US20080035473A1 - Process and Plant for Electrodepositing Copper - Google Patents
Process and Plant for Electrodepositing Copper Download PDFInfo
- Publication number
- US20080035473A1 US20080035473A1 US10/589,592 US58959205A US2008035473A1 US 20080035473 A1 US20080035473 A1 US 20080035473A1 US 58959205 A US58959205 A US 58959205A US 2008035473 A1 US2008035473 A1 US 2008035473A1
- Authority
- US
- United States
- Prior art keywords
- bars
- electrolyte
- contact
- electrolytic cell
- electrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 239000010949 copper Substances 0.000 title claims abstract description 69
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 54
- 239000003792 electrolyte Substances 0.000 claims abstract description 50
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 47
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000012530 fluid Substances 0.000 claims description 36
- 239000000498 cooling water Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 238000007373 indentation Methods 0.000 claims description 6
- 230000000284 resting effect Effects 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 241001481828 Glyptocephalus cynoglossus Species 0.000 claims 1
- 239000008213 purified water Substances 0.000 claims 1
- 238000007670 refining Methods 0.000 abstract description 10
- 210000004027 cell Anatomy 0.000 description 53
- 241000196324 Embryophyta Species 0.000 description 19
- 238000000605 extraction Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 238000007654 immersion Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000002386 leaching Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000009854 hydrometallurgy Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000009853 pyrometallurgy Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- BQJTUDIVKSVBDU-UHFFFAOYSA-L copper;sulfuric acid;sulfate Chemical compound [Cu+2].OS(O)(=O)=O.[O-]S([O-])(=O)=O BQJTUDIVKSVBDU-UHFFFAOYSA-L 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005363 electrowinning Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229940032330 sulfuric acid Drugs 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/12—Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/02—Electrodes; Connections thereof
Definitions
- the present invention relates to a process for the electrochemical winning or refining of copper by electrodepositing copper from an electrolyte solution containing the metal in ionogenic form, in which the electrolyte is passed through an electrolysis plant comprising at least one electrolytic cell, which in an electrolyte tank for receiving the electrolyte has at least two electrodes serving as anode and cathode, which are alternately arranged at a distance from each other, and to a corresponding plant.
- pyrometallurgical and hydrometallurgical processes For producing copper, a multitude of processes are known, in particular pyrometallurgical and hydrometallurgical processes.
- pyrometallurgical processes enriched chalcopyrite is molten in a suspension furnace or bath-type melting furnace by adding oxygen to obtain a copper matrix, in converters is then converted to crude copper in two blowing steps, and is purified further in a final electrolytic refining step. This electrolysis is also referred to as refining electrolysis.
- hydrometallurgical processes on the other hand, in particular low-copper oxidic ores with a copper content of about 0.5 to 1 wt-% are used as starting materials.
- the starting ore poor in copper which due to its mineralogical composition cannot always be processed economically with other processes such as flotation, is leached e.g. with dilute sulfuric acid, and in an extraction plant the resulting solution rich in copper is treated with an organic extractant which selectively extracts copper ions from the solution.
- the copper-containing extractant is stripped with foul electrolyte with a copper content of about 30 to 40 g/l, which originates from the succeeding electrolysis plant, the copper from the extractant phase passing over into the electrolyte, which upon further purification for removing extractant residues and solids typically is recirculated to the electrolysis plant with a copper content of 40 to 50 g/l.
- Such electrolysis is also referred to as extraction electrolysis.
- the copper-coated cathodes are withdrawn from the electrolytic cell manually or by means of cranes and transferred to a stripping plant, in which the copper coatings are peeled (stripped) off the cathodes, before the cathode starting sheets are returned to the electrolytic cells after a corresponding aftertreatment.
- the copper peeled off is finally processed in melting furnaces.
- the current density on the cathode side is limited by the quality of the copper deposited, as due to the increased overvoltage on the cathodes more impurities are deposited with increasing current density.
- the lead alloy used as electrode material for the extraction electrolysis becomes more unstable, and the copper anode used for the refining electrolysis becomes passivated with increasing current density.
- present-day electrolyses operate with a maximum current density of about 370 A/m 2 electrode surface.
- a higher current density can only be achieved by using expensive anode materials with a lower quality of the electrodeposited copper.
- an electrolyte immersion depth of the electrodes of more than 1.2 m leads to a sufficiently uniform deposition of copper on the cathodes in processes for electrodepositing copper from an electrolyte solution containing the metal in ionogenic form also with the cathode materials commonly employed in the refining and extraction electrolyses and with the usually adjusted current densities.
- the immersion depth of the electrodes into the electrolyte preferably is an integral multiple of the commonly used immersion depth of about 1 m and particularly preferably about 2 m with a cathode width of about 1 m each.
- the advantage is that the melting furnaces, which because of the active cathode surface, i.e. the cathode surface immersed into the electrolyte, normally were designed for a size of 1 ⁇ 1 m in the known processes, can be used unchanged, in that the stripped copper sheets to be obtained with the process in accordance with the invention are reduced to the corresponding size of 1 ⁇ 1 m subsequent to the stripping operation and before being supplied to the melting furnace.
- the at least one electrolytic cell has more than 60 cathodes, particularly preferably more than 100 cathodes, and quite particularly preferably 114 cathodes.
- the efficiency of the process of the invention is further increased, as the size of the electrolytic cells caused by this measure provides for an inexpensive transport while at the same time reducing the number of cells per production capacity.
- the cathodes can be made of all materials known to the skilled person for this purpose, stainless steel cathodes being preferred.
- the specific current intensity is 740 A per electrode with a current density of 370 A/m 2
- the specific current intensity is doubled in accordance with the invention to 1,480 A per electrode when using electrodes with an active surface of 1 ⁇ 2 m.
- the electrodes can in principle be positioned in the electrolytic cells, be fixed and supplied with current in any way known to those skilled in the art.
- electrodes with a horizontal hanger bar known per se which has a first end and a second end and preferably is made of the same material as the cathode surface, in particular steel, turned out to be advantageous.
- one end of the hanger bar of the cathodes each rests on a first contact bar connected to a power source, whereas one end each of the hanger bar of the anodes each is in contact with a second contact bar connected to the power source.
- the two contact bars are arranged on one contact bar each, which are provided at the edge of the electrolyte tank.
- the respectively second ends of the hanger bars of the electrodes can rest on a supporting surface of insulating material, which for instance is likewise arranged on the contact bars.
- the electrodes have the first end of their hanger bar each resting on one of the two contact bars via a two-line contact.
- a contact bar with an at least substantially trapezoidal indentation is used particularly preferably, onto which the first end of the hanger bar is applied with a contact surface having an at least substantially rectangular cross-section.
- the two-line contact can of course also be effected in any other way known to the skilled person for this purpose.
- the process of the invention preferably employs cathodes whose e.g. steel-sheathed hanger bar has a copper core. Due to the high electric conductivity of copper, the current thus transmitted from the contact bar to the hanger bar is transmitted to the active electrode surface with only minimal losses, whereas the steel sheath surface of the hanger bar provides the hanger bar in particular with a high mechanical strength and high corrosion resistance.
- the copper core preferably has the same geometry as the hanger bar.
- a hanger bar made of steel, which for instance is substantially square in cross-section likewise includes a substantially square copper core.
- the cathodes in this way have two electric contacts, namely on the one hand with a contact bar and on the other hand with an equalizer bar, whereby the distribution of current between the electrodes is rendered more uniform. This is expedient in particular with high specific current intensities, in order to minimize the transfer resistances and electric losses.
- the contact bars and/or possibly the equalizer bar or, particularly preferably, the intermediate contact bars, on which the contact bars and possibly the equalizer bars are arranged are cooled during the electrolysis, in order to avoid a power loss, which results from the higher specific current intensity and the related higher current load, and a heating of the corresponding conductor bars.
- a water cooling of the conductor bars turned out to be particularly expedient, which is realized for instance by passing cooling water through a cooling water channel provided in the bus bars. Good results are achieved in particular with cooling water channels having a diameter of about 15 to 20 mm.
- Extruded bus bars with embedded cooling channel are preferably used for this purpose, although good results are also achieved with bus bars with milled slots, which are subsequently covered and welded, or with soldered copper tubes.
- tubes of PVC or hoses of vinyl material turned out to be particularly useful.
- the cooling water supply can also be effected by two coolant circuits divided into a primary circuit, which at least partly extends through the intermediate bus bars to be cooled, and a secondary circuit, which preferably extends completely outside the bus bars to be cooled.
- the connection of the two circuits can be effected in any way known to the skilled person.
- shell-and-tube heat exchangers as well as plate-type heat exchangers turned out to be useful.
- the primary circuit exclusively extends through the bus bars to be cooled and is operated with high-purity cooling water, for instance water purified by a reverse osmosis plant, whereas the secondary circuit is fed with crude water and is recooled for instance by an atmospheric cooling tower.
- the same preferably includes a water expansion tank.
- a fluid distributor in the at least one electrolytic cell, through which during operation of the extraction electrolysis a liquid, a gas, a gas mixture or a mixture of gas and liquid is introduced, particularly preferably from below, into the electrolytic cell. Due to the convection flow generated by such introduction of fluid a better intermixing of the electrolyte is achieved, which is why the copper is deposited on the cathodes more uniformly. Furthermore, the convection flow effects a reduction in thickness of the boundary layers at the electrodes, which results in a better and faster mass transfer of the copper ions to the electrode surface.
- An introduction of fluid from below into the electrolytic cell is particularly preferred, because in the upper region of the cell a certain convection flow is obtained automatically due to the gas bubbles released at the anode during the extraction electrolysis, and therefore in particular in the lower region of the electrolytic cell an additional convection flow is important.
- electrolyte solution or a mixture of electrolyte solution and gas bubbles is introduced into the electrolytic cell through the fluid distributor. Since electrolyte continuously refreshed with copper sulfate from the leaching plant must in any case be supplied to the electrolytic cell during operation of the electrolysis, the fluid supply system requires no increase in the investment and operating costs in the first case and only an insignificant increase thereof in the second case. To increase the convection, other liquids, gases or gas mixtures can also be supplied to the electrolytic cell instead of electrolyte solution or a mixture of electrolyte solution and gas bubbles, or other systems such as mechanical mixing devices or the application of ultrasound can be used.
- the fluid distributor as it is of simple construction and efficient in terms of operating costs, consists of two tubes arranged substantially parallel to the longitudinal sides of the electrolytic cells, which at their surfaces each have one or more fluid outlet holes.
- the tubes are disposed at a small distance from the side wall. The distance is defined by the fastening mechanism of the tube at the cell wall and provides for the deposition of electrolyte sludge at the cell bottom. Typically, the distance is 10-50 mm.
- the distance of the two tubes from the cell bottom should be chosen such that electrolyte sludge can be collected below the fluid distributor at the cell bottom. Typically, the distance from the cell bottom is 100-200 mm.
- fluid supply conduit to the fluid distributor there can for instance be used a tube arranged in the middle of the end face of the electrolytic cell, which with respect to the electrolytic cell extends vertically from the top to the bottom and at its lower end branches into two tubes extending horizontally and parallel to the end face of the electrolytic cell, one of which tubes is each connected with one end of the tubes of the fluid distributor, which extend substantially parallel to the longitudinal sides of the electrolytic cells.
- the fluid distributor should have a high enough number of fluid outlet holes.
- the relative number of the fluid outlet holes with respect to the total number of electrode pairs per electrolytic cell is decisive.
- the fluid distributor has 1-5, particularly preferably about 1-2 fluid outlet holes per electrode pair and cell side provided in the electrolytic cell.
- the shape of the fluid outlet holes is less decisive in terms of the convection flow. However, it turned out to be advantageous to provide substantially circular fluid outlet holes.
- the diameter thereof preferably is 1 to 10 mm, particularly preferably 5 to 7 mm, and in particular about 6 mm.
- the cathodes used have an indentation of V-shaped cross-section at their lower longitudinal edge.
- a densification of streamlines necessarily occurring at straight edges which leads to an—undesired—increased deposition of copper at the edges, can be reduced and optimally even be prevented completely.
- the indentation furthermore effects a separation of the front and rear sides deposited on the cathode into two cathode sheets.
- FIG. 1 shows the basic structure of an electrolysis plant for winning or refining copper
- FIG. 2 shows a section along line A-A in FIG. 1 ;
- FIG. 3 schematically shows a section through an electrolytic cell with a cathode held by a hanger bar
- FIG. 4 schematically shows a section through an electrolytic cell with an anode held by a hanger bar
- FIG. 5 schematically shows two-line contacts between the hanger bar and a contact bar
- FIG. 6 schematically shows one-line contacts between the hanger bar and a contact bar with equalizer bar
- FIG. 7 schematically shows the structure of a pilot plant for performing the process of the invention.
- electrolytic cells 1 (dimensions L ⁇ W ⁇ H e.g. about 12.5 ⁇ 2 ⁇ 2.7 m) each with a plurality of e.g. 115 anodes 2 and 114 cathodes 3 , which are each arranged alternately and are held at the edges of the electrolytic cells 1 via hanger bars 4 , are provided in numerous cell rows.
- the hanger bar 4 with the electrodes suspended thereon can be transported between a maintenance area 6 for the anodes 2 , the cells 1 as well as a stripping machine 7 , in which the copper deposited at the cathodes 3 is stripped in a manner known per se.
- FIG. 3 schematically shows a cathode 3 resting on the edges of the electrolytic cell via the hanger bar 4 .
- FIG. 4 shows an anode 2 which is likewise held by a hanger bar 4 .
- the anode 2 additionally has holes 8 for spacers, which ensure the required uniform distance between anodes and cathodes of e.g. 50 mm each.
- the one end of the hanger bars 4 rests on a contact bar 10 arranged at the edge of the electrolyte cell (cf. FIG. 5 ), which is connected with a non-illustrated power source via a bus bar.
- the other end of the hanger bar 4 rests on an equalizer bar 11 . In general, this is effected via a one-line contact (cf. FIG. 6 ).
- the effort involved in the cathode movements is halved by a factor of 2, so that, based on the same amount of copper produced, correspondingly smaller or less crane systems are required, for instance one instead of two cranes for handling the electrodes, a smaller number of stripping machines and thus less production area and personnel.
- the ground area required for mounting the electrolytic cells in the tankhouse is also drastically reduced.
- different contact bars and possibly equalizer bars are required due to the higher specific current intensity, and for the subsequent processing of the loaded cathodes crane systems with a higher load-bearing capacity are required due to the higher weight of these cathodes.
- the height of the tankhouse between upper cell edge and crane path must be adjusted for processing the extended cathodes, and the same is true for mounting the electrolytic cells with increased overall height. Due to the greater cathode surface, differently sized stripping machines as well as folding or comminution machines for folding the larger copper sheets before supplying the same to a melting furnace designed for conventional plants are required. As both investment and operating costs for the last-mentioned measures are smaller than the corresponding savings achieved due to the smaller number of cathode movements, a significant decrease of the production costs is achieved on the whole.
- the investment costs for corresponding plants for the electrochemical extraction of copper thus can be decreased by up to 20%, and the production costs can be decreased by up to 10%.
- two electrolytic cells 1 a , 1 b connected in parallel with respect to the electrolyte supply and a common electrolyte preparation and circulation system are provided. Both electrolytic cells are electrically connected in series (not shown).
- the electrolytic cell 1 a is equipped with two lead anodes (A, width of 0.5 m and height of 2 m, immersed surface) and a centrally arranged cathode K.
- the electrolytic cell 1 b has 3 anodes (A, width of 0.5 m and height of 1 m, immersed surface) and two cathodes K of equal size.
- the used number and size of the electrodes leads to the fact that in the case of a series connection equal current densities are achieved in both electrolytic cells.
- Both electrolytic cells are charged with the same amount of fresh electrolyte ( 20 a and 20 b ).
- the inflow of electrolyte is adjusted such that during a stationary operation of both electrolytic cells a copper depletion of about 1.5 g/l is obtained.
- the depleted solution 21 a and 21 b respectively, is supplied to the electrolyte circuit. It comprises a stirred leaching tank 22 , in which the depleted amount of copper is compensated by adding copper oxide 23 .
- the overflow of the leaching tank 22 (enriched electrolyte 25 ) is introduced into a pump recipient tank 24 .
- the pump recipient tank 24 is electrically heated by the heater 26 and stirred by partial recirculation of the enriched electrolyte 25 ′.
- the pump 27 is used for circulating the electrolyte.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102004008813A DE102004008813B3 (de) | 2004-02-20 | 2004-02-20 | Verfahren und Anlage zum elektrochemischen Abscheiden von Kupfer |
| DE102004008813.6 | 2004-02-20 | ||
| PCT/EP2005/001127 WO2005080640A2 (fr) | 2004-02-20 | 2005-02-04 | Procede et installation d'electrodeposition de cuivre |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080035473A1 true US20080035473A1 (en) | 2008-02-14 |
Family
ID=34877080
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/589,592 Abandoned US20080035473A1 (en) | 2004-02-20 | 2005-02-04 | Process and Plant for Electrodepositing Copper |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20080035473A1 (fr) |
| AU (1) | AU2005214817B2 (fr) |
| CA (1) | CA2553926C (fr) |
| DE (1) | DE102004008813B3 (fr) |
| PE (1) | PE20060033A1 (fr) |
| WO (1) | WO2005080640A2 (fr) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090091329A1 (en) * | 2006-03-15 | 2009-04-09 | Advanced Hydrocarbon Mapping As | Electric field sensor for marine environments |
| US20120205254A1 (en) * | 2011-02-16 | 2012-08-16 | Freeport-Mcmoran Corporation | Contact bar assembly, system including the contact bar assembly, and method of using same |
| US20130126337A1 (en) * | 2010-08-11 | 2013-05-23 | Duncan Grant | Apparatus for use in electrorefining and electrowinning |
| US20130319877A1 (en) * | 2011-02-04 | 2013-12-05 | Kcm '2000' Ad | Method and device for zinc electrowinning from sulfate solutions |
| US20140131196A1 (en) * | 2011-07-12 | 2014-05-15 | Pultrusion Technique Inc. | Contact bar and capping board for supporting symmetrical electrodes for enhanced electrolytic refining of metals |
| CN111218700A (zh) * | 2020-03-09 | 2020-06-02 | 云南博业冶金化工工程有限公司 | 一种复合型节能电解电积导电联接装置 |
| CN113122895A (zh) * | 2021-03-19 | 2021-07-16 | 同济大学 | 一种阴极并联调控电化学诱导矿物沉积速率的方法 |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| LU91518B1 (en) * | 2009-01-21 | 2010-01-21 | Wurth Paul Sa | Hydrometallurgical production of metal |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2443112A (en) * | 1942-05-30 | 1948-06-08 | American Smelting Refining | Contact structure for electrolytic cells |
| US3530047A (en) * | 1968-10-15 | 1970-09-22 | American Smelting Refining | Stripping of sheet metal electrodeposits from starting sheet blanks |
| US4066520A (en) * | 1976-09-01 | 1978-01-03 | Envirotech Corporation | Slurry electrowinning process |
| US4098668A (en) * | 1974-08-21 | 1978-07-04 | Continental Copper & Steel Industries, Inc. | Electrolyte metal extraction |
| US5651024A (en) * | 1994-05-11 | 1997-07-22 | Danieli & C. Officine Meccaniche Spa | Cooled bottom electrode for a direct current electric furnace |
| US5679240A (en) * | 1995-07-12 | 1997-10-21 | Metallgesellschaft Aktiengesellschaft | Anode for the electrolytic winning of metals and process |
| US5865967A (en) * | 1996-02-21 | 1999-02-02 | Nippon Mining & Metals Co., Ltd. | Cathode plate used for hydro-electro-winning or electro-refining |
| US6342136B1 (en) * | 1998-05-06 | 2002-01-29 | Outokumpu Oyj | Busbar construction for electrolytic cell |
| US6398939B1 (en) * | 2001-03-09 | 2002-06-04 | Phelps Dodge Corporation | Method and apparatus for controlling flow in an electrodeposition process |
| US20030173214A1 (en) * | 2000-02-25 | 2003-09-18 | Drago Juric | Electrolytic reduction cell and collector bar |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1468889A (en) * | 1973-04-12 | 1977-03-30 | Crucible Inc | Method and assembly for use in making powder metallurgy articles having internal passages |
| GB1460089A (en) * | 1974-11-08 | 1976-12-31 | Imp Metal Ind Kynoch Ltd | Cathode assembly for electrolysis |
| CA1140892A (fr) * | 1980-01-28 | 1983-02-08 | Cominco Ltd. | Espacement accru des electrodes terminales en electrodeposition de metaux |
| FI982569A7 (fi) * | 1998-11-27 | 2000-05-28 | Outokumpu Oy | Laite metallisaostuman erottamiseksi katodilta |
| DE19940698C2 (de) * | 1999-08-27 | 2002-08-01 | Mg Technologies Ag | Elektrolyseanlage für die Metallgewinnung |
-
2004
- 2004-02-20 DE DE102004008813A patent/DE102004008813B3/de not_active Expired - Fee Related
-
2005
- 2005-02-04 AU AU2005214817A patent/AU2005214817B2/en not_active Ceased
- 2005-02-04 CA CA2553926A patent/CA2553926C/fr not_active Expired - Fee Related
- 2005-02-04 US US10/589,592 patent/US20080035473A1/en not_active Abandoned
- 2005-02-04 WO PCT/EP2005/001127 patent/WO2005080640A2/fr not_active Ceased
- 2005-02-14 PE PE2005000173A patent/PE20060033A1/es active IP Right Grant
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2443112A (en) * | 1942-05-30 | 1948-06-08 | American Smelting Refining | Contact structure for electrolytic cells |
| US3530047A (en) * | 1968-10-15 | 1970-09-22 | American Smelting Refining | Stripping of sheet metal electrodeposits from starting sheet blanks |
| US4098668A (en) * | 1974-08-21 | 1978-07-04 | Continental Copper & Steel Industries, Inc. | Electrolyte metal extraction |
| US4066520A (en) * | 1976-09-01 | 1978-01-03 | Envirotech Corporation | Slurry electrowinning process |
| US5651024A (en) * | 1994-05-11 | 1997-07-22 | Danieli & C. Officine Meccaniche Spa | Cooled bottom electrode for a direct current electric furnace |
| US5679240A (en) * | 1995-07-12 | 1997-10-21 | Metallgesellschaft Aktiengesellschaft | Anode for the electrolytic winning of metals and process |
| US5865967A (en) * | 1996-02-21 | 1999-02-02 | Nippon Mining & Metals Co., Ltd. | Cathode plate used for hydro-electro-winning or electro-refining |
| US6342136B1 (en) * | 1998-05-06 | 2002-01-29 | Outokumpu Oyj | Busbar construction for electrolytic cell |
| US20030173214A1 (en) * | 2000-02-25 | 2003-09-18 | Drago Juric | Electrolytic reduction cell and collector bar |
| US6398939B1 (en) * | 2001-03-09 | 2002-06-04 | Phelps Dodge Corporation | Method and apparatus for controlling flow in an electrodeposition process |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090091329A1 (en) * | 2006-03-15 | 2009-04-09 | Advanced Hydrocarbon Mapping As | Electric field sensor for marine environments |
| US7994792B2 (en) * | 2006-03-15 | 2011-08-09 | Advanced Hydrocarbon Mapping As | Electric field sensor for marine environments |
| US20130126337A1 (en) * | 2010-08-11 | 2013-05-23 | Duncan Grant | Apparatus for use in electrorefining and electrowinning |
| US9783900B2 (en) * | 2010-08-11 | 2017-10-10 | Outotec (Finland) Oy | Apparatus for use in electrorefining and electrowinning |
| US20130319877A1 (en) * | 2011-02-04 | 2013-12-05 | Kcm '2000' Ad | Method and device for zinc electrowinning from sulfate solutions |
| US20120205254A1 (en) * | 2011-02-16 | 2012-08-16 | Freeport-Mcmoran Corporation | Contact bar assembly, system including the contact bar assembly, and method of using same |
| WO2012112312A3 (fr) * | 2011-02-16 | 2012-11-15 | Freeport-Mcmoran Corporation | Ensemble barre de contact, système comprenant l'ensemble barre de contact, et leur procédé d'utilisation |
| US8597477B2 (en) * | 2011-02-16 | 2013-12-03 | Freeport-Mcmoran Corporation | Contact bar assembly, system including the contact bar assembly, and method of using same |
| US20140131196A1 (en) * | 2011-07-12 | 2014-05-15 | Pultrusion Technique Inc. | Contact bar and capping board for supporting symmetrical electrodes for enhanced electrolytic refining of metals |
| US9234287B2 (en) * | 2011-07-12 | 2016-01-12 | Pultrusion Technique Inc. | Contact bar and capping board for supporting symmetrical electrodes for enhanced electrolytic refining of metals |
| CN111218700A (zh) * | 2020-03-09 | 2020-06-02 | 云南博业冶金化工工程有限公司 | 一种复合型节能电解电积导电联接装置 |
| CN113122895A (zh) * | 2021-03-19 | 2021-07-16 | 同济大学 | 一种阴极并联调控电化学诱导矿物沉积速率的方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2005214817B2 (en) | 2010-11-11 |
| CA2553926A1 (fr) | 2005-09-01 |
| DE102004008813B3 (de) | 2005-12-01 |
| PE20060033A1 (es) | 2006-03-01 |
| WO2005080640A3 (fr) | 2006-06-22 |
| WO2005080640A2 (fr) | 2005-09-01 |
| CA2553926C (fr) | 2012-06-05 |
| AU2005214817A1 (en) | 2005-09-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11060199B2 (en) | Electrode configurations for electrolytic cells and related methods | |
| US3875041A (en) | Apparatus for the electrolytic recovery of metal employing improved electrolyte convection | |
| CA1232868A (fr) | Agencement de barres omnibus pour cuve de reduction electrolytique | |
| US4129494A (en) | Electrolytic cell for electrowinning of metals | |
| US3969213A (en) | Aluminum electrolytic cells | |
| AU2005214817B2 (en) | Process and plant for electrodepositing copper | |
| BR112018007493B1 (pt) | Dispositivo do tipo prensa filtro para eletrodeposição de metal a partir de soluções que o contêm | |
| US4061559A (en) | Electrolytic cell and circulating method for electrolyte | |
| US4110179A (en) | Process and device for the production of aluminium by the electrolysis of a molten charge | |
| KR850001537B1 (ko) | 알루미늄을 전해 제조키 위한 횡렬식 고전류 전해셀에서 자기교란을 제거하는 방법 | |
| EA014744B1 (ru) | Электролизер для получения алюминия и способ управления электролизером | |
| US4313811A (en) | Arrangement of busbars for electrolytic cells | |
| US3775281A (en) | Plant for production of aluminum by electrolysis | |
| KR20180000944U (ko) | 인듐의 전해채취 장치 | |
| WO2017144912A1 (fr) | Matériel destiné à un procédé libérateur ou d'extraction électrolytique de métal et manière de faire fonctionner le procédé | |
| EP3452640B1 (fr) | Équipement pour décuivrer un procédé d'électroraffinage et procédé de fonctionnement du procédé | |
| US4359377A (en) | Busbar arrangement for electrolytic cells | |
| MXPA06009412A (en) | Process and plant for electrodepositing copper | |
| RU2022717C1 (ru) | Способ получения медного порошка электролизом из сульфатных растворов и устройством для его осуществления | |
| CN107208291B (zh) | 用于电解沉积或电解精炼的ews模块器件及其操作过程 | |
| CN213624406U (zh) | 带有通孔锡锭的电解装置 | |
| CN216107258U (zh) | 一种大型节能电解金属锰阳极板 | |
| FI70731B (fi) | Anordning foer framstaellning av ickejaern-metaller medelst elktrolys | |
| KR820001326B1 (ko) | 세로로 배열된 전해조에 전류를 공급하는 방법 | |
| Gana et al. | Operation of an industrial pilot plant for copper electrorefining with the ‘support-anode’system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: OUTOTEC OYJ, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANASTASIJEVIC, NIKOLA, DR.;NEPPER, JEAN-PAUL, DR.;KOENEKE, MARTIN;AND OTHERS;REEL/FRAME:019916/0028;SIGNING DATES FROM 20070817 TO 20070917 |
|
| AS | Assignment |
Owner name: OUTOTEC OYJ, FINLAND Free format text: CHANGE OF NAME;ASSIGNOR:OUTOKUMPU TECHNOLOGY OY;REEL/FRAME:030851/0419 Effective date: 20070423 |
|
| STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
| STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |