US20070281916A1 - Substituted isoxazolines and their use as antibacterial agents - Google Patents
Substituted isoxazolines and their use as antibacterial agents Download PDFInfo
- Publication number
- US20070281916A1 US20070281916A1 US11/238,260 US23826005A US2007281916A1 US 20070281916 A1 US20070281916 A1 US 20070281916A1 US 23826005 A US23826005 A US 23826005A US 2007281916 A1 US2007281916 A1 US 2007281916A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- ring
- hydrogen
- alkoxy
- optionally substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003242 anti bacterial agent Substances 0.000 title abstract description 8
- 150000002547 isoxazolines Chemical class 0.000 title description 2
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 347
- 150000001875 compounds Chemical class 0.000 claims abstract description 151
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 120
- 239000001257 hydrogen Substances 0.000 claims abstract description 120
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 56
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 51
- 150000002148 esters Chemical class 0.000 claims abstract description 49
- 150000003839 salts Chemical class 0.000 claims abstract description 49
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 35
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 32
- 125000006163 5-membered heteroaryl group Chemical group 0.000 claims abstract description 7
- -1 2-cyanoethenyl Chemical group 0.000 claims description 206
- 125000003545 alkoxy group Chemical group 0.000 claims description 108
- 229910052799 carbon Inorganic materials 0.000 claims description 90
- 229910052757 nitrogen Inorganic materials 0.000 claims description 81
- 125000001424 substituent group Chemical group 0.000 claims description 75
- 150000001721 carbon Chemical group 0.000 claims description 73
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 70
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 69
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 68
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 63
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 53
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 50
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 45
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 45
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 42
- 125000002252 acyl group Chemical group 0.000 claims description 37
- 125000005236 alkanoylamino group Chemical group 0.000 claims description 35
- 125000003282 alkyl amino group Chemical group 0.000 claims description 34
- 125000005843 halogen group Chemical group 0.000 claims description 34
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 33
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 33
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 32
- 125000004432 carbon atom Chemical group C* 0.000 claims description 30
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 26
- 125000004122 cyclic group Chemical group 0.000 claims description 22
- 125000002619 bicyclic group Chemical group 0.000 claims description 20
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 20
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 19
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 18
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 18
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 18
- 125000001072 heteroaryl group Chemical group 0.000 claims description 17
- 125000002950 monocyclic group Chemical group 0.000 claims description 17
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 150000002431 hydrogen Chemical class 0.000 claims description 15
- 125000004284 isoxazol-3-yl group Chemical group [H]C1=C([H])C(*)=NO1 0.000 claims description 15
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 claims description 14
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 claims description 14
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 13
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 13
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 claims description 13
- 125000001624 naphthyl group Chemical group 0.000 claims description 13
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 claims description 13
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 claims description 12
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 claims description 12
- 125000004518 1,2,5-thiadiazol-3-yl group Chemical group S1N=C(C=N1)* 0.000 claims description 11
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 11
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 11
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 11
- 125000001793 isothiazol-3-yl group Chemical group [H]C1=C([H])C(*)=NS1 0.000 claims description 11
- 229920006395 saturated elastomer Polymers 0.000 claims description 11
- 150000003852 triazoles Chemical class 0.000 claims description 11
- 125000001766 1,2,4-oxadiazol-3-yl group Chemical group [H]C1=NC(*)=NO1 0.000 claims description 10
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 claims description 9
- 229930192474 thiophene Natural products 0.000 claims description 9
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 8
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 claims description 8
- 125000001589 carboacyl group Chemical group 0.000 claims description 8
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 claims description 8
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 claims description 8
- 125000004849 alkoxymethyl group Chemical group 0.000 claims description 7
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 7
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 7
- 125000005742 alkyl ethenyl group Chemical group 0.000 claims description 6
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 6
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 claims description 5
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 5
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 claims description 4
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 claims description 4
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 claims description 4
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 claims description 4
- DVDGSOLOFGTLNG-UHFFFAOYSA-N 3-[[3-(3-fluoro-4-imidazol-1-ylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1C=CN=C1 DVDGSOLOFGTLNG-UHFFFAOYSA-N 0.000 claims description 3
- GAMYYCRTACQSBR-UHFFFAOYSA-N 4-azabenzimidazole Chemical compound C1=CC=C2NC=NC2=N1 GAMYYCRTACQSBR-UHFFFAOYSA-N 0.000 claims description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 3
- 125000004429 atom Chemical group 0.000 claims description 3
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 claims description 3
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 claims description 3
- NFNAYXZIZBWSNB-UHFFFAOYSA-N n-[[3-(3-fluoro-4-imidazol-1-ylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methyl]-1,2-oxazol-3-amine Chemical compound FC1=CC(C=2CC(CNC3=NOC=C3)ON=2)=CC=C1N1C=CN=C1 NFNAYXZIZBWSNB-UHFFFAOYSA-N 0.000 claims description 3
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 claims description 3
- 125000005605 benzo group Chemical group 0.000 claims description 2
- 125000005144 cycloalkylsulfonyl group Chemical group 0.000 claims description 2
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 claims description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 claims description 2
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims description 2
- SIJBDWPVNAYVGY-UHFFFAOYSA-N 2,2-dimethyl-1,3-dioxolane Chemical compound CC1(C)OCCO1 SIJBDWPVNAYVGY-UHFFFAOYSA-N 0.000 claims 1
- 101100098709 Caenorhabditis elegans taf-1 gene Proteins 0.000 claims 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 claims 1
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 42
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 177
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 86
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 86
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 81
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 63
- 239000000203 mixture Substances 0.000 description 60
- 238000005481 NMR spectroscopy Methods 0.000 description 57
- 239000000047 product Substances 0.000 description 54
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 52
- 229910001868 water Inorganic materials 0.000 description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 48
- 239000000377 silicon dioxide Substances 0.000 description 41
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 40
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 33
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 33
- 238000001727 in vivo Methods 0.000 description 33
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 32
- 239000000243 solution Substances 0.000 description 30
- 235000019439 ethyl acetate Nutrition 0.000 description 29
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 26
- 239000000543 intermediate Substances 0.000 description 25
- 239000012043 crude product Substances 0.000 description 24
- 238000003756 stirring Methods 0.000 description 23
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 22
- 125000006239 protecting group Chemical group 0.000 description 21
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 20
- 235000019341 magnesium sulphate Nutrition 0.000 description 20
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 17
- 239000012267 brine Substances 0.000 description 17
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 17
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 16
- 238000001704 evaporation Methods 0.000 description 15
- 230000008020 evaporation Effects 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 15
- 230000000844 anti-bacterial effect Effects 0.000 description 14
- 0 [2*]C1=C([3H])C([3*])=CC(C)=C1.[3H]C1=CN=C(C)C=C1 Chemical compound [2*]C1=C([3H])C([3*])=CC(C)=C1.[3H]C1=CN=C(C)C=C1 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000000284 extract Substances 0.000 description 13
- 239000000651 prodrug Substances 0.000 description 13
- 229940002612 prodrug Drugs 0.000 description 13
- 239000007858 starting material Substances 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 10
- 238000004587 chromatography analysis Methods 0.000 description 10
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 9
- 235000017557 sodium bicarbonate Nutrition 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 8
- 125000004515 1,2,4-thiadiazol-3-yl group Chemical group S1N=C(N=C1)* 0.000 description 8
- ITBZWHPJZWVCDM-UHFFFAOYSA-N 3-[[3-(3,4-difluorophenyl)-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole Chemical compound C1=C(F)C(F)=CC=C1C(C1)=NOC1COC1=NOC=C1 ITBZWHPJZWVCDM-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 244000000059 gram-positive pathogen Species 0.000 description 8
- 125000004499 isoxazol-5-yl group Chemical group O1N=CC=C1* 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 241000282414 Homo sapiens Species 0.000 description 7
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 125000003342 alkenyl group Chemical group 0.000 description 7
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 229960003085 meticillin Drugs 0.000 description 7
- 239000012044 organic layer Substances 0.000 description 7
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 7
- 238000010561 standard procedure Methods 0.000 description 7
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 7
- ZPFCUQQCTBBBHJ-UHFFFAOYSA-N 3-[[3-(3-fluoro-4-piperazin-1-ylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1CCNCC1 ZPFCUQQCTBBBHJ-UHFFFAOYSA-N 0.000 description 6
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 6
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 6
- 125000004423 acyloxy group Chemical group 0.000 description 6
- 125000005115 alkyl carbamoyl group Chemical group 0.000 description 6
- 125000004414 alkyl thio group Chemical group 0.000 description 6
- 125000000304 alkynyl group Chemical group 0.000 description 6
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 6
- 230000003115 biocidal effect Effects 0.000 description 6
- 238000010511 deprotection reaction Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 5
- 229920002785 Croscarmellose sodium Polymers 0.000 description 5
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 5
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 5
- 241000295644 Staphylococcaceae Species 0.000 description 5
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 125000001309 chloro group Chemical group Cl* 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229960001681 croscarmellose sodium Drugs 0.000 description 5
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 150000002440 hydroxy compounds Chemical class 0.000 description 5
- 239000008101 lactose Substances 0.000 description 5
- 235000019359 magnesium stearate Nutrition 0.000 description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 150000003536 tetrazoles Chemical group 0.000 description 5
- 238000010626 work up procedure Methods 0.000 description 5
- LFLHAXOMFLJNJK-BYPYZUCNSA-N (4s)-2,2-dimethyl-1,3-dioxolane-4-carbonyl chloride Chemical compound CC1(C)OC[C@@H](C(Cl)=O)O1 LFLHAXOMFLJNJK-BYPYZUCNSA-N 0.000 description 4
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 4
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 4
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 4
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 125000004471 alkyl aminosulfonyl group Chemical group 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000003435 aroyl group Chemical group 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 125000001246 bromo group Chemical group Br* 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Inorganic materials [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 4
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 4
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 4
- ZAMPUSCCSBLWDC-UHFFFAOYSA-N n-[[3-(3-fluoro-4-piperazin-1-ylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methyl]-1,2-oxazol-3-amine Chemical compound FC1=CC(C=2CC(CNC3=NOC=C3)ON=2)=CC=C1N1CCNCC1 ZAMPUSCCSBLWDC-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 125000004076 pyridyl group Chemical group 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 239000012312 sodium hydride Substances 0.000 description 4
- 229910000104 sodium hydride Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 125000004512 1,2,3-thiadiazol-4-yl group Chemical group S1N=NC(=C1)* 0.000 description 3
- 125000004516 1,2,4-thiadiazol-5-yl group Chemical group S1N=CN=C1* 0.000 description 3
- 125000004507 1,2,5-oxadiazol-3-yl group Chemical group O1N=C(C=N1)* 0.000 description 3
- 125000004521 1,3,4-thiadiazol-2-yl group Chemical group S1C(=NN=C1)* 0.000 description 3
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 3
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 3
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 3
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- UTIKKHBFUGVKLU-UHFFFAOYSA-N CCCC1CC(C)=NO1 Chemical compound CCCC1CC(C)=NO1 UTIKKHBFUGVKLU-UHFFFAOYSA-N 0.000 description 3
- 108010065152 Coagulase Proteins 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000006751 Mitsunobu reaction Methods 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- 108010059993 Vancomycin Proteins 0.000 description 3
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 3
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 125000000676 alkoxyimino group Chemical group 0.000 description 3
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 239000002054 inoculum Substances 0.000 description 3
- 125000004501 isothiazol-5-yl group Chemical group S1N=CC=C1* 0.000 description 3
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 3
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 3
- JGTLFQHCLNGGFE-UHFFFAOYSA-N n-[[3-[4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl]-4,5-dihydro-1,2-oxazol-5-yl]methyl]-1,2-oxazol-3-amine;dihydrochloride Chemical compound Cl.Cl.C1C(C=2C=CC(=CC=2)C=2CCNCC=2)=NOC1CNC=1C=CON=1 JGTLFQHCLNGGFE-UHFFFAOYSA-N 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 3
- 229940001584 sodium metabisulfite Drugs 0.000 description 3
- 235000010262 sodium metabisulphite Nutrition 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical compound C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 3
- CCRMAATUKBYMPA-UHFFFAOYSA-N trimethyltin Chemical compound C[Sn](C)C.C[Sn](C)C CCRMAATUKBYMPA-UHFFFAOYSA-N 0.000 description 3
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 3
- 229960003165 vancomycin Drugs 0.000 description 3
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 3
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 2
- HZDNNJABYXNPPV-UHFFFAOYSA-N (2-chloro-2-oxoethyl) acetate Chemical compound CC(=O)OCC(Cl)=O HZDNNJABYXNPPV-UHFFFAOYSA-N 0.000 description 2
- SQACIEFDROHAJD-IBYPIGCZSA-N (2s)-1-[4-[2-fluoro-4-[5-(1,2-oxazol-3-yloxymethyl)-4,5-dihydro-1,2-oxazol-3-yl]phenyl]piperazin-1-yl]-2,3-dihydroxypropan-1-one Chemical compound C1CN(C(=O)[C@@H](O)CO)CCN1C1=CC=C(C=2CC(COC3=NOC=C3)ON=2)C=C1F SQACIEFDROHAJD-IBYPIGCZSA-N 0.000 description 2
- KIBVLZDKUNDQGZ-NNBQYGFHSA-N (2s)-2,3-dihydroxy-1-[4-[4-[5-[(1,2-oxazol-3-ylamino)methyl]-4,5-dihydro-1,2-oxazol-3-yl]phenyl]-3,6-dihydro-2h-pyridin-1-yl]propan-1-one Chemical compound C1N(C(=O)[C@@H](O)CO)CCC(C=2C=CC(=CC=2)C=2CC(CNC3=NOC=C3)ON=2)=C1 KIBVLZDKUNDQGZ-NNBQYGFHSA-N 0.000 description 2
- OXZSYPLACURYND-OYKVQYDMSA-N (2s)-3-[4-[4-[5-(1,2-oxazol-3-yloxymethyl)-4,5-dihydro-1,2-oxazol-3-yl]phenyl]-3,6-dihydro-2h-pyridin-1-yl]propane-1,2-diol Chemical compound C1N(C[C@H](O)CO)CCC(C=2C=CC(=CC=2)C=2CC(COC3=NOC=C3)ON=2)=C1 OXZSYPLACURYND-OYKVQYDMSA-N 0.000 description 2
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical compound C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 2
- BBVIDBNAYOIXOE-UHFFFAOYSA-N 1,2,4-oxadiazole Chemical compound C=1N=CON=1 BBVIDBNAYOIXOE-UHFFFAOYSA-N 0.000 description 2
- YGTAZGSLCXNBQL-UHFFFAOYSA-N 1,2,4-thiadiazole Chemical compound C=1N=CSN=1 YGTAZGSLCXNBQL-UHFFFAOYSA-N 0.000 description 2
- UDGKZGLPXCRRAM-UHFFFAOYSA-N 1,2,5-thiadiazole Chemical compound C=1C=NSN=1 UDGKZGLPXCRRAM-UHFFFAOYSA-N 0.000 description 2
- CSNIZNHTOVFARY-UHFFFAOYSA-N 1,2-benzothiazole Chemical compound C1=CC=C2C=NSC2=C1 CSNIZNHTOVFARY-UHFFFAOYSA-N 0.000 description 2
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical compound C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 2
- 150000000180 1,2-diols Chemical class 0.000 description 2
- FUOSTELFLYZQCW-UHFFFAOYSA-N 1,2-oxazol-3-one Chemical compound OC=1C=CON=1 FUOSTELFLYZQCW-UHFFFAOYSA-N 0.000 description 2
- 125000004509 1,3,4-oxadiazol-2-yl group Chemical group O1C(=NN=C1)* 0.000 description 2
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 2
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- 125000006083 1-bromoethyl group Chemical group 0.000 description 2
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- PAMIQIKDUOTOBW-UHFFFAOYSA-N 1-methylpiperidine Chemical compound CN1CCCCC1 PAMIQIKDUOTOBW-UHFFFAOYSA-N 0.000 description 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 2
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical group O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 2
- 125000005999 2-bromoethyl group Chemical group 0.000 description 2
- IUFBJXGNHLUMLW-UHFFFAOYSA-N 3-[[3-(3-fluoro-4-thiomorpholin-4-ylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1CCSCC1 IUFBJXGNHLUMLW-UHFFFAOYSA-N 0.000 description 2
- NDHUGEIYYLNQPJ-UHFFFAOYSA-N 3-[[3-(4-bromophenyl)-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole Chemical compound C1=CC(Br)=CC=C1C(C1)=NOC1COC1=NOC=C1 NDHUGEIYYLNQPJ-UHFFFAOYSA-N 0.000 description 2
- ITUCIIIYUSZCBN-UHFFFAOYSA-N 3-[[3-[4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl]-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole;hydrochloride Chemical compound Cl.C1C(C=2C=CC(=CC=2)C=2CCNCC=2)=NOC1COC=1C=CON=1 ITUCIIIYUSZCBN-UHFFFAOYSA-N 0.000 description 2
- DBDZJGBWLFRYLG-UHFFFAOYSA-N 4-[2-fluoro-4-[5-(1,2-oxazol-3-yloxymethyl)-4,5-dihydro-1,2-oxazol-3-yl]phenyl]-1,4-thiazinane 1-oxide Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1CCS(=O)CC1 DBDZJGBWLFRYLG-UHFFFAOYSA-N 0.000 description 2
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 2
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 2
- QSLLFYVBWXWUQT-UHFFFAOYSA-N 7-Azaindolizine Chemical compound C1=NC=CN2C=CC=C21 QSLLFYVBWXWUQT-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 102100033735 Bactericidal permeability-increasing protein Human genes 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N C=C(C)C Chemical compound C=C(C)C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- WGLLSSPDPJPLOR-UHFFFAOYSA-N CC(C)=C(C)C Chemical compound CC(C)=C(C)C WGLLSSPDPJPLOR-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000194031 Enterococcus faecium Species 0.000 description 2
- 108010015899 Glycopeptides Proteins 0.000 description 2
- 102000002068 Glycopeptides Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000871785 Homo sapiens Bactericidal permeability-increasing protein Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 238000003820 Medium-pressure liquid chromatography Methods 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- PMOUZWDVUBBMQF-YHDJDMAPSA-N [(4s)-2,2-dimethyl-1,3-dioxolan-4-yl]-[2-fluoro-4-[2-[5-(1,2-oxazol-3-yloxymethyl)-4,5-dihydro-1,2-oxazol-3-yl]phenyl]piperazin-1-yl]methanone Chemical compound O1C(C)(C)OC[C@H]1C(=O)N1C(F)CN(C=2C(=CC=CC=2)C=2CC(COC3=NOC=C3)ON=2)CC1 PMOUZWDVUBBMQF-YHDJDMAPSA-N 0.000 description 2
- LPWDKXNWLRZBQS-UHFFFAOYSA-N [2-[4-[2-fluoro-4-[5-(1,2-oxazol-3-yloxymethyl)-4,5-dihydro-1,2-oxazol-3-yl]phenyl]piperazin-1-yl]-2-oxoethyl] acetate Chemical compound C1CN(C(=O)COC(=O)C)CCN1C1=CC=C(C=2CC(COC3=NOC=C3)ON=2)C=C1F LPWDKXNWLRZBQS-UHFFFAOYSA-N 0.000 description 2
- CNPAGLBQRZPUDH-UHFFFAOYSA-N [3-(3,4-difluorophenyl)-4,5-dihydro-1,2-oxazol-5-yl]methanol Chemical compound O1C(CO)CC(C=2C=C(F)C(F)=CC=2)=N1 CNPAGLBQRZPUDH-UHFFFAOYSA-N 0.000 description 2
- LDAABNMKIRZGPV-UHFFFAOYSA-N [3-(3,4-difluorophenyl)-4,5-dihydro-1,2-oxazol-5-yl]methyl methanesulfonate Chemical compound O1C(COS(=O)(=O)C)CC(C=2C=C(F)C(F)=CC=2)=N1 LDAABNMKIRZGPV-UHFFFAOYSA-N 0.000 description 2
- ZDCNBNAZFYCKBC-UHFFFAOYSA-N [3-(3-fluoro-4-iodophenyl)-4,5-dihydro-1,2-oxazol-5-yl]methanol Chemical compound O1C(CO)CC(C=2C=C(F)C(I)=CC=2)=N1 ZDCNBNAZFYCKBC-UHFFFAOYSA-N 0.000 description 2
- RHXIIXSRIASJDI-UHFFFAOYSA-N [3-(3-fluoro-4-iodophenyl)-4,5-dihydro-1,2-oxazol-5-yl]methyl methanesulfonate Chemical compound O1C(COS(=O)(=O)C)CC(C=2C=C(F)C(I)=CC=2)=N1 RHXIIXSRIASJDI-UHFFFAOYSA-N 0.000 description 2
- GGIWECLXRZECPP-UHFFFAOYSA-N [3-(4-bromophenyl)-4,5-dihydro-1,2-oxazol-5-yl]methanol Chemical compound O1C(CO)CC(C=2C=CC(Br)=CC=2)=N1 GGIWECLXRZECPP-UHFFFAOYSA-N 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 229940126575 aminoglycoside Drugs 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 125000005101 aryl methoxy carbonyl group Chemical group 0.000 description 2
- 125000005002 aryl methyl group Chemical group 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 2
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000013375 chromatographic separation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 2
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 2
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 2
- 125000006125 ethylsulfonyl group Chemical group 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 description 2
- 244000000058 gram-negative pathogen Species 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- JYDSAONLTGCYCW-UHFFFAOYSA-N imidazo[2,1-b][1,3]oxazole Chemical compound C1=COC2=NC=CN21 JYDSAONLTGCYCW-UHFFFAOYSA-N 0.000 description 2
- UFBBWLWUIISIPW-UHFFFAOYSA-N imidazo[2,1-b][1,3]thiazole Chemical compound C1=CSC2=NC=CN21 UFBBWLWUIISIPW-UHFFFAOYSA-N 0.000 description 2
- PWLRDKBIUVYAMV-UHFFFAOYSA-N imidazo[5,1-b][1,3]oxazole Chemical compound C1=NC=C2OC=CN21 PWLRDKBIUVYAMV-UHFFFAOYSA-N 0.000 description 2
- IIUBFCZXGSJIJX-UHFFFAOYSA-N imidazo[5,1-b][1,3]thiazole Chemical compound C1=NC=C2SC=CN21 IIUBFCZXGSJIJX-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 2
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 2
- MZWHBSVJQXSKPE-UHFFFAOYSA-N n-[(3-fluoro-4-iodophenyl)methylidene]hydroxylamine Chemical compound ON=CC1=CC=C(I)C(F)=C1 MZWHBSVJQXSKPE-UHFFFAOYSA-N 0.000 description 2
- WBVSECKYPRHJJP-UHFFFAOYSA-N n-[[3-(3-fluoro-4-morpholin-4-ylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methyl]-1,2-oxazol-3-amine Chemical compound FC1=CC(C=2CC(CNC3=NOC=C3)ON=2)=CC=C1N1CCOCC1 WBVSECKYPRHJJP-UHFFFAOYSA-N 0.000 description 2
- PJIRMTVXCVMFPP-UHFFFAOYSA-N n-[[3-(3-fluoro-4-thiomorpholin-4-ylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methyl]-1,2-oxazol-3-amine Chemical compound FC1=CC(C=2CC(CNC3=NOC=C3)ON=2)=CC=C1N1CCSCC1 PJIRMTVXCVMFPP-UHFFFAOYSA-N 0.000 description 2
- BFKYTUKVPILRBH-UHFFFAOYSA-N n-[[3-[4-(1,1-dioxo-1,4-thiazinan-4-yl)-3-fluorophenyl]-4,5-dihydro-1,2-oxazol-5-yl]methyl]-1,2-oxazol-3-amine Chemical compound FC1=CC(C=2CC(CNC3=NOC=C3)ON=2)=CC=C1N1CCS(=O)(=O)CC1 BFKYTUKVPILRBH-UHFFFAOYSA-N 0.000 description 2
- SQDFHQJTAWCFIB-UHFFFAOYSA-N n-methylidenehydroxylamine Chemical compound ON=C SQDFHQJTAWCFIB-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- SMFONIACZDXCNH-UHFFFAOYSA-N tert-butyl 4-[2-fluoro-4-[5-[[(2-methylpropan-2-yl)oxycarbonyl-(1,2-oxazol-3-yl)amino]methyl]-4,5-dihydro-1,2-oxazol-3-yl]phenyl]-3,6-dihydro-2h-pyridine-1-carboxylate Chemical compound C1=CON=C1N(C(=O)OC(C)(C)C)CC(ON=1)CC=1C(C=C1F)=CC=C1C1=CCN(C(=O)OC(C)(C)C)CC1 SMFONIACZDXCNH-UHFFFAOYSA-N 0.000 description 2
- FSYIKENUISBGKQ-UHFFFAOYSA-N tert-butyl 4-trimethylstannyl-3,6-dihydro-2h-pyridine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC([Sn](C)(C)C)=CC1 FSYIKENUISBGKQ-UHFFFAOYSA-N 0.000 description 2
- IBHBABFDCMKSOA-UHFFFAOYSA-N tert-butyl n-(1,2-oxazol-3-yl)carbamate Chemical compound CC(C)(C)OC(=O)NC=1C=CON=1 IBHBABFDCMKSOA-UHFFFAOYSA-N 0.000 description 2
- SIGFEYLOZOHXEF-UHFFFAOYSA-N tert-butyl n-[[3-(3-fluoro-4-iodophenyl)-4,5-dihydro-1,2-oxazol-5-yl]methyl]-n-(1,2-oxazol-3-yl)carbamate Chemical compound C1=CON=C1N(C(=O)OC(C)(C)C)CC(ON=1)CC=1C1=CC=C(I)C(F)=C1 SIGFEYLOZOHXEF-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 125000005505 thiomorpholino group Chemical group 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- BPLUKJNHPBNVQL-UHFFFAOYSA-N triphenylarsine Chemical compound C1=CC=CC=C1[As](C=1C=CC=CC=1)C1=CC=CC=C1 BPLUKJNHPBNVQL-UHFFFAOYSA-N 0.000 description 2
- 150000003952 β-lactams Chemical class 0.000 description 2
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 1
- SCZNXLWKYFICFV-UHFFFAOYSA-N 1,2,3,4,5,7,8,9-octahydropyrido[1,2-b]diazepine Chemical compound C1CCCNN2CCCC=C21 SCZNXLWKYFICFV-UHFFFAOYSA-N 0.000 description 1
- RHFWLPWDOYJEAL-UHFFFAOYSA-N 1,2-oxazol-3-amine Chemical compound NC=1C=CON=1 RHFWLPWDOYJEAL-UHFFFAOYSA-N 0.000 description 1
- TZQCKFFLFFLNTB-UHFFFAOYSA-N 1,3-dihydropyrrolo[1,2-c][1,3]oxazole Chemical compound C1=CC=C2COCN21 TZQCKFFLFFLNTB-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical group C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- SAOQMNGOFMEZAB-UHFFFAOYSA-N 1-[4-[2-fluoro-4-[5-(1,2-oxazol-3-yloxymethyl)-4,5-dihydro-1,2-oxazol-3-yl]phenyl]piperazin-1-yl]-2-hydroxyethanone Chemical compound C1CN(C(=O)CO)CCN1C1=CC=C(C=2CC(COC3=NOC=C3)ON=2)C=C1F SAOQMNGOFMEZAB-UHFFFAOYSA-N 0.000 description 1
- LLAPDLPYIYKTGQ-UHFFFAOYSA-N 1-aminoethyl Chemical group C[CH]N LLAPDLPYIYKTGQ-UHFFFAOYSA-N 0.000 description 1
- 125000004066 1-hydroxyethyl group Chemical group [H]OC([H])([*])C([H])([H])[H] 0.000 description 1
- WWWMWOWPAWAERK-UHFFFAOYSA-N 1h-imidazo[1,2-a]imidazole Chemical compound C1=CNC2=NC=CN21 WWWMWOWPAWAERK-UHFFFAOYSA-N 0.000 description 1
- JABFZMOTTPAIOT-UHFFFAOYSA-N 1h-pyrrolo[1,2-a]benzimidazole Chemical compound C1=CC=C2N3CC=CC3=NC2=C1 JABFZMOTTPAIOT-UHFFFAOYSA-N 0.000 description 1
- YHZODXGIMHTEJV-UHFFFAOYSA-N 1h-pyrrolo[1,2-a]imidazole Chemical compound N1C=CN2C=CC=C21 YHZODXGIMHTEJV-UHFFFAOYSA-N 0.000 description 1
- VFULFGOHTAZLGZ-UHFFFAOYSA-N 1h-pyrrolo[1,2-c]imidazole Chemical compound C1=CC=C2CN=CN21 VFULFGOHTAZLGZ-UHFFFAOYSA-N 0.000 description 1
- YHHSONZFOIEMCP-UHFFFAOYSA-N 2-(trimethylazaniumyl)ethyl hydrogen phosphate Chemical class C[N+](C)(C)CCOP(O)([O-])=O YHHSONZFOIEMCP-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- 125000000872 2-diethylaminoethoxy group Chemical group [H]C([H])([H])C([H])([H])N(C([H])([H])C([H])([H])[H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000003635 2-dimethylaminoethoxy group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])C([H])([H])O* 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- VSWICNJIUPRZIK-UHFFFAOYSA-N 2-piperideine Chemical compound C1CNC=CC1 VSWICNJIUPRZIK-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- NQFKGOQVVYYPJL-UHFFFAOYSA-N 2h-imidazo[4,5-d][1,3]oxazole Chemical compound C1=NC2=NCOC2=N1 NQFKGOQVVYYPJL-UHFFFAOYSA-N 0.000 description 1
- UMZCLZPXPCNKML-UHFFFAOYSA-N 2h-imidazo[4,5-d][1,3]thiazole Chemical compound C1=NC2=NCSC2=N1 UMZCLZPXPCNKML-UHFFFAOYSA-N 0.000 description 1
- 125000004211 3,5-difluorophenyl group Chemical group [H]C1=C(F)C([H])=C(*)C([H])=C1F 0.000 description 1
- FGTUURCUDSRTKN-UHFFFAOYSA-N 3-[[3-(3-fluoro-4-pyrazol-1-ylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1C=CC=N1 FGTUURCUDSRTKN-UHFFFAOYSA-N 0.000 description 1
- XOOIWGIDJCZYSP-UHFFFAOYSA-N 3-[[3-[3-fluoro-4-(1,2,4-triazol-1-yl)phenyl]-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1C=NC=N1 XOOIWGIDJCZYSP-UHFFFAOYSA-N 0.000 description 1
- CHYSDVLYHBCWPL-UHFFFAOYSA-N 3-[[3-[3-fluoro-4-(triazol-1-yl)phenyl]-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1C=CN=N1 CHYSDVLYHBCWPL-UHFFFAOYSA-N 0.000 description 1
- QGAVUEGIIPRRLX-UHFFFAOYSA-N 3-[[3-[3-fluoro-4-(triazol-2-yl)phenyl]-4,5-dihydro-1,2-oxazol-5-yl]methoxy]-1,2-oxazole Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1N=CC=N1 QGAVUEGIIPRRLX-UHFFFAOYSA-N 0.000 description 1
- KUVVJHBHRIXJKI-UHFFFAOYSA-N 3-fluoro-4-iodoaniline Chemical compound NC1=CC=C(I)C(F)=C1 KUVVJHBHRIXJKI-UHFFFAOYSA-N 0.000 description 1
- 125000004180 3-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(F)=C1[H] 0.000 description 1
- 125000001137 3-hydroxypropoxy group Chemical group [H]OC([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- HHONATOJHSQDPZ-UHFFFAOYSA-N 3H-pyrrolizine Chemical compound C1=CN2CC=CC2=C1 HHONATOJHSQDPZ-UHFFFAOYSA-N 0.000 description 1
- IAPUWKSUCGOUKY-UHFFFAOYSA-N 3h-[1,3]oxazolo[3,4-a]pyridine Chemical compound C1=CC=CN2COC=C21 IAPUWKSUCGOUKY-UHFFFAOYSA-N 0.000 description 1
- PQARCNKPZCGSJZ-UHFFFAOYSA-N 3h-imidazo[1,5-a]indole Chemical compound C1=CC=C2N3C=NCC3=CC2=C1 PQARCNKPZCGSJZ-UHFFFAOYSA-N 0.000 description 1
- OVRHPQCZLARKOM-UHFFFAOYSA-N 4,5-dihydro-1,2-oxazole Chemical group O1N=CCC1.O1N=CCC1 OVRHPQCZLARKOM-UHFFFAOYSA-N 0.000 description 1
- WEQPBCSPRXFQQS-UHFFFAOYSA-N 4,5-dihydro-1,2-oxazole Chemical compound C1CC=NO1 WEQPBCSPRXFQQS-UHFFFAOYSA-N 0.000 description 1
- YTDMJDVEYJNLCE-UHFFFAOYSA-N 4-[2-fluoro-4-[5-(1,2-oxazol-3-yloxymethyl)-4,5-dihydro-1,2-oxazol-3-yl]phenyl]-1,4-thiazinane 1,1-dioxide Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1CCS(=O)(=O)CC1 YTDMJDVEYJNLCE-UHFFFAOYSA-N 0.000 description 1
- ZPIQMKHSNFGNPD-UHFFFAOYSA-N 4-[2-fluoro-4-[5-(1,2-oxazol-3-yloxymethyl)-4,5-dihydro-1,2-oxazol-3-yl]phenyl]morpholine Chemical compound FC1=CC(C=2CC(COC3=NOC=C3)ON=2)=CC=C1N1CCOCC1 ZPIQMKHSNFGNPD-UHFFFAOYSA-N 0.000 description 1
- ZOPFQZFNZNMZEF-UHFFFAOYSA-N 4-bromo-n-hydroxybenzenecarboximidoyl chloride Chemical compound ON=C(Cl)C1=CC=C(Br)C=C1 ZOPFQZFNZNMZEF-UHFFFAOYSA-N 0.000 description 1
- FJUMBZDZIAJCBJ-UHFFFAOYSA-N 4h-imidazo[1,2-a]indole Chemical compound C1C2=CC=CC=C2N2C1=NC=C2 FJUMBZDZIAJCBJ-UHFFFAOYSA-N 0.000 description 1
- YNURUGWRNFWTJB-UHFFFAOYSA-N 5h-imidazo[2,1-a]isoindole Chemical compound C1=CC=C2C3=NC=CN3CC2=C1 YNURUGWRNFWTJB-UHFFFAOYSA-N 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- SVLRMKGXDWSMRC-UHFFFAOYSA-N BB1C=CN=C1C.BB1C=NC(C)=C1.CC1=NCC=C1 Chemical compound BB1C=CN=C1C.BB1C=NC(C)=C1.CC1=NCC=C1 SVLRMKGXDWSMRC-UHFFFAOYSA-N 0.000 description 1
- AIXGOEQXDYVSIR-UHFFFAOYSA-N BBB1CCC1C.BBB1CCCC(C)C1C.CC1CCCCC1.CC1CCCCC1 Chemical compound BBB1CCC1C.BBB1CCCC(C)C1C.CC1CCCCC1.CC1CCCCC1 AIXGOEQXDYVSIR-UHFFFAOYSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 229910014033 C-OH Inorganic materials 0.000 description 1
- CDSGJZBAPKXROP-UHFFFAOYSA-N C1CC2CC(C1)C2.C1CC2CCC(C1)C2.C1CC2CCC1C2.C1CC2CCC1CC2.C1CC2CCC2C1.C1CC2CCCC2C1.C1CCC2CC(C1)C2.C1CCC2CC2C1.C1CCC2CCC2C1.C1CCC2CCCC2C1 Chemical compound C1CC2CC(C1)C2.C1CC2CCC(C1)C2.C1CC2CCC1C2.C1CC2CCC1CC2.C1CC2CCC2C1.C1CC2CCCC2C1.C1CCC2CC(C1)C2.C1CCC2CC2C1.C1CCC2CCC2C1.C1CCC2CCCC2C1 CDSGJZBAPKXROP-UHFFFAOYSA-N 0.000 description 1
- IYPXFXZFQONKAN-UHFFFAOYSA-N C1CC2CC1C2.C1CC2CCC(C1)C2.C1CC2CCC(C1)CC2.C1CC2CCC1C2.C1CC2CCC1CC2.C1CC2CCC2C1.C1CC2CCCC(C1)C2.C1CC2CCCC2C1.C1CCC2CC(C1)C2.C1CCC2CC2C1.C1CCC2CCC(C1)C2.C1CCC2CCC2C1.C1CCC2CCC2CC1.C1CCC2CCCC2C1 Chemical compound C1CC2CC1C2.C1CC2CCC(C1)C2.C1CC2CCC(C1)CC2.C1CC2CCC1C2.C1CC2CCC1CC2.C1CC2CCC2C1.C1CC2CCCC(C1)C2.C1CC2CCCC2C1.C1CCC2CC(C1)C2.C1CCC2CC2C1.C1CCC2CCC(C1)C2.C1CCC2CCC2C1.C1CCC2CCC2CC1.C1CCC2CCCC2C1 IYPXFXZFQONKAN-UHFFFAOYSA-N 0.000 description 1
- YCOHJAKJEXBBAX-UHFFFAOYSA-N C1CC2CCC(C1)CC2.C1CC2CCCC(C1)C2.C1CCC2CCC(C1)C2.C1CCC2CCC2CC1 Chemical compound C1CC2CCC(C1)CC2.C1CC2CCCC(C1)C2.C1CCC2CCC(C1)C2.C1CCC2CCC2CC1 YCOHJAKJEXBBAX-UHFFFAOYSA-N 0.000 description 1
- NIPFWUFIFVUGRH-UHFFFAOYSA-N C=P(O)(O)OC Chemical compound C=P(O)(O)OC NIPFWUFIFVUGRH-UHFFFAOYSA-N 0.000 description 1
- LXRQKPSFQKJLJJ-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CC=C(OS(=O)(=O)C(F)(F)F)CC1.CCC1CC(C2=CC=C(Br)C=C2)=NO1.CCC1CC(C2=CC=C(C3=CCN(C)CC3)C=C2)=NO1.CCC1CC(C2=CC=C([Sn](C)(C)C)C=C2)=NO1 Chemical compound CC(C)(C)OC(=O)N1CC=C(OS(=O)(=O)C(F)(F)F)CC1.CCC1CC(C2=CC=C(Br)C=C2)=NO1.CCC1CC(C2=CC=C(C3=CCN(C)CC3)C=C2)=NO1.CCC1CC(C2=CC=C([Sn](C)(C)C)C=C2)=NO1 LXRQKPSFQKJLJJ-UHFFFAOYSA-N 0.000 description 1
- HMXMMDUHHUFNTQ-UHFFFAOYSA-N CC.CC1=CC2CCC(C1)N2C.CN1CC2CC1CN2C.CN1CC2CC1CN2C.CN1CC2CCC1CC2 Chemical compound CC.CC1=CC2CCC(C1)N2C.CN1CC2CC1CN2C.CN1CC2CC1CN2C.CN1CC2CCC1CC2 HMXMMDUHHUFNTQ-UHFFFAOYSA-N 0.000 description 1
- RUKAJXUGRWGNQE-UHFFFAOYSA-N CC1=CCN(C)C1.CC1=CCN(C)CC1.CC1CCN(C)CC1.CC1CN(C)C1.CN1CCN(C)CC1.CNC1CCN(C)C1.CNC1CN(C)C1 Chemical compound CC1=CCN(C)C1.CC1=CCN(C)CC1.CC1CCN(C)CC1.CC1CN(C)C1.CN1CCN(C)CC1.CNC1CCN(C)C1.CNC1CN(C)C1 RUKAJXUGRWGNQE-UHFFFAOYSA-N 0.000 description 1
- RRXMFAUGACOEAH-UHFFFAOYSA-N CC1=CCN(C)CC1 Chemical compound CC1=CCN(C)CC1 RRXMFAUGACOEAH-UHFFFAOYSA-N 0.000 description 1
- CSXNITDQOJZFKB-UHFFFAOYSA-N CC1=NOC(C[Y])C1 Chemical compound CC1=NOC(C[Y])C1 CSXNITDQOJZFKB-UHFFFAOYSA-N 0.000 description 1
- JDGLEWAOPPPKPG-UHFFFAOYSA-N CC1CCC2(CC1)CC2.CC1CCC2(CC2)C1.CC1CCC2(CCC2)C1.CC1CCC2(CCC2)CC1.CC1CCC2(CCCC2)C1.CC1CCC2(CCCC2)CC1.CC1CCCC2(CC2)C1.CC1CCCC2(CCC2)C1.CC1CCCC2(CCCC2)C1 Chemical compound CC1CCC2(CC1)CC2.CC1CCC2(CC2)C1.CC1CCC2(CCC2)C1.CC1CCC2(CCC2)CC1.CC1CCC2(CCCC2)C1.CC1CCC2(CCCC2)CC1.CC1CCCC2(CC2)C1.CC1CCCC2(CCC2)C1.CC1CCCC2(CCCC2)C1 JDGLEWAOPPPKPG-UHFFFAOYSA-N 0.000 description 1
- OUZRXBFKZSMJRG-UHFFFAOYSA-N CC1COP(=O)(O)O1.[H]OP1(=O)OCC(C)OP(=O)(O[H])O1 Chemical compound CC1COP(=O)(O)O1.[H]OP1(=O)OCC(C)OP(=O)(O[H])O1 OUZRXBFKZSMJRG-UHFFFAOYSA-N 0.000 description 1
- WLGWHHKJFPUADB-UHFFFAOYSA-N CCC1CC(C)=NO1 Chemical compound CCC1CC(C)=NO1 WLGWHHKJFPUADB-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 241000557766 Guthriea Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 206010029155 Nephropathy toxic Diseases 0.000 description 1
- YJQPYGGHQPGBLI-UHFFFAOYSA-N Novobiocin Natural products O1C(C)(C)C(OC)C(OC(N)=O)C(O)C1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-UHFFFAOYSA-N 0.000 description 1
- 206010033109 Ototoxicity Diseases 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- AYSYSOQSKKDJJY-UHFFFAOYSA-N [1,2,4]triazolo[4,3-a]pyridine Chemical compound C1=CC=CN2C=NN=C21 AYSYSOQSKKDJJY-UHFFFAOYSA-N 0.000 description 1
- DOLWUAMIJZGVTC-UHFFFAOYSA-N [1,2,4]triazolo[4,3-a]pyrimidine Chemical compound N1=CC=CN2C=NN=C21 DOLWUAMIJZGVTC-UHFFFAOYSA-N 0.000 description 1
- RKYUCDDTPZQNHM-UHFFFAOYSA-N [3-[3-fluoro-4-(1-oxo-1,4-thiazinan-4-yl)phenyl]-5-(1,2-oxazol-3-yl)-4,5-dihydro-1,2-oxazol-4-yl]methanamine Chemical compound NCC1C(C2=NOC=C2)ON=C1C(C=C1F)=CC=C1N1CCS(=O)CC1 RKYUCDDTPZQNHM-UHFFFAOYSA-N 0.000 description 1
- UTIKKHBFUGVKLU-ZETCQYMHSA-N [H][C@]1(CCC)CC(C)=NO1 Chemical compound [H][C@]1(CCC)CC(C)=NO1 UTIKKHBFUGVKLU-ZETCQYMHSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 125000005042 acyloxymethyl group Chemical group 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000002814 agar dilution Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- 125000005336 allyloxy group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- HOPRXXXSABQWAV-UHFFFAOYSA-N anhydrous collidine Natural products CC1=CC=NC(C)=C1C HOPRXXXSABQWAV-UHFFFAOYSA-N 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- CWBHKBKGKCDGDM-UHFFFAOYSA-N bis[(2,2,2-trifluoroacetyl)oxy]boranyl 2,2,2-trifluoroacetate Chemical compound FC(F)(F)C(=O)OB(OC(=O)C(F)(F)F)OC(=O)C(F)(F)F CWBHKBKGKCDGDM-UHFFFAOYSA-N 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 229940041011 carbapenems Drugs 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000001721 carboxyacetyl group Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- MYPYJXKWCTUITO-KIIOPKALSA-N chembl3301825 Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)C(O)[C@H](C)O1 MYPYJXKWCTUITO-KIIOPKALSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000012320 chlorinating reagent Substances 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- UTBIMNXEDGNJFE-UHFFFAOYSA-N collidine Natural products CC1=CC=C(C)C(C)=N1 UTBIMNXEDGNJFE-UHFFFAOYSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 125000006263 dimethyl aminosulfonyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 125000004914 dipropylamino group Chemical group C(CC)N(CCC)* 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 125000006627 ethoxycarbonylamino group Chemical group 0.000 description 1
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 1
- 125000006260 ethylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- MBMNFOLUZXKOML-UHFFFAOYSA-M fluoro(phenyl)stannane Chemical compound F[SnH2]C1=CC=CC=C1 MBMNFOLUZXKOML-UHFFFAOYSA-M 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 125000004970 halomethyl group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005241 heteroarylamino group Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- MBVAHHOKMIRXLP-UHFFFAOYSA-N imidazo[1,2-a]pyrazine Chemical compound C1=CN=CC2=NC=CN21 MBVAHHOKMIRXLP-UHFFFAOYSA-N 0.000 description 1
- UTCSSFWDNNEEBH-UHFFFAOYSA-N imidazo[1,2-a]pyridine Chemical compound C1=CC=CC2=NC=CN21 UTCSSFWDNNEEBH-UHFFFAOYSA-N 0.000 description 1
- INSWZAQOISIYDT-UHFFFAOYSA-N imidazo[1,2-a]pyrimidine Chemical compound C1=CC=NC2=NC=CN21 INSWZAQOISIYDT-UHFFFAOYSA-N 0.000 description 1
- HJMONQQZFQKQPS-UHFFFAOYSA-N imidazo[1,2-a]quinoline Chemical compound C1=CC=C2N3C=CN=C3C=CC2=C1 HJMONQQZFQKQPS-UHFFFAOYSA-N 0.000 description 1
- VTVRXITWWZGKHV-UHFFFAOYSA-N imidazo[1,2-b]pyridazine Chemical compound N1=CC=CC2=NC=CN21 VTVRXITWWZGKHV-UHFFFAOYSA-N 0.000 description 1
- PQWQQQGKMHENOC-UHFFFAOYSA-N imidazo[1,2-c]pyrimidine Chemical compound C1=NC=CC2=NC=CN21 PQWQQQGKMHENOC-UHFFFAOYSA-N 0.000 description 1
- MIFJMFOVENWQDP-UHFFFAOYSA-N imidazo[1,5-a]pyrazine Chemical compound C1=CN=CC2=CN=CN21 MIFJMFOVENWQDP-UHFFFAOYSA-N 0.000 description 1
- JMANUKZDKDKBJP-UHFFFAOYSA-N imidazo[1,5-a]pyridine Chemical compound C1=CC=CC2=CN=CN21 JMANUKZDKDKBJP-UHFFFAOYSA-N 0.000 description 1
- LXYHLTOJFGNEKG-UHFFFAOYSA-N imidazo[1,5-a]pyrimidine Chemical compound C1=CC=NC2=CN=CN21 LXYHLTOJFGNEKG-UHFFFAOYSA-N 0.000 description 1
- OWZFYIIJHLFOIG-UHFFFAOYSA-N imidazo[1,5-a]quinoline Chemical compound C1=CC=C2N3C=NC=C3C=CC2=C1 OWZFYIIJHLFOIG-UHFFFAOYSA-N 0.000 description 1
- BYLPZVAKOZYZPH-UHFFFAOYSA-N imidazo[2,1-a]isoquinoline Chemical compound C1=CC=C2C3=NC=CN3C=CC2=C1 BYLPZVAKOZYZPH-UHFFFAOYSA-N 0.000 description 1
- ZAVXICQEZRMZHE-UHFFFAOYSA-N imidazo[5,1-a]isoquinoline Chemical compound C1=CC=C2C3=CN=CN3C=CC2=C1 ZAVXICQEZRMZHE-UHFFFAOYSA-N 0.000 description 1
- 125000002962 imidazol-1-yl group Chemical group [*]N1C([H])=NC([H])=C1[H] 0.000 description 1
- 125000003037 imidazol-2-yl group Chemical group [H]N1C([*])=NC([H])=C1[H] 0.000 description 1
- 125000002140 imidazol-4-yl group Chemical group [H]N1C([H])=NC([*])=C1[H] 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 229960002182 imipenem Drugs 0.000 description 1
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002485 inorganic esters Chemical class 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000003971 isoxazolinyl group Chemical group 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000006626 methoxycarbonylamino group Chemical group 0.000 description 1
- 125000006261 methyl amino sulfonyl group Chemical group [H]N(C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 1
- 125000004458 methylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])[H] 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- WBGPDYJIPNTOIB-UHFFFAOYSA-N n,n-dibenzylethanamine Chemical compound C=1C=CC=CC=1CN(CC)CC1=CC=CC=C1 WBGPDYJIPNTOIB-UHFFFAOYSA-N 0.000 description 1
- MXUWXMQSRCROJT-UHFFFAOYSA-N n-[[3-(3-fluoro-4-pyrazol-1-ylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methyl]-1,2-oxazol-3-amine Chemical compound FC1=CC(C=2CC(CNC3=NOC=C3)ON=2)=CC=C1N1C=CC=N1 MXUWXMQSRCROJT-UHFFFAOYSA-N 0.000 description 1
- ZSTSQXMEYQZNAK-UHFFFAOYSA-N n-[[3-[3-fluoro-4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl]-4,5-dihydro-1,2-oxazol-5-yl]methyl]-1,2-oxazol-3-amine;hydrochloride Chemical compound Cl.FC1=CC(C=2CC(CNC3=NOC=C3)ON=2)=CC=C1C1=CCNCC1 ZSTSQXMEYQZNAK-UHFFFAOYSA-N 0.000 description 1
- QLDKXLYYFACRGD-UHFFFAOYSA-N n-[[3-[3-fluoro-4-(1-oxo-1,4-thiazinan-4-yl)phenyl]-4,5-dihydro-1,2-oxazol-5-yl]methyl]-1,2-oxazol-3-amine Chemical compound FC1=CC(C=2CC(CNC3=NOC=C3)ON=2)=CC=C1N1CCS(=O)CC1 QLDKXLYYFACRGD-UHFFFAOYSA-N 0.000 description 1
- 125000005146 naphthylsulfonyl group Chemical group C1(=CC=CC2=CC=CC=C12)S(=O)(=O)* 0.000 description 1
- 125000005029 naphthylthio group Chemical group C1(=CC=CC2=CC=CC=C12)S* 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 230000007694 nephrotoxicity Effects 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960002950 novobiocin Drugs 0.000 description 1
- YJQPYGGHQPGBLI-KGSXXDOSSA-M novobiocin(1-) Chemical compound O1C(C)(C)[C@H](OC)[C@@H](OC(N)=O)[C@@H](O)[C@@H]1OC1=CC=C(C([O-])=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-KGSXXDOSSA-M 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 231100000262 ototoxicity Toxicity 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 125000004287 oxazol-2-yl group Chemical group [H]C1=C([H])N=C(*)O1 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000008180 pharmaceutical surfactant Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 125000005633 phthalidyl group Chemical group 0.000 description 1
- 125000000612 phthaloyl group Chemical group C(C=1C(C(=O)*)=CC=CC1)(=O)* 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- SSOLNOMRVKKSON-UHFFFAOYSA-N proguanil Chemical compound CC(C)\N=C(/N)N=C(N)NC1=CC=C(Cl)C=C1 SSOLNOMRVKKSON-UHFFFAOYSA-N 0.000 description 1
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000006308 propyl amino group Chemical group 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- 125000004307 pyrazin-2-yl group Chemical group [H]C1=C([H])N=C(*)C([H])=N1 0.000 description 1
- KOUKXHPPRFNWPP-UHFFFAOYSA-N pyrazine-2,5-dicarboxylic acid;hydrate Chemical compound O.OC(=O)C1=CN=C(C(O)=O)C=N1 KOUKXHPPRFNWPP-UHFFFAOYSA-N 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000004289 pyrazol-3-yl group Chemical group [H]N1N=C(*)C([H])=C1[H] 0.000 description 1
- DVUBDHRTVYLIPA-UHFFFAOYSA-N pyrazolo[1,5-a]pyridine Chemical compound C1=CC=CN2N=CC=C21 DVUBDHRTVYLIPA-UHFFFAOYSA-N 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002206 pyridazin-3-yl group Chemical group [H]C1=C([H])C([H])=C(*)N=N1 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- IALZQBVEQFOOEG-UHFFFAOYSA-N pyrido[2,1-c][1,4]oxazine Chemical compound C1=CC=CC2=COC=CN21 IALZQBVEQFOOEG-UHFFFAOYSA-N 0.000 description 1
- 125000000246 pyrimidin-2-yl group Chemical group [H]C1=NC(*)=NC([H])=C1[H] 0.000 description 1
- JBDKAABFESSFMV-UHFFFAOYSA-N pyrrolo[1,2-a]pyrimidine Chemical compound N1=CC=CN2C=CC=C21 JBDKAABFESSFMV-UHFFFAOYSA-N 0.000 description 1
- RKXMKQSZMAGGEW-UHFFFAOYSA-N pyrrolo[1,2-b][1,2]oxazole Chemical compound C1=CON2C=CC=C21 RKXMKQSZMAGGEW-UHFFFAOYSA-N 0.000 description 1
- NISJKLIMPQPAQS-UHFFFAOYSA-N pyrrolo[1,2-b]pyridazine Chemical compound C1=CC=NN2C=CC=C21 NISJKLIMPQPAQS-UHFFFAOYSA-N 0.000 description 1
- RIEKLTCRUGDAPM-UHFFFAOYSA-N pyrrolo[1,2-c]pyrimidine Chemical compound C1=CN=CN2C=CC=C21 RIEKLTCRUGDAPM-UHFFFAOYSA-N 0.000 description 1
- MOVFAUAADQBPRE-UHFFFAOYSA-N pyrrolo[2,1-b][1,3]thiazole Chemical compound S1C=CN2C=CC=C21 MOVFAUAADQBPRE-UHFFFAOYSA-N 0.000 description 1
- 238000005956 quaternization reaction Methods 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 229940097346 sulfobutylether-beta-cyclodextrin Drugs 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- GFYHSKONPJXCDE-UHFFFAOYSA-N sym-collidine Natural products CC1=CN=C(C)C(C)=C1 GFYHSKONPJXCDE-UHFFFAOYSA-N 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 125000000464 thioxo group Chemical group S=* 0.000 description 1
- 231100000583 toxicological profile Toxicity 0.000 description 1
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- LENLQGBLVGGAMF-UHFFFAOYSA-N tributyl([1,2,4]triazolo[1,5-a]pyridin-6-yl)stannane Chemical compound C1=C([Sn](CCCC)(CCCC)CCCC)C=CC2=NC=NN21 LENLQGBLVGGAMF-UHFFFAOYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D261/00—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
- C07D261/02—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
- C07D261/06—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
- C07D261/08—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D261/00—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
- C07D261/02—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
- C07D261/06—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
- C07D261/10—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D261/12—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D261/00—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
- C07D261/02—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
- C07D261/06—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
- C07D261/10—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D261/14—Nitrogen atoms
Definitions
- the present invention relates to antibiotic compounds and in particular to antibiotic compounds containing a substituted isoxazoline ring. This invention further relates to processes for their preparation, to intermediates useful in their preparation, to their use as therapeutic agents and to pharmaceutical compositions containing them.
- bacterial pathogens may be classified as either Gram-positive or Gram-negative pathogens.
- Antibiotic compounds with effective activity against both Gram-positive and Gram-negative pathogens are generally regarded as having a broad spectrum of activity.
- the compounds of the present invention are regarded primarily as effective against Gram-positive pathogens because of their particularly good activity against such pathogens.
- Gram-positive pathogens for example Staphylococci, Enterococci, Streptococci and mycobacteria
- Staphylococci Enterococci
- Streptococci mycobacteria
- MRSA methicillin resistant staphylococcus
- MRCNS methicillin resistant coagulase negative staphylococci
- penicillin resistant Streptococcus pneumoniae and multiply resistant Enterococcus faecium.
- Vancomycin is a glycopeptide and is associated with nephrotoxicity and ototoxicity. Furthermore, and most importantly, antibacterial resistance to vancomycin and other glycopeptides is also appearing. This resistance is increasing at a steady rate rendering these agents less and less effective in the treatment of Gram-positive pathogens.
- antibacterial compounds containing an oxazolidinone ring have been described in the art (for example, Walter A. Gregory et al in J. Med. Chem. 1990, 33, 2569-2578 and Chung-Ho Park et al in J. Med. Chem. 1992, 35, 1156-1165).
- Such antibacterial oxazolidinone compounds with a 5-methylacetamide sidechain may be subject to mammalian peptidase metabolism.
- bacterial resistance to known antibacterial agents may develop, for example, by (i) the evolution of active binding sites in the bacteria rendering a previously active pharmacophore less effective or redundant, and/or (ii) the evolution of means to chemically deactivate a given pharmacophore. Therefore, there remains an ongoing need to find new antibacterial agents with a favourable pharmacological profile, in particular for compounds containing new pharmacophores.
- the present invention provides a compound of the formula (I), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof, wherein
- a ring may be linked via an sp 2 carbon atom, which ring is fully saturated other than (where appropriate) at a linking sp 2 carbon atom, it is to be understood that the ring is linked via one of the carbon atoms in a C ⁇ C double bond.
- (Rc1) is as defined above other than the optional phenyl substituent on (1-6C)alkyl is optionally substituted as for AR1 defined hereinafter; and (Rc2c), is as defined above and further includes carboxy as an optional substituent on R 13 as (1-10C)alkyl.
- —X 1 — is a two-atom link and is written, for example, as —CH 2 NH— it is the left hand part (—CH 2 — here) which is bonded to the group of formula (TAf1) to (TAf6) and the right hand part (—NH— here) which is bonded to —Y 1 — in the definition in (TAfc).
- —Y 1 — is a two-atom link and is written, for example, as —CONH— it is the left hand part of —Y 1 — (—CO— here) which is bonded to the right hand part of —X 1 —, and the right hand part of —Y— (—NH— here) which is bonded to the AR2, AR2a, AR2b, AR3, AR3a or AR3b moiety in the definition in (TAfc).
- R 6 is hydrogen or (1-4C)alkyl
- R 4 and R 5 are independently selected from hydrogen, (1-4C)alkyl or one of R 4 and R 5 is selected from group (TAfa).
- Other preferable substituents on the (TAf1) to (TAf6) are illustrated in the accompanying Examples. Most preferable is (TAf2) with such preferable substituents.
- T When T is a carbon linked tropol-3-one or tropol-4-one, optionally substituted in a position not adjacent to the linking position (TAg), it is preferably selected from a group of formula (TAg1), (TAg2) or (TAg3).
- Tg1 When T is a carbon linked tropol-3-one or tropol-4-one, optionally substituted in a position not adjacent to the linking position (TAg), it is preferably selected from a group of formula (TAg1), (TAg2) or (TAg3).
- the above preferred values of (TAg) are particularly preferred when present in Q1 or Q2, especially Q1.
- R 7 is selected from
- ( ) m1 , ( ) n1 and ( ) o1 indicate (—CH 2 —) m1 , (—CH 2 —) n1 and (—CH 2—) o1 respectively (optionally substituted as described above).
- AR is preferably AR2, and the further optional substituents are preferably not selected from the values listed for Rc.
- a preferred value for G is >N(Rc) or >C(R 11 )(R 12 ).
- G is O or S, particularly in (TC4) when Rp is hydrogen.
- (TC4) as piperazinyl, morpholino or thiomorpholino or as tetrahydropyridin-4-yl.
- TC5 Especially preferred are (TC5), (TC6), (TC7) and (TC9), most especially (TC5) in which Rc has any of the values listed hereinbefore or hereinafter (especially R 13 CO— with the preferable R 13 values given hereinafter).
- Rc is preferably selected from the group (Rc2), especially R 13 CO— with the preferable R 13 values given hereinafter.
- Rc is preferably selected from group (Rc3) or (Rc4).
- T When T is a bicyclic spiro-ring system as defined in (TDa), it is preferably selected from a group of formula (TDa1) to (TDa9).
- the above preferred values of (TDa) are particularly preferred when present in Q1 or Q2, especially Q1.
- unstable anti-Bredt compounds are not contemplated in this definition (i.e. compounds with structures (TDb3), (TDb4), (TDb7), (TDb8), (TDb9), (TDb12), (TDb13) and (TDb14) in which an sp 2 carbon atom is directed towards a bridgehead position).
- Particularly preferred values of (TDb) are the following structures of formula (TDb4), (TDb8) and/or (TDb9); wherein Rc has any of the values listed hereinbefore or hereinafter.
- the above preferred values of (TDb) are particularly preferred when present in Q1 or Q2, especially Q1.
- alkyl includes straight chained and branched structures.
- (1-6C)alkyl includes propyl, isopropyl and tert-butyl.
- references to individual alkyl groups such as “propyl” are specific for the straight chained version only, and references to individual branched chain alkyl groups such as “isopropyl” are specific for the branched chain version only.
- a similar convention applies to other radicals, for example halo(1-4C)alkyl includes 1-bromoethyl and 2-bromoethyl.
- a ‘5- or 6-membered heteroaryl’ and ‘heteroaryl (monocyclic) ring’ means a 5- or 6-membered aryl ring wherein (unless stated otherwise) 1, 2 or 3 of the ring atoms are selected from nitrogen, oxygen and sulfur. Unless stated otherwise, such rings are fully aromatic.
- Particular examples of 5- or 6-membered heteroaryl ring systems are furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole and thiophene.
- a ‘5/6 or 6/6 bicyclic heteroaryl ring system’ and ‘heteroaryl (bicyclic) ring’ means an aromatic bicyclic ring system comprising a 6-membered ring fused to either a 5 membered ring or another 6 membered ring, the bicyclic ring system containing 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur. Unless stated otherwise, such rings are fully aromatic.
- 5/6 and 6/6 bicyclic ring systems are indole, benzofuran, benzoimidazole, benzothiophene, benzisothiazole, benzoxazole, benzisoxazole, pyridoimidazole, pyrimidoimidazole, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline and naphthyridine.
- a ‘4-, 5- or 6-membered cycloalkyl ring’ means a cyclobutyl, cyclopentyl or cyclohexyl ring; and a ‘5- or 6-membered cycloalkenyl ring’ a means cyclopentenyl or cyclohexenyl ring.
- substituents for alkyl, phenyl (and phenyl containing moieties) and naphthyl groups and ring carbon atoms in heteroaryl (mono or bicyclic) rings in R 11p , R 12p , R i and ARp include halo, (1-4C)alkyl, hydroxy, nitro, carbamoyl, (1-4C)alkylcarbamoyl, di-((1-4C)alkyl)carbamoyl, cyano, trifluoromethyl, trifluoromethoxy, amino, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-4C)alkylS(O) q —, (wherein q is 0, 1 or 2), carboxy, (1-4C)alkoxycarbonyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkanoyl, (1-4C)alkoxy, (1-4C)alkyl
- R 11p , R i and ARp may be mono- or disubstituted on ring carbon atoms with substituents independently selected from the above list of particular optional substituents.
- phosphono is —P(O)(OH) 2
- (1-4C)alkoxy(hydroxy)phosphoryl is a mono-(1-4C)alkoxy derivative of —O—P(O)(OH) 2
- di-(1-4C)alkoxyphosphoryl is a di-(1-4C)alkoxy derivative of —O—P(O)(OH) 2 .
- substituents for alkyl, phenyl (and phenyl containing moieties) and naphthyl groups and ring carbon atoms in heteroaryl (mono or bicyclic) rings in R 11p , R 12p , Ri and ARp include halo, (1-4C)alkyl , hydroxy, nitro, carbamoyl, (1-4C)alkylcarbamoyl, di-((1-4C)alkyl)carbamoyl, cyano, trifluoromethyl, trifluoromethoxy, amino, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-4C)alkyl S(O) q — (q is 0, 1 or 2), carboxy, (1-4C)alkoxycarbonyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkanoyl, (1-4C)alkoxy, (1-4C)alkylS(O) 2
- phenyl and naphthyl groups and heteroaryl (mono- or bicyclic) rings in R 11p , Ri and ARp may be mono- or di-substituted on ring carbon atoms with substituents independently selected from the above list of particular optional substituents.
- alkyl includes straight chained and branched structures.
- (1-6C)alkyl includes propyl, isopropyl and tert-butyl.
- references to individual alkyl groups such as “propyl” are specific for the straight chained version only, and references to individual branched chain alkyl groups such as “isopropyl” are specific for the branched chain version only.
- references to individual branched chain alkyl groups such as “isopropyl” are specific for the branched chain version only.
- a similar convention applies to other radicals, for example halo(1-4C)alkyl includes 1-bromoethyl and 2-bromoethyl.
- Examples of (1-4C)alkyl and (1-5C)alkyl include methyl, ethyl, propyl, isopropyl and t-butyl; examples of (1-6C)alkyl include methyl, ethyl, propyl, isopropyl, t-butyl, pentyl and hexyl; examples of (1-10C)alkyl include methyl, ethyl, propyl, isopropyl, pentyl, hexyl, heptyl, octyl and nonyl; examples of (1-4C)alkanoylamino-(1-4C)alkyl include formamidomethyl, acetamidomethyl and acetamidoethyl; examples of hydroxy(1-4C)alkyl and hydroxy(1-6C)alkyl include hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl and 3-hydroxypropyl; examples of (1-4C)alkoxycarbonyl include me
- Particular values for AR2 include, for example, for those AR2 containing one heteroatom, furan, pyrrole, thiophene; for those AR2 containing one to four N atoms, pyrazole, imidazole, pyridine, pyrimidine, pyrazine, pyridazine, 1,2,3- & 1,2,4-triazole and tetrazole; for those AR2 containing one N and one O atom, oxazole, isoxazole and oxazine; for those AR2 containing one N and one S atom, thiazole and isothiazole; for those AR2 containing two N atoms and one S atom, 1,2,4- and 1,3,4-thiadiazole.
- AR2a include, for example, dihydropyrrole (especially 2,5-dihydropyrrol-4-yl) and tetrahydropyridine (especially 1,2,5,6-tetrahydropyrid-4-yl).
- AR2b include, for example, tetrahydrofuran, pyrrolidine, morpholine (preferably morpholino), thiomorpholine (preferably thiomorpholino), piperazine (preferably piperazino), imidazoline and piperidine, 1,3-dioxolan-4-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl and 1,4-dioxan-2-yl.
- morpholine preferably morpholino
- thiomorpholine preferably thiomorpholino
- piperazine preferably piperazino
- imidazoline and piperidine 1,3-dioxolan-4-yl
- 1,3-dioxan-4-yl 1,3-dioxan-5-yl
- 1,4-dioxan-2-yl 1,4-dioxan-2-yl.
- Particular values for AR3 include, for example, bicyclic benzo-fused systems containing a 5- or 6-membered heteroaryl ring containing one nitrogen atom and optionally 1-3 further heteroatoms chosen from oxygen, sulfur and nitrogen.
- ring systems include, for example, indole, benzofuran, benzothiophene, benzimidazole, benzothiazole, benzisothiazole, benzoxazole, benzisoxazole, quinoline, quinoxaline, quinazoline, phthalazine and cinnoline.
- AR3 include 5/5-, 5/6 and 6/6 bicyclic ring systems containing heteroatoms in both of the rings.
- Specific examples of such ring systems include, for example, purine and naphthyridine.
- AR3 include bicyclic heteroaryl ring systems with at least one bridgehead nitrogen and optionally a further 1-3 heteroatoms chosen from oxygen, sulfur and nitrogen.
- ring systems include, for example, 3H-pyrrolo[1,2-a]pyrrole, pyrrolo[2,1-b]thiazole, 1H-imidazo[1,2-a]pyrrole, 1H-imidazo[1,2-a]imidazole, 1H,3H-pyrrolo[1,2-c]oxazole, 1H-imidazo[1,5-a]pyrrole, pyrrolo[1,2-b]isoxazole, imidazo[5,1-b]thiazole, imidazo[2,1-b]thiazole, indolizine, imidazo[1,2-a]pyridine, imidazo[1,5-a]pyridine, pyrazolo [1,5-a]pyridine, pyrrolo[1,2-b]pyridazine, pyrrolo[1,
- ring systems include, for example, [1H]-pyrrolo[2,1-c]oxazine, [3H]-oxazolo[3,4-a]pyridine, [6H]-pyrrolo[2,1-c]oxazine and pyrido[2,1-c][1,4]oxazine.
- 5/5-bicyclic ring systems are imidazooxazole or imidazothiazole, in particular imidazo[5,1-b]thiazole, imidazo[2,1-b]thiazole, imidazo[5,1-b]oxazole or imidazo[2,1-b]oxazole.
- AR3a and AR3b include, for example, indoline, 1,3,4,6,9,9a-hexahydropyrido[2,1c][1,4]oxazin-8-yl, 1,2,3,5,8,8a-hexahydroimidazo[1,5a]pyridin-7-yl, 1,5,8,8a-tetrahydrooxazolo[3,4a]pyridin-7-yl, 1,5,6,7,8,8a-hexahydrooxazolo[3,4a]pyridin-7-yl, (7aS)[3H,5H]-1,7a-dihydropyrrolo[1,2c]oxazol-6-yl, (7aS)[5H]-1,2,3,7a-tetrahydropyrrolo[1,2c]imidazol-6-yl, (7aR)[3H,5H]-1,7a-dihydropyrrolo[1,2c]oxazol-6-yl,
- Particular values for AR4 include, for example, pyrrolo[a]quinoline, 2,3-pyrroloisoquinoline, pyrrolo[a]isoquinoline, 1H-pyrrolo[1,2-a]benzimidazole, 9H-imidazo[1,2-a]indole, 5H-imidazo[2,1-a]isoindole, 1H-imidazo[3,4-a]indole, imidazo[1,2-a]quinoline, imidazo[2,1-a]isoquinoline, imidazo [1,5-a]quinoline and imidazo[5,1-a]isoquinoline.
- Suitable substituents on AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1 and CY2 are (on an available carbon atom) up to three substituents independently selected from (1-4C)alkyl ⁇ optionally substituted by (preferably one) substituents selected independently from hydroxy, trifluoromethyl, (1-4C)alkyl S(O) q — (q is 0, 1 or 2) (this last substituent preferably on AR1 only), (1-4C)alkoxy, (1-4C)alkoxycarbonyl, cyano, nitro, (1-4C)alkanoylamino, —CONRvRw or —NRvRw ⁇ , trifluoromethyl, hydroxy, halo, nitro, cyano, thiol, (1-4C)alkoxy, (1-4C)alkanoyloxy, dimethylaminomethyleneaminocarbonyl, di(N-(1-4C)alkyl)aminomethylimin
- substituents on AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1 and CY2 (on an available carbon atom), and also on alkyl groups are up to three substituents independently selected from trifluoromethoxy, benzoylamino, benzoyl, phenyl ⁇ optionally substituted by up to three substituents independently selected from halo, (1-4C)alkoxy or cyano ⁇ , furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole, thiophene, hydroxyimino(1-4C)alkyl, (1-4C)alkoxyimino(1-4C)alkyl, halo-(1-4C)alkyl, (1-4C)alkanesulfonamido, —
- substituents on Ar2b as 1,3-dioxolan-4-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl or 1,4-dioxan-2-yl are mono- or disubstitution by substituents independently selected from (1-4C)alkyl (including geminal disubstitution), (1-4C)alkoxy, (1-4C)alkylthio, acetamido, (1-4C)alkanoyl, cyano, trifluoromethyl and phenyl].
- substituents on CY1 & CY2 are mono- or disubstitution by substituents independently selected from (1-4C)alkyl (including geminal disubstitution), hydroxy, (1-4C)alkoxy, (1-4C)alkylthio, acetamido, (1-4C)alkanoyl, cyano, and trifluoromethyl.
- Suitable substituents on AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4 and AR4a are (on an available nitrogen atom, where such substitution does not result in quaternization) (1-4C)alkyl, (1-4C)alkanoyl ⁇ wherein the (1-4C)alkyl and (1-4C)alkanoyl groups are optionally substituted by (preferably one) substituents independently selected from cyano, hydroxy, nitro, trifluoromethyl, (1-4C)alkyl S(O) q — (q is 0, 1 or 2), (1-4C)alkoxy, (1-4C)alkoxycarbonyl, (1-4C)alkanoylamino, —CONRvRw or —NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl] ⁇ , (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxycarbonyl or
- Suitable pharmaceutically-acceptable salts include acid addition salts such as methanesulfonate, fumarate, hydrochloride, citrate, maleate, tartrate and (less preferably) hydrobromide. Also suitable are salts formed with phosphoric and sulfuric acid.
- suitable salts are base salts such as an alkali metal salt for example sodium, an alkaline earth metal salt for example calcium or magnesium, an organic amine salt for example triethylamine, morpholine, N -methylpiperidine, N -ethylpiperidine, procaine, dibenzylamine, N , N -dibenzylethylamine, tris-(2-hydroxyethyl)amine, N-methyl d-glucamine and amino acids such as lysine.
- a preferred pharmaceutically-acceptable salt is the sodium salt.
- salts which are less soluble in the chosen solvent may be preferred whether pharmaceutically-acceptable or not.
- the compounds of the formula (I) may be administered in the form of a pro-drug which is broken down in the human or animal body to give a compound of the formula (I).
- a prodrug may be used to alter or improve the physical and/or pharmacokinetic profile of the parent compound and can be formed when the parent compound contains a suitable group or substituent which can be derivatised to form a prodrug.
- pro-drugs include in-vivo hydrolysable esters of a compound of the formula (I) or a pharmaceutically-acceptable salt thereof.
- An in-vivo hydrolysable ester of a compound of the formula (I) or a pharmaceutically-acceptable salt thereof containing carboxy or hydroxy group is, for example, a pharmaceutically-acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol.
- Suitable pharmaceutically-acceptable esters for carboxy include (1-6C)alkoxymethyl esters for example methoxymethyl, (1-6C)alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, (3-8C)cycloalkoxycarbonyloxy(1-6C)alkyl esters for example 1-cyclohexylcarbonyloxyethyl; 1,3-dioxolan-2-onylmethyl esters for example 5-methyl-1,3-dioxolan-2-ylmethyl; and (1-6C)alkoxycarbonyloxyethyl esters for example 1-methoxycarbonyloxyethyl and may be formed at any carboxy group in the compounds of this invention.
- An in-vivo hydrolysable ester of a compound of the formula (I) or a pharmaceutically-acceptable salt thereof containing a hydroxy group or groups includes inorganic esters such as phosphate esters (including phosphoramidic cyclic esters) and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in-vivo hydrolysis of the ester breakdown to give the parent hydroxy group/s.
- inorganic esters such as phosphate esters (including phosphoramidic cyclic esters) and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in-vivo hydrolysis of the ester breakdown to give the parent hydroxy group/s.
- ⁇ -acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxymethoxy.
- a selection of in-vivo hydrolysable ester forming groups for hydroxy include (1-10C)alkanoyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl, (1-10C)alkoxycarbonyl (to give alkyl carbonate esters), di-(1-4C)alkylcarbamoyl and N -(di-(1-4C)alkylaminoethyl)- N -(1-4C)alkylcarbamoyl (to give carbamates), di-(1-4C)alkylaminoacetyl and carboxyacetyl.
- substituents on benzoyl include chloromethyl or aminomethyl, (1-4C)alkylaminomethyl and di-((1-4C)alkyl)aminomethyl, and morpholino or piperazino linked from a ring nitrogen atom via a methylene linking group to the 3- or 4-position of the benzoyl ring.
- Suitable in-vivo hydrolysable esters of a compound of the formula (I) are described within the definitions listed in this specification, for example esters described by the definition (Rc2d), and some groups within (Rc2c).
- Suitable in-vivo hydrolysable esters of a compound of the formula (I) are described as follows.
- a 1,2-diol may be cyclised to form a cyclic ester of formula (PD1) or a pyrophosphate of formula (PD2):
- esters of compounds of formula (I) wherein the HO— function/s in (PD1) and (PD2) are protected by (1-4C)alkyl, phenyl or benzyl are useful intermediates for the preparation of such pro-drugs.
- hydrolysable esters include phosphoramidic esters, and also compounds of formula (I) in which any free hydroxy group independently forms a phosphoryl (npd is 1) or phosphiryl (npd is 0) ester of the formula (PD3):
- Useful intermediates for the preparation of such esters include compounds containing a group/s of formula (PD3) in which either or both of the —OH groups in (PD3) is independently protected by (1-4C)alkyl (such compounds also being interesting compounds in their own right), phenyl or phenyl-(1-4C)alkyl (such phenyl groups being optionally substituted by 1 or 2 groups independently selected from (1-4C)alkyl, nitro, halo and (1-4C)alkoxy).
- PD3 group/s of formula (PD3) in which either or both of the —OH groups in (PD3) is independently protected by (1-4C)alkyl (such compounds also being interesting compounds in their own right), phenyl or phenyl-(1-4C)alkyl (such phenyl groups being optionally substituted by 1 or 2 groups independently selected from (1-4C)alkyl, nitro, halo and (1-4C)alkoxy).
- prodrugs containing groups such as (PD1), (PD2) and (PD3) may be prepared by reaction of a compound of formula (I) containing suitable hydroxy group/s with a suitably protected phosphorylating agent (for example, containing a chloro or dialkylamino leaving group), followed by oxidation (if necessary) and deprotection.
- a suitably protected phosphorylating agent for example, containing a chloro or dialkylamino leaving group
- a compound of formula (I) contains a number of free hydroxy group
- those groups not being converted into a prodrug functionality may be protected (for example, using a t-butyl-dimethylsilyl group), and later deprotected.
- enzymatic methods may be used to selectively phosphorylate or dephosphorylate alcohol functionalities.
- esters include, for example, those in which Rc is defined by, for example, R 14 C(O)O(1-6C)alkyl-CO— (wherein R 14 is for example, benzyloxy-(1-4C)alkyl, or phenyl).
- R 14 is for example, benzyloxy-(1-4C)alkyl, or phenyl.
- Suitable substituents on a phenyl group in such esters include, for example, 4-(1-4C)piperazino-(1-4C)alkyl, piperazino-(1-4C)alkyl and morpholino-(1-4C)alkyl.
- salts of an in-vivo hydrolysable ester may be formed this is achieved by conventional techniques.
- compounds containing a group of formula (PD1), (PD2) and/or (PD3) may ionise (partially or fully) to form salts with an appropriate number of counter-ions.
- an in-vivo hydrolysable ester prodrug of a compound of formula (I) contains two (PD3) groups, there are four HO—P— functionalities present in the overall molecule, each of which may form an appropriate salt (i.e. the overall molecule may form, for example, a mono-, di-, tri- or tetra-sodium salt).
- the compounds of the present invention have a chiral centre at the C-5 position of the isoxazoline ring.
- the pharmaceutically active enantiomer is of the formula (IA):
- the present invention includes the pure enantiomer depicted above or mixtures of the 5R and 5S enantiomers, for example a racemic mixture. If a mixture of enantiomers is used, a larger amount (depending upon the ratio of the enantiomers) will be required to achieve the same effect as the same weight of the pharmaceutically active enantiomer. For the avoidance of doubt the enantiomer depicted above is the 5(R) isomer.
- optically-active forms for example by resolution of the racemic form by recrystallisation techniques, by chiral synthesis, by enzymatic resolution, by biotransformation or by chromatographic separation
- antibacterial activity as described hereinafter.
- the invention relates to all tautomeric forms of the compounds of the formula (I) that possess antibacterial activity.
- Particularly preferred compounds of the invention comprise a compound of formula (I) or of formula (IP), or a pharmaceutically-acceptable salt or an in-vivo hydrolysable ester thereof, wherein the substituents Q, HET, T, T 1 and other substituents mentioned above have values disclosed hereinbefore, or any of the following values (which may be used where appropriate with any of the definitions and embodiments disclosed hereinbefore or hereinafter):
- Q is selected from Q1, Q2, Q4, Q6 and Q9; especially Q1, Q2 and Q9; more particularly Q1 and Q2; and most preferably Q is Q1.
- T is selected from (TAf), (TDb) or (TC); especially groups (TAf2), (TCb) and (TCc); more particularly (TC2), (TC3) and (TC4); and most preferably (TC5), (TC7) or (TC9), and most particularly (TC9) and (TC5).
- TAf TAf
- TCb TCb
- TCc TC2
- TC3 TC4
- TC5 TC7
- TC9 most particularly (TC9) and (TC5).
- each of these values of T when present in Q1 and Q2, particularly in Q1.
- Rc and R 13 in formula (I) correspond with R 7p and R 10p in formula (IP), and similarly for groups D and G).
- the preferred values of R 7p are also preferred values of Rc and may be used as preferred values of Rc in any compound of formula (I).
- preferred values for Rc are those in group (Rc2) when present in any of the definitions herein containing Rc—for example when present in compounds in which there is a (TC5) or (TC9) ring system.
- R 10p listed above for compounds of formula (IP) are also preferred values for R 13 in compounds of formula (I).
- Rc2c the AR2a, AR2b, AR3a and AR3b versions of AR2 and AR3 containing groups are preferably excluded.
- HET is a C-linked 5-membered heteroaryl ring containing 2 or 3 heteratoms independently selected from N, O and S (with the proviso that there are no O—O, O—S, S—S or N—S bonds), which ring is optionally substituted on any available C atom (provided that when a N atom is adjacent to the NH-link, there is no substitution on any C atom that is adjacent to this N atom) by 1 or 2 substituents independently selected from (1-4C)alkyl, amino, (1-4C)alkylamino, (1-4C)alkoxy and halogen, and/or on an available N atom (provided that the ring is not thereby quaterriised), by (1-4C)alkyl.
- HET as a 5-membered heteroaryl rings containing 2 or 3 heteroatoms independently selected from N, O and S (with the proviso that there are no O—O, O—S or S—S bonds; and in an alternative embodiment, also no N—S bonds) are pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, oxazole, isoxazole, thiazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole; and also in an alternative embodiment, isothiazole, 1,2,5-thiadiazole, 1,2,4-thiadiazole or 1,2,3-thiadiazole.
- HET is selected from the formulae (HET1) to (HET3) below: wherein A 2 is carbon or nitrogen and B 2 is O, S or N (with a maximum of 3 hetero atoms per ring), with carbon or nitrogen ring atoms being optionally substituted as described for HET hereinbefore (preferably with no substitution on any carbon atom that is adjacent to the specified N atom).
- Especially preferred compounds of the present invention are of the formula (IB): wherein HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl;
- HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl
- R 2 and R 3 are independently hydrogen or fluoro
- Rp1 and Rp2 are independently hydrogen, AR-oxymethyl or AR-thiomethyl (wherein AR is phenyl, phenyl-(1-4C)alkyl, naphthyl, furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole or thiophene); or pharmaceutically-acceptable salts thereof.
- particularly preferred compounds are those wherein Rp1 and Rp2 are hydrogen are particularly preferred.
- HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl
- R 2 and R 3 are independently hydrogen or fluoro
- Rp1 and Rp2 are independently hydrogen, AR-oxymethyl or AR-thiomethyl (wherein AR is phenyl, phenyl-(1-4C)alkyl, naphthyl, furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole or thiophene), (1-4C)alkyl, carboxy, (1-4C)alkoxycarbonyl, hydroxymethyl, (1-4C)alkoxymethyl or carb
- particularly preferred compounds are those wherein HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl; R 2 and R 3 are independently hydrogen or fluoro; Rp1 and Rp2 are hydrogen, and Rcp is pyridin-2-yl (optionally substituted with cyano) or Rcp is of the formula R 10p CO— (wherein R 10p is hydrogen, 1,3-dioxolan-4-yl (optionally disubstituted with (1-4C)alkyl) or (1-5C)alkyl [optionally substituted by one or more hydroxy groups] or R 10p is of the formula R 11p C(O)O(1-6C)alkyl wherein R 11p is (1-6C)alkyl)); or pharmaceutically-accept
- Rcp is of the formula R 10p CO— (wherein R 10p is hydrogen, 1,3-dioxolan-4-yl (optionally disubstituted with (1-4C)alkyl) or (1-5C)alkyl [substituted by two hydroxy groups]; or pharmaceutically-acceptable salts thereof.
- particularly preferred compounds of the invention are of the formula (IC) wherein HET is isoxazol-3-yl; R 2 and R 3 are independently hydrogen or fluoro; Rp1 and Rp2 are hydrogen and Rcp is R 10p CO— (wherein R 10p is hydrogen, (1-5C)alkyl [optionally substituted by one or two hydroxy groups],
- R 10p is of the formula R 11p C(O)O(1-6C)alkyl (wherein R 11p is (1-6C)alkyl)); and pharmaceutically-acceptable salts thereof.
- the invention relates to all of the compounds of formula (IB) or (IC) described above wherein HET is isoxazol-3-yl or 1,2,4-oxadiazol-3yl.
- the invention relates to all of the compounds of formula (IB) or (IC) described above wherein HET is isoxazol-3-yl.
- HET is isoxazol-3-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,5-thiadiazol-3-yl; >A-B— is >N—CH 2 — and D is NR 7p (or D is O) wherein Rcp is a 6-membered heteroaryl ring containing 1, 2 or 3 ring nitrogen atoms as the only ring heteroatoms, linked via a ring carbon atom and optionally substituted on a ring carbon atom by one, two or three substituents independently selected from (1-4C)alkyl, halo, trifluoromethyl, (1-4C)alkyl S(O) q — (wherein q is 0, 1 or 2), (1-4C)alkylS(O) 2 amino, (1-4C)alkanoylamino, carboxy, hydroxy, amino, (1-4C)alkylamino, di-
- in-vivo hydrolysable esters are preferred where appropriate, especially phosphoryl esters (as defined by formula (PD3) with npd as 1).
- Particular compounds of the present invention include the following:
- the present invention provides a process for preparing a compound of formula (I) or a pharmaceutically-acceptable salt or an in-vivo hydrolysable ester thereof. It will be appreciated that during certain of the following processes certain substituents may require protection to prevent their undesired reaction. The skilled chemist will appreciate when such protection is required, and how such protecting groups may be put in place, and later removed.
- Protecting groups may be removed by any convenient method as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.
- reactants include, for example, groups such as amino, carboxy or hydroxy it may be desirable to protect the group in some of the reactions mentioned herein.
- a suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or t-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl.
- the deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group.
- an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
- a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
- an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulfturic or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate).
- a suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.
- a suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl.
- the deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group.
- an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
- a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
- an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
- a suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
- a base such as sodium hydroxide
- a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
- Resins may also be used as a protecting group.
- the protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art.
- a compound of the formula (I), or a pharmaceutically-acceptable salt or an in vivo hydrolysable ester thereof may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Such processes, when used to prepare a compound of the formula (I), or a pharmaceutically-acceptable salt or an in vivo hydrolysable ester thereof, are provided as a further feature of the invention and are illustrated by the following representative examples. Necessary starting materials may be obtained by standard procedures of organic chemistry (see, for example, Advanced Organic Chemistry (Wiley-Interscience), Jerry March).
- the present invention also provides that the compounds of the formulae (I) and pharmaceutically-acceptable salts and in vivo hydrolysable esters thereof,
- Deprotection, salt formation or in-vivo hydrolysable ester formation may each be provided as a specific final process step.
- Y is a displaceable group
- suitable values for Y are for example, a halogeno or sulfonyloxy group, for example a chloro, bromo, methanesulfonyloxy or toluene-4-sulfonyloxy group.
- Such modifications also permit the formation of compounds in which X is SO or SO 2 from compounds in which X is S, by use of a suitable oxidising agent, using standard conditions.
- Pg are the following, or suitable derivatives thereof; Pg such as to give a carbamate (for example Pg as t-BOC or 2,2,2-trichloroethyloxycarbonyl), Pg as (1-4C)alkanoyl (for example acxetyl or chloroacetyl), phosphoramidate, allyloxy, benzyloxy (and methyl/nitro derivatives thereof) or sulfonyl (such as, for example, tosylate, mesylate, 4-nitrophenylsulfonyl, 4-methoxy-2,3,6-trimethyl-phenylsulfonyl). See the accompanying Examples for particular values of Pg.
- Pg such as to give a carbamate
- Pg for example Pg as t-BOC or 2,2,2-trichloroethyloxycarbonyl
- Pg as (1-4C)alkanoyl (for example acxetyl or chloroacetyl
- Pg may be removed by techniques available to the skilled chemist (see also techniques described elsewhere herein). For example, tosylate and mesylate may be removed using standard deprotection conditions, or Na/Li amalgam or Mg/MeOH under standard conditions; 4-nitrophenylsulfonyl may be removed using base and phenylthio or thioacetic acid; 4-methoxy-2,3,6-trimethyl-phenylsulfonyl may be removed using TFA deprotection under standard conditions.
- compounds of the formula (III) may be prepared by procedures which are selected from standard chemical techniques, techniques which are analogous to the synthesis of known, structurally similar compounds, or techniques which are analogous to the procedures described in the Examples.
- standard chemical techniques are as described in Houben Weyl, Methoden der Organische Chemie, E8a, Pt.I (1993), 45-225, B. J. Wakefield.
- Many amino-HET compounds are commercially available and may be converted into HN(Pg)-HET by standard techniques.
- the compound of the formula (II) may be formed by reacting a compound of the formula (II) wherein Y is hydroxy (hydroxy compound) with a chlorinating agent.
- a chlorinating agent for example, by reacting the hydroxy compound with thionyl chloride, in a temperature range of ambient temperature to reflux, optionally in a chlorinated solvent such as dichloromethane or by reacting the hydroxy compound with carbon tetrachloride/triphenyl phosphine in dichloromethane, in a temperature range of 0° C. to ambient temperature.
- a compound of the formula (II) wherein Y is chloro or iodo may also be prepared from a compound of the formula (II) wherein Y is mesylate or tosylate, by reacting the latter compound with lithium chloride or lithium iodide and crown ether, in a suitable organic solvent such as THF, in a temperature range of ambient temperature to reflux.
- the compound (II) may be prepared by reacting the hydroxy compound with (1-4C)alkanesulfonyl chloride or tosyl chloride in the presence of a mild base such as triethylamine or pyridine.
- the compound (II) may be prepared from the hydroxy compound under standard conditions.
- an optically active form of a compound of the formula (I) When an optically active form of a compound of the formula (I) is required, it may be obtained by carrying out one of the above procedures using an optically active starting material (formed, for example, by asymmetric induction of a suitable reaction step), or by resolution of a racemic form of the compound or intermediate using a standard procedure, or by chromatographic separation of diastereoisomers (when produced). Enzymatic techniques may also be useful for the preparation of optically active compounds and/or intermediates.
- a pure regioisomer of a compound of the formula (I) when required, it may be obtained by carrying out one of the above procedures using a pure regioisomer as a starting material, or by resolution of a mixture of the regioisomers or intermediates using a standard procedure.
- a compound of the formula (I), or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof for use in a method of treatment of the human or animal body by therapy.
- a method for producing an antibacterial effect in a warm blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of the present invention, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof.
- the invention also provides a compound of the formula (I), or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof for use as a medicament; and the use of a compound of the formula (I) of the present invention, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, in the manufacture of a medicament for use in the production of an antibacterial effect in a warm blooded animal, such as man.
- an in-vivo hydrolysable ester or a pharmaceutically-acceptable salt thereof, including a pharmaceutically-acceptable salt of an in-vivo hydrolysable ester (hereinafter in this section relating to pharmaceutical composition “a compound of this invention”) for the therapeutic (including prophylactic) treatment of mammals including humans, in particular in treating infection, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.
- the present invention provides a pharmaceutical composition which comprises a compound of the formula (I), an in-vivo hydrolysable ester or a pharmaceutically-acceptable salt thereof, including a pharmaceutically-acceptable salt of an in-vivo hydrolysable ester, and a pharmaceutically-acceptable diluent or carrier.
- compositions of this invention may be administered in standard manner for the disease condition that it is desired to treat, for example by oral, rectal or parenteral administration.
- the compounds of this invention may be formulated by means known in the art into the form of, for example, tablets, capsules, aqueous or oily solutions or suspensions, (lipid) emulsions, dispersible powders, suppositories, ointments, creams, aerosols (or sprays), drops and sterile injectable aqueous or oily solutions or suspensions.
- the pharmaceutical composition of this invention may also contain or be co-administered (simultaneously, sequentially or separately) with one or more known drugs selected from other clinically useful antibacterial agents (for example, ⁇ -lactams or aminoglycosides) and/or other anti-infective agents (for example, an antifungal triazole or amphotericin).
- drugs selected from other clinically useful antibacterial agents (for example, ⁇ -lactams or aminoglycosides) and/or other anti-infective agents (for example, an antifungal triazole or amphotericin).
- drugs for example, ⁇ -lactams or aminoglycosides
- other anti-infective agents for example, an antifungal triazole or amphotericin
- carbapenems for example meropenem or imipenem, to broaden the therapeutic effectiveness.
- Compounds of this invention may also contain or be co-administered with bactericidal/permeability-
- a suitable pharmaceutical composition of this invention is one suitable for oral administration in unit dosage form, for example a tablet or capsule which contains between 1 mg and 1 g of a compound of this invention, preferably between 100 mg and 1 g of a compound. Especially preferred is a tablet or capsule which contains between 50 mg and 800 mg of a compound of this invention, particularly in the range 100 mg to 500 mg.
- a pharmaceutical composition of the invention is one suitable for intravenous, subcutaneous or intramuscular injection, for example an injection which contains between 0.1% w/v and 50% w/v (between 1 mg/ml and 500 mg/ml) of a compound of this invention.
- Each patient may receive, for example, a daily intravenous, subcutaneous or intramuscular dose of 0.5 mgkg ⁇ 1 to 20 mgkg ⁇ 1 of a compound of this invention, the composition being administered 1 to 4 times per day.
- a daily dose of 5 mgkg ⁇ 1 to 20 mgkg ⁇ 1 of a compound of this invention is administered.
- the intravenous, subcutaneous and intramuscular dose may be given by means of a bolus injection.
- the intravenous dose may be given by continuous infusion over a period of time.
- each patient may receive a daily oral dose which may be approximately equivalent to the daily parenteral dose, the composition being administered 1 to 4 times per day.
- a pharmaceutical composition to be dosed intravenously may contain advantageously (for example to enhance stability) a suitable bactericide, antioxidant or reducing agent, or a suitable sequestering agent.
- the pharmaceutically-acceptable compounds of the present invention are useful antibacterial agents having a good spectrum of activity in vitro against standard Gram-positive organisms, which are used to screen for activity against pathogenic bacteria.
- the pharmaceutically-acceptable compounds of the present invention show activity against enterococci, pneumococci and methicillin resistant strains of S.aureus and coagulase negative staphylococci.
- the antibacterial spectrum and potency of a particular compound may be determined in a standard test system.
- the (antibacterial) properties of the compounds of the invention may also be demonstrated and assessed in-vivo in conventional tests, for example by oral and/or intravenous dosing of a compound to a warm-blooded mammal using standard techniques.
- Staphylococci were tested on agar, using an inoculum of 10 4 CFU/spot and an incubation temperature of 37° C. for 24 hours—standard test conditions for the expression of methicillin resistance.
- Streptococci and enterococci were tested on agar supplemented with 5% defibrinated horse blood, an inoculum of 10 4 CFU/spot and an incubation temperature of 37° C. in an atmosphere of 5% carbon dioxide for 48 hours—blood is required for the growth of some of the test organisms.
- Example 1 Organism MIC ( ⁇ g/ml) Staphylococcus aureus : Oxford 2 Novb. Res 4 MRQR 4 Coagulase Negative Staphylococci MS 1 MR 2 Streptococcus pyogenes C203 8 Enterococcus faecalis 8 Bacillus subtilis 1
- 3-Aminoisoxazole (10 g, 0.12 M) and 4-dimethylaminopyridine (500 mg, 4.1 mM) were dissolved in pyridine (200 ml), and treated in portions with di-t-butyl dicarbonate (51.94 g, 0.24 M). The mixture was stirred at ambient temperature for 18 hours, then evaporated to dryness. The residue was dissolved in methanol (200 ml) and treated with sodium hydroxide solution (2N, 60 ml), then stirred for 2 hours. After acidification with aqueous citric acid (10%, 160 ml), the mixture was added to water (750 ml), and the desired product (15.9 g) collected by filtration.
- N-Allyl-3-(t-butoxycarbonylamino)isoxazole (4.48 g, 20 mM) and 4-bromo-N-hydroxybenzenecarboximidoyl chloride (4.92 g, 20 mM, see WO 98/07708) were dissolved in anhydrous diethyl ether (50 ml), and stirred vigorously at ambient temperature under nitrogen during the addition of triethylamine (2.63 g, 26 mM). Stirring was continued for 18 hours, the mixture diluted with ethyl acetate (100 ml), and washed successively with water (150 ml) and brine (3 ⁇ 100 ml).
- Tris(dibenzylideneacetone)dipalladium (24 mg, 0.026 mM) and triphenylarsine (3 mg, 0.01 mM) were dissolved in degassed N-methylpyrrolidone (15 ml) under nitrogen.
- 3,4-Difluorobenzohydroximinoyl chloride (4 g, 20.9 mM) and allyl alcohol (1.21 g, 20.9 mM) were dissolved in anhydrous diethyl ether (250 ml) under a nitrogen atmosphere, and a solution of triethylamine (2.74 g, 27.16 mM) in anhydrous diethyl ether (10 ml) was run in dropwise over 20 minutes. A copious white precipitate formed, and the mixture was stirred for 18 hours. The mixture was treated with ethyl acetate (800 ml) and brine (250 ml), the organic layer separated, and washed with brine (500 ml).
- a slurry of sodium hydride (60% in oil, 22 mg, 0.55 mM) in anhydrous N,N-dimethylformamide (0.5 ml) was stirred under an atmosphere of nitrogen and treated dropwise with a solution of imidazole (38 mg, 0.55 mM) in anhydrous N,N-dimethylformamide (0.5 ml) at 0°.
- the least polar spot was the triazol-1-yl isomer (21 mg).
- the mixture was diluted with dichloromethane (15 ml) and the organic layer separated, and washed successively with aqueous sodium dihydrogen phosphate, sodium bicarbonate, water, and brine (15 ml of each), the organic layer separated, and washed successively with water (15 ml) and brine (15 ml).
- the crude product was chromatographed on a 5 g silica Mega Bond Elut® column, eluting with 2.5% methanol in dichloromethane. Relevant fractions were combined, dissolved in dichloromethane, and the desired product (163 mg) precipitated by addition of isohexane.
- N-Allyl-3-(t-butoxycarbonylamino)isoxazole (4.67 g, 20.89 mM) and 3,4-difluorobenzohydroximinoyl chloride (4 g, 20.9 mM) were treated with dry triethylamine (2.74 g, 27.16 mM) under essentially the conditions used for the comparable intermediate for Example 4.
- the crude material was dissolved in the minimum volume of diethyl ether, and the desired product (4.29 g) precipitated by the addition of isohexane.
- Crude product was then purified by chromatography on a 50 g silica Mega Bond Elut® column, eluting with a gradient from 0-5% methanol in dichloromethane, followed by re-chromatography of appropriate fractions on a 20 g silica Mega Bond Elut® column, eluting with a gradient from 0-20% ethyl acetate in dichloromethane. Relevant fractions were combined to give the desired product (255 mg).
- Crude product from this stage was a mixture of the title product and its t-butoxycarbonyl derivative. This was treated with trifluoroacetic acid, according to the procedure of Example 20. Crude product was chromatographed on a 10 g silica Mega Bond Elut® column, eluting first with 10% methanol in dichloromethane, then with a mixture of dichloromethane/methanol/ammonia 90:10:1. Relevant fractions were combined to give the desired product (106 mg).
- Formaldoxime was prepared by dissolving paraformaldehyde (3.17 g, 0.105 M) and hydroxylamine hydrochloride (7.23 g, 0.104 M) in water (75 ml) at 80°. Sodium acetate (14.16 g, 0.104 M) was added, the mixture heated to reflux for 15 minutes, and then cooled to room temperature.
- 3-Fluoro-4-iodoaniline (15.36 g, 0.069 M) and concentrated hydrochloric acid (18.51 g) were dissolved in a mixture of water (30 ml) and ice (30 g). The solution was treated at 0-5° with a solution of sodium nitrite (4.81 g, 0.07 M) in water (15 ml). The pH of the resulting red-brown solution was adjusted to 5-6 by the addition of sodium acetate (6.05 g, 0.044 M).
- 3-Fluoro-4-iodobenzaldoxime (4.9 g, 18.5 mM) was dissolved in N,N-dimethylformamide (30 ml) and the stirred solution treated at 15° with N-chlorosuccinimide (0.72 g, 5.4 mM). Reaction was initiated by the addition of concentrated hydrochloric acid vapour (10 ml), and warming to 40°. Further N-chlorosuccinimide (2 g, 15 mM) was added, and the mixture stirred at ambient temperature for 16 hours.
- Tris(dibenzylideneacetone)dipalladium (141 mg, 0.154 mM) and triphenylarsine (188 mg, 0.616 mM) were dissolved in degassed N-methylpyrrolidone (40 ml) under nitrogen, and stirred for 15 minutes.
- 1-t-butoxycarbonyl-4-trifluorosulfonyloxy-1,2,5,6-tetrahydropyridine (9.93 g, 0.03 M) was dissolved in anhydrous tetrahydrofuran (200 ml), lithium chloride (8.82 g, 0.21 M) and lithium carbonate (2.22 g, 0.03 M) added, and the mixture refluxed for 1 hour under nitrogen.
- Hexamethylditin (9.83 g, 0.03 M) and tetrakis(triphenylphosphine)palladium (1.73 g, 1.5 mM) were added, and refluxing continued for 18 hours.
- Injection II (e.g. bolus)
- Compound X 10% w/v Isotonic aqueous solution to 100%
- Injection IV (e.g. infusion) Compound X 1% w/v Isotonic aqueous solution to 100%
- Buffers such as polyethylene glycol, polypropylene glycol, glycerol or ethanol, glidants (such as silicon dioxide) or complexing agents such as a cyclodextrin (for example, hydroxy-propyl ⁇ -cyclodextrin or sulfo-butyl-ether ⁇ -cyclodextrin) may be used to aid formulation.
- a cyclodextrin for example, hydroxy-propyl ⁇ -cyclodextrin or sulfo-butyl-ether ⁇ -cyclodextrin
- improvements in aqueous solubility may be achieved, for example, by conjugation of a compound of formula (I) with a phospholipid (such as a (phospho)choline derivative) to form a micellar emulsion.
- the above formulations may be obtained by conventional procedures well known in the pharmaceutical art, for example as described in “Remington: The Science & Practice of Pharmacy” Vols. I & II (Ed. A. R. Gennaro (Chairman) et al; Publisher: Mack Publishing Company, Easton, Pa.; 19th Edition—1995) and “Pharmaceutics—The Science of Dosage Form Design” (Ed. M. E. Aulton; Publisher: Churchill Livingstone; first published 1988).
- the tablets (a)-(d) may be (polymer) coated by conventional means, for example to provide an enteric coating of cellulose acetate phthalate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Compounds of the formula (I), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof,
wherein, for example, X is O, S or NH; HET is an optionally substituted C-linked 5-membered heteroaryl ring containing 2 to 4 heteroatoms independently selected from N, O and S;
Q is selected from, for example, Q1 and Q2:
Q is selected from, for example, Q1 and Q2:
- R2 and R3 are independently hydrogen or fluoro;
T is selected from a range of groups, for example, an N-linked (fully unsaturated) 5-membered heteroaryl ring system or a group of formula (TC5): - wherein Rc is, for example, R13CO—, R13SO2— or R13CS—;
- wherein R13 is, for example, optionally substituted (1-10C)alkyl or R14C(O)O(1-6C)alkyl
- wherein R14 is optionally substituted (1-10C)alkyl; are useful as antibacterial agents; and processes for their manufacture and pharmaceutical compositions containing them are described.
Description
- The present invention relates to antibiotic compounds and in particular to antibiotic compounds containing a substituted isoxazoline ring. This invention further relates to processes for their preparation, to intermediates useful in their preparation, to their use as therapeutic agents and to pharmaceutical compositions containing them.
- The international microbiological community continues to express serious concern that the evolution of antibiotic resistance could result in strains against which currently available antibacterial agents will be ineffective. In general, bacterial pathogens may be classified as either Gram-positive or Gram-negative pathogens. Antibiotic compounds with effective activity against both Gram-positive and Gram-negative pathogens are generally regarded as having a broad spectrum of activity. The compounds of the present invention are regarded primarily as effective against Gram-positive pathogens because of their particularly good activity against such pathogens.
- Gram-positive pathogens, for example Staphylococci, Enterococci, Streptococci and mycobacteria, are particularly important because of the development of resistant strains which are both difficult to treat and difficult to eradicate from the hospital environment once established. Examples of such strains are methicillin resistant staphylococcus (MRSA), methicillin resistant coagulase negative staphylococci (MRCNS), penicillin resistant Streptococcus pneumoniae and multiply resistant Enterococcus faecium.
- The major clinically effective antibiotic for treatment of such resistant Gram-positive pathogens is vancomycin. Vancomycin is a glycopeptide and is associated with nephrotoxicity and ototoxicity. Furthermore, and most importantly, antibacterial resistance to vancomycin and other glycopeptides is also appearing. This resistance is increasing at a steady rate rendering these agents less and less effective in the treatment of Gram-positive pathogens.
- Certain antibacterial compounds containing an oxazolidinone ring have been described in the art (for example, Walter A. Gregory et al in J. Med. Chem. 1990, 33, 2569-2578 and Chung-Ho Park et al in J. Med. Chem. 1992, 35, 1156-1165). Such antibacterial oxazolidinone compounds with a 5-methylacetamide sidechain may be subject to mammalian peptidase metabolism.
- Furthermore, bacterial resistance to known antibacterial agents may develop, for example, by (i) the evolution of active binding sites in the bacteria rendering a previously active pharmacophore less effective or redundant, and/or (ii) the evolution of means to chemically deactivate a given pharmacophore. Therefore, there remains an ongoing need to find new antibacterial agents with a favourable pharmacological profile, in particular for compounds containing new pharmacophores.
- We have discovered a class of antibiotic compounds containing a new class of substituted isoxazoline (4,5-dihydro-isoxazole) ring which has useful activity against Gram-positive pathogens including MRSA and MRCNS and, in particular, against various strains exhibiting resistance to vancomycin and against E. faecium strains resistant to both aminoglycosides and clinically used β-lactams.
-
- X is O, NH, S, SO or SO2;
- HET is a C-linked 5-membered heteroaryl ring containing 2 to 4 heteroatoms independently selected from N, O and S, which ring is optionally substituted on an available carbon atom by 1 or 2 substituents independently selected from (1-4C)alkyl, amino, (1-4C)alkylamino, (1-4C)alkoxy, (1-4C)alkoxycarbonyl and halogen, and/or on an available nitrogen atom (provided that the ring is not thereby quaternised) by (1-4C)alkyl;
or - HET is a C-linked 6-membered heteroaryl ring containing 2 or 3 nitrogen heteroatoms, which ring is optionally substituted on any available C atom by 1, 2 or 3 substituents independently selected from (1-4C)alkyl, amino, (1-4C)alkylamino, (1-4C)alkoxy, (1-4C)alkoxycarbonyl and halogen;
- Q is selected from Q1 to Q9:-
- wherein R2 and R3 are independently hydrogen or fluoro;
- wherein A1 is carbon or nitrogen; B1 is O or S (or, in Q9 only, NH); Xq is O, S or N—R1 (wherein R1 is hydrogen, (1-4C)alkyl or hydroxy-(1-4C)alkyl); and wherein in Q7 each A1 is independently selected from carbon or nitrogen, with a maximum of 2 nitrogen heteroatoms in the 6-membered ring, and Q7 is linked to T via any of the A1 atoms (when A1 is carbon), and linked in the 5-membered ring via the specified carbon atom, or via A1 when A1 is carbon; Q8 is linked to T via either of the specified carbon atoms in the 5-membered ring, and linked in the benzo-ring via either of the two specified carbon atoms on either side of the linking bond shown; and Q9 is linked via either of the two specified carbon atoms on either side of the linking bond shown;
- wherein T is selected from the groups in (TA) to (TD) below (wherein AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1 and CY2 are defined hereinbelow);
- (TA) T is selected from the following groups:-
- (TAa) AR1, AR1-(1-4C)alkyl-, AR2 (carbon linked), AR3;
- (TAb) AR1-CH(OH), AR2-CH(OH)—, AR3-CH(OH)—;
- (TAc) AR1-CO—, AR2-CO—, AR3-CO—, AR4-CO—;
- (TAd) AR1-O—, AR2-O—, AR3-O—;
- (TAe) AR1-S(O)q—, AR2-S(O)q—, AR3-S(O)q— (q is 0, 1 or 2);
- (TAf) an optionally substituted N-linked (fully unsaturated) 5-membered heteroaryl ring system containing 1, 2 or 3 nitrogen atoms;
- (TAg) a carbon linked tropol-3-one or tropol-4-one, optionally substituted in a position not adjacent to the linking position; or
- (TB) T is selected from the following groups:-
- (TBa) halo or (1-4C)alkyl {optionally substituted by one or more groups each independently selected from hydroxy, (1-4C)alkoxy, (1-4C)alkanoyl, cyano, halo, trifluoromethyl, (1-4C)alkoxycarbonyl, —NRvRw, (1-6C)alkanoylamino, (1-4C)alkoxycarbonylamino, N-(1-4C)alkyl-N-(1-6C)alkanoylamino, (1-4C)alkylS(O)q— (q is 0, 1 or 2), CY1, CY2 or AR1};
- (TBb) —NRv1Rw1;
- (TBc) ethenyl, 2-(1-4C)alkylethenyl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl, 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-(AR1)ethenyl, 2-(AR2)ethenyl;
- (TBd) R10CO—, R10S(O)q— (q is 0, 1 or 2) or R10CS—
- wherein R10 is selected from the following groups:-
- (TBda) CY1 or CY2;
- (TBdb) hydrogen, (1-4C)alkoxycarbonyl, trifluoromethyl, —NRvRw, ethenyl, 2-(1-4C)alkylethenyl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl, 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-(AR1)ethenyl or 2-(AR2)ethenyl; or
- (TBdc) (1-4C)alkyl {optionally substituted as defined in (TBa) above, or by (1-4C)alkylS(O)pNH— or (1-4C)alkylS(O)p-((1-4C)alkyl)N— (p is 1 or 2)};
- wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl; Rv1 is hydrogen, (1-4C)alkyl or (3-8C)cycloalkyl; Rw1 is hydrogen, (1-4C)alkyl, (3-8C)cycloalkyl, (1-4C)alkyl-CO— or (1-4C)alkylS(O)q— (q is 1 or 2); or
- (TC) T is selected from the following groups:-
- (TCa) an optionally substituted, fully saturated 4-membered monocyclic ring containing 1 heteroatom selected from O, N and S (optionally oxidised), and linked via a ring nitrogen or sp3 carbon atom;
- (TCb) an optionally substituted 5-membered monocyclic ring containing 1 heteroatom selected from O, N and S (optionally oxidised), and linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom, which monocyclic ring is fully saturated other than (where appropriate) at a linking sp2 carbon atom;
- (TCc) an optionally substituted 6- or 7-membered monocyclic ring containing 1 or 2 heteroatoms independently selected from O, N and S (optionally oxidised), and linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom, which monocyclic ring is fully saturated other than (where appropriate) at a linking sp2 carbon atom; or
- (TD) T is selected from the following groups:-
- (TDa) a bicyclic spiro-ring system containing 0, 1 or 2 ring nitrogen atoms as the only ring heteroatoms, the structure consisting of a 5- or 6-membered ring system (linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom) substituted (but not adjacent to the linking position) by a 3-, 4- or 5-membered spiro-carbon-linked ring; which bicyclic ring system is
- (i) fully saturated other than (where appropriate) at a linking sp2 carbon atom;
- (ii) contains one —N(Rc)-group in the ring system (at least two carbon atoms away from the linking position when the link is via a nitrogen atom or an sp2 carbon atom) or one —N(Rc)-group in an optional substituent (not adjacent to the linking position) and is
- (iii) optionally further substituted on an available ring carbon atom; or
- (TDb) a 7-, 8- or 9-membered bicyclic ring system (linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom) containing 0, 1 or 2 ring nitrogen atoms (and optionally a further O or S ring heteroatom), the structure containing a bridge of 1, 2 or 3 carbon atoms; which bicyclic ring system is
- (i) fully saturated other than (where appropriate) at a linking sp2 carbon atom;
- (ii) contains one O or S heteroatom, or one —N(Rc)-group in the ring (at least two carbon atoms away from the linking position when the link is via a nitrogen atom or an sp2 carbon atom) or one —N(Rc)-group in an optional substituent (not adjacent to the linking position) and is
- (iii) optionally further substituted on an available ring carbon atom;
- wherein Rc is selected from groups (Rc1) to (Rc5):-
- (Rc1) (1-6C)alkyl {optionally substituted by one or more (1-4C)alkanoyl groups (including geminal disubstitution) and/or optionally monosubstituted by cyano, (1-4C)alkoxy, trifluoromethyl, (1-4C)alkoxycarbonyl, phenyl (optionally substituted as for AR defined hereinafter), (1-4C)alkylS(O)q— (q is 0, 1 or 2); or, on any but the first carbon atom of the (1-6C)alkyl chain, optionally substituted by one or more groups (including geminal disubstitution) each independently selected from hydroxy and fluoro, and/or optionally monosubstituted by oxo, —NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl], (1-6C)alkanoylamino, (1-4C)alkoxycarbonylamino, N-(1-4C)alkyl-N-(1-6C)alkanoylamino, (1-4C)alkylS(O)pNH— or (1-4C)alkylS(O)p-((1-4C)alkyl)N— (p is 1 or 2)};
- (Rc2) R13CO—, R13SO2— or R13CS—
- wherein R13 is selected from (Rc2a) to (Rc2e):-
- (Rc2a) AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1, CY2;
- (Rc2b) hydrogen, (1-4C)alkoxycarbonyl, trifluoromethyl, —NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl], ethenyl, 2-(1-4C)alkylethenyl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl, 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-(AR1)ethenyl, 2-(AR2)ethenyl, 2-(AR2a)ethenyl;
- (Rc2c) (1-10C)alkyl {optionally substituted by one or more groups (including geminal disubstitution) each independently selected from hydroxy, (1-10C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkanoyl, phosphoryl [—O—P(O)(OH)2, and mono- and di-(1-4C)alkoxy derivatives thereof], phosphiryl [—O—P(OH)2 and mono- and di-(1-4C)alkoxy derivatives thereof], phosphiryl [—O—P(OH)2and mono- and d-(1- 4C)alkoxy derivatives thereof], and amino; and/or optionally substituted by one group selected from phosphonate [phosphono, —P(O)(OH)2, and mono- and di-(1-4C)alkoxy derivatives thereof], phosphinate [—P(OH)2 and mono- and di-(1-4C)alkoxy derivatives thereof], cyano, halo, trifluoromethyl, (1-4C)alkoxycarbonyl, (1-4C)alkoxy-(1-4C)alkoxycarbonyl, (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxycarbonyl, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-6C)alkanoylamino, (1-4C)alkoxycarbonylamino, N-(1-4C)alkyl-N-(1-6C)alkanoylamino, (1-4C)alkylaminocarbonyl, di((1-4C)alkyl)aminocarbonyl, (1-4C)alkylS(O)pNH—, (1-4C)alkylS(O)p-((1-4C)alkyl)N—, fluoro(1-4C)alkylS(O)pNH—, fluoro(1-4C)alkylS(O)p((1-4C)alkyl)N—, (1-4C)alkylS(O)q— [the (1-4C)alkyl group of (1-4C)alkylS(O)q— being optionally substituted by one substituent selected from hydroxy, (1-4C)alkoxy, (1-4C)alkanoyl, phosphoryl [—O—P(O)(OH)2, and mono- and di-(1-4C)alkoxy derivatives thereof], phosphiryl [—O—P(OH)2 and mono- and di-(1-4C)alkoxy derivatives thereof], amino, cyano, halo, trifluoromethyl, (1-4C)alkoxycarbonyl, (1-4C)alkoxy-(1-4C)alkoxycarbonyl, (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxycarbonyl, carboxy, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-6C)alkanoylamino, (1-4C)alkoxycarbonylamino, N-(1-4C)alkyl-N-(1-6C)alkanoylamino, (1-4C)alkylaminocarbonyl, di((1-4C)alkyl)aminocarbonyl, (1-4C)alkylS(O)pN—, (1-4C)alkylS(O)p-((1-4C)alkyl)N—, (1-4C)alkylS(O)q—, AR1-S(O)q—, AR2-S(O)q—, AR3-S(O)q— and also AR2a, AR2b, AR3a and AR3b versions of AR2 and AR3 containing groups], CY1, CY2, AR1, AR2, AR3, AR1-O—, AR2-O—, AR3-O—, AR1-S(O)q—, AR2-S(O)q—, AR3-S(O)q—, AR1-NH—, AR2-NH—, AR3-NH— (p is 1 or 2 and q is 0, 1 or 2), and also AR2a, AR2b, AR3a and AR3b versions of AR2 and AR3 containing groups};
- (Rc2d) R14C(O)O(1-6C)alkyl wherein R14 is AR1, AR2, (1-4C)alkylamino (the (1-4C)alkyl group being optionally substituted by (1-4C)alkoxycarbonyl or by carboxy), benzyloxy-(1-4C)alkyl or (1-10C)alkyl {optionally substituted as defined for (Rc2c)};
- (Rc2e) R15O— wherein R15 is benzyl, (1-6C)alkyl {optionally substituted as defined for
- (Rc2c)}, CY1, CY2 or AR2b;
- (Rc3) hydrogen, cyano, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-(AR1)ethenyl, 2-(AR2)ethenyl, or of the formula (Rc3a)
- wherein X00 is —OR17, —SR17, —NHR17 and —N(R17)2;
- wherein R17 is hydrogen (when X00 is —NHR17 and —N(R17)2), and R17 is (1-4C)alkyl, phenyl or AR2 (when X00 is —OR17, —SR17 and —NHR17); and R16 is cyano, nitro, (1-4C)alkylsulfonyl, (4-7C)cycloalkylsulfonyl, phenylsulfonyl, (1-4C)alkanoyl and (1-4C)alkoxycarbonyl;
- (Rc4) trityl, AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b;
- (Rc5) RdOC(Re)=CH(C═O)—, RfC(═O)C(═O)—, RgN═C(Rh)C(═O)— or RiNHC(Rj)=CHC(═O)— wherein Rd is (1-6C)alkyl; Re is hydrogen or (1-6C)alkyl, or Rd and Re together form a (3-4C)alkylene chain; Rf is hydrogen, (1-6C)alkyl, hydroxy(1-6C)alkyl, (1-6C)alkoxy(1-6C)alkyl, —NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl], (1-6C)alkoxy, (1-6C)alkoxy(1-6C)alkoxy, hydroxy(2-6C)alkoxy, (1-4C)alkylamino(2-6C)alkoxy, di-(1-4C)alkylamino(2-6C)alkoxy; Rg is (1-6C)alkyl, hydroxy or (1-6C)alkoxy; Rh is hydrogen or (1-6C)alkyl; Ri is hydrogen, (1-6C)alkyl, AR1, AR2, AR2a,
- AR2b and Rj is hydrogen or (1-6C)alkyl;
wherein - AR1 is an optionally substituted phenyl or optionally substituted naphthyl;
- AR2 is an optionally substituted 5- or 6-membered, fully unsaturated (i.e with the maximum degree of unsaturation) monocyclic heteroaryl ring containing up to four heteroatoms independently selected from O, N and S (but not containing any O—O, O—S or S—S bonds), and linked via a ring carbon atom, or a ring nitrogen atom if the ring is not thereby quaternised;
- AR2a is a partially hydrogenated version of AR2 (i.e. AR2 systems retaining some, but not the full, degree of unsaturation), linked via a ring carbon atom or linked via a ring nitrogen atom if the ring is not thereby quaternised;
- AR2b is a fully hydrogenated version of AR2 (i.e. AR2 systems having no unsaturation), linked via a ring carbon atom or linked via a ring nitrogen atom;
- AR3 is an optionally substituted 8-, 9- or 10-membered, fully unsaturated (i.e with the maximum degree of unsaturation) bicyclic heteroaryl ring containing up to four heteroatoms independently selected from O, N and S (but not containing any O—O, O—S or S—S bonds), and linked via a ring carbon atom in either of the rings comprising the bicyclic system;
- AR3a is a partially hydrogenated version of AR3 (i.e. AR3 systems retaining some, but not the full, degree of unsaturation), linked via a ring carbon atom, or linked via a ring nitrogen atom if the ring is not thereby quaternised, in either of the rings comprising the bicyclic system;
- AR3b is a fully hydrogenated version of AR3 (i.e. AR3 systems having no unsaturation), linked via a ring carbon atom, or linked via a ring nitrogen atom, in either of the rings comprising the bicyclic system;
- AR4 is an optionally substituted 13- or 14-membered, fully unsaturated (i.e with the maximum degree of unsaturation) tricyclic heteroaryl ring containing up to four heteroatoms independently selected from O, N and S (but not containing any O—O, O—S or S—S bonds), and linked via a ring carbon atom in any of the rings comprising the tricyclic system;
- AR4a is a partially hydrogenated version of AR4 (i.e. AR4 systems retaining some, but not the full, degree of unsaturation), linked via a ring carbon atom, or linked via a ring nitrogen atom if the ring is not thereby quaternised, in any of the rings comprising the tricyclic system;
- CY1 is an optionally substituted cyclobutyl, cyclopentyl or cyclohexyl ring;
- CY2 is an optionally substituted cyclopentenyl or cyclohexenyl ring.
- In this specification, where it is stated that a ring may be linked via an sp2 carbon atom, which ring is fully saturated other than (where appropriate) at a linking sp2 carbon atom, it is to be understood that the ring is linked via one of the carbon atoms in a C═C double bond.
- In another embodiment, (Rc1) is as defined above other than the optional phenyl substituent on (1-6C)alkyl is optionally substituted as for AR1 defined hereinafter; and (Rc2c), is as defined above and further includes carboxy as an optional substituent on R13 as (1-10C)alkyl.
- (TAf) When T is an optionally substituted N-linked (fully unsaturated) 5-membered heteroaryl ring system containing 1, 2 or 3 nitrogen atoms, it is preferably selected from a group of formula (TAf1) to (TAf6) below (particularly (TAf1), (TAf2), (TAf4) and (TAf5), and especially (TAf1) and/or (TAf2)). The above preferred values of (TAf) are particularly preferred when present in Q1 or Q2, especially Q1.
wherein: - R6 is selected (independently where appropriate) from hydrogen, (1-4C)alkyl, (1-4C)alkoxycarbonyl, (1-4C)alkanoyl, carbamoyl and cyano;
- R4 and R5 are independently selected from hydrogen, halo, trifluoromethyl, cyano, nitro, (1-4C)alkoxy, (1-4C)alkylS(O)q— (q is 0, 1 or 2), (1-4C)alkanoyl, (1-4C)alkoxycarbonyl, (2-4C)alkanoyloxy-(1-4C)alkyl, benzoxy-(1-4C)alkyl, (2-4C)alkanoylamino, —CONRvRw, —NRvRw and (1-4C)alkyl {optionally substituted by hydroxy, trifluoromethyl, cyano, nitro, (1-4C)alkoxy, (1-4C)alkylS(O)q— (q is 0, 1 or 2), (1-4C)alkoxycarbonyl, (1-4C)alkanoylamino, —CONRvRw, —NRvRw; wherein RvRw is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl}; or R4 is selected from one of the groups in (TAfa) to (TAfc) below, or (where appropriate) one of R4 and R5 is selected from the above list of R4 and R5 values, and the other is selected from one of the groups in (TAfa) to (TAfc) below:-
- (TAfa) a group of the formula (TAfa1)
- wherein Z0 is hydrogen or (1-4C)alkyl;
- X0 and Y0 are independently selected from hydrogen, (1-4C)alkyl, (1-4C)alkoxycarbonyl, halo, cyano, nitro, (1-4C)alkylS(O)q— (q is 0, 1 or 2), RvRwNSO2—, trifluoromethyl, pentafluoroethyl, (1-4C)alkanoyl and —CONRvRw [wherein Rv is hydrogen or (1-4C)alkyl;
- Rw is hydrogen or (1-4C)alkyl]; or
- one of X0 and Y0 is selected from the above list of X0 and Y0 values, and the other is selected from phenyl, phenylcarbonyl, —S(O)q-phenyl (q is 0, 1 or 2), N-(phenyl)carbamoyl, phenylaminosulfonyl, AR2, (AR2)-CO—, (AR2)-S(O)q— (q is 0, 1 or 2), N-(AR2)carbamoyl and (AR2)aminosulfonyl; wherein any phenyl group in (TAfa) may be optionally substituted by up to three substituents independently selected from (1-4C)alkyl, cyano, trifluoromethyl, nitro, halo and (1-4C)alkylsulfonyl;
- (TAjb) an acetylene of the formula —≡—H or —≡-(1-4C)alkyl;
- (TAfc) —X1—Y1-AR2, —X1—Y1-AR2a, —X1—Y1-AR2b, —X1—Y-AR3, —X1-AR3a or —X1—Y1-AR3b;
- wherein X1 is a direct bond or —CH(OH)— and
- Y1 is —(CH2)m—, —(CH2)n—NH—(CH2)m, —CO—(CH2)m—, —CONH—(CH2)m—, —C(═S)NH—(CH2)m— or —C(═O)O—(CH2)m—;
- or wherein X1 is —(CH2)n— or —CH(Me)-(CH2)m— and
- Y1 is —(CH2)m—NH—(CH2)m—, —CO—(CH2)m—, —CONH—(CH2)m—, —C(═S)NH—(CH2)m—, —C(═O)O—(CH2)m— or —S(O)q—(CH2)m—;
- or wherein X1 is —CH2O—, —CH2NH— or —CH2N((1-4C)alkyl)- and
- Y1 is —CO—(CH2)m—, —CONH—(CH2)m— or —C(═S)NH—(CH2)m—; and additionally Y1 is —SO2— when X1 is —CH2NH— or —CH2N((1-4C)alkyl)-, and Y1 is —(CH2)m— when X1 is —CH2O— or — CH2N((1-4C)alkyl)-; wherein n is 1, 2 or 3; m is 0, 1, 2 or 3 and q is 0, 1 or 2; and when Y1 is —(CH2)m—NH—(CH2)m— each m is independently selected from 0, 1, 2 or 3.
- It is to be understood that when a value for —X1— is a two-atom link and is written, for example, as —CH2NH— it is the left hand part (—CH2— here) which is bonded to the group of formula (TAf1) to (TAf6) and the right hand part (—NH— here) which is bonded to —Y1— in the definition in (TAfc). Similarly, when —Y1— is a two-atom link and is written, for example, as —CONH— it is the left hand part of —Y1— (—CO— here) which is bonded to the right hand part of —X1—, and the right hand part of —Y— (—NH— here) which is bonded to the AR2, AR2a, AR2b, AR3, AR3a or AR3b moiety in the definition in (TAfc).
- Preferably R6 is hydrogen or (1-4C)alkyl, and R4 and R5 are independently selected from hydrogen, (1-4C)alkyl or one of R4 and R5 is selected from group (TAfa). Other preferable substituents on the (TAf1) to (TAf6) are illustrated in the accompanying Examples. Most preferable is (TAf2) with such preferable substituents.
- (TAg) When T is a carbon linked tropol-3-one or tropol-4-one, optionally substituted in a position not adjacent to the linking position (TAg), it is preferably selected from a group of formula (TAg1), (TAg2) or (TAg3). The above preferred values of (TAg) are particularly preferred when present in Q1 or Q2, especially Q1.
wherein R7 is selected from - (TAga) hydrogen, (1-4C)alkyl {optionally substituted by one or two substituents (excluding geminal disubstitution) independently selected from fluoro, hydroxy, (1-4C)alkoxy and —NRvRw]}; or
- (TAgb) R8—O—, R8—S—, R8—NH— or R8R8—N—;
- wherein R8 is selected (independently where appropriate) from hydrogen, (1-4C)alkyl or (3-8C)cycloalkyl {both optionally substituted by one or two substituents (excluding geminal disubstitution) independently selected from hydroxy, (1-4C)alkoxy, (1-4C)alkoxycarbonyl and —NRvRw}, (2-4C)alkenyl {optionally substituted by one or two —NRvRw substituents}, (1-4C)alkanoyl {optionally substituted by one or two substituents independently selected from —NRvRw and hydroxy}, phenyl-(1-4C)alkyl or pyridyl-(1-4C)alkyl {the phenyl and pyridyl (preferably pyridin-4-yl) rings being optionally substituted by one or two —NRvRw substituents}; or
- (TAgc) morpholino, thiomorpholino, pyrrolidino {optionally independently substituted in the 3- and/or 4-positions by (1-4C)alkyl}, piperidino substituted in the 4-position by R9—, R9—O—, R9—S—, R9—NH— or R9R9—N—; wherein R9 is selected (independently where appropriate) from hydrogen, (1-4C)alkyl {optionally substituted by one or two (excluding geminal disubstitution) hydroxy, (1-4C)alkoxy, (1-4C)alkoxycarbonyl or —NRvRw} and piperazino {optionally substituted in the 4-position by (1-4C)alkyl, (3-8C)cycloalkyl, (1-4C)alkanoyl, (1-4C)alkoxycarbonyl or (1-4C)alkylsulfonyl, and optionally independently substituted in the 3- and/or 5-positions by (1-4C)alkyl}; wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl.
- (TC) Preferred values for the optional substituents and groups defined in (TCa) to (TCc) are defined by formulae (TC1) to (TC4):-
- wherein in (TC1): >A3-B3— is >C(Rq)-CH(Rr)- and G is —O—, —S—, —SO—, —SO2— or >N(Rc);
- wherein in (TC2): m1 is 0, 1 or 2; >A3-B3— is >C═C(Rr)- or >C(Rq)-CH(Rr)- and G is —O—, —S—, —SO—, —SO2— or >N(Rc);
- wherein in (TC3): m1 is 0, 1 or 2; >A3-B3— is >C(Rq)-CH(Rr)- (other than when Rq and Rr are both together hydrogen) and G is —O—, —S—, —SO—, —SO2— or >N(Rc);
- wherein in (TC4): n1 is 1 or 2; o1 is 1 or 2 and n1+o1=2 or 3; >A3-B3— is >C═C(Rr)- or >C(Rq)-CH(Rr)- or >N—CH2— and G is —O—, —S—, —SO—, —SO2— or >N(Rc); Rp is hydrogen, (1-4C)alkyl (other than when such substitution is defined by >A3-B3—), hydroxy, (1-4C)alkoxy or (1-4C)alkanoyloxy;
- wherein in (TC1), (TC2) and (TC4); m1, n1 and o1 are as defined hereinbefore:
- >A3-B3— is >N—CH2— and G is >C(R11)(R12), >C═O, >C—OH, >C-(1-4C)alkoxy, >C═N—OH, >C═N-(1-4C)alkoxy, >C═N—NH-(1-4C)alkyl, >C═N—N((1-4C)alkyl)2 (the last two (1-4C)alkyl groups above in G being optionally substituted by hydroxy) or >C═N—N—CO-(1-4C)alkoxy; wherein >represents two single bonds;
- Rq is hydrogen, hydroxy, halo, (1-4C)alkyl or (1-4C)alkanoyloxy;
- Rr is (independently where appropriate) hydrogen or (1-4C)alkyl;
- R11 is hydrogen, (1-4C)alkyl, fluoro(1-4C)alkyl, (1-4C)alkyl-thio-(1-4C)alkyl or hydroxy-(1-4C)alkyl and R12 is —[C(Rr)(Rr)]m2-N(Rr)(Rc) wherein m2 is 0, 1 or 2;
- and, other than the ring substitution defined by G, >A3-B3— and Rp, each ring system may be optionally further substituted on a carbon atom not adjacent to the link at >A3- by up to two substituents independently selected from (1-4C)alkyl, fluoro(1-4C)alkyl (including trifluoromethyl), (1-4C)alkyl-thio-(1-4C)alkyl, hydroxy-(1-4C)alkyl, amino, amino-(1-4C)alkyl, (1-4C)alkanoylamino, (1-4C)alkanoylamino-(1-4C)alkyl, carboxy, (1-4C)alkoxycarbonyl, AR-oxymethyl, AR-thiomethyl, oxo (═O) (other than when G is >N-Rc and Rc is group (Rc2) defined hereinbefore) or independently selected from Rc; and also hydroxy or halo (the last two optional substituents only when G is —O— or —S—);
- wherein AR (or ARp) is as defined for formula (IP) hereinafter; Rc is selected from groups (Rc1) to (Rc5) defined hereinbefore.
- For the avoidance of doubt, ( )m1, ( )n1 and ( )o1 indicate (—CH2—)m1, (—CH2—)n1 and (—CH2—) o1 respectively (optionally substituted as described above).
- In the above definition of (TC1) to (TC4) and of the further optional substituents, AR is preferably AR2, and the further optional substituents are preferably not selected from the values listed for Rc. A preferred value for G is >N(Rc) or >C(R11)(R12). Also preferred is G as O or S, particularly in (TC4) when Rp is hydrogen. Preferred is (TC4) as piperazinyl, morpholino or thiomorpholino or as tetrahydropyridin-4-yl.
-
- Especially preferred are (TC5), (TC6), (TC7) and (TC9), most especially (TC5) in which Rc has any of the values listed hereinbefore or hereinafter (especially R13CO— with the preferable R13 values given hereinafter). In (TC5) Rc is preferably selected from the group (Rc2), especially R13CO— with the preferable R13 values given hereinafter. In (TC7) Rc is preferably selected from group (Rc3) or (Rc4).
- The above preferred values of (TCa) to (TCc) are particularly preferred when present in Q1 or Q2, especially Q1 (especially when HET is isoxazole). X as O or NH is particularly preferred.
-
- (i) the A4 linking group is a nitrogen atom or an sp3 or sp2 carbon atom (with the double bond, where appropriate, orientated in either direction); and
- (ii) one of the ring carbon atoms at positions marked * and ** is replaced by one of the following groups —NRc-, >CH—NHRc, >CH—NRc-(1-4C)alkyl, >CH—CH2—NHRc, >CH—CH2—NRc-(1-4C)alkyl [wherein a central —CH2— chain link is optionally mono- or di-substituted by (1-4C)alkyl]; with the provisos that positions marked * are not replaced by —NH— in the ring containing the A4 link when A4 is a nitrogen atom or an sp2 carbon atom, and that positions marked * are not replaced by —NH— in the three membered ring in (TDa1), (TDa4) and (TDa5); and
- (iii) the ring system is optionally (further) substituted on an available ring carbon atom by up to two substituents independently selected from (1-4C)alkyl, fluoro(1-4C)alkyl (including trifluoromethyl), (1-4C)alkyl-thio-(1-4C)alkyl, hydroxy-(1-4C)alkyl, amino, amino-(1-4C)alkyl, (1-4C)alkanoylamino, (1-4C)alkanoylamino-(1-4C)alkyl, carboxy, (1-4C)alkoxycarbonyl, AR2-oxymethyl, AR2-thiomethyl, oxo (═O) (other than when the ring contains an >N-Rc and Rc is group (Rc2)) and also hydroxy or halo;
- wherein Rc has any of the values listed hereinbefore or hereinafter.
- (TDb) When T is a 7-, 8- or 9-membered bicyclic ring system containing a bridge of 1, 2 or 3 carbon atoms as defined in (TDb), it is preferably selected from a group defined by the ring skeletons shown in formulae (TDb1) to (TDb14):-
wherein; - (i) the ring system contains 0, 1 or 2 ring nitrogen atoms (and optionally a further O or S ring heteroatom),and when present the ring nitrogen, O or S heteroatom/s are at any position other than as part of the 3-membered ring in (TDb1);
- (ii) the ring system is linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom (with the double bond, where appropriate, orientated in either direction) from any position in either ring [other than from a bridgehead position or from an sp2 carbon atom in the 4-membered ring in (TDb2), (TDb6) and (TDb11)];
- (iii) one of the ring carbon atoms at a position not adjacent to the linking position, is replaced (other than when the ring contains an O or S heteroatom) by one of the following groups —NRc-[not at a bridgehead position], >C(H)—NHRc, >C(H)—NRc-(1-4C)alkyl, >C(H)—CH2—NHRc, >C(H)—CH2—NRc-(1-4C)alkyl [wherein the hydrogen atom shown in brackets is not present when the replacement is made at a bridgehead position and wherein a central —CH2— chain link is optionally mono- or di-substituted by (1-4C)alkyl]; with the proviso that when the ring system is linked via a ring nitrogen atom or an sp2 carbon atom any replacement of a ring carbon atom by —NRc-, O or S is at least two carbon atoms away from the linking position; and
- (iv) the ring system is optionally (further) substituted on an available ring carbon atom as for the bicyclic spiro-ring systems described in (TDa); wherein Rc has any of the values listed hereinbefore or hereinafter.
- It will be appreciated that unstable anti-Bredt compounds are not contemplated in this definition (i.e. compounds with structures (TDb3), (TDb4), (TDb7), (TDb8), (TDb9), (TDb12), (TDb13) and (TDb14) in which an sp2 carbon atom is directed towards a bridgehead position).
-
-
- T1 is a C-linked isoxazole ring which is optionally substituted on any available C atom by 1 or 2 substituents independently selected from (1-4C)alkyl, amino, (1-4C)alkylamino, (1-4C)alkoxy and halogen;
- Q is
wherein: - R2 and R3 are independently hydrogen or fluoro;
- R6p is hydrogen, (1-4C)alkyl, hydroxy, (1-4C)alkoxy or (2-4C)alkanoyloxy;
- >A-B— is of the formula >C═C(Ra)—, >CHCHRa—, >C(OH)CHRa— or >N—CH2— (>represents two single bonds) wherein Ra is hydrogen or (1-4C)alkyl;
- D is O, S, SO, SO2 or NR7p;
- R4p and R5p are independently oxo (═O) [but not when R7p is group (PC) below], (1-4C)alkyl, (1-4C)alkanoylamino-(1-4C)alkyl, hydroxy-(1-4C)alkyl, carboxy, (1-4C)alkoxycarbonyl, ARp-oxymethyl, ARp-thiomethyl (wherein ARp is as defined hereinbelow) or independently as defined for R7p hereinbelow with the proviso that R4p and R5p are not phenyl, benzyl, ARp (as defined hereinbelow), a tetrazole ring system, cyclopentyl or cyclohexyl; and when D is O or S, R4p and R5p are additionally independently hydroxy or bromo;
- wherein R7p is selected from (PA) to (PE):-
- (PA) hydrogen, cyano, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl;
- (PB) phenyl, benzyl, ARp (as defined hereinbelow) or a tetrazole ring system [optionally mono-substituted in the 1- or 2-position of the tetrazole ring by (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl or (1-4C)alkanoyl] wherein the tetrazole ring system is joined to the nitrogen in NR7p by a ring carbon atom;
- (PC) R10pCO—, R10pSO2— or R10pCS—
- wherein R10p is selected from (PCa) to (PCf):-
- (PCa) ARp (as defined hereinbelow);
- (PCb) cyclopentyl or cyclohexyl or 1,3-dioxolan-4-yl or 1,4-dioxan-2-yl or 1,3-dioxan-4-yl [optionally mono- or disubstituted by substituents independently selected from (1-4C)alkyl (including geminal disubstitution), hydroxy (but excluding 1,3-dioxolan-4-yl, 1,4-dioxan-2-yl and 1,3-dioxan-4-yl substituted by hydroxy), (1-4C)alkoxy, (1-4C)alkylthio, acetamido, (1-4C)alkanoyl, cyano and trifluoromethyl];
- (PCc) hydrogen, (1-4C)alkoxycarbonyl, trifluoromethyl, amino, (1-4C)alkylamino, di((1-4C)alkyl)amino, 2-(5- or 6-membered heteroaryl)ethenyl, 2-(5- or 6-membered (partially) hydrogenated heteroaryl)ethenyl, 2-phenylethenyl [wherein the heteroaryl or phenyl substituent is optionally substituted on an available carbon atom by up to three substituents independently selected from (1-4C)alkoxy, halo, cyano and (for the phenyl substituent only) (1-4C)alkylsulfonyl];
- (PCd) (1-10C)alkyl [optionally substituted by one or more groups (including geminal disubstitution) each independently selected from hydroxy and amino, or optionally monosubstituted by cyano, halo, (1-10C)alkoxy, trifluoromethyl, (1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkanoyl, (1-4C)alkoxycarbonyl, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-6C)alkanoylamino, (1-4C)alkoxycarbonylamino, N-(1-4C)alkyl-N-(2-6C)alkanoylamino, (1-4C)alkylS(O)pNH—, (1-4C)alkylS(O)p((1-4C)alkyl)N—, fluoro(1-4C)alkylS(O)pNH—, fluoro(1-4C)alkylS(O)p((1-4C)alkyl)N—, phosphono, (1-4C)alkoxy(hydroxy)phosphoryl, di-(1-4C)alkoxyphosphoryl, (1-4C)alkylS(O)q—, phenyl, naphthyl, phenoxy, naphthoxy, phenylamino, naphthylamino, phenylS(O)q—, naphthylS(O)q— [wherein said phenyl and naphthyl groups are optionally substituted by up to three substituents independently selected from (1-4C)alkoxy, halo and cyano], or CYp (as defined hereinbelow), wherein (where appropriate) p is 1 or 2 and q is 0, 1 or 2];
- (PCe) R11pC(O)O(1-6C)alkyl wherein R11p is an optionally substituted 5- or 6-membered heteroaryl, optionally substituted phenyl, (1-4C)alkylamino, benzyloxy-(1-4C)alkyl or optionally substituted (1-10C)alkyl;
- (PCf) R12pO— wherein R12p is benzyl or optionally substituted (1-6C)alkyl;
- (PD) RdOC(Re)═CH(C═O)—, RfC(═O)C(═O)—, RgN═C(Rh)C(═O)— or RiNHC(Rj)═CHC(═O)— wherein Rd is (1-6C)alkyl, Re is hydrogen or (1-6C)alkyl, or Rd and Re together form a (3-4C)alkylene chain, Rf is hydrogen, (1-6C)alkyl, hydroxy(1-6C)alkyl, (1-6C)alkoxy(1-6C)alkyl, amino, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-6C)alkoxy, (1-6C)alkoxy(1-6C)alkoxy, hydroxy(2-6C)alkoxy, (1-4C)alkylamino(2-6C)alkoxy, di-(1-4C)alkylamino(2-6C)alkoxy, Rg is (1-6C)alkyl, hydroxy or (1-6C)alkoxy, Rh is hydrogen or (1-6C)alkyl, Ri is hydrogen, (1-6C)alkyl, optionally substituted phenyl or an optionally substituted 5- or 6-membered heteroaryl [and (partially) hydrogenated versions thereof] and Ri is hydrogen or (1-6C)alkyl;
- (PE) R14pCH(R13p)(CH2)m— wherein m is 0 or 1, R13p is fluoro, cyano, (1-4C)alkoxy, (1-4C)alkylsulfonyl, (1-4C)alkoxycarbonyl or hydroxy, (provided that when m is 0, R13p is not fluoro or hydroxy) and R14p is hydrogen or (1-4C)alkyl;
- wherein ARp is optionally substituted phenyl, optionally substituted phenyl(1-4C)alkyl, optionally substituted naphthyl, optionally substituted 5- or 6-membered heteroaryl;
- wherein ARp is also an optionally substituted 5/6 or 6/6 bicyclic heteroaryl ring system, in which the bicyclic heteroaryl ring systems may be linked via an atom in either of the rings comprising the bicyclic system, and wherein both the mono- and bicyclic heteroaryl ring systems are linked via a ring carbon atom and may be (partially) hydrogenated;
- wherein CYp is selected from:-
- (i) 4-, 5- or 6-membered cycloalkyl ring;
- (ii) 5- or 6-membered cycloalkenyl ring;
- (iii) 5- or 6-membered heteroaryl, 5- or 6-membered heteroaryloxy, 5- or 6-membered heteroaryl-S(O)q—, 5- or 6-membered heteroarylamino [and (partially) hydrogenated versions thereof] and
- (iv) 5/6 or 6/6 bicyclic heteroaryl, 5/6 or 6/6 bicyclic heteroaryloxy, 5/6 or 6/6 bicyclic heteroaryl-S(O)q—, 5/6 or 6/6 bicyclic heteroarylamino [and (partially) hydrogenated versions thereof];
- wherein q is 0, 1 or 2 and any of the aforementioned ring systems in CYp may be optionally substituted by up to three substituents independently selected from halo, (1-4C)alkyl [including geminal disubstitution when CYp is a cycloalkyl or cycloalkenyl ring], acyl, oxo and nitro-(1-4C)alkyl; and pharmaceutically-acceptable salts thereof.
- In this embodiment (IP) of the specification the term ‘alkyl’ includes straight chained and branched structures. For example, (1-6C)alkyl includes propyl, isopropyl and tert-butyl. However, references to individual alkyl groups such as “propyl” are specific for the straight chained version only, and references to individual branched chain alkyl groups such as “isopropyl” are specific for the branched chain version only. A similar convention applies to other radicals, for example halo(1-4C)alkyl includes 1-bromoethyl and 2-bromoethyl.
- In this embodiment (IP) of the specification a ‘5- or 6-membered heteroaryl’ and ‘heteroaryl (monocyclic) ring’ means a 5- or 6-membered aryl ring wherein (unless stated otherwise) 1, 2 or 3 of the ring atoms are selected from nitrogen, oxygen and sulfur. Unless stated otherwise, such rings are fully aromatic. Particular examples of 5- or 6-membered heteroaryl ring systems are furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole and thiophene.
- In this embodiment (IP) of the specification a ‘5/6 or 6/6 bicyclic heteroaryl ring system’ and ‘heteroaryl (bicyclic) ring’ means an aromatic bicyclic ring system comprising a 6-membered ring fused to either a 5 membered ring or another 6 membered ring, the bicyclic ring system containing 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur. Unless stated otherwise, such rings are fully aromatic. Particular examples of 5/6 and 6/6 bicyclic ring systems are indole, benzofuran, benzoimidazole, benzothiophene, benzisothiazole, benzoxazole, benzisoxazole, pyridoimidazole, pyrimidoimidazole, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline and naphthyridine.
- In this embodiment (IP) of the specification a ‘4-, 5- or 6-membered cycloalkyl ring’ means a cyclobutyl, cyclopentyl or cyclohexyl ring; and a ‘5- or 6-membered cycloalkenyl ring’ a means cyclopentenyl or cyclohexenyl ring.
- Particular optional substituents for alkyl, phenyl (and phenyl containing moieties) and naphthyl groups and ring carbon atoms in heteroaryl (mono or bicyclic) rings in R11p, R12p, Ri and ARp include halo, (1-4C)alkyl, hydroxy, nitro, carbamoyl, (1-4C)alkylcarbamoyl, di-((1-4C)alkyl)carbamoyl, cyano, trifluoromethyl, trifluoromethoxy, amino, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-4C)alkylS(O)q—, (wherein q is 0, 1 or 2), carboxy, (1-4C)alkoxycarbonyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkanoyl, (1-4C)alkoxy, (1-4C)alkylS(O)2amino, (1-4C)alkanoylamino, benzoylamino, benzoyl, phenyl (optionally substituted by up to three substituents selected from halo, (1-4C)alkoxy or cyano), furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole, thiophene, hydroxyimino(1-4C)alkyl, (1-4C)alkoxyimino(1-4C)alkyl, hydroxy-(1-4C)alkyl, halo-(1-4C)alkyl, nitro(1-4C)alkyl, amino(1-4C)alkyl, cyano(1-4C)alkyl, (1-4C)alkanesulfonamido, aminosulfonyl, (1-4C)alkylaminosulfonyl and di-((1-4C)alkyl)aminosulfonyl. The phenyl and naphthyl groups and heteroaryl (mono- or bicyclic) rings in R11p, Ri and ARp may be mono- or disubstituted on ring carbon atoms with substituents independently selected from the above list of particular optional substituents.
- For the avoidance of doubt, phosphono is —P(O)(OH)2; (1-4C)alkoxy(hydroxy)phosphoryl is a mono-(1-4C)alkoxy derivative of —O—P(O)(OH)2; and di-(1-4C)alkoxyphosphoryl is a di-(1-4C)alkoxy derivative of —O—P(O)(OH)2.
- Particular optional substituents for alkyl, phenyl (and phenyl containing moieties) and naphthyl groups and ring carbon atoms in heteroaryl (mono or bicyclic) rings in R11p, R12p, Ri and ARp include halo, (1-4C)alkyl , hydroxy, nitro, carbamoyl, (1-4C)alkylcarbamoyl, di-((1-4C)alkyl)carbamoyl, cyano, trifluoromethyl, trifluoromethoxy, amino, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-4C)alkyl S(O)q— (q is 0, 1 or 2), carboxy, (1-4C)alkoxycarbonyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkanoyl, (1-4C)alkoxy, (1-4C)alkylS(O)2amino, (1-4C)alkanoylamino, benzoylamino, benzoyl, phenyl (optionally substituted by up to three substituents selected from halo, (1-4C)alkoxy or cyano), furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole, thiophene, hydroxyimino(1-4C)alkyl, (1-4C)alkoxyimino(1-4C)alkyl, hydroxy-(1-4C)alkyl, halo-(1-4C)alkyl, nitro(1-4C)alkyl, amino(1-4C)alkyl, cyano(1-4C)alkyl, (1-4C)alkanesulfonamido, aminosulfonyl, (1-4C)alkylaminosulfonyl and di-((1-4C)alkyl)aminosulfonyl. The phenyl and naphthyl groups and heteroaryl (mono- or bicyclic) rings in R11p, Ri and ARp may be mono- or di-substituted on ring carbon atoms with substituents independently selected from the above list of particular optional substituents.
- In this specification the term ‘alkyl’ includes straight chained and branched structures. For example, (1-6C)alkyl includes propyl, isopropyl and tert-butyl.
- However, references to individual alkyl groups such as “propyl” are specific for the straight chained version only, and references to individual branched chain alkyl groups such as “isopropyl” are specific for the branched chain version only. A similar convention applies to other radicals, for example halo(1-4C)alkyl includes 1-bromoethyl and 2-bromoethyl.
- There follow particular and suitable values for certain substituents and groups referred to in this specification. These values may be used where appropriate with any of the definitions and embodiments disclosed hereinbefore, or hereinafter.
- Examples of (1-4C)alkyl and (1-5C)alkyl include methyl, ethyl, propyl, isopropyl and t-butyl; examples of (1-6C)alkyl include methyl, ethyl, propyl, isopropyl, t-butyl, pentyl and hexyl; examples of (1-10C)alkyl include methyl, ethyl, propyl, isopropyl, pentyl, hexyl, heptyl, octyl and nonyl; examples of (1-4C)alkanoylamino-(1-4C)alkyl include formamidomethyl, acetamidomethyl and acetamidoethyl; examples of hydroxy(1-4C)alkyl and hydroxy(1-6C)alkyl include hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl and 3-hydroxypropyl; examples of (1-4C)alkoxycarbonyl include methoxycarbonyl, ethoxycarbonyl and propoxycarbonyl; examples of 2-((1-4C)alkoxycarbonyl)ethenyl include 2-(methoxycarbonyl)ethenyl and 2-(ethoxycarbonyl)ethenyl; examples of 2-cyano-2-((1-4C)alkyl)ethenyl include 2-cyano-2-methylethenyl and 2-cyano-2-ethylethenyl; examples of 2-nitro-2-((1-4C)alkyl)ethenyl include 2-nitro-2-methylethenyl and 2-nitro-2-ethylethenyl; examples of 2-((1-4C)alkylaminocarbonyl)ethenyl include 2-(methylaminocarbonyl)ethenyl and 2-(ethylaminocarbonyl)ethenyl; examples of (2-4C)alkenyl include allyl and vinyl; examples of (2-4C)alkynyl include ethynyl and 2-propynyl; examples of (1-4C)alkanoyl include formyl, acetyl and propionyl; examples of (1-4C)alkoxy include methoxy, ethoxy and propoxy; examples of (1-6C)alkoxy and (1-10C)alkoxy include methoxy, ethoxy, propoxy and pentoxy; examples of (1-4C)alkylthio include methylthio and ethylthio; examples of (1-4C)alkylamino include methylamino, ethylamino and propylamino; examples of di-((1-4C)alkyl)amino include dimethylamino, N-ethyl-N-methylamino, diethylamino, N-methyl-N-propylamino and dipropylamino; examples of halo groups include fluoro, chloro and bromo; examples of (1-4C)alkylsulfonyl include methylsulfonyl and ethylsulfonyl; examples of (1-4C)alkoxy-(1-4C)alkoxy and (1-6C)alkoxy-(1-6C)alkoxy include methoxymethoxy, 2-methoxyethoxy, 2-ethoxyethoxy and 3-methoxypropoxy;
- examples of (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxy include 2-(methoxymethoxy)ethoxy, 2-(2-methoxyethoxy)ethoxy; 3-(2-methoxyethoxy)propoxy and 2-(2-ethoxyethoxy)ethoxy; examples of (1-4C)alkylS(O)2amino include methylsulfonylamino and ethylsulfonylamino; examples of (1-4C)alkanoylamino and (1-6C)alkanoylamino include formamido, acetamido and propionylamino; examples of (1-4C)alkoxycarbonylamino include methoxycarbonylamino and ethoxycarbonylamino; examples of N-(1-4C)alkyl-N-(1-6C)alkanoylamino include N-methylacetamido, N-ethylacetamido and N-methylpropionamido; examples of (1-4C)alkylS(O)pNH— wherein p is 1 or 2 include methylsulfinylamino, methylsulfonylamino, ethylsulfinylamino and ethylsulfonylamino; examples of (1-4C)alkylS(O)p((1-4C)alkyl)N— wherein p is 1 or 2 include methylsulfinylmethylamino, methylsulfonylmethylamino, 2-(ethylsulfinyl)ethylamino and 2-(ethylsulfonyl)ethylamino; examples of fluoro(1-4C)alkylS(O)pNH— wherein p is 1 or 2 include trifluoromethylsulfinylamino and trifluoromethylsulfonylamino; examples of fluoro(1-4C)alkylS(O)p((1-4C)alkyl)NH— wherein p is 1 or 2 include trifluoromethylsulfinylmethylamino and trifluoromethylsulfonylmethylamino examples of (1-4C)alkoxy(hydroxy)phosphoryl include methoxy(hydroxy)phosphoryl and ethoxy(hydroxy)phosphoryl; examples of di-(1-4C)alkoxyphosphoryl include di-methoxyphosphoryl, di-ethoxyphosphoryl and ethoxy(methoxy)phosphoryl; examples of (1-4C)alkylS(O)q— wherein q is 0, 1 or 2 include methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl and ethylsulfonyl; examples of phenylS(O)q and naphthylS(O)q— wherein q is 0, 1 or 2 are phenylthio, phenylsulfinyl, phenylsulfonyl and naphthylthio, naphthylsulfinyl and naphthylsulfonyl respectively; examples of benzyloxy-(1-4C)alkyl include benzyloxymethyl and benzyloxyethyl; examples of a (3-4C)alkylene chain are trimethylene or tetramethylene; examples of (1-6C)alkoxy-(1-6C)alkyl include methoxymethyl, ethoxymethyl and 2-methoxyethyl; examples of hydroxy-(2-6C)alkoxy include 2-hydroxyethoxy and 3-hydroxypropoxy; examples of (1-4C)alkylamino-(2-6C)alkoxy include 2-methylaminoethoxy and 2-ethylaminoethoxy; examples of di-(1-4C)alkylamino-(2-6C)alkoxy include 2-dimethylaminoethoxy and 2-diethylaminoethoxy; examples of phenyl(1-4C)alkyl include benzyl and phenethyl; examples of (1-4C)alkylcarbamoyl include methylcarbamoyl and ethylcarbamoyl; examples of di((1-4C)alkyl)carbamoyl include di(methyl)carbamoyl and di(ethyl)carbamoyl; examples of hydroxyimino(1-4C)alkyl include hydroxyiminomethyl, 2-(hydroxyimino)ethyl and 1-(hydroxyimino)ethyl; examples of (1-4C)alkoxyimino-(1-4C)alkyl include methoxyiminomethyl, ethoxyiminomethyl, 1-(methoxyimino)ethyl and 2-(methoxyimino)ethyl; examples of halo(1-4C)alkyl include, halomethyl, 1-haloethyl, 2-haloethyl, and 3-halopropyl; examples of nitro(1-4C)alkyl include nitromethyl, 1-nitroethyl, 2-nitroethyl and 3-nitropropyl; examples of amino(1-4C)alkyl include aminomethyl, 1-aminoethyl, 2-aminoethyl and 3-aminopropyl; examples of cyano(1-4C)alkyl include cyanomethyl, 1-cyanoethyl, 2-cyanoethyl and 3-cyanopropyl; examples of (1-4C)alkanesulfonamido include methanesulfonamido and ethanesulfonamido; examples of (1-4C)alkylaminosulfonyl include methylaminosulfonyl and ethylaminosulfonyl; and examples of di-(1-4C)alkylaminosulfonyl include dimethylaminosulfonyl, diethylaminosulfonyl and N-methyl-N-ethylaminosulfonyl; examples of (1-4C)alkanesulfonyloxy include methylsulfonyloxy, ethylsulfonyloxy and propylsulfonyloxy; examples of (1-4C)alkanoyloxy include acetoxy; examples of (1-4C)alkylaminocarbonyl include methylaminocarbonyl and ethylaminocarbonyl; examples of di((1-4C)alkyl)aminocarbonyl include dimethylaminocarbonyl and diethylaminocarbonyl; examples of (3-8C)cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl; examples of (4-7C)cycloalkyl include cyclobutyl, cyclopentyl and cyclohexyl; examples of di(N-(1-4C)alkyl)aminomethylimino include dimethylaminomethylimino and diethylaminomethylimino.
- Particular values for AR2 include, for example, for those AR2 containing one heteroatom, furan, pyrrole, thiophene; for those AR2 containing one to four N atoms, pyrazole, imidazole, pyridine, pyrimidine, pyrazine, pyridazine, 1,2,3- & 1,2,4-triazole and tetrazole; for those AR2 containing one N and one O atom, oxazole, isoxazole and oxazine; for those AR2 containing one N and one S atom, thiazole and isothiazole; for those AR2 containing two N atoms and one S atom, 1,2,4- and 1,3,4-thiadiazole.
- Particular examples of AR2a include, for example, dihydropyrrole (especially 2,5-dihydropyrrol-4-yl) and tetrahydropyridine (especially 1,2,5,6-tetrahydropyrid-4-yl).
- Particular examples of AR2b include, for example, tetrahydrofuran, pyrrolidine, morpholine (preferably morpholino), thiomorpholine (preferably thiomorpholino), piperazine (preferably piperazino), imidazoline and piperidine, 1,3-dioxolan-4-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl and 1,4-dioxan-2-yl.
- Particular values for AR3 include, for example, bicyclic benzo-fused systems containing a 5- or 6-membered heteroaryl ring containing one nitrogen atom and optionally 1-3 further heteroatoms chosen from oxygen, sulfur and nitrogen. Specific examples of such ring systems include, for example, indole, benzofuran, benzothiophene, benzimidazole, benzothiazole, benzisothiazole, benzoxazole, benzisoxazole, quinoline, quinoxaline, quinazoline, phthalazine and cinnoline.
- Other particular examples of AR3 include 5/5-, 5/6 and 6/6 bicyclic ring systems containing heteroatoms in both of the rings. Specific examples of such ring systems include, for example, purine and naphthyridine.
- Further particular examples of AR3 include bicyclic heteroaryl ring systems with at least one bridgehead nitrogen and optionally a further 1-3 heteroatoms chosen from oxygen, sulfur and nitrogen. Specific examples of such ring systems include, for example, 3H-pyrrolo[1,2-a]pyrrole, pyrrolo[2,1-b]thiazole, 1H-imidazo[1,2-a]pyrrole, 1H-imidazo[1,2-a]imidazole, 1H,3H-pyrrolo[1,2-c]oxazole, 1H-imidazo[1,5-a]pyrrole, pyrrolo[1,2-b]isoxazole, imidazo[5,1-b]thiazole, imidazo[2,1-b]thiazole, indolizine, imidazo[1,2-a]pyridine, imidazo[1,5-a]pyridine, pyrazolo [1,5-a]pyridine, pyrrolo[1,2-b]pyridazine, pyrrolo[1,2-c]pyrimidine, pyrrolo[1,2-a]pyrazine, pyrrolo[1,2-a]pyrimidine, pyrido[2,1-c]-s-triazole, s-triazole[1,5-a]pyridine, imidazo[1,2-c]pyrimidine, imidazo[1,2-a]pyrazine, imidazo[1,2-a]pyrimidine, imidazo[1,5-a]pyrazine, imidazo[1,5-a]pyrimidine, imidazo [1,2-b]-pyridazine, s-triazolo[4,3-a]pyrimidine, imidazo[5,1-b]oxazole and imidazo[2,1-b]oxazole. Other specific examples of such ring systems include, for example, [1H]-pyrrolo[2,1-c]oxazine, [3H]-oxazolo[3,4-a]pyridine, [6H]-pyrrolo[2,1-c]oxazine and pyrido[2,1-c][1,4]oxazine. Other specific examples of 5/5-bicyclic ring systems are imidazooxazole or imidazothiazole, in particular imidazo[5,1-b]thiazole, imidazo[2,1-b]thiazole, imidazo[5,1-b]oxazole or imidazo[2,1-b]oxazole.
- Particular examples of AR3a and AR3b include, for example, indoline, 1,3,4,6,9,9a-hexahydropyrido[2,1c][1,4]oxazin-8-yl, 1,2,3,5,8,8a-hexahydroimidazo[1,5a]pyridin-7-yl, 1,5,8,8a-tetrahydrooxazolo[3,4a]pyridin-7-yl, 1,5,6,7,8,8a-hexahydrooxazolo[3,4a]pyridin-7-yl, (7aS)[3H,5H]-1,7a-dihydropyrrolo[1,2c]oxazol-6-yl, (7aS)[5H]-1,2,3,7a-tetrahydropyrrolo[1,2c]imidazol-6-yl, (7aR)[3H,5H]-1,7a-dihydropyrrolo[1,2c]oxazol-6-yl, [3H,5H]-pyrrolo[1,2-c]oxazol-6-yl, [5H]-2,3-dihydropyrrolo[1,2-c]imidazol-6-yl, [3H,5H]-pyrrolo[1,2-c]thiazol-6-yl, [3H,5H]-1,7a-dihydropyrrolo[1,2-c]thiazol-6-yl, [5H]-pyrrolo[1,2-c]imidazol-6-yl, [1H]-3,4,8,8a-tetrahydropyrrolo[2,1-c]oxazin-7-yl, [3H]-1,5,8,8a-tetrahydrooxazolo[3,4-a]pyrid-7-yl, [3H]-5,8-dihydroxazolo[3,4-a]pyrid-7-yl and 5,8-dihydroimidazo[1,5-a]pyrid-7-yl.
- Particular values for AR4 include, for example, pyrrolo[a]quinoline, 2,3-pyrroloisoquinoline, pyrrolo[a]isoquinoline, 1H-pyrrolo[1,2-a]benzimidazole, 9H-imidazo[1,2-a]indole, 5H-imidazo[2,1-a]isoindole, 1H-imidazo[3,4-a]indole, imidazo[1,2-a]quinoline, imidazo[2,1-a]isoquinoline, imidazo [1,5-a]quinoline and imidazo[5,1-a]isoquinoline.
- The nomenclature used is that found in, for example, “Heterocyclic Compounds (Systems with bridgehead nitrogen), W. L. Mosby (Intercsience Publishers Inc., New York), 1961, Parts 1 and 2.
- Where optional substituents are listed such substitution is preferably not geminal disubstitution unless stated otherwise. If not stated elsewhere suitable optional substituents for a particular group are those as stated for similar groups herein.
- Suitable substituents on AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1 and CY2 are (on an available carbon atom) up to three substituents independently selected from (1-4C)alkyl {optionally substituted by (preferably one) substituents selected independently from hydroxy, trifluoromethyl, (1-4C)alkyl S(O)q— (q is 0, 1 or 2) (this last substituent preferably on AR1 only), (1-4C)alkoxy, (1-4C)alkoxycarbonyl, cyano, nitro, (1-4C)alkanoylamino, —CONRvRw or —NRvRw}, trifluoromethyl, hydroxy, halo, nitro, cyano, thiol, (1-4C)alkoxy, (1-4C)alkanoyloxy, dimethylaminomethyleneaminocarbonyl, di(N-(1-4C)alkyl)aminomethylimino, carboxy, (1-4C)alkoxycarbonyl, (1-4C)alkanoyl, (1-4C)alkylSO2amino, (2-4C)alkenyl {optionally substituted by carboxy or (1-4C)alkoxycarbonyl}, (2-4C)alkynyl, (1-4C)alkanoylamino, oxo (═O), thioxo (═S), (1-4C)alkanoylamino {the (1-4C)alkanoyl group being optionally substituted by hydroxy}, (1-4C)alkyl S(O)q— (q is 0, 1 or 2) {the (1-4C)alkyl group being optionally substituted by one or more groups independently selected from cyano, hydroxy and (1-4C)alkoxy}, —CONRvRw or —NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl].
- Further suitable substituents on AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1 and CY2 (on an available carbon atom), and also on alkyl groups (unless indicated otherwise) are up to three substituents independently selected from trifluoromethoxy, benzoylamino, benzoyl, phenyl {optionally substituted by up to three substituents independently selected from halo, (1-4C)alkoxy or cyano}, furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole, thiophene, hydroxyimino(1-4C)alkyl, (1-4C)alkoxyimino(1-4C)alkyl, halo-(1-4C)alkyl, (1-4C)alkanesulfonamido, —SO2NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl].
- Preferable optional substituents on Ar2b as 1,3-dioxolan-4-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl or 1,4-dioxan-2-yl are mono- or disubstitution by substituents independently selected from (1-4C)alkyl (including geminal disubstitution), (1-4C)alkoxy, (1-4C)alkylthio, acetamido, (1-4C)alkanoyl, cyano, trifluoromethyl and phenyl].
- Preferable optional substituents on CY1 & CY2 are mono- or disubstitution by substituents independently selected from (1-4C)alkyl (including geminal disubstitution), hydroxy, (1-4C)alkoxy, (1-4C)alkylthio, acetamido, (1-4C)alkanoyl, cyano, and trifluoromethyl.
- Suitable substituents on AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4 and AR4a are (on an available nitrogen atom, where such substitution does not result in quaternization) (1-4C)alkyl, (1-4C)alkanoyl {wherein the (1-4C)alkyl and (1-4C)alkanoyl groups are optionally substituted by (preferably one) substituents independently selected from cyano, hydroxy, nitro, trifluoromethyl, (1-4C)alkyl S(O)q— (q is 0, 1 or 2), (1-4C)alkoxy, (1-4C)alkoxycarbonyl, (1-4C)alkanoylamino, —CONRvRw or —NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl]}, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxycarbonyl or oxo (to form an N-oxide).
- Suitable pharmaceutically-acceptable salts include acid addition salts such as methanesulfonate, fumarate, hydrochloride, citrate, maleate, tartrate and (less preferably) hydrobromide. Also suitable are salts formed with phosphoric and sulfuric acid. In another aspect suitable salts are base salts such as an alkali metal salt for example sodium, an alkaline earth metal salt for example calcium or magnesium, an organic amine salt for example triethylamine, morpholine, N-methylpiperidine, N-ethylpiperidine, procaine, dibenzylamine, N,N-dibenzylethylamine, tris-(2-hydroxyethyl)amine, N-methyl d-glucamine and amino acids such as lysine. There may be more than one cation or anion depending on the number of charged functions and the valency of the cations or anions. A preferred pharmaceutically-acceptable salt is the sodium salt.
- However, to facilitate isolation of the salt during preparation, salts which are less soluble in the chosen solvent may be preferred whether pharmaceutically-acceptable or not.
- The compounds of the formula (I) may be administered in the form of a pro-drug which is broken down in the human or animal body to give a compound of the formula (I). A prodrug may be used to alter or improve the physical and/or pharmacokinetic profile of the parent compound and can be formed when the parent compound contains a suitable group or substituent which can be derivatised to form a prodrug. Examples of pro-drugs include in-vivo hydrolysable esters of a compound of the formula (I) or a pharmaceutically-acceptable salt thereof.
- Various forms of prodrugs are known in the art, for examples see:
- a) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985) and Methods in Enzymology, Vol. 42, p. 309-396, edited by K. Widder, et al. (Academic Press, 1985);
- b) A Textbook of Drug Design and Development, edited by Krogsgaard-Larsen and H. Bundgaard, Chapter 5 “Design and Application of Prodrugs”, by H. Bundgaard p. 113-191 (1991);
- c) H. Bundgaard, Advanced Drug Delivery Reviews, 8, 1-38 (1992);
- d) H. Bundgaard, et al., Journal of Pharmaceutical Sciences, 77, 285 (1988); and
- e) N. Kakeya, et al., Chem Pharm Bull, 32, 692 (1984).
- An in-vivo hydrolysable ester of a compound of the formula (I) or a pharmaceutically-acceptable salt thereof containing carboxy or hydroxy group is, for example, a pharmaceutically-acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol.
- Suitable pharmaceutically-acceptable esters for carboxy include (1-6C)alkoxymethyl esters for example methoxymethyl, (1-6C)alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, (3-8C)cycloalkoxycarbonyloxy(1-6C)alkyl esters for example 1-cyclohexylcarbonyloxyethyl; 1,3-dioxolan-2-onylmethyl esters for example 5-methyl-1,3-dioxolan-2-ylmethyl; and (1-6C)alkoxycarbonyloxyethyl esters for example 1-methoxycarbonyloxyethyl and may be formed at any carboxy group in the compounds of this invention.
- An in-vivo hydrolysable ester of a compound of the formula (I) or a pharmaceutically-acceptable salt thereof containing a hydroxy group or groups includes inorganic esters such as phosphate esters (including phosphoramidic cyclic esters) and α-acyloxyalkyl ethers and related compounds which as a result of the in-vivo hydrolysis of the ester breakdown to give the parent hydroxy group/s. Examples of α-acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxymethoxy. A selection of in-vivo hydrolysable ester forming groups for hydroxy include (1-10C)alkanoyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl, (1-10C)alkoxycarbonyl (to give alkyl carbonate esters), di-(1-4C)alkylcarbamoyl and N-(di-(1-4C)alkylaminoethyl)-N-(1-4C)alkylcarbamoyl (to give carbamates), di-(1-4C)alkylaminoacetyl and carboxyacetyl. Examples of substituents on benzoyl include chloromethyl or aminomethyl, (1-4C)alkylaminomethyl and di-((1-4C)alkyl)aminomethyl, and morpholino or piperazino linked from a ring nitrogen atom via a methylene linking group to the 3- or 4-position of the benzoyl ring.
- Certain suitable in-vivo hydrolysable esters of a compound of the formula (I) are described within the definitions listed in this specification, for example esters described by the definition (Rc2d), and some groups within (Rc2c). Suitable in-vivo hydrolysable esters of a compound of the formula (I) are described as follows. For example, a 1,2-diol may be cyclised to form a cyclic ester of formula (PD1) or a pyrophosphate of formula (PD2):
- Particularly interesting are such cyclised pro-drugs when the 1,2-diol is on a (1-4C)alkyl chain linked to a carbonyl group in a substituent of formula Rc borne by a nitrogen atom in (TC4). Esters of compounds of formula (I) wherein the HO— function/s in (PD1) and (PD2) are protected by (1-4C)alkyl, phenyl or benzyl are useful intermediates for the preparation of such pro-drugs.
-
- Useful intermediates for the preparation of such esters include compounds containing a group/s of formula (PD3) in which either or both of the —OH groups in (PD3) is independently protected by (1-4C)alkyl (such compounds also being interesting compounds in their own right), phenyl or phenyl-(1-4C)alkyl (such phenyl groups being optionally substituted by 1 or 2 groups independently selected from (1-4C)alkyl, nitro, halo and (1-4C)alkoxy).
- Thus, prodrugs containing groups such as (PD1), (PD2) and (PD3) may be prepared by reaction of a compound of formula (I) containing suitable hydroxy group/s with a suitably protected phosphorylating agent (for example, containing a chloro or dialkylamino leaving group), followed by oxidation (if necessary) and deprotection.
- When a compound of formula (I) contains a number of free hydroxy group, those groups not being converted into a prodrug functionality may be protected (for example, using a t-butyl-dimethylsilyl group), and later deprotected. Also, enzymatic methods may be used to selectively phosphorylate or dephosphorylate alcohol functionalities.
- Other interesting in-vivo hydrolysable esters include, for example, those in which Rc is defined by, for example, R14C(O)O(1-6C)alkyl-CO— (wherein R14 is for example, benzyloxy-(1-4C)alkyl, or phenyl). Suitable substituents on a phenyl group in such esters include, for example, 4-(1-4C)piperazino-(1-4C)alkyl, piperazino-(1-4C)alkyl and morpholino-(1-4C)alkyl.
- Where pharmaceutically-acceptable salts of an in-vivo hydrolysable ester may be formed this is achieved by conventional techniques. Thus, for example, compounds containing a group of formula (PD1), (PD2) and/or (PD3) may ionise (partially or fully) to form salts with an appropriate number of counter-ions. Thus, by way of example, if an in-vivo hydrolysable ester prodrug of a compound of formula (I) contains two (PD3) groups, there are four HO—P— functionalities present in the overall molecule, each of which may form an appropriate salt (i.e. the overall molecule may form, for example, a mono-, di-, tri- or tetra-sodium salt).
-
- The present invention includes the pure enantiomer depicted above or mixtures of the 5R and 5S enantiomers, for example a racemic mixture. If a mixture of enantiomers is used, a larger amount (depending upon the ratio of the enantiomers) will be required to achieve the same effect as the same weight of the pharmaceutically active enantiomer. For the avoidance of doubt the enantiomer depicted above is the 5(R) isomer.
- Furthermore, some compounds of the formula (I) may have other chiral centres. It is to be understood that the invention encompasses all such optical and diastereo-isomers, and racemic mixtures, that possess antibacterial activity. It is well known in the art how to prepare optically-active forms (for example by resolution of the racemic form by recrystallisation techniques, by chiral synthesis, by enzymatic resolution, by biotransformation or by chromatographic separation) and how to determine antibacterial activity as described hereinafter.
- The invention relates to all tautomeric forms of the compounds of the formula (I) that possess antibacterial activity.
- It is also to be understood that certain compounds of the formula (I) can exist in solvated as well as unsolvated forms such as, for example, hydrated forms.
- It is to be understood that the invention encompasses all such solvated forms which possess antibacterial activity.
- It is also to be understood that certain compounds of the formula (I) may exhibit polymorphism, and that the invention encompasses all such forms which possess antibacterial activity.
- As stated before, we have discovered a range of compounds that have good activity against a broad range of Gram-positive pathogens including organisms known to be resistant to most commonly used antibiotics. Physical and/or pharmacokinetic properties, for example increased stability to mammalian peptidase metabolism and a favourable toxicological profile are important features. The following compounds possess favourable physical and/or pharmacokinetic properties and are preferred.
- Particularly preferred compounds of the invention comprise a compound of formula (I) or of formula (IP), or a pharmaceutically-acceptable salt or an in-vivo hydrolysable ester thereof, wherein the substituents Q, HET, T, T1 and other substituents mentioned above have values disclosed hereinbefore, or any of the following values (which may be used where appropriate with any of the definitions and embodiments disclosed hereinbefore or hereinafter):
- Preferably Q is selected from Q1, Q2, Q4, Q6 and Q9; especially Q1, Q2 and Q9; more particularly Q1 and Q2; and most preferably Q is Q1.
- Preferably T is selected from (TAf), (TDb) or (TC); especially groups (TAf2), (TCb) and (TCc); more particularly (TC2), (TC3) and (TC4); and most preferably (TC5), (TC7) or (TC9), and most particularly (TC9) and (TC5). Especially preferred is each of these values of T when present in Q1 and Q2, particularly in Q1.
- Preferable values for other substituents (which may be used where appropriate with any of the definitions and embodiments disclosed hereinbefore or hereinafter) are:
- (a0) In one embodiment HET is a 6-membered heteroaryl as defined herein, and in another embodiment HET is a 5-membered heteroaryl as defined herein.
- (a) When HET is a 6-membered heteroaryl as defined herein, preferably HET is pyrimidine, pyridazine or pyrazine; more preferably HET is pyrimidin-2-yl, pyridazin-3-yl or pyrazin-2-yl; preferably HET is unsubstituted.
- (b) When HET is a 5-membered heteroaryl as defined herein, preferably HET is not thiazole; preferably HET is pyrazole, imidazole, oxazole, isoxazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, isothiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1,2,3-triazole or 1,2,4-triazole.
- (c) Yet more preferably HET is pyrazol-3-yl, imidazol-2-yl (optionally 3-methyl substituted), imidazol-4-yl (optionally 1-methyl substituted), oxazol-2-yl, isoxazol-3-yl, isoxazol-5-yl, 1,2,5-oxadiazol-3-yl, 1,2,4-oxadiazol-3-yl, 1,3,4-oxadiazol-2-yl, isothiazol-3-yl, isothiazol-5-yl, 1,2,3-thiadiazol-4-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl or 1,3,4-thiadiazol-2-yl.
- (d) Further preferred as HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,5-oxadiazol-3-yl, 1,2,4-oxadiazol-3-yl, 1,3,4-oxadiazol-2-yl, isothiazol-3-yl, isothiazol-5-yl, 1,2,3-thiadiazol-4-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl or 1,3,4-thiadiazol-2-yl.
- (e) Particularly preferred as HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,5-oxadiazol-3-yl, isothiazol-3-yl, isothiazol-5-yl, 1,2,3-thiadiazol-4-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl or 1,3,4-thiadiazol-2-yl.
- (f) Most preferred is HET as isoxazole (optionally substituted as disclosed hereinbefore), particularly isoxazol-3-yl.
- (g) Preferably HET is unsubstituted.
- (g1) Preferably X is O, S or NH; preferably X is O or NH (particularly NH) when T is a C-linked moiety and preferably X is NH when T is an N-linked moiety;
- (h) Preferably R6p is hydrogen;
- (i) Preferably R4p and R5p are independently selected from hydrogen, (1-4C)alkyl, carboxy, (1-4C)alkoxycarbonyl, hydroxymethyl, (1-4C)alkoxymethyl or carbamoyl;
- (j) More preferably R4p and R5p are hydrogen;
- (k) Preferably R2 and R3 are hydrogen or fluoro;
- (l) In one aspect of the invention more preferably one of R2 and R3 is hydrogen and the other fluoro. In another aspect of the invention both R2 and R3 are fluoro;
- (m) Preferably >A-B— is of the formula >C═CH— (i.e. Ra is preferably hydrogen) or >N—CH2—;
- (n) Preferably D is O or NR7p;
- (o) Preferably R7p is ARp, R10pCO—, R10pSO2—, R10pCS—; (p) More preferably R7p is ARp (most preferably benzyl, pyrimidyl, pyridinyl, pyridazinyl or pyrazinyl) or R10pCO—;
- (q) Particularly R7p is R10pCO—;
- (q1) Especially preferred is R10pCO— (or R13CO—) wherein R10p (or R13) is (1-10)alkyl optionally substituted by hydroxy or (1-4C)alkylS(O)q— (wherein q is 0, 1 or 2), wherein the (1-4C)alkyl group is optionally substituted as defined herein for this particular substituent;
- (r) Preferably ARp is 5- or 6-membered heteroaryl; more preferably ARp is 6-membered heteroaryl, such as pyridinyl;
- (s) Preferred substituents for phenyl and carbon atoms in heteroaryl (mono- and bicyclic) ring systems in ARp, R11p and Ri include halo, (1-4C)alkyl, hydroxy, nitro, amino, cyano, (1-4C)alkylS(O)p— and (1-4C)alkoxy;
- (t) Preferably the optionally substituted ring systems in ARp, R11p and Ri are unsubstituted;
- (u) In another embodiment in the definition of R10p in (PC) of embodiment (IP), 1,3-dioxolan-4-yl and 1,4-dioxan-2-yl are excluded.
- (v) In one aspect of the invention, preferably R10p is (1-4C)alkoxycarbonyl, hydroxy(1-4C)alkyl, (1-4C)alkyl (optionally substituted by one or two hydroxy groups, or by an (1-4C)alkanoyl group), (1-4C)alkylamino, dimethylamino(1-4C)alkyl, (1-4C)alkoxymethyl, (1-4C)alkanoylmethyl, (1-4C)alkanoyloxy(1-4C)alkyl, (1-5C)alkoxy or 2-cyanoethyl;
- (w) In one aspect of the invention, more preferably R10p is 1,2-dihydroxyethyl, 1,3-dihydroxyprop-2-yl, 1,2,3-trihydroxyprop-1-yl, methoxycarbonyl, hydroxymethyl, methyl, methylamino, dimethylaminomethyl, methoxymethyl, acetoxymethyl, methoxy, methylthio, naphthyl, tert-butoxy or 2-cyanoethyl;
- (x) In one aspect of the invention, particularly R10p is 1,2-dihydroxyethyl, 1,3-dihydroxyprop-2-yl or 1,2,3-trihydroxyprop-1-yl;
- (y) In another aspect of the invention preferably R10p is hydrogen, (1-10C)alkyl [optionally substituted by one or more hydroxy] or R11pC(O)O(1-6C)alkyl.
- (z) In another aspect of the invention, more preferably R10p is hydrogen, hydroxymethyl, 1,2-dihydroxyethyl or acteoxyacetyl; and/or Rc2c is (1-10C)alkyl optionally substituted by (1-4C)alkyl S(O)q— (q is 0-2), optionally substituted as in claim 1.
- (aa) Preferably R11p is (1-10C)alkyl;
- (ab) Preferred optional substituents for (1-10C)alkyl in R11p are hydroxy, cyano, amino, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-4C)alkylS(O)p (wherein p is 1 or 2), carboxy, (1-4C)alkoxycarbonyl, (1-4C)alkoxy, piperazino or morpholino;
- (ac) Preferred optional substituents for (1-6C)alkyl in R12p are hydroxy, (1-4C)alkoxy, cyano, amino, (1-4C)alkylamino, di((1-2C)alkyl)amino, (1-4C)alkylS(O)p— (wherein p is 1 or 2);
- (ad) Preferably 5- or 6-membered heteroaryl in R11p is pyridinyl or imidazol-1-yl;
- (ae) Preferably R12p is (1-6C)alkyl; most preferably R12p is tert-butyl or methyl;
- (af) Preferably R13p is cyano or fluoro;
- (ag) Preferably R14p is hydrogen;
- (ah) Preferably CYp is naphthoxy, especially naphth-1-oxy or naphth-2-oxy.
- Where preferable values are given for substituents in a compound of formula (IP), the corresponding substituents in a compound of formula (I) have the same preferable values (thus, for example, Rc and R13 in formula (I) correspond with R7p and R10p in formula (IP), and similarly for groups D and G). The preferred values of R7p, for example, defined with reference to (IP) are also preferred values of Rc and may be used as preferred values of Rc in any compound of formula (I). For compounds of formula (I) preferred values for Rc are those in group (Rc2) when present in any of the definitions herein containing Rc—for example when present in compounds in which there is a (TC5) or (TC9) ring system. The preferred values for R10p listed above for compounds of formula (IP) are also preferred values for R13 in compounds of formula (I). In the definition of (Rc2c) the AR2a, AR2b, AR3a and AR3b versions of AR2 and AR3 containing groups are preferably excluded.
- In another aspect, HET is a C-linked 5-membered heteroaryl ring containing 2 or 3 heteratoms independently selected from N, O and S (with the proviso that there are no O—O, O—S, S—S or N—S bonds), which ring is optionally substituted on any available C atom (provided that when a N atom is adjacent to the NH-link, there is no substitution on any C atom that is adjacent to this N atom) by 1 or 2 substituents independently selected from (1-4C)alkyl, amino, (1-4C)alkylamino, (1-4C)alkoxy and halogen, and/or on an available N atom (provided that the ring is not thereby quaterriised), by (1-4C)alkyl.
- Particular examples of HET as a 5-membered heteroaryl rings containing 2 or 3 heteroatoms independently selected from N, O and S (with the proviso that there are no O—O, O—S or S—S bonds; and in an alternative embodiment, also no N—S bonds) are pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, oxazole, isoxazole, thiazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole; and also in an alternative embodiment, isothiazole, 1,2,5-thiadiazole, 1,2,4-thiadiazole or 1,2,3-thiadiazole.
- In another aspect, HET is selected from the formulae (HET1) to (HET3) below:
wherein A2 is carbon or nitrogen and B2 is O, S or N (with a maximum of 3 hetero atoms per ring), with carbon or nitrogen ring atoms being optionally substituted as described for HET hereinbefore (preferably with no substitution on any carbon atom that is adjacent to the specified N atom). - The above HET definitions are especially preferred in embodiment (IP).
-
- X is O, S or NH (especially NH);
- R2 and R3 are independently hydrogen or fluoro; and Rp1 and Rp2 are independently hydrogen, hydroxy, bromo, (1-4C)alkyl, carboxy, (1-4C)alkoxycarbonyl, hydroxymethyl, (1-4C)alkoxymethyl or carbamoyl; or pharmaceutically-acceptable salts thereof.
- Further especially preferred compounds of the invention are of the formula (IB) wherein HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl; R2 and R3 are independently hydrogen or fluoro; and Rp1 and Rp2 are independently hydrogen, AR-oxymethyl or AR-thiomethyl (wherein AR is phenyl, phenyl-(1-4C)alkyl, naphthyl, furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole or thiophene); or pharmaceutically-acceptable salts thereof.
- Of the above especially preferred compounds of the invention of the formula (IB), particularly preferred compounds are those wherein Rp1 and Rp2 are hydrogen are particularly preferred.
-
- wherein HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl; R2 and R3 are independently hydrogen or fluoro;
- X is O, S or NH (particularly O and NH, especially NH);
- Rp1 and Rp2 are independently hydrogen, AR-oxymethyl or AR-thiomethyl (wherein AR is phenyl, phenyl-(1-4C)alkyl, naphthyl, furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole or thiophene), (1-4C)alkyl, carboxy, (1-4C)alkoxycarbonyl, hydroxymethyl, (1-4C)alkoxymethyl or carbamoyl and Rcp is cyano, pyrimidin-2-yl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl or Rcp is of the formula R10pCO—, R10pSO2— or R10pCS— (wherein R10p is hydrogen, (1-5C)alkyl [optionally substituted by one or more groups each independently selected from hydroxy and amino, or optionally monosubstituted by (1-4C)alkoxy, (1-4C)alkylS(O)q—, (1-4C)alkylamino, (1-4C)alkanoyl, naphthoxy, (2-6C)alkanoylamino or (1-4C)alkylS(O)pNH— wherein p is 1 or 2 and q is 0, 1 or 2], imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole, pyridoimidazole, pyrimidoimidazole, quinoxaline, quinazoline, phthalazine, cinnoline or naphthyridine, or R10p is of the formula R11pC(O)O(1-6C)alkyl wherein R11p is (1-6C)alkyl), or Rcp is of the formula RfC(═O)C(═O)— wherein Rf is (1-6C)alkoxy; or pharmaceutically-acceptable salts thereof.
- Of the above especially preferred compounds of the invention of the formula (IC), those wherein HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl; R2 and R3 are independently hydrogen or fluoro; Rp1 and Rp2 are independently hydrogen, AR-oxymethyl or AR-thiomethyl (wherein AR is phenyl, phenyl-(1-4C)alkyl, naphthyl, furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole or thiophene), (1-4C)alkyl, carboxy, (1-4C)alkoxycarbonyl, hydroxymethyl, (1-4C)alkoxymethyl or carbamoyl and Rcp is cyano, pyrimidin-2-yl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl or Rcp is of the formula R10pCO—, R10pSO2— or R10pCS— (wherein R10p is hydrogen, (1-5C)alkyl [optionally substituted by one or more groups each independently selected from hydroxy and amino, or optionally monosubstituted by (1-4C)alkoxy, (1-4C)alkylS(O)q, (1-4C)alkylamino, (1-4C)alkanoyl, (2-6C)alkanoylamino or (1-4C)alkylS(O)pNH— wherein p is 1 or 2 and q is 0, 1 or 2], pyridine, or R10p is of the formula R11pC(O)O(1-6C)alkyl wherein R10p is (1-6C)alkyl), or Rcp is of the formula RfC(═O)C(═O)— wherein Rf is (1-6C)alkoxy; or pharmaceutically-acceptable salts thereof are further preferred.
- Of the above especially preferred compounds of the invention of the formula (IC), particularly preferred compounds are those wherein HET is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl; R2 and R3 are independently hydrogen or fluoro; Rp1 and Rp2 are hydrogen, and Rcp is pyridin-2-yl (optionally substituted with cyano) or Rcp is of the formula R10pCO— (wherein R10p is hydrogen, 1,3-dioxolan-4-yl (optionally disubstituted with (1-4C)alkyl) or (1-5C)alkyl [optionally substituted by one or more hydroxy groups] or R10p is of the formula R11pC(O)O(1-6C)alkyl wherein R11p is (1-6C)alkyl)); or pharmaceutically-acceptable salts thereof.
- Of the above especially preferred compounds of the invention of the formula (IC), particularly preferred compounds are those wherein Rcp is of the formula R10pCO— (wherein R10p is hydrogen, 1,3-dioxolan-4-yl (optionally disubstituted with (1-4C)alkyl) or (1-5C)alkyl [substituted by two hydroxy groups]; or pharmaceutically-acceptable salts thereof.
- In another aspect of the invention particularly preferred compounds of the invention are of the formula (IC) wherein HET is isoxazol-3-yl; R2 and R3 are independently hydrogen or fluoro; Rp1 and Rp2 are hydrogen and Rcp is R10pCO— (wherein R10p is hydrogen, (1-5C)alkyl [optionally substituted by one or two hydroxy groups],
- or R10p is of the formula R11pC(O)O(1-6C)alkyl (wherein R11p is (1-6C)alkyl)); and pharmaceutically-acceptable salts thereof.
- In another aspect of the invention all of the compounds of formula (IB) or (IC) described above are further preferred when HET is isoxazol-3-yl, isothiazol-3-yl or 1,2,5-thiadiazol-3-yl.
- In yet another aspect the invention relates to all of the compounds of formula (IB) or (IC) described above wherein HET is isoxazol-3-yl or 1,2,4-oxadiazol-3yl.
- In yet another aspect the invention relates to all of the compounds of formula (IB) or (IC) described above wherein HET is isoxazol-3-yl.
- In another aspect of the invention there are provided preferred compounds of the formula (IP) wherein HET is isoxazol-3-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,5-thiadiazol-3-yl; >A-B— is >N—CH2— and D is NR7p (or D is O) wherein Rcp is a 6-membered heteroaryl ring containing 1, 2 or 3 ring nitrogen atoms as the only ring heteroatoms, linked via a ring carbon atom and optionally substituted on a ring carbon atom by one, two or three substituents independently selected from (1-4C)alkyl, halo, trifluoromethyl, (1-4C)alkyl S(O)q— (wherein q is 0, 1 or 2), (1-4C)alkylS(O)2amino, (1-4C)alkanoylamino, carboxy, hydroxy, amino, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-4C)alkoxycarbonyl, carbamoyl, N-(1-4C)alkylcarbamoyl, di-(N-(1-4C)alkyl)carbamoyl, (1-4C)alkoxy, cyano or nitro; or pharmaceutically-acceptable salts thereof.
- In all of the above aspects and preferred compounds of formula (IB) or (IC), in-vivo hydrolysable esters are preferred where appropriate, especially phosphoryl esters (as defined by formula (PD3) with npd as 1).
- In all of the above definitions the preferred compounds are as shown in formula (IA), i.e. the pharmaceutically active (5(R)) enantiomer.
- Particular compounds of the present invention include the following:
- (5RS)-3-(4-(1-Hydroxyacetyl-1,2,5,6-tetrahydropyrid-4-yl)phenyl)-5-(3-isoxazolylaminomethyl)-4,5-dihydro-isoxazole and
- (5RS)-3-(4-((2S)-2,3-Dihydroxypropanoyl-1,2,5,6-tetrahydropyrid-4-yl)phenyl)-5-(3-isoxazolylaminomethyl)-4,5-dihydro-isoxazole
and the individual (5R) isomers thereof; and in-vivo-hydrolysable esters thereof. - Other particular compounds of the present invention include the following:
- (5RS)-3-(4-((2S)-2,3-Dihydroxypropyl-1,2,5,6-tetrahydropyrid-4-yl)phenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole;
- (5RS)-3-(3-Fluoro-4-(4-((2S)-2,3-dihydroxypropionyl)piperazin-1-yl)phenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole;
- (5RS)-3-(3-Fluoro-4-morpholin-4-yl phenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydro-isoxazole;
- (5RS)-3-(3-Fluoro-4-(1-oxothiomorpholin-4-yl)phenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydroisoxazole;
- (5RS)-3-(3-fluoro-4-(1,1-dioxothiomorpholin-4-yl)phenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydroisoxazole;
- (5RS)-3-(3-Fluoro-4-piperazin-1-ylphenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydro-isoxazole;
- (5RS)-3-(3-Fluoro-4-(4-methanesulfonyl)piperazin-1-ylphenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydroisoxazole;
and the individual (5R) isomers thereof; and pharmaceutically-acceptable salts or in-vivo hydrolysable esters thereof. - Further particular compounds of the present invention include the following:-
- (5RS)-3-(3-Fluoro-4-imidazol-1-ylphenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydroisoxazole;
- (5RS)-3-(3-Fluoro-4-imidazol-1-ylphenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole;
and the individual (5R) isomers thereof; and pharmaceutically-acceptable salts thereof.
Process Section: - In a further aspect the present invention provides a process for preparing a compound of formula (I) or a pharmaceutically-acceptable salt or an in-vivo hydrolysable ester thereof. It will be appreciated that during certain of the following processes certain substituents may require protection to prevent their undesired reaction. The skilled chemist will appreciate when such protection is required, and how such protecting groups may be put in place, and later removed.
- For examples of protecting groups see one of the many general texts on the subject, for example, ‘Protective Groups in Organic Synthesis’ by Theodora Green (publisher: John Wiley & Sons).
- Protecting groups may be removed by any convenient method as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.
- Thus, if reactants include, for example, groups such as amino, carboxy or hydroxy it may be desirable to protect the group in some of the reactions mentioned herein.
- A suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or t-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulfturic or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate). A suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.
- A suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl. The deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
- A suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
- Resins may also be used as a protecting group.
- The protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art.
- A compound of the formula (I), or a pharmaceutically-acceptable salt or an in vivo hydrolysable ester thereof, may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Such processes, when used to prepare a compound of the formula (I), or a pharmaceutically-acceptable salt or an in vivo hydrolysable ester thereof, are provided as a further feature of the invention and are illustrated by the following representative examples. Necessary starting materials may be obtained by standard procedures of organic chemistry (see, for example, Advanced Organic Chemistry (Wiley-Interscience), Jerry March). The preparation of such starting materials is described within the accompanying non-limiting Examples (in which, for example, 3,5-difluorophenyl, 3-fluorophenyl and (des-fluoro)phenyl containing intermediates may all be prepared by analagous procedures; or by alternative procedures—for example, the preparation of (T group)-(fluoro)phenyl intermediates by reaction of a (fluoro)phenylstannane with, for example, a pyran or (tetrahydro)pyridine compound, may also be prepared by anion chemistry (see, for example, WO97/30995). Alternatively, necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of an organic chemist.
- Information on the preparation of necessary starting materials or related compounds (which may be adapted to form necessary starting materials) may also be found in the following Patent and Application Publications, the contents of the relevant process sections of which are hereby incorporated herein by reference: WO 98/07708, WO 98/54161, WO 99/41244 and WO 99/43671.
- The skilled organic chemist will be able to use and adapt the information contained and referenced within the above references to obtain necessary starting materials.
- Thus, the present invention also provides that the compounds of the formulae (I) and pharmaceutically-acceptable salts and in vivo hydrolysable esters thereof,
- can be prepared by a process (a) to (c) as follows (wherein the variables are as defined above unless otherwise stated):
- (wherein the variables are as defined above unless otherwise stated):
-
- (a) by modifying a substituent in or introducing a substituent into another compound of formula (I);
- (b) by reaction of a compound of formula (II):
wherein Y is either (i) hydroxy; or (ii) a displaceable group with a compound of the formula (III):
HN(Pg)-HET (III-A)
or
HX-HET (III-B)
wherein Pg is a suitable protecting group; or - (c) by reaction of a compound of formula (II) wherein Y is an amino group with a compound of the formula (IV):
Lg-HET (IV)
wherein Lg is a leaving group; and thereafter if necessary: - (i) removing any protecting groups; (ii) forming a pharmaceutically-acceptable salt; (iii) forming an in-vivo hydrolysable ester.
- Deprotection, salt formation or in-vivo hydrolysable ester formation may each be provided as a specific final process step.
- Where Y is a displaceable group, suitable values for Y are for example, a halogeno or sulfonyloxy group, for example a chloro, bromo, methanesulfonyloxy or toluene-4-sulfonyloxy group.
- General guidance on reaction conditions and reagents may be obtained in Advanced Organic Chemistry, 4th Edition, Jerry March (publisher: J. Wiley & Sons), 1992. Necessary starting materials may be obtained by standard procedures of organic chemistry, such as described in this process section, in the Examples section or by analogous procedures within the ordinary skill of an organic chemist. Certain references are also provided which describe the preparation of certain suitable starting materials, the contents of which are incorporated here by reference. Processes analogous to those described in the references may also be used by the ordinary organic chemist to obtain necessary starting materials.
- (a) Methods for converting substituents into other substituents are known in the art. For example an alkylthio group may be oxidised to an alkylsulfinyl or alkysulfonyl group, a cyano group reduced to an amino group, a nitro group reduced to an amino group, a hydroxy group alkylated to a methoxy group, a hydroxy group thiomethylated to an arylthiomethyl or a heteroarylthiomethyl group (see, for example, Tet. Lett., 585, 1972), a carbonyl group converted to a thiocarbonyl group (eg. using Lawsson's reagent) or a bromo group converted to an alkylthio group. It is also possible to convert one Rc group into another Rc group as a final step in the preparation of a compound of the formula (I), for example, acylation of a group of formula (TC5) wherein Rc is hydrogen.
- Such modifications also permit the formation of compounds in which X is SO or SO2 from compounds in which X is S, by use of a suitable oxidising agent, using standard conditions.
- (b)(i) Reaction (b)(i) is performed under Mitsunobu conditions, for example, in the presence of tri-n-butylphosphine and diethyl azodicarboxylate (DEAD) in an organic solvent such as THF, and in the temperature range 0° C.-60° C., but preferably at ambient temperature. Details of Mitsunobu reactions are contained in Tet. Letts., 31, 699, (1990); The Mitsunobu Reaction, D. L. Hughes, Organic Reactions, 1992, Vol. 42, 335-656 and Progress in the Mitsunobu Reaction, D. L. Hughes, Organic Preparations and Procedures International, 1996, Vol. 28, 127-164.
- Particularly suitable values for Pg are the following, or suitable derivatives thereof; Pg such as to give a carbamate (for example Pg as t-BOC or 2,2,2-trichloroethyloxycarbonyl), Pg as (1-4C)alkanoyl (for example acxetyl or chloroacetyl), phosphoramidate, allyloxy, benzyloxy (and methyl/nitro derivatives thereof) or sulfonyl (such as, for example, tosylate, mesylate, 4-nitrophenylsulfonyl, 4-methoxy-2,3,6-trimethyl-phenylsulfonyl). See the accompanying Examples for particular values of Pg.
- Pg may be removed by techniques available to the skilled chemist (see also techniques described elsewhere herein). For example, tosylate and mesylate may be removed using standard deprotection conditions, or Na/Li amalgam or Mg/MeOH under standard conditions; 4-nitrophenylsulfonyl may be removed using base and phenylthio or thioacetic acid; 4-methoxy-2,3,6-trimethyl-phenylsulfonyl may be removed using TFA deprotection under standard conditions.
- Compounds of the formula (II) wherein Y is hydroxy may be obtained as described in the references cited herein (particularly in the section proceeding the discussion of protecting groups), or obtained by adapting the chemistry described therein.
- If not commercially available, compounds of the formula (III) may be prepared by procedures which are selected from standard chemical techniques, techniques which are analogous to the synthesis of known, structurally similar compounds, or techniques which are analogous to the procedures described in the Examples. For example, standard chemical techniques are as described in Houben Weyl, Methoden der Organische Chemie, E8a, Pt.I (1993), 45-225, B. J. Wakefield. Many amino-HET compounds are commercially available and may be converted into HN(Pg)-HET by standard techniques.
- (b)(ii) Reactions (b)(ii) are performed conveniently in the presence of a suitable base such as, for example, an alkali or alkaline earth metal carbonate, alkoxide or hydroxide, for example sodium carbonate or potassium carbonate, or, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine or diazabicyclo-[5.4.0]undec-7-ene, the reaction is also preferably carried out in a suitable inert solvent or diluent, for example methylene chloride, acetonitrile, tetrahydrofuran, 1,2-dimethoxyethane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one or dimethylsulfoxide at and at a temperature in the range 25-60° C.
- When Y is chloro, the compound of the formula (II) may be formed by reacting a compound of the formula (II) wherein Y is hydroxy (hydroxy compound) with a chlorinating agent. For example, by reacting the hydroxy compound with thionyl chloride, in a temperature range of ambient temperature to reflux, optionally in a chlorinated solvent such as dichloromethane or by reacting the hydroxy compound with carbon tetrachloride/triphenyl phosphine in dichloromethane, in a temperature range of 0° C. to ambient temperature. A compound of the formula (II) wherein Y is chloro or iodo may also be prepared from a compound of the formula (II) wherein Y is mesylate or tosylate, by reacting the latter compound with lithium chloride or lithium iodide and crown ether, in a suitable organic solvent such as THF, in a temperature range of ambient temperature to reflux.
- When Y is (1-4C)alkanesulfonyloxy or tosylate the compound (II) may be prepared by reacting the hydroxy compound with (1-4C)alkanesulfonyl chloride or tosyl chloride in the presence of a mild base such as triethylamine or pyridine.
- When Y is a phosphoryl ester (such as PhO2—P(O)—O—) or Ph2—P(O)—O— the compound (II) may be prepared from the hydroxy compound under standard conditions.
- (c) The skilled man will appreciate that for the reaction of a compound of formula (II) wherein Y is an amino group with a compound of the formula (IV), Lg-HET, certain, reactive heteroarlys HET react satisfactorily, such as triazines and pyridazine. A suitable value for Lg is chloro. The reaction is performed under standard conditions in an inert solvent and in the presence of a suitable base (such as triethylamine).
- Compounds of the formula (II) wherein Y is amino may be obtained as described in the references cited herein (particularly in the section proceeding the discussion of protecting groups), for example from the corresponding compounds in which Y is hydroxy (via the azide).
-
- The removal of any protecting groups, the formation of a pharmaceutically-acceptable salt and/or the formation of an in vivo hydrolysable ester are within the skill of an ordinary organic chemist using standard techniques. Furthermore, details on the these steps, for example the preparation of in-vivo hydrolysable ester prodrugs has been provided in the section above on such esters, and in certain of the following non-limiting Examples.
- When an optically active form of a compound of the formula (I) is required, it may be obtained by carrying out one of the above procedures using an optically active starting material (formed, for example, by asymmetric induction of a suitable reaction step), or by resolution of a racemic form of the compound or intermediate using a standard procedure, or by chromatographic separation of diastereoisomers (when produced). Enzymatic techniques may also be useful for the preparation of optically active compounds and/or intermediates.
- Similarly, when a pure regioisomer of a compound of the formula (I) is required, it may be obtained by carrying out one of the above procedures using a pure regioisomer as a starting material, or by resolution of a mixture of the regioisomers or intermediates using a standard procedure.
- According to a further feature of the invention there is provided a compound of the formula (I), or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof for use in a method of treatment of the human or animal body by therapy.
- According to a further feature of the present invention there is provided a method for producing an antibacterial effect in a warm blooded animal, such as man, in need of such treatment, which comprises administering to said animal an effective amount of a compound of the present invention, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof.
- The invention also provides a compound of the formula (I), or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof for use as a medicament; and the use of a compound of the formula (I) of the present invention, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, in the manufacture of a medicament for use in the production of an antibacterial effect in a warm blooded animal, such as man.
- In order to use a compound of the formula (I), an in-vivo hydrolysable ester or a pharmaceutically-acceptable salt thereof, including a pharmaceutically-acceptable salt of an in-vivo hydrolysable ester, (hereinafter in this section relating to pharmaceutical composition “a compound of this invention”) for the therapeutic (including prophylactic) treatment of mammals including humans, in particular in treating infection, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.
- Therefore in another aspect the present invention provides a pharmaceutical composition which comprises a compound of the formula (I), an in-vivo hydrolysable ester or a pharmaceutically-acceptable salt thereof, including a pharmaceutically-acceptable salt of an in-vivo hydrolysable ester, and a pharmaceutically-acceptable diluent or carrier.
- The pharmaceutical compositions of this invention may be administered in standard manner for the disease condition that it is desired to treat, for example by oral, rectal or parenteral administration. For these purposes the compounds of this invention may be formulated by means known in the art into the form of, for example, tablets, capsules, aqueous or oily solutions or suspensions, (lipid) emulsions, dispersible powders, suppositories, ointments, creams, aerosols (or sprays), drops and sterile injectable aqueous or oily solutions or suspensions.
- In addition to the compounds of the present invention the pharmaceutical composition of this invention may also contain or be co-administered (simultaneously, sequentially or separately) with one or more known drugs selected from other clinically useful antibacterial agents (for example, β-lactams or aminoglycosides) and/or other anti-infective agents (for example, an antifungal triazole or amphotericin). These may include carbapenems, for example meropenem or imipenem, to broaden the therapeutic effectiveness. Compounds of this invention may also contain or be co-administered with bactericidal/permeability-increasing protein (BPI) products or efflux pump inhibitors to improve activity against gram negative bacteria and bacteria resistant to antimicrobial agents.
- A suitable pharmaceutical composition of this invention is one suitable for oral administration in unit dosage form, for example a tablet or capsule which contains between 1 mg and 1 g of a compound of this invention, preferably between 100 mg and 1 g of a compound. Especially preferred is a tablet or capsule which contains between 50 mg and 800 mg of a compound of this invention, particularly in the range 100 mg to 500 mg.
- In another aspect a pharmaceutical composition of the invention is one suitable for intravenous, subcutaneous or intramuscular injection, for example an injection which contains between 0.1% w/v and 50% w/v (between 1 mg/ml and 500 mg/ml) of a compound of this invention.
- Each patient may receive, for example, a daily intravenous, subcutaneous or intramuscular dose of 0.5 mgkg−1 to 20 mgkg−1 of a compound of this invention, the composition being administered 1 to 4 times per day. In another embodiment a daily dose of 5 mgkg−1 to 20 mgkg−1 of a compound of this invention is administered. The intravenous, subcutaneous and intramuscular dose may be given by means of a bolus injection. Alternatively the intravenous dose may be given by continuous infusion over a period of time. Alternatively each patient may receive a daily oral dose which may be approximately equivalent to the daily parenteral dose, the composition being administered 1 to 4 times per day.
- A pharmaceutical composition to be dosed intravenously may contain advantageously (for example to enhance stability) a suitable bactericide, antioxidant or reducing agent, or a suitable sequestering agent.
- In the above other, pharmaceutical composition, process, method, use and medicament manufacture features, the alternative and preferred embodiments of the compounds of the invention described herein also apply.
- Antibacterial Activity:
- The pharmaceutically-acceptable compounds of the present invention are useful antibacterial agents having a good spectrum of activity in vitro against standard Gram-positive organisms, which are used to screen for activity against pathogenic bacteria. Notably, the pharmaceutically-acceptable compounds of the present invention show activity against enterococci, pneumococci and methicillin resistant strains of S.aureus and coagulase negative staphylococci. The antibacterial spectrum and potency of a particular compound may be determined in a standard test system.
- The (antibacterial) properties of the compounds of the invention may also be demonstrated and assessed in-vivo in conventional tests, for example by oral and/or intravenous dosing of a compound to a warm-blooded mammal using standard techniques.
- The following results were obtained on a standard in-vitro test system. The activity is described in terms of the minimum inhibitory concentration (MIC) determined by the agar-dilution technique with an inoculum size of 104 CFU/spot. Typically, compounds are active in the range 0.01 to 256 μg/ml.
- Staphylococci were tested on agar, using an inoculum of 104 CFU/spot and an incubation temperature of 37° C. for 24 hours—standard test conditions for the expression of methicillin resistance.
- Streptococci and enterococci were tested on agar supplemented with 5% defibrinated horse blood, an inoculum of 104 CFU/spot and an incubation temperature of 37° C. in an atmosphere of 5% carbon dioxide for 48 hours—blood is required for the growth of some of the test organisms.
- For example, the following results were obtained for the compound of Example 1:
Organism MIC (μg/ml) Staphylococcus aureus: Oxford 2 Novb. Res 4 MRQR 4 Coagulase Negative Staphylococci MS 1 MR 2 Streptococcus pyogenes C203 8 Enterococcus faecalis 8 Bacillus subtilis 1 - Novb. Res=Novobiocin resistant
- MRQR=methicillin resistant quinolone resistant
- MR=methicillin resistant
- MS=methicillin sensitive
- Certain intermediates and/or Reference Examples described hereinafter (especially those in which the —NH— link to HET is protected by a BOC group) may also possess useful activity, and are provided as a further feature of the invention.
- The invention is now illustrated but not limited by the following Examples in which unless otherwise stated:-
- (i) evaporations were carried out by rotary evaporation in vacuo and work-up procedures were carried out after removal of residual solids by filtration;
- (ii) operations were carried out at ambient temperature, that is typically in the range 18-26° C. and in air unless otherwise stated, or unless the skilled person would otherwise work under an inert atmosphere;
- (iii) column chromatography (by the flash procedure) was used to purify compounds and was performed on Merck Kieselgel silica (Art. 9385) unless otherwise stated;
- (iv) yields are given for illustration only and are not necessarily the maximum attainable;
- (v) the structure of the end-products of the formula (I) were generally confirmed by NMR and mass spectral techniques [proton magnetic resonance spectra were generally determined in DMSO-D6 unless otherwise stated using a Varian Gemini 2000 spectrometer operating at a field strength of 300 MHz, or a Bruker AM250 spectrometer operating at a field strength of 250 MHz; chemical shifts are reported in parts per million downfield from tetramethysilane as an internal standard (δ scale) and peak multiplicities are shown thus: s, singlet; d, doublet; AB or dd, doublet of doublets; t, triplet, m, multiplet; fast-atom bombardment (FAB) mass spectral data were generally obtained using a Platform spectrometer (supplied by Micromass) run in electrospray and, where appropriate, either positive ion data or negative ion data were collected];
- (vi) intermediates were not generally fully characterised and purity was in general assessed by thin layer chromatographic, infra-red (IR), mass spectral (MS) or NMR analysis; and
- (vii) in which the following abbreviations may be used:
- ® is a Trademark; DMF is N,N-dimethylformamide; DMA is N,N-dimethylacetamide; TLC is thin layer chromatography; HPLC is high pressure liquid chromatography; MPLC is medium pressure liquid chromatography; DMSO is dimethylsulfoxide; CDCl3 is deuterated chloroform; MS is mass spectroscopy; ESP is electrospray; THF is tetrahydrofuran; TFA is trifluoroacetic acid; NMP is N-methylpyrrolidone; HOBT is 1-hydroxy-benzotriazole; EtOAc is ethyl acetate; MeOH is methanol; phosphoryl is (HO)2—P(O)—O—; phosphiryl is (HO)2—P—O—; EDC is 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (hydrochloride); PTSA is para-toluenesulfonic acid.
- (5RS)-3-(4-(1,2,5,6-Tetrahydropyrid-4-yl)phenyl)-5-(3-isoxazolylaminomethyl)-4,5-dihydro-isoxazole dihydrochloride (397 mg, 1 mM) was suspended in acetonitrile (15 ml) under nitrogen, triethylamine (404 mg, 4 mM) added, and the mixture cooled to 0° C. Acetoxyacetyl chloride (170 mg, 1.25 mM) was added dropwise with stirring, and stirring continued for 4 hours, allowing the temperature to rise to ambient. Solvent was evaporated, the residue treated with water (20 ml) and extracted into dichloromethane (3×20 ml). The extracts were dried (magnesium sulfate), evaporated, the residue dissolved in methanol (15 ml), and stirred 18 hours at ambient temperature with potassium carbonate (138 mg, 1 mM). After removal of solvent, the residue was chromatographed on a 10 g silica Mega Bond Elut® column, eluting with 5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (205 mg). MS (ESP): 383 (MH+) for C20H22N4O4
- NMR (CDCl3) δ: 2.58 (br, 2H); 3.18 (dd, 1H); 3.44 (dd, 1H); 3.49 (m, 2H); 3.61 (overlapping m, 2H); 3.90 (t, 1H); 3.97 (m, 1H); 4.16 (dd, 1H); 4.27 (dd, 1H); 4.30 (m, 2H); 5.02 (m, 1H); 5.83 (d, 1H); 6.11 (2×m, 1H); 7.39 (m, 2H); 7.63 (d, 2H); 8.03 (d, 1H).
- The intermediates for this compound were prepared as follows:-
- 3-Aminoisoxazole (10 g, 0.12 M) and 4-dimethylaminopyridine (500 mg, 4.1 mM) were dissolved in pyridine (200 ml), and treated in portions with di-t-butyl dicarbonate (51.94 g, 0.24 M). The mixture was stirred at ambient temperature for 18 hours, then evaporated to dryness. The residue was dissolved in methanol (200 ml) and treated with sodium hydroxide solution (2N, 60 ml), then stirred for 2 hours. After acidification with aqueous citric acid (10%, 160 ml), the mixture was added to water (750 ml), and the desired product (15.9 g) collected by filtration.
- NMR (DMSO-d6) δ: 1.46 (s, 9H); 6.69 (d, 1H); 8.68 (d, 1H); 10.27 (s, 1H).
- 3-(t-Butoxycarbonylamino)isoxazole (12 g, 65.2 mM) was dissolved in dimethoxyethane (150 ml) and cooled to 0° C. under nitrogen. To the stirred solution was added sodium hydride (60% in oil, 2.87 g, 71.7 mM), and the mixture stirred 20 minutes. Allyl bromide (8.7 g, 71.7 mM) was added dropwise, and the mixture stirred at ambient temperature for 18 hours, then diluted with water (300 ml), and extracted into diethyl ether (3×100 ml). The extracts were washed with brine (100 ml), dried (magnesium sulfate), and chromatographed on silica (50 g) eluting with dichloromethane. Relevant fractions were combined to give the desired product as an oil (14.68 g). MS (ESP): 225 (MH+) for C11H16N2O3
- NMR (CDCl3) δ: 1.54 (s, 9H); 4.47 (dm, 2H); 5.18 (m, 2H); 5.92 (m, 1H); 6.87 (d, 1H); 8.22 (d, 1H).
- N-Allyl-3-(t-butoxycarbonylamino)isoxazole (4.48 g, 20 mM) and 4-bromo-N-hydroxybenzenecarboximidoyl chloride (4.92 g, 20 mM, see WO 98/07708) were dissolved in anhydrous diethyl ether (50 ml), and stirred vigorously at ambient temperature under nitrogen during the addition of triethylamine (2.63 g, 26 mM). Stirring was continued for 18 hours, the mixture diluted with ethyl acetate (100 ml), and washed successively with water (150 ml) and brine (3×100 ml). The organic layer was dried (magnesium sulfate), filtered, and evaporated to dryness. The resulting solid was triturated with diethyl ether/isohexane (1:1, 100 ml), and filtered to give the desired product (5.76 g). MS (ESP): 422 (MH+) for C18H20BrN3O4
- NMR (CDCl3) δ: 1.53 (s, 9H); 3.16 (dd, 1H); 3.37 (dd, 1H); 3.97 (dd, 1H); 4.20 (dd, 1H); 5.19 (m, 1H); 6.89 (d, 1H); 7.52 (s, 4H); 8.23 (d, 1H).
- (5RS)-3-(4-Bromophenyl)-5-(3-N-(t-butoxycarbonyl)isoxazolylaminomethyl)-4,5-dihydro-isoxazole (5.86 g, 13.9 mM) and dichlorobis(triphenylphosphine)palladium(II) (488 mg, 0.7 mM) were dissolved in 1,4-dioxane (60 ml, deoxygenated by nitrogen). To this was added hexamethylditin (5 g, 15.3 mM) in 1,4-dioxane (20 ml), and the resulting mixture heated at 100° C. for 24 hours. After cooling and filtering through celite, the solvent was evaporated, and the residual oil chromatographed on a 90 g Biotage silica column, eluting with a mixture of ethyl acetate/isohexane (3:1). Relevant fractions were combined to give the desired product as an oil (5.93 g).
- NMR (CDCl3) δ: 1.31 (s, 9H); 1.54 (s, 9H); 3.16 (dd, 1H); 3.39 (dd, 1H); 3.97 (dd, 1H); 4.19 (dd, 1H); 5.16 (m, 1H); 6.89 (d, 1H); 7.53 (d, 2H); 7.62 (d, 2H); 8.23 (d, 1H).
- Tris(dibenzylideneacetone)dipalladium (24 mg, 0.026 mM) and triphenylarsine (3 mg, 0.01 mM) were dissolved in degassed N-methylpyrrolidone (15 ml) under nitrogen. (5RS)-3-(4-Trimethylstannylphenyl)-4,5-dihydro-5-(3-N-(t-butoxycarbonyl)isoxazolylaminomethyl)4,5-dihydroisoxazole (586 mg, 1.16 mM) and 1-t-butoxycarbonyl-trifluorosulfonyloxy-1,2,5,6-tetrahydropyridine (WO97/30995; Synthesis, 993, (1991); 358 mg, 1.08 mM) were added, and the reaction stirred at ambient temperature for 18 hours. The mixture was diluted with water (50 ml), extracted with ethyl acetate (3×25 ml), the organic extracts washed with brine (25 ml) and dried (magnesium sulfate). The residue after evaporation was chromatographed on a 10 g silica Mega Bond Elut® column, eluting with a mixture of ethyl acetate/isohexane (3:1). Relevant fractions were combined to give the desired product (320 mg).
- NMR (CDCl3) δ: 1.49 (s, 9H); 1.53 (s, 9H); 2.53 (br, 2H); 3.16 (dd, 1H); 3.39 (dd, 1H); 3.63 (t, 2H); 3.98 (dd, 1H); 4.09 (m, 2H); 4.20 (dd, 1H); 5.17 (m, 1H); 6.11 (br, 1H); 6.90 (br, 1H); 7.40 (d, 2H); 7.63 (d, 2H); 8.23 (d, 1H).
- (5RS)-3-(4-(1-t-Butoxycarbonyl-1,2,5,6-tetrahydropyrid-4-yl)phenyl)-5-(3-N-(t-butoxycarbonyl)isoxazolylaminomethyl)-4,5-dihydroisoxazole (2.46 g, 4.7 mM) was dissolved in ethanol (20 ml), cooled to 0° C. under nitrogen, and treated with ethanolic hydrogen chloride (4M, 20 ml). The mixture was stirred at ambient temperature for 18 hours, the volume reduced to 15 ml, then diethyl ether added until turbid. The desired product crystallised on standing (1.42 g). MS (ESP): 325 (MH+) for C18H20N4O2
- NMR (DMSO-d6) δ: 2.68 (br, 2H); 3.20 (m overlapping dd, 5H); 3.46 (dd, 1H); 3.69 (br, 2H); 4.87 (m, 1H); 5.97 (d, 1H); 6.26 (m, 1H); 7.53 (d, 2H); 7.64 (d, 2H); 8.34 (d, 1H); 9.45 (br, 2H).
- (5RS)-3-(4-(1,2,5,6-Tetrahydropyrid-4-yl)phenyl)-5-(3-isoxazolylaminomethyl)-4,5-dihydro-isoxazole dihydrochloride (397 mg, 1 mM) was suspended by stirring in acetonitrile (15 ml) under nitrogen, triethylamine (404 mg, 4 mM) added, and the mixture cooled to 0° C. (4S)-2,2-Dimethyl-1,3-dioxolan-4-ylcarbonyl chloride (328 mg, 2 mM) was added dropwise, stirring continued for 30 minutes at 0° C., then for 18 hours allowing the temperature to rise to ambient. Solvent was evaporated, the residue treated with water (25 ml) and extracted into dichloromethane (4×20 ml). The extracts were washed with brine (25 ml), dried (magnesium sulfate), and evaporated. The residue was dissolved in tetrahydrofuran (40 ml), treated with hydrochloric acid (2N, 2 ml), and stirred 48 hours at ambient temperature. Potassium carbonate (2 g) was added, the mixture stirred 30 minutes and filtered. After removal of solvent, the residue was chromatographed on a 10 g silica Mega Bond Elut® column, eluting with a gradient from 5 to 10% methanol in dichloromethane. Relevant fractions were combined to give the desired product (125 mg). MS (ESP): 413 (MH+) for C21H24N4O5
- NMR (CDCl3) δ: 2.54 (br, 2H); 3.18 (dd, 1H); 3.26 (m overlapped by H2O, 2H); 3.47 (dd, 2H); 3.55 (m, 1H); 3.74 (m, 2H); 4.13 (br, 1H); 4.26 (m, 1H); 4.38 (m, 1H); 4.67 (d, 1H); 4.89 (overlapping m, 2H); 5.96 (d, 1H); 6.26 (br, 1H); 6.37 (t, 1H); 7.50 (d, 2H); 7.62 (d, 2H); 8.34 (d, 1H).
- (5RS)-3-(4-(1,2,5,6-Tetrahydropyrid-4-yl)phenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydro-isoxazole hydrochloride (300 mg, 0.83 mM) was treated with (4S)-2,2-dimethyl-1,3-dioxolan-4-ylcarbonyl chloride under essentially the conditions of Example 2. Crude product was chromatographed on a 20 g silica Mega Bond Elut® column, eluting with 5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (43 mg).
- MS (ESPD: 414 (MH+) for C21H23N3O6
- NMR (CDCl3) δ: 2.64 (br, 2H); 3.27 (dd, 1H); 3.50 (dd, 1H); 3.72 (m, 3H); 3.80-4.18 (overlapping m, 4H); 4.30 (m, 1H); 4.42 (d, 2H); 4.53 (m, 1H); 5.13 (m, 1H); 5.99 (d, 1H); 6.13 (br, 1H); 7.40 (d, 2H); 7.65 (d, 2H); 8.11 (d, 1H).
- The intermediates for this compound were prepared as follows:-
- Allyl alcohol (1.16 g, 20 mM) and 4-bromobenzohydroximinoyl chloride (4.92 g, 20 mM, see WO 98-07708) were reacted using essentially the procedure of the equivalent intermediate of Example 1, to give the desired product (3.33 g).
- NMR (CDCl3) δ: 2.11 (br, 1H); 3.25 (dd, 1H); 3.35 (dd, 1H); 3.68 (br d, 1H); 3.88 (br d, 1H); 4.87 (m, 1H); 7.52 (s, 4H).
- (5RS)-3-(4-Bromophenyl)-5-hydroxymethyl-4,5-dihydro-isoxazole (3.07 g, 12 mM), triphenylphosphine (3.78 g, 14.4 mM) and 3-hydroxyisoxazole (1.02 g, 12 mM) were dissolved in anhydrous tetrahydrofuran (50 ml), cooled to 0° with stirring under nitrogen, and treated with diisopropylazodicarboxylate (2.71 g, 13.4 mM). Stirring was continued for 18 hours, and the mixture evaporated to dryness. The residue was chromatographed on a 90 g Biotage silica column, eluting with 25% ethyl acetate in isohexane, appropriate fractions combined, and chromatographed again on a 40 g Biotage silica column, eluting with 5% methanol in dichloromethane. Appropriate fractions were combined to give the desired product (2.15 g). MS (ESP): 323 (MH+) for C13H11BrN2O3
- NMR (CDCl3) δ: 3.26 (dd, 1H); 3.48 (dd, 1H); 4.43 (d, 2H); 5.13 (m, 1H); 5.99 (d, 1H); 7.54 (s, 4H); 8.13 (d, 1H).
- (5RS)-3-(4-Bromophenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydro-isoxazole (2.06 g, 6.38 mM) was treated with hexamethylditin at 100° C. for 18 hours, using essentially the procedure of the equivalent intermediate of Example 1. Crude product was chromatographed on a 40 g Biotage silica column, eluting with 25% ethyl acetate in isohexane. Relevant fractions were combined to give the desired product (2.21 g).
- NMR (CDCl3) δ: 0.30 (s, 9H); 3.28 (dd, 1H); 3.50 (dd, 1H); 4.41 (d, 2H); 5.12 (m, 1H); 5.99 (d, 1H); 7.54 (d, 2H); 7.63 (d, 2H); 8.12 (d, 1H).
- (5RS)-3-(4-Trimethylstannylphenyl)-5-isoxazol-3-yloxymethyl)-4,5-dihydroisoxazole (2 g, 4.93 mM) was treated with 1-t-butoxycarbonyl-4-trifluorosulfonyloxy-1,2,5,6-tetrahydropyridine at ambient temperature for 18 hours, using essentially the procedure of the equivalent intermediate of Example 1. Crude product was chromatographed on a 20 g silica Mega Bond Elut® column, eluting with 25% ethyl acetate in isohexane. Relevant fractions were combined to give the desired product (560 mg).
- NMR (CDCl3) δ: 1.49 (s, 9H); 2.53 (br, 2H); 3.28 (dd, 1H); 3.50 (dd, 1H); 3.65 (t, 2H); 4.09 (m, 2H); 4.43 (d, 2H); 5.13 (m, 1H); 5.99 (d, 1H); 6.13 (br, 1H); 7.42 (d, 2H); 7.65 (d, 2H); 8.13 (d, 1H).
- (5RS)-3-(4-(1-t-Butoxycarbonyl-1,2,5,6-tetrahydropyrid-4-yl)phenyl)-5-isoxazol-3-yloxymethyl)-4,5-dihydroisoxazole (500 mg, 1.18 mM) was treated with ethanolic hydrogen chloride using essentially the procedure of the equivalent intermediate of Example 1. The desired product crystallised from the reaction mixture (300 mg).
- MS (ESP): 326 (MH+) for C18H19N3O3
- NMR (DMSO-d6) δ: 2.68 (br, 2H); 3.29 (m overlapping H2O, 3H); 3.56 (dd, 1H); 3.72 (br, 2H); 4.28 (dd, 1H); 4.36 (dd, 1H); 5.06 (m, 1H); 6.28 (s, 1H); 6.33 (d, 1H); 7.54 (d, 2H); 7.66 (d, 2H); 8.66 (d, 1H); 9.37 (br, 2H).
- (5RS)-3-(3,4-Difluorophenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (110 mg, 0.396 mM) and potassium carbonate (82 mg, 0.594 mM) were suspended in morpholine (1.5 ml) under nitrogen and heated to 130° for 40 hours. After cooling, the mixture was partitioned between water (30 ml) and ethyl acetate (30 ml). The organic extract was washed with aqueous hydrochloric acid (2N, 15 ml), sodium bicarbonate (15 ml), and brine (15 ml). After drying (magnesium sulfate) and evaporation, the desired product was obtained as a white solid (120 mg). MS (ESP): 348 (MH+) for C17H18FN3O4
- NMR (DMSO-d6) δ: 3.05 (t, 4H); 3.26 (dd, 1H); 3.51 (dd overlapped by H2O, 1H); 3.72 (t, 4H); 4.27 (dd, 1H); 4.33 (dd, 1H); 5.03 (m, 1H); 6.34 (d, 1H); 7.07 (t, 1H); 7.41 (overlapping m, 2H); 8.64 (d, 1H).
- The intermediates for this compound were prepared as follows:-
- 3,4-Difluorobenzohydroximinoyl chloride (4 g, 20.9 mM) and allyl alcohol (1.21 g, 20.9 mM) were dissolved in anhydrous diethyl ether (250 ml) under a nitrogen atmosphere, and a solution of triethylamine (2.74 g, 27.16 mM) in anhydrous diethyl ether (10 ml) was run in dropwise over 20 minutes. A copious white precipitate formed, and the mixture was stirred for 18 hours. The mixture was treated with ethyl acetate (800 ml) and brine (250 ml), the organic layer separated, and washed with brine (500 ml). After drying (magnesium sulfate) and evaporation, the crude product was purified by chromatography on silica, eluting with a gradient form 0-5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (4.26 g). MS (ESP): 214 (MH+) for C10H9F2NO2
- NMR (DMSO-d6) δ: 3.17 (dd, 1H); 3.38 (dd, 1H); 3.49 (m, 2H); 4.71 (m, 1H); 4.94 (m, 1H); 7.49 (overlapping m, 2H); 7.68 (dd, 1H).
- The benzohydroximinoyl chloride starting material is described in WO 99-41244.
- (5RS)-3-(3,4-Difluorophenyl)-5-hydroxymethyl-4,5-dihydroisoxazole (3.79 g, 17.8 mM) was dissolved in anhydrous dichloromethane (200 ml) under a nitrogen atmosphere, cooled to 0°, and treated with triethylamine (2.51 g, 24.9 mM). Methanesulfonyl chloride (2.45 g, 21.4 mM) was added dropwise with stirring during a period of 30 minutes, then the mixture allowed to come to ambient temperature over 2 hours. The mixture was treated with water (200 ml), the organic layer separated, and washed with aqueous hydrochloric acid (2N, 100 ml), sodium bicarbonate (100 ml), and brine (200 ml). After drying (magnesium sulfate) and evaporation, the desired product was obtained as a white solid (4.85 g).
- MS (ESP): 292 (MH+) for C11H11F2NO4S
- NMR (DMSO-d6) δ: 3.20 (s, 3H); 3.24 (dd, 1H); 3.56 (dd, 1H); 4.29 (dd, 1H); 4.37 (dd, 1H); 5.03 (m, 1H); 7.51 (overlapping m, 2H); 7.71 (td, 1H).
- A slurry of sodium hydride (60% in oil, 40 mg, 1 mM) in anhydrous N,N-dimethylformamide (1 ml) under an atmosphere of nitrogen was added dropwise with stirring to a solution of 3-hydroxyisoxazole (94 mg, 1.1 mM) in anhydrous N,N-dimethylformamide (1 ml).
- After heating the white suspension to 40° for 15 minutes, a solution of (5RS)-3-(3,4-difluorophenyl)-5-methanesulfonyloxymethyl-4,5-dihydroisoxazole (291 mg, 1 mM) in anhydrous N,N-dimethylformamide (2 ml) was added slowly, and the mixture heated to 70° for 24 hours. The mixture was cooled, treated with aqueous sodium bicarbonate solution (30 ml), and extracted into ethyl acetate (2×30 ml). The combined extracts were washed with water (30 ml), brine (30 ml), and dried (magnesium sulfate). After evaporation, the crude product was chromatographed on a 20 g silica Mega Bond Elut® column, eluting with a gradient from 0-1% methanol in dichloromethane. Relevant fractions were combined to give the desired product (130 mg). MS (ESP): 281 (MH+) for C13H10F2N2O3
- NMR (DMSO-d6) δ: 3.31 (dd overlapped by H2O, 1H); 3.56 (dd, 1H); 4.29 (dd, 1H); 4.35 (dd, 1H); 5.09 (m, 1H); 6.33 (d, 1H); 7.53 (overlapping m, 2H); 7.72 (td, 1H); 8.66 (d, 1H).
- A slurry of sodium hydride (60% in oil, 22 mg, 0.55 mM) in anhydrous N,N-dimethylformamide (0.5 ml) was stirred under an atmosphere of nitrogen and treated dropwise with a solution of imidazole (38 mg, 0.55 mM) in anhydrous N,N-dimethylformamide (0.5 ml) at 0°. The mixture was allowed to warm to ambient temperature over 20 minutes, then a solution of (5RS)-3-(3,4-difluorophenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (140 mg, 0.5 mM) in anhydrous N,N-dimethylformamide (1 ml) added, and the mixture stirred at 70° for 16 hours. After cooling, the mixture was partitioned between aqueous sodium bicarbonate solution (20 ml) and ethyl acetate (20 ml), and the organic extract washed with water (20 ml) and brine (20 ml). After drying (magnesium sulfate) and evaporation, the crude product was chromatographed on a 10 g silica Mega Bond Elut® column, eluting with a gradient from 0-2.5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (68 mg). MS (ESP): 329 (MH+) for C16H13FN4O3
- NMR (DMSO-d6) δ: 3.36 (dd, 1H); 3.61 (dd, 1H); 4.31 (dd, 1H); 4.38 (dd, 1H); 5.13 (m, 1H); 6.34 (d, 1H); 7.13 (d, 1H); 7.62 (overlapping m, 2H); 7.74 (overlapping m, 2H); 8.09 (d, 1H); 8.66 (d, 1H).
- (5RS)-3-(3,4-Difluorophenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (420 mg, 1.5 mM) was treated with thiomorpholine using essentially the conditions of Example 4. Crude product was chromatographed on a 20 g silica Mega Bond Elut® column, eluting with dichloromethane. Relevant fractions were combined to give the desired product (273 mg).
- MS (ESP): 364 (MH+) for C17H18FN3O3S
- NMR (DMSO-d6) δ: 2.73 (t, 4H); 3.29 (m overlapped by H2O, 5H); 3.50 (dd, 1H); 4.26 (dd, 1H); 4.33 (dd, 1H); 5.03 (m, 1H); 6.33 (d, 1H); 7.09 (t, 1H); 7.40 (overlapping m, 2H); 8.66 (d, 1H).
- (5RS)-3-(3,4-Difluorophenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (140 mg, 0.5 mM) was treated with pyrazole using essentially the conditions of Example 5. Crude product was chromatographed on a 5 g silica Mega Bond Elut® column, eluting with a gradient from 0-25% ethyl acetate in dichloromethane. Relevant fractions were combined to give the desired product (37 mg). MS (ESP): 329 (MH+) for C16H13FN4O3
- NMR (CDCl3) δ: 3.30 (dd, 1H); 3.50 (dd, 1H); 4.45 (d, 2H); 5.16 (m, 1H); 6.00 (d, 1H); 6.51 (dd, 1H); 7.51 (dd, 1H); 7.62 (dd, 1H); 7.76 (d, 1H); 8.03 (t, 1H); 8.08 (dd, 1H); 8.13 (d, 1H).
- (5RS)-3-(3,4-Difluorophenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (140 mg, 0.5 mM) was treated with 1,2,3-triazole using essentially the conditions of Example 5. Crude product was chromatographed on a 5 g silica Mega Bond Elut® column, eluting with a gradient from 0-25% ethyl acetate in dichloromethane. The least polar fraction proved to be recovered starting material, and the spot of intermediate polarity was the triazol-2-yl isomer (16 mg). MS (ESP): 330 (MH+) for C15H12FN5O3
- NMR (CDCl3) δ: 3.32 (dd, 1H); 3.52 (dd, 1H); 4.46 (d, 2H); 5.20 (m, 1H); 6.00 (d, 1H); 7.58 (dd, 1H); 7.64 (dd, 1H); 7.91 (s, 2H); 7.95 (t, 1H); 8.14 (d, 1H).
- The least polar spot was the triazol-1-yl isomer (21 mg).
- MS (ESP): 330 (MH+) for C15H12FN5O3
- NMR (CDCl3) δ: 3.32 (dd, 1H); 3.52 (dd, 1H); 4.47 (d, 2H); 5.20 (m, 1H); 5.99 (d, 1H); 7.58 (dd, 1H); 7.71 (dd, 1H); 7.89 (d, 1H); 8.11 (t, 1H); 8.14 (d, 1H); 8.16 (d, 1H).
- (5RS)-3-(3,4-Difluorophenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (140 mg, 0.5 mM) was treated with 1,2,4-triazole using essentially the conditions of Example 5. Crude product was chromatographed on a 5 g silica Mega Bond Elut® column, eluting with a gradient from 0-25% ethyl acetate in dichloromethane. Relevant fractions were combined to give the desired product (45 mg). MS (ESP): 330 (MH+) for C15H12FN5O3
- NMR (CDCl3) δ: 3.31 (dd, 1H); 3.51 (dd, 1H); 4.47 (d, 2H); 5.19 (m, 1H); 6.00 (d, 1H); 7.58 (dd, 1H); 7.68 (dd, 1H); 8.01 (t, 1H); 8.14 (overlapping m, 2H); 8.73 (d, 1H).
- To a stirred solution of (5RS)-3-(3-fluoro-4-thiomorpholin-4-ylphenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (174 mg, 0.48 mM) in dichloromethane (5 ml) was added dropwise a solution of 3-chloroperoxybenzoic acid (80%, 124 mg, 0.57 mM) in dichloromethane (5 ml) at ambient temperature, and stirring continued for 1 hour. Aqueous sodium metabisulfite (5%, 5 ml) was added, and after stirring for 5 minutes the organic phase was separated. After further extraction with dichloromethane (2×10 ml), the combined extracts were washed with aqueous sodium bicarbonate solution (2×15 ml) and dried (magnesium sulfate). Crude product was chromatographed on a 10 g silica Mega Bond Elut® column, eluting first with a gradient from 0-50% ethyl acetate in dichloromethane (to remove sulfone, 10 mg), then with a gradient from 0-2.5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (128 mg).
- MS (ESP): 380 (MH+) for C17H18FN3O4S
- NMR (DMSO-d6) δ: 2.82 (dm, 2H); 3.01 (tm, 2H); 3.29 (m overlapped by H2O, 3H); 3.52 (dd, 1H); 3.61 (tm, 2H); 4.26 (dd, 1H); 4.33 (dd, 1H); 5.03 (m, 1H); 6.33 (d, 1H); 7.20 (t, 1H); 7.41 (overlapping m, 2H); 8.66 (d, 1H).
- To a stirred solution of (5RS)-3-(3-fluoro-4-(1-oxothiomorpholin-4-yl)phenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (104 mg, 0.274 mM) in dichloromethane (5 ml) was added dropwise a solution of 3-chloroperoxybenzoic acid (80%, 95 mg, 0.44 mM) in dichloromethane (5 ml) at ambient temperature, and stirring continued for 1.5 hours. Aqueous sodium metabisulfite (5%, 5 ml) was added, and after stirring for 5 minutes the organic phase was separated. After further extraction with dichloromethane (2×10 ml), the combined extracts were washed with aqueous sodium bicarbonate solution (2×10 ml) and dried (magnesium sulfate). Crude product was chromatographed on a 10 g silica Mega Bond Elut® column, eluting with a gradient from 0-25% ethyl acetate in dichloromethane. Relevant fractions were combined to give the desired product (45 mg).
- MS (ESP): 396 (MH+) for C17H18FN3O5S
- NMR (DMSO-d6) δ: 3.26 (m overlapped by H2O, 5H); 3.52 (dd, 1H); 3.58 (m, 4H); 4.26 (dd, 1H); 4.33 (dd, 1H); 5.05 (m, 1H); 6.32 (d, 1H); 7.20 (t, 1H); 7.39 (dd, 1H); 7.45 (dd, 1H); 8.65 (d, 1H).
- (5RS)-3-(3,4-Difluorophenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (530 mg, 1.89 mM) was treated with piperazine using essentially the conditions of Example 4, except that the reaction conditions were 140° for 4 hours, and work-up did not include an acid wash. Crude product was chromatographed on a 50 g silica Mega Bond Elut® column, eluting with a mixture of dichloromethane/methanol/ammonia 90:10:1. Relevant fractions were combined to give the desired product (601 mg). MS (ESP): 347 (MH+) for C17H19FN4O3
- NMR (DMSO-d6) δ: 2.84 (t, 4H); 2.99 (t, 4H); 3.27 (m overlapped by H2O, 1H); 3.50 (dd, 1H); 4.26 (dd, 1H); 4.34 (dd, 1H); 5.03 (m, 1H); 6.33 (d, 1H); 7.04(t, 1H); 7.37 (over-lapping m, 2H); 8.65 (d, 1H); NH missing—exchanged.
- (5RS)-3-(3-Fluoro-4-piperazin-1-ylphenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (100 mg, 0.29 mM) in dichloromethane (2.5 ml) at 0° was treated with aqueous sodium bicarbonate (5%, 2.5 ml), and the mixture stirred vigorously. An excess of methanesulfonyl chloride (300 mg, 2.6 mM) was added, and the mixture was allowed to come to ambient temperature while stirring for 16 hours. The mixture was diluted with dichloromethane (15 ml) and water (15 ml), the organic layer separated, and washed successively with water (15 ml) and brine (15 ml). After drying (magnesium sulfate) and evaporation, the crude product was chromatographed on a 5 g silica Mega Bond Elut® column, eluting with a gradient from 0-2.5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (104 mg). MS (ESP): 425 (MH+) for C18H21FN4O5S
- NMR (DMSO-d6) δ: 2.92 (s, 3H); 3.17 (t, 4H); 3.26 (m overlapped by H2O, 5H); 3.52 (dd, 1H); 4.27 (dd, 1H); 4.34 (dd, 1H); 5.04 (m, 1H); 6.34 (d, 1H); 7.11 (t, 1H); 7.42 (over-lapping m, 2H); 8.64 (d, 1H).
- (5RS)-3-(3-Fluoro-4-piperazin-1-ylphenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (100 mg, 0.29 mM) was treated with acetic anhydride using essentially the conditions of Example 13, to give the desired product after chromatography (98 mg).
- MS (ESP): 389 (MH+) for C19H21FN4O4
- NMR (DMSO-d6) δ: 2.03 (s, 3H); 3.02 (t, 2H); 3.08 (t, 2H); 3.25 (dd overlapped by H2O, 1H); 3.51 (dd, 1H); 3.56 (m, 4H); 4.26 (dd, 1H); 4.34 (dd, 1H); 5.03 (m, 1H); 6.34 (d, 1H); 7.08 (t, 1H); 7.41 (overlapping m, 2H); 8.64 (d, 1H).
- (5RS)-3-(3-Fluoro-4-piperazin-1-ylphenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (100 mg, 0.29 mM) was treated with methyl chloroformate using essentially the conditions of Example 13, to give the desired product after chromatography (107 mg).
- MS (ESP): 405 (MH+) for C19H21FN4O5
- NMR (DMSO-d6) δ: 3.04 (t, 4H); 3.24 (dd overlapped by H2O, 1H); 3.51 (overlapping m, 5H); 3.61 (s, 3H); 4.26 (dd, 1H); 4.33 (dd, 1H); 5.03 (m, 1H); 6.34 (d, 1H); 7.08 (t, 1H); 7.41 (overlapping m, 2H); 8.65 (d, 1H).
- (5RS)-3-(3-Fluoro-4-piperazin-1-ylphenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (175 mg, 0.51 mM) in dry dichloromethane (3 ml) at 0° under nitrogen was treated with pyridine (200 mg, 2.53 mM). After stirring 5 minutes, (4S)-2,2-dimethyl-1,3-dioxolan-4-carbonyl chloride (168 mg, 1.02 mM) in dichloromethane (1 ml) was added, and the mixture was allowed to come to ambient temperature while stirring for 1 hour. The mixture was diluted with dichloromethane (15 ml) and the organic layer separated, and washed successively with aqueous sodium dihydrogen phosphate, sodium bicarbonate, water, and brine (15 ml of each), the organic layer separated, and washed successively with water (15 ml) and brine (15 ml). After drying (magnesium sulfate) and evaporation, the crude product was chromatographed on a 5 g silica Mega Bond Elut® column, eluting with 2.5% methanol in dichloromethane. Relevant fractions were combined, dissolved in dichloromethane, and the desired product (163 mg) precipitated by addition of isohexane.
- MS (ESP): 475 (MH+) for C23H27FN4O6
- NMR (DMSO-d6) δ: 1.31 (s, 6H); 3.07 (m, 4H); 3.25 (dd overlapped by H2O, 1H); 3.52 (dd, 1H); 3.64 (m, 4H); 4.07 (t, 1H); 4.21 (dd, 1H); 4.27 (dd, 1H); 4.34 (dd, 1H); 4.88 (t, 1H); 5.05 (m, 1H); 6.32 (d, 1H); 7.09 (t, 1H); 7.42 (overlapping m, 2H); 8.66 (d, 1H).
- (5RS)-3-(3-Fluoro-4-((4S)-2,2-dimethyl-1,3-dioxolane-4-carbonyl)piperazin-1-ylphenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (102 mg, 0.215 mM) in tetrahydrofuran (5 ml) was treated with hydrochloric acid (2N, 1 ml), and the mixture stirred at ambient temperature for 18 hours. Solid potassium carbonate was added to remove water and acid, and the mixture filtered. The residue after evaporation was chromatographed on a 5 g silica Mega Bond Elut® column, eluting with a gradient from 5-10% methanol in dichloromethane. Relevant fractions were combined to give the desired product (163 mg).
- MS (ESP): 435 (MH+) for C20H23FN4O6
- NMR (DMSO-d6) δ: 3.12 (m, 4H); 3.33 (dd overlapped by H2O, 1H); 3.52 (dd, 1H); 3.53 (overlapping m, 2H); 3.72 (m, 4H); 4.34 (overlapping m, 3H); 4.79 (t, 1H); 5.06 (d, 1H); 5.06 (m, 1H); 6.41 (d, 1H); 7.16 (t, 1H); 7.49 (overlapping m, 2H); 8.74 (d, 1H).
- (5RS)-3-(3-Fluoro-4-piperazin-1-ylphenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (175 mg, 0.51 mM) was treated with acetoxyacetyl chloride using essentially the conditions of Example 16, to give the desired product after chromatography and precipitation (163 mg).
- MS (ESP): 447 (MH+) for C21H23FN4O6
- NMR (DMSO-d6) δ: 2.08 (s, 3H); 3.07 (m, 4H); 3.25 (dd overlapped by H2O, 1H); 3.51 (dd, 1H); 3.56 (m, 4H); 4.27 (dd, 1H); 4.34 (dd, 1H); 4.80 (s, 2H); 5.03 (m, 1H); 6.34 (d, 1H); 7.09 (t, 1H); 7.42 (overlapping m, 2H); 8.65 (d, 1H).
- (5RS)-3-(3-Fluoro-4-(4-(2-acetoxyacetyl)piperazin-1-yl)phenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole (112 mg, 0.25 mM) was suspended in a saturated solution of ammonia in methanol (8 ml), diluted with tetrahydrofuran (5 ml). The mixture was stirred at ambient temperature for 40 hours. The residue after evaporation was chromatographed on a 5 g silica Mega Bond Elut® column, eluting with a gradient from 0-5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (92 mg).
- MS (ESP): 405 (MH+) for C19H21FN4O5
- NMR (DMSO-d6) δ: 3.06 (m, 4H); 3.24 (dd overlapped by H2O, 1H); 3.51 (dd, 1H); 3.60 (m, 4H); 4.11 (d, 2H); 4.26 (dd, 1H); 4.34 (dd, 1H); 4.60 (t, 1H); 5.04 (m, 1H); 6.34 (d, 1H); 7.08 (t, 1H); 7.41 (overlapping m, 2H); 8.65 (d, 1H).
- (5RS)-3-(3-Fluoro-4-imidazol-1-ylphenyl)-5-(N-(t-butoxycarbonyl)isoxazol-3-ylaminomethyl-4,5-dihydroisoxazole (65 mg, 0.15 mM) was dissolved in dichloromethane (0.5 ml) and treated with trifluoroacetic acid (0.5 ml). After stirring for 15 minutes the reaction was poured into a mixture of aqueous sodium bicarbonate (5%, 15 ml) and ethyl acetate (15 ml). The organic layer was separated, and washed successively with aqueous sodium bicarbonate, water, and brine (15 ml of each), then dried (magnesium sulfate). Solvent was evaporated, the residue dissolved in the minimum of dichloromethane. The title product (33 mg) was precipitated by the addition of diethyl ether.
- MS (ESP): 328 (MH+) for C16H14FN5O2
- NMR (DMSO-d6) δ: 3.22 (dd, 1H); 3.27 (m overlapped by H2O, 2H); 3.52 (dd, 1H); 4.95 (m, 1H); 5.96 (d, 1H); 6.39 (t, 1H); 7.13 (d, 1H); 7.62 (overlapping m, 2H); 7.74 (over-lapping m, 2H); 8.08 (d, 1H); 8.35 (d, 1H).
- The intermediates for this compound were prepared as follows:-
- N-Allyl-3-(t-butoxycarbonylamino)isoxazole (4.67 g, 20.89 mM) and 3,4-difluorobenzohydroximinoyl chloride (4 g, 20.9 mM) were treated with dry triethylamine (2.74 g, 27.16 mM) under essentially the conditions used for the comparable intermediate for Example 4. After work-up, the crude material was dissolved in the minimum volume of diethyl ether, and the desired product (4.29 g) precipitated by the addition of isohexane.
- MS (ESP): 380 (MH+) for C18H19F2N3O4
- NMR (DMSO-d6) δ: 1.45 (s, 9H); 3.20 (dd, 1H); 3.51 (dd, 1H); 3.80 (dd, 1H); 4.05 (dd, 1H); 5.05 (m, 1H); 6.83 (d, 1H); 7.53 (overlapping m, 2H); 7.71 (td, 1H); 8.78 (d, 1H).
- (5RS)-3-(3,4-Difluorophenyl)-5-(N-(t-butoxycarbonyl)isoxazol-3-ylaminomethyl-4,5-dihydro-isoxazole (190 mg, 0.5 mM) was treated with imidazole essentially as in Example 5. Relevant fractions after chromatography were combined to give the desired product (85 mg).
- MS (ESP): 428 (MH+) for C21H22FN5O4
- NMR (DMSO-d6) δ: 1.45 (s, 9H); 3.24 (dd, 1H); 3.55 (dd, 1H); 3.82 (dd, 1H); 4.08 (dd, 1H); 5.09 (m, 1H); 6.82 (d, 1H); 7.14 (d, 1H); 7.61 (d, 1H); 7.64 (dd, 1H); 7.74 (dd, 1H); 7.76 (t, 1H); 8.08 (d, 1H); 8.77 (d, 1H).
- (5RS)-3-(3,4-Difluorophenyl)-5-(N-(t-butoxycarbonyl)isoxazol-3-ylaminomethyl-4,5-dihydro-isoxazole (150 mg, 0.396 mM) was treated with morpholine essentially as in Example 4. Work-up using dilute acid led to a mixture of the title product and the t-butoxycarbonyl derivative. This was treated with trifluoroacetic acid, according to the procedure of Example 20, to give the desired product (42 mg). MS (ESP): 347 (MH+) for C17H19FN4O3
- NMR (DMSO-d6) δ: 3.05 (t, 4H); 3.13 (dd, 1H); 3.23 (dd overlapped by H2O, 2H); 3.42 (dd, 1H); 3.72 (t, 4H); 4.85 (m, 1H); 5.95 (d, 1H); 6.35 (t, 1H); 7.06 (t, 1H); 7.37 (overlapping m, 2H); 8.34 (d, 1H).
- (5RS)-3-(3,4-Difluorophenyl)-5-(N-(t-butoxycarbonyl)isoxazol-3-ylaminomethyl-4,5-dihydro-isoxazole (853 mg, 2.25 mM) was treated with thiomorpholine essentially as in Example 4, except that the work-up omitted an acid wash. Crude product was then purified by chromatography on a 50 g silica Mega Bond Elut® column, eluting with a gradient from 0-5% methanol in dichloromethane, followed by re-chromatography of appropriate fractions on a 20 g silica Mega Bond Elut® column, eluting with a gradient from 0-20% ethyl acetate in dichloromethane. Relevant fractions were combined to give the desired product (255 mg).
- MS (ESP): 363 (MH+) for C17H19FN4O2S
- NMR (DMSO-d6) δ: 2.72 (t, 4H); 3.12 (dd, 1H); 3.27 (overlapping m+H2O, ˜6H); 3.42 (dd, 1H); 4.85 (m, 1H); 5.96 (d, 1H); 6.36 (t, 1H); 7.10 (t, 1H); 7.35 (overlapping m, 2H); 8.34 (d, 1H).
- To a stirred solution of (5RS)-3-(3-fluoro-4-thiomorpholin-4-ylphenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydroisoxazole (160 mg, 0.44 mM) in dichloromethane (5 ml) was added dropwise a solution of 3-chloroperoxybenzoic acid (80%, 137 mg, 0.64 mM) in dichloromethane (5 ml) at ambient temperature, and stirring continued for 1 hour. Aqueous sodium metabisulfite (5%, 5 ml) was added, and after stirring for 5 minutes the organic phase was separated. After further extraction with dichloromethane (2×10 ml), the combined extracts were washed with aqueous sodium bicarbonate solution (2×10 ml) and dried (magnesium sulfate). Crude product was chromatographed on a 10 g silica Mega Bond Elut® column, eluting first with a gradient from 0-50% ethyl acetate in dichloromethane to give the sulfone (20 mg). MS (ESP): 395 (MH+) for C17H19FN4O4S
- NMR (DMSO-d6) δ: 3.14 (dd, 1H); 3.23 (overlapping m+H2O, ˜6H); 3.43 (dd, 1H); 3.55 (t, 4H); 4.86 (m, 1H); 5.96 (d, 1H); 6.35 (t, 1H); 7.20 (t, 1H); 7.37 (dd, 1H); 7.43 (dd, 1H); 8.34 (d, 1H).
- Further elution with a gradient from 2.5-6% methanol in dichloromethane gave the more polar sulfoxide (112 mg).
- MS (ESP): 379 (MH+) for C17H19FN4O3S
- NMR (DMSO-d6) δ: 2.82 (dm, 2H); 3.02 (tm, 2H); 3.13 (dd, 1H); 3.22 (m overlapped by H2O, 2H); 3.34 (dm, 2H); 3.44 (dd, 1H); 3.61 (t, 2H); 4.85 (m, 1H); 5.96 (d, 1H); 6.35 (t, 1H); 7.19 (t, 1H); 7.39 (overlapping m, 2H); 8.34 (d, 1H).
- (5RS)-3-(3-Fluoro-4-pyrazol-1-ylphenyl)-5-(N-(t-butoxycarbonyl)isoxazol-3-ylaminomethyl-4,5-dihydroisoxazole (55 mg, 0.13 mM) was treated with trifluoroacetic acid essentially as in Example 20. Crude product was chromatographed on a 5 g silica Mega Bond Elut® column, eluting first with a gradient from 0-25% ethyl acetate in dichloromethane to give the desired product (30 mg). MS (ESP): 328 (MH+) for C16H14FN5O2
- NMR (DMSO-d6) δ: 3.23 (dd, 1H); 3.27 (m overlapped by H2O, 2H); 3.51 (dd, 1H); 4.93 (m, 1H); 5.97 (d, 1H); 6.39 (t, 1H); 6.59 (t, 1H); 7.63 (dd, 1H); 7.70 (dd, 1H); 7.83 (d, 1H); 7.90 (t, 1H); 8.24 (t, 1H); 8.35 (d, 1H).
- The intermediate for this compound was prepared as follows:
- (5RS)-3-(3,4-Difluorophenyl)-5-(N-(t-butoxycarbonyl)isoxazol-3-ylaminomethyl-4,5-dihydro-isoxazole (190 mg, 0.5 mM) was treated with pyrazole essentially as in Example 5. Crude product was chromatographed on a 5 g silica Mega Bond Elut® column, eluting with a gradient from 0-25% ethyl acetate in dichloromethane. Relevant fractions were combined to give the desired product (117 mg). MS (ESP): 428 (MH+) for C21H22FN5O4
- NMR (CDCl3) δ: 1.53 (s, 9H); 3.18 (dd, 1H); 3.40 (dd, 1H); 4.00 (dd, 1H); 4.22 (dd, 1H); 5.22 (m, 1H); 6.50 (t, 1H); 6.88 (br, 1H); 7.50 (dd, 1H); 7.60 (dd, 1H); 7.76 (d, 1H); 8.00 (t, 1H); 8.07 (t, 1H); 8.24 (d, 1H).
- (5RS)-3-(3,4-Difluorophenyl)-5-(N-(t-butoxycarbonyl)isoxazol-3-ylaminomethyl-4,5-dihydro-isoxazole (190 mg, 0.5 mM) was treated with piperazine essentially as in Example 12.
- Crude product from this stage was a mixture of the title product and its t-butoxycarbonyl derivative. This was treated with trifluoroacetic acid, according to the procedure of Example 20. Crude product was chromatographed on a 10 g silica Mega Bond Elut® column, eluting first with 10% methanol in dichloromethane, then with a mixture of dichloromethane/methanol/ammonia 90:10:1. Relevant fractions were combined to give the desired product (106 mg).
- MS (ESP): 346 (MH+) for C17H20FN5O2
- NMR (DMSO-d6) δ: 2.83 (t, 4H); 2.98 (t, 4H); 3.13 (dd, 1H); 3.22 (t overlapping H2O, 2H); 3.41 (dd, 1H); 4.84 (m, 1H); 5.96 (d, 1H); 6.36 (t, 1H); 7.03 (t, 1H); 7.34 (over-lapping m, 2H); 8.34 (d, 1H); NH missing—exchanged.
- (5RS)-3-(3-Fluoro-4-piperazin-1-ylphenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydroisoxazole (95 mg, 0.275 mM) was treated methanesulfonyl chloride essentially as in Example 13. Crude product was chromatographed on a 10 g silica Mega Bond Elut® column, eluting with a gradient from 1-2.5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (85 mg). MS (ESP): 424 (MH+) for C18H22FN5O4S
- NMR (DMSO-d6) δ: 2.92 (s, 3H); 3.16 (overlapping m, 5H); 3.24 (m overlapped by H2O, 6H); 3.43 (dd, 1H); 4.86 (m, 1H); 5.96 (d, 1H); 6.35 (d, 1H); 7.11 (t, 1H); 7.40 (over-lapping m, 2H); 8.34 (d, 1H).
- (5RS)-3-(3-Fluoro-4-piperazin-1-ylphenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydroisoxazole (95 mg, 0.275 mM) was treated acetic anhydride essentially as in Example 13. Crude product was chromatographed on a 10 g silica Mega Bond Elut® column, eluting with a gradient from 1-2.5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (63 mg). MS (ESP): 424 (MH+) for C19H22FN5O3
- NMR (DMSO-d6) δ: 2.02 (s, 3H); 3.02 (m, 2H); 3.07 (m, 2H); 3.14 (dd, 1H); 3.26 (t overlapped by H2O, 2H); 3.43 (dd, 1H); 3.58 (br, 4H); 4.86 (m, 1H); 5.95 (d, 1H); 6.35 (d, 1H); 7.06 (t, 1H); 7.38 (overlapping m, 2H); 8.34 (d, 1H).
- (5RS)-3-(3-Fluoro-4-(1,2,5,6-tetrahydropyrid-4-yl))phenyl)-5-isoxazol-3-ylaminomethylisoxazole hydrochloride (300 mg, 0.79 mM) was suspended in dichloromethane (20 ml) under nitrogen, triethylamine (240 mg, 2.37 mM) added, and the mixture cooled to 0°. After stirring for 10 minutes a complete solution was obtained, to which a solution of (4S)-2,2-dimethyl-1,3-dioxolan-4-carbonyl chloride (260 mg, 1.58 mM) in dichloromethane (5 ml) was added dropwise, and stirring continued for 16 hours, allowing the temperature to rise to ambient. The mixture was washed with water (2×20 ml), brine (20 ml), and dried (magnesium sulfate). After evaporation, the residue was chromatographed on a 10 g silica Mega Bond Elut® column, eluting with a gradient from dichloromethane to 5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (80 mg).
- MS (ESP): 431 (MH+) for C21H23FN4O5
- NMR (CDCl3) δ: 2.59 (br, 2H); 3.16 (dd, 1H); 3.42 (dd, 1H); 3.48 (t, 1H); 3.63 (dd, 1H); 3.68 (overlapping m, 3H); 3.80 (m, 1H); 3.98-4.43 (overlapping m, 3H); 4.51 (m, 1H); 5.04 (m, 1H); 5.84 (d, 1H); 6.03 (m, 1H); 7.27 (t, 1H); 7.37 (m, 2H); 8.03 (d, 1H).
- The intermediates for this compound were prepared as follows:
- Formaldoxime was prepared by dissolving paraformaldehyde (3.17 g, 0.105 M) and hydroxylamine hydrochloride (7.23 g, 0.104 M) in water (75 ml) at 80°. Sodium acetate (14.16 g, 0.104 M) was added, the mixture heated to reflux for 15 minutes, and then cooled to room temperature.
- 3-Fluoro-4-iodoaniline (15.36 g, 0.069 M) and concentrated hydrochloric acid (18.51 g) were dissolved in a mixture of water (30 ml) and ice (30 g). The solution was treated at 0-5° with a solution of sodium nitrite (4.81 g, 0.07 M) in water (15 ml). The pH of the resulting red-brown solution was adjusted to 5-6 by the addition of sodium acetate (6.05 g, 0.044 M). To the solution of formaldoxime was added sodium acetate (45.38 g, 0.333 M), hydrated copper sulfate (1.72 g, 6.9 mM) and sodium sulfite (0.275 g, 2.18 mM), giving a deep green solution, which was cooled to 10-15°. The solution of the diazonium salt was then slowly introduced with vigorous stirring, and stirring continued for 1 hour. The mixture was extracted with diethyl ether (3×100 ml), the combined extracts washed with water (100 ml), and dried (magnesium sulfate). The residue after filtration and evaporation was chromatographed in four portions on 50 g silica Mega Bond Elut® columns, eluting with a gradient from dichloromethane to 5% methanol in dichloromethane. Relevant fractions were combined to give the desired product (3.52 g).
- MS (EI): 265 (M+) for C7H5FINO
- NMR (CDCl3) δ: 7.08 (dd, 1H); 7.30 (dd, 1H); 7.66 (s, 1H); 7.77 (t, 1H); 8.06 (s, 1H).
- 3-Fluoro-4-iodobenzaldoxime (4.9 g, 18.5 mM) was dissolved in N,N-dimethylformamide (30 ml) and the stirred solution treated at 15° with N-chlorosuccinimide (0.72 g, 5.4 mM). Reaction was initiated by the addition of concentrated hydrochloric acid vapour (10 ml), and warming to 40°. Further N-chlorosuccinimide (2 g, 15 mM) was added, and the mixture stirred at ambient temperature for 16 hours. After pouring into ice-water (250 ml), the mixture was extracted with diethyl ether (3×50 ml), the combined extracts washed with brine (25 ml), and dried (magnesium sulfate). The residue after filtration and evaporation was chromatographed on a 50 g silica Mega Bond Elut® column, eluting with a mixture of 25% ethyl acetate in isohexane. Relevant fractions were combined to give the desired product (3.25 g).
- NMR (CDCl3) δ: 7.40 (dd, 1H); 7.55 (dd, 1H); 7.79 (dd, 1H); 8.11 (d, 1H).
- 3-Fluoro-4-iodobenzohydroximinoyl chloride (3.18 g, 10.6 mM) was treated with allyl alcohol under essentially the conditions of the equivalent intermediate of Example 4. The crude product was purified by chromatography on a 20 g silica Mega Bond Elut® column, eluting with a mixture of 50% ethyl acetate in isohexane. Relevant fractions were combined to give the desired product (2.23 g). MS (ESP): 322 (MH+) for C10H9FINO2
- NMR (CDCl3) δ: 1.93 (dd, 1H); 3.25 (dd, 1H); 3.34 (dd, 1H); 3.68 (dm, 1H); 3.90 (dm, 1H); 4.89 (m, 1H); 7.17 (dd, 1H); 7.36 (dd, 1H); 7.79 (dd, 1H).
- (5RS)-3-(3-Fluoro4-iodophenyl)-5-hydroxymethyl-4,5-dihydroisoxazole (2 g, 6.2 mM) was treated with methanesulfonyl chloride under essentially the conditions of the equivalent intermediate of Example 4. Product was obtained as a white solid (2.18 g) without chromatography,. MS (EI): 399 (M+) for C11H11FINO4S
- NMR (CDCl3) δ: 3.08 (s, 3H); 3.26 (dd, 1H); 3.46 (dd, 1H); 4.37 (m, 2H); 5.04 (m, 1H); 7.18 (dd, 1H); 7.37 (dd, 1H); 7.81 (dd, 1H).
- A solution of (5RS)-3-(3-Fluoro-4-iodophenyl)-5-methanesulfonyloxymethyl-4,5-dihydro-isoxazole (1.7 g, 4.26 mM) in dry N,N-dimethylformamide (40 ml) under nitrogen, was treated with sodium hydride (60% in oil, 0.205 g, 5.13 mM), and stirred for 5 minutes. N-Allyl-3-(t-Butoxycarbonylamino)isoxazole (0.86 g, 4.69 mM) was added, and the mixture heated at 60° for 18 hours. After cooling and dilution with water (200 ml), the mixture was extracted with ethyl acetate (3×100 ml), the extracts were washed with water (2×100 ml), brine (100 ml), dried (magnesium sulfate). The residue after evaporation was purified by chromatography on a 50 g silica Mega Bond Elut® column, eluting with a mixture of 25% ethyl acetate in isohexane. Relevant fractions were combined to give the desired product (1.61 g). MS (ESP): 488 (MH+) for C18H19FIN3O4
- NMR (CDCl3) δ: 1.53 (s, 9H); 3.14 (dd, 1H); 3.36 (dd, 1H); 3.99 (dd, 1H); 4.20 (dd, 1H); 5.21 (m, 1H); 6.89 (d, 1H); 7.18 (dd, 1H); 7.37 (dd, 1H); 7.79 (dd, 1H); 8.23 (d, 1H).
- Tris(dibenzylideneacetone)dipalladium (141 mg, 0.154 mM) and triphenylarsine (188 mg, 0.616 mM) were dissolved in degassed N-methylpyrrolidone (40 ml) under nitrogen, and stirred for 15 minutes. (5RS)-3-(3-Fluoro-4-iodophenyl)-5-(N-(t-butoxycarbonyl)isoxazol-3-ylaminomethyl)-4,5-dihydro-isoxazole (1.5 g, 3.08 mM) and 1-t-butoxycarbonyl-4-trimethylstannyl-1,2,5,6-tetrahydropyridine (1.99 g, 4.62 mM) were added, and the reaction heated at 70-80° for 18 hours. The mixture was filtered through celite and evaporated to dryness, and the residue chromatographed on a 40 g silica Biotage column, eluting with 25% ethyl acetate in isohexane. Relevant fractions were combined to give the desired product (817 mg).
- NMR (CDCl3) δ: 1.49 (s, 9H); 1.54 (s, 9H); 2.51 (br, 2H); 3.13 (dd, 1H); 3.37 (dd, 1H); 3.62 (t, 2H); 3.98 (dd, 1H); 4.07 (m, 2H); 4.20 (dd, 1H); 5.19 (m, 1H); 6.01 (br, 1H); 6.89 (br, 1H); 7.27 (t, 1H); 7.37 (m, 2H); 8.23 (d, 1H).
- (5RS)-3-(3-Fluoro-4-(1-t-butoxycarbonyl-1,2,5,6-tetrahydropyrid-4-yl)phenyl)-5-(N-(t-butoxycarbonyl)isoxazol-3-ylaminomethyl)-4,5-dihydroisoxazole (817 mg, 1.51 mM) was treated with ethanolic hydrogen chloride under essentially the conditions of the equivalent intermediate of Example 1, to give the desired product directly from the reaction mixture after washing with diethyl ether (310 mg). MS (ESP): 343 (MH+) for C18H19FN4O2
- NMR (DMSO-d6) δ: 2.65 (br, 2H); 3.19 (dd partly overlapped, 1H); 3.23 (overlapping m, 4H); 3.47 (dd, 1H); 3.71 (br, 2H); 4.91 (m, 1H); 5.97 (d, 1H); 6.09 (br, 1H); 7.46 (over-lapping m, 3H); 8.34 (d, 1H); 9.51 (br, 2H).
- 1-t-butoxycarbonyl-4-trifluorosulfonyloxy-1,2,5,6-tetrahydropyridine (9.93 g, 0.03 M) was dissolved in anhydrous tetrahydrofuran (200 ml), lithium chloride (8.82 g, 0.21 M) and lithium carbonate (2.22 g, 0.03 M) added, and the mixture refluxed for 1 hour under nitrogen. Hexamethylditin (9.83 g, 0.03 M) and tetrakis(triphenylphosphine)palladium (1.73 g, 1.5 mM) were added, and refluxing continued for 18 hours. After cooling and filtering through celite, the solvent was evaporated, and the residual oil chromatographed on a 90 g Biotage silica column, eluting with 4% ethyl acetate in isohexane. Relevant fractions were combined to give the desired product as an oil (6.56 g). MS (ESP): 348 (MH+) for C13H25NO2Sn
- NMR (CDCl3) δ: 0.01 (s, 9H); 1.35 (s, 9H); 2.16 (br, 2H); 3.34 (t, 2H); 3.79 (m, 2H); 5.64 (br, 1H).
- The following illustrate representative pharmaceutical dosage forms containing a compound of the formula (I), an in-vivo hydrolysable ester or a pharmaceutically-acceptable salt thereof, including a pharmaceutically-acceptable salt of an in-vivo hydrolysable ester, (hereafter compound X), for therapeutic or prophylactic use in humans:
Tablet I mg/tablet Compound X 500 Lactose Ph. Eur. 430 Croscarmellose sodium 40 Polyvinylpyrrolidone 20 Magnesium stearate 10 -
Tablet II mg/tablet Compound X 100 Lactose Ph. Eur. 179 Croscarmellose sodium 12 Polyvinylpyrrolidone 6 Magnesium stearate 3 -
Tablet III mg/tablet Compound X 50 Lactose Ph. Eur. 229 Croscarmellose sodium 12 Polyvinylpyrrolidone 6 Magnesium stearate 3 -
Tablet IV mg/tablet Compound X 1 Lactose Ph. Eur. 92 Croscarmellose sodium 4 Polyvinylpyrrolidone 2 Magnesium stearate 1 -
Capsule mg/capsule Compound X 10 Lactose Ph. Eur. 389 Croscarmellose sodium 100 Magnesium stearate 1 -
Injection I Compound X 50% w/v Isotonic aqueous solution to 100% -
Injection II (e.g. bolus) Compound X 10% w/v Isotonic aqueous solution to 100% -
Injection III Compound X 5% w/v Isotonic aqueous solution to 100% -
Injection IV (e.g. infusion) Compound X 1% w/v Isotonic aqueous solution to 100% - Buffers, pharmaceutically-acceptable surfactants, oils or cosolvents such as polyethylene glycol, polypropylene glycol, glycerol or ethanol, glidants (such as silicon dioxide) or complexing agents such as a cyclodextrin (for example, hydroxy-propyl β-cyclodextrin or sulfo-butyl-ether β-cyclodextrin) may be used to aid formulation. Also, improvements in aqueous solubility, if desired, may be achieved, for example, by conjugation of a compound of formula (I) with a phospholipid (such as a (phospho)choline derivative) to form a micellar emulsion.
- Note: The above formulations may be obtained by conventional procedures well known in the pharmaceutical art, for example as described in “Remington: The Science & Practice of Pharmacy” Vols. I & II (Ed. A. R. Gennaro (Chairman) et al; Publisher: Mack Publishing Company, Easton, Pa.; 19th Edition—1995) and “Pharmaceutics—The Science of Dosage Form Design” (Ed. M. E. Aulton; Publisher: Churchill Livingstone; first published 1988). The tablets (a)-(d) may be (polymer) coated by conventional means, for example to provide an enteric coating of cellulose acetate phthalate.
Claims (13)
1. A compound of the formula (I), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof,
wherein
X is O, NH, S, SO or SO2;
HET is a C-linked 5-membered heteroaryl ring containing 2 to 4 heteroatoms independently selected from N, O and S, which ring is optionally substituted on an available carbon atom by 1 or 2 substituents independently selected from (1-4C)alkyl, amino, (1-4C)alkylamino, (1-4C)alkoxy, (1-4C)alkoxycarbonyl and halogen, and/or on an available nitrogen atom (provided that the ring is not thereby quaternised) by (1-4C)alkyl;
or
HET is a C-linked 6-membered heteroaryl ring containing 2 or 3 nitrogen heteroatoms, which ring is optionally substituted on any available C atom by 1, 2 or 3 substituents independently selected from (1-4C)alkyl, amino, (1-4C)alkylamino, (1-4C)alkoxy, (1-4C)alkoxycarbonyl and halogen;
Q is selected from Q1 to Q9:-
wherein R2 and R3 are independently hydrogen or fluoro;
wherein A1 is carbon or nitrogen; B1 is O or S (or, in Q9 only, NH); Xq is O, S or N—R1 (wherein R1 is hydrogen, (1-4C)alkyl or hydroxy-(1-4C)alkyl); and wherein
in Q7 each A1 is independently selected from carbon or nitrogen, with a maximum of 2 nitrogen heteroatoms in the 6-membered ring, and Q7 is linked to T via any of the A1 atoms (when A1 is carbon), and linked in the 5-membered ring via the specified carbon atom, or via A1 when A1 is carbon; Q8 is linked to T via either of the specified carbon atoms in the 5-membered ring, and linked in the benzo-ring via either of the two specified carbon atoms on either side of the linking bond shown; and Q9 is linked via either of the two specified carbon atoms on either side of the linking bond shown;
wherein T is selected from the groups in (TA) to (TD) below (wherein AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1 and CY2 are defined hereinbelow);
(TA) T is selected from the following groups:-
(TAa) AR1, AR1-(1-4C)alkyl-, AR2 (carbon linked), AR3;
(TAb) AR1-CH(OH), AR2-CH(OH)—, AR3-CH(OH)—;
(TAc) AR1-CO—, AR2-CO—, AR3-CO—, AR4-CO—;
(TAd) AR1-O—, AR2-O—, AR3-O—;
(TAe) AR1-S(O)q—, AR2-S(O)q—, AR3-S(O)q— (q is 0, 1 or 2);
(TAf) an optionally substituted N-linked (fully unsaturated) 5-membered heteroaryl ring system containing 1, 2 or 3 nitrogen atoms;
(TAg) a carbon linked tropol-3-one or tropol-4-one, optionally substituted in a position not adjacent to the linking position; or
(TB) T is selected from the following groups:-
(TBa) halo or (1-4C)alkyl {optionally substituted by one or more groups each independently selected from hydroxy, (1-4C)alkoxy, (1-4C)alkanoyl, cyano, halo, trifluoromethyl, (1-4C)alkoxycarbonyl, —NRvRw, (1-6C)alkanoylamino, (1-4C)alkoxycarbonylamino, N-(1-4C)alkyl-N-(1-6C)alkanoylamino, (1-4C)alkylS(O)q— (q is 0, 1 or 2), CY1, CY2 or AR1};
(TBb) —NRv1Rw1;
(TBc) ethenyl, 2-(1-4C)alkylethenyl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl, 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-(AR1)ethenyl, 2-(AR2)ethenyl;
(TBd) R10CO—, R10S(O)q— (q is 0, 1 or 2) or R10CS—
wherein R10 is selected from the following groups:-
(TBda) CY1 or CY2;
(TBdb) hydrogen, (1-4C)alkoxycarbonyl, trifluoromethyl, —NRvRw, ethenyl, 2-(1-4C)alkylethenyl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl, 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-(AR1)ethenyl or 2-(AR2)ethenyl; or
(TBdc) (1-4C)alkyl {optionally substituted as defined in (TBa) above, or by (1-4C)alkylS(O)pNH— or (1-4C)alkylS(O)p-((1-4C)alkyl)N— (p is 1 or 2)};
wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl; Rv1 is hydrogen, (1-4C)alkyl or (3-8C)cycloalkyl; Rw1 is hydrogen, (1-4C)alkyl, (3-8C)cycloalkyl, (1-4C)alkyl-CO— or (1-4C)alkylS(O)q— (q is 1 or 2); or
(TC) T is selected from the following groups:-
(TCa) an optionally substituted, fully saturated 4-membered monocyclic ring containing 1 heteroatom selected from O, N and S (optionally oxidised), and linked via a ring nitrogen or sp3 carbon atom;
(TCb) an optionally substituted 5-membered monocyclic ring containing 1 heteroatom selected from O, N and S (optionally oxidised), and linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom, which monocyclic ring is fully saturated other than (where appropriate) at a linking sp2 carbon atom;
(TCc) an optionally substituted 6- or 7-membered monocyclic ring containing 1 or 2 heteroatoms independently selected from O, N and S (optionally oxidised), and linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom, which monocyclic ring is fully saturated other than (where appropriate) at a linking s carbon atom; or
(TD) T is selected from the following groups:-
(TDa) a bicyclic spiro-ring system containing 0, 1 or 2 ring nitrogen atoms as the only ring heteroatoms, the structure consisting of a 5- or 6-membered ring system (linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom) substituted (but not adjacent to the linking position) by a 3-, 4- or 5-membered spiro-carbon-linked ring; which bicyclic ring system is
(i) fully saturated other than (where appropriate) at a linking sp2 carbon atom;
(ii) contains one —N(Rc)-group in the ring system (at least two carbon atoms away from the linking position when the link is via a nitrogen atom or an sp2 carbon atom) or one —N(Rc)-group in an optional substituent (not adjacent to the linking position) and is
(iii) optionally further substituted on an available ring carbon atom; or
(TDb) a 7-, 8- or 9-membered bicyclic ring system (linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom) containing 0, 1 or 2 ring nitrogen atoms (and optionally a further O or S ring heteroatom), the structure containing a bridge of 1, 2 or 3 carbon atoms; which bicyclic ring system is
(i) fully saturated other than (where appropriate) at a linking sp2 carbon atom;
(ii) contains one O or S heteroatom, or one —N(Rc)-group in the ring (at least two carbon atoms away from the linking position when the link is via a nitrogen atom or an sp2 carbon atom) or one —N(Rc)-group in an optional substituent (not adjacent to the linking position) and is
(iii) optionally further substituted on an available ring carbon atom; wherein Rc is selected from groups (Rc1) to (Rc5):-
(Rc1) (1-6C)alkyl {optionally substituted by one or more (1-4C)alkanoyl groups (including geminal disubstitution) and/or optionally monosubstituted by cyano, (1-4C)alkoxy, trifluoromethyl, (1-4C)alkoxycarbonyl, phenyl (optionally substituted as for AR1 defined hereinafter), (1-4C)alkylS(O)q— (q is 0, 1 or 2); or, on any but the first carbon atom of the (1-6C)alkyl chain, optionally substituted by one or more groups (including geminal disubstitution) each independently selected from hydroxy and fluoro, and/or optionally monosubstituted by oxo, —NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl], (1-6C)alkanoylamino, (1-4C)alkoxycarbonylamino, N-(1-4C)alkyl-N-(1-6C)alkanoylamino, (1-4C)alkylS(O)pNH— or (1-4C)alkylS(O)p-((1-4C)alkyl)N— (p is 1 or 2)};
(Rc2) R13CO—, R13SO2— or R13CS—
wherein R13 is selected from (Rc2a) to (Rc2e):-
(Rc2a) AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1, CY2 or 2,2-dimethyl-1,3-dioxolane;
(Rc2b) hydrogen, (1-4C)alkoxycarbonyl, trifluoromethyl, —NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl], ethenyl, 2-(1-4C)alkylethenyl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl, 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-(AR1)ethenyl, 2-(AR2)ethenyl, 2-(AR2a)ethenyl;
(Rc2c) (1-10C)alkyl {optionally substituted by one or more groups (including geminal disubstitution) each independently selected from hydroxy, (1-10C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkanoyl, phosphoryl [—O—P(O)(OH)2, and mono- and di-(1-4C)alkoxy derivatives thereof], phosphiryl [—O—P(OH)2 and mono- and di-(1-4C)alkoxy derivatives thereof], and amino; and/or optionally substituted by one group selected from carboxy, phosphonate [phosphono, —P(O)(OH)2, and mono- and di-(1-4C)alkoxy derivatives thereof], phosphinate [—P(OH)2 and mono- and di-(1-4C)alkoxy derivatives thereof], cyano, halo, trifluoromethyl, (1-4C)alkoxycarbonyl, (1-4C)alkoxy-(1-4C)alkoxycarbonyl, (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxycarbonyl, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-6C)alkanoylamino, (1-4C)alkoxycarbonylamino,
N-(1-4C)alkyl-N-(1-6C)alkanoylamino, (1-4C)alkylaminocarbonyl, di((1-4C)alkyl)aminocarbonyl, (1-4C)alkylS(O)pNH—, (1-4C)alkylS(O)p-((1-4C)alkyl)N—, fluoro(1-4C)alkylS(O)pNH—, fluoro(1-4C)alkylS(O)p((1-4C)alkyl)N—, (1-4C)alkylS(O)q—, CY1, CY2, AR1, AR2, AR3, AR1-O—, AR2-O—, AR3-O—, AR1-S(O)q—, AR2-S(O)q—, AR3-S(O)q—, AR1-NH—, AR2-NH—, AR3-NH— (p is 1 or 2 and q is 0, 1 or 2), and also AR2a, AR2b, AR3a and AR3b versions of AR2 and AR3 containing groups};
(Rc2d) R14C(O)O(1-6C)alkyl wherein R14 is AR1, AR2, (1-4C)alkylamino, benzyloxy-(1-4C)alkyl or (1-10C)alkyl {optionally substituted as defined for (Rc2c)};
(Rc2e) R15O— wherein R15 is benzyl, (1-6C)alkyl {optionally substituted as defined for (Rc2c)}, CY1, CY2 or AR2b;
(Rc3) hydrogen, cyano, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-(AR1)ethenyl, 2-(AR2)ethenyl, or of the formula (Rc3a)
wherein X00 is —OR17, —SR17, —NHR17 and —N(R17)2;
wherein R17 is hydrogen (when X00 is —NHR17 and —N(R17)2), and R17 is (1-4C)alkyl, phenyl or AR2 (when X00 is —OR17, —SR17 and —NHR17); and R16 is cyano, nitro, (1-4C)alkylsulfonyl, (4-7C)cycloalkylsulfonyl, phenylsulfonyl, (1-4C)alkanoyl and (1-4C)alkoxycarbonyl;
(Rc4) trityl, AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b;
(Rc5) RdOC(Re)═CH(C═O)—, RfC(═O)C(═O)—, RgN═C(Rh)C(═O)— or RiNHC(Rj)═CHC(═O)— wherein Rd is (1-6C)alkyl; Re is hydrogen or (1-6C)alkyl, or Rd and Re together form a (3-4C)alkylene chain; Rf is hydrogen, (1-6C)alkyl, hydroxy(1-6C)alkyl, (1-6C)alkoxy(1-6C)alkyl, —NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl], (1-6C)alkoxy, (1-6C)alkoxy(1-6C)alkoxy, hydroxy(2-6C)alkoxy, (1-4C)alkylamino(2-6C)alkoxy, di-(1-4C)alkylamino(2-6C)alkoxy; Rg is (1-6C)alkyl, hydroxy or (1-6C)alkoxy; Rh is hydrogen or (1-6C)alkyl; Ri is hydrogen, (1-6C)alkyl, AR1, AR2, AR2a, AR2b and Rj is hydrogen or (1-6C)alkyl;
wherein
AR1 is an optionally substituted phenyl or optionally substituted naphthyl;
AR2 is an optionally substituted 5- or 6-membered, fully unsaturated (i.e with the maximum degree of unsaturation) monocyclic heteroaryl ring containing up to four heteroatoms independently selected from O, N and S (but not containing any O—O, O—S or S—S bonds), and linked via a ring carbon atom, or a ring nitrogen atom if the ring is not thereby quaternised;
AR2a is a partially hydrogenated version of AR2 (i.e. AR2 systems retaining some, but not the full, degree of unsaturation), linked via a ring carbon atom or linked via a ring nitrogen atom if the ring is not thereby quaternised;
AR2b is a fully hydrogenated version of AR2 (i.e. AR2 systems having no unsaturation), linked via a ring carbon atom or linked via a ring nitrogen atom;
AR3 is an optionally substituted 8-, 9- or 10-membered, fully unsaturated (i.e with the maximum degree of unsaturation) bicyclic heteroaryl ring containing up to four heteroatoms independently selected from O, N and S (but not containing any O—O, O—S or S—S bonds), and linked via a ring carbon atom in either of the rings comprising the bicyclic system;
AR3a is a partially hydrogenated version of AR3 (i.e. AR3 systems retaining some, but not the full, degree of unsaturation), linked via a ring carbon atom, or linked via a ring nitrogen atom if the ring is not thereby quaternised, in either of the rings comprising the bicyclic system;
AR3b is a fully hydrogenated version of AR3 (i.e. AR3 systems having no unsaturation), linked via a ring carbon atom, or linked via a ring nitrogen atom, in either of the rings comprising the bicyclic system;
AR4 is an optionally substituted 13- or 14-membered, fully unsaturated (i.e with the maximum degree of unsaturation) tricyclic heteroaryl ring containing up to four heteroatoms independently selected from O, N and S (but not containing any O—O, O—S or S—S bonds), and linked via a ring carbon atom in any of the rings comprising the tricyclic system;
AR4a is a partially hydrogenated version of AR4 (i.e. AR4 systems retaining some, but not the full, degree of unsaturation), linked via a ring carbon atom, or linked via a ring nitrogen atom if the ring is not thereby quaternised, in any of the rings comprising the tricyclic system;
CY1 is an optionally substituted cyclobutyl, cyclopentyl or cyclohexyl ring;
CY2 is an optionally substituted cyclopentenyl or cyclohexenyl ring.
2. A compound of the formula (I), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof, as claimed in claim 1 wherein the optionally substituted N-linked (fully unsaturated) 5-membered heteroaryl ring system containing 1, 2 or 3 nitrogen atoms (group (TAf)) is selected from a group of formula (TAf1) to (TAf6):-
wherein:
R6 is selected (independently where appropriate) from hydrogen, (1-4C)alkyl, (1-4C)alkoxycarbonyl, (1-4C)alkanoyl, carbamoyl and cyano;
R4 and R5 are independently selected from hydrogen, halo, trifluoromethyl, cyano, nitro, (1-4C)alkoxy, (1-4C)alkylS(O)q— (q is 0, 1 or 2), (1-4C)alkanoyl, (1-4C)alkoxycarbonyl, (2-4C)alkanoyloxy-(1-4C)alkyl, benzoxy-(1-4C)alkyl, (2-4C)alkanoylamino, —CONRvRw, —NRvRw and (1-4C)alkyl {optionally substituted by hydroxy, trifluoromethyl, cyano, nitro, (1-4C)alkoxy, (1-4C)alkylS(O)q— (q is 0, 1 or 2), (1-4C)alkoxycarbonyl, (1-4C)alkanoylamino, —CONRvRw, —NRvRw; wherein RvRw is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl};
or R4 is selected from one of the groups in (TAfa) to (TAfc) below, or (where appropriate) one of R4 and R5 is selected from the above list of R4 and R5 values, and the other is selected from one of the groups in (TAfa) to (TAfc) below:-
(TAfa) a group of the formula (TAfa1)
wherein Z0 is hydrogen or (1-4C)alkyl;
X0 and Y0 are independently selected from hydrogen, (1-4C)alkyl, (1-4C)alkoxycarbonyl, halo, cyano, nitro, (1-4C)alkylS(O)q— (q is 0, 1 or 2), RvRwNSO2—, trifluoromethyl, pentafluoroethyl, (1-4C)alkanoyl and —CONRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl]; or
one of X0 and Y0 is selected from the above list of X0 and Y0 values, and the other is selected from phenyl, phenylcarbonyl, —S(O)q-phenyl (q is 0, 1 or 2), N-(phenyl)carbamoyl, phenylaminosulfonyl, AR2, (AR2)-CO—, (AR2)-S(O)q— (q is 0, 1 or 2), N-(AR2)carbamoyl and (AR2)aminosulfonyl; wherein any phenyl group in (TAfa) may be optionally substituted by up to three substituents independently selected from (1-4C)alkyl, cyano, trifluoromethyl, nitro, halo and (1-4C)alkylsulfonyl;
(TAfb) an acetylene of the formula -≡—H or -≡-(1-4C)alkyl;
(TAfc) —X1—Y1-AR2, —X1—Y1-AR2a, —X1—Y1-AR2b, —X1—Y1-AR3, —X1—Y1-AR3a or —X1—Y1-AR3b;
wherein X1 is a direct bond or —CH(OH)— and
Y1 is —(CH2)m—, —(CH2)n—NH—(CH2)m—, —CO—(CH2)m—, —CONH—(CH2)m—, —C(═S)NH—(CH2)m— or —C(═O)O—(CH2)m—;
or wherein X1 is —(CH2)n— or —CH(Me)-(CH2)m— and
Y1 is —(CH2)m—NH—(CH2)m—, —CO—(CH2)m—, —CONH—(CH2)m—, —C(═S)NH—(CH2)m—, —C(═O)O—(CH2)m— or —S(O)q—(CH2)m—;
or wherein X1 is —CH2O—, —CH2NH— or —CH2N((1-4C)alkyl)- and
Y1 is —CO—(CH2)m—, —CONH—(CH2)m— or —C(═S)NH—(CH2)m—;
and additionally Y1 is —SO2— when X1 is —CH2NH— or —CH2N((1-4C)alkyl)-, and Y1 is —(CH2)m— when X1 is —CH2O— or —CH2N((1-4C)alkyl)-; wherein n is 1, 2 or 3; m is 0, 1, 2 or 3 and q is 0, 1 or 2; and when Y1 is —(CH2)m—NH—(CH2)m— each m is independently selected from 0, 1, 2 or 3.
3. A compound of the formula (I), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof, as claimed in claim 1 wherein the 7-, 8- or 9-membered bicyclic ring system containing a bridge of 1, 2 or 3 carbon atoms (group (TDb)) is selected from a group defined by the ring skeletons shown in formulae (TDb1) to (TDb14):-
wherein;
(i) the ring system contains 0, 1 or 2 ring nitrogen atoms (and optionally a further O or S ring heteroatom),and when present the ring nitrogen, O or S heteroatom/s are at any position other than as part of the 3-membered ring in (TDb1);
(ii) the ring system is linked via a ring nitrogen atom or a ring sp3 or sp2 carbon atom (with the double bond, where appropriate, orientated in either direction) from any position in either ring [other than from a bridgehead position or from an sp2 carbon atom in the 4-membered ring in (TDb2), (TDb6) and (TDb11)];
(iii) one of the ring carbon atoms at a position not adjacent to the linking position, is replaced (other than when the ring contains an O or S heteroatom) by one of the following groups —NRc-[not at a bridgehead position], >C(H)—NHRc, >C(H)—NRc-(1-4C)alkyl, >C(H)—CH2—NHRc, >C(H)—CH2—NRc-(1-4C)alkyl [wherein the hydrogen atom shown in brackets is not present when the replacement is made at a bridgehead position and wherein a central —CH2— chain link is optionally mono- or di-substituted by (1-4C)alkyl]; with the proviso that when the ring system is linked via a ring nitrogen atom or an sp2 carbon atom any replacement of a ring carbon atom by —NRc-, O or S is at least two carbon atoms away from the linking position; and
(iv) the ring system is optionally (further) substituted on an available ring carbon atom as for the bicyclic spiro-ring systems described in (TDa); wherein Rc is as defined in claim 1 .
4. (canceled)
5. (canceled)
6. A compound of the formula (I) as claimed in claim 1 , being a compound of the formula (IC), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof
wherein HET is isoxazol-3-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl or 1,2,5-thiadiazol-3-yl;
X is O, S or NH;
R2 and R3 are independently hydrogen or fluoro; Rp1 and Rp2 are independently hydrogen, AR-oxymethyl or AR-thiomethyl (wherein AR is phenyl, phenyl-(1-4C)alkyl, naphthyl, furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole or thiophene), (1-4C)alkyl, carboxy, (1-4C)alkoxycarbonyl, hydroxymethyl, (1-4C)alkoxymethyl or carbamoyl and Rcp is cyano, pyrimidin-2-yl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl or Rcp is of the formula R13pCO—, R13pSO2— or R13pCS— (wherein R13p is hydrogen, (1-5C)alkyl [optionally substituted by one or more groups each independently selected from hydroxy and amino, or optionally monosubstituted by (1-4C)alkoxy, (1-4C)alkylS(O)q—, (1-4C)alkylamino, (1-4C)alkanoyl, naphthoxy, (2-6C)alkanoylamino or (1-4C)alkylS(O)pNH— wherein p is 1 or 2 and q is 0, 1 or 2], imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole, thiazole, pyridoimidazole, pyrimidoimidazole, quinoxaline, quinazoline, phthalazine, cinnoline or naphthyridine, or R13p is of the formula R14pC(O)O(1-6C)alkyl wherein R14p is (1-6C)alkyl), or Rcp is of the formula RfC(═O)C(═O)— wherein Rf is (1-6C)alkoxy.
7. (canceled)
8. A compound as claimed in claim 1 being
(5RS)-3-(3-Fluoro-4-imidazol-1-ylphenyl)-5-isoxazol-3-ylaminomethyl-4,5-dihydro-isoxazole; or
(5RS)-3-(3-Fluoro-4-imidazol-1-ylphenyl)-5-isoxazol-3-yloxymethyl-4,5-dihydroisoxazole.
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/238,260 US20070281916A1 (en) | 1999-12-03 | 2005-09-29 | Substituted isoxazolines and their use as antibacterial agents |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB9928568.6A GB9928568D0 (en) | 1999-12-03 | 1999-12-03 | Chemical compounds |
| GB9928568.6 | 1999-12-03 | ||
| US10/111,562 US7081538B1 (en) | 1999-12-03 | 2000-11-28 | Substituted isoxazolines and their use as antibacterial agents |
| PCT/GB2000/004516 WO2001040222A1 (en) | 1999-12-03 | 2000-11-28 | Substituted isoxazolines and their use as antibacterial agents |
| US11/238,260 US20070281916A1 (en) | 1999-12-03 | 2005-09-29 | Substituted isoxazolines and their use as antibacterial agents |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2000/004516 Division WO2001040222A1 (en) | 1999-12-03 | 2000-11-28 | Substituted isoxazolines and their use as antibacterial agents |
| US10/111,562 Division US7081538B1 (en) | 1999-12-03 | 2000-11-28 | Substituted isoxazolines and their use as antibacterial agents |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070281916A1 true US20070281916A1 (en) | 2007-12-06 |
Family
ID=10865622
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/111,562 Expired - Fee Related US7081538B1 (en) | 1999-12-03 | 2000-11-28 | Substituted isoxazolines and their use as antibacterial agents |
| US11/238,260 Abandoned US20070281916A1 (en) | 1999-12-03 | 2005-09-29 | Substituted isoxazolines and their use as antibacterial agents |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/111,562 Expired - Fee Related US7081538B1 (en) | 1999-12-03 | 2000-11-28 | Substituted isoxazolines and their use as antibacterial agents |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US7081538B1 (en) |
| EP (1) | EP1242416B1 (en) |
| JP (1) | JP2003515607A (en) |
| AT (1) | ATE293110T1 (en) |
| AU (1) | AU1714801A (en) |
| DE (1) | DE60019457T2 (en) |
| GB (1) | GB9928568D0 (en) |
| WO (1) | WO2001040222A1 (en) |
Families Citing this family (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9928568D0 (en) | 1999-12-03 | 2000-02-02 | Zeneca Ltd | Chemical compounds |
| US6642238B2 (en) * | 2000-02-10 | 2003-11-04 | Pharmacia And Upjohn Company | Oxazolidinone thioamides with piperazine amide substituents |
| GB0009803D0 (en) | 2000-04-25 | 2000-06-07 | Astrazeneca Ab | Chemical compounds |
| ES2180456B1 (en) * | 2001-07-20 | 2004-05-01 | Laboratorios S.A.L.V.A.T., S.A. | SUBSTITUTED ISOXAZOLS AND ITS USE AS ANTIBIOTICS. |
| NZ531621A (en) | 2001-09-11 | 2005-06-24 | Astrazeneca Ab | Oxazolidinone and/or isoxazoline as antibacterial agents |
| US7022705B2 (en) | 2001-10-25 | 2006-04-04 | Astrazeneca Ab | Isoxazoline derivatives useful as antimicrobials |
| BR0308056A (en) | 2002-02-28 | 2004-12-07 | Astrazeneca Ab | Compound, prodrug, method for producing an antibacterial effect on a warm-blooded animal, use of a compound, pharmaceutical composition, and process for preparing a compound |
| MXPA04008273A (en) | 2002-02-28 | 2004-11-10 | Astrazeneca Ab | Oxazolidinone derivatives, processes for their preparation, and pharmaceutical compositions containing them. |
| AR043050A1 (en) * | 2002-09-26 | 2005-07-13 | Rib X Pharmaceuticals Inc | BIFunctional HETEROCICLICAL COMPOUNDS AND METHODS TO PREPARE AND USE THE SAME |
| MXPA05005472A (en) | 2002-11-21 | 2005-07-25 | Pharmacia & Upjohn Co Llc | N-(4-(piperazin-1-yl)-phenyl-2-oxazolidinone-5-carboxamide derivates and related compounds as antibacterial agents. |
| WO2005082892A2 (en) * | 2004-02-17 | 2005-09-09 | Dr. Reddy's Laboratories Ltd. | Triazole compounds as antibacterial agents and pharmaceutical compositions containing them |
| WO2005085266A2 (en) | 2004-02-27 | 2005-09-15 | Rib-X Pharmaceuticals, Inc. | Macrocyclic compounds and methods of making and using the same |
| SI1731512T1 (en) | 2004-03-05 | 2015-01-30 | Nissan Chemical Industries, Ltd. | Isoxazoline-substituted benzamide compound and noxious organism control agent |
| HRP20171285T1 (en) | 2005-08-24 | 2017-10-20 | Melinta Therapeutics, Inc. | Triazole compounds and methods of making and using the same |
| EP1934237A2 (en) | 2005-08-24 | 2008-06-25 | Rib-X Pharmaceuticals, Inc. | Triazole compounds and methods of making and using the same |
| TW200803740A (en) | 2005-12-16 | 2008-01-16 | Du Pont | 5-aryl isoxazolines for controlling invertebrate pests |
| TWI412322B (en) | 2005-12-30 | 2013-10-21 | Du Pont | Isoxazolines for controlling invertebrate pests |
| US8623875B2 (en) | 2007-06-13 | 2014-01-07 | E.I. Du Pont De Nemours And Company | Isoxazoline insecticides |
| WO2009003075A1 (en) | 2007-06-27 | 2008-12-31 | E.I. Du Pont De Nemours And Company | Animal pest control method |
| WO2009114921A1 (en) * | 2008-03-17 | 2009-09-24 | Dmitrienko Gary I | INHIBITORS OF CLASS B AND CLASS D β-LACTAMASES |
| TW201444787A (en) | 2008-04-09 | 2014-12-01 | Du Pont | Method for preparing 3-trifluoromethylchalcone (CHALCONE) |
| CN101781294B (en) * | 2010-03-10 | 2012-02-01 | 天津药物研究院 | Imidazole derivative, and preparation method and application thereof |
| WO2012059441A2 (en) * | 2010-11-03 | 2012-05-10 | Basf Se | Method for preparing substituted isoxazoline compounds and their precursors 4-chloro, 4-bromo- or 4-iodobenzaldehyde oximes |
| ES3022639T3 (en) | 2016-05-20 | 2025-05-28 | Xenon Pharmaceuticals Inc | Benzenesulfonamide compounds and their use as therapeutic agents |
| JP7022751B2 (en) | 2016-12-09 | 2022-02-18 | ゼノン・ファーマシューティカルズ・インコーポレイテッド | Benzene sulfonamide compounds and their use as therapeutic agents |
| US10745392B2 (en) | 2018-06-13 | 2020-08-18 | Xenon Pharmaceuticals Inc. | Benzenesulfonamide compounds and their use as therapeutic agents |
| EP3844158A1 (en) | 2018-08-31 | 2021-07-07 | Xenon Pharmaceuticals Inc. | Heteroaryl-substituted sulfonamide compounds and their use as sodium channel inhibitors |
| BR112021000209A2 (en) | 2018-08-31 | 2021-08-24 | Xenon Pharmaceuticals Inc. | Heteroaryl Substituted Sulphonamide Compounds and Their Use as Therapeutic Agents |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6069160A (en) * | 1995-04-21 | 2000-05-30 | Bayer Aktiengesellschaft | Heteroatom-containing benzocyclopentane-oxazolidinones |
| US6271388B1 (en) * | 1998-03-10 | 2001-08-07 | Daiso Co., Ltd. | Process for producing oxazolidin-2-one derivative |
| US6455529B1 (en) * | 1995-05-05 | 2002-09-24 | Merck Patent Gesellschaft Mit Beschraenkter Haftung | Adhesion receptor antagonists |
| US6462056B1 (en) * | 1997-02-26 | 2002-10-08 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Oxazolidines as 5-HT2A-antagonists |
Family Cites Families (146)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2338268A1 (en) | 1976-01-16 | 1977-08-12 | Nativelle Spa | (5)-Aryloxymethyl-oxazolidin-(2)-ones - used in prepn. of aryloxypropanolamine beta:blockers |
| FR2356422A1 (en) | 1976-03-01 | 1978-01-27 | Delalande Sa | NEW HYDROXYMETHYL-5 OXAZOLIDINONE-2, THEIR PREPARATION PROCESS AND THEIR APPLICATION IN THERAPEUTICS |
| US4068203A (en) * | 1976-06-15 | 1978-01-10 | Heinemann Electric Company | Bimetallic circuit breaker |
| US4348393A (en) | 1978-06-09 | 1982-09-07 | Delalande S.A. | N-Aryl oxazolidinones, oxazolidinethiones, pyrrolidinones, pyrrolidines and thiazolidinones |
| FR2458547B2 (en) | 1978-06-09 | 1986-05-16 | Delalande Sa | NOVEL AZOLONES N-ARYLE, THEIR PREPARATION PROCESS AND THEIR THERAPEUTIC APPLICATION |
| CH647772A5 (en) | 1979-05-07 | 1985-02-15 | Delalande Sa | 5H-FURANONE-2 AND 3H-DIHYDRO-FURANONE-2 DERIVATIVES, PROCESSES FOR THEIR PREPARATION, AND MEDICAMENTS CONTAINING THEM |
| US4340606A (en) | 1980-10-23 | 1982-07-20 | E. I. Du Pont De Nemours And Company | 3-(p-Alkylsulfonylphenyl)oxazolidinone derivatives as antibacterial agents |
| FR2500450A1 (en) | 1981-02-25 | 1982-08-27 | Delalande Sa | NOVEL AMINOMETHYL-5-OXAZOLIDINE DERIVATIVES, PROCESS FOR THEIR PREPARATION AND THERAPEUTIC USE THEREOF |
| US4705799A (en) | 1983-06-07 | 1987-11-10 | E. I. Du Pont De Nemours And Company | Aminomethyl oxooxazolidinyl benzenes useful as antibacterial agents |
| ES8506659A1 (en) | 1983-06-07 | 1985-08-01 | Du Pont | Aminomethyl oxooxazolidinyl benzene derivatives useful as antibacterial agents. |
| CA1260948A (en) | 1984-12-05 | 1989-09-26 | E. I. Du Pont De Nemours And Company | Aminomethyl oxooxazolidinyl benzene derivatives useful as antibacterial agents |
| US4851423A (en) | 1986-12-10 | 1989-07-25 | Schering Corporation | Pharmaceutically active compounds |
| US5272167A (en) | 1986-12-10 | 1993-12-21 | Schering Corporation | Pharmaceutically active compounds |
| US5750532A (en) | 1986-12-10 | 1998-05-12 | Schering Corporation | Pharmaceutically active compounds |
| US4942183A (en) | 1987-10-16 | 1990-07-17 | E. I. Du Pont De Nemours And Company | Aminomethyl oxooxazolidinyl aroylbenzene derivatives useful as antibacterial agents |
| US4977173A (en) | 1987-10-21 | 1990-12-11 | E. I. Du Pont De Nemours And Company | Aminomethyl oxooxazolidinyl ethenylbenzene derivatives useful as antibacterial agents |
| US4948801A (en) | 1988-07-29 | 1990-08-14 | E. I. Du Pont De Nemours And Company | Aminomethyloxooxazolidinyl arylbenzene derivatives useful as antibacterial agents |
| AU617871B2 (en) | 1988-09-15 | 1991-12-05 | Pharmacia & Upjohn Company | In position 3 substituted-5-beta-amidomethyl-oxazolidin-2- ones |
| US5225565A (en) | 1988-09-15 | 1993-07-06 | The Upjohn Company | Antibacterial 3-(fused-ring substituted)phenyl-5β-amidomethyloxazolidin-2-ones |
| US5164510A (en) | 1988-09-15 | 1992-11-17 | The Upjohn Company | 5'Indolinyl-5β-amidomethyloxazolidin-2-ones |
| US5182403A (en) | 1988-09-15 | 1993-01-26 | The Upjohn Company | Substituted 3(5'indazolyl) oxazolidin-2-ones |
| US5231188A (en) | 1989-11-17 | 1993-07-27 | The Upjohn Company | Tricyclic [6.5.51]-fused oxazolidinone antibacterial agents |
| AU667198B2 (en) | 1991-11-01 | 1996-03-14 | Pharmacia & Upjohn Company | Substituted aryl- and heteroarylphenyloxazolidinones useful as antibacterial agents |
| US5480899A (en) | 1992-04-30 | 1996-01-02 | Taiho Pharmaceutical Co., Ltd. | Oxazolidine derivatives and pharmaceutically acceptable salts thereof |
| SK283420B6 (en) | 1992-05-08 | 2003-07-01 | Pharmacia & Upjohn Company | Antimicrobial oxazolidinones containing substituted diazine groups |
| EP0648119A1 (en) | 1992-07-08 | 1995-04-19 | The Upjohn Company | 5'-INDOLINYL OXAZOLIDINONES USEFUL AGAINST $i(MYCOBACTERIUM TUBERCULOSIS) |
| AU670842B2 (en) | 1992-12-08 | 1996-08-01 | Pharmacia & Upjohn Company | Tropone-substituted phenyloxazolidinone antibacterial agents |
| US5785976A (en) | 1993-03-05 | 1998-07-28 | Pharmacia & Upjohn Ab | Solid lipid particles, particles of bioactive agents and methods for the manufacture and use thereof |
| HU224548B1 (en) | 1993-04-07 | 2005-10-28 | Taiho Pharmaceutical Co. Ltd. | Thiazolidine derivatives and pharmaceutical composition containing the same, and process for their preparation |
| ES2134870T3 (en) | 1993-05-01 | 1999-10-16 | Merck Patent Gmbh | ADHESION RECEPTOR ANTAGONISTS. |
| US5688792A (en) | 1994-08-16 | 1997-11-18 | Pharmacia & Upjohn Company | Substituted oxazine and thiazine oxazolidinone antimicrobials |
| DE4332384A1 (en) | 1993-09-23 | 1995-03-30 | Merck Patent Gmbh | Adhesion receptor antagonists III |
| DE69419523T2 (en) | 1993-11-22 | 1999-11-25 | Pharmacia & Upjohn Co., Kalamazoo | SUBSTITUTED HYDROXYACETYL PIPERAZINE PHENYL OXAZOLIDINONIC ACID ESTERS |
| TW286317B (en) | 1993-12-13 | 1996-09-21 | Hoffmann La Roche | |
| US5668286A (en) | 1994-03-15 | 1997-09-16 | Pharmacia & Upjohn Company | Oxazolidinone derivatives and pharmaceutical compositions containing them |
| JPH07309850A (en) | 1994-05-16 | 1995-11-28 | Canon Inc | Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same, display method using the same, and display device |
| DE4425613A1 (en) | 1994-07-20 | 1996-01-25 | Bayer Ag | 5-membered heteroaryl oxazolidinones |
| DE4425609A1 (en) | 1994-07-20 | 1996-01-25 | Bayer Ag | Benzofuranyl and Benzothienyloxazolidinone |
| DE4425612A1 (en) | 1994-07-20 | 1996-04-04 | Bayer Ag | 6-membered nitrogen-containing heteroaryl oxazolidinones |
| DE19514313A1 (en) | 1994-08-03 | 1996-02-08 | Bayer Ag | Benzoxazolyl- and Benzothiazolyloxazolidinone |
| EP0710657B1 (en) | 1994-11-02 | 1998-08-26 | MERCK PATENT GmbH | Antagonists of adhesion receptors |
| KR100392216B1 (en) | 1994-11-15 | 2003-10-17 | 파마시아 앤드 업존 캄파니 | Bicyclic oxazine and thiazine oxazolidinone antibacterials |
| WO1996023788A1 (en) | 1995-02-03 | 1996-08-08 | Pharmacia + Upjohn Company | Hetero-aromatic ring substituted phenyloxazolidinone antimicrobials |
| US6124334A (en) | 1995-02-03 | 2000-09-26 | Pharmacia & Upjohn Company | Hetero-aromatic ring substituted phenyloxazolidinone antimicrobials |
| DK0828741T3 (en) | 1995-05-11 | 2001-11-26 | Upjohn Co | Spirocyclic and bicyclic diazinyl and carbazinyloxazolidinones |
| MX9801228A (en) | 1995-08-14 | 1998-05-31 | Scripps Research Inst | METHODS AND COMPOSITIONS USEFUL FOR INHIBITION OF 'alpha'v'beta'5 MEDIATED ANGIOGENESIS. |
| ES2165516T3 (en) | 1995-09-01 | 2002-03-16 | Upjohn Co | PHENYLOXAZOLIDINONES WITH A C-C LINK WITH HETEROCICLIC RINGS OF 4-8 MEMBERS. |
| US5883093A (en) | 1995-09-12 | 1999-03-16 | Pharmacia & Upjohn Company | Phenyloxazolidinone antimicrobials |
| JPH11512429A (en) | 1995-09-15 | 1999-10-26 | ファルマシア・アンド・アップジョン・カンパニー | Aminoaryloxazolidinone N-oxide |
| AU6902096A (en) | 1995-09-15 | 1997-04-01 | Pharmacia & Upjohn Company | 5-amidomethyl alpha, beta-saturated and -unsaturated 3-aryl butyrolactone antibacterial agents |
| GB9521508D0 (en) | 1995-10-20 | 1995-12-20 | Zeneca Ltd | Chemical compounds |
| ZA968661B (en) | 1995-11-17 | 1998-04-14 | Upjohn Co | Oxazolidinone antibacterial agent with tricyclic substituents. |
| ZA969622B (en) | 1995-12-13 | 1998-05-15 | Upjohn Co | Oxazolidinone antibacterial agents having a six-membered heteroaromatic ring. |
| WO1997023212A1 (en) * | 1995-12-21 | 1997-07-03 | The Du Pont Merck Pharmaceutical Company | ISOXAZOLINE, ISOTHIAZOLINE AND PYRAZOLINE FACTOR Xa INHIBITORS |
| DE19601265A1 (en) | 1996-01-16 | 1997-07-17 | Bayer Ag | 2-oxo and 2-thio-1,2-dihydroquinolinyl oxazolidinones |
| DE19601264A1 (en) | 1996-01-16 | 1997-07-17 | Bayer Ag | Pyrido-annellated thienyl and furanyl oxazolidinones |
| DE19601627A1 (en) | 1996-01-18 | 1997-07-24 | Bayer Ag | Cyclopentanopyridyl oxazolidinones containing heteroatoms |
| GB9601666D0 (en) | 1996-01-27 | 1996-03-27 | Zeneca Ltd | Chemical compounds |
| DE19604223A1 (en) | 1996-02-06 | 1997-08-07 | Bayer Ag | New substituted oxazolidinones |
| HRP970049A2 (en) | 1996-02-06 | 1998-04-30 | Bayer Ag | New heteroaryl oxazolidinones |
| GB9702213D0 (en) | 1996-02-24 | 1997-03-26 | Zeneca Ltd | Chemical compounds |
| MY116093A (en) | 1996-02-26 | 2003-11-28 | Upjohn Co | Azolyl piperazinyl phenyl oxazolidinone antimicrobials |
| GB9604301D0 (en) | 1996-02-29 | 1996-05-01 | Zeneca Ltd | Chemical compounds |
| ES2166073T3 (en) | 1996-04-11 | 2002-04-01 | Upjohn Co | PROCEDURE TO PREPARE OXAZOLIDINONES. |
| GB9609919D0 (en) | 1996-05-11 | 1996-07-17 | Zeneca Ltd | Chemical compounds |
| GB9614238D0 (en) | 1996-07-06 | 1996-09-04 | Zeneca Ltd | Chemical compounds |
| GB9614236D0 (en) | 1996-07-06 | 1996-09-04 | Zeneca Ltd | Chemical compounds |
| DK0920421T3 (en) * | 1996-08-21 | 2003-03-10 | Upjohn Co | Isoxazoline derivatives useful as antimicrobial agents |
| KR100307211B1 (en) | 1997-05-24 | 2001-11-30 | 손 경 식 | Oxazolidinone derivative, manufacturing method thereof, and antibacterial composition containing the same |
| SK156499A3 (en) | 1997-05-30 | 2000-06-12 | Upjohn Co | Oxazolidinone antibacterial agents having a thiocarbonyl functionality |
| WO1999002525A1 (en) | 1997-07-11 | 1999-01-21 | Pharmacia & Upjohn Company | Thiadiazolyl and oxadiazolyl phenyl oxazolidinone antibacterial agents |
| DE19730847A1 (en) | 1997-07-18 | 1999-01-28 | Bayer Ag | Tricyclically substituted oxazolidinones |
| GB9717807D0 (en) | 1997-08-22 | 1997-10-29 | Zeneca Ltd | Chemical compounds |
| GB9717804D0 (en) | 1997-08-22 | 1997-10-29 | Zeneca Ltd | Chemical compounds |
| AU8872198A (en) | 1997-08-29 | 1999-03-22 | Zeneca Limited | Aminometyl oxooxazolidinyl benzene derivatives |
| AU9001598A (en) | 1997-09-11 | 1999-03-29 | Hokuriku Seiyaku Co. Ltd | Thiourea derivatives |
| US6140318A (en) | 1997-10-23 | 2000-10-31 | Merck & Co., Inc. | Carbapenem antibacterial compounds, compositions containing such compounds and methods of treatment |
| SK286569B6 (en) | 1997-11-07 | 2009-01-07 | Pharmacia & Upjohn Company | Method for the production of oxazolidinones |
| RU2215740C2 (en) | 1997-11-12 | 2003-11-10 | Фармация Энд Апджон Компани | Oxazolidinone derivatives and pharmaceutical compositions based on thereof |
| NZ504612A (en) | 1997-11-18 | 2002-08-28 | Upjohn Co | Use of oxazolidinone derivatives for treating psoriasis, arthritis and reducing the toxicity of cancer chemotherapy |
| US6083967A (en) | 1997-12-05 | 2000-07-04 | Pharmacia & Upjohn Company | S-oxide and S,S-dioxide tetrahydrothiopyran phenyloxazolidinones |
| GB2332387A (en) | 1997-12-16 | 1999-06-23 | Nestle Sa | Method and apparatus for moulding food articles |
| DE19757224A1 (en) | 1997-12-22 | 1999-07-01 | Bayer Ag | Method and device for in-situ formulation of a drug solution for parenteral administration |
| AU1694099A (en) | 1997-12-26 | 1999-07-19 | Cheil Jedang Corporation | Cephem derivatives and a method for producing the compounds and an antibacterialcomposition containing the compounds |
| DE19802239A1 (en) | 1998-01-22 | 1999-07-29 | Bayer Ag | New oxazolidinone derivatives useful as antimicrobial agents against Gram-positive and some Gram-negative bacteria, mycobacteria, etc. |
| DE19802235A1 (en) | 1998-01-22 | 1999-07-29 | Bayer Ag | New oxazolidinone derivatives useful as antibacterial agents for treating local or systemic infections in humans or animals |
| CA2318969A1 (en) | 1998-01-23 | 1999-07-29 | Mikhail F. Gordeev | Oxazolidinone combinatorial libraries, compositions and methods of preparation |
| DE19805117A1 (en) | 1998-02-09 | 1999-08-12 | Bayer Ag | New oxazolidinones with azole-containing tricycles |
| ES2182485T3 (en) | 1998-02-13 | 2003-03-01 | Upjohn Co | AMINOFENIL ISOSAZOLINE DERIVATIVES SUBSTITUTED USEFUL AS ANTIMICROBIAL AGENTS. |
| JP2002504550A (en) | 1998-02-25 | 2002-02-12 | ファルマシア・アンド・アップジョン・カンパニー | Substituted aminomethyl isoxazoline derivatives useful as antimicrobial agents |
| JPH11322729A (en) | 1998-03-09 | 1999-11-24 | Hokuriku Seiyaku Co Ltd | Dithiocarbamic acid derivative |
| HUP0101958A3 (en) | 1998-05-18 | 2003-07-28 | Upjohn Co | Enhancement oxazolidinone antibacterial agents activity by using arginine derivatives |
| GB9812019D0 (en) | 1998-06-05 | 1998-07-29 | Zeneca Ltd | Chemical compounds |
| MY122454A (en) | 1998-06-05 | 2006-04-29 | Upjohn Co | Use of oxazolidinones for the preparation of a medicament for transdermal delivery |
| WO1999064417A2 (en) | 1998-06-05 | 1999-12-16 | Astrazeneca Ab | Oxazolidinone derivatives, process for their preparation and pharmaceutical compositions containing them |
| WO1999063929A2 (en) | 1998-06-08 | 1999-12-16 | Advanced Medicine, Inc. | Multibinding inhibitors of microsomal triglyceride transferase protein |
| ATE304886T1 (en) | 1998-07-14 | 2005-10-15 | Pharmacia & Upjohn Co Llc | OXAZOLIDINONES FOR THE TREATMENT OF EYE INFECTIONS |
| TW572757B (en) | 1998-08-24 | 2004-01-21 | Bristol Myers Squibb Co | Novel isoxazolinone antibacterial agents |
| GB9821938D0 (en) | 1998-10-09 | 1998-12-02 | Zeneca Ltd | Chemical compounds |
| JP3973304B2 (en) | 1998-10-29 | 2007-09-12 | 三井化学株式会社 | Method for producing 2-oxazolidone derivative |
| AU1345800A (en) | 1998-11-10 | 2000-05-29 | Merck & Co., Inc. | Oxazolidinones useful as alpha 1a adrenoceptor antagonists |
| WO2000027817A1 (en) | 1998-11-10 | 2000-05-18 | Merck & Co., Inc. | Oxazolidinones useful as alpha 1a adrenoceptor antagonists |
| WO2000027827A1 (en) | 1998-11-10 | 2000-05-18 | Merck & Co., Inc. | Oxazolidinones useful as alpha 1a adrenoceptor antagonists |
| JP2000204084A (en) | 1998-11-11 | 2000-07-25 | Hokuriku Seiyaku Co Ltd | Thiocarbamic acid derivative |
| AU1379900A (en) | 1998-11-17 | 2000-06-05 | Bayer Aktiengesellschaft | Novel substituted phenyloxazolidone derivatives |
| WO2000029409A1 (en) | 1998-11-17 | 2000-05-25 | Bayer Aktiengesellschaft | Novel heterocyclyl-substituted oxazolidone derivatives |
| KR20010107987A (en) | 1998-11-27 | 2001-12-07 | 로렌스 티. 마이젠헬더 | Oxazolidinone Antibacterial Agents Having a Thiocarbonyl Functionality |
| CZ20012380A3 (en) | 1999-01-13 | 2002-01-16 | Jomaa Pharmaka Gmbh | Use of 3-isoxazolidinones and hydroxylamino acids for treating infections |
| DE19901306A1 (en) | 1999-01-15 | 2000-07-20 | Bayer Ag | New N-(imidazo-tetrahydrobenzazepinyl)-1,3-oxazolidin-2-ones, useful as broad-spectrum antibacterial agents having low toxicity |
| EP1147422A1 (en) | 1999-01-27 | 2001-10-24 | Pharmacia & Upjohn Company | Assays for modulators of "elongation factor p" activity |
| KR20010101890A (en) | 1999-02-01 | 2001-11-15 | 로렌스 티. 마이젠헬더 | Process to Prepare Cyclic-Sulfur Fluorine Containing Oxazolidinones |
| DE19905278A1 (en) | 1999-02-09 | 2000-08-10 | Bayer Ag | Oxazolidinones and their use as antibacterial agents |
| DE19907701A1 (en) | 1999-02-23 | 2000-08-24 | Bayer Ag | New tricyclic indolyl-substituted oxazolidinone derivatives, useful as broad spectrum antibacterial agents of low toxicity |
| DE19909785A1 (en) | 1999-03-05 | 2000-09-07 | Bayer Ag | New 1-heterocyclyl-5-carbonylaminomethyl-isoxazoline and 1-heterocyclyl-5-thionocarbonylaminomethyl-isoxazoline derivatives useful as antibacterial agents in human and veterinary medicine |
| CN1373767A (en) | 1999-04-16 | 2002-10-09 | 奥索-麦克尼尔药品公司 | Ketolide antibacterials |
| EP1181288B1 (en) | 1999-05-27 | 2003-07-30 | PHARMACIA & UPJOHN COMPANY | Bicyclic oxazolidinones as antibacterial agent |
| DE10014961A1 (en) | 1999-07-08 | 2001-01-11 | Merck Patent Gmbh | Enantiomer separation of 3,5-disubstituted 2-oxazolidinones, useful as drugs or intermediates, by chromatography using substituted polysaccharide sorbent and alcohol eluant |
| US6297242B1 (en) | 1999-08-12 | 2001-10-02 | Ortho-Mcneil Pharmaceutical, Inc. | N-substituted amidine and guanidine oxazolidinone antibacterials and methods of use thereof |
| US6413981B1 (en) | 1999-08-12 | 2002-07-02 | Ortho-Mcneil Pharamceutical, Inc. | Bicyclic heterocyclic substituted phenyl oxazolidinone antibacterials, and related compositions and methods |
| GB9928499D0 (en) | 1999-12-03 | 2000-02-02 | Zeneca Ltd | Chemical processes and intermediates |
| GB9928568D0 (en) | 1999-12-03 | 2000-02-02 | Zeneca Ltd | Chemical compounds |
| PE20010851A1 (en) | 1999-12-14 | 2001-08-17 | Upjohn Co | BENZOIC ACID ESTERS OF OXAZOLIDINONES HAVING A HYDROXYACETILPIPERAZINE SUBSTITUENT |
| US6518285B2 (en) | 1999-12-21 | 2003-02-11 | Ortho Mcneil Pharmaceutical, Inc. | Piperidinyloxy and pyrrolidinyloxy oxazolidinone antibacterials |
| WO2001046185A1 (en) | 1999-12-21 | 2001-06-28 | Pharmacia & Upjohn Company | Oxazolidinones having a sulfoximine functionality and their use as antimicrobial agents |
| DE19962924A1 (en) | 1999-12-24 | 2001-07-05 | Bayer Ag | Substituted oxazolidinones and their use |
| PE20011089A1 (en) | 2000-02-10 | 2001-10-04 | Pharmacia And Upjhon Company | OXAZOLIDINONE THIOAMIDES WITH PIPERAZIN-AMIDE SUBSTITUTES |
| PE20011124A1 (en) | 2000-03-31 | 2001-10-28 | Upjohn Co | NEW BENZOSULTAM OXAZOLIDINONE ANTIBACTERIAL AGENTS |
| AU2001253113B2 (en) | 2000-04-20 | 2005-02-03 | Pharmacia & Upjohn Company | Use of thioamide oxazolidinones for the treatment of bone resorption and osteoporosis |
| GB0009803D0 (en) | 2000-04-25 | 2000-06-07 | Astrazeneca Ab | Chemical compounds |
| CA2411859A1 (en) | 2000-06-05 | 2001-12-13 | Jae-Gul Lee | Novel oxazolidinone derivatives and a process for the preparation thereof |
| PE20020044A1 (en) | 2000-06-16 | 2002-01-30 | Upjohn Co | THIAZINE OXAZOLIDINONE |
| EP1301207B1 (en) | 2000-06-30 | 2005-08-10 | Pharmacia & Upjohn Company LLC | Compositions for treating bacterial infections, containing an oxazolidinone compound, sulbactam and and ampicillin |
| DE10034624A1 (en) | 2000-07-17 | 2002-01-31 | Bayer Ag | New aryl substituted thienyl-oxazolidinone derivatives useful as tumor necrosis facto-alpha inhibitors in treatment of e.g. atherosclerosis, arthritis, Crohn's disease, osteoporosis, cardiac infraction and psoriasis |
| DE10034625A1 (en) | 2000-07-17 | 2002-01-31 | Bayer Ag | New aryl substituted thienyl-oxazolidinone derivatives useful as tumor necrosis factor-alpha inhibitors in treatment of e.g. atherosclerosis, arthritis, Crohn's disease, osteoporosis, transplant rejection and psoriasis |
| AU6937001A (en) | 2000-07-17 | 2002-01-30 | Ranbaxy Lab Ltd | Oxazolidinone derivatives as antimicrobials |
| PE20020300A1 (en) | 2000-08-22 | 2002-05-10 | Pharmacia Corp | COMPOSITION OF SOLUTION OF AN ANTIBIOTIC DRUG BASED ON OXAZOLIDINONE WITH IMPROVEMENT OF DRUG LOAD |
| WO2002018354A1 (en) | 2000-08-31 | 2002-03-07 | Abbott Laboratories | Oxazolidinones and their use as antibacterial agents |
| US6410728B1 (en) | 2000-08-31 | 2002-06-25 | Abbott Laboratories | Oxazolidinone chemotherapeutic agents |
| WO2002020515A1 (en) | 2000-09-08 | 2002-03-14 | Abbott Laboratories | Oxazolidinone antibacterial agents |
| US6699505B2 (en) | 2000-10-17 | 2004-03-02 | Massachusetts Institute Of Technology | Method of increasing the efficacy of antibiotics by compexing with cyclodextrins |
| ES2256318T3 (en) | 2000-10-17 | 2006-07-16 | PHARMACIA & UPJOHN COMPANY LLC | PRODUCTION METHODS OF OXAZOLIDINONE COMPOUNDS. |
| PE20020689A1 (en) | 2000-11-17 | 2002-08-03 | Upjohn Co | OXAZOLIDINONES WITH A HETEROCYCLE OF 6 OR 7 MEMBERS UNITED WITH ANNULAR LINK TO BENZENE |
| US6861433B2 (en) | 2000-12-15 | 2005-03-01 | Pharmacia & Upjohn Company | Oxazolidinone photoaffinity probes |
| GB0031088D0 (en) | 2000-12-20 | 2001-01-31 | Smithkline Beecham Plc | Medicaments |
| WO2002059116A2 (en) | 2000-12-21 | 2002-08-01 | Pharmacia & Upjohn Company | Antimicrobial quinolone derivatives and use of the same to treat bacterial infections |
| YU52403A (en) | 2000-12-26 | 2006-03-03 | Dr.Reddy's Research Foundation | Heterocyclic compounds having antibacterial activity, process for their preparation and pharmaceutical compositions containing them |
-
1999
- 1999-12-03 GB GBGB9928568.6A patent/GB9928568D0/en not_active Ceased
-
2000
- 2000-11-28 DE DE60019457T patent/DE60019457T2/en not_active Expired - Fee Related
- 2000-11-28 US US10/111,562 patent/US7081538B1/en not_active Expired - Fee Related
- 2000-11-28 JP JP2001541906A patent/JP2003515607A/en active Pending
- 2000-11-28 WO PCT/GB2000/004516 patent/WO2001040222A1/en not_active Ceased
- 2000-11-28 EP EP00979755A patent/EP1242416B1/en not_active Expired - Lifetime
- 2000-11-28 AT AT00979755T patent/ATE293110T1/en not_active IP Right Cessation
- 2000-11-28 AU AU17148/01A patent/AU1714801A/en not_active Abandoned
-
2005
- 2005-09-29 US US11/238,260 patent/US20070281916A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6069160A (en) * | 1995-04-21 | 2000-05-30 | Bayer Aktiengesellschaft | Heteroatom-containing benzocyclopentane-oxazolidinones |
| US6455529B1 (en) * | 1995-05-05 | 2002-09-24 | Merck Patent Gesellschaft Mit Beschraenkter Haftung | Adhesion receptor antagonists |
| US6462056B1 (en) * | 1997-02-26 | 2002-10-08 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Oxazolidines as 5-HT2A-antagonists |
| US6271388B1 (en) * | 1998-03-10 | 2001-08-07 | Daiso Co., Ltd. | Process for producing oxazolidin-2-one derivative |
Also Published As
| Publication number | Publication date |
|---|---|
| ATE293110T1 (en) | 2005-04-15 |
| JP2003515607A (en) | 2003-05-07 |
| US7081538B1 (en) | 2006-07-25 |
| EP1242416B1 (en) | 2005-04-13 |
| GB9928568D0 (en) | 2000-02-02 |
| DE60019457D1 (en) | 2005-05-19 |
| DE60019457T2 (en) | 2006-01-26 |
| EP1242416A1 (en) | 2002-09-25 |
| WO2001040222A1 (en) | 2001-06-07 |
| AU1714801A (en) | 2001-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7081538B1 (en) | Substituted isoxazolines and their use as antibacterial agents | |
| US7087629B2 (en) | Heterocyclylaminomethyloxazolidinones as antibacterials | |
| US7141583B2 (en) | Oxazolidinone derivatives with antibiotic activity | |
| AU753865B2 (en) | Oxazolidinone derivatives, process for their preparation and pharmaceutical compositions containing them | |
| US20030144263A1 (en) | Oxazolidinone derivatives, process for their preparation and pharmaceutical compositions containing them | |
| US20050043374A1 (en) | Aryl substituted oxazolidinones with antibacterial activity | |
| US20050032861A1 (en) | Oxazolidines containing a sulfonimid group as antibiotics | |
| US7199143B2 (en) | Chemical compounds | |
| US7022705B2 (en) | Isoxazoline derivatives useful as antimicrobials | |
| HK1053114B (en) | Oxazolidinone derivatives with antibiotic activity | |
| ZA200006694B (en) | Oxazolidinone derivatives, process for their preparation and pharmaceutical compositions containing them. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |