oxide MOox, i.e., a reactive working material for the hydrogen production process.
- This iron-based oxide as the reactive working material is reduced to wustite FeO in the first step to release oxygen, and the wustite FeO is reacted with water in the second step to release hydrogen and return to magnetite Fe 3 O 4 . Then, the reactive working material will be reused.
- the process of releasing oxygen in the first step is generally required to perform under a high-temperature atmosphere of 1800 to 2300° C.
- the iron-based oxide is sintered to be deactivated and cause quite strong vaporization. Therefore, it is required to quench the vaporized substance, and this requirement makes it difficult to put the two-step thermochemical water-splitting cycle to practical use.
- This reactive working material is formed such that ferrite fine powder is supported on zirconia fine powder.
- the zirconia fine powder is hardly sintered even at high temperatures, and the ferrite fine particles supported on the zirconia fine powder is prevented from coming in close contact with other ferrite particles each other so as to suppress grain growth thereof to provide enhanced reactivity and reusability even at a relatively low temperature of 1400° C. or less.
- Fe 3 O 4 and FeO to be repeatedly formed during the reaction cycle have specific gravities of 5.2 and 5.7, respectively.
- the ferrite fine powder will scale off from the zirconia fine powder to spoil the zirconia powder's effect of suppressing grain growth in the ferrite fine powder.
- the ferrite fine powder will be gradually agglomerated to cause grain growth while repeating melting and solidification, resulting in deterioration of reaction efficiency.
- thermochemical water-splitting cycle which comprises ferrite and zirconia supporting the ferrite
- the present invention provides a reactive working material for use in a two-step thermochemical water-splitting cycle, which comprises ferrite and zirconia supporting the ferrite, wherein the zirconia supporting ferrite is a cubic zirconia.
- the “ferrite” means an oxide represented by a composition formula of M(II)O.Fe 2 O 3 , wherein M(II) is a divalent metal, such as Fe, Mn, Co, Mg, Ni, Zn or Cu.
- M(II) is a divalent metal, such as Fe, Mn, Co, Mg, Ni, Zn or Cu.
- the oxide constituting the ferrite may have any configuration.
- Fe 3 O 4 having a spinel crystal structure may be used.
- the divalent metals, such as Mn, Co or Mg may be effectively doped as ions by replacing ferrous ion in Fe 3 O 4 partially or all.
- the ferrite is prepared to have a particle size, preferably, of 10 ⁇ m or less, more preferably 1 ⁇ m or less.
- the “cubic zirconia” means a fully-stabilized zirconia or a partially-stabilized zirconia which contains a stabilizer, such as calcia or yttria, and a zirconia including a cubic crystal phase.
- the cubic zirconia contains yttria or calcia in an amount of 2 mol % or more. If the content rate of the stabilizer is less than 2 mol %, the suppression of grain growth in the ferrite will become insufficient. An excessive content rate of the stabilizer causes deterioration in reactivity. Thus, more preferably, an upper limit of the content rate is set at 25 mol % or less.
- the reactive working material comprising a ferrite and a zirconia supporting the ferrite may be formed as a ferrite/zirconia composite powder.
- the reactive working material may be formed as a ferrite-supporting porous zirconia ceramics.
- a ferrite fine powder may be coated on, i.e., supported on, a porous structure of a porous zirconia ceramics.
- the ferrite/zirconia composite powder may be prepared by the following specific method.
- a method using an aqueous Fe(II) salt solution may be employed. Specifically, an yttria fully-stabilized or partially stabilized zirconia fine powder or a calcia fully-stabilized or partially stabilized zirconia fine powder which has a particle size of 10 ⁇ m or less, preferably 1 ⁇ m or less, is dispersed in an aqueous Fe(II) salt solution or an aqueous Fe(II) salt solution containing another metal salt dissolved therein as a doping metal [M(II)], and an aqueous alkali hydroxide solution is added to the zirconia fine powder-dispersed aqueous solution to form a Fe (II) hydroxide colloid therein.
- the porous zirconia ceramics supporting the ferrite may be prepared by immersing a porous zirconia ceramics including a cubic crystal phase into the above aqueous Fe(II) salt solution or the above aqueous Fe(II) salt solution containing another metal salt dissolved therein as a doping metal [M(II)], drying the pulled-out porous zirconia ceramics body, and subjecting the dried porous zirconia ceramics to a heat treatment.
- a reactive working material having a ferrite fine powder coating can be prepared using a cubic zirconia having any other configuration.
- a solvent impregnation process may be used. Specifically, a fully-stabilized or partially-stabilized zirconia fine powder is dispersed in an aqueous solution of a metal salt, such as iron nitrate, iron chloride or organic iron, and a salt of the doping metal. The obtained mixture is evaporated and dried, and then the dried mixture is burnt to allow the metal salt on the zirconia to be decomposed to the metal oxide. Then, the metal oxide is heated under a H 2 /H 2 0 mixed gas atmosphere or a CO/CO 2 mixed gas atmosphere at a temperature of 300° C. or more.
- a metal salt such as iron nitrate, iron chloride or organic iron
- the porous zirconia ceramics supporting the ferrite may be prepared by immersing a porous zirconia ceramics including a cubic crystal phase into the above aqueous Fe(II) salt solution or the above aqueous Fe(II) salt solution containing another metal salt dissolved therein as a doping metal [M(II)], drying the pulled-out porous zirconia ceramics body, and subjecting the dried porous zirconia ceramics to a heat treatment.
- a reactive working material having a ferrite fine powder coating can be prepared using a cubic zirconia having any other configuration.
- reaction temperature When a reaction temperature is increased up to 1300 to 1500° C., the ferrite fine powder supported on the zirconia is formed as FeO through release of oxygen therefrom. Subsequently, when the reaction temperature is decreased to 1000° C. and water vapor is introduced, FeO returns to the original Fe 3 O 4 through oxidization while decomposing water to generate hydrogen.
- the zirconia formed as a solid solution with FeO stabilizes the cubic crystal phase to allow the entire crystal phase to have a transition to a cubic zirconia.
- thermochemical water-splitting cycle a first step where a solid solution of FeO and cubic zirconia is formed at high temperatures, and a second step where a Fe 3 O 4 fine powder is precipitated from the solid solution of cubic zirconia incorporating iron ions and formed directly on the cubic zirconia during decomposition of water at low temperatures, will be repeatedly performed.
- a temperature allowing the cubic solid solution of FeO and zirconia to be fully molten is 2000° C. or more when a ratio of FeO to the solid solution is 30 wt % or less.
- the solid grains are not excessively molten during the cyclic reaction, and grain growth is suppressed. That is, FeO is not changed to independent grains, and therefore an undesirable situation where FeO grains are molten and agglomerated at about 1400° C., i.e., a melting point thereof, can be avoided to suppress grain growth.
- FeO incorporated in the zirconia as a solid solution is penetrated into and strongly bonded with the zirconia crystal to eliminate the problem about scaling off of the ferrite fine grains from the zirconia fine grains due to volumetric changes, i.e., a large difference in specific gravity between Fe 3 O 4 as a reactive working material and FeO to be formed through the reaction.
- a fully-stabilized or partially-stabilized cubic zirconia used as a zirconia fine powder for supporting a ferrite fine powder makes it possible to eliminate the problem about scaling off of the ferrite fine powder from the zirconia fine powder as in a case of using a monoclinic zirconia as a support, and achieve an effect of preventing excessive sintering of the ferrite fine powder.
- a hydrogen production process using the ferrite supported on the fully-stabilized or partially-stabilized zirconia is performed according to the following reaction formulas.
- the present invention provides the following advantages.
- a crystal growth of the iron-based oxide as the reactive working material can be suppressed to maintain cyclical reactivity.
- the oxygen-releasing temperature is reduced in the second reaction step since the grain growth of the iron oxide particles is effectively suppressed. This lower reaction temperature makes it possible to eliminate the need for quenching of the reactive working material and a large-scale facility for the quenching.
- YSZ yttria partially-stabilized zirconia
- CSZ calcia partially-stabilized zirconia
- ZrO 2 ZrO 2
- CaO calcia partially-stabilized zirconia
- the YSZ and CSZ has a particle size of 1 ⁇ m or less.
- the YSZ primarily comprises a cubic crystal phase and slightly has a tetragonal crystal phase.
- the YSZ has a BET (Brunauer-Emmett-Teller) surface area of 7.7 m 2 g ⁇ 1 .
- the CSZ primarily comprises a cubic crystal phase and partially has a monoclinic crystal phase.
- a conventional monoclinic zirconia BET surface area: 12.6 m 2 g ⁇ 1 ) was used as a support.
- a cubic zirconia-supported ferrite as Inventive Example and a monoclinic zirconia-supported ferrite as Comparative Example were prepared through the following process.
- the zirconia particles were suspended in distilled water after removing oxygen and CO 2 therefrom, and N 2 was supplied therethrough for 1 hour to expel any remaining air. Then, a given amount of FeSO 4 , MnSO 4 and CoSO 4 were dissolved in the suspension, and 0.15 mol dm ⁇ 3 of NaOH solution was added to the obtained solution to adjust pH at 8.5 so as to form hydroxides of Fe 2+ , Mn 2+ and Co 2+ .
- a mass ratio of a ferrite phase to the zirconia is set in the range of 20 to 25%. This mixed solution was heated up to 65° C., and then an NaOH solution was added to the heated solution while supplying air bubbles therethrough, to maintain pH at 8.5.
- a resulting product was collected by centrifugal separation at 14000 rpm.
- the collected product was rinsed with distilled water and acetone, and then dried at room temperature all day and night.
- the sample prepared in the above manner was subjected to a high-temperature stabilization treatment under an N 2 atmosphere at 900° C.
- Fe 3 O 4 without a zirconia support was prepared through a coprecipitation process.
- the obtained samples were identified using an X-ray diffractometer (XRD) (RAD- ⁇ A diffractometer: produced by Rigaku Co. Ltd.).
- XRD X-ray diffractometer
- a ferrite phase in each of the samples was dissolved by HCl, and respective amounts of Fe, Mn and Co in the solution were analyzed through inductively coupled plasma (ICP) emission spectrometry (SPS-1500 V: SEIKO Instruments Inc.) to determine a weight ratio of ferrite/zirconia support.
- ICP inductively coupled plasma
- SPS-1500 V SEIKO Instruments Inc.
- FIG. 1 shows an experimental apparatus for the thermal reduction reaction, which is designed to supply N 2 gas to a silica tube 4 which is contained in an infrared furnace 1 to house a platinum cup 2 for receiving the solid sample 3 therein, and exhaust the N 2 gas from the silica tube 4 .
- the solid sample (about 1 g) 3 was put in the platinum cup (diameter: 10 mm, depth: 7 mm) 2 , and set in the silica tube (SSA-E45; produced by ULVAC-RIKO, Inc) 4 having an inner diameter of 45 mm.
- N 2 gas (purity: 99.999%) was supplied at a flow rate of 1.0 Ndm 3 ⁇ min.
- a temperature of the platinum cup 2 was controlled using an R-type thermocouple 5 disposed in contact with the platinum cup 2 in the infrared furnace (RHL-VHT-E44: produced by ULVAC-RIKO, Inc) 1 , and increased up to a given temperature (1400° C.) so as to induce the thermal reduction reaction.
- the solid sample 3 was heated at a constant temperature for 0.5 hours, and then cooled to room temperature. After completion of the reaction, the thermally reduced solid sample 3 was crushed using a mortar, and the obtained powder was put in the silica tube 4 . Then, H 2 O/N 2 mixed gas was introduced into the reaction system to induce the water-decomposition reaction.
- the H 2 O/N 2 mixed gas was supplied at a flow rate of 4 Ncm 3 ⁇ min ⁇ 1 through distilled water having a temperature of 80° C. In this process, a partial pressure of water vapor in the H 2 O/N 2 mixed gas was estimated as 47% from a vapor pressure at 80° C. and 1 atm.
- the reaction system was heated up to 1000° C. within 10 minutes using an infrared furnace (RHL-E45P: produced by ULVAC-RIKO, Inc) 1 , and then the water-decomposition reaction was promoted at a constant temperature of 1000° C. for 50 minutes.
- RHL-E45P produced by ULVAC-RIKO, Inc
- the discharged gas was collected over water to a container. After completion of the water-decomposition reaction, a volume of the collected discharged gas was measured, and gas components were determined using a thermal conductivity detector (TCD) gas chromatography (GC-4C: produced by Shimadzu Corp.). Each of the samples was identified using the XRD (RAD- ⁇ A diffractometer: produced by Rigaku Co. Ltd.).
- the thermal reduction reaction and the water-decomposition reaction using the ferrite/zirconia composite powder were alternately repeated two to seven times. After completion of each cycle, the thermally reduced sample was crushed using a mortar.
- FIGS. 2 ( a ) and 2 ( b ) show respective XRD patterns of the YSZ supporting 20 wt % of Fe 3 O 4 in two reaction stages, wherein FIG. 2 ( a ) shows an XRD pattern before initiation of the reaction, and FIG. 2 ( b ) shows an XRD pattern after completer of the high-temperature thermal reduction reaction at 1400° C.
- the YSZ-supported Fe 3 O 4 was formed as porous pellets in the platinum cap. This pellet was easily crushed using the mortar, which was significantly effective in using for generating hydrogen in the subsequent water-decomposition reaction. In contract, the Fe 3 O 4 without the YSZ support was severely sintered in the platinum cap, and formed as a dense, hard, candy-like glossy agglomerate. The agglomerate was attached onto a bottom surface of the platinum cap. It was assumed that the sample is molted once at the high temperature and then cooled and solidified again. The reason is that the thermal reduction reaction temperature of 1400° C. is close to a melting point (1370° C.) of the reduced Fe 3 O 4 phase.
- FIG. 3 shows a hydrogen generation rate per gram of the sample and a water-decomposition temperature in the 1st cycle of the water-decomposition reaction, which represents a hydrogen generation profile in the water-decomposition reaction using the YSZ supporting Fe 3 O 4 (20 wt %) thermally reduced at a reaction temperature of 1400° C. by plotting a hydrogen generation rate (Ncm 3 ⁇ min ⁇ 1 per gram of the sample with respect to a reaction time.
- FIG. 4 shows a measurement result of a hydrogen generation amount per gram of the reactive working material sample in each cycle.
- the repeatability was checked using two samples having a Fe 3 O 4 weight ratio of 20 wt % and 25 wt %.
- the sample having 20 wt % of Fe 3 O 4 and the sample having 25 wt % of Fe 3 O 4 are indicated by a black circle and a while circle, respectively.
- a hydrogen generation amount in each of the samples is maintained at an approximately constant value even if the number of cycles is increased. Further, a hydrogen generation amount is drastically increased in most of the cycles by increasing the Fe 3 O 4 weight ratio from 20 wt % to 25 wt %.
- Fe 3 O 4 conversion rate A rate of Fe 3+ in Fe 3 O 4 which is reduced to Fe 2+ in the thermal reduction reaction will hereinafter be referred to as “Fe 3 O 4 conversion rate”. Then, the Fe 3 O 4 conversion rate was roughly estimated on the assumption that “Fe 2+ generated through the thermal reduction reaction will be entirely re-oxidized to Fe 3+ through the water-decomposition reaction”.
- Table 1 shows a Fe 3 O 4 conversion rate in each of the seven cycles of the thermal reduction reaction, according to the above rough estimation. As seen in Table 1, when 20 wt % of Fe 3 O 4 is supported, 20 to 30% of the Fe 3 O 4 phase is converted to a reduced phase. Further, when the content rate of Fe 3 O 4 is increased to 25 wt %, the Fe 3 O 4 conversion rate is increased to about 30 to 40%.
- FIGS. 5 ( a ) to 5 ( d ) show an SEM image ( ⁇ 1000) of the Fe 3 O 4 /YSZ and element mappings of the sample after the 7th cycle using an electron probe microanalyzer (EPMA), wherein FIG. 5 ( a ) shows the sample before the reaction, and FIG. 5 ( b ) shows the sample after the 7th cycle.
- FIG. 5 ( c ) is a photograph showing a Fe distribution
- FIG. 5 ( d ) a photograph showing a Zr distribution.
- FIGS. 6 ( a ) to 6 ( d ) show an SEM image of the Fe 3 O 4 /monoclinic zirconia and Fe and Zr distributions after the 6th cycle using the EPMA.
- FIGS. 7 ( a ) to 7 ( c ) show a peak due to the reflection of a Fe 3 O 4 (311) face in an XRD pattern of the Fe 3 O 4 (20 wt %)/YSZ during the water-decomposition reaction in each cycle, wherein: FIG. 7 ( a ) shows an XRD pattern before the reaction; FIG. 7 ( b ) shows an XRD 3pattern after the high-temperature thermal reduction reaction at 1400° C.; and FIG. 7 ( c ) shows an XRD pattern after the water-decomposition reaction.
- the Fe 3 O 4 reacts with the YSZ through release of oxygen, i.e., Fe +2 penetrates into a cubic YSZ lattice to form a cubic ZrO 2 phase including Fe +2 or Fe +2 ion is incorporated in a cubic YSZ lattice, as is commonly known.
- the Fe +2 -containing YSZ generates hydrogen through decomposition of water, to form a Fe 3 O 4 phase on the YSZ support.
- This cyclical reaction may be roughly represented by the aforementioned formulas (1) and (2).
- the present invention is based on knowledge that a transition from Fe 3+ to Fe 2+ represented by the aforementioned formulas (1) and (2) or the aforementioned formulas (3) and (4) is observed in a ferrite supported on a cubic zirconia without formation of FeO grain.
- a fully-stabilized or partially stabilized zirconia-supported ferrite is more suitable for a cyclical reaction involving a temperature change in a high-temperature range.
- the reason is that, while the non-stabilized zirconia is changed from a monoclinic crystal phase to a tetragonal crystal phase due to such a temperature change, iron ions incorporated in the fully-stabilized or partially stabilized zirconia as a solid solution can stabilize a cubic crystal phase thereof to suppress a transition in the crystal phase due to the temperature change.
- FIG. 1 is a schematic diagram showing a high-temperature thermal reduction reactor used in a test on a reactive working material according to the present invention.
- FIGS. 2 ( a ) and 2 ( b ) are graphs showing an X-ray diffraction (XRD) pattern in each reaction step.
- FIG. 3 is a graph showing a water-decomposition temperature and a hydrogen generation rate per gram of a reactive working material in the I st cycle of a water-decomposition reaction.
- FIG. 4 is a graph showing a hydrogen generation amount per gram of the reactive working material in each cycle.
- FIGS. 5 ( a ) to 5 ( d ) are scanning electron microscopic (SEM) images of an initial reactive working material and the reactive working material after the 7th cycle.
- FIGS. 6 ( a ) to 6 ( d ) are SEM images of a monoclinic zirconia-supported reactive working material.
- FIGS. 7 ( a ) to 7 ( c ) are graphs showing changes in Fe 3 O 4 (311) face based on an XRD pattern in each reaction step
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
- Compounds Of Iron (AREA)
Abstract
Disclosed is a reactive working material for use in a process of producing hydrogen by splitting water based on a two-step thermochemical water-splitting cycle through the utilization of solar heat, industrial waste heat or the like, which comprises a ferrite fine powder and a cubic zirconia supporting the ferrite fine powder. This reactive working material makes it possible to prevent scaling off of the ferrite fine powder from the zirconia fine powder due to volumetric changes of the ferrite fine powder during repeated use, and suppress growth of FeO grains due to repetition of melting and solidification when used as a reactive working material for a cyclic reaction under a high temperature of 1400° C. or more.
Description
- The present invention relates to a technique of producing hydrogen by splitting water through the utilization of solar heat, industrial waste heat or the like, and more particularly to a hydrogen production process based on a two-step thermochemical water-splitting cycle and a reactive working material for use in the hydrogen production process.
- A hydrogen production process based on a two-step thermochemical water-splitting cycle has been widely known before the filing of this patent application. The hydrogen production process is designed to repeat the following two reaction formulas.
MOox→MOred+½O2 First Step
MOred+H2O→MOox+H2 Second Step - Specifically, this hydrogen production process comprises a first step of reducing a metal oxide MOox to form a reduced metal oxide MOred and produce oxygen through a high-temperature thermal decomposition reaction, and a second step of reacting the reduced metal oxide with water to oxidize the reduced metal oxide to a metal oxide and produce hydrogen.
- Typically, magnetite Fe3O4, which is known and described as “iron-based oxide” or “ferrite”, is used as the metal oxide MOox, i.e., a reactive working material for the hydrogen production process. This iron-based oxide as the reactive working material is reduced to wustite FeO in the first step to release oxygen, and the wustite FeO is reacted with water in the second step to release hydrogen and return to magnetite Fe3O4. Then, the reactive working material will be reused.
- In the above reaction formulas, the process of releasing oxygen in the first step is generally required to perform under a high-temperature atmosphere of 1800 to 2300° C. In practice, under such a high-temperature atmosphere for the oxygen release reaction, the iron-based oxide is sintered to be deactivated and cause quite strong vaporization. Therefore, it is required to quench the vaporized substance, and this requirement makes it difficult to put the two-step thermochemical water-splitting cycle to practical use.
- With a view to solve the problem concerning the reactive working material for use in the hydrogen production process based on the two-step thermochemical water-splitting cycle, the applicant of this patent application previously disclosed a hydrogen production-process based on a two-step thermochemical water-splitting cycle which uses a reactive working material comprising ferrite fine powder and zirconia fine powder supporting the ferrite fine powder, in Japanese Patent Application No. 2003-060101.
- This reactive working material is formed such that ferrite fine powder is supported on zirconia fine powder. The zirconia fine powder is hardly sintered even at high temperatures, and the ferrite fine particles supported on the zirconia fine powder is prevented from coming in close contact with other ferrite particles each other so as to suppress grain growth thereof to provide enhanced reactivity and reusability even at a relatively low temperature of 1400° C. or less.
- Fe3O4 and FeO to be repeatedly formed during the reaction cycle have specific gravities of 5.2 and 5.7, respectively. Thus, due to volumetric changes of these powders during the reaction cycle, the ferrite fine powder will scale off from the zirconia fine powder to spoil the zirconia powder's effect of suppressing grain growth in the ferrite fine powder., Moreover, under a reaction atmosphere repeatedly having a temperature of 1400° C. or more which is greater than a melting point of FeO, the ferrite fine powder will be gradually agglomerated to cause grain growth while repeating melting and solidification, resulting in deterioration of reaction efficiency.
- In a reactive working material for use in a hydrogen production process based on a two-step thermochemical water-splitting cycle, which comprises ferrite and zirconia supporting the ferrite, it is an object of the present invention to provide an effective means for preventing the ferrite from scaling off the zirconia due to volumetric changes of the ferrite during repeated use.
- It is another object of the present invention to provide a means for suppressing growth of FeO grains due to repetition of melting and solidification when used as a reactive working material for a cyclical reaction under a high temperature of 1400° C. or more.
- In order to achieve the above objects, the present invention provides a reactive working material for use in a two-step thermochemical water-splitting cycle, which comprises ferrite and zirconia supporting the ferrite, wherein the zirconia supporting ferrite is a cubic zirconia.
- As used in this specification, the “ferrite” means an oxide represented by a composition formula of M(II)O.Fe2O3, wherein M(II) is a divalent metal, such as Fe, Mn, Co, Mg, Ni, Zn or Cu. The oxide constituting the ferrite may have any configuration. For example, Fe3O4 having a spinel crystal structure may be used. The divalent metals, such as Mn, Co or Mg, may be effectively doped as ions by replacing ferrous ion in Fe3O4 partially or all. When used in the form of a fine powder, the ferrite is prepared to have a particle size, preferably, of 10 μm or less, more preferably 1 μm or less.
- Further, the “cubic zirconia” means a fully-stabilized zirconia or a partially-stabilized zirconia which contains a stabilizer, such as calcia or yttria, and a zirconia including a cubic crystal phase. Preferably, the cubic zirconia contains yttria or calcia in an amount of 2 mol % or more. If the content rate of the stabilizer is less than 2 mol %, the suppression of grain growth in the ferrite will become insufficient. An excessive content rate of the stabilizer causes deterioration in reactivity. Thus, more preferably, an upper limit of the content rate is set at 25 mol % or less.
- In the present invention, the reactive working material comprising a ferrite and a zirconia supporting the ferrite may be formed as a ferrite/zirconia composite powder. Alternatively, the reactive working material may be formed as a ferrite-supporting porous zirconia ceramics. In this case, a ferrite fine powder may be coated on, i.e., supported on, a porous structure of a porous zirconia ceramics.
- The ferrite/zirconia composite powder may be prepared by the following specific method.
- As one example, a method using an aqueous Fe(II) salt solution may be employed. Specifically, an yttria fully-stabilized or partially stabilized zirconia fine powder or a calcia fully-stabilized or partially stabilized zirconia fine powder which has a particle size of 10 μm or less, preferably 1 μm or less, is dispersed in an aqueous Fe(II) salt solution or an aqueous Fe(II) salt solution containing another metal salt dissolved therein as a doping metal [M(II)], and an aqueous alkali hydroxide solution is added to the zirconia fine powder-dispersed aqueous solution to form a Fe (II) hydroxide colloid therein. Then, air is bubbled in the colloid-containing aqueous solution to oxidize the Fe (II) hydroxide colloid. Then, a dissolution-precipitation reaction where the Fe (II) hydroxide colloid is dissolved in the zirconia fine powder-dispersed aqueous solution and then precipitated as a ferrite is promoted to grow Fe3O4 or MxFe3-xO4 on the dispersed zirconia fine powder so as to form a ferrite/zirconia composite powder.
- The porous zirconia ceramics supporting the ferrite may be prepared by immersing a porous zirconia ceramics including a cubic crystal phase into the above aqueous Fe(II) salt solution or the above aqueous Fe(II) salt solution containing another metal salt dissolved therein as a doping metal [M(II)], drying the pulled-out porous zirconia ceramics body, and subjecting the dried porous zirconia ceramics to a heat treatment. In the same manner, a reactive working material having a ferrite fine powder coating can be prepared using a cubic zirconia having any other configuration.
- As another method for preparing the ferrite/zirconia composite powder, a solvent impregnation process may be used. Specifically, a fully-stabilized or partially-stabilized zirconia fine powder is dispersed in an aqueous solution of a metal salt, such as iron nitrate, iron chloride or organic iron, and a salt of the doping metal. The obtained mixture is evaporated and dried, and then the dried mixture is burnt to allow the metal salt on the zirconia to be decomposed to the metal oxide. Then, the metal oxide is heated under a H2/
H 2 0 mixed gas atmosphere or a CO/CO2 mixed gas atmosphere at a temperature of 300° C. or more. - The porous zirconia ceramics supporting the ferrite may be prepared by immersing a porous zirconia ceramics including a cubic crystal phase into the above aqueous Fe(II) salt solution or the above aqueous Fe(II) salt solution containing another metal salt dissolved therein as a doping metal [M(II)], drying the pulled-out porous zirconia ceramics body, and subjecting the dried porous zirconia ceramics to a heat treatment. In the same manner, a reactive working material having a ferrite fine powder coating can be prepared using a cubic zirconia having any other configuration.
- When a reaction temperature is increased up to 1300 to 1500° C., the ferrite fine powder supported on the zirconia is formed as FeO through release of oxygen therefrom. Subsequently, when the reaction temperature is decreased to 1000° C. and water vapor is introduced, FeO returns to the original Fe3O4 through oxidization while decomposing water to generate hydrogen.
- In the above process using the fully-stabilized cubic zirconia, during the course of the formation of FeO at the high temperatures, FeO is incorporated into the zirconia as a solid solution to form a cubic zirconia containing iron ions in the zirconia lattice. In this case, even during the course of the oxidization to Fe3O4 as well as that of the thermal reduction of Fe3O4, it is impossible that FeO particles supported on the zirconia fine power scale off the zirconia support and exist as independent grains since FeO phase is not formed anymore as the reduced iron-based oxide.
- In the partially-stabilized cubic zirconia, while tetragonal and monoclinic crystal phases exist as a zirconia crystal together with a cubic crystal phase, the zirconia formed as a solid solution with FeO stabilizes the cubic crystal phase to allow the entire crystal phase to have a transition to a cubic zirconia.
- As above, at a high reaction temperature of 1300 to 1500° C., Fe3O4 and cubic zirconia are changed to FeO-zirconia solid solutions through release of oxygen therefrom. Then, when the reaction temperature is reduced to 1000° C. and water vapor is introduced, iron ions in the solid solution of the cubic stabilized zirconia are oxidized while generating hydrogen, and a Fe3O4 fine powder is precipitated on the cubic zirconia.
- That is, in the hydrogen production process based on the two-step thermochemical water-splitting cycle, a first step where a solid solution of FeO and cubic zirconia is formed at high temperatures, and a second step where a Fe3O4 fine powder is precipitated from the solid solution of cubic zirconia incorporating iron ions and formed directly on the cubic zirconia during decomposition of water at low temperatures, will be repeatedly performed.
- A temperature allowing the cubic solid solution of FeO and zirconia to be fully molten is 2000° C. or more when a ratio of FeO to the solid solution is 30 wt % or less. Thus, the solid grains are not excessively molten during the cyclic reaction, and grain growth is suppressed. That is, FeO is not changed to independent grains, and therefore an undesirable situation where FeO grains are molten and agglomerated at about 1400° C., i.e., a melting point thereof, can be avoided to suppress grain growth.
- In addition, FeO incorporated in the zirconia as a solid solution is penetrated into and strongly bonded with the zirconia crystal to eliminate the problem about scaling off of the ferrite fine grains from the zirconia fine grains due to volumetric changes, i.e., a large difference in specific gravity between Fe3O4 as a reactive working material and FeO to be formed through the reaction.
- Thus, a fully-stabilized or partially-stabilized cubic zirconia used as a zirconia fine powder for supporting a ferrite fine powder makes it possible to eliminate the problem about scaling off of the ferrite fine powder from the zirconia fine powder as in a case of using a monoclinic zirconia as a support, and achieve an effect of preventing excessive sintering of the ferrite fine powder.
- In the present invention, a hydrogen production process using the ferrite supported on the fully-stabilized or partially-stabilized zirconia is performed according to the following reaction formulas.
- In the use of an yttria fully-stabilized or partially-stabilized zirconia:
- In the use of a calcia fully-stabilized or partially-stabilized zirconia:
- The present invention provides the following advantages.
- A crystal growth of the iron-based oxide as the reactive working material can be suppressed to maintain cyclical reactivity.
- The oxygen-releasing temperature is reduced in the second reaction step since the grain growth of the iron oxide particles is effectively suppressed. This lower reaction temperature makes it possible to eliminate the need for quenching of the reactive working material and a large-scale facility for the quenching.
- Thus, a process of converting natural heat energy, such as solar heat, to chemical energy of hydrogen can be achieved.
- An embodiment of the present invention will now be described based on the following Example.
- An yttria partially-stabilized zirconia (YSZ) represented by (ZrO2)0.97 (Y2O3)0.03 and a calcia partially-stabilized zirconia (CSZ) represented by (ZrO2)0.97 (CaO)0.03 (produced by Kojundo Chemical Lab. Co. Ltd.) were used as a support of a ferrite. Each of the YSZ and CSZ has a particle size of 1 μm or less. The YSZ primarily comprises a cubic crystal phase and slightly has a tetragonal crystal phase. The YSZ has a BET (Brunauer-Emmett-Teller) surface area of 7.7 m2g−1. The CSZ primarily comprises a cubic crystal phase and partially has a monoclinic crystal phase. As Comparative Example, a conventional monoclinic zirconia (BET surface area: 12.6 m2g−1) was used as a support.
- A cubic zirconia-supported ferrite as Inventive Example and a monoclinic zirconia-supported ferrite as Comparative Example were prepared through the following process.
- The zirconia particles were suspended in distilled water after removing oxygen and CO2 therefrom, and N2 was supplied therethrough for 1 hour to expel any remaining air. Then, a given amount of FeSO4, MnSO4 and CoSO4 were dissolved in the suspension, and 0.15 mol dm−3 of NaOH solution was added to the obtained solution to adjust pH at 8.5 so as to form hydroxides of Fe2+, Mn2+ and Co2+. A mass ratio of a ferrite phase to the zirconia is set in the range of 20 to 25%. This mixed solution was heated up to 65° C., and then an NaOH solution was added to the heated solution while supplying air bubbles therethrough, to maintain pH at 8.5. A resulting product was collected by centrifugal separation at 14000 rpm. The collected product was rinsed with distilled water and acetone, and then dried at room temperature all day and night. In advance of a high-temperature reaction, the sample prepared in the above manner was subjected to a high-temperature stabilization treatment under an N2 atmosphere at 900° C. Additionally, as Comparative Example, Fe3O4 without a zirconia support was prepared through a coprecipitation process.
- The obtained samples were identified using an X-ray diffractometer (XRD) (RAD-γ A diffractometer: produced by Rigaku Co. Ltd.). A ferrite phase in each of the samples was dissolved by HCl, and respective amounts of Fe, Mn and Co in the solution were analyzed through inductively coupled plasma (ICP) emission spectrometry (SPS-1500 V: SEIKO Instruments Inc.) to determine a weight ratio of ferrite/zirconia support.
- Each of the samples was used in the water-decomposition reaction represented by the aforementioned formulas (1) and (2) or (3) and (4). The reaction represented by the formula (1) or (3) and the reaction represented by the formula (2) or (4) will hereinafter referred to respectively as “thermal reduction reaction” and “water-decomposition reaction”.
-
FIG. 1 shows an experimental apparatus for the thermal reduction reaction, which is designed to supply N2 gas to asilica tube 4 which is contained in aninfrared furnace 1 to house aplatinum cup 2 for receiving thesolid sample 3 therein, and exhaust the N2 gas from thesilica tube 4. - The solid sample (about 1 g) 3 was put in the platinum cup (diameter: 10 mm, depth: 7 mm) 2, and set in the silica tube (SSA-E45; produced by ULVAC-RIKO, Inc) 4 having an inner diameter of 45 mm. N2 gas (purity: 99.999%) was supplied at a flow rate of 1.0 Ndm3·min. A temperature of the
platinum cup 2 was controlled using an R-type thermocouple 5 disposed in contact with theplatinum cup 2 in the infrared furnace (RHL-VHT-E44: produced by ULVAC-RIKO, Inc) 1, and increased up to a given temperature (1400° C.) so as to induce the thermal reduction reaction. - The
solid sample 3 was heated at a constant temperature for 0.5 hours, and then cooled to room temperature. After completion of the reaction, the thermally reducedsolid sample 3 was crushed using a mortar, and the obtained powder was put in thesilica tube 4. Then, H2O/N2 mixed gas was introduced into the reaction system to induce the water-decomposition reaction. The H2O/N2 mixed gas was supplied at a flow rate of 4 Ncm3·min−1 through distilled water having a temperature of 80° C. In this process, a partial pressure of water vapor in the H2O/N2 mixed gas was estimated as 47% from a vapor pressure at 80° C. and 1 atm. - The reaction system was heated up to 1000° C. within 10 minutes using an infrared furnace (RHL-E45P: produced by ULVAC-RIKO, Inc) 1, and then the water-decomposition reaction was promoted at a constant temperature of 1000° C. for 50 minutes.
- In order to measure an amount of hydrogen generated through the water-decomposition reaction, the discharged gas was collected over water to a container. After completion of the water-decomposition reaction, a volume of the collected discharged gas was measured, and gas components were determined using a thermal conductivity detector (TCD) gas chromatography (GC-4C: produced by Shimadzu Corp.). Each of the samples was identified using the XRD (RAD-γ A diffractometer: produced by Rigaku Co. Ltd.).
- Further, in order to check repeatability of the cyclical reaction, the thermal reduction reaction and the water-decomposition reaction using the ferrite/zirconia composite powder were alternately repeated two to seven times. After completion of each cycle, the thermally reduced sample was crushed using a mortar.
- FIGS. 2(a) and 2(b) show respective XRD patterns of the YSZ supporting 20 wt % of Fe3O4 in two reaction stages, wherein
FIG. 2 (a) shows an XRD pattern before initiation of the reaction, andFIG. 2 (b) shows an XRD pattern after completer of the high-temperature thermal reduction reaction at 1400° C. - As shown in FIGS. 2(a) and 2(b), a strong peak of a cubic ZrO2 was observed together of a peak due to the reflection of Fe3O4. Further, a slight tetragonal crystal phase was observed in a part of the ZrO2 phase of the YSZ.
- For comparison, this YSZ-supported Fe3O4 and Fe3O4 itself without the YSZ support were thermally reduced at 1400° C.
- After the thermal reduction, the YSZ-supported Fe3O4 was formed as porous pellets in the platinum cap. This pellet was easily crushed using the mortar, which was significantly effective in using for generating hydrogen in the subsequent water-decomposition reaction. In contract, the Fe3O4 without the YSZ support was severely sintered in the platinum cap, and formed as a dense, hard, candy-like glossy agglomerate. The agglomerate was attached onto a bottom surface of the platinum cap. It was assumed that the sample is molted once at the high temperature and then cooled and solidified again. The reason is that the thermal reduction reaction temperature of 1400° C. is close to a melting point (1370° C.) of the reduced Fe3O4 phase. This agglomerate was hardly crushed using the mortar, and therefore the subsequent water-decomposition reaction could not be performed using the Fe3O4 without the YSZ support. These test results show that the YSZ support can effectively suppress sintering of an iron oxide at high temperatures.
-
FIG. 3 shows a hydrogen generation rate per gram of the sample and a water-decomposition temperature in the 1st cycle of the water-decomposition reaction, which represents a hydrogen generation profile in the water-decomposition reaction using the YSZ supporting Fe3O4 (20 wt %) thermally reduced at a reaction temperature of 1400° C. by plotting a hydrogen generation rate (Ncm3·min−1per gram of the sample with respect to a reaction time. - Further, the two-step water-splitting reaction using the Fe3O4/YSZ reactive working material was repeated seven times to check repeatability of the cyclical reaction.
-
FIG. 4 shows a measurement result of a hydrogen generation amount per gram of the reactive working material sample in each cycle. The repeatability was checked using two samples having a Fe3O4 weight ratio of 20 wt % and 25 wt %. InFIG. 4 , the sample having 20 wt % of Fe3O4 and the sample having 25 wt % of Fe3O4 are indicated by a black circle and a while circle, respectively. As seen inFIG. 4 , a hydrogen generation amount in each of the samples is maintained at an approximately constant value even if the number of cycles is increased. Further, a hydrogen generation amount is drastically increased in most of the cycles by increasing the Fe3O4 weight ratio from 20 wt % to 25 wt %. - A rate of Fe3+ in Fe3O4 which is reduced to Fe2+ in the thermal reduction reaction will hereinafter be referred to as “Fe3O4 conversion rate”. Then, the Fe3O4 conversion rate was roughly estimated on the assumption that “Fe2+ generated through the thermal reduction reaction will be entirely re-oxidized to Fe3+ through the water-decomposition reaction”.
- Table 1 shows a Fe3O4 conversion rate in each of the seven cycles of the thermal reduction reaction, according to the above rough estimation. As seen in Table 1, when 20 wt % of Fe3O4 is supported, 20 to 30% of the Fe3O4 phase is converted to a reduced phase. Further, when the content rate of Fe3O4 is increased to 25 wt %, the Fe3O4 conversion rate is increased to about 30 to 40%.
- In Table 2, given that a sample having Fe3O4 supported on the YSZ is expressed as Fe3O4/YSZ; a sample having Co or Mn-doped Fe3O4 supported on the YSZ is expressed as CoxFe3-x O4/YSZ or MnxFe3-x 0 4/YSZ; a sample having Fe3O4 supported on the CSZ is expressed as Fe3O4/CSZ; and a sample having Fe3O4 supported on the monoclinic zirconia is expressed as Fe3O4/monoclinic zirconia, respective hydrogen generation amounts (Ncm3 g−1) in these samples are compared with each other. While hydrogen is continuously generated in each of the samples, the hydrogen generation amount in the Fe3O4/monoclinic zirconia is sharply reduced in and after the 5th cycle. In contract, such a decrease in the hydrogen generation amount is not observed in the samples having the cubic zirconia support, i.e., the Fe3O4/YSZ and the Fe3O4/CSZ. The reason would be that grain growth due to the high-temperature reaction cycles is suppressed in the cubic zirconia-supported ferrite as compared with the monoclinic zirconia-supported ferrite.
- FIGS. 5(a) to 5(d) show an SEM image (×1000) of the Fe3O4/YSZ and element mappings of the sample after the 7th cycle using an electron probe microanalyzer (EPMA), wherein
FIG. 5 (a) shows the sample before the reaction, andFIG. 5 (b) shows the sample after the 7th cycle.FIG. 5 (c) is a photograph showing a Fe distribution, andFIG. 5 (d) a photograph showing a Zr distribution. - FIGS. 6(a) to 6(d) show an SEM image of the Fe3O4/monoclinic zirconia and Fe and Zr distributions after the 6th cycle using the EPMA.
- As is clear from the comparison between the SEM images in these figures, while a Fe3O4 grain in the Fe3O4/monoclinic zirconia grows to have a size equivalent to that of a ZrO2 grain in the 6th cycle, such a large grain growth is not observed in the Fe3O4/YSZ even after the 7th cycle, and the Fe3O4 grain has a size of 2.5 μm or less. Further, it can be observed that there are many overlapped regions between the ZrO2 and Fe3O4 distributions. This shows that a Fe3O4 fine powder is precipitated on a surface of the YSZ.
- It is believed that the above result could be obtained by the following reason. Differently from the Fe3O4/monoclinic ZrO2, in the Fe3O4/YSZ, a reduced ion is incorporated in a crystal structure of the YSZ during the thermal reduction reaction, instead of being formed as a FeO grain, and then precipitated as a Fe3O4 grain from the zirconia during the water-decomposition reaction, so that aggregation between FeO grains due to melting/solidification can be avoided.
- FIGS. 7(a) to 7(c) show a peak due to the reflection of a Fe3O4 (311) face in an XRD pattern of the Fe3O4 (20 wt %)/YSZ during the water-decomposition reaction in each cycle, wherein:
FIG. 7 (a) shows an XRD pattern before the reaction;FIG. 7 (b) shows an XRD 3pattern after the high-temperature thermal reduction reaction at 1400° C.; andFIG. 7 (c) shows an XRD pattern after the water-decomposition reaction. - As shown in FIGS. 7(a) and 7(b), in the XRD pattern of the Fe3O4/YSZ after the thermal reduction reaction, the peak originated from the Fe3O4 (311) face becomes weaker than that of the Fe3O4/YSZ before the reaction. Further, after the thermal reduction reaction, no peak originated from the FeO is observed in the XRD pattern, and a weak peak of a tetragonal ZrO2 disappears. That is, as seen in
FIG. 2 (b), in XRD pattern after the thermal reduction reaction, only a strong peak of cubic ZrO2 and a weak peak of Fe3O4 are observed. Then, after the water-decomposition reaction, as seen inFIG. 7 (c), the intensity of a peak originated from Fe3O4 is increased again. - As evidenced by the above result, during the thermal reduction reaction, the Fe3O4 reacts with the YSZ through release of oxygen, i.e., Fe+2 penetrates into a cubic YSZ lattice to form a cubic ZrO2 phase including Fe+2 or Fe+2 ion is incorporated in a cubic YSZ lattice, as is commonly known. Then, during the water-decomposition reaction, the Fe+2-containing YSZ generates hydrogen through decomposition of water, to form a Fe3O4 phase on the YSZ support. This cyclical reaction may be roughly represented by the aforementioned formulas (1) and (2). It was also verified that a sample using CSZ has the same reaction mechanism represented by the aforementioned formulas (3) and (4).
TABLE 1 Ferrite Ratio/ Fe3O4 Conversion Rate/% wt %-Fe3O4 1st 2nd 3rd 4th 5th 6th 7th 20 27 27 29 29 25 17 25 25 34 18 28 36 33 38 34 -
TABLE 2 Temperature of Thermal Hydrogen Generation Reactive working Reduction Amount/Ncm3g−1 material Reaction/° C. 1st 2nd 3rd 4th 5th 6th 7th Fe3O4 1400 6.9 5.5 7.9 6.6 5.4 6.7 7.8 (20.3 wt %)/YSZ Fe3O4 1400 8.9 4.6 7.1 9.2 8.4 9.9 8.9 (24.5 wt %)/YSZ Co0.39Fe2.61O4 1400 6.4 2.9 8.3 5.4 8.4 7.5 5.4 (19.5 wt %)/YSZ CO0.68Fe2.32O4 1400 6.5 5.1 6.0 7.3 6.3 6.2 5.1 (18.3 wt %)/YSZ Mn0.68F2.62O4 1400 8.0 3.3 5.7 3.4 — — — (16.1 wt %)/YSZ Fe3O4 1400 5.5 6.2 6.7 5.3 5.7 7.2 6.6 (23.4 wt %)/CSZ CO0.38Fe2.62O4 1400 2.9 3.7 6.5 6.9 5.2 — — (18.4 wt %)/CSZ Fe3O4 1400 7.7 7.2 7.4 6.0 4.7 4.2 — (20.0 wt %)/ monoclinic ZrO2 - The applicant of this patent application previously disclosed an activity of a two-step water-splitting cycle using an iron-based oxide, i.e., ferrite, supported on a zirconia, in Japanese Patent Application No. 2003-060101. Specifically, it was disclosed that the ferrite supported on the zirconia can suppress aggregation and sintering, and thereby allows a two-step water-decomposition reaction to be repeatedly performed in a temperature cycle of 1000° C. and 1400° C. with enhanced reactivity as compared with a ferrite without a zirconia support. It was also disclosed that the occurrence of a phase change between Fe3O4 and FeO on a surface of the zirconia along with oxidation/reduction reactions of a solid phase is verified using an XRD.
- The present invention is based on knowledge that a transition from Fe3+ to Fe2+ represented by the aforementioned formulas (1) and (2) or the aforementioned formulas (3) and (4) is observed in a ferrite supported on a cubic zirconia without formation of FeO grain.
- In this reaction system, it is believed that Fe2+ generated through the thermal reduction reaction penetrates into and exists in the cubic zirconia lattice instead of being formed as a FeO crystal, and therefore the melting of the FeO phase is suppressed during the thermal reduction reaction. Thus, in the cubic zirconia-supported ferrite, the melting/aggregation of the FeO phase at 1400° C. can be suppressed.
- Further, as compared with a non-stabilized zirconia-supported ferrite, a fully-stabilized or partially stabilized zirconia-supported ferrite is more suitable for a cyclical reaction involving a temperature change in a high-temperature range. The reason is that, while the non-stabilized zirconia is changed from a monoclinic crystal phase to a tetragonal crystal phase due to such a temperature change, iron ions incorporated in the fully-stabilized or partially stabilized zirconia as a solid solution can stabilize a cubic crystal phase thereof to suppress a transition in the crystal phase due to the temperature change. When this zirconia-supported ferrite is fixed onto a ceramic foam to form a reaction device, a junction with the ceramic form is likely to have cracks due to volumetric changes caused by a transition in the crystal phase, and consequently scaling off of the zirconia-supported ferrite. It is expected that the fully-stabilized or partially stabilized zirconia can solve such a problem.
-
FIG. 1 is a schematic diagram showing a high-temperature thermal reduction reactor used in a test on a reactive working material according to the present invention. - FIGS. 2(a) and 2(b) are graphs showing an X-ray diffraction (XRD) pattern in each reaction step.
-
FIG. 3 is a graph showing a water-decomposition temperature and a hydrogen generation rate per gram of a reactive working material in the I st cycle of a water-decomposition reaction. -
FIG. 4 is a graph showing a hydrogen generation amount per gram of the reactive working material in each cycle. - FIGS. 5(a) to 5(d) are scanning electron microscopic (SEM) images of an initial reactive working material and the reactive working material after the 7th cycle.
- FIGS. 6(a) to 6(d) are SEM images of a monoclinic zirconia-supported reactive working material.
- FIGS. 7(a) to 7(c) are graphs showing changes in Fe3O4 (311) face based on an XRD pattern in each reaction step
-
- 1: infrared furnace
- 2: platinum cup
- 3: solid sample
- 4: silica tube
- 5: R-type thermocouple
Claims (8)
1. A reactive working material for use in a two-step thermochemical water-splitting cycle, said reactive working material comprising a ferrite and a zirconia supporting said ferrite, wherein said ferrite-supporting zirconia is a cubic zirconia.
2. The reactive working material as defined in claim 1 , wherein said cubic zirconia contains yttria or calcia in an amount of 2 mol % or more.
3. The reactive working material as defined in claim 1 , wherein said ferrite-supporting zirconia is a composite powder of a ferrite fine powder and a zirconia fine powder.
4. The reactive working material as defined in claim 1 , wherein said ferrite-supporting zirconia comprises a zirconia porous ceramics body having a porous structure coated with a ferrite fine powder.
5. A method of preparing a reactive working material for use in a two-step thermochemical water-splitting cycle, which comprises a ferrite and a zirconia supporting said ferrite, said method comprising:
dispersing a fully-stabilized or partially-stabilized zirconia fine powder having a particle size of 10 μm or less, in an aqueous Fe (II) salt solution, and adding an aqueous alkali hydroxide solution to said zirconia fine powder-dispersed aqueous solution to form a Fe (II) hydroxide colloid therein;
bubbling air in said colloid-containing aqueous solution to oxidize the Fe (II) hydroxide colloid; and
promoting a dissolution-precipitation reaction where the Fe (II) hydroxide colloid is dissolved in the zirconia fine powder-dispersed aqueous solution and then precipitated as Fe3O4, so as to grow Fe3O4 on the dispersed zirconia fine powder.
6. A method of preparing a reactive working material for use in a two-step thermochemical water-splitting cycle, which comprises a ferrite and a zirconia supporting said ferrite, said method comprising:
dispersing a fully-stabilized or partially-stabilized zirconia fine powder in an aqueous solution of a metal salt of Fe (II);
evaporating and drying the mixture; and
burning the dried mixture to allow the metal salt on the zirconia to be decomposed to the metal oxide; and
heating the metal oxide at a temperature of 300° C. or more.
7. A hydrogen production process based on a two-step thermochemical water-splitting cycle using a reactive working material which comprises a ferrite and an yttria fully-stabilized or partially-stabilized zirconia supporting said ferrite, said process comprising two steps expressed by the following reaction formulas:
x/3Fe3O4+YyZr1−yO2−y/2=FexYyZr1−yO2−y/2+x+x/6O2; and
FexYyZr1−yO2−y/2+x+x/3H2O=x/3Fe3O4+YyZr1−yO2−y/2+x/3H2
8. A hydrogen production process based on a two-step thermochemical water-splitting cycle using a reactive working material which comprises a ferrite and a calcia fully-stabilized or partially-stabilized zirconia supporting said ferrite, said process comprising two steps expressed by the following reaction formulas:
x/3Fe3O4+CayZr1−yO2−y=FexCayZr1−yO2−y+x+x/6O2; and
FexCayZr1−yO2−y+x+x/3H2O=x/3Fe3O4+CayZr1−yO2−y+x/3H2
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2004/012997 WO2006027829A1 (en) | 2004-09-07 | 2004-09-07 | Reaction medium for use in hydrogen production by decomposition of water |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2004/012997 A-371-Of-International WO2006027829A1 (en) | 2004-09-07 | 2004-09-07 | Reaction medium for use in hydrogen production by decomposition of water |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/590,672 Continuation US8110174B2 (en) | 2004-09-07 | 2009-11-12 | Reactive working material for use in hydrogen production by decomposition of water |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080089834A1 true US20080089834A1 (en) | 2008-04-17 |
Family
ID=36036126
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/662,127 Abandoned US20080089834A1 (en) | 2004-09-07 | 2004-09-07 | Reactive Working Material for Use in Hydrogen Production by Decompostion of Water |
| US12/590,672 Expired - Fee Related US8110174B2 (en) | 2004-09-07 | 2009-11-12 | Reactive working material for use in hydrogen production by decomposition of water |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/590,672 Expired - Fee Related US8110174B2 (en) | 2004-09-07 | 2009-11-12 | Reactive working material for use in hydrogen production by decomposition of water |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US20080089834A1 (en) |
| JP (1) | JP4681560B2 (en) |
| AU (1) | AU2004323089B8 (en) |
| WO (1) | WO2006027829A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103172021A (en) * | 2011-12-22 | 2013-06-26 | 中国科学院大连化学物理研究所 | Application of CeO2-based active materials in the decomposition of H2O and/or CO2 in a two-step thermochemical cycle |
| WO2014195111A1 (en) * | 2013-06-04 | 2014-12-11 | Siemens Aktiengesellschaft | Storage structure |
| DE102013213330A1 (en) | 2013-07-08 | 2015-01-22 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Regeneration of inert purge gas in the operation of solar thermal cycles |
| US9669379B2 (en) | 2011-12-22 | 2017-06-06 | University Of Florida Research Foundation, Inc | Solar thermochemical reactor, methods of manufacture and use thereof and thermogravimeter |
| US9776154B2 (en) | 2012-12-21 | 2017-10-03 | University Of Florida Research Foundation, Inc. | Material comprising two different non-metallic parrticles having different particle sizes for use in solar reactor |
| US9966171B2 (en) | 2011-07-08 | 2018-05-08 | University Of Florida Research Foundation, Inc. | Porous stabilized beds, methods of manufacture thereof and articles comprising the same |
| US10239036B2 (en) | 2011-12-22 | 2019-03-26 | University Of Florida Research Foundation | Solar thermochemical reactor, methods of manufacture and use thereof and thermogravimeter |
| US10906017B2 (en) | 2013-06-11 | 2021-02-02 | University Of Florida Research Foundation, Inc. | Solar thermochemical reactor and methods of manufacture and use thereof |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009061795A1 (en) * | 2007-11-05 | 2009-05-14 | The Regents Of The University Of Colorado, A Body Corporate | Metal ferrite spinel energy storage devices and methods for making and using same |
| AU2010327688B2 (en) | 2009-12-03 | 2013-11-21 | Niigata University | Method for producing hydrogen by means of hydrothermal decomposition, and device for producing hydrogen |
| US8847196B2 (en) | 2011-05-17 | 2014-09-30 | Micron Technology, Inc. | Resistive memory cell |
| WO2025041551A1 (en) * | 2023-08-23 | 2025-02-27 | 国立大学法人新潟大学 | Reaction medium and treatment method |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5235121A (en) * | 1991-08-02 | 1993-08-10 | Phillips Petroleum Company | Method for reforming hydrocarbons |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05137995A (en) * | 1991-06-19 | 1993-06-01 | Teika Corp | Method for coating particles with ferrite |
| JPH05221602A (en) * | 1991-12-20 | 1993-08-31 | Idemitsu Kosan Co Ltd | Production of synthesis gas |
| JPH07237923A (en) * | 1994-01-07 | 1995-09-12 | Japan Synthetic Rubber Co Ltd | Hollow particles containing ferrite |
| EP0732428B1 (en) * | 1995-03-17 | 2000-05-17 | AT&T Corp. | Method for making and artice comprising a spinel-structure material on a substrate |
| JP2704509B2 (en) * | 1995-10-05 | 1998-01-26 | 日本インシュレーション株式会社 | Ultraviolet shielding agent and method for producing the same |
| JPH11171552A (en) * | 1997-12-03 | 1999-06-29 | Adooru:Kk | Metal ferrite and production thereof |
| JP4610134B2 (en) | 2001-08-09 | 2011-01-12 | 京セラ株式会社 | High frequency circuit package |
| US6899744B2 (en) * | 2002-03-05 | 2005-05-31 | Eltron Research, Inc. | Hydrogen transport membranes |
| ITMI20030192A1 (en) * | 2003-02-05 | 2004-08-06 | Eni Spa | CATALYTIC SYSTEM AND PRODUCTION PROCESS |
| JP2004269296A (en) * | 2003-03-06 | 2004-09-30 | Kurosaki Harima Corp | Hydrogen production method by decomposition of water and reaction medium used for it |
-
2004
- 2004-09-07 WO PCT/JP2004/012997 patent/WO2006027829A1/en not_active Ceased
- 2004-09-07 AU AU2004323089A patent/AU2004323089B8/en not_active Ceased
- 2004-09-07 US US11/662,127 patent/US20080089834A1/en not_active Abandoned
- 2004-09-07 JP JP2006534941A patent/JP4681560B2/en not_active Expired - Fee Related
-
2009
- 2009-11-12 US US12/590,672 patent/US8110174B2/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5235121A (en) * | 1991-08-02 | 1993-08-10 | Phillips Petroleum Company | Method for reforming hydrocarbons |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9966171B2 (en) | 2011-07-08 | 2018-05-08 | University Of Florida Research Foundation, Inc. | Porous stabilized beds, methods of manufacture thereof and articles comprising the same |
| US12119148B2 (en) | 2011-07-08 | 2024-10-15 | University Of Florida Research Foundation, Inc. | Porous stabilized beds, methods of manufacture thereof and articles comprising the same |
| US11705255B2 (en) | 2011-07-08 | 2023-07-18 | University Of Florida Research Foundation, Inc. | Porous stabilized beds, methods of manufacture thereof and articles comprising the same |
| US10991490B2 (en) | 2011-07-08 | 2021-04-27 | University Of Florida Research Foundation, Inc. | Porous stabilized beds, methods of manufacture thereof and articles comprising the same |
| US9669379B2 (en) | 2011-12-22 | 2017-06-06 | University Of Florida Research Foundation, Inc | Solar thermochemical reactor, methods of manufacture and use thereof and thermogravimeter |
| US10239036B2 (en) | 2011-12-22 | 2019-03-26 | University Of Florida Research Foundation | Solar thermochemical reactor, methods of manufacture and use thereof and thermogravimeter |
| US10239035B2 (en) | 2011-12-22 | 2019-03-26 | University Of Florida Research Foundation, Inc. | Solar thermochemical reactor, methods of manufacture and use thereof and thermogravimeter |
| CN103172021A (en) * | 2011-12-22 | 2013-06-26 | 中国科学院大连化学物理研究所 | Application of CeO2-based active materials in the decomposition of H2O and/or CO2 in a two-step thermochemical cycle |
| US9776154B2 (en) | 2012-12-21 | 2017-10-03 | University Of Florida Research Foundation, Inc. | Material comprising two different non-metallic parrticles having different particle sizes for use in solar reactor |
| US9780373B2 (en) | 2013-06-04 | 2017-10-03 | Siemens Aktiengesellschaft | Storage structure for a solid electrolyte battery |
| WO2014195111A1 (en) * | 2013-06-04 | 2014-12-11 | Siemens Aktiengesellschaft | Storage structure |
| US10906017B2 (en) | 2013-06-11 | 2021-02-02 | University Of Florida Research Foundation, Inc. | Solar thermochemical reactor and methods of manufacture and use thereof |
| DE102013213330B4 (en) | 2013-07-08 | 2020-06-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Regeneration of inert purge gas during the operation of solar thermal cycles |
| DE102013213330A1 (en) | 2013-07-08 | 2015-01-22 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Regeneration of inert purge gas in the operation of solar thermal cycles |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2006027829A1 (en) | 2008-05-08 |
| AU2004323089B2 (en) | 2012-05-03 |
| JP4681560B2 (en) | 2011-05-11 |
| AU2004323089A1 (en) | 2006-03-16 |
| US20100119441A1 (en) | 2010-05-13 |
| US8110174B2 (en) | 2012-02-07 |
| WO2006027829A1 (en) | 2006-03-16 |
| AU2004323089B8 (en) | 2013-05-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8110174B2 (en) | Reactive working material for use in hydrogen production by decomposition of water | |
| Gokon et al. | Comparative study of activity of cerium oxide at thermal reduction temperatures of 1300–1550 C for solar thermochemical two-step water-splitting cycle | |
| Orfila et al. | Perovskite materials for hydrogen production by thermochemical water splitting | |
| Zou et al. | Electrochemical extraction of Ti 5 Si 3 silicide from multicomponent Ti/Si-containing metal oxide compounds in molten salt | |
| US20120201759A1 (en) | Tunable multiscale structures comprising bristly, hollow metal/metal oxide particles, methods of making and articles incorporating the structures | |
| JP7313602B2 (en) | Method for producing carbon material, method for decomposing carbon dioxide | |
| Jeong et al. | Characteristics of an electrochemical reduction of Ta2O5 for the preparation of metallic tantalum in a LiCl–Li2O molten salt | |
| JP5365488B2 (en) | Method for producing nickel cobalt aluminum composite oxide | |
| Abu-Zied et al. | Fabrication, characterization and catalytic activity measurements of nano-crystalline Ag-Cr-O catalysts | |
| Cavallaro et al. | Analysis of H 2 O-induced surface degradation in SrCoO 3-derivatives and its impact on redox kinetics | |
| Vojisavljevic et al. | Characterization of the alkoxide-based sol-gel derived La 9.33 Si 6 O 26 powder and ceramic | |
| Astankova et al. | The kinetics of self-heating in the reaction between aluminum nanopowder and liquid water | |
| Paraschiv et al. | Synthesis of nanosized bismuth ferrite (BiFeO 3) by a combustion method starting from Fe (NO 3) 3· 9H 2 O-Bi (NO 3) 3· 9H 2 O-glycine or urea systems | |
| Min et al. | CO production via thermochemical CO2 splitting over Ni ferrite-based catalysts | |
| Li et al. | Preparation and characterization of porous yttrium oxide powders with high specific surface area | |
| Blokhina et al. | Carbothermal synthesis of TiB2 powders of micron size | |
| Isogai et al. | Acceleration of Fe2O3 reduction kinetics by wet methane with calcium titanate as support | |
| Yang et al. | The effect of Fe in perovskite catalysts for steam CO2 reforming of methane | |
| US9868636B1 (en) | Thermochemically active iron titanium oxide materials | |
| Loughney et al. | Synthesis of nanostructured materials for conversion of fuels | |
| JP3471890B2 (en) | Porous sintered body, heat-resistant electrode and solid oxide fuel cell | |
| Malyshev et al. | Formation of the metal-oxide nanocomposites during the partial reduction of Nd-Sr nickelates | |
| Heya et al. | Effect of specific surface area on syngas production performance of pure ceria in high-temperature thermochemical redox cycling coupled to methane partial oxidation | |
| Nasiri et al. | Ni-Al2O3 Nanocomposite with High Specific Surface Area Synthesized by Mixture of Fuels through Solution Combustion | |
| RU2843774C1 (en) | Method of producing rhenium metal |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KROSAKIHARIMA CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KODAMA, TATSUYA;ANDO, HIDEMASA;HASHIMOTO, YUKIKO;REEL/FRAME:019326/0116;SIGNING DATES FROM 20070430 TO 20070509 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |