US20080034790A1 - Method And Installation For Enriching A Gas Stream With One Of The Components Thereof - Google Patents
Method And Installation For Enriching A Gas Stream With One Of The Components Thereof Download PDFInfo
- Publication number
- US20080034790A1 US20080034790A1 US10/577,621 US57762104A US2008034790A1 US 20080034790 A1 US20080034790 A1 US 20080034790A1 US 57762104 A US57762104 A US 57762104A US 2008034790 A1 US2008034790 A1 US 2008034790A1
- Authority
- US
- United States
- Prior art keywords
- fraction
- stream
- pressure
- column
- separation unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
- F25J3/04466—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
- F25J3/04551—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
- F25J3/04557—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04593—The air gas consuming unit is also fed by an air stream
- F25J3/046—Completely integrated air feed compression, i.e. common MAC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/42—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/42—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
Definitions
- the present invention relates to a method and to an installation for enriching a gas stream with one of its constituents.
- it relates to a method of enriching air with oxygen.
- the means known from EP-A-0 531 182 for economically achieving this enrichment consists in cryogenically distilling one portion of the stream of air for the blast furnace. What is thus obtained is a nitrogen-rich stream and an oxygen-rich stream, the latter then being remixed into the stream of air downstream of the air separation unit.
- FIG. 1 shows a separation unit described in EP-A-0 531 182 intended for enriching air with oxygen. It is fed from the air system constituting the charge for a blast furnace at a pressure P.
- the air distillation unit is intended to produce low-purity oxygen, for example having a purity of 80 to 97% and preferably 85 to 95%, at a defined pressure slightly above the pressure P, for example advantageously at a pressure of 1 ⁇ 10 4 Pa abs to 1 ⁇ 10 5 Pa above the pressure P.
- the unit essentially comprises a heat exchange line 1 A, a double distillation column 2 A, which itself comprises a medium-pressure column 3 A, a low-pressure column 4 A and a main condenser-reboiler 5 A, and a mixing column 6 A.
- the columns 3 A and 4 A typically operate at about 5.45 ⁇ 10 5 Pa and about 1.5 ⁇ 10 5 Pa respectively.
- a mixing column is a column having the same structure as a distillation column but used for mixing in a manner close to reversibility, a relatively volatile gas, introduced at the bottom of the column, with a less-volatile liquid, introduced at the top of the column.
- Such mixing generates refrigeration energy and therefore allows the energy consumption associated with the distillation to be reduced.
- this mixing is also profitably used for impure oxygen to be produced directly at the pressure P, as will be described below.
- an airstream is compressed to the pressure of the mixing column by a compressor 14 A, cooled in the exchange line 1 A, subcooled in the subcooler 21 A and sent to the bottom of the mixing column 6 A.
- Liquid oxygen of greater or lesser purity depending on the setting of the double column 2 A, is withdrawn from the bottom of column 4 A, raised by a pump 13 A to a pressure P 1 , slightly above the aforementioned pressure P, in order to take account of the pressure drops (P 1 ⁇ P less than 2 ⁇ 10 5 Pa), and introduced into the top of the column 6 .
- Three fluid streams are withdrawn from the mixing column 6 A: from its base, liquid similar to the rich liquid and joined with the latter via a line 15 A provided with an expansion valve 15 A′; from an intermediate point, a mixture essentially consisting of oxygen and nitrogen, which is sent to an intermediate point on the low-pressure column 4 A via a line 16 A provided with an expansion valve 17 A; and, from its top, impure oxygen which, after being warmed in the heat exchange line, is discharged, substantially at the pressure P, from the installation via a line 18 A as production gas OI.
- the figure also shows auxiliary heat exchangers 19 A, 20 A, 21 A for recovering available refrigeration from the fluids circulating in the installation.
- FIG. 2 shows schematically an integrated apparatus for enriching an airstream intended for a blast furnace according to the prior art.
- An airstream is compressed in a blower S, so as to form a compressed stream 1 .
- This stream is divided into two fractions 2 and 3 .
- the first fraction 2 is cooled by a chiller R, for example a water chiller, compressed in a booster C and sent to an air separation unit (ASU).
- the air separation unit operates for example by cryogenic distillation and includes, upstream of the separation columns, a purification unit and an exchange line. It produces a stream 10 of oxygen containing between 80 and 95 mol % oxygen and a nitrogen stream 11 , which may be a waste stream. At least one portion of the oxygen-enriched stream 10 is mixed with the second air fraction 3 .
- the oxygen-enriched, mixed stream 15 is heated in a cowpers W and sent to a blast furnace BF.
- a compressor C will be installed. This makes it possible to raise the pressure of the total airstream intended for the air separation unit (according to FIG. 2 ) or (as a variant of FIG. 1 ) of the airstream intended for feeding the mixing column (i.e. about 30% of the stream of air treated by the separation unit).
- One subject of the invention is a method of enriching a pressurized gas stream with one of its constituents A, which comprises the steps of:
- Another subject of the invention is an installation for enriching a pressurized gas stream with one of its constituents A, which comprises:
- the separation method will use a mixing column operating at a pressure equal to or higher than the pressure of the medium-pressure column, without the need for an additional air compression means.
- Another subject of the invention is a method of separating air using an apparatus comprising at least one medium-pressure column, a low-pressure column thermally coupled to the low-medium-pressure column, and a mixing column operating at a pressure above the pressure of the medium-pressure column, in which:
- the nitrogen-enriched liquid is vaporized by heat exchange with part of the feed air.
- the air thus liquefied may be sent to at least one of the medium-pressure and low-pressure columns.
- the nitrogen-enriched liquid is pressurized by a pump and/or by hydrostatic pressure.
- Another subject of the invention is an air separation installation comprising:
- e means for sending nitrogen-enriched and oxygen-enriched streams from the medium-pressure column to the low-pressure column;
- FIGS. 3 and 5 show a unit for enriching a gas stream according to the invention and FIG. 4 shows a particularly suitable separation unit for carrying out the invention.
- FIG. 3 shows schematically an integrated unit for the enrichment of an airstream intended for a blast furnace according to the prior art.
- a stream of air is compressed in a blower S in order to form a compressed stream 1 .
- This stream is divided into two fractions 2 and 3 .
- the first fraction 2 is cooled by means of a chiller R, for example a water chiller, and sent to an air separation unit (ASU) without being compressed between the chiller and the inlet of the air separation unit.
- the air separation unit operates for example by cryogenic distillation and includes a purification unit and an exchange line upstream of the separation columns. It produces an oxygen stream 10 containing between 80 and 95 mol % oxygen and a nitrogen stream 11 , which may be a waste stream.
- the second air fraction 3 is expanded by means of an expansion means V, which may for example be a valve, an orifice, a reduced-diameter pipe or a turbine. At least one portion of the oxygen-enriched stream 10 is mixed, downstream of the expansion means V, with the expanded second air fraction 3 .
- the oxygen-enriched, mixed stream 15 is heated in a cowpers W and sent to a blast furnace BF.
- This solution dispenses with the air booster for raising the pressure upstream of the air separation unit. The consumption of energy of the whole system will therefore be better.
- FIG. 4 adopts elements of FIG. 1 having the same reference numerals, which will not be described in detail.
- the purified air 7 a at the medium pressure of 5.45 bara coming from the main air compressor for the blast furnace wind or from an expansion turbine is separated into at least two separate flows before entering the medium-pressure column 2 A.
- the first flow 100 is fed directly into the bottom of the medium-pressure column 2 A in gaseous form.
- the second flow 200 is at least partly condensed in a heat exchanger 101 A.
- the liquefied portion is introduced into one of the distillation columns (either the medium-pressure column 2 A or the low-pressure column 4 A).
- the stream 202 is sent to the bottom of the medium-pressure column, whereas the stream 204 is sent to the low-pressure column after being subcooled in the exchanger 19 A.
- a liquid stream 300 enriched in nitrogen compared to air is withdrawn from the medium-pressure column 3 A, compressed by means of a pump 400 or by a simple hydrostatic height, vaporized in the heat exchanger 101 A against the condensation of medium-pressure air, in order to form a gaseous nitrogen stream 500 which is then fed into the bottom of the mixing column 6 A.
- the feed for the mixing column 6 A takes place at a pressure above that of the air 100 feeding the medium-pressure column 3 A, and does so without an additional compressor.
- the heat exchanger 101 A has a ⁇ T of 0.60° C.
- the subcooler 21 A is omitted and there is no longer any withdrawal of medium-pressure gaseous nitrogen NG.
- a third flow of air is sent to a booster 8 A, cooled in the exchange line 1 A and expanded in the blowing turbine 9 A, but other means of refrigeration are conceivable, including expansion of the air intended for the medium-pressure column.
- the advantage of the invention is that there is no need for an air compression step for air intended for the mixing column or for the medium-pressure column.
- FIG. 5 shows schematically an integrated unit for enriching a stream of air intended for a blast furnace according to the prior art.
- a stream of air is compressed in a blower S in order to form a compressed stream 1 .
- This stream is divided into two fractions 2 and 3 .
- the first fraction 2 is cooled by means of a chiller R, for example a water chiller, compressed in a booster C and sent to an air separation unit (ASU).
- the air separation unit operates for example by cryogenic distillation and includes a purification unit and an exchange line upstream of the separation columns. It produces an oxygen stream 10 containing between 80 and 95 mol % oxygen and a nitrogen stream 11 , which may be a waste stream.
- the second air fraction 3 is expanded by means of an expansion means V, which may for example be a valve, an orifice, a reduced-diameter pipe or a turbine.
- At least one portion of the oxygen-enriched stream 10 is mixed, downstream of the expansion means V, with the expanded second air fraction 3 .
- the oxygen-enriched, mixed stream 15 is heated in a cowpers W and sent to a blast furnace BF.
- the booster C and the valve V have short-circuiting means.
- the first fraction 2 is compressed and the second fraction is not expanded.
- a second operation at least one portion of the first fraction is not compressed and the second fraction is expanded before at least one portion of the first stream is mixed therewith.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Separation Of Gases By Adsorption (AREA)
- Sampling And Sample Adjustment (AREA)
- Blast Furnaces (AREA)
Abstract
The invention relates to a method of enriching a pressurised gas stream (1) with one of the components (A) thereof. The inventive method comprises the following steps: the stream is separated into at least first and second fractions (2, 3); at least one part of the first fraction (2) is sent to a separation unit (ASU); the separation unit supplies at least two discharges, including a first discharge (10) having a greater A content than that of the fraction (2) supplied to the separation unit; at least one part of the first discharge (10) is mixed with at least one part of the second fraction (3) such as to form a pressurised gas mixture (15); the second fraction (3) is expanded and, subsequently, at least one part of the first discharge (10) is mixed therein.
Description
- The present invention relates to a method and to an installation for enriching a gas stream with one of its constituents. In particular, it relates to a method of enriching air with oxygen.
- The oxygen enrichment of air has become necessary in the iron and steel industry.
- The reduction or elimination of hot coke in blast furnaces, generally to the benefit of coal powder injection (CPI), requires this necessary change.
- The means known from EP-A-0 531 182 for economically achieving this enrichment consists in cryogenically distilling one portion of the stream of air for the blast furnace. What is thus obtained is a nitrogen-rich stream and an oxygen-rich stream, the latter then being remixed into the stream of air downstream of the air separation unit.
- Since the pressure of the oxygen stream is close to that of the air stream feeding the air separation unit (ASU), a method involving a mixing column will prove to be particularly suitable and economic.
-
FIG. 1 shows a separation unit described in EP-A-0 531 182 intended for enriching air with oxygen. It is fed from the air system constituting the charge for a blast furnace at a pressure P. The air distillation unit is intended to produce low-purity oxygen, for example having a purity of 80 to 97% and preferably 85 to 95%, at a defined pressure slightly above the pressure P, for example advantageously at a pressure of 1×104 Pa abs to 1×105 Pa above the pressure P. - The unit essentially comprises a
heat exchange line 1A, adouble distillation column 2A, which itself comprises a medium-pressure column 3A, a low-pressure column 4A and a main condenser-reboiler 5A, and amixing column 6A. The 3A and 4A typically operate at about 5.45×105 Pa and about 1.5×105 Pa respectively.columns - As explained in detail in document US-A-4 022 030, a mixing column is a column having the same structure as a distillation column but used for mixing in a manner close to reversibility, a relatively volatile gas, introduced at the bottom of the column, with a less-volatile liquid, introduced at the top of the column.
- Such mixing generates refrigeration energy and therefore allows the energy consumption associated with the distillation to be reduced. In the present case, this mixing is also profitably used for impure oxygen to be produced directly at the pressure P, as will be described below.
- In the case of
FIG. 1 , an airstream is compressed to the pressure of the mixing column by acompressor 14A, cooled in theexchange line 1A, subcooled in the subcooler 21A and sent to the bottom of themixing column 6A. - “Rich liquid” (oxygen-enriched air), withdrawn from the bottom of the
column 3A, is, after being expanded in anexpansion valve 10A, introduced into thecolumn 4A. “Lean liquid” (impure nitrogen) withdrawn from anintermediate point 11A on thecolumn 3A is, after being expanded in anexpansion valve 12A, introduced into the top of thecolumn 4A, constituting the waste gas of the installation, which gas and the pure gaseous nitrogen at medium-pressure possibly produced at the top of thecolumn 3A are warmed in theexchange line 1A and discharged from the installation. These gases are indicated by NI and NG inFIG. 1 , respectively. - Liquid oxygen, of greater or lesser purity depending on the setting of the
double column 2A, is withdrawn from the bottom ofcolumn 4A, raised by apump 13A to a pressure P1, slightly above the aforementioned pressure P, in order to take account of the pressure drops (P1−P less than 2×105 Pa), and introduced into the top of the column 6. - Three fluid streams are withdrawn from the
mixing column 6A: from its base, liquid similar to the rich liquid and joined with the latter via aline 15A provided with anexpansion valve 15A′; from an intermediate point, a mixture essentially consisting of oxygen and nitrogen, which is sent to an intermediate point on the low-pressure column 4A via aline 16A provided with anexpansion valve 17A; and, from its top, impure oxygen which, after being warmed in the heat exchange line, is discharged, substantially at the pressure P, from the installation via aline 18A as production gas OI. - The figure also shows
19A, 20A, 21A for recovering available refrigeration from the fluids circulating in the installation.auxiliary heat exchangers -
FIG. 2 shows schematically an integrated apparatus for enriching an airstream intended for a blast furnace according to the prior art. - An airstream is compressed in a blower S, so as to form a compressed stream 1. This stream is divided into two
2 and 3. Thefractions first fraction 2 is cooled by a chiller R, for example a water chiller, compressed in a booster C and sent to an air separation unit (ASU). The air separation unit operates for example by cryogenic distillation and includes, upstream of the separation columns, a purification unit and an exchange line. It produces astream 10 of oxygen containing between 80 and 95 mol % oxygen and anitrogen stream 11, which may be a waste stream. At least one portion of the oxygen-enrichedstream 10 is mixed with thesecond air fraction 3. The oxygen-enriched, mixedstream 15 is heated in a cowpers W and sent to a blast furnace BF. - To counteract the pressure drops in the circuit comprising the air separation unit (between the air intake on the blast furnace wind to the separation unit and reinjection of the oxygen stream), a compressor C will be installed. This makes it possible to raise the pressure of the total airstream intended for the air separation unit (according to
FIG. 2 ) or (as a variant ofFIG. 1 ) of the airstream intended for feeding the mixing column (i.e. about 30% of the stream of air treated by the separation unit). - It is an object of the invention to integrate an air separation unit into this steelmaking process in a more economic and more reliable manner, without the use of any gas stream compressors in the air separation unit other than those connected to the shaft of the expansion turbine for maintaining the refrigeration of the separation unit.
- One subject of the invention is a method of enriching a pressurized gas stream with one of its constituents A, which comprises the steps of:
-
- i) dividing the stream into at least first and second fractions;
- ii) sending at least one portion of the first fraction into a separation unit;
- iii) supplying, from the separation unit, at least first and second streams, the first stream of which has a content of constituent A greater than that of the first fraction;
- iv) mixing at least one portion of the first stream with at least one portion of the second fraction in order to form a pressurized gas mixture,
characterized in that the second fraction is expanded before at least one portion of the first stream is mixed therewith.
- According to other optional aspects:
-
- the pressurized gas stream and the first fraction are substantially at the same pressure and, in particular, only the pressure drops are the cause of a variation in pressure between these two fluids;
- the first stream and the expanded second fraction are substantially at the same pressure and, in particular, only the pressure drops are the cause of a variation in pressure between these two fluids;
- the separation unit is autonomous in terms of energy requirements for compressing the gas streams produced by the unit or intended for the unit;
- the pressurized gas stream is air and optionally constituent A is oxygen;
- the pressurized gas stream is air intended for a blast furnace;
- the separation unit is a cryogenic distillation separation unit;
- the separation unit comprises a medium-pressure column, a low-pressure column thermally coupled to the medium-pressure column, and a mixing column; and
- no portion of the first fraction intended for a distillation column is compressed or no portion of the first fraction intended for the mixing column or for the medium-pressure column is compressed after the stream is divided.
- According to one particular method of operation i)in a first operation, at least one portion of the first fraction is compressed and the second fraction is not expanded before at least one portion of the first stream is mixed therewith; and
-
- ii) in a second operation, (for example when the compressor C isn't working) at least one portion of the first fraction is not compressed (the first fraction is not compressed) and the second fraction is expanded before at least one portion of the first stream is mixed therewith.
- Another subject of the invention is an installation for enriching a pressurized gas stream with one of its constituents A, which comprises:
-
- i) means for dividing the pressurized gas stream into at least first and second fractions;
- ii) a separation unit;
- iii) means for sending at least one portion of the first fraction to the separation unit; and
- iv) means for mixing at least one portion of a first stream, produced by the separation unit and enriched in A compared to the first fraction, with the second fraction in order to form a stream enriched in A compared to the pressurized gas stream,
characterized in that it includes a means for expanding the second fraction upstream of the means for mixing at least one portion of the first stream therewith, and downstream of the means for dividing the gas stream.
- According to other optional aspects:
-
- the separation unit is an air separation unit comprising a medium-pressure column, a low-pressure column thermally coupled to the medium-pressure column, and a mixing column;
- the installation does not include any means for compressing air intended for the medium-pressure column or for the mixing column; and
- the installation includes means for compressing the second fraction and means for forwarding the second fraction to be mixed with at least one portion of the first stream without passing via the expansion means.
- Advantageously, the separation method will use a mixing column operating at a pressure equal to or higher than the pressure of the medium-pressure column, without the need for an additional air compression means.
- It is thus proposed to integrate a mixing-column unit into a blast furnace blaster without an additional air compressor, therefore increasing the reliability of delivery of oxygen molecules and therefore of enriched air to the blast furnace, while minimizing the investment needed for this construction.
- Another subject of the invention is a method of separating air using an apparatus comprising at least one medium-pressure column, a low-pressure column thermally coupled to the low-medium-pressure column, and a mixing column operating at a pressure above the pressure of the medium-pressure column, in which:
-
- i) air, compressed and purified, is sent to the medium-pressure column;
- ii) nitrogen-enriched and oxygen-enriched streams are sent from the medium-pressure column to the low-pressure column;
- iii) an oxygen-enriched liquid is sent from the low-pressure column to the top of the mixing column; and
- iv) an oxygen-enriched gas is withdrawn from the top of the mixing column,
characterized in that a nitrogen-enriched liquid stream is withdrawn from the medium-pressure column, pressurized and at least partly vaporized, and the bottom of the mixing column is fed with at least one portion of the vaporized liquid.
- Preferably, the nitrogen-enriched liquid is vaporized by heat exchange with part of the feed air. The air thus liquefied may be sent to at least one of the medium-pressure and low-pressure columns.
- The nitrogen-enriched liquid is pressurized by a pump and/or by hydrostatic pressure.
- Another subject of the invention is an air separation installation comprising:
-
- a) a medium-pressure column;
- b) a low-pressure column thermally coupled to the low-medium-pressure column;
- c) a mixing column operating at a pressure above the pressure of the medium-pressure column;
- d) means for sending compressed purified air to the medium-pressure column;
- e) means for sending nitrogen-enriched and oxygen-enriched streams from the medium-pressure column to the low-pressure column;
- f) means for sending an oxygen-enriched liquid from the low-pressure column to the top of the mixing column; and
- g) means for withdrawing an oxygen-enriched gas from the top of the mixing column,
- characterized in that it includes means for withdrawing a nitrogen-enriched liquid stream from the medium-pressure column, means for pressurizing the liquid, means for at least partly vaporizing the liquid and means for feeding the bottom of the mixing column with at least one portion of the vaporized liquid.
- The invention will be described in greater detail with reference to
FIGS. 3 , 4 and 5.FIGS. 3 and 5 show a unit for enriching a gas stream according to the invention andFIG. 4 shows a particularly suitable separation unit for carrying out the invention. -
FIG. 3 shows schematically an integrated unit for the enrichment of an airstream intended for a blast furnace according to the prior art. - A stream of air is compressed in a blower S in order to form a compressed stream 1. This stream is divided into two
2 and 3. Thefractions first fraction 2 is cooled by means of a chiller R, for example a water chiller, and sent to an air separation unit (ASU) without being compressed between the chiller and the inlet of the air separation unit. The air separation unit operates for example by cryogenic distillation and includes a purification unit and an exchange line upstream of the separation columns. It produces anoxygen stream 10 containing between 80 and 95 mol % oxygen and anitrogen stream 11, which may be a waste stream. Thesecond air fraction 3 is expanded by means of an expansion means V, which may for example be a valve, an orifice, a reduced-diameter pipe or a turbine. At least one portion of the oxygen-enrichedstream 10 is mixed, downstream of the expansion means V, with the expandedsecond air fraction 3. The oxygen-enriched,mixed stream 15 is heated in a cowpers W and sent to a blast furnace BF. - This solution dispenses with the air booster for raising the pressure upstream of the air separation unit. The consumption of energy of the whole system will therefore be better.
-
FIG. 4 adopts elements ofFIG. 1 having the same reference numerals, which will not be described in detail. - The purified air 7 a at the medium pressure of 5.45 bara coming from the main air compressor for the blast furnace wind or from an expansion turbine is separated into at least two separate flows before entering the medium-
pressure column 2A. - The
first flow 100 is fed directly into the bottom of the medium-pressure column 2A in gaseous form. - The
second flow 200 is at least partly condensed in aheat exchanger 101A. The liquefied portion is introduced into one of the distillation columns (either the medium-pressure column 2A or the low-pressure column 4A). InFIG. 4 , thestream 202 is sent to the bottom of the medium-pressure column, whereas thestream 204 is sent to the low-pressure column after being subcooled in theexchanger 19A. - A
liquid stream 300 enriched in nitrogen compared to air is withdrawn from the medium-pressure column 3A, compressed by means of apump 400 or by a simple hydrostatic height, vaporized in theheat exchanger 101A against the condensation of medium-pressure air, in order to form agaseous nitrogen stream 500 which is then fed into the bottom of themixing column 6A. Thus, profiting from the difference in composition between the air and the nitrogen-enriched stream, the feed for themixing column 6A takes place at a pressure above that of theair 100 feeding the medium-pressure column 3A, and does so without an additional compressor. - It is also conceivable to warm the
gaseous nitrogen 500 in the main exchange line before introducing it into the mixing column. - To produce a
gaseous nitrogen stream 500 at 5.9 bara, theheat exchanger 101A has a ΔT of 0.60° C. - The
stream 15A coming from the bottom of themixing column 6A, being richer in nitrogen than that ofFIG. 1 , is sent to just below the top of the low-pressure column 4A. - The subcooler 21A is omitted and there is no longer any withdrawal of medium-pressure gaseous nitrogen NG.
- Optionally, a third flow of air is sent to a
booster 8A, cooled in theexchange line 1A and expanded in the blowingturbine 9A, but other means of refrigeration are conceivable, including expansion of the air intended for the medium-pressure column. - If this booster is present, the advantage of the invention is that there is no need for an air compression step for air intended for the mixing column or for the medium-pressure column.
- In the case of
FIG. 4 , the extraction efficiency is reduced and the separation energy of the system remains superior to the base case. - However, integrating the air separation unit of
FIG. 4 into the scheme disclosed in the variant shown inFIG. 3 does allow the pressure drop in the valve to be considerably reduced. -
FIG. 5 shows schematically an integrated unit for enriching a stream of air intended for a blast furnace according to the prior art. - A stream of air is compressed in a blower S in order to form a compressed stream 1. This stream is divided into two
2 and 3. Thefractions first fraction 2 is cooled by means of a chiller R, for example a water chiller, compressed in a booster C and sent to an air separation unit (ASU). The air separation unit operates for example by cryogenic distillation and includes a purification unit and an exchange line upstream of the separation columns. It produces anoxygen stream 10 containing between 80 and 95 mol % oxygen and anitrogen stream 11, which may be a waste stream. Thesecond air fraction 3 is expanded by means of an expansion means V, which may for example be a valve, an orifice, a reduced-diameter pipe or a turbine. At least one portion of the oxygen-enrichedstream 10 is mixed, downstream of the expansion means V, with the expandedsecond air fraction 3. The oxygen-enriched,mixed stream 15 is heated in a cowpers W and sent to a blast furnace BF. The booster C and the valve V have short-circuiting means. In a first operation of the unit, thefirst fraction 2 is compressed and the second fraction is not expanded. In a second operation, at least one portion of the first fraction is not compressed and the second fraction is expanded before at least one portion of the first stream is mixed therewith. -
-
BLOWER Air sent to the ASU O2 at the BF Enriched air at the BF FLOW RATE Sm3/ h 400 000 146 700 3 748 95% O2 284 048 eff. Composition N2 0.7811 0.7811 0.03 0.700 O2 0.2096 0.2096 0.95 0.290 Ar 0.0093 0.0093 0.02 0.010 1 1 1 1 PRESSURE bara 5.85 5.55 5.50 5.50 ENERGY kW 30 686 1201 31 887 -
-
BLOWER Air sent to the AsU O2 at the BF Enriched air at the BF FLOW RATE Sm3/ h 400 000 146 700 30 748 95% O2 284 048 0 0 0 eff. 0 Composition N2 0.7811 0.7811 0.03 0.700 O2 0.2096 0.2096 0.95 0.290 Ar 0.0093 0.0093 0.02 0.010 1 1 1 1 PRESSURE bara 6.85 6.55 5.50 5.50 ENERGY kW 33 428 33 428 -
-
Enriched BLOWER Air sent to the ASU O2 at the BF air at the BF FLOW RATE Sm3/h 417 259 163 959 30 748.32 85% O2 284 048 eff. Composition N2 0.7811 0.7811 0.03 0.700 O2 0.2096 0.2096 0.95 0.290 Ar 0.0093 0.0093 0.02 0.010 1 1 1 1 PRESSURE bara 6.23 5.93 5.50 ENERGY kW 33 151 33 151 REF. CASE Prior art VARIANT 1 VARIANT 2Air blower intended for the mixing column Overall cost 100 89 96 95 kW 100 105 104 90
Claims (15)
1-14. (canceled)
15. A method of enriching a pressurized gas stream with one of its constituents A, which comprises the steps of:
a) dividing the stream (1) into at least first and second fractions (2, 3);
b) sending at least one portion of the first fraction (2) into a separation unit (ASU);
c) supplying, from the separation unit, at least first and second streams, the first stream (10) of which has a content of constituent A greater than that of the first fraction; and
d) mixing at least one portion of the first stream with at least one portion of the second fraction in order to form a pressurized gas mixture (15), characterized in that the second fraction is expanded before at least one portion of the first stream is mixed therewith.
16. The method of claim 15 , in which the pressurized gas stream (1) and the first fraction (2) are substantially at the same pressure and, in particular, only the pressure drops are the cause of a variation in pressure between these two fluids.
17. The method of claim 15 , in which the first stream and the expanded second fraction are substantially at the same pressure and, in particular, only the pressure drops are the cause of a variation in pressure between these two fluids.
18. The method of claim 15 , in which the separation unit (ASU) is autonomous in terms of energy requirements for compressing the gas streams produced by the unit or intended for the unit.
19. The method of claim 15 , in which the pressurized gas stream (1) is air and optionally constituent A is oxygen.
20. The method of claim 19 , in which the pressurized gas stream is air intended for a blast furnace (BF).
21. The method of claim 15 , in which the separation unit is a cryogenic distillation separation unit (ASU).
22. The method of claim 21 , in which the separation unit (ASU) comprises a medium-pressure column (2A), a low-pressure column (4A) thermally coupled to the medium-pressure column, and a mixing column (6A).
23. The method of claim 22 , in which no portion of the first fraction intended for a distillation column is compressed or no portion of the first fraction intended for the mixing column or for the medium-pressure column is compressed after the stream is divided at step i).
24. The method of claim 15 , in which:
a) in a first operation, at least one portion of the first fraction is compressed and the second fraction is not expanded before at least one portion of the first stream is mixed therewith; and
b) in a second operation, at least one portion of the first fraction is not compressed (the first fraction is not compressed) and the second fraction is expanded before at least one portion of the first stream is mixed therewith.
25. An installation for enriching a pressurized gas stream with one of its constituents A, which comprises:
a) means for dividing the pressurized gas stream (1) into at least first and second fractions (2, 3);
b) a separation unit (ASU);
c) means for sending at least one portion of the first fraction (2) to the separation unit; and
d) means for mixing at least one portion of a first stream (10), produced by the separation unit and enriched in A compared to the first fraction, with the second fraction in order to form a stream (15) enriched in A compared to the pressurized gas stream,
characterized in that it includes a means (V) for expanding the second fraction upstream of the means for mixing at least one portion of the first stream therewith, and downstream of the means for dividing the gas stream.
26. The installation of claim 25 , the separation unit of which is an air separation unit (ASU) comprising a medium-pressure column (3A), a low-pressure column (4A) thermally coupled to the medium-pressure column, and a mixing column (6A).
27. The installation of claim 26 , which does not include any means for compressing air intended for the medium-pressure column or for the mixing column downstream of the means for dividing the gas stream.
28. The installation of claim 25 , which includes means for compressing the second fraction and means for forwarding the second fraction to be mixed with at least one portion of the first stream without passing via the expansion means.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0350819A FR2862004B3 (en) | 2003-11-10 | 2003-11-10 | METHOD AND INSTALLATION FOR ENRICHING A GASEOUS FLOW IN ONE OF ITS CONSTITUENTS |
| FR0350819 | 2003-11-10 | ||
| PCT/FR2004/050570 WO2005047790A2 (en) | 2003-11-10 | 2004-11-05 | Method and installation for enriching a gas stream with one of the components thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080034790A1 true US20080034790A1 (en) | 2008-02-14 |
Family
ID=34508749
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/577,621 Abandoned US20080034790A1 (en) | 2003-11-10 | 2004-11-05 | Method And Installation For Enriching A Gas Stream With One Of The Components Thereof |
| US13/046,141 Abandoned US20110192193A1 (en) | 2003-11-10 | 2011-03-11 | Method And Installation For Enriching A Gas Stream With One Of The Components Thereof |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/046,141 Abandoned US20110192193A1 (en) | 2003-11-10 | 2011-03-11 | Method And Installation For Enriching A Gas Stream With One Of The Components Thereof |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US20080034790A1 (en) |
| EP (1) | EP1697690A2 (en) |
| JP (1) | JP2007512491A (en) |
| CN (1) | CN100543388C (en) |
| BR (1) | BRPI0416327A (en) |
| FR (1) | FR2862004B3 (en) |
| WO (1) | WO2005047790A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080245101A1 (en) * | 2005-04-08 | 2008-10-09 | Richard Dubettier-Grenier | Integrated Method and Installation for Cryogenic Adsorption and Separation for Producing Co2 |
| US20130000352A1 (en) * | 2011-06-30 | 2013-01-03 | General Electric Company | Air separation unit and systems incorporating the same |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CZ302279B6 (en) * | 2005-07-04 | 2011-01-26 | Cervenka@Jan | Balancing method of fluctuating concentration of component or components in flowing gas |
| FR2960555A1 (en) * | 2010-05-31 | 2011-12-02 | Air Liquide | Integrated installation comprises an air separation apparatus, a blast furnace, a unit for preheating the air, an adiabatic air compressor, a first pipe to introduce the air towards the preheating unit, and a unit for heating water |
| US9920987B2 (en) * | 2015-05-08 | 2018-03-20 | Air Products And Chemicals, Inc. | Mixing column for single mixed refrigerant (SMR) process |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4022030A (en) * | 1971-02-01 | 1977-05-10 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Thermal cycle for the compression of a fluid by the expansion of another fluid |
| US5538534A (en) * | 1993-11-12 | 1996-07-23 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Combined installation of a metal production unit and a unit for the separation of air gas |
| US6576040B2 (en) * | 2000-09-18 | 2003-06-10 | L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and plant with oxygen-enriched air feed for a non-ferrous metal production unit |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3126265A (en) * | 1964-03-24 | Process and apparatus for separating | ||
| US3731495A (en) * | 1970-12-28 | 1973-05-08 | Union Carbide Corp | Process of and apparatus for air separation with nitrogen quenched power turbine |
| LU70847A1 (en) * | 1973-09-25 | 1975-01-02 | ||
| JPS61139609A (en) * | 1984-12-13 | 1986-06-26 | Kawasaki Steel Corp | Oxygen enriching method of industrial furnace |
| FR2677667A1 (en) * | 1991-06-12 | 1992-12-18 | Grenier Maurice | METHOD FOR SUPPLYING AN OXYGEN-ENRICHED AIR STOVE, AND CORRESPONDING IRON ORE REDUCTION INSTALLATION. |
| FR2680114B1 (en) * | 1991-08-07 | 1994-08-05 | Lair Liquide | METHOD AND INSTALLATION FOR AIR DISTILLATION, AND APPLICATION TO THE GAS SUPPLY OF A STEEL. |
| US5454227A (en) * | 1994-08-17 | 1995-10-03 | The Boc Group, Inc. | Air separation method and apparatus |
| FR2753638B1 (en) * | 1996-09-25 | 1998-10-30 | PROCESS FOR SUPPLYING A GAS CONSUMER UNIT | |
| FR2758621B1 (en) * | 1997-01-22 | 1999-02-12 | Air Liquide | METHOD AND INSTALLATION FOR SUPPLYING AN AIR GAS CONSUMER UNIT |
| FR2774159B1 (en) * | 1998-01-23 | 2000-03-17 | Air Liquide | COMBINED INSTALLATION OF AN OVEN AND AN AIR DISTILLATION APPARATUS AND METHOD OF IMPLEMENTING IT |
| FR2774158B1 (en) * | 1998-01-23 | 2000-03-17 | Air Liquide | COMBINED INSTALLATION OF AN OVEN AND AN AIR DISTILLATION APPARATUS AND METHOD OF IMPLEMENTING IT |
| US5979183A (en) * | 1998-05-22 | 1999-11-09 | Air Products And Chemicals, Inc. | High availability gas turbine drive for an air separation unit |
| US6568207B1 (en) * | 2002-01-18 | 2003-05-27 | L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Integrated process and installation for the separation of air fed by compressed air from several compressors |
| US20060266048A1 (en) * | 2005-05-27 | 2006-11-30 | Bell Leonard E | Fluid catalytic cracking flue gas utility optimizing system and process |
-
2003
- 2003-11-10 FR FR0350819A patent/FR2862004B3/en not_active Expired - Lifetime
-
2004
- 2004-11-05 WO PCT/FR2004/050570 patent/WO2005047790A2/en not_active Ceased
- 2004-11-05 US US10/577,621 patent/US20080034790A1/en not_active Abandoned
- 2004-11-05 CN CN200480033075.4A patent/CN100543388C/en not_active Expired - Fee Related
- 2004-11-05 EP EP04805813A patent/EP1697690A2/en not_active Withdrawn
- 2004-11-05 BR BRPI0416327-3A patent/BRPI0416327A/en not_active IP Right Cessation
- 2004-11-05 JP JP2006538907A patent/JP2007512491A/en active Pending
-
2011
- 2011-03-11 US US13/046,141 patent/US20110192193A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4022030A (en) * | 1971-02-01 | 1977-05-10 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Thermal cycle for the compression of a fluid by the expansion of another fluid |
| US5538534A (en) * | 1993-11-12 | 1996-07-23 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Combined installation of a metal production unit and a unit for the separation of air gas |
| US6576040B2 (en) * | 2000-09-18 | 2003-06-10 | L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and plant with oxygen-enriched air feed for a non-ferrous metal production unit |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080245101A1 (en) * | 2005-04-08 | 2008-10-09 | Richard Dubettier-Grenier | Integrated Method and Installation for Cryogenic Adsorption and Separation for Producing Co2 |
| US20130000352A1 (en) * | 2011-06-30 | 2013-01-03 | General Electric Company | Air separation unit and systems incorporating the same |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2005047790A8 (en) | 2006-06-01 |
| WO2005047790A2 (en) | 2005-05-26 |
| CN100543388C (en) | 2009-09-23 |
| JP2007512491A (en) | 2007-05-17 |
| US20110192193A1 (en) | 2011-08-11 |
| FR2862004A1 (en) | 2005-05-13 |
| BRPI0416327A (en) | 2007-01-09 |
| EP1697690A2 (en) | 2006-09-06 |
| WO2005047790A3 (en) | 2005-08-11 |
| FR2862004B3 (en) | 2005-12-23 |
| CN1878999A (en) | 2006-12-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9733013B2 (en) | Low temperature air separation process for producing pressurized gaseous product | |
| US6336345B1 (en) | Process and apparatus for low temperature fractionation of air | |
| KR20080100362A (en) | Cryogenic Air Separation System | |
| US5331818A (en) | Air separation | |
| JP2002327981A (en) | Cryogenic air-separation method of three-tower type | |
| US6257020B1 (en) | Process for the cryogenic separation of gases from air | |
| US6062043A (en) | Process for feeding a gas-consuming unit | |
| US20110192193A1 (en) | Method And Installation For Enriching A Gas Stream With One Of The Components Thereof | |
| US20060021380A1 (en) | Method and installation for production of noble gases and oxygen by means of cryrogenic air distillation | |
| US6536232B2 (en) | Method for plant and separating air by cryogenic distillation | |
| US6434973B2 (en) | Process and unit for the production of a fluid enriched in oxygen by cryogenic distillation | |
| CA2000595A1 (en) | Process for the production of crude argon | |
| US6269659B1 (en) | Method and installation for air distillation with production of argon | |
| US20030136147A1 (en) | Method and installation for generating energy | |
| KR100790911B1 (en) | Method and apparatus for separating air by cryogenic distillation | |
| EP1470377A1 (en) | Integrated process and installation for the separation of air fed by compressed air from several compressors | |
| JP2002235982A (en) | Tri-tower type low air temperature rectifier system | |
| JP2000310481A (en) | Method and device for separating cryogenic air | |
| US20060075779A1 (en) | Process for the cryogenic distillation of air | |
| JP2000180050A (en) | Method and device for manufacturing high-pressure oxygen and krypton/xenon by low-temperature air separation | |
| KR100775877B1 (en) | Cryogenic Distillation Unit for Air Separation | |
| US7219514B2 (en) | Method for separating air by cryogenic distillation and installation therefor | |
| US5865041A (en) | Distillation process using a mixing column to produce at least two oxygen-rich gaseous streams having different oxygen purities | |
| US6576040B2 (en) | Process and plant with oxygen-enriched air feed for a non-ferrous metal production unit | |
| US6339938B1 (en) | Apparatus and process for separating air by cryogenic distillation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME A DIRECTOIRE ET CON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LE BOT, PATRICK;PONTONE, XAVIER;REEL/FRAME:018916/0416 Effective date: 20060404 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |