US20080085517A1 - Use of haploid genomes for genetic diagnosis, modification and multiplication - Google Patents
Use of haploid genomes for genetic diagnosis, modification and multiplication Download PDFInfo
- Publication number
- US20080085517A1 US20080085517A1 US11/743,613 US74361307A US2008085517A1 US 20080085517 A1 US20080085517 A1 US 20080085517A1 US 74361307 A US74361307 A US 74361307A US 2008085517 A1 US2008085517 A1 US 2008085517A1
- Authority
- US
- United States
- Prior art keywords
- haploid
- cells
- cell
- female
- genome
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002068 genetic effect Effects 0.000 title claims description 39
- 230000004048 modification Effects 0.000 title abstract description 9
- 238000003745 diagnosis Methods 0.000 title description 9
- 238000012986 modification Methods 0.000 title description 8
- 238000000034 method Methods 0.000 claims abstract description 88
- 238000012546 transfer Methods 0.000 claims abstract description 30
- 238000010448 genetic screening Methods 0.000 claims abstract description 13
- 230000001902 propagating effect Effects 0.000 claims abstract description 10
- 210000004027 cell Anatomy 0.000 claims description 123
- 210000000287 oocyte Anatomy 0.000 claims description 66
- 210000003783 haploid cell Anatomy 0.000 claims description 51
- 210000001161 mammalian embryo Anatomy 0.000 claims description 36
- 210000004940 nucleus Anatomy 0.000 claims description 20
- 210000000349 chromosome Anatomy 0.000 claims description 18
- 108020004414 DNA Proteins 0.000 claims description 17
- 241000282414 Homo sapiens Species 0.000 claims description 15
- 230000004913 activation Effects 0.000 claims description 15
- 238000012258 culturing Methods 0.000 claims description 15
- 241001465754 Metazoa Species 0.000 claims description 14
- 230000004720 fertilization Effects 0.000 claims description 13
- 230000000644 propagated effect Effects 0.000 claims description 12
- 238000000338 in vitro Methods 0.000 claims description 9
- 210000004508 polar body Anatomy 0.000 claims description 9
- 210000001840 diploid cell Anatomy 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims description 6
- 230000037431 insertion Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000012252 genetic analysis Methods 0.000 claims description 5
- 230000032823 cell division Effects 0.000 claims description 4
- 210000004756 chromatid Anatomy 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 210000003754 fetus Anatomy 0.000 claims description 3
- 230000001776 parthenogenetic effect Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 210000001082 somatic cell Anatomy 0.000 claims description 3
- 108091060290 Chromatid Proteins 0.000 claims description 2
- 230000001976 improved effect Effects 0.000 claims description 2
- 238000002054 transplantation Methods 0.000 claims description 2
- 210000002257 embryonic structure Anatomy 0.000 abstract description 29
- 238000012239 gene modification Methods 0.000 abstract description 8
- 101500028867 Homo sapiens Neurotensin Proteins 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 description 29
- 230000004927 fusion Effects 0.000 description 15
- 241000283690 Bos taurus Species 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 14
- 235000013601 eggs Nutrition 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 11
- 238000012216 screening Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 201000010099 disease Diseases 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 230000035772 mutation Effects 0.000 description 10
- 108700028369 Alleles Proteins 0.000 description 9
- 239000012894 fetal calf serum Substances 0.000 description 9
- 230000007159 enucleation Effects 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 8
- 230000035800 maturation Effects 0.000 description 8
- 230000005017 genetic modification Effects 0.000 description 7
- 235000013617 genetically modified food Nutrition 0.000 description 7
- 238000010449 nuclear transplantation Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- 210000002950 fibroblast Anatomy 0.000 description 6
- 230000031864 metaphase Effects 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 201000003883 Cystic fibrosis Diseases 0.000 description 5
- 108091092878 Microsatellite Proteins 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 5
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 5
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 210000004291 uterus Anatomy 0.000 description 5
- 208000031404 Chromosome Aberrations Diseases 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 208000029742 colonic neoplasm Diseases 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- 238000012248 genetic selection Methods 0.000 description 4
- 238000007901 in situ hybridization Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 241000699800 Cricetinae Species 0.000 description 3
- 230000007067 DNA methylation Effects 0.000 description 3
- 239000007995 HEPES buffer Substances 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 3
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 3
- 201000010769 Prader-Willi syndrome Diseases 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 210000002459 blastocyst Anatomy 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000009395 genetic defect Effects 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000007857 nested PCR Methods 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 208000009575 Angelman syndrome Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 2
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 2
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 2
- 208000035240 Disease Resistance Diseases 0.000 description 2
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 2
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 2
- 208000001914 Fragile X syndrome Diseases 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 102000009151 Luteinizing Hormone Human genes 0.000 description 2
- 108010073521 Luteinizing Hormone Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 206010068871 Myotonic dystrophy Diseases 0.000 description 2
- BVIAOQMSVZHOJM-UHFFFAOYSA-N N(6),N(6)-dimethyladenine Chemical compound CN(C)C1=NC=NC2=C1N=CN2 BVIAOQMSVZHOJM-UHFFFAOYSA-N 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 231100000005 chromosome aberration Toxicity 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 230000012173 estrus Effects 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 229940028334 follicle stimulating hormone Drugs 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229940043355 kinase inhibitor Drugs 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 229940040129 luteinizing hormone Drugs 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000021121 meiosis Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000014639 sexual reproduction Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000003104 tissue culture media Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 description 1
- RDEIXVOBVLKYNT-HDZPSJEVSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-[(1r)-1-aminoethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol;(2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(aminomethyl)oxan-2 Chemical compound OS(O)(=O)=O.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@@H](CN)O2)N)[C@@H](N)C[C@H]1N.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@H](O2)[C@@H](C)N)N)[C@@H](N)C[C@H]1N.O1[C@H]([C@@H](C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N RDEIXVOBVLKYNT-HDZPSJEVSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 1
- 208000005676 Adrenogenital syndrome Diseases 0.000 description 1
- 208000010061 Autosomal Dominant Polycystic Kidney Diseases 0.000 description 1
- 201000006935 Becker muscular dystrophy Diseases 0.000 description 1
- 102100022548 Beta-hexosaminidase subunit alpha Human genes 0.000 description 1
- 241000282817 Bovidae Species 0.000 description 1
- 206010068597 Bulbospinal muscular atrophy congenital Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 208000008448 Congenital adrenal hyperplasia Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 1
- 102100034157 DNA mismatch repair protein Msh2 Human genes 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 201000003542 Factor VIII deficiency Diseases 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- 241000282575 Gorilla Species 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 101001134036 Homo sapiens DNA mismatch repair protein Msh2 Proteins 0.000 description 1
- 101000986595 Homo sapiens Ornithine transcarbamylase, mitochondrial Proteins 0.000 description 1
- 101000738901 Homo sapiens PMS1 protein homolog 1 Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 208000027747 Kennedy disease Diseases 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 229910015837 MSH2 Inorganic materials 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000001826 Marfan syndrome Diseases 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 108010074346 Mismatch Repair Endonuclease PMS2 Proteins 0.000 description 1
- 102100037480 Mismatch repair endonuclease PMS2 Human genes 0.000 description 1
- 206010073150 Multiple endocrine neoplasia Type 1 Diseases 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000003019 Neurofibromatosis 1 Diseases 0.000 description 1
- 208000024834 Neurofibromatosis type 1 Diseases 0.000 description 1
- 208000000599 Ornithine Carbamoyltransferase Deficiency Disease Diseases 0.000 description 1
- 206010052450 Ornithine transcarbamoylase deficiency Diseases 0.000 description 1
- 208000035903 Ornithine transcarbamylase deficiency Diseases 0.000 description 1
- 102100028200 Ornithine transcarbamylase, mitochondrial Human genes 0.000 description 1
- 206010031243 Osteogenesis imperfecta Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 102100037482 PMS1 protein homolog 1 Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 208000003954 Spinal Muscular Atrophies of Childhood Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 208000022292 Tay-Sachs disease Diseases 0.000 description 1
- 208000035317 Total hypoxanthine-guanine phosphoribosyl transferase deficiency Diseases 0.000 description 1
- 208000031655 Uniparental Disomy Diseases 0.000 description 1
- 241000282458 Ursus sp. Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 description 1
- 208000001001 X-linked ichthyosis Diseases 0.000 description 1
- 208000006682 alpha 1-Antitrypsin Deficiency Diseases 0.000 description 1
- 238000002669 amniocentesis Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000001109 blastomere Anatomy 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 210000004252 chorionic villi Anatomy 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 208000029664 classic familial adenomatous polyposis Diseases 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 239000005516 coenzyme A Substances 0.000 description 1
- 229940093530 coenzyme a Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 210000001771 cumulus cell Anatomy 0.000 description 1
- 230000021953 cytokinesis Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- -1 e.g. Proteins 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- HKSZLNNOFSGOKW-UHFFFAOYSA-N ent-staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 HKSZLNNOFSGOKW-UHFFFAOYSA-N 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 229940094892 gonadotropins Drugs 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 210000002503 granulosa cell Anatomy 0.000 description 1
- 244000309465 heifer Species 0.000 description 1
- 208000009429 hemophilia B Diseases 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 1
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 1
- 239000002555 ionophore Substances 0.000 description 1
- 230000000236 ionophoric effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 210000003632 microfilament Anatomy 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 108700039855 mouse a Proteins 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 201000011278 ornithine carbamoyltransferase deficiency Diseases 0.000 description 1
- 210000002394 ovarian follicle Anatomy 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000008186 parthenogenesis Effects 0.000 description 1
- 230000007908 penetration of oocytes Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- RLZZZVKAURTHCP-UHFFFAOYSA-N phenanthrene-3,4-diol Chemical compound C1=CC=C2C3=C(O)C(O)=CC=C3C=CC2=C1 RLZZZVKAURTHCP-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 201000008519 polycystic kidney disease 1 Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000031877 prophase Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 208000026079 recessive X-linked ichthyosis Diseases 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000005000 reproductive tract Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000012882 sequential analysis Methods 0.000 description 1
- 239000012090 serum-supplement Substances 0.000 description 1
- 208000016178 sex-linked disease Diseases 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000008010 sperm capacitation Effects 0.000 description 1
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 description 1
- 208000002320 spinal muscular atrophy Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 1
- CGPUWJWCVCFERF-UHFFFAOYSA-N staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(OC)O1 CGPUWJWCVCFERF-UHFFFAOYSA-N 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 208000032471 type 1 spinal muscular atrophy Diseases 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/873—Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2517/00—Cells related to new breeds of animals
- C12N2517/04—Cells produced using nuclear transfer
Definitions
- the invention was developed as a result of the expenditure of funds received from the United States Department of Agriculture and accordingly the government has rights to this invention.
- This invention relates to the propagation and use of haploid genomes for purposes of (1) genetic diagnosis, (2) genetic selection and (3) genetic modification.
- the selected haploid genomes are useful for the production of embryos and embryonic stem cells when combined with another haploid genome, preferably one having a desired genetic makeup.
- Gametes are specialized haploid cells (e.g., spermatozoa and oocytes) produced by meiosis and involved in sexual reproduction.
- diploid cell has its chromosomes in homologous pairs, and has two copies of each autosomal genetic locus.
- the diploid number (2n) equals twice the haploid number and is the characteristic number for most cells other than gametes.
- a zygote is the diploid cell resulting from the fusion of male and female gametes during fertilization.
- a (diploid) zygote is capable of giving rise to a viable offspring.
- haploid gametes conditions may give rise to embryos being parthenogenetic development of female-derived haploid cells (oocytes) these embryos typically stop developing before embroyogenesis is completed.
- oocytes female-derived haploid cells
- Such embryos may be produced spontaneously but more typically are produced by artificial activation of an oocyte.
- Such gynogenetic embryos are useful for the study of embryogenesis.
- pluripotent haploid cells were allegedly created by obtaining eggs from 129 SvE or C57BL ⁇ CBA hybrid mice and activating them parthenogenetically following exposure to a 7% solution of ethanol in phosphate buffered saline (PBS).
- PBS phosphate buffered saline
- all the cells were diploid with a modal number of 40 chromosomes (Kaufman et al., J. Embryol. Exp. Morphol. 73: 249-61 (1983)).
- mammalian embryos While it has been well reported that mammalian embryos may result from haploid genomes, such mammalian embryos have not been used for genetic analysis. Rather, to the best of the inventors' knowledge, prenatal genetic diagnosis is conventionally performed in utero or ex utero using apparent normal (diploid) embryos. However, in utero genetic diagnosis is invasive and can be dangerous to the developing fetus (e.g., amniocentesis and chorionic villi sampling). Fetuses diagnosed with disease can either be aborted or gestated to term, as in utero surgery and gene therapy are still highly risky and experimental.
- ex utero genetic diagnosis is typically performed on embryos produced by in vitro fertilization (IVF) technologies.
- IVF in vitro fertilization
- CF cystic fibrosis
- sex-linked diseases chromosomal abnormalities
- fragile X syndrome spinal muscular atrophy
- myotonic dystrophy de Die-Smulders et al., Ned. Tijdschr. Geneeskd. 142: 2441-4 (1998).
- PTD preimplantation genetic diagnosis
- PTD can be performed using direct polymerase chain reaction (PCR) or nested PCR to diagnose the common ⁇ F508 mutation of CF (Cui et al., Mol. Hum. Reprod.
- Primed in-situ labeling (PRINS) and in-situ hybridization can be used for detecting human chromosomal abnormalities for PGD (Pellestor et al., Mol. Hum. Reprod. 2: 135-8 (1996)).
- PGD has also been performed using fluorescence in situ hybridization (FISH) to prevent development of moles resulting from a fertilization of an inactive oocyte by a haploid X-bearing spermatozoon, which subsequently duplicates (Reubinoff et al., Hum. Reprod. 12: 805-8 (1997)).
- FISH fluorescence in situ hybridization
- PGD can be performed on oocytes to diagnose single gene disorders by first polar body analysis and to identify oocytes that contain maternal unaffected genes (Verlinsky et al., Biochem. Mol. Med. 62: 182-7 (1997); Verlinsky et al., Curr. Opin. Obstet. Gynecol. 4: 720-5 (1992); and Verlinsky et al., Hum. Reprod. 5: 826-9 (1990)).
- individual spermatoza of a father with two affected infants with osteogenesis imperfecta were separated by dilution and micromanipulation.
- a segment of the type I collagen gene containing the mutation was amplified using nested PCR and sequencing to detect the wild-type gene as well as genes with a single point mutation (Iida et al., Mol. Hum. Reprod. 2:131-4 (1996)). Methods of selecting sperm have been developed in response to use of intracytoplasmic sperm injection techniques (ICSI) (Meschede et al., Hum. Reprod. 10: 2880-6 (1995)). Sequential analysis of first and second polar body and multiplex PCR can lead accurate genetic diagnosis in comparison to the pitfalls encountered by single-cell DNA analysis (Richitsky et al., J. Assist. Reprod. Genet. 16: 192-8 (1999)).
- ICSI intracytoplasmic sperm injection techniques
- Additional methods of genetic screening includes the detection or change in restriction fragment length polymorphisms (RFLPs), variable number of tandem repeat (VNTR) sequences and dinucleotide or other short tandem repeat (STR) sequences.
- RFLPs restriction fragment length polymorphisms
- VNTR variable number of tandem repeat
- STR short tandem repeat
- allele specific amplification and allele specific ligation utilizing primers complimentary to either the wild type or the mutant sequence, provide two alternative means for detection of specific mutations.
- Other methods are available to screen for the presence of mutations without identifying the specific mutation itself. These methods include single-strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), and mismatch cleavage analysis by enzymatic (RNAse A) or chemical (piperidine) means.
- SSCP single-strand conformational polymorphism
- DGGE denaturing gradient gel electrophoresis
- RNAse A enzymatic
- It is an object of the present invention to provide a method for selecting genomes for the production of embryos, embryonic stem cells or embryonic germ cells comprising the steps of: (i) culturing cells containing either a male or female-derived haploid genetic content; (ii) genetically testing the genetic content of said cultured cells to identify whether said haploid genome comprises a genetic defect, a desired gene or lacks a functional gene; and (iii) selecting cells that do not comprise a genetic defect, or selecting cells that contain the desired gene or lack a functional gene.
- the cells can be obtained by one of five methods: (1) by activation of an oocyte in which half of the chromosomes are extruded in the polar body; (2) by fertilization of an egg and removal of a male pronucleus therefrom; (3) by activation of an egg to provide an egg containing two female pronuclei and removal of one of said pronuclei; (4) by insertion of a diploid cell nucleus into an immature oocyte followed by separation of said chromosomes in to two haploid nuclei; and (5) by transfer of the nucleus of a parthenogenetic embryo (contains half the chromosomes) but propagated with the full DNA content (four chromatids) into an oocyte, and subsequent extrusion of half the chromosomes therefrom.
- Another object of the invention is directed towards the screening of male-derived haploid cells, which can be obtained by one of the following methods: (1) obtaining the male-derived haploid cell from a fertilized egg from which the female pronucleus is removed; (2) obtaining the male-derived haploid cell by fertilizing an enucleated egg; and (3) obtaining the male-derived haploid cell by artificial decondensation of a sperm nucleus which is then injected into a non-egg derived cytoplast.
- Another object of the invention is a method of propagating male- or female-derived haploid cells by a method selected from the group consisting of (i) allowing a haploid egg cytoplast to undergo cell division; (ii) allowing a haploid cell to produce a haploid embryo which is then cultured to produce “propagating haploid” cells; (iii) culturing a haploid embryo to produce embryonic stem-like cells which are haploid and allowing such embryonic stem-like cells to differentiate; and (iv) culturing a haploid somatic cell cytoplast under conditions that allow cell division.
- Another object of the invention is to provide a propagated haploid genome cell line of male or female origin, i.e., one which comprises a desired genetic make-up or comprises a desired genetic modification.
- Still another object of the invention is to provide pluripotent or embryonic-like stem cells produced from a haploid cell line and differentiated cells derived therefrom, which comprise a desired genetic make-up, e.g., comprise a desired genetic modification.
- Yet another object of the invention is to provide diploid mammalian embryos produced from a genetically modified or selected haploid male and/or female genome, as well as pluripotent cell lines and differentiated cells derived therefrom.
- the invention relates to the production and multiplication, by any method, of cells containing either a male or female-derived haploid chromosome content, the use of these cells for genetic evaluation, genetic modification or multiplication of a specific haploid genome, and the use of these cells in producing an embryo with a diploid content of DNA.
- the haploid genomes to be propagated, screened and/or modified include ungulates, such as bovine, ovine, porcine, equine, caprine; canine, feline, murine, rabbit, and rodents (e.g., guinea pigs, hamsters and rats), human, non-human primates, such as cynomolgus monkey, chimpanzees, baboon and gorilla.
- genetic screening By “genetic screening,” “genetic diagnosis,” “genetic analysis” and “genetic testing” is meant the analysis of the haploid genome by conventional methods to detect the presence or absence of a specific DNA associated with a phenotype, disease or condition. Such methods include in situ hybridization, polymerase chain reaction, nested polymerase chain reaction, fluorometric detection methods, RFLP analysis VNTR or STR detection methods (which screen for usage in a number of tandem repeat dinucleotide or other short tandem repeat (STR) sequences, single-strand conformational polymorphism (SSCP) analysis, denoting gradient gel electrophoresis (DGGE) and mismatch cleavage analysis i.e., by enzymatic (RNAse A) or chemical (piperidine) means.
- STR tandem repeat dinucleotide or other short tandem repeat
- SSCP single-strand conformational polymorphism
- DGGE gradient gel electrophoresis
- mismatch cleavage analysis i.e.
- genetic selection is meant the directed choice of a genotype using genetic testing.
- genetic modification or “genetic manipulation” is meant the modification of the genome of a cell, typically a haploid cell. This includes insertion, deletion and substitute modifications. Preferably the modification will be effected at a target site in the genome. In a preferred embodiment, the modified haploid cell will eventually be used in nuclear transplantation for production of an animal which expresses the modified/manipulated gene.
- multiplication is meant increasing the number of cells comprising the desired haploid genome of male or female origin.
- haploid cell is meant a cell with a haploid number (n) of chromosomes.
- Gametes are specialized haploid cells (e.g., spermatozoa and oocytes) produced by meiosis and involved in sexual reproduction.
- a “diploid cell” has its chromosomes in homologous pairs, and has two copies (2n) of each autosomal genetic locus.
- a “zygote” is the diploid cell resulting from the fusion of a male and a female gamete during fertilization.
- nuclear transfer or “nuclear transplantation” refers to a method of cloning wherein the nucleus from a donor cell is transplanted into an enucleated oocyte.
- Nuclear transfer techniques or nuclear transplantation techniques are known in the literature (Campbell et al., Theriogenology 43: 181 (1995); Collas et al., Mol. Reprod. Dev. 38: 264-267 (1994); Keefer et al., Biol. Reprod. 50: 935-939 (1994); Sims et al., Proc. Natl. Acad. Sci. USA 90: 6143-6147 (1993); Evans et al., WO 90/03432 (5 Apr.
- “lack a functional gene” is meant either the entire gene is missing from the subjects genome, or the gene is mutated to an extent that it can no longer function (e.g., produce a wild-type protein).
- genetic defect is meant a nucleic acid deletion or insertion which corresponds to an alteration in transcription of the gene, translation of the gene's mRNA into a protein, alteration of the half-life of the protein or the gene's mRNA or other change from wild-type expression of the gene.
- Different forms of a given gene are called “alleles.”
- the “wild-type alleles” of a gene are those that exist at relatively high frequencies in natural populations and yield wild-type or normal phenotypes. Alleles of a gene that result in abnormal or non-wild-type phenotypes are “mutant alleles.”
- propagating haploid cell line is meant a cell line of proliferating haploid cells produced artificially outside of the haploid cell's host organism. Typically such haploid cell line will be comprised in an in vitro culture. Alternatively, a haploid cell may be propagated in vivo, e.g. by injection into a SKID mouse to produce differentiated cell types.
- the present invention is directed toward the production and propogation of haploid genomes, the selection of desirable haploid genomes from said propogated haploid genomes by genetic analysis, and the use of said selected haploid genomes to produce diploid embryos.
- it is known to conduct genetic evaluation of preimplantation embryos as a means of selecting embryos suitable for implantation and the production of offspring. Such methods involve genetic evaluation of the genome of one or more cells of the embryo prior to implantation.
- the present invention selects haploid DNA for use in the production of diploid embryos by genetic testing of a haploid cell genome.
- Such methods should not pose the same ethical concerns as haploid cells cannot give rise to viable offspring.
- the disposal of non-desirable haploid genomes or manipulation of haploid genomes should obviate ethical issues associated with manipulation and destruction of diploid embryos, e.g. human diploid embryos.
- the present invention involves genetic testing of haploid genomes, it requires a propagated source of such haploid genome. This initially entails constructing or obtaining a cell containing a haploid genome, and providing for proliferation thereof.
- haploid cells containing either male or female haploid genomes may be utilized.
- methods of producing haploid cells containing haploid genomes of female origin include by way of example:
- Methods for providing haploid genomes of male origin include:
- haploid cells and other haploid cells may be propagated by various methods.
- haploid genomes may be propagated by inducing division of egg cytoplasts.
- haploid embryos may be used for the product of embryonic stem-like cells. This may be effected by culturing the embryo using known media and methods for maintaining embryos in culture and culturing the inner cell mass or cells derived therefrom to produce embryonic stem-like cells. For example, this may be effected by placing the inner cell mass or cells of the inner cell mass of a haploid-genome derived embryo on a feeder layer, e.g. murine fetal fibroblasts, to produce a culture containing embryonic stem-like cells which give rise to different differentiated cell types, e.g., when removed from the feeder layer.
- a feeder layer e.g. murine fetal fibroblasts
- embryonic stem-like cells derived from haploid embryos may be used to produce differentiated cells which have the genome of the parent haploid genome.
- Yet another means of propagating haploid genomes comprises inducing division of haploid somatic cell cytoplasts produced by introduction of a haploid genome into a cytoplast.
- the haploid genome will be of human origin, e.g. that of human sperm, or oocyte.
- the present invention embraces the construction of haploid genomes of any mammalian species origin, e.g. non-human primate, dog, cat, mouse, rat, rabbit, bear, cow, horse, pig, sheep, guinea pig, buffalo, goat, antelope, etc.
- the invention is applicable for the selection of any animal that is desirably propagated, e.g. by nuclear transfer, that contains a desired genetic makeup of particular importance are agricultural animals, especially animals having a long gestation period.
- the present invention should enable rapid screening for haploid genomes that will give rise to diploid embryos having desired genetic characteristics. For example, the presence or absence of sex-linked genetic diseases can be the basis of the genetic screen.
- the invention allows for haploid cell line produced according to the invention to be genetically modified, by homologous recombination.
- allelic differences at a locus will not interfere with the desired recombination events.
- the present invention allows for the same locus to be targeted in both the male and female haploid cell lines, and the resultant modified male and female haploid genomes to be combined to produce a diploid embryo that is homozygous for the particular modification, e.g. deletion of a particular gene.
- the invention described herein improves upon prior methods of preimplantation genetic diagnosis (PGD), because these methods do not involve the manipulation of an embryo. Generally, few embryos are available for screening. Moreover, removal of the cells from an embryo for testing can be harmful for further development of the embryo. Often only one or very few cells are available for genetic testing, which can lead to inaccurate results due to DNA loss or DNA contamination. Finally, there are ethical considerations regarding embryo disposal. Genetic screening of haploid DNA offers the advantage that if male and/or female gametes are screened then, even with few gametes, the total possible combination becomes large.
- screening can be done on sperm only, which is typically easy to obtain in large quantities. If the sperm is not available in large quantities, then multiplication of the sperm genome can also be useful.
- the technique makes many identical copies of the genome available for screening to minimize the likelihood of misdiagnosis, and permits additional samples to be analyzed for verification of results.
- the ethical concerns about working with and manipulating sperm are minimal in comparison with those for working with embryos.
- haploid cells can also be performed e.g., to determine whether genetic or DNA methylation defects in the haploid cell may cause any adult animal developed therefrom to contract cancer or other disease. Screening for genetic conditions and predispositions would be useful in eliminating defective haploid cells containing such defects.
- the present invention can be used to screen for chromosomal aberrations and DNA sequences that are correlated to disease or other undesirable traits. These haploid genomes will typically be disposed of. However, in some instances such haploid genomes may be retained. For example, the production of haploid genomes that encode genes that are involved in disease may be useful in producing animals for research purposes, e.g. for evaluating the efficacy of putative therapeutics or prophylactics.
- the present invention can be used to select haploid genomes that contain a desired genetic makeup, e.g., comprise DNA sequences that are involved in enhanced growth, disease resistance, milk production, or other desirable traits.
- genetic analysis of haploid cells using DNA probes and linkage (L) or mutation (M) detection can be made on the following human diseases listed in Table 1: TABLE 1 Condition Chromosome L/M Cloned ⁇ -1 antitrypsin deficiency 14 M Yes ⁇ -Thallasemia 16 M Yes Adenomatous polyposis coli 5 L, M Yes Adult polycystic kidney disease 16 L No Breast cancer susceptibility (BRCA1) 17 L, M Yes Breast cancer susceptibility (BRCA2) 13 L No ⁇ -Thallasemia 11 M Yes Charcot-Marie-Tooth disease 1 M Yes Colon cancer susceptibility (MSH2) 2 M Yes Colon cancer susceptibility (MLH1) 3 M Yes Colon cancer susceptibility (PMS1) 2 M Yes Colon cancer susceptibility (PMS2) 7 M Yes
- PCR polymerase chain analysis
- PRINS primed in situ labeling
- FISH fluorescence in situ hybridization
- DGGE denaturing gradient gel electrophoresis
- PWS Prader-Willi syndrome
- AS Angelman syndrome
- BWS Beckwith-Wiedermann syndrome
- VHL von Hippel-Lindau
- PWS can be caused by genetic mutations, such as deletions, as well as abnormal genomic imprinting (Barabash et al., Med. Clin. ( Barc ) 108: 304-6 (1997)).
- genomic imprinting has also been linked to coat color.
- the mouse agouti gene confers wild-type coat color, and differential expression of the Aiapy allele correlates with the methylation status of the gene's upstream regulatory sequences (Michaud et al., Genes Dev. 8: 1463-72).
- Genetic screening in agriculture can be used for genetic selection to produce optimal combinations that minimize recessive mutations, increases heterozygosity or homozygosity or to accumulate beneficial or otherwise desired alleles.
- the methods of the present invention can be used for genetic selection, both in animals, e.g., agricultural, laboratory or domestic animals as well as in humans.
- animals e.g., agricultural, laboratory or domestic animals as well as in humans.
- the combination of gamete genomes that constitute the embryo is random.
- the optimal combinations could be made to minimize recessive mutations, increase heterozygosity, increase homozygosity or accumulate beneficial alleles.
- Haploid genomes that are selected to have desirable genetic makeup would be used to provide diploid embryos and offspring.
- the methods of producing propagating haploid cells can also be used to prepare genetically modified haploid cells.
- allelic differences at a locus will not interfere with the recombination event.
- targeting both male and female cell lines can result in the preparation of homozygous modifications.
- Methods for effecting genomic modification are well known in the art and include by way of example the use of retroviral vectors, microinjection, and transformation with DNAs comprising sequences that are to be inserted.
- the genetic modification will be made at a targeted site in the genome.
- Methods for effecting targeted insertion, deletion and substitute modifications of genomes, and particularly mammalian genomes have been well reported and are the subject of numerous patents.
- a particular haploid genome contained in a propogated haploid cell line will be genetically modified in order to remove, add or substitute a particular DNA sequence with another.
- the haploid genome will be tested or screened to determine that it indeed comprises the modification. For example, this can be effected by one of the genetic screening methods identified supra, or by expression of a particular marker contained in the inserted DNA, e.g., enzyme, antibiotic resistance marker, fluorescent or radiolabel, etc.
- the genetically modified haploid genome After the genetically modified haploid genome has been produced, it preferably will be amplified by the methods discussed previously.
- the resultant selected haploid of male or female origin, genomes which may be genetically modified, are especially useful for nuclear transfer or transplantation.
- such methods will comprise the introduction of a selected male and female haploid genome into an enucleated oocyte, or the introduction of a selected male or female haploid genome into a haploid oocyte wherein such haploid DNA is either of male or female origin.
- diploid nuclear transfer unit will be obtained, wherein either or both the male or female DNA therein has been selected based on its genetic makeup.
- Those diploid nuclear transit units can be used to provide progeny that have a desired genetic makeup, e.g., contain genes involved in disease resistance, growth, or a heterologous DNA that encodes a desired product.
- Nuclear transfer techniques or nuclear transplantation techniques are well known in the literature. See, in particular, Sims et al., Proc. Natl. Acad. Sci. USA 90: 6143-6147 (1993); Collas et al., Mol. Report Dev. 38: 264-267 (1994); Keefer et al., Biol. Reprod. 50: 935-939 (1994); Campbell et al., Theriogenology, 43: 181 (1995); Campbell et al., Nature, 380: 64-66 (1996); Schnieke et al., Science 278: 2130-3 (1997); Wells et al., Biol. Reprod.
- Oocytes used for nuclear transfer may be obtained from animals including mammals and amphibians. Suitable mammalian sources for oocytes include sheep, bovines, ovines, pigs, horses, rabbits, guinea pigs, mice, hamsters, rats, primates, human and non-human etc. In the preferred embodiments, the oocytes will be obtained from primates, e.g., human oocytes, or ungulates.
- oocyte isolation will comprise isolating oocytes from the ovaries or reproductive tract of a mammal, e.g., a bovine.
- a mammal e.g., a bovine.
- a readily available source of bovine oocytes is from slaughterhouse materials.
- oocytes For the successful use oftechniques such as genetic engineering, nuclear transfer and cloning, oocytes must typically are matured in vitro before these cells may be used as recipient cells for nuclear transfer, and before they can be fertilized by the sperm cell to develop into an embryo.
- This process generally requires collecting immature (prophase I) oocytes from ovaries (e.g., bovine ovaries obtained at a slaughterhouse) and maturing the oocytes in a maturation medium prior to fertilization or enucleation until the oocyte attains the metaphase II stage, which in the case of bovine oocytes generally occurs about 18-24 hours post-aspiration.
- this period of time is known as the “maturation period.”
- “aspiration” refers to aspiration of the immature oocyte from ovarian follicles.
- the invention includes the isolation of human oocytes by aspiration from consenting donors.
- metaphase II stage oocytes which have been matured in vivo can be used in nuclear transfer techniques.
- mature metaphase II oocytes are collected surgically from either non-superovulated or superovulated cows or heifers 35 to 48 hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormones.
- hCG human chorionic gonadotropin
- NT methods have been reported to be significant to the success of NT methods.
- successful mammalian embryo cloning practices use metaphase II stage oocytes as recipient oocytes, because at this stage it is believed that the oocyte can be or is sufficiently “activated” to treat the introduced nucleus as it would a fertilizing sperm.
- the oocyte activation period generally ranges from about 16-52 hours, preferably about 28-42 hours post-aspiration.
- immature oocytes may be washed in HEPES buffered hamster embryo culture medium (HECM) as described in Seshagine et al, Biol. Reprod. 40: 544-606 (1989), and then placed into drops of maturation medium consisting of 50 ⁇ l of tissue culture medium (TCM) 199 containing 10% fetal calf serum (FCS), which contains appropriate gonadotropins such as luteinizing hormone (LH) and follicle stimulating hormone (FSH), and estradiol under a layer of lightweight paraffin or silicon at 39° C.
- TCM tissue culture medium
- FCS fetal calf serum
- gonadotropins such as luteinizing hormone (LH) and follicle stimulating hormone (FSH)
- estradiol under a layer of lightweight paraffin or silicon at 39° C.
- oocytes can be enucleated. Prior to enucleation the oocytes are preferably removed and placed in HECM containing 1 mg/ml of hyaluronidase prior to removal of cumulus cells. This may be effected by either repeated pipetting through very fine bore pipettes or by vortexing briefly. The stripped oocytes are then screened for polar bodies, and the selected metaphase II oocytes, as determined by the presence of polar bodies, are then used for nuclear transfer. Enucleation follows.
- Enucleation may be effected by known methods, such as described in U.S. Pat. No. 4,994,384, which is herein incorporated by reference.
- metaphase II oocytes are either placed in HECM, optionally containing 7.5 ⁇ g/ml cytochalasin B, for immediate enucleation, or may be placed in a suitable medium, for example CR1aa, plus 10% estrus cow serum, and then enucleated later, preferably not more than 24 hours later, and more preferably 16 to 18 hours later.
- Enucleation may be accomplished microsurgically using a micropipette to remove the polar body and the adjacent cytoplasm.
- the oocytes may then be screened to identify those of which have been successfully enucleated. This screening may be effected by staining the oocytes with 1 ⁇ g/ml 33342 Hoechst dye in HECM, and then viewing the oocytes under ultraviolet irradiation for less than 10 seconds.
- the oocytes that have been successfully enucleated then can be placed in a suitable culture medium, e.g., CR1aa plus 10% serum.
- one or two selected, potentially genetically modified haploid genomes will be transplanted into a perivitelline space of an optionally enucleated oocyte or other cytoplast.
- the resultant haploid genome containing oocyte or cytoplast which is diploid is used to produce NT units according to methods known in the art.
- the cells may be fused by electrofusion. Electrofusion is accomplished by providing a pulse of electricity that is sufficient to cause a transient breakdown of the plasma membrane. This breakdown of the plasma membrane is very short because the membrane reforms rapidly. Essentially, if two adjacent membranes are induced to breakdown and upon reformation the lipid bilayers intermingle, small channels will open between the two cells.
- thermodynamic instability Due to the thermodynamic instability of such a small opening, it enlarges until the two cells become one.
- U.S. Pat. No. 4,997,384 by Prather et al., for a further discussion of this process.
- electrofusion media can be used including, e.g., sucrose, mannitol, sorbitol and phosphate buffered solution. Fusion can also be accomplished using Sendai virus as a fusogenic agent (Graham, Wister Inst. Symp. Monogr. 9: 19 (1969)
- haploid cell or nucleus it may be preferable to inject the haploid cell or nucleus directly into the oocyte rather than using electroporation fusion.
- electroporation fusion Such techniques are disclosed in Collas et al., Mol. Reprod. Dev. 38: 264-267 (1994).
- Human or animal cells and oocytes or cytoplasts can be electrofused by known methods, e.g., in a 500 ⁇ m chamber by application of an electrical pulse of 90-120 V for about 15 ⁇ sec, about 24 hours after initiation of oocyte maturation. After fusion, the resultant fused NT units are then placed in a suitable medium until activation. Activation can be effected shortly before or after fusion, typically less than 24 hours later, and preferably about 4-9 hours later.
- the NT unit may be activated by known methods. Such methods include, e.g., culturing the NT unit at sub-physiological temperature, in essence by applying a cold, or actually cool temperature shock to the NT unit. This may be most conveniently done by culturing the NT unit at room temperature, which is cold relative to the physiological temperature conditions to which embryos are normally exposed.
- activation may be achieved by application of known activation agents. For example, penetration of oocytes by sperm during fertilization has been shown to activate perfusion oocytes to yield greater numbers of viable pregnancies and multiple genetically identical calves after nuclear transfer. Also, treatments such as electrical and chemical shock may be used to activate NT embryos after fusion. Oocyte activation methods are the subject of U.S. Pat. No. 5,496,720, to Susko-Parrish et al.
- activation may be affected by simultaneously or sequentially:
- Phosphorylation may be reduced by known methods, e.g., by the addition of kinase inhibitors, such as serine-threonine kinase inhibitors (e.g., 6-dimethylamino-purine, staurosporine, 2-aminopurine, and sphingosine).
- kinase inhibitors such as serine-threonine kinase inhibitors (e.g., 6-dimethylamino-purine, staurosporine, 2-aminopurine, and sphingosine).
- phosphorylation of cellular proteins may be inhibited by introduction of a phosphatase into the oocyte (e.g., phosphatase 2A and phosphatase 2B).
- NT activation is by briefly exposing the fused NT unit to a TL-HEPES medium containing 5 ⁇ M ionomycin and 1 mg/ml BSA, followed by washing in TL-HEPES containing 30 mg/ml BSA within about 24 hours after fusion, and preferably about 4 to 9 hours after fusion.
- activation can be effected by use of ethanol or repeated electrical pulse.
- the activated NT units produced from one or two selected haploid genomes may then be cultured in a suitable in vitro culture medium until the generation of embryonic or stem-like cells and cell colonies.
- Culture media suitable for culturing and maturation of embryos are well known in the art. Examples of known media, which may be used for bovine embryo culture and maintenance, include Ham's F-10+10% fetal calf serum (FCS), Tissue Culture Medium-199 (TCM-199)+10% fetal calf serum, Tyrodes-Albumin-Lactate-Pyruvate (TALP), Dulbecco's Phosphate Buffered Saline (PBS), Eagle's and Whitten's media.
- TCM-199 One of the most common media used for the collection and maturation of oocytes is TCM-199 plus an 1 to 20% serum supplement, including fetal calf serum, newborn serum, estrual cow serum, lamb serum or steer serum.
- a preferred maintenance medium includes TCM-199 with Earl salts, 10% fetal calf serum, 0.2 mM Na pyruvate and 50 ⁇ g/ml gentamicin sulphate. Any of the above may also involve co-culture with a variety of cell types such as granulosa cells, oviduct cells, BRL cells, uterine cells and STO cells.
- Suitable feeder layers include, by way of example, fibroblasts and epithelial cells, e.g., fibroblasts and uterine epithelial cells derived from ungulates, chicken fibroblasts, murine (e.g., mouse or rat) fibroblasts, STO and SI-m220 feeder cell lines, and BRL cells.
- the NT units are cultured on the feeder layer until the NT units reach a size suitable for obtaining cells which may be used to produce embryonic stem-like cells or cell colonies.
- these NT units will be cultured until at least about 2 to 400 cells, more preferably about 4 to 128 cells, and most preferably at least about 50 cells.
- the culturing will be effected under suitable conditions, e.g., about 38.5 ° C. and 5% CO 2 , with the culture medium changed in order to optimize growth typically about every 2-5 days, preferably about every 3 days.
- the cells are mechanically removed from the zone and are then used to produce embryonic or stem-like cells and cell lines. This is preferably effected by taking the clump of cells which comprise the NT unit, which typically will contain at least about 50 cells, washing such cells, and plating the cells onto a feeder layer, e.g., irradiated fibroblast cells.
- a feeder layer e.g., irradiated fibroblast cells.
- the cells used to obtain the stem-like cells or cell colonies will be obtained from the inner most portion of the cultured NT unit, which is preferably at least 50 cells in size.
- NT units of smaller or greater cell numbers, as well as cells from other portions of the NT unit may also be used to obtain ES-like cells and cell colonies.
- the cells are maintained in the feeder layer in a suitable growth medium, e.g., alpha MEM supplemented with 10% FCS and 0.1 mM ⁇ -mercaptoethanol (Sigma) and L-glutamine.
- a suitable growth medium e.g., alpha MEM supplemented with 10% FCS and 0.1 mM ⁇ -mercaptoethanol (Sigma) and L-glutamine.
- the growth medium is changed as often as necessary to optimize growth, e.g., about every 2-3 days.
- This culturing process results in the formation of embryonic or stem-like cells or cell lines.
- the culture time before such cells are produced may vary dependent upon the particular nuclear donor cell, specific oocyte and culturing conditions. One skilled in the art can vary the culturing conditions as desired to optimize growth of the particular embryonic or stem-like cells.
- the embryonic or stem-like cells and cell colonies produced from said haploid genome generated embryos should exhibit an appearance similar to native embryonic or stem-like cells of the species used as the nuclear cell donor.
- Murine A9 cells HPRT- are cultured in 3.75 ⁇ g/ml cytochalasin B (Sigma, location) in alphamem (Biowhittaker, location) supplemented with 10% fetal bovine serum for 96 hrs.
- Cytochalasin B is an inhibitor of microfilaments and will prevent the cells from undergoing cytokinesis while allowing the cell to synthesize DNA and increase in size. After 24 hrs recovery from the drug, cells can be removed from the culture surface and manipulated. Resulting cells are approximately 30 ⁇ m in diameter.
- Round glass discs approximately 2.5 cm in diameter are coated with poly-D-lysine.
- Cytochalasin B treated A9 cells are plated at 60-80% confluency on the discs and allowed to adhere for 24 hrs.
- Discs are placed cell-side down in centrifuge tubes containing 5 ml enucleation medium (phosphate buffered saline, 10% fetal bovine serum, 10 ⁇ g/ml cytochalasin B). Cells are incubated for 20 min at 37° C. Centrifuge tubes are placed in 37° C. ultracentrifuge and spun at 23,000 g for an additional 20 min. Resulting cytoplasts are viable for 24-48 hrs.
- 5 ml enucleation medium phosphate buffered saline, 10% fetal bovine serum, 10 ⁇ g/ml cytochalasin B.
- Cytoplasts are removed from the glass surface by trypsinization. HAT supplement is added to culture medium at 1 ⁇ concentration to kill remaining nucleated cells. An alternative to this is to add the HAT supplement following introduction of the donor nucleus. This will eliminate any nucleated A9 cells while any unfused cytoplasts will lyse within 48 hrs.
- sperm collected from transgenic mice, carrying the neomycin resistance gene (Neo), are prepared for fusion by either capacitation or treatment with protease. These treatments are used to ensure that the sperm will stick to the cytoplasts. Transgenic markers are useful for verifying the source of the sperm but are not necessary for the procedure.
- Alternative haploid donors are the male and female pronuclei (haploid karyoplasts) removed from newly fertilized embryos by micromanipulation.
- Both the A9 cytoplasts and sperm are treated with protease or with PHA to increase the likelihood of cytoplast to sperm adhesion and fusion.
- the appropriate concentration of sperm or donor nuclei and cytoplasts should be used to enhance the number of resulting cells with a single nucleus.
- An AC pulse can be used to orient nuclear/cytoplast couplets so that the membranes to be fused are perpendicular to the flow of current.
- a DC pulse will be administered to induce fusion between the nuclear donor cell and the cytoplast.
- Other methods of cell fusion could also be used in the procedure such as polyethylene glycol, fusion-inducing viruses or liposomes.
- HAT sensitive A9 cells will be used as a source of cytoplasts, therefore, any colonies that form in the HAT medium will be from haploid-cytoplast hybrids. Non enucleated A9 cells will not survive selection. Resulting hybrids will be clonally propagated until there are sufficient numbers to analyze. We will determine whether hybrids are haploid or diploid by fluorescent in situ hybridization or karyotyping.
- Haploid cells can be used as donor nuclei in the fertilization of oocytes. Nuclear transfer is effected using standard procedures. Embryos will be activated using a method that results in second polar body extrusion and haploidization of the female chromatin.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Developmental Biology & Embryology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Methods for propagating haploid genomes of male or female origina and genetic screening and modification thereof are provided. These haploid genomes may be used to produce haploid embryos, and embryonic stem-like cells and differentiated cells. Also, these haploid genomes and cells containing, may be used as nuclear transfer donors to produce diploid nuclear transfer units. These diploid NT units e.g., human NT units, may be used to obtain pluripotent cells and differentiated cells and tissues.
Description
- The invention was developed as a result of the expenditure of funds received from the United States Department of Agriculture and accordingly the government has rights to this invention.
- This invention relates to the propagation and use of haploid genomes for purposes of (1) genetic diagnosis, (2) genetic selection and (3) genetic modification. The selected haploid genomes are useful for the production of embryos and embryonic stem cells when combined with another haploid genome, preferably one having a desired genetic makeup.
- Gametes are specialized haploid cells (e.g., spermatozoa and oocytes) produced by meiosis and involved in sexual reproduction. By contrast, diploid cell has its chromosomes in homologous pairs, and has two copies of each autosomal genetic locus. The diploid number (2n) equals twice the haploid number and is the characteristic number for most cells other than gametes. A zygote is the diploid cell resulting from the fusion of male and female gametes during fertilization. T
HE DICTIONARY OF CELL BIOLOGY 103, 139, 388 (J. M. Lackie et al., eds. 1995). Only a (diploid) zygote is capable of giving rise to a viable offspring. By contrast, while haploid gametes conditions may give rise to embryos being parthenogenetic development of female-derived haploid cells (oocytes) these embryos typically stop developing before embroyogenesis is completed. Such embryos may be produced spontaneously but more typically are produced by artificial activation of an oocyte. Such gynogenetic embryos are useful for the study of embryogenesis. - The production of properly haploid-derived pluripotent cell lines has previously been reported. For example, purported pluripotent haploid cells were allegedly created by obtaining eggs from 129 SvE or C57BL×CBA hybrid mice and activating them parthenogenetically following exposure to a 7% solution of ethanol in phosphate buffered saline (PBS). However upon examining the chromosomes of these early passage “haploid” cell lines, all the cells were diploid with a modal number of 40 chromosomes (Kaufman et al., J. Embryol. Exp. Morphol. 73: 249-61 (1983)).
- While it has been well reported that mammalian embryos may result from haploid genomes, such mammalian embryos have not been used for genetic analysis. Rather, to the best of the inventors' knowledge, prenatal genetic diagnosis is conventionally performed in utero or ex utero using apparent normal (diploid) embryos. However, in utero genetic diagnosis is invasive and can be dangerous to the developing fetus (e.g., amniocentesis and chorionic villi sampling). Fetuses diagnosed with disease can either be aborted or gestated to term, as in utero surgery and gene therapy are still highly risky and experimental.
- In humans, ex utero genetic diagnosis is typically performed on embryos produced by in vitro fertilization (IVF) technologies. Typically one or two cells are taken from a recent embryo and tested for such diseases as cystic fibrosis (CF), sex-linked diseases, chromosomal abnormalities, fragile X syndrome, spinal muscular atrophy and myotonic dystrophy (de Die-Smulders et al., Ned. Tijdschr. Geneeskd. 142: 2441-4 (1998)). Preimplantation genetic diagnosis (PGD) can be performed using direct polymerase chain reaction (PCR) or nested PCR to diagnose the common ΔF508 mutation of CF (Cui et al., Mol. Hum. Reprod. 2: 63-1 (1996); and Ao et al., Prenat. Diagn. 16: 137-42 (1996)), as well as other diseases (Ben-Ezra, Clin. Lab. Med. 15: 95-815 (1995)). Genetic screening can also be done by single blastomere biopsy for rhesus (RhD) blood group typing of early cleavage stage embryos (Avner et al., Mol. Hum. Reprod. 2: 60-2 (1996)) or by blastocyst biopsy (Verlinsky et al., Bailieres Clin. Obstet. Gynaecol. 8: 177-96 (1994)). Primed in-situ labeling (PRINS) and in-situ hybridization can be used for detecting human chromosomal abnormalities for PGD (Pellestor et al., Mol. Hum. Reprod. 2: 135-8 (1996)). PGD has also been performed using fluorescence in situ hybridization (FISH) to prevent development of moles resulting from a fertilization of an inactive oocyte by a haploid X-bearing spermatozoon, which subsequently duplicates (Reubinoff et al., Hum. Reprod. 12: 805-8 (1997)). PGD can be performed on oocytes to diagnose single gene disorders by first polar body analysis and to identify oocytes that contain maternal unaffected genes (Verlinsky et al., Biochem. Mol. Med. 62: 182-7 (1997); Verlinsky et al., Curr. Opin. Obstet. Gynecol. 4: 720-5 (1992); and Verlinsky et al., Hum. Reprod. 5: 826-9 (1990)). In one case, individual spermatoza of a father with two affected infants with osteogenesis imperfecta, were separated by dilution and micromanipulation. A segment of the type I collagen gene containing the mutation was amplified using nested PCR and sequencing to detect the wild-type gene as well as genes with a single point mutation (Iida et al., Mol. Hum. Reprod. 2:131-4 (1996)). Methods of selecting sperm have been developed in response to use of intracytoplasmic sperm injection techniques (ICSI) (Meschede et al., Hum. Reprod. 10: 2880-6 (1995)). Sequential analysis of first and second polar body and multiplex PCR can lead accurate genetic diagnosis in comparison to the pitfalls encountered by single-cell DNA analysis (Richitsky et al., J. Assist. Reprod. Genet. 16: 192-8 (1999)).
- Additional methods of genetic screening includes the detection or change in restriction fragment length polymorphisms (RFLPs), variable number of tandem repeat (VNTR) sequences and dinucleotide or other short tandem repeat (STR) sequences. Alternatively, allele specific amplification and allele specific ligation, utilizing primers complimentary to either the wild type or the mutant sequence, provide two alternative means for detection of specific mutations. Other methods are available to screen for the presence of mutations without identifying the specific mutation itself. These methods include single-strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), and mismatch cleavage analysis by enzymatic (RNAse A) or chemical (piperidine) means. See Fujimura, “Genetic Testing,”
IN MOLECULAR BIOLOGY AND BIOTECHNOLOGY: A COMPREHENSIVE DESK REFERENCE 374-379 (Robert A. Meyers, ed., 1995). - Thus, based on the foregoing, it is evident that although research is ongoing in perfecting preimplantation genetic screening, as well as manipulation of embryos created in vitro, little progress has been achieved in the genetic screening of gametes or the genetic manipulation of gametes to be used to make transgenic animals.
- Therefore, notwithstanding what has previously been reported in the literature, there exists a need for improved methods of genetic screening of gametes and genetically engineering haploid cells for preparing transgenic animals.
- It is an object of the present invention to provide a method for selecting genomes for the production of embryos, embryonic stem cells or embryonic germ cells comprising the steps of: (i) culturing cells containing either a male or female-derived haploid genetic content; (ii) genetically testing the genetic content of said cultured cells to identify whether said haploid genome comprises a genetic defect, a desired gene or lacks a functional gene; and (iii) selecting cells that do not comprise a genetic defect, or selecting cells that contain the desired gene or lack a functional gene.
- Specifically, in the case of female-derived haploid cells, the cells can be obtained by one of five methods: (1) by activation of an oocyte in which half of the chromosomes are extruded in the polar body; (2) by fertilization of an egg and removal of a male pronucleus therefrom; (3) by activation of an egg to provide an egg containing two female pronuclei and removal of one of said pronuclei; (4) by insertion of a diploid cell nucleus into an immature oocyte followed by separation of said chromosomes in to two haploid nuclei; and (5) by transfer of the nucleus of a parthenogenetic embryo (contains half the chromosomes) but propagated with the full DNA content (four chromatids) into an oocyte, and subsequent extrusion of half the chromosomes therefrom.
- Another object of the invention is directed towards the screening of male-derived haploid cells, which can be obtained by one of the following methods: (1) obtaining the male-derived haploid cell from a fertilized egg from which the female pronucleus is removed; (2) obtaining the male-derived haploid cell by fertilizing an enucleated egg; and (3) obtaining the male-derived haploid cell by artificial decondensation of a sperm nucleus which is then injected into a non-egg derived cytoplast.
- Another object of the invention is a method of propagating male- or female-derived haploid cells by a method selected from the group consisting of (i) allowing a haploid egg cytoplast to undergo cell division; (ii) allowing a haploid cell to produce a haploid embryo which is then cultured to produce “propagating haploid” cells; (iii) culturing a haploid embryo to produce embryonic stem-like cells which are haploid and allowing such embryonic stem-like cells to differentiate; and (iv) culturing a haploid somatic cell cytoplast under conditions that allow cell division.
- Another object of the invention is to provide a propagated haploid genome cell line of male or female origin, i.e., one which comprises a desired genetic make-up or comprises a desired genetic modification.
- Still another object of the invention is to provide pluripotent or embryonic-like stem cells produced from a haploid cell line and differentiated cells derived therefrom, which comprise a desired genetic make-up, e.g., comprise a desired genetic modification.
- Yet another object of the invention is to provide diploid mammalian embryos produced from a genetically modified or selected haploid male and/or female genome, as well as pluripotent cell lines and differentiated cells derived therefrom.
- The invention relates to the production and multiplication, by any method, of cells containing either a male or female-derived haploid chromosome content, the use of these cells for genetic evaluation, genetic modification or multiplication of a specific haploid genome, and the use of these cells in producing an embryo with a diploid content of DNA. The haploid genomes to be propagated, screened and/or modified include ungulates, such as bovine, ovine, porcine, equine, caprine; canine, feline, murine, rabbit, and rodents (e.g., guinea pigs, hamsters and rats), human, non-human primates, such as cynomolgus monkey, chimpanzees, baboon and gorilla.
- By “genetic screening,” “genetic diagnosis,” “genetic analysis” and “genetic testing” is meant the analysis of the haploid genome by conventional methods to detect the presence or absence of a specific DNA associated with a phenotype, disease or condition. Such methods include in situ hybridization, polymerase chain reaction, nested polymerase chain reaction, fluorometric detection methods, RFLP analysis VNTR or STR detection methods (which screen for usage in a number of tandem repeat dinucleotide or other short tandem repeat (STR) sequences, single-strand conformational polymorphism (SSCP) analysis, denoting gradient gel electrophoresis (DGGE) and mismatch cleavage analysis i.e., by enzymatic (RNAse A) or chemical (piperidine) means. Such methods are reviewed in Fujimura “Genetic Testing”,
IN MOLECULAR BIOLOGY AND BIOTECHNOLOGY: A COMPREHENSIVE DESK REFERENCE 374-379 (Robert A. Meyers, ed., 1995). - By “genetic selection” is meant the directed choice of a genotype using genetic testing.
- By “genetic modification” or “genetic manipulation” is meant the modification of the genome of a cell, typically a haploid cell. This includes insertion, deletion and substitute modifications. Preferably the modification will be effected at a target site in the genome. In a preferred embodiment, the modified haploid cell will eventually be used in nuclear transplantation for production of an animal which expresses the modified/manipulated gene.
- By “multiplication” is meant increasing the number of cells comprising the desired haploid genome of male or female origin.
- By “haploid cell” is meant a cell with a haploid number (n) of chromosomes. “Gametes” are specialized haploid cells (e.g., spermatozoa and oocytes) produced by meiosis and involved in sexual reproduction. A “diploid cell” has its chromosomes in homologous pairs, and has two copies (2n) of each autosomal genetic locus. A “zygote” is the diploid cell resulting from the fusion of a male and a female gamete during fertilization.
- The term “nuclear transfer” or “nuclear transplantation” refers to a method of cloning wherein the nucleus from a donor cell is transplanted into an enucleated oocyte. Nuclear transfer techniques or nuclear transplantation techniques are known in the literature (Campbell et al., Theriogenology 43: 181 (1995); Collas et al., Mol. Reprod. Dev. 38: 264-267 (1994); Keefer et al., Biol. Reprod. 50: 935-939 (1994); Sims et al., Proc. Natl. Acad. Sci. USA 90: 6143-6147 (1993); Evans et al., WO 90/03432 (5 Apr. 1990); Smith et al., WO 94/24274 (27 Oct. 1994); Wheeler et al., WO 94/26884 (24 Nov. 1994)). Also, U.S. Pat. Nos. 4,994,384 and 5,057,420 describe procedures for bovine nuclear transplantation. See also U.S. Pat. No. 5,945,577; WO 97/06668 and WO 97/06669, which respectively name The University of Massachusetts and Roslin Institute as the Assignee or Applicant. This patent and applications are incorporated by reference herein. In the subject application, nuclear transfer or nuclear transplantation or NT are used interchangeably. The present definition also embraces the implantation of one or two selected haploid genomes to produce an embryo.
- By “lack a functional gene” is meant either the entire gene is missing from the subjects genome, or the gene is mutated to an extent that it can no longer function (e.g., produce a wild-type protein).
- By “genetic defect” is meant a nucleic acid deletion or insertion which corresponds to an alteration in transcription of the gene, translation of the gene's mRNA into a protein, alteration of the half-life of the protein or the gene's mRNA or other change from wild-type expression of the gene. Different forms of a given gene are called “alleles.” The “wild-type alleles” of a gene are those that exist at relatively high frequencies in natural populations and yield wild-type or normal phenotypes. Alleles of a gene that result in abnormal or non-wild-type phenotypes are “mutant alleles.”
- By “propagating haploid cell line” is meant a cell line of proliferating haploid cells produced artificially outside of the haploid cell's host organism. Typically such haploid cell line will be comprised in an in vitro culture. Alternatively, a haploid cell may be propagated in vivo, e.g. by injection into a SKID mouse to produce differentiated cell types.
- As discussed, the present invention is directed toward the production and propogation of haploid genomes, the selection of desirable haploid genomes from said propogated haploid genomes by genetic analysis, and the use of said selected haploid genomes to produce diploid embryos. As noted in the background of this application, it is known to conduct genetic evaluation of preimplantation embryos as a means of selecting embryos suitable for implantation and the production of offspring. Such methods involve genetic evaluation of the genome of one or more cells of the embryo prior to implantation.
- However, such methods may pose ethical issues in that an embryo is manipulated, and potentially may be destroyed if it exhibits undesirable genetic characteristics. Most especially, such methods may pose ethical issues in the context of human preimplantation embryos, especially those produced by nuclear transfer or conventional in vitro fertilization.
- By contrast, the present invention selects haploid DNA for use in the production of diploid embryos by genetic testing of a haploid cell genome. Such methods should not pose the same ethical concerns as haploid cells cannot give rise to viable offspring. Thus, the disposal of non-desirable haploid genomes or manipulation of haploid genomes should obviate ethical issues associated with manipulation and destruction of diploid embryos, e.g. human diploid embryos.
- Because the present invention involves genetic testing of haploid genomes, it requires a propagated source of such haploid genome. This initially entails constructing or obtaining a cell containing a haploid genome, and providing for proliferation thereof.
- Various methods for producing cells containing either male or female haploid genomes may be utilized. For example, methods of producing haploid cells containing haploid genomes of female origin include by way of example:
- (i) activating in vitro an oocyte in which half the chromosomes are extruded in the polar body;
- (ii) fertilizing an egg and removal of the male pronucleus;
- (iii) activating in vitro an egg which comprises two female pronuclear and removal of one of said pronuclear therefrom;
- (iv) insertion of a diploid cell nucleus into an immature oocyte and separation of the chromosomes into two haploid nuclei and
- (v) transfer of a parthenogenetic nucleus (which contains half the number of chromosomes) but is propagated with the full DNA content (four chromotides) into an oocyte and half the chromatides are extruded therefrom.
- Of the above methods (i), (iii), (iv) and (v) are preferred, as the methods at no time result in a diploid embryo wherein half its DNA content is of male and the other half is of female origin. Thus, even if implanted, they would be incapable of developing into a full-term offspring.
- Methods for providing haploid genomes of male origin include:
- (i) fertilization of an egg and removal of the female pronucleus;
- (ii) fertilization of a enucleated oocyte; and
- (iii) artificial decondensation of a sperm nucleus and injection into a non egg-derived cytoplast.
- The above-described haploid cells and other haploid cells may be propagated by various methods. For example, haploid genomes may be propagated by inducing division of egg cytoplasts. Alternatively, haploid embryos may be used for the product of embryonic stem-like cells. This may be effected by culturing the embryo using known media and methods for maintaining embryos in culture and culturing the inner cell mass or cells derived therefrom to produce embryonic stem-like cells. For example, this may be effected by placing the inner cell mass or cells of the inner cell mass of a haploid-genome derived embryo on a feeder layer, e.g. murine fetal fibroblasts, to produce a culture containing embryonic stem-like cells which give rise to different differentiated cell types, e.g., when removed from the feeder layer.
- Still alternatively, embryonic stem-like cells derived from haploid embryos may be used to produce differentiated cells which have the genome of the parent haploid genome. Yet another means of propagating haploid genomes comprises inducing division of haploid somatic cell cytoplasts produced by introduction of a haploid genome into a cytoplast.
- As noted, in its preferred embodiment the haploid genome will be of human origin, e.g. that of human sperm, or oocyte. However, the present invention embraces the construction of haploid genomes of any mammalian species origin, e.g. non-human primate, dog, cat, mouse, rat, rabbit, bear, cow, horse, pig, sheep, guinea pig, buffalo, goat, antelope, etc. Essentially, the invention is applicable for the selection of any animal that is desirably propagated, e.g. by nuclear transfer, that contains a desired genetic makeup of particular importance are agricultural animals, especially animals having a long gestation period. The present invention should enable rapid screening for haploid genomes that will give rise to diploid embryos having desired genetic characteristics. For example, the presence or absence of sex-linked genetic diseases can be the basis of the genetic screen.
- Also, the invention allows for haploid cell line produced according to the invention to be genetically modified, by homologous recombination.
- This is an advantageous aspect of the invention because allelic differences at a locus will not interfere with the desired recombination events. Also, the present invention allows for the same locus to be targeted in both the male and female haploid cell lines, and the resultant modified male and female haploid genomes to be combined to produce a diploid embryo that is homozygous for the particular modification, e.g. deletion of a particular gene.
- As discussed, the invention described herein improves upon prior methods of preimplantation genetic diagnosis (PGD), because these methods do not involve the manipulation of an embryo. Generally, few embryos are available for screening. Moreover, removal of the cells from an embryo for testing can be harmful for further development of the embryo. Often only one or very few cells are available for genetic testing, which can lead to inaccurate results due to DNA loss or DNA contamination. Finally, there are ethical considerations regarding embryo disposal. Genetic screening of haploid DNA offers the advantage that if male and/or female gametes are screened then, even with few gametes, the total possible combination becomes large.
- In the case of sex-linked genetic diseases, screening can be done on sperm only, which is typically easy to obtain in large quantities. If the sperm is not available in large quantities, then multiplication of the sperm genome can also be useful. The technique makes many identical copies of the genome available for screening to minimize the likelihood of misdiagnosis, and permits additional samples to be analyzed for verification of results. The ethical concerns about working with and manipulating sperm are minimal in comparison with those for working with embryos.
- Screening of haploid cells can also be performed e.g., to determine whether genetic or DNA methylation defects in the haploid cell may cause any adult animal developed therefrom to contract cancer or other disease. Screening for genetic conditions and predispositions would be useful in eliminating defective haploid cells containing such defects. The present invention can be used to screen for chromosomal aberrations and DNA sequences that are correlated to disease or other undesirable traits. These haploid genomes will typically be disposed of. However, in some instances such haploid genomes may be retained. For example, the production of haploid genomes that encode genes that are involved in disease may be useful in producing animals for research purposes, e.g. for evaluating the efficacy of putative therapeutics or prophylactics. Also, the present invention can be used to select haploid genomes that contain a desired genetic makeup, e.g., comprise DNA sequences that are involved in enhanced growth, disease resistance, milk production, or other desirable traits. For example, genetic analysis of haploid cells using DNA probes and linkage (L) or mutation (M) detection can be made on the following human diseases listed in Table 1:
TABLE 1 Condition Chromosome L/M Cloned α-1 antitrypsin deficiency 14 M Yes α-Thallasemia 16 M Yes Adenomatous polyposis coli 5 L, M Yes Adult polycystic kidney disease 16 L No Breast cancer susceptibility (BRCA1) 17 L, M Yes Breast cancer susceptibility (BRCA2) 13 L No β-Thallasemia 11 M Yes Charcot-Marie-Tooth disease 1 M Yes Colon cancer susceptibility (MSH2) 2 M Yes Colon cancer susceptibility (MLH1) 3 M Yes Colon cancer susceptibility (PMS1) 2 M Yes Colon cancer susceptibility (PMS2) 7 M Yes Congenital adrenal hyperplasia 6 M, L Yes Cystic Fibrosis (CF) 7 M Yes Duchenne/Becker muscular dystrophy X M, L Yes Fragile X syndrome X M, L Yes Hemophilia A X M, L Yes Gaucher's disease 1 M Yes Hemophilia B X M, L Yes Huntington's disease 4 M, L Yes Kennedy's disease X M Yes Lesch-Nyhan syndrome X L, M Yes Marfan's syndrome 15 M Yes Medium chain acyl-coenzyme A 1 M Yes dehydrogenase deficiency Melanoma susceptibility 9 M Yes Multiple endocrine neoplasia 1 11 L No Multiple endocrine neoplasia 2A 10 L, M Yes Myotonic dystrophy 19 M, L Yes Neurofibromatosis type 1 17 L, M Yes Ornithine transcarbamylase deficiency X M, L Yes Retinoblastoma 13 M, L Yes Sickle cell anemia 11 M Yes Steroid sulfatase deficiency X L, M Yes Tay-Sachs disease 15 M Yes Werdnig-Hoffman disease 5 L No
Frank K. Fujimura, “Genetic Testing,”IN MOLECULAR BIOLOGY AND BIOTECHNOLOGY: A COMPREHENSIVE DESK REFERENCE (Robert A. Meyers, ed. 1995). - Methods for screening genomes for the presence of specific DNA sequences or chromosomal aberrations are well known. Such screening methods include by way of example polymerase chain analysis (PCR) techniques including nested PCR and direct PCR amplification, SSCP analysis, RFLP analysis, primed in situ labeling (PRINS) methods (see Pellestor et al., 1996), fluorescence in situ hybridization (FISH) analysis, and analysis of VNTRs or STRs, denaturing gradient gel electrophoresis (DGGE), and mismatch cleavage analysis using enzymatic (e.g., RNAse A) or chemical (e.g., piperidine) methods.
- Other screening methods include DNA methylation analysis which is useful for identifying syndromes associated with genomic imprinting. Syndromes and diseases in humans associated with genomic imprinting include: Prader-Willi syndrome (PWS), Angelman syndrome (AS), uniparental isodisomy, Beckwith-Wiedermann syndrome (BWS), Wilm's tumor carcinogenesis and von Hippel-Lindau (VHL) disease. For methods of performing DNA methylation analysis, see Buchholz et al., Hum. Genet. 103: 535-9 (1998). PWS can be caused by genetic mutations, such as deletions, as well as abnormal genomic imprinting (Barabash et al., Med. Clin. (Barc) 108: 304-6 (1997)). In animals, genomic imprinting has also been linked to coat color. For example, the mouse agouti gene confers wild-type coat color, and differential expression of the Aiapy allele correlates with the methylation status of the gene's upstream regulatory sequences (Michaud et al., Genes Dev. 8: 1463-72). Genetic screening in agriculture can be used for genetic selection to produce optimal combinations that minimize recessive mutations, increases heterozygosity or homozygosity or to accumulate beneficial or otherwise desired alleles.
- As noted above, many genetic screening and testing methods are known in the art and may be used in the present invention. Also, many sequences have been identified that correlate to desired or undesired traits.
- The methods of the present invention can be used for genetic selection, both in animals, e.g., agricultural, laboratory or domestic animals as well as in humans. Currently, the combination of gamete genomes that constitute the embryo is random. However, by performing genetic screening on gametes, the optimal combinations could be made to minimize recessive mutations, increase heterozygosity, increase homozygosity or accumulate beneficial alleles. Haploid genomes that are selected to have desirable genetic makeup would be used to provide diploid embryos and offspring.
- As further discussed, the methods of producing propagating haploid cells can also be used to prepare genetically modified haploid cells. In the cases of homologous recombination, allelic differences at a locus will not interfere with the recombination event. Furthermore, targeting both male and female cell lines can result in the preparation of homozygous modifications.
- Methods for effecting genomic modification are well known in the art and include by way of example the use of retroviral vectors, microinjection, and transformation with DNAs comprising sequences that are to be inserted. Preferably, the genetic modification will be made at a targeted site in the genome. Methods for effecting targeted insertion, deletion and substitute modifications of genomes, and particularly mammalian genomes have been well reported and are the subject of numerous patents.
- Essentially, in the present invention a particular haploid genome contained in a propogated haploid cell line will be genetically modified in order to remove, add or substitute a particular DNA sequence with another. After such genetic modification has been effected, e.g. by homologous recombination, the haploid genome will be tested or screened to determine that it indeed comprises the modification. For example, this can be effected by one of the genetic screening methods identified supra, or by expression of a particular marker contained in the inserted DNA, e.g., enzyme, antibiotic resistance marker, fluorescent or radiolabel, etc.
- After the genetically modified haploid genome has been produced, it preferably will be amplified by the methods discussed previously.
- The resultant selected haploid of male or female origin, genomes which may be genetically modified, are especially useful for nuclear transfer or transplantation. Essentially, such methods will comprise the introduction of a selected male and female haploid genome into an enucleated oocyte, or the introduction of a selected male or female haploid genome into a haploid oocyte wherein such haploid DNA is either of male or female origin. Thereby, diploid nuclear transfer unit will be obtained, wherein either or both the male or female DNA therein has been selected based on its genetic makeup. Those diploid nuclear transit units can be used to provide progeny that have a desired genetic makeup, e.g., contain genes involved in disease resistance, growth, or a heterologous DNA that encodes a desired product.
- Nuclear transfer techniques or nuclear transplantation techniques are well known in the literature. See, in particular, Sims et al., Proc. Natl. Acad. Sci. USA 90: 6143-6147 (1993); Collas et al., Mol. Report Dev. 38: 264-267 (1994); Keefer et al., Biol. Reprod. 50: 935-939 (1994); Campbell et al., Theriogenology, 43: 181 (1995); Campbell et al., Nature, 380: 64-66 (1996); Schnieke et al., Science 278: 2130-3 (1997); Wells et al., Biol. Reprod. 57: 385-393 (1997); Wilmut et al., Nature 386: 810-813 (1997); Cibelli et al., Science 280: 1256-8 (1998); Kato et al., Science 282: 2095-8 (1998); Wakayama et al., Nature 394: 369-74 (1998); Wolf et al., J. Biotechnol. 65: 99-110 (1998); Baguisi et al., Nat. Biotechnol. 17: 456-61 (1999); Dominko et al., Biol. Reprod. 60: 1496-1502 (1999); Wolf et al., Biol. Reprod. 60:199-204 (1999); PCT/US99/00045; WO 94/26884; WO 94/24274; and WO 90/03432, which are herein incorporated by reference in their entirety. Also, U.S. Pat. Nos.4,944,384 and 5,057,420 describe procedures for bovine nuclear transplantation. See also, U.S. Pat. No. 5,945,577, incorporated by reference in its entirety.
- Oocytes used for nuclear transfer may be obtained from animals including mammals and amphibians. Suitable mammalian sources for oocytes include sheep, bovines, ovines, pigs, horses, rabbits, guinea pigs, mice, hamsters, rats, primates, human and non-human etc. In the preferred embodiments, the oocytes will be obtained from primates, e.g., human oocytes, or ungulates.
- Methods for isolation of oocytes are well known in the art. Essentially, this will comprise isolating oocytes from the ovaries or reproductive tract of a mammal, e.g., a bovine. A readily available source of bovine oocytes is from slaughterhouse materials.
- For the successful use oftechniques such as genetic engineering, nuclear transfer and cloning, oocytes must typically are matured in vitro before these cells may be used as recipient cells for nuclear transfer, and before they can be fertilized by the sperm cell to develop into an embryo. This process generally requires collecting immature (prophase I) oocytes from ovaries (e.g., bovine ovaries obtained at a slaughterhouse) and maturing the oocytes in a maturation medium prior to fertilization or enucleation until the oocyte attains the metaphase II stage, which in the case of bovine oocytes generally occurs about 18-24 hours post-aspiration. For purposes of the present invention, this period of time is known as the “maturation period.” As used herein for calculation of time periods, “aspiration” refers to aspiration of the immature oocyte from ovarian follicles. Also, the invention includes the isolation of human oocytes by aspiration from consenting donors.
- Alternatively, metaphase II stage oocytes, which have been matured in vivo can be used in nuclear transfer techniques. For example, mature metaphase II oocytes are collected surgically from either non-superovulated or superovulated cows or heifers 35 to 48 hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormones.
- The stage of maturation of the oocyte at enucleation and nuclear transfer has been reported to be significant to the success of NT methods. (See e.g., Prather et al., Differentiation 48: 1-8 (1991); Tanaka et al., Anim. Reprod. Sci. 49: 113-23 (1997)). In general, successful mammalian embryo cloning practices use metaphase II stage oocytes as recipient oocytes, because at this stage it is believed that the oocyte can be or is sufficiently “activated” to treat the introduced nucleus as it would a fertilizing sperm. In domestic animals, and especially cattle, the oocyte activation period generally ranges from about 16-52 hours, preferably about 28-42 hours post-aspiration.
- For example, immature oocytes may be washed in HEPES buffered hamster embryo culture medium (HECM) as described in Seshagine et al, Biol. Reprod. 40: 544-606 (1989), and then placed into drops of maturation medium consisting of 50 μl of tissue culture medium (TCM) 199 containing 10% fetal calf serum (FCS), which contains appropriate gonadotropins such as luteinizing hormone (LH) and follicle stimulating hormone (FSH), and estradiol under a layer of lightweight paraffin or silicon at 39° C.
- After a fixed maturation period, which ranges from about 10 to 40 hours, and preferably about 16-18 hours, oocytes can be enucleated. Prior to enucleation the oocytes are preferably removed and placed in HECM containing 1 mg/ml of hyaluronidase prior to removal of cumulus cells. This may be effected by either repeated pipetting through very fine bore pipettes or by vortexing briefly. The stripped oocytes are then screened for polar bodies, and the selected metaphase II oocytes, as determined by the presence of polar bodies, are then used for nuclear transfer. Enucleation follows.
- Enucleation may be effected by known methods, such as described in U.S. Pat. No. 4,994,384, which is herein incorporated by reference. For example, metaphase II oocytes are either placed in HECM, optionally containing 7.5 μg/ml cytochalasin B, for immediate enucleation, or may be placed in a suitable medium, for example CR1aa, plus 10% estrus cow serum, and then enucleated later, preferably not more than 24 hours later, and more preferably 16 to 18 hours later.
- Enucleation may be accomplished microsurgically using a micropipette to remove the polar body and the adjacent cytoplasm. The oocytes may then be screened to identify those of which have been successfully enucleated. This screening may be effected by staining the oocytes with 1 μg/ml 33342 Hoechst dye in HECM, and then viewing the oocytes under ultraviolet irradiation for less than 10 seconds. The oocytes that have been successfully enucleated then can be placed in a suitable culture medium, e.g., CR1aa plus 10% serum.
- In the present invention, one or two selected, potentially genetically modified haploid genomes will be transplanted into a perivitelline space of an optionally enucleated oocyte or other cytoplast. The resultant haploid genome containing oocyte or cytoplast which is diploid is used to produce NT units according to methods known in the art. For example, the cells may be fused by electrofusion. Electrofusion is accomplished by providing a pulse of electricity that is sufficient to cause a transient breakdown of the plasma membrane. This breakdown of the plasma membrane is very short because the membrane reforms rapidly. Essentially, if two adjacent membranes are induced to breakdown and upon reformation the lipid bilayers intermingle, small channels will open between the two cells. Due to the thermodynamic instability of such a small opening, it enlarges until the two cells become one. Reference is made to U.S. Pat. No. 4,997,384 by Prather et al., for a further discussion of this process. A variety of electrofusion media can be used including, e.g., sucrose, mannitol, sorbitol and phosphate buffered solution. Fusion can also be accomplished using Sendai virus as a fusogenic agent (Graham, Wister Inst. Symp. Monogr. 9: 19 (1969)
- Also, in some cases (e.g., with small donor nuclei) it may be preferable to inject the haploid cell or nucleus directly into the oocyte rather than using electroporation fusion. Such techniques are disclosed in Collas et al., Mol. Reprod. Dev. 38: 264-267 (1994).
- Human or animal cells and oocytes or cytoplasts can be electrofused by known methods, e.g., in a 500 μm chamber by application of an electrical pulse of 90-120 V for about 15 μsec, about 24 hours after initiation of oocyte maturation. After fusion, the resultant fused NT units are then placed in a suitable medium until activation. Activation can be effected shortly before or after fusion, typically less than 24 hours later, and preferably about 4-9 hours later.
- The NT unit may be activated by known methods. Such methods include, e.g., culturing the NT unit at sub-physiological temperature, in essence by applying a cold, or actually cool temperature shock to the NT unit. This may be most conveniently done by culturing the NT unit at room temperature, which is cold relative to the physiological temperature conditions to which embryos are normally exposed.
- Alternatively, activation may be achieved by application of known activation agents. For example, penetration of oocytes by sperm during fertilization has been shown to activate perfusion oocytes to yield greater numbers of viable pregnancies and multiple genetically identical calves after nuclear transfer. Also, treatments such as electrical and chemical shock may be used to activate NT embryos after fusion. Oocyte activation methods are the subject of U.S. Pat. No. 5,496,720, to Susko-Parrish et al.
- Additionally, activation may be affected by simultaneously or sequentially:
-
- (i) increasing levels of divalent cations in the oocyte, and
- (ii) reducing phosphorylation of cellular proteins in the oocyte.
This will generally be affected by introducing divalent cations into the oocyte cytoplasm, e.g., magnesium, strontium, barium or calcium, e.g., in the form of an ionophore. Other methods of increasing divalent cation levels include the use of electric shock, treatment with ethanol and treatment with caged chelators.
- Phosphorylation may be reduced by known methods, e.g., by the addition of kinase inhibitors, such as serine-threonine kinase inhibitors (e.g., 6-dimethylamino-purine, staurosporine, 2-aminopurine, and sphingosine). Alternatively, phosphorylation of cellular proteins may be inhibited by introduction of a phosphatase into the oocyte (e.g., phosphatase 2A and phosphatase 2B).
- One means of effecting NT activation is by briefly exposing the fused NT unit to a TL-HEPES medium containing 5 μM ionomycin and 1 mg/ml BSA, followed by washing in TL-HEPES containing 30 mg/ml BSA within about 24 hours after fusion, and preferably about 4 to 9 hours after fusion. Alternatively, activation can be effected by use of ethanol or repeated electrical pulse.
- The activated NT units produced from one or two selected haploid genomes may then be cultured in a suitable in vitro culture medium until the generation of embryonic or stem-like cells and cell colonies. Culture media suitable for culturing and maturation of embryos are well known in the art. Examples of known media, which may be used for bovine embryo culture and maintenance, include Ham's F-10+10% fetal calf serum (FCS), Tissue Culture Medium-199 (TCM-199)+10% fetal calf serum, Tyrodes-Albumin-Lactate-Pyruvate (TALP), Dulbecco's Phosphate Buffered Saline (PBS), Eagle's and Whitten's media. One of the most common media used for the collection and maturation of oocytes is TCM-199 plus an 1 to 20% serum supplement, including fetal calf serum, newborn serum, estrual cow serum, lamb serum or steer serum. A preferred maintenance medium includes TCM-199 with Earl salts, 10% fetal calf serum, 0.2 mM Na pyruvate and 50 μg/ml gentamicin sulphate. Any of the above may also involve co-culture with a variety of cell types such as granulosa cells, oviduct cells, BRL cells, uterine cells and STO cells.
- Afterward, activation of the cultured NT unit or units are preferably washed and then placed in a suitable media, e.g., CP1aa medium containing 10% FCS and 6 mg/ml contained in well plates which preferably contain a suitable confluent feeder layer. Suitable feeder layers include, by way of example, fibroblasts and epithelial cells, e.g., fibroblasts and uterine epithelial cells derived from ungulates, chicken fibroblasts, murine (e.g., mouse or rat) fibroblasts, STO and SI-m220 feeder cell lines, and BRL cells.
- The NT units are cultured on the feeder layer until the NT units reach a size suitable for obtaining cells which may be used to produce embryonic stem-like cells or cell colonies. Preferably, these NT units will be cultured until at least about 2 to 400 cells, more preferably about 4 to 128 cells, and most preferably at least about 50 cells. The culturing will be effected under suitable conditions, e.g., about 38.5 ° C. and 5% CO2, with the culture medium changed in order to optimize growth typically about every 2-5 days, preferably about every 3 days.
- After NT units of the desired size are obtained, the cells are mechanically removed from the zone and are then used to produce embryonic or stem-like cells and cell lines. This is preferably effected by taking the clump of cells which comprise the NT unit, which typically will contain at least about 50 cells, washing such cells, and plating the cells onto a feeder layer, e.g., irradiated fibroblast cells. Typically, the cells used to obtain the stem-like cells or cell colonies will be obtained from the inner most portion of the cultured NT unit, which is preferably at least 50 cells in size. However, NT units of smaller or greater cell numbers, as well as cells from other portions of the NT unit, may also be used to obtain ES-like cells and cell colonies. The cells are maintained in the feeder layer in a suitable growth medium, e.g., alpha MEM supplemented with 10% FCS and 0.1 mM β-mercaptoethanol (Sigma) and L-glutamine. The growth medium is changed as often as necessary to optimize growth, e.g., about every 2-3 days. This culturing process results in the formation of embryonic or stem-like cells or cell lines. The culture time before such cells are produced may vary dependent upon the particular nuclear donor cell, specific oocyte and culturing conditions. One skilled in the art can vary the culturing conditions as desired to optimize growth of the particular embryonic or stem-like cells.
- The embryonic or stem-like cells and cell colonies produced from said haploid genome generated embryos should exhibit an appearance similar to native embryonic or stem-like cells of the species used as the nuclear cell donor.
- The present invention has been described with reference to a preferred embodiment. However, it will be readily apparent to those skilled in the art that it is possible to embody the invention in specific forms other than as described above without departing from the spirit of the invention. The preferred embodiments described in the examples below are illustrative and should not be considered restrictive in any way. The scope of the invention is given by the appended claims, rather than the preceding description, and all variations and equivalents which fall within the range of the claims are intended to be embraced therein.
- Production of Large Murine A9 Cells
- Murine A9 cells (HPRT-) are cultured in 3.75 μg/ml cytochalasin B (Sigma, location) in alphamem (Biowhittaker, location) supplemented with 10% fetal bovine serum for 96 hrs. Cytochalasin B is an inhibitor of microfilaments and will prevent the cells from undergoing cytokinesis while allowing the cell to synthesize DNA and increase in size. After 24 hrs recovery from the drug, cells can be removed from the culture surface and manipulated. Resulting cells are approximately 30 μm in diameter.
- Education
- Round glass discs, approximately 2.5 cm in diameter are coated with poly-D-lysine. Cytochalasin B treated A9 cells are plated at 60-80% confluency on the discs and allowed to adhere for 24 hrs. Discs are placed cell-side down in centrifuge tubes containing 5 ml enucleation medium (phosphate buffered saline, 10% fetal bovine serum, 10 μg/ml cytochalasin B). Cells are incubated for 20 min at 37° C. Centrifuge tubes are placed in 37° C. ultracentrifuge and spun at 23,000 g for an additional 20 min. Resulting cytoplasts are viable for 24-48 hrs.
- Cytoplasts are removed from the glass surface by trypsinization. HAT supplement is added to culture medium at 1×concentration to kill remaining nucleated cells. An alternative to this is to add the HAT supplement following introduction of the donor nucleus. This will eliminate any nucleated A9 cells while any unfused cytoplasts will lyse within 48 hrs.
- Introduction of Donor Nucleus
- Sperm collected from transgenic mice, carrying the neomycin resistance gene (Neo), are prepared for fusion by either capacitation or treatment with protease. These treatments are used to ensure that the sperm will stick to the cytoplasts. Transgenic markers are useful for verifying the source of the sperm but are not necessary for the procedure. Alternative haploid donors are the male and female pronuclei (haploid karyoplasts) removed from newly fertilized embryos by micromanipulation.
- Fusion
- Both the A9 cytoplasts and sperm are treated with protease or with PHA to increase the likelihood of cytoplast to sperm adhesion and fusion. The appropriate concentration of sperm or donor nuclei and cytoplasts should be used to enhance the number of resulting cells with a single nucleus. An AC pulse can be used to orient nuclear/cytoplast couplets so that the membranes to be fused are perpendicular to the flow of current. A DC pulse will be administered to induce fusion between the nuclear donor cell and the cytoplast. Other methods of cell fusion could also be used in the procedure such as polyethylene glycol, fusion-inducing viruses or liposomes.
- Selection
- Several days following fusion, selection for A9-haploid nuclear hybrids will be started. HAT sensitive A9 cells will be used as a source of cytoplasts, therefore, any colonies that form in the HAT medium will be from haploid-cytoplast hybrids. Non enucleated A9 cells will not survive selection. Resulting hybrids will be clonally propagated until there are sufficient numbers to analyze. We will determine whether hybrids are haploid or diploid by fluorescent in situ hybridization or karyotyping.
- Fertilization
- Haploid cells can be used as donor nuclei in the fertilization of oocytes. Nuclear transfer is effected using standard procedures. Embryos will be activated using a method that results in second polar body extrusion and haploidization of the female chromatin.
Claims (23)
1. A method for selecting a haploid genome containing cell comprising the following steps:
(i) obtaining and amplifying the number of cells containing a haploid genome of male or female origin;
(ii) subjecting the genome of said haploid cells to genetic screening or analysis to determine whether said haploid genome comprises a desired genetic makeup; and
(iii) selecting cells that contain said desired genetic makeup.
2. The method of claim 1 , wherein said female-derived haploid cells are produced by activation of an oocyte in which half of the chromosomes are extruded in the polar body.
3. The method of claim 1 , wherein said female-derived haploid cells are produced by fertilization of an egg and removal of a male pronucleus therefrom.
4. The method of claim 1 , wherein said female-derived haploid cells are produced by activation of an egg to provide an egg containing two female pronuclei and removal of one of said pronuclei.
5. The method of claim 1 , wherein said female-derived haploid cells are produced by insertion of a diploid cell nucleus into an immature oocyte followed by separation of said chromosomes in to two haploid nuclei.
6. The method of claim 1 , wherein said female-derived haploid cells are produced by transfer of the nucleus of a parthenogenetic embryo (contains half the chromosomes) but propagated with the full DNA content (four chromatids) into an oocyte, and subsequent extrusion of half the chromosomes therefrom.
7-9. (canceled)
10. The method of claim 1 , wherein said female-or male-derived haploid cells are amplified by a method selected from the group consisting of (i) allowing a haploid egg cytoplast to undergo cell division; (ii) allowing a haploid cell to produce a haploid embryo which is then cultured to produce “propagating haploid” cells; (iii) culturing a haploid embryo to produce propagating haploid cells and allowing such embryonic stem-like cells to differentiate; and (iv) culturing a haploid somatic cell cytoplast under conditions that allow cell division.
11-12. (canceled)
13. The method of claim 1 , which further comprises using said selected male or female haploid genome or a cell containing said selected haploid genome is used to produce a diploid embryo.
14. The method of claim 1 which further comprises using a selected male and female haploid genome to produce a diploid embryo.
15. The method of claim 1 , wherein said selected male or female haploid genome or a cell containing said male or female genome is used as a nuclear transfer donor.
16. The method of claim 15 , wherein both a selected male or female haploid genome are used as nuclear transfer donors to produce a diploid nuclear transfer unit that contains said selected male and female haploid genome.
17. The method of claim 15 , wherein said haploid genome is human.
18. The method of claim 15 , wherein said haploid cell or genome comprises a differentiated cell embryonic stem-like cell or inner cell mass cell derived from a propagated haploid embryo.
19. The method of claim 18 , wherein said differentiated cells or embryonic stem-like cells are produced by in vitro culturing of a haploid embryo.
20-33. (canceled)
34. A propagating haploid cell line developed using the method of claim 10 .
35. The propagating haploid cell line of claim 34 , wherein the cell line is a female cell-or male cell-derived haploid cell line.
36. A diploid embryo that is produced by nuclear transfer wherein said nuclear transfer process comprises using as the nuclear transfer donor a haploid genome or cell containing which is produced according to claim 1 .
37. The diploid embryo of claim 36 wherein said nuclear transfer process comprises transplantation of both a male and female haploid genome or cell containing produced according to claim 1 .
38. Embryonic stem-like cells or differentiated cells produced from a haploid embryo.
39. An improved nuclear transfer process that is used to produce a cloned embryo, fetus or animal wherein the improvement comprises using as the nuclear transfer donor embryonic stem-like cells or differentiated cells produced from a haploid embryo.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/743,613 US20080085517A1 (en) | 1999-11-02 | 2007-05-02 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
| US13/015,968 US8551705B2 (en) | 1999-11-02 | 2011-01-28 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16308699P | 1999-11-02 | 1999-11-02 | |
| PCT/US2000/030202 WO2001032015A1 (en) | 1999-11-02 | 2000-11-02 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
| US11184602A | 2002-10-03 | 2002-10-03 | |
| US11/743,613 US20080085517A1 (en) | 1999-11-02 | 2007-05-02 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
Related Parent Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/030202 Continuation WO2001032015A1 (en) | 1999-11-02 | 2000-11-02 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
| US10111846 Continuation | 2000-11-02 | ||
| US11184602A Continuation | 1999-11-02 | 2002-10-03 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/015,968 Continuation US8551705B2 (en) | 1999-11-02 | 2011-01-28 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080085517A1 true US20080085517A1 (en) | 2008-04-10 |
Family
ID=22588424
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/344,724 Abandoned US20040146865A1 (en) | 1999-11-02 | 2003-02-14 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
| US11/743,613 Abandoned US20080085517A1 (en) | 1999-11-02 | 2007-05-02 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
| US13/015,968 Expired - Fee Related US8551705B2 (en) | 1999-11-02 | 2011-01-28 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/344,724 Abandoned US20040146865A1 (en) | 1999-11-02 | 2003-02-14 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/015,968 Expired - Fee Related US8551705B2 (en) | 1999-11-02 | 2011-01-28 | Use of haploid genomes for genetic diagnosis, modification and multiplication |
Country Status (10)
| Country | Link |
|---|---|
| US (3) | US20040146865A1 (en) |
| EP (1) | EP1227719A4 (en) |
| JP (1) | JP2003512848A (en) |
| CN (1) | CN1387401A (en) |
| AU (1) | AU1581001A (en) |
| BR (1) | BR0015264A (en) |
| CA (1) | CA2388510A1 (en) |
| IL (1) | IL149201A0 (en) |
| MX (1) | MXPA02004333A (en) |
| WO (1) | WO2001032015A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11422125B2 (en) | 2015-03-23 | 2022-08-23 | Astellas Institute For Regenerative Medicine | Assays for potency of human retinal pigment epithelium (RPE) cells and photoreceptor progenitors |
Families Citing this family (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0025088D0 (en) * | 2000-10-13 | 2000-11-29 | Univ Edinburgh | Stem cells |
| NZ526243A (en) * | 2000-11-30 | 2006-02-24 | Stemron Inc | Isolated homozygous stem cells, differentiated cells derived therefrom, and materials and methods for making and using same |
| AU2002232858B2 (en) * | 2000-12-22 | 2007-01-11 | Sab, Llc | Methods for cloning mammals using reprogrammed donor chromatin or donor cells |
| US20020142397A1 (en) * | 2000-12-22 | 2002-10-03 | Philippe Collas | Methods for altering cell fate |
| US7491534B2 (en) * | 2000-12-22 | 2009-02-17 | Kirin Holdings Kabushiki Kaisha | Methods for altering cell fate to generate T-cells specific for an antigen of interest |
| NZ568250A (en) * | 2001-01-02 | 2009-07-31 | Stemron Inc | A method for producing a population of homozygous stem cells having a pre-selected immunotype and/or genotype, cells suitable for transplant derived therefrom, and materials and methods using same |
| US20040091936A1 (en) | 2002-05-24 | 2004-05-13 | Michael West | Bank of stem cells for producing cells for transplantation having HLA antigens matching those of transplant recipients, and methods for making and using such a stem cell bank |
| AU2003237257A1 (en) * | 2002-05-24 | 2003-12-12 | Advanced Cell Technology, Inc. | A bank of stem cells for transplantation |
| WO2006041910A2 (en) * | 2004-10-05 | 2006-04-20 | Trustees Of The University Of Pennsylvania | Stem cells derived from uniparental embryos and methods of use thereof |
| US20080215353A1 (en) * | 2006-08-31 | 2008-09-04 | Akin James W | Method of Frozen Donor Egg Banking |
| US8003371B2 (en) | 2007-01-08 | 2011-08-23 | The Invention Science Fund I, Llc | Systems for genome selection |
| US7709245B2 (en) * | 2007-01-08 | 2010-05-04 | The Invention Science Fund I, Llc | Systems for genome selection |
| US7648823B2 (en) * | 2007-01-08 | 2010-01-19 | Searete Llc | Systems for genome selection |
| US20080167851A1 (en) * | 2007-01-08 | 2008-07-10 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Systems for genome selection |
| US7947457B2 (en) * | 2007-01-08 | 2011-05-24 | The Invention Science Fund I, Llc | Systems for genome selection |
| US8012740B2 (en) * | 2007-01-08 | 2011-09-06 | The Invention Science Fund I, Llc | Systems for genome selection |
| US7718418B2 (en) | 2007-01-08 | 2010-05-18 | The Invention Science Fund I, Llc | Systems for genome selection |
| US7709244B2 (en) * | 2007-01-08 | 2010-05-04 | The Invention Science Fund I, Llc | Systems for genome selection |
| US8521440B2 (en) * | 2007-01-08 | 2013-08-27 | The Invention Science Fund I, Llc | Systems for genome selection |
| US7947455B2 (en) * | 2007-01-08 | 2011-05-24 | The Invention Science Fund I, Llc | System for genome selection |
| US7713728B2 (en) * | 2007-01-08 | 2010-05-11 | The Invention Sciencefund I, Llc | Systems for genome selection |
| US7985578B2 (en) | 2007-01-08 | 2011-07-26 | The Invention Science Fund I, Llc | Systems for genome selection |
| US20090111184A1 (en) * | 2007-10-24 | 2009-04-30 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Chromosome selection |
| US20090111764A1 (en) * | 2007-10-25 | 2009-04-30 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Mitochondrial selection |
| US20090111185A1 (en) * | 2007-10-26 | 2009-04-30 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Female genome selection |
| WO2012071393A2 (en) * | 2010-11-23 | 2012-05-31 | The New York Stem Cell Foundation | Method for producing pluripotent stem cells |
| WO2012117254A1 (en) * | 2011-03-02 | 2012-09-07 | Cambridge Enterprise Limited | Mammalian haploid embryonic stem cells |
| CN102533970A (en) * | 2011-11-14 | 2012-07-04 | 江苏迈健生物科技发展有限公司 | Method for analyzing gene expression of in-vitro fertilization (IVF) single implanted pre-embryo through reverse transcription polymerase chain reaction (PCR) |
| EP2599859A1 (en) | 2011-11-30 | 2013-06-05 | IMBA-Institut für Molekulare Biotechnologie GmbH | Haploid cells |
| CN108697068B (en) | 2015-09-17 | 2022-02-11 | 瑞泽恩制药公司 | Selection of pluripotent cells for production of fertile XY female mice |
| CN109689894A (en) * | 2016-06-19 | 2019-04-26 | 耶路撒冷希伯来大学伊萨姆研发有限公司 | Screening for chemotherapy resistance in human haploid cells |
| EP3421593A1 (en) * | 2017-06-30 | 2019-01-02 | Centre National De La Recherche Scientifique | Method for obtaining haploid cells |
| BR112021016011A2 (en) * | 2019-02-20 | 2021-10-05 | The Semex Alliance | USE OF HAPLOID EMBRYONIC CELLS TO GENERATE DESCENDANTS WITH PREDETERMINED GENOMES |
| CN112375829B (en) * | 2020-11-25 | 2022-07-05 | 苏州赛美科基因科技有限公司 | Method and device for identifying UPD (user Equipment) by using family WES (family WES) data and electronic equipment |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5480772A (en) * | 1993-02-03 | 1996-01-02 | Brandeis University | In vitro activation of a nucleus |
| US5843780A (en) * | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
| US5749169A (en) * | 1995-06-07 | 1998-05-12 | Pioneer Hi-Bred International, Inc. | Use of the indeterminate gametophyte gene for maize improvement |
| US5932418A (en) * | 1996-04-08 | 1999-08-03 | Naiad Systems, Inc. | Fish embryo screening test for genotoxic agents using three different developmental life stages |
| US5945577A (en) * | 1997-01-10 | 1999-08-31 | University Of Massachusetts As Represented By Its Amherst Campus | Cloning using donor nuclei from proliferating somatic cells |
| JP2003514516A (en) * | 1999-10-28 | 2003-04-22 | ユニバーシティ オブ マサチューセッツ | Gynogenetic or orogenic development of pluripotent cells and cell lines and their use for producing differentiated cells and tissues |
-
2000
- 2000-11-02 CN CN00815283A patent/CN1387401A/en active Pending
- 2000-11-02 CA CA002388510A patent/CA2388510A1/en not_active Abandoned
- 2000-11-02 MX MXPA02004333A patent/MXPA02004333A/en not_active Application Discontinuation
- 2000-11-02 AU AU15810/01A patent/AU1581001A/en not_active Abandoned
- 2000-11-02 IL IL14920100A patent/IL149201A0/en unknown
- 2000-11-02 WO PCT/US2000/030202 patent/WO2001032015A1/en not_active Ceased
- 2000-11-02 BR BR0015264-1A patent/BR0015264A/en not_active IP Right Cessation
- 2000-11-02 EP EP00978337A patent/EP1227719A4/en not_active Withdrawn
- 2000-11-02 JP JP2001534231A patent/JP2003512848A/en active Pending
-
2003
- 2003-02-14 US US10/344,724 patent/US20040146865A1/en not_active Abandoned
-
2007
- 2007-05-02 US US11/743,613 patent/US20080085517A1/en not_active Abandoned
-
2011
- 2011-01-28 US US13/015,968 patent/US8551705B2/en not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11422125B2 (en) | 2015-03-23 | 2022-08-23 | Astellas Institute For Regenerative Medicine | Assays for potency of human retinal pigment epithelium (RPE) cells and photoreceptor progenitors |
| US11680941B2 (en) | 2015-03-23 | 2023-06-20 | Astellas Institute For Regenerative Medicine | Assays for potency of human retinal pigment epithelium (RPE) cells and photoreceptor progenitors |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2003512848A (en) | 2003-04-08 |
| EP1227719A4 (en) | 2003-01-15 |
| IL149201A0 (en) | 2002-11-10 |
| WO2001032015A1 (en) | 2001-05-10 |
| US20110287429A1 (en) | 2011-11-24 |
| BR0015264A (en) | 2002-10-15 |
| CA2388510A1 (en) | 2001-05-10 |
| US8551705B2 (en) | 2013-10-08 |
| EP1227719A1 (en) | 2002-08-07 |
| CN1387401A (en) | 2002-12-25 |
| MXPA02004333A (en) | 2004-04-21 |
| US20040146865A1 (en) | 2004-07-29 |
| AU1581001A (en) | 2001-05-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8551705B2 (en) | Use of haploid genomes for genetic diagnosis, modification and multiplication | |
| US6215041B1 (en) | Cloning using donor nuclei from a non-quiesecent somatic cells | |
| EP1049372B1 (en) | Full term development of animals from enucleated oocytes reconstituted with adult somatic cell nuclei | |
| US20040177390A1 (en) | Method of nuclear transfer | |
| JP2011188873A (en) | Genetic modification of somatic cell and use thereof | |
| JP7060256B2 (en) | Transgenic animals and transgenic embryos that produce modified nucleases | |
| WO1999021415A9 (en) | Nuclear transfer for production of transgenic animal embryo | |
| Li et al. | Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer | |
| AU781128B2 (en) | Preparation and selection of donor cells for nuclear transplantation | |
| AU2006203223A1 (en) | Use of haploid genomes for genetic diagnosis, modification and multiplication | |
| US20130007904A1 (en) | Production of cloned offspring from cooled carcasses | |
| US20040077077A1 (en) | Novel methods for the production of cloned mammals, mammals cloned according to the methods, and methods of use of same | |
| JP4903392B2 (en) | Gene homo-modified mammalian cells, gene homo-modified non-human mammals, and methods for establishing and producing them. | |
| Palermo et al. | Male gamete copies to characterize genome inheritance and generate progenies | |
| US20030229909A1 (en) | Cloning cats by nuclear transplantation | |
| WO2005060740A2 (en) | An improved method for embryo and animal production | |
| Stice | Cloning using donor nuclei from a non-quiesecent somatic cells | |
| AU2005203067A1 (en) | Genetic modification of somatic cells and uses thereof | |
| AU2008202720A1 (en) | Genetic modification of somatic cells and uses thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |