US20070265375A1 - Polyphenylene sulfide resin composition - Google Patents
Polyphenylene sulfide resin composition Download PDFInfo
- Publication number
- US20070265375A1 US20070265375A1 US11/662,907 US66290705A US2007265375A1 US 20070265375 A1 US20070265375 A1 US 20070265375A1 US 66290705 A US66290705 A US 66290705A US 2007265375 A1 US2007265375 A1 US 2007265375A1
- Authority
- US
- United States
- Prior art keywords
- resin
- polyphenylene sulfide
- group
- polyamide resin
- polyamide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004734 Polyphenylene sulfide Substances 0.000 title claims abstract description 120
- 229920000069 polyphenylene sulfide Polymers 0.000 title claims abstract description 120
- 239000011342 resin composition Substances 0.000 title claims abstract description 24
- 229920005989 resin Polymers 0.000 claims abstract description 99
- 239000011347 resin Substances 0.000 claims abstract description 99
- 229920006122 polyamide resin Polymers 0.000 claims abstract description 63
- 150000001875 compounds Chemical class 0.000 claims abstract description 42
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 36
- 239000002245 particle Substances 0.000 claims abstract description 26
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 22
- 125000003277 amino group Chemical group 0.000 claims abstract description 10
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 52
- 239000004952 Polyamide Substances 0.000 claims description 33
- 229920002647 polyamide Polymers 0.000 claims description 32
- 229920000305 Nylon 6,10 Polymers 0.000 claims description 10
- 125000003368 amide group Chemical group 0.000 claims description 8
- 229920000572 Nylon 6/12 Polymers 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 7
- 238000006116 polymerization reaction Methods 0.000 description 70
- -1 silane compound Chemical class 0.000 description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 45
- 238000000034 method Methods 0.000 description 34
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 24
- 229910052783 alkali metal Inorganic materials 0.000 description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 150000001491 aromatic compounds Chemical class 0.000 description 16
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 15
- 239000003607 modifier Substances 0.000 description 15
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 14
- 238000005406 washing Methods 0.000 description 14
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 13
- 229920001577 copolymer Polymers 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000003381 stabilizer Substances 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 229920002292 Nylon 6 Polymers 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000004898 kneading Methods 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 7
- 229920000577 Nylon 6/66 Polymers 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 239000002798 polar solvent Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- TZYHIGCKINZLPD-UHFFFAOYSA-N azepan-2-one;hexane-1,6-diamine;hexanedioic acid Chemical compound NCCCCCCN.O=C1CCCCCN1.OC(=O)CCCCC(O)=O TZYHIGCKINZLPD-UHFFFAOYSA-N 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 229920002302 Nylon 6,6 Polymers 0.000 description 5
- 238000007334 copolymerization reaction Methods 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 230000001771 impaired effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229920003986 novolac Polymers 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004711 α-olefin Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000010306 acid treatment Methods 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920000571 Nylon 11 Polymers 0.000 description 3
- 229920000299 Nylon 12 Polymers 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002954 polymerization reaction product Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 2
- PBLZLIFKVPJDCO-UHFFFAOYSA-N 12-aminododecanoic acid Chemical compound NCCCCCCCCCCCC(O)=O PBLZLIFKVPJDCO-UHFFFAOYSA-N 0.000 description 2
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 229920003189 Nylon 4,6 Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229920006351 engineering plastic Polymers 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229920006017 homo-polyamide Polymers 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 150000003951 lactams Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- 150000002903 organophosphorus compounds Chemical class 0.000 description 2
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- 0 *C(=C)C(=O)OCC1CO1 Chemical compound *C(=C)C(=O)OCC1CO1 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- JHBKHLUZVFWLAG-UHFFFAOYSA-N 1,2,4,5-tetrachlorobenzene Chemical compound ClC1=CC(Cl)=C(Cl)C=C1Cl JHBKHLUZVFWLAG-UHFFFAOYSA-N 0.000 description 1
- XKEFYDZQGKAQCN-UHFFFAOYSA-N 1,3,5-trichlorobenzene Chemical compound ClC1=CC(Cl)=CC(Cl)=C1 XKEFYDZQGKAQCN-UHFFFAOYSA-N 0.000 description 1
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- QKMNFFSBZRGHDJ-UHFFFAOYSA-N 1,4-dichloro-2-methoxybenzene Chemical compound COC1=CC(Cl)=CC=C1Cl QKMNFFSBZRGHDJ-UHFFFAOYSA-N 0.000 description 1
- KFAKZJUYBOYVKA-UHFFFAOYSA-N 1,4-dichloro-2-methylbenzene Chemical compound CC1=CC(Cl)=CC=C1Cl KFAKZJUYBOYVKA-UHFFFAOYSA-N 0.000 description 1
- LFMWZTSOMGDDJU-UHFFFAOYSA-N 1,4-diiodobenzene Chemical compound IC1=CC=C(I)C=C1 LFMWZTSOMGDDJU-UHFFFAOYSA-N 0.000 description 1
- DKBHJZFJCDOGOY-UHFFFAOYSA-N 1,4-diisocyanato-2-methylbenzene Chemical compound CC1=CC(N=C=O)=CC=C1N=C=O DKBHJZFJCDOGOY-UHFFFAOYSA-N 0.000 description 1
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-dioxonaphthalene Natural products C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 1
- BOKGTLAJQHTOKE-UHFFFAOYSA-N 1,5-dihydroxynaphthalene Chemical compound C1=CC=C2C(O)=CC=CC2=C1O BOKGTLAJQHTOKE-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- GUOSQNAUYHMCRU-UHFFFAOYSA-N 11-Aminoundecanoic acid Chemical compound NCCCCCCCCCCC(O)=O GUOSQNAUYHMCRU-UHFFFAOYSA-N 0.000 description 1
- XUWOAUCQJYFQLT-UHFFFAOYSA-N 2,2-diphenylpropane-1,1,1-triol Chemical compound C=1C=CC=CC=1C(C(O)(O)O)(C)C1=CC=CC=C1 XUWOAUCQJYFQLT-UHFFFAOYSA-N 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- QJPPPLJETZSLMG-UHFFFAOYSA-N 2-(3-trimethoxysilylpropylamino)ethylurea Chemical compound CO[Si](OC)(OC)CCCNCCNC(N)=O QJPPPLJETZSLMG-UHFFFAOYSA-N 0.000 description 1
- BZUILZIKDIMXBK-UHFFFAOYSA-N 2-(oxiran-2-ylmethoxycarbonyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)OCC1OC1 BZUILZIKDIMXBK-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- HPILSDOMLLYBQF-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COC(CCC)OCC1CO1 HPILSDOMLLYBQF-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- ZPXGNBIFHQKREO-UHFFFAOYSA-N 2-chloroterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(Cl)=C1 ZPXGNBIFHQKREO-UHFFFAOYSA-N 0.000 description 1
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- UFMBOFGKHIXOTA-UHFFFAOYSA-N 2-methylterephthalic acid Chemical compound CC1=CC(C(O)=O)=CC=C1C(O)=O UFMBOFGKHIXOTA-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- NMSZFQAFWHFSPE-UHFFFAOYSA-N 3-(oxiran-2-ylmethoxycarbonyl)but-3-enoic acid Chemical compound OC(=O)CC(=C)C(=O)OCC1CO1 NMSZFQAFWHFSPE-UHFFFAOYSA-N 0.000 description 1
- XUSNPFGLKGCWGN-UHFFFAOYSA-N 3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-amine Chemical compound NCCCN1CCN(CCCN)CC1 XUSNPFGLKGCWGN-UHFFFAOYSA-N 0.000 description 1
- FMGBDYLOANULLW-UHFFFAOYSA-N 3-isocyanatopropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCN=C=O FMGBDYLOANULLW-UHFFFAOYSA-N 0.000 description 1
- NNTRMVRTACZZIO-UHFFFAOYSA-N 3-isocyanatopropyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)CCCN=C=O NNTRMVRTACZZIO-UHFFFAOYSA-N 0.000 description 1
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- LVACOMKKELLCHJ-UHFFFAOYSA-N 3-trimethoxysilylpropylurea Chemical compound CO[Si](OC)(OC)CCCNC(N)=O LVACOMKKELLCHJ-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- ZAGCVALXKYKLJA-UHFFFAOYSA-N 4-[2,5,5-tris(4-hydroxyphenyl)hexan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)CCC(C)(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 ZAGCVALXKYKLJA-UHFFFAOYSA-N 0.000 description 1
- BDBZTOMUANOKRT-UHFFFAOYSA-N 4-[2-(4-aminocyclohexyl)propan-2-yl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1C(C)(C)C1CCC(N)CC1 BDBZTOMUANOKRT-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 1
- OSSMYOQKNHMTIP-UHFFFAOYSA-N 5-[dimethoxy(methyl)silyl]pentane-1,3-diamine Chemical compound CO[Si](C)(OC)CCC(N)CCN OSSMYOQKNHMTIP-UHFFFAOYSA-N 0.000 description 1
- PMZBHPUNQNKBOA-UHFFFAOYSA-N 5-methylbenzene-1,3-dicarboxylic acid Chemical compound CC1=CC(C(O)=O)=CC(C(O)=O)=C1 PMZBHPUNQNKBOA-UHFFFAOYSA-N 0.000 description 1
- MBRGOFWKNLPACT-UHFFFAOYSA-N 5-methylnonane-1,9-diamine Chemical compound NCCCCC(C)CCCCN MBRGOFWKNLPACT-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- JVGZXCCKUMXEOU-UHFFFAOYSA-N 7-aminoazepan-2-one Chemical compound NC1CCCCC(=O)N1 JVGZXCCKUMXEOU-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 244000226021 Anacardium occidentale Species 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- PGJAOUVNPZNRSO-UHFFFAOYSA-N CSC1=C(SC2=CC=C(C)C=C2)C=C(C)C=C1.CSC1=CC(C)=C(C)C=C1C.CSC1=CC(C)=CC=C1.CSC1=CC=C(C(=O)C2=CC=C(C)C=C2)C=C1.CSC1=CC=C(C)C=C1C.CSC1=CC=C(OC2=CC=C(C)C=C2)C=C1.CSC1=CC=C(S(=O)(=O)C2=CC=C(C)C=C2)C=C1 Chemical compound CSC1=C(SC2=CC=C(C)C=C2)C=C(C)C=C1.CSC1=CC(C)=C(C)C=C1C.CSC1=CC(C)=CC=C1.CSC1=CC=C(C(=O)C2=CC=C(C)C=C2)C=C1.CSC1=CC=C(C)C=C1C.CSC1=CC=C(OC2=CC=C(C)C=C2)C=C1.CSC1=CC=C(S(=O)(=O)C2=CC=C(C)C=C2)C=C1 PGJAOUVNPZNRSO-UHFFFAOYSA-N 0.000 description 1
- VHILIAIEEYLJNA-UHFFFAOYSA-N CSC1=CC=C(C)C=C1 Chemical compound CSC1=CC=C(C)C=C1 VHILIAIEEYLJNA-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- ITIONVBQFUNVJV-UHFFFAOYSA-N Etomidoline Chemical compound C12=CC=CC=C2C(=O)N(CC)C1NC(C=C1)=CC=C1OCCN1CCCCC1 ITIONVBQFUNVJV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000914 Metallic fiber Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- QLBRROYTTDFLDX-UHFFFAOYSA-N [3-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCCC(CN)C1 QLBRROYTTDFLDX-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910000316 alkaline earth metal phosphate Inorganic materials 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- QCTBMLYLENLHLA-UHFFFAOYSA-N aminomethylbenzoic acid Chemical compound NCC1=CC=C(C(O)=O)C=C1 QCTBMLYLENLHLA-UHFFFAOYSA-N 0.000 description 1
- 229960003375 aminomethylbenzoic acid Drugs 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 235000020226 cashew nut Nutrition 0.000 description 1
- IBSGAWQJFSDRBJ-UHFFFAOYSA-M cesium sulfanide Chemical compound [SH-].[Cs+] IBSGAWQJFSDRBJ-UHFFFAOYSA-M 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940018560 citraconate Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 1
- YWJUZWOHLHBWQY-UHFFFAOYSA-N decanedioic acid;hexane-1,6-diamine Chemical compound NCCCCCCN.OC(=O)CCCCCCCCC(O)=O YWJUZWOHLHBWQY-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- QTNDMWXOEPGHBT-UHFFFAOYSA-N dicesium;sulfide Chemical compound [S-2].[Cs+].[Cs+] QTNDMWXOEPGHBT-UHFFFAOYSA-N 0.000 description 1
- BQQUFAMSJAKLNB-UHFFFAOYSA-N dicyclopentadiene diepoxide Chemical compound C12C(C3OC33)CC3C2CC2C1O2 BQQUFAMSJAKLNB-UHFFFAOYSA-N 0.000 description 1
- PJIFJEUHCQYNHO-UHFFFAOYSA-N diethoxy-(3-isocyanatopropyl)-methylsilane Chemical compound CCO[Si](C)(OCC)CCCN=C=O PJIFJEUHCQYNHO-UHFFFAOYSA-N 0.000 description 1
- OOISEBIWKZXNII-UHFFFAOYSA-N diethoxy-ethyl-(3-isocyanatopropyl)silane Chemical compound CCO[Si](CC)(OCC)CCCN=C=O OOISEBIWKZXNII-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 1
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- WYZXIJYWXFEAFG-UHFFFAOYSA-N ethyl-(3-isocyanatopropyl)-dimethoxysilane Chemical compound CC[Si](OC)(OC)CCCN=C=O WYZXIJYWXFEAFG-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- CKAPSXZOOQJIBF-UHFFFAOYSA-N hexachlorobenzene Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl CKAPSXZOOQJIBF-UHFFFAOYSA-N 0.000 description 1
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- KDDRURKXNGXKGE-UHFFFAOYSA-M lithium;pentanoate Chemical compound [Li+].CCCCC([O-])=O KDDRURKXNGXKGE-UHFFFAOYSA-M 0.000 description 1
- HXQGSILMFTUKHI-UHFFFAOYSA-M lithium;sulfanide Chemical compound S[Li] HXQGSILMFTUKHI-UHFFFAOYSA-M 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- VAUOPRZOGIRSMI-UHFFFAOYSA-N n-(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CNC1=CC=CC=C1 VAUOPRZOGIRSMI-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- IWELDVXSEVIIGI-UHFFFAOYSA-N piperazin-2-one Chemical class O=C1CNCCN1 IWELDVXSEVIIGI-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- ZOCLAPYLSUCOGI-UHFFFAOYSA-M potassium hydrosulfide Chemical compound [SH-].[K+] ZOCLAPYLSUCOGI-UHFFFAOYSA-M 0.000 description 1
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- LXOXXUIVMOYGST-UHFFFAOYSA-M rubidium(1+);sulfanide Chemical compound [SH-].[Rb+] LXOXXUIVMOYGST-UHFFFAOYSA-M 0.000 description 1
- AHKSSQDILPRNLA-UHFFFAOYSA-N rubidium(1+);sulfide Chemical compound [S-2].[Rb+].[Rb+] AHKSSQDILPRNLA-UHFFFAOYSA-N 0.000 description 1
- CQRYARSYNCAZFO-UHFFFAOYSA-N salicyl alcohol Chemical compound OCC1=CC=CC=C1O CQRYARSYNCAZFO-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 229960003885 sodium benzoate Drugs 0.000 description 1
- 229940006198 sodium phenylacetate Drugs 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- DDBUVUBWJVIGFH-UHFFFAOYSA-N trichloro(3-isocyanatopropyl)silane Chemical compound Cl[Si](Cl)(Cl)CCCN=C=O DDBUVUBWJVIGFH-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N trihydridoboron Substances B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 229940124543 ultraviolet light absorber Drugs 0.000 description 1
- KLNPWTHGTVSSEU-UHFFFAOYSA-N undecane-1,11-diamine Chemical compound NCCCCCCCCCCCN KLNPWTHGTVSSEU-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
Definitions
- the technology herein relates to a polyphenylene sulfide resin composition very excellent in toughness.
- PPS resins have suitable properties as engineering plastics such as excellent heat resistance, barrier properties, chemicals resistance, electric insulation and wet heat resistance, and are mainly injection-molded or extrusion-molded for use as various electric/electronic parts, mechanical parts, automobile parts, etc.
- PPS resins are low in toughness compared with other engineering plastics such as nylons and PBT, they are limited in application and are strongly desired to be enhanced in toughness.
- a polyphenylene sulfide resin composition comprising 99 to 60 wt % of a polyphenylene sulfide resin (a) and 1 to 40 wt % of a polyamide resin (b), wherein the polyphenylene sulfide resin (a) forms a sea phase while the polyamide resin (b) forms an island phase, and that the number average dispersed particle size of the polyamide resin (b) is less than 500 nm.
- polyphenylene sulfide resin according to 1, wherein the melt viscosity of polyphenylene sulfide resin (a) is 100 Pa ⁇ s (under conditions of 310° C. and shear rate 1000/s) or more.
- a polyphenylene sulfide resin composition according to any one of 1 through 3, wherein the polyamide resin (b) has 6 to less than 11 carbon atoms per one amide group in each of the recurring units constituting the polyamide.
- polyamide resin (b) is a copolyamide, nylon 610 or nylon 612.
- a polyphenylene sulfide resin composition according to any one of 1 through 5, wherein a compound having one or more types of groups selected from epoxy group, amino group and isocyanate group is added by 0.1 to 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide resin (a) and the polyamide resin (b), as a compatibilizing agent (c) for the polyphenylene sulfide resin (a) and the polyamide resin (b).
- a polyphenylene sulfide resin composition according to any one of 1 through 4, which has a tensile elongation of 80% or more.
- the PPS resin (a) is a polymer having recurring units, each of which is represented by the following structural formula:
- the resin composition containing it is advantageous in view of moldability.
- the melt viscosity of the PPS resin (a) is not especially limited, but for obtaining more excellent toughness, it is preferred that the melt viscosity is higher.
- a melt viscosity of 100 Pa ⁇ s (310° C., shear rate 1000/s) or more is preferred, and more preferred is 150 Pa ⁇ s or more. It is preferred in view of retaining melt flowability that the upper limit is 600 Pa ⁇ s or less.
- melt viscosity refers to a value measured under conditions of 310° C. and shear rate 1000/s using Capillograph produced by Toyo Seiki Seisaku-sho, Ltd.
- the method for producing the PPS resin (a) is described below. At first, the polyhalogenated aromatic compound, sulfidizing agent, polymerization solvent, molecular weight modifier, polymerization modifier compound and polymerization stabilizer used in the production method are described below.
- the polyhalogenated aromatic compound refers to a compound having two or more halogen atoms per one molecule.
- examples of it include polyhalogenated aromatic compounds such as p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichlorop-p-xylene, 1,4-dibormobenzene, 1,4-diiodobenzene, and 1-methoxy-2,5-dichlorobenzene.
- p-dichlorobenzene Preferably used is p-dichlorobenzene.
- different two or more polyhalogenated aromatic compounds can also be used in combination as a copolymer, but it is preferred that a p-dihalogenated aromatic compound is a major component.
- the amount of the polyhalogenated aromatic compound used is 0.9 to 2.0 moles for each mole of the sulfidizing agent in view of obtaining a PPS resin with a viscosity suitable for processing.
- a preferred range is 0.95 to 1.5 moles, and a more preferred range is 1.005 to 1.2 moles.
- the sulfidizing agent can be an alkali metal sulfide, alkali metal hydrosulfide, or hydrogen sulfide.
- alkali metal sulfide examples include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide and mixtures comprising two or more of the foregoing.
- sodium sulfide can be preferably used. Any of these alkali metal sulfides can be used as a hydrate, aqueous mixture or anhydride.
- alkali metal hydrosulfide examples include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide and mixtures comprising two or more of the foregoing.
- sodium hydrosulfide can be preferably used. Any of these alkali metal hydrosulfides can be used as a hydrate, aqueous mixture or anhydride.
- an alkali metal sulfide prepared from an alkali metal hydrosulfide and an alkali metal hydroxide in situ in a reaction system can also be used.
- an alkali metal sulfide can be prepared from an alkali metal hydrosulfide and an alkali metal hydroxide and transferred into a polymerization vessel, to be used.
- an alkali metal sulfide prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide in situ in a reaction system can also be used.
- an alkali metal sulfide can be prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide and transferred into a polymerization vessel, to be used.
- the supplied amount means the amount obtained by subtracting the loss from the actually supplied amount.
- an alkali metal hydroxide and/or an alkaline earth metal hydroxide can also be used together with the sulfidizing agent.
- Preferred examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide and mixtures comprising two or more of the foregoing.
- Examples of the alkaline earth metal hydroxide include calcium hydroxide, strontium hydroxide, barium hydroxide, etc., and among them, sodium hydroxide can be preferably used.
- an alkali metal hydrosulfide is used as the sulfidizing agent, it is especially preferred to use an alkali metal hydroxide simultaneously.
- the amount of the alkali metal hydroxide used should be 0.95 to 1.20 moles for each mole of the alkali metal hydrosulfide. A preferred range is 1.00 to 1.15 moles, and a more preferred range is 1.005 to 1.100 moles.
- An organic polar solvent is used as the polymerization solvent.
- examples of it include N-alkylpyrrolidones such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone, caprolactams such as N-methyl- ⁇ -caprolactam, aprotic organic solvents typified by 1,3-dimethyl-2-imidazolidinone, N,N-dimethylacetamide, N,N-dimethylformamide, hexamethyl phosphoric acid triamide, dimethylsulfone, tetramethylene sulfoxide, etc., mixtures thereof, etc. Any of them can be preferably used, since they are high in reaction stability. Among them, especially N-methyl-2-pyrrolidone (hereinafter this compound may be abbreviated as NMP) can be preferably used.
- NMP N-methyl-2-pyrrolidone
- the amount of the organic polar solvent used is 2.0 to 10 moles for each mole of the sulfidizing agent.
- a preferred range is 2.25 to 6.0 moles, and a more preferred range is 2.5 to 5.5 moles.
- a monohalogen compound (not necessarily an aromatic compound) can be used together with the polyhalogenated aromatic compound.
- the polymerization modifier compound means a substance with an action to increase the viscosity of the polyarylene sulfide resin obtained.
- the polymerization modifier compound include organic carboxylates, water, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, alkaline earth metal phosphates, etc. Any one of them can be used alone, or two or more of them can also be used simultaneously. Among them, an organic carboxylate and/or water or lithium chloride can be preferably used.
- any of the alkali metal carboxylates is a compound represented by general formula R(COOM)n (where R is an alkyl group with 1 to 20 carbon atoms, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group; M is an alkali metal selected from lithium, sodium, potassium, rubidium and cesium; and n is an integer of 1 to 3).
- R is an alkyl group with 1 to 20 carbon atoms, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group
- M is an alkali metal selected from lithium, sodium, potassium, rubidium and cesium
- n is an integer of 1 to 3
- the alkali metal carboxylate can also be used as a hydrate, anhydride or aqueous solution.
- alkali metal carboxylate examples include lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, sodium benzoate, sodium phenylacetate, potassium p-toluylate, mixtures thereof, etc.
- any of the alkali metal carboxylates can also be formed by adding about an equal chemical equivalent each of an organic acid and one or more compounds selected from the group consisting of alkali metal hydroxides, alkali metal carbonates and alkali metal bicarbonates, for letting them react with each other.
- a lithium carboxylate can be highly dissolved in the reaction system, to show a high aid effect but is expensive.
- Potassium, rubidium and cesium carboxylates are considered to be only insufficiently dissolvable in the reaction system. So, inexpensive sodium acetate moderately soluble in the polymerization system can be most preferably used.
- the amount of it is usually in a range from 0.01 to 2 moles for each mole of the supplied alkali metal sulfide.
- a preferred range for obtaining a higher polymerization degree is 0.1 to 0.6 mole, and a more preferred range is 0.2 to 0.5 mole.
- the amount of it added is usually in a range from 0.3 to 15 moles for each mole of the supplied alkali metal sulfide.
- a preferred range for obtaining a higher polymerization degree is 0.6 to 10 moles, and a more preferred range is 1 to 5 moles.
- Two or more of these polymerization modifier compounds can, of course, be used together, and if an alkali metal carboxylate and water are used together for example, respectively smaller amounts of them allow the molecular weight to be enhanced.
- the time when any of these polymerization modifier compounds is added is not especially specified. It can be added at any time during the pre-polymerization step described later, at the start of polymerization or during polymerization. It can also be added plural times. However, in the case where an alkali metal carboxylate is used as the polymerization modifier compound, it is preferred to add at a time at the start of pre-polymerization step or at the start of polymerization, since the addition is easy. Further, in the case where water is used as a polymerization modifier compound, it is effective to add during polymerization reaction after supplying the polyhalogenated aromatic compound.
- a polymerization stabilizer For stabilizing the polymerization system and preventing side reactions, a polymerization stabilizer can also be used.
- the polymerization stabilizer contributes to the stabilization of the polymerization reaction system and inhibits unwanted side reactions.
- One of the side reactions is the production of thiophenol, and if a polymerization stabilizer is added, the production of thiophenol can be inhibited.
- the polymerization stabilizer include such compounds as alkali metal hydroxides, alkali metal carbonates, alkaline earth metal hydroxides and alkaline earth metal carbonates. Among them, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide are preferred.
- alkali metal carboxylates can also act as polymerization stabilizers, they are included in the polymerization stabilizers that can be used in this invention. Further, in the case where an alkali metal hydrosulfide is used as the sulfidizing agent, it is especially preferred to use an alkali metal hydroxide simultaneously as described before, and if the amount of the alkali metal hydroxide added is excessive for the sulfidizing agent, it can also act as a polymerization stabilizer.
- any one of these polymerization stabilizers can be used alone or two or more of them can also be used in combination.
- the amount of the polymerization stabilizer is usually 0.02 to 0.2 mole for each mole of the supplied alkali metal sulfide. A preferred range is 0.03 to 0.1 mole, and a more preferred range is 0.04 to 0.09 mole. If the amount of the polymerization stabilizer is too small, the stabilization effect is insufficient. If it is too large on the contrary, economical disadvantage is incurred, and the polymer yield tends to decline.
- the time when the polymerization stabilizer is added is not especially specified, and it can be added at any time during the pre-polymerization step described later, at the start of polymerization or during polymerization. It can also be added plural times. However, it is more preferred to add at a time at the start of pre-polymerization step or at the start of polymerization, since the addition is easy.
- the sulfidizing agent is usually used as a hydrate, but it is preferred to heat the mixture containing the organic polar solvent and the sulfidizing agent for removing the excessive amount of water outside the system before the polyhalogenated aromatic compound is added.
- a sulfidizing agent prepared from an alkali metal hydrosulfide and an alkali metal hydroxide in situ in the reaction system or prepared in a vessel different from the polymerization vessel can also be used as the sulfidizing agent.
- This method is not especially limited.
- an alkali metal hydrosulfide and an alkali metal hydroxide are added to an organic polar solvent in an inert gas atmosphere in a temperature range from room temperature to 150° C. or preferably from room temperature to 100° C., and the mixture is heated to at least 150° C. or higher, preferably to a range from 180 to 260° C. at atmospheric pressure or reduced pressure, for distilling away water.
- the polymerization modifier compound can also be added at this stage.
- toluene or the like can also be added to perform the reaction.
- the water content in the polymerization system during the polymerization reaction is 0.3 to 10.0 moles for each mole of the supplied sulfidizing agent.
- the water content in the polymerization system in this case refers to the amount of water obtained by subtracting the amount of water removed outside the polymerization system from the amount of water supplied into the polymerization system.
- the water supplied can be in any state of liquid water, aqueous solution, crystal water, etc.
- a sulfidizing agent and a polyhalogenated aromatic compound are made to react with each other in an organic polar solvent in a temperature range from 200° C. to lower than 290° C., for producing a PPS resin.
- the organic polar solvent, the sulfidizing agent and the polyhalogenated aromatic compound are mixed desirably in an inert gas atmosphere in a temperature range from room temperature to 240° C., preferably 100 to 230° C.
- the polymerization modifier compound can also be added at this stage. The order of adding these raw materials can be at random or simultaneously.
- the mixture is usually heated to a range from 200° C. to 290° C.
- the heating rate is not especially limited, but is usually selected in a range from 0.01 to 5° C./min. A preferred range is 0.1 to 3° C./min.
- the mixture is heated finally to a temperature of 250 to 290° C. to perform the reaction at the temperature usually for 0.25 to 50 hours, preferably 0.5 to 20 hours.
- a method of performing the reaction for example, at 200° C. to 260° C. for a certain period of time at the stage before reaching the final temperature and then heating to a temperature of 270 to 290° C. is effective for obtaining a higher polymerization degree.
- the reaction time at 200° C. to 260° C. is usually selected in a range from 0.25 hour to 20 hours, preferably 0.25 to 10 hours.
- the polymer with a high polymerization degree it may be effective to polymerize at plural stages.
- the conversion of the polyhalogenated aromatic compound refers to a value calculated from the following formula.
- the remaining amount of PHA can be usually obtained by gas chromatography.
- a solid is recovered from the polymerization reaction product containing the polymer, solvent, etc. after completion of polymerization.
- the PPS resin can be recovered by any publicly known method.
- a method of recovering a granular polymer by gradual cooling after completion of polymerization reaction can also be used.
- the gradual cooling rate is not especially limited, but is usually about 0.1° C./min to about 3° C./min. It is not necessary to gradually cool at a constant rate throughout the gradual cooling step.
- a method of gradually cooling at 0.1 to 1° C./min till polymer particles are precipitated, and subsequently at 1° C. or higher can also be employed.
- the flush method refers to flush method the polymerization reaction product from a state of high temperature and high pressure (usually 250° C. or higher and 8 kg/cm 2 or higher) into an atmosphere of atmospheric pressure or reduced pressure, for recovering the polymer as a powder simultaneously with the recovery of the solvent.
- the flush method in this case means to jet the polymerization reaction product from a nozzle.
- the atmosphere into which the reaction product is flushed is particularly, for example, nitrogen or water vapor of atmospheric pressure, and the temperature is usually selected in a range from 150° C. to 250° C.
- the PPS resin (a) produced after undergoing the polymerization step and the recovery step can also be treated with an acid, treated with hot water or washed with an organic solvent.
- the acid used for the acid treatment of the PPS resin is not especially limited, if it does not act to decompose the PPS resin.
- examples of it include acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, silicic acid, carbonic acid, propylic acid, etc. Among them, acetic acid and hydrochloric acid can be more preferably used.
- the acid treatment can be performed, for example, by a method of immersing the PPS resin in an acid or an acid aqueous solution, and as required, stirring or heating can also be used.
- stirring or heating can also be used.
- the pH can also be 4 or higher, for example, about 4 to about 8. It is preferred that the PPS resin treated with an acid is washed with cold or hot water several times to remove the remaining acid, salt, etc. It is preferred that the water used for washing is distilled water or deionized water, since the preferred effect of chemically modifying the PPS resin by acid treatment is not impaired.
- the hot water treatment can be performed as follows.
- the hot water temperature is 100° C. or higher. More preferred is 120° C. or higher, and further more preferred is 150° C. or higher. Especially preferred is 170° C. or higher. It is not preferred that the temperature is lower than 100° C., since the preferred effect of chemically modifying the PPS resin is small.
- the water used is distilled water or deionized water.
- the operation of hot water treatment is not especially limited, and a method in which a predetermined amount of the PPS resin is added into a predetermined amount of water, being followed by heating and stirring in a pressure vessel, or a method in which hot water treatment is applied continuously, etc. can be employed.
- the ratio of the PPS resin and water it is preferred that the amount of water is larger. Usually a bath ratio of 200 g or less of the PPS resin for 1 liter of water is selected.
- the treatment atmosphere is an inert atmosphere for avoiding it. Furthermore, it is preferred that the PPS resin treated with hot water is washed with hot water several times for removing the remaining components.
- the organic solvent used for washing the PPS resin is not especially limited, if it does not act to decompose the PPS resin, etc.
- the organic solvent include nitrogen-containing polar solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, 1,3-dimethylimidazolidinone, hexamethyl phosphorus amide and piperazinones, sulfoxide/sulfone solvents such as dimethyl sulfoxide, dimethylsulfone and sulfolane, ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone and acetophenone, ether solvents such as dimethyl ether, dipropyl ether, dioxane and tetrahydrofuran, halogen solvents such as chloroform, methylene chloride, trichloroethylene, dichloroethylene, perchloroethylene
- organic solvents it is especially preferred to use N-methyl-2-pyrrolidone, acetone, dimethylformamide, chloroform, etc. Further, one of these organic solvents can be used, or two or more of them can also be used as a mixture.
- the PPS resin can be washed with an organic solvent, for example, by a method of immersing the PPS resin into the organic solvent, and as required, stirring or heating can also be used.
- the washing temperature is not especially limited, and any desired temperature can be selected in a range from room temperature to about 300° C. If the washing temperature is higher, the washing efficiency tends to be higher, but usually at a washing temperature of room temperature to 150° C., a sufficient effect can be obtained. Washing can also be performed at a temperature higher than the boiling point of the organic solvent under pressurization in a pressure vessel. Further, the washing time is not especially limited either. In the case of batch washing, though depending on washing conditions, washing for more than 5 minutes can usually provide a sufficient effect. Continuous washing can also be employed.
- the PPS resin (a) used in this invention can also be heated in oxygen atmosphere or heated after adding a crosslinking agent such as a peroxide for thermal oxidation crosslinking treatment, to be larger in molecular weight.
- a crosslinking agent such as a peroxide for thermal oxidation crosslinking treatment
- the temperature is 160 to 260° C.
- a more preferred range is 170 to 250° C.
- the oxygen concentration is 5 vol % or more. More desirable is 8 vol % or more.
- the upper limit of oxygen concentration is not especially limited, but is about 50 vol %.
- the treatment time is 0.5 to 100 hours.
- a more preferred range is 1 to 50 hours, and a further more preferred range is 2 to 25 hours.
- the device for heat treatment can be an ordinary hot air dryer, or a rotary heater or a heater with stirring blades. However, in the case where efficient and more homogeneous treatment is intended, it is more preferred to use a rotary heater or a heater with stirring blades.
- dry heat treatment can also be performed for the purposes of inhibiting the thermal oxidation crosslinking and removing the volatile content. It is preferred that the temperature is 130 to 250° C. A more preferred range is 160 to 250° C. Further, it is desirable that the oxygen concentration in this case is less than 5 vol %. More desirable is less than 2 vol %. It is preferred that the treatment time is 0.5 to 50 hours. A more preferred range is 1 to 20 hours, and a further more preferred range is 1 to 10 hours.
- the device for heat treatment can be an ordinary hot air dryer, or a rotary heater or a heater with stirring blades. In the case where efficient and more homogeneous treatment is intended, it is more preferred to use a rotary heater or a heater with stirring blades.
- the polyamide resin (a) is substantially a straight chain PPS not increased in molecular weight by thermal oxidation crosslinking treatment, for achieving the intended excellent toughness.
- the polyamide resin (b) is not especially limited, if it is a publicly known polyamide resin excluding nylon 46. In general, it is a polyamide mainly with an amino acid, lactam or diamine and a dicarboxylic acid as major components.
- the major components include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and para-aminomethylbenzoic acid, lactams such as ⁇ -aminocaprolactam and ⁇ -laurolactam, aliphatic, alicyclic and aromatic diamines such as tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-/2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine, meta-xylenediamine, para-xylenediamine, 1,3-bis(aminomethyl)cyclohexan
- the polyamide resins include homopolyamide resins such as polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polydodecaneamide (nylon 12), polyundecaneamide (nylon 11), polyhexamethylene terephthalamide (nylon 6T) and polyxylylene adipamide (nylon XD6) and copolyamides as copolymers thereof (nylon 6/66, nylon 6/10, nylon 6/66/610 and 66/6T), etc. Among them, a copolyamide is preferred. These polyamide resins can also be used as a mixture (“/” expresses copolymerization; hereinafter this applies).
- nylon 6 as a homopolyamide resin or a copolyamide obtained by copolymerizing nylon 6 and another polyamide component can be preferably used, since excellent toughness can be exhibited.
- nylon 610 and nylon 612 have excellent thermal stability and relatively high strength, they are also preferred polyamides.
- a polyamide with 11 or more carbon atoms per one amide group in each of the recurring units constituting the polyamide of the polyamide resin (b), for example, polyamide 11 or polyamide 12, etc. is not preferred, if it is intended to obtain especially excellent toughness.
- the reason is estimated to be that since the interaction between PPS and a polyamide is the interaction between PPS and amide groups, the affinity with PPS declines if the amide group concentration is too low.
- nylon 46 As the polyamide. The reason is not clear, but the effect of exhibiting toughness intended greatly declines.
- the preferred polyamide resin (b) has 6 to less than 11 carbon atoms per one amide group in each of the recurring units constituting the polyamide.
- the polymerization degree of the polyamide is not especially limited, but it is preferred that the relative viscosity of the polyamide measured in concentrated sulfuric acid at a concentration of 1% and at 25° C. is 1.5 or more, since more excellent toughness can be exhibited. It is more preferred to use a polyamide with a relative viscosity of 1.8 to 5.5.
- the amount of the mixed polyamide resin (b) is selected to ensure that 99 to 60 wt % of the PPS resin (a) and 1 to 40 wt % of the polyamide resin (b) are used to make 100 wt % as the total of the ingredients (a) and (b). It is more preferred that 98 to 70 wt % of the PPS resin (a) and 2 to 30 wt % of the polyamide resin are used, and it is further more preferred that 96 to 75 wt % of the PPS resin (a) and 4 to 25 wt % of the polyamide resin are used.
- the amount of the polyamide resin (b) is more than 40 wt %, since the excellent properties such as wet heat resistance of the PPS resin are impaired. It is not preferred either that the amount of the polyamide resin (b) is less than 1 wt %, since the effect of exhibiting toughness remarkably declines.
- a compatibilizing agent (c) per 100 parts by weight in total of the polyphenylene sulfide (a) and the polyamide resin (b).
- compatibilizing agent (c) examples include glycidyl ethers of bisphenols such as bisphenol A, resorcinol, hydroquinone, pyrocatechol, bisphenol F, saligenin, 1,3,5-trihydroxybenzene, bisphenol S, trihydroxy-diphenyldimethylmethane, 4,4′-dihydroxybiphenyl, 1,5-dihydroxynaphthalene, cashew phenol and 2,2,5,5-tetrakis(4-hydroxyphenyl)hexane, those using a halogenated bisphenol instead of a bisphenol, glycidyl epoxy resins, for example, epoxy compounds based on a glycidyl ether such as butanediol diglycidyl ether, compounds based on a glycidyl ester such as phthalic acid glycidyl ester, and compounds based on a glycidylamine such as N-glycidylaniline, linear epoxy
- novolak epoxy resins can also be used.
- a novolak epoxy resin has two or more epoxy groups and is obtained by letting epichlorohydrin react with an ordinary novolak phenol resin.
- a novolak phenol resin can be obtained by condensation reaction between a phenol and formaldehyde.
- the phenol used as a raw material is not especially limited, and examples of it include phenol, o-cresol, m-cresol, p-cresol, bisphenol A, resorcinol, p-tertiary-butylphenol, bisphenol F, bisphenol S, and condensation products thereof.
- olefin copolymers having epoxy groups can also be used.
- the olefin copolymers having epoxy groups include olefin copolymers obtained by introducing a monomer component with an epoxy group into an olefin (co)polymer. Further, a copolymer obtained by epoxylating the double bond portions of an olefin polymer having double bonds in the main chain can also be used.
- Examples of the functional group-containing component used for introducing a monomer component having an epoxy group into an olefin (co)polymer include monomers containing an epoxy group such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate and glycidyl citraconate.
- the method for introducing any of these epoxy group-containing components is not especially limited.
- a method of copolymerizing it with an cc-olefin, etc. and a method of using a radical initiator for grafting into an olefin (co)polymer can be used.
- the adequate amount of the monomer component containing an epoxy group to be introduced is 0.001 to 40 mol % based on the amount of all the monomers used as the raw materials of the epoxy group-containing olefin copolymer.
- a preferred range is 0.01 to 35 mol %.
- An epoxy group-containing olefin copolymer is preferably an olefin copolymer containing an ⁇ -olefin and an ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester as copolymerization components.
- ethylene is especially preferred.
- such a copolymer can also be copolymerized with an ⁇ , ⁇ -unsaturated carboxylic acid or any of alkyl esters thereof such as acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate or butyl methacrylate, styrene, acrylonitrile, etc.
- an ⁇ , ⁇ -unsaturated carboxylic acid or any of alkyl esters thereof such as acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate or butyl methacrylate, styrene, acrylonitrile, etc.
- the olefin copolymer can be of any mode of random, alternating, block or graft copolymerization.
- an olefin copolymer obtained by copolymerizing 60 to 99 wt % of an ⁇ -olefin and 1 to 40 wt % of an ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester is especially preferred.
- the ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester is a compound represented by the following formula: (where R is a hydrogen atom or lower alkyl group). Examples of it include glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, etc. Among them, glycidyl methacrylate can be preferably used.
- Examples of the olefin copolymer containing an ⁇ -olefin and an ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester as essential copolymer components include ethylene/propylene-g-glycidyl methacrylate copolymer (“g” expresses graft; hereinafter this applies), ethylene/butene-1-g-glycidyl methacrylate copolymer, ethylene-glycidyl methacrylate copolymer-g-polystyrene, ethylene-glycidyl methacrylate copolymer-g-acrylonitrile-styrene copolymer, ethylene-glycidyl methacrylate copolymer-g-PMMA, ethylene/glycidyl acrylate copolymer, ethylene/glycidyl methacrylate copolymer, ethylene/methyl acrylate/glycidyl methacrylate copolymer and
- the compatibilizing agent (c) include alkoxysilanes having one or more types of functional groups selected from epoxy group, amino group and isocyanate group.
- the compounds include epoxy group-containing alkoxysilane compounds such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ureido group-containing alkoxysilane compounds such as ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane, and ⁇ -(2-ureidoethyl)aminopropyltrimethoxysilane, isocyanato group-containing alkoxysilane compounds such as ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropyltri
- compatibilizing agent (c) examples include isocyanate compounds such as 2,4-tolylenediisocyanate, 2,5-tolylenediisocyanate, diphenylmethane-4,4′-diisocyanate and polymethylene polyphenyl polyisocyanate.
- the amount of the compatibilizing agent (c) added is 0.1 to 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide (a) and the polyamide resin (b).
- a preferred range is 0.2 to 5 parts by weight.
- a resin other than polyamide resins can also be added to the PPS resin composition to such an extent that the effect is not impaired.
- examples of it include polybutylene terephthalate resins, polyethylene terephthalate resins, modified polyphenylene ether resins, polysulfone resins, polyallyl sulfone resins, polyketone resins, polyetherimide resins, polyallylate resins, liquid crystal polymers, polyethersulfone resins, polyetherketone resins, polythioetherketone resins, polyetheretherketone resins, polyimide resins, polyamideimide resins, polyethylene tetrafluoride resins, etc.
- plasticizers such as polyalkylene oxide oligomer compounds, thioether compounds, ester compounds and organic phosphorus compounds, crystal nucleating agents such as talc, kaolin, organic phosphorus compounds and polyetheretherketones, metal soaps such as montanic acid waxes, lithium stearate and aluminum stearate, releasing agents such as ethylenediamine-stearic acid-sebacic acid polycondensation product and silicone compounds, coloration preventives such as hypophosphites, lubricants, ultraviolet light absorbers, colorants, foaming agents, etc.
- plasticizers such as polyalkylene oxide oligomer compounds, thioether compounds, ester compounds and organic phosphorus compounds
- crystal nucleating agents such as talc, kaolin, organic phosphorus compounds and polyetheretherketones
- metal soaps such as montanic acid waxes, lithium stearate and aluminum stearate
- releasing agents such as ethylenediamine-stearic acid-s
- the amount of any of the compounds is more than 20 wt % based on the weight of the entire composition, since the properties peculiar to the PPS resin are impaired. Preferred is 10 wt % or less, and more preferred is 1 wt % or less.
- a filler can also be mixed with the PPS resin composition obtained by the method to such an extent that the effect is not impaired.
- the filler include fibrous fillers such as glass fibers, carbon fibers, carbon nanotubes, carbon nanohoms, potassium titanate whiskers, zinc oxide whiskers, calcium carbonate whiskers, wollastonite whiskers, aluminum borate whiskers, aramid fibers, alumina fibers, silicon carbide fibers, ceramic fibers, asbestos fibers, gypsum fibers and metallic fibers, and non-fibrous fillers, for example, fullerene, silicates such as talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, bentonite, asbestos and alumina silicate, metal compounds such as silicon oxide, magnesium oxide, alumina, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium
- fillers can also be hollow. Two or more of the fillers can also be used together. Further, any of these fillers can also be preliminarily treated by a coupling agent such as an isocyanate compound, organic silane compound, organic titanate compound, organic borane compound or epoxy compound, for use as a filler.
- a coupling agent such as an isocyanate compound, organic silane compound, organic titanate compound, organic borane compound or epoxy compound
- the PPS resin composition has the excellent heat resistance, chemicals resistance and barrier properties peculiar to the PPS resin and also has excellent toughness. To exhibit these properties, it is necessary that the PPS resin forms a sea phase (continuous phase or matrix) while the polyamide resin forms an island phase (dispersed phase). Further, it is necessary that the number average dispersed particle size of the polyamide resin is less than 500 nm. Preferred is 300 nm or less, and more preferred is 200 nm or less. It is preferred in view of productivity that the lower limit is 1 nm or more. Since the PPS resin forms a continuous phase, the excellent properties such as barrier properties, chemical resistance and heat resistance of PPS can be substantially exhibited as the properties of the obtained composition.
- the average dispersed particle size refers to the number average dispersed particle size obtained by preparing an ASTM No. 4 specimen by molding a PPS resin at a molding temperature of the melting peak temperature of the PPS resin +20° C., cutting it at the central portion of it in the cross sectional direction at ⁇ 20° C. to obtain a 0.1 ⁇ m or thinner dumbbell specimen, observing arbitrary 100 dispersed portions of the polyamide resin at a magnification of 20,000 times with a transmission electron microscope, measuring the maximum size and the minimum size of each of the dispersed portions, averaging them respectively, and finally obtaining an average value.
- the resin composition is molded to produce a large molded article taking a long melt residence time or to produce a film or the like taking a long melt residence time
- the number average dispersed particle size of the polyamide resin (b) is less than 500 nm.
- the number average dispersed particle size of the polyamide resin (b) after completion of melt residence refers to the number average dispersed particle size obtained, as described above, by preparing an ASTM No. 4 specimen, letting it reside in vacuum at 300° C. for 30 minutes, cooling, cutting it at the central portion of it in the cross sectional area direction at ⁇ 20° C. to obtain a 0.1 ⁇ m or thinner dumbbell specimen, observing arbitrary 100 dispersed portions of the polyamide resin at a magnification of 20,000 times with a transmission electron microscope, measuring the maximum size and the minimum size of each of the dispersed portions, averaging them respectively, and finally obtaining an average value.
- the number average dispersed particle size of the polyamide resin after completion of melt residence is less than 500 nm. More preferred is 300 nm or less, and further more preferred is 200 nm or less. In view of productivity, it is preferred that the lower limit is 1 nm or more.
- the raw materials are supplied into a publicly known ordinary melt kneading machine such as a single screw or double screw extruder, Banbury mixer, kneader or mixing roll mill and kneaded at a processing temperature of the melting peak temperature of the PPS resin +5 to 100° C.
- a relatively strong shear force is preferred.
- Particularly preferred is a method of using a double screw extruder with two or more kneading portions for kneading to ensure that the resin temperature during mixing may become the melting peak temperature of the PPS resin +10 to 70° C.
- the order of mixing the raw materials is not especially limited, and any of the following methods can be used: a method in which all the raw materials are mixed and melt-kneaded by the above-mentioned method; a method in which some raw materials are mixed and melt-kneaded by the above-mentioned method, and the remaining raw materials are mixed and melt-kneaded; a method in which some raw materials are mixed and while the mixture is melt-kneaded by a single screw or double screw extruder, the remaining raw materials are mixed using a side feeder.
- minor additives after the other ingredients are kneaded and pelletized by the above-mentioned method, etc., the minor additives can be added before molding, of course.
- compositions are described below more particularly in reference to examples.
- Sumitomo Nestal Injection Molding Machine SG75 was used to prepare an ASTM No. 4 dumbbell specimen at a resin temperature of 300° C. and at a mold temperature of 150° C.
- Tensilon UTA 2.5T Tensile Tester was used for measuring at an inter-chuck distance of 64 mm and at a stress rate of 10 mm/min.
- the aforesaid specimen was prepared by injection molding. The specimen was cut at the central portion in the direction perpendicular to the flow direction, and the central portion of the section was stained. It was then cut to obtain a 0.1 ⁇ m or thinner specimen, and the dispersed particle size of the polyamide resin was measured at a magnification of 20,000 times with a transmission electron microscope.
- a 70-liter autoclave with a stirrer was charged with 8267.37 g (70.00 moles) of 47.5% sodium hydrosulfide, 2957.21 g (70.97 moles) of 96% sodium hydroxide, 11434.50 g (115.50 moles) of N-methyl-2-pyrrolidone (NMP), 2583.00 g (31.50 moles) of sodium acetate, and 10500 g of ion exchange water, and while nitrogen was fed at atmospheric pressure, the mixture was heated gradually up to 245° C., taking about 3 hours, to distill away 14780.1 g of water and 280 g of NMP. Then, the reaction vessel was cooled to 160° C.
- NMP N-methyl-2-pyrrolidone
- the amount of water remaining in the system for each mole of the supplied alkali metal sulfide was 1.06 moles including the water consumed for hydrolysis of NMP. Further, the amount of the hydrogen sulfide scattered was 0.02 mole for each mole of the supplied alkali metal sulfide.
- the reaction mixture was taken out and diluted with 26300 g of NMP, being sieved (80 mesh) for separation into the solvent and a solid.
- the obtained particles were washed with 31900 g of NMP and collected by filtration. They were washed with 56000 g of ion exchange water several times and collected by filtration. They were washed with 70000 g of 0.05 wt % acetic acid aqueous solution and collected by filtration. They were washed with 70000 g of ion exchange water and collected by filtration.
- the obtained hydrous PPS particles were dried in hot air of 80° C. and dried at 120° C. under reduced pressure. The obtained PPS had a melt viscosity of 200 Pa ⁇ s (310° C., shear rate 1000/s).
- Polyamide-1 (PA-1), Nylon 6 (Relative Viscosity 2.33)
- aqueous solution containing 50% of the salt obtained from adipic acid and hexamethylenediamine (AH salt) and s-caprolactam (CL) were mixed to achieve an AH salt content of 20 parts by weight and a CL content of 80 parts by weight, and the mixture was supplied into a 30-liter autoclave.
- the autoclave was heated to 270° C. at an internal pressure of 10 kg/cm 2 , and subsequently with the internal temperature kept at 245° C., the pressure was gradually reduced to 0.5 kg/cm 2 with stirring. Stirring was stopped. Nitrogen was used to return the pressure to atmospheric pressure, and the product was pulled out as a strand, and it was pelletized.
- PA-3 CM2001 (Nylon 610) Produced by Toray Industries, Inc.
- Nylon 6 Oligomer (Relative Viscosity Measured in Concentrated Sulfuric Acid at a Concentration of 1% and at 25° C. was 1.20)
- Example 2 Pelletization and evaluation were performed as described for Example 1, except that a 40 mm diameter single screw extruder produced by Tanabe Plastics Kikai K.K. was used for melt-kneading at a set temperature of 300° C. and at a screw speed of 80 rpm. The results were as shown in Table 1. The polyamide dispersed particle size was large, and the material was poor in toughness.
- the PPS resin composition of this invention is especially useful for injection molding and extrusion molding to produce films and fibers, since it is very excellent in toughness. Further, said feature can be used to apply the PPS resin composition to such structures as pipes and cases of general apparatuses and motor vehicles and also to molded metal insert articles of electric and electronic apparatuses.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A polyphenylene sulfide resin composition including 99 to 60 wt % of a polyphenylene sulfide resin (a) and 1 to 40 wt % of a polyamide resin (b), wherein the polyphenylene sulfide resin (a) forms a sea phase while the polyamide resin (b) forms an island phase, and that the number average dispersed particle size of the polyamide resin (b) is less than 500 nm; and a polyphenylene sulfide resin composition, wherein a compound having one or more types of groups selected from epoxy group, amino group and isocyanate group is added by 0.1 to 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide resin (a) and the polyamide resin (b), as a compatibilizing agent (c).
Description
- This is a §371 of International Application No. PCT/JP2005/012641, with an international filing date of Jul. 8, 2005 (WO 2006/030577 A1, published Mar. 23, 2006), which is based on Japanese Patent Application Nos. 2004-271757, filed Sep. 17, 2004, and 2005-032852, filed Feb. 9, 2005.
- The technology herein relates to a polyphenylene sulfide resin composition very excellent in toughness.
- Polyphenylene sulfide (hereinafter abbreviated as PPS) resins have suitable properties as engineering plastics such as excellent heat resistance, barrier properties, chemicals resistance, electric insulation and wet heat resistance, and are mainly injection-molded or extrusion-molded for use as various electric/electronic parts, mechanical parts, automobile parts, etc.
- However, since PPS resins are low in toughness compared with other engineering plastics such as nylons and PBT, they are limited in application and are strongly desired to be enhanced in toughness.
- As methods for enhancing the toughness of a PPS resin, methods of mixing a high toughness material such as a polyamide resin with a PPS resin have been examined. For example, a method of mixing a polyamide and an organic silane compound with a PPS resin, a method of mixing a polyamide and an epoxy group-containing copolymer with a PPS resin, etc. are disclosed. However, the toughness levels achieved by these methods were not satisfactory. Further, many compositions obtained by mixing a polyamide with PPS are known. For example, disclosed are a composition with polyamide 11 or 12 with an average particle size of 1 μm or less dispersed in PPS, a composition comprising PPS, polyamide and epoxy resin, a composition comprising PPS and copolyamide, etc. However, dispersing a polyamide into PPS as ultrafine particles of less than 500 nm is not described at all. It would therefore be advantageous to obtain a polyphenylene sulfide resin composition very excellent in toughness.
- We found in our studies that, if a polyamide resin is dispersed into a PPS resin as ultrafine particles with a number average dispersed particle size of less than 500 run, a PPS composition excellent in toughness can be achieved.
- We therefore provide:
- 1. A polyphenylene sulfide resin composition comprising 99 to 60 wt % of a polyphenylene sulfide resin (a) and 1 to 40 wt % of a polyamide resin (b), wherein the polyphenylene sulfide resin (a) forms a sea phase while the polyamide resin (b) forms an island phase, and that the number average dispersed particle size of the polyamide resin (b) is less than 500 nm.
- 2. A polyphenylene sulfide resin, according to 1, wherein the melt viscosity of polyphenylene sulfide resin (a) is 100 Pa·s (under conditions of 310° C. and shear rate 1000/s) or more.
- 3. A polyphenylene sulfide resin composition, according to 1 or 2, wherein after the polyphenylene sulfide resin composition is melted and allowed to reside at 300° C. for 30 minutes, the number average dispersed particle size of the polyamide resin (b) is kept at less than 500 nm.
- 4. A polyphenylene sulfide resin composition, according to any one of 1 through 3, wherein the polyamide resin (b) has 6 to less than 11 carbon atoms per one amide group in each of the recurring units constituting the polyamide.
- 5. A polyphenylene sulfide resin composition, according to any one of 1 through 4, wherein polyamide resin (b) is a copolyamide, nylon 610 or nylon 612.
- 6. A polyphenylene sulfide resin composition, according to any one of 1 through 5, wherein a compound having one or more types of groups selected from epoxy group, amino group and isocyanate group is added by 0.1 to 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide resin (a) and the polyamide resin (b), as a compatibilizing agent (c) for the polyphenylene sulfide resin (a) and the polyamide resin (b).
- 7. A polyphenylene sulfide resin composition, according to any one of 1 through 4, which has a tensile elongation of 80% or more.
- We provide a polyphenylene sulfide resin composition very excellent in the toughness typified by tensile elongation.
- (1) PPS Resin
-
- In view of heat resistance, a polymer containing 70 mol % or more of recurring units, each of which is represented by the structural formula, is preferred. More preferred is a polymer containing 90 mol % or more of the recurring units. Further, the PPS resin may contain less than about 30 mol % of recurring units, each of which is represented by any of the following structures:
- Since a PPS copolymer partially having such a structure has a low melting point, the resin composition containing it is advantageous in view of moldability.
- The melt viscosity of the PPS resin (a) is not especially limited, but for obtaining more excellent toughness, it is preferred that the melt viscosity is higher. For example, a melt viscosity of 100 Pa·s (310° C., shear rate 1000/s) or more is preferred, and more preferred is 150 Pa·s or more. It is preferred in view of retaining melt flowability that the upper limit is 600 Pa·s or less.
- Meanwhile, the melt viscosity refers to a value measured under conditions of 310° C. and shear rate 1000/s using Capillograph produced by Toyo Seiki Seisaku-sho, Ltd.
- The method for producing the PPS resin (a) is described below. At first, the polyhalogenated aromatic compound, sulfidizing agent, polymerization solvent, molecular weight modifier, polymerization modifier compound and polymerization stabilizer used in the production method are described below.
- Polyhalogenated Aromatic Compound
- The polyhalogenated aromatic compound refers to a compound having two or more halogen atoms per one molecule. Examples of it include polyhalogenated aromatic compounds such as p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichlorop-p-xylene, 1,4-dibormobenzene, 1,4-diiodobenzene, and 1-methoxy-2,5-dichlorobenzene. Preferably used is p-dichlorobenzene. Further, different two or more polyhalogenated aromatic compounds can also be used in combination as a copolymer, but it is preferred that a p-dihalogenated aromatic compound is a major component.
- The amount of the polyhalogenated aromatic compound used is 0.9 to 2.0 moles for each mole of the sulfidizing agent in view of obtaining a PPS resin with a viscosity suitable for processing. A preferred range is 0.95 to 1.5 moles, and a more preferred range is 1.005 to 1.2 moles.
- Sulfidizing Agent
- The sulfidizing agent can be an alkali metal sulfide, alkali metal hydrosulfide, or hydrogen sulfide.
- Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide and mixtures comprising two or more of the foregoing. Among them, sodium sulfide can be preferably used. Any of these alkali metal sulfides can be used as a hydrate, aqueous mixture or anhydride.
- Examples of the alkali metal hydrosulfide include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide and mixtures comprising two or more of the foregoing. Among them, sodium hydrosulfide can be preferably used. Any of these alkali metal hydrosulfides can be used as a hydrate, aqueous mixture or anhydride.
- Further, an alkali metal sulfide prepared from an alkali metal hydrosulfide and an alkali metal hydroxide in situ in a reaction system can also be used. Furthermore, an alkali metal sulfide can be prepared from an alkali metal hydrosulfide and an alkali metal hydroxide and transferred into a polymerization vessel, to be used.
- Moreover, an alkali metal sulfide prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide in situ in a reaction system can also be used. Furthermore, an alkali metal sulfide can be prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide and transferred into a polymerization vessel, to be used.
- With regard to the amount of the sulfidizing agent supplied, in the case where the sulfidizing agent is partially lost due to dehydration operation or the like before start of polymerization reaction, the supplied amount means the amount obtained by subtracting the loss from the actually supplied amount.
- Meanwhile, an alkali metal hydroxide and/or an alkaline earth metal hydroxide can also be used together with the sulfidizing agent. Preferred examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide and mixtures comprising two or more of the foregoing. Examples of the alkaline earth metal hydroxide include calcium hydroxide, strontium hydroxide, barium hydroxide, etc., and among them, sodium hydroxide can be preferably used.
- In the case where an alkali metal hydrosulfide is used as the sulfidizing agent, it is especially preferred to use an alkali metal hydroxide simultaneously. The amount of the alkali metal hydroxide used should be 0.95 to 1.20 moles for each mole of the alkali metal hydrosulfide. A preferred range is 1.00 to 1.15 moles, and a more preferred range is 1.005 to 1.100 moles.
- Polymerization Solvent
- An organic polar solvent is used as the polymerization solvent. Examples of it include N-alkylpyrrolidones such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone, caprolactams such as N-methyl-ε-caprolactam, aprotic organic solvents typified by 1,3-dimethyl-2-imidazolidinone, N,N-dimethylacetamide, N,N-dimethylformamide, hexamethyl phosphoric acid triamide, dimethylsulfone, tetramethylene sulfoxide, etc., mixtures thereof, etc. Any of them can be preferably used, since they are high in reaction stability. Among them, especially N-methyl-2-pyrrolidone (hereinafter this compound may be abbreviated as NMP) can be preferably used.
- The amount of the organic polar solvent used is 2.0 to 10 moles for each mole of the sulfidizing agent. A preferred range is 2.25 to 6.0 moles, and a more preferred range is 2.5 to 5.5 moles.
- Molecular Weight Modifier
- To form the ends of the PPS resin produced or for adjusting the polymerization reaction or molecular weight, a monohalogen compound (not necessarily an aromatic compound) can be used together with the polyhalogenated aromatic compound.
- Polymerization Modifier Compound
- It is preferred to use a polymerization modifier compound for obtaining a PPS resin with a relatively high polymerization degree in a shorter period of time. The polymerization modifier compound means a substance with an action to increase the viscosity of the polyarylene sulfide resin obtained. Examples of the polymerization modifier compound include organic carboxylates, water, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, alkaline earth metal phosphates, etc. Any one of them can be used alone, or two or more of them can also be used simultaneously. Among them, an organic carboxylate and/or water or lithium chloride can be preferably used.
- Any of the alkali metal carboxylates is a compound represented by general formula R(COOM)n (where R is an alkyl group with 1 to 20 carbon atoms, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group; M is an alkali metal selected from lithium, sodium, potassium, rubidium and cesium; and n is an integer of 1 to 3). The alkali metal carboxylate can also be used as a hydrate, anhydride or aqueous solution. Examples of the alkali metal carboxylate include lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, sodium benzoate, sodium phenylacetate, potassium p-toluylate, mixtures thereof, etc.
- Any of the alkali metal carboxylates can also be formed by adding about an equal chemical equivalent each of an organic acid and one or more compounds selected from the group consisting of alkali metal hydroxides, alkali metal carbonates and alkali metal bicarbonates, for letting them react with each other. Among The alkali metal carboxylates, a lithium carboxylate can be highly dissolved in the reaction system, to show a high aid effect but is expensive. Potassium, rubidium and cesium carboxylates are considered to be only insufficiently dissolvable in the reaction system. So, inexpensive sodium acetate moderately soluble in the polymerization system can be most preferably used.
- In the case where any of these alkali metal carboxylates is used as the polymerization modifier compound, the amount of it is usually in a range from 0.01 to 2 moles for each mole of the supplied alkali metal sulfide. A preferred range for obtaining a higher polymerization degree is 0.1 to 0.6 mole, and a more preferred range is 0.2 to 0.5 mole.
- In the case where water is used as a polymerization modifier compound, the amount of it added is usually in a range from 0.3 to 15 moles for each mole of the supplied alkali metal sulfide. A preferred range for obtaining a higher polymerization degree is 0.6 to 10 moles, and a more preferred range is 1 to 5 moles.
- Two or more of these polymerization modifier compounds can, of course, be used together, and if an alkali metal carboxylate and water are used together for example, respectively smaller amounts of them allow the molecular weight to be enhanced.
- The time when any of these polymerization modifier compounds is added is not especially specified. It can be added at any time during the pre-polymerization step described later, at the start of polymerization or during polymerization. It can also be added plural times. However, in the case where an alkali metal carboxylate is used as the polymerization modifier compound, it is preferred to add at a time at the start of pre-polymerization step or at the start of polymerization, since the addition is easy. Further, in the case where water is used as a polymerization modifier compound, it is effective to add during polymerization reaction after supplying the polyhalogenated aromatic compound.
- Polymerization Stabilizer
- For stabilizing the polymerization system and preventing side reactions, a polymerization stabilizer can also be used. The polymerization stabilizer contributes to the stabilization of the polymerization reaction system and inhibits unwanted side reactions. One of the side reactions is the production of thiophenol, and if a polymerization stabilizer is added, the production of thiophenol can be inhibited. Examples of the polymerization stabilizer include such compounds as alkali metal hydroxides, alkali metal carbonates, alkaline earth metal hydroxides and alkaline earth metal carbonates. Among them, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide are preferred. Since alkali metal carboxylates can also act as polymerization stabilizers, they are included in the polymerization stabilizers that can be used in this invention. Further, in the case where an alkali metal hydrosulfide is used as the sulfidizing agent, it is especially preferred to use an alkali metal hydroxide simultaneously as described before, and if the amount of the alkali metal hydroxide added is excessive for the sulfidizing agent, it can also act as a polymerization stabilizer.
- Any one of these polymerization stabilizers can be used alone or two or more of them can also be used in combination. The amount of the polymerization stabilizer is usually 0.02 to 0.2 mole for each mole of the supplied alkali metal sulfide. A preferred range is 0.03 to 0.1 mole, and a more preferred range is 0.04 to 0.09 mole. If the amount of the polymerization stabilizer is too small, the stabilization effect is insufficient. If it is too large on the contrary, economical disadvantage is incurred, and the polymer yield tends to decline.
- The time when the polymerization stabilizer is added is not especially specified, and it can be added at any time during the pre-polymerization step described later, at the start of polymerization or during polymerization. It can also be added plural times. However, it is more preferred to add at a time at the start of pre-polymerization step or at the start of polymerization, since the addition is easy.
- Next, the method for producing the PPS resin (a) of this invention is described below particularly in the order of pre-polymerization step, polymerization reaction step, recovery step and post-treatment step.
- Pre-Polymerization Step
- In the method for producing the PPS resin (a), the sulfidizing agent is usually used as a hydrate, but it is preferred to heat the mixture containing the organic polar solvent and the sulfidizing agent for removing the excessive amount of water outside the system before the polyhalogenated aromatic compound is added.
- Further, as described before, a sulfidizing agent prepared from an alkali metal hydrosulfide and an alkali metal hydroxide in situ in the reaction system or prepared in a vessel different from the polymerization vessel can also be used as the sulfidizing agent. This method is not especially limited. As a desirable method, an alkali metal hydrosulfide and an alkali metal hydroxide are added to an organic polar solvent in an inert gas atmosphere in a temperature range from room temperature to 150° C. or preferably from room temperature to 100° C., and the mixture is heated to at least 150° C. or higher, preferably to a range from 180 to 260° C. at atmospheric pressure or reduced pressure, for distilling away water. The polymerization modifier compound can also be added at this stage. Furthermore, for promoting the removal of water by distillation, toluene or the like can also be added to perform the reaction.
- It is preferred that the water content in the polymerization system during the polymerization reaction is 0.3 to 10.0 moles for each mole of the supplied sulfidizing agent. The water content in the polymerization system in this case refers to the amount of water obtained by subtracting the amount of water removed outside the polymerization system from the amount of water supplied into the polymerization system. Further, the water supplied can be in any state of liquid water, aqueous solution, crystal water, etc.
- Polymerization Reaction Step
- A sulfidizing agent and a polyhalogenated aromatic compound are made to react with each other in an organic polar solvent in a temperature range from 200° C. to lower than 290° C., for producing a PPS resin.
- For starting the polymerization reaction step, the organic polar solvent, the sulfidizing agent and the polyhalogenated aromatic compound are mixed desirably in an inert gas atmosphere in a temperature range from room temperature to 240° C., preferably 100 to 230° C. The polymerization modifier compound can also be added at this stage. The order of adding these raw materials can be at random or simultaneously.
- The mixture is usually heated to a range from 200° C. to 290° C. The heating rate is not especially limited, but is usually selected in a range from 0.01 to 5° C./min. A preferred range is 0.1 to 3° C./min.
- In general, the mixture is heated finally to a temperature of 250 to 290° C. to perform the reaction at the temperature usually for 0.25 to 50 hours, preferably 0.5 to 20 hours.
- A method of performing the reaction, for example, at 200° C. to 260° C. for a certain period of time at the stage before reaching the final temperature and then heating to a temperature of 270 to 290° C. is effective for obtaining a higher polymerization degree. In this case, the reaction time at 200° C. to 260° C. is usually selected in a range from 0.25 hour to 20 hours, preferably 0.25 to 10 hours.
- Meanwhile, for obtaining a polymer with a high polymerization degree, it may be effective to polymerize at plural stages. For polymerization at plural stages, it is effective to select the point of time when the conversion of the polyhalogenated aromatic compound in the system at 245° C. reaches 40 mol % or more, preferably 60 mol %.
- Meanwhile, the conversion of the polyhalogenated aromatic compound (abbreviated as PHA here) refers to a value calculated from the following formula. The remaining amount of PHA can be usually obtained by gas chromatography.
- (a) In the case where the polyhalogenated aromatic compound is added at an excessive molar ratio to the alkali metal sulfide:
Conversion=(Amount of PHA supplied (moles)−Remaining amount of PHA (moles))/(Amount of PHA supplied (moles)−Excessive amount of PHA (moles)) - (b) In the other case than (a):
Conversion=(Amount of PHA supplied (moles)−Remaining amount of PHA (moles))/(Amount of PHA supplied (moles))
Recovery Step - In the method for producing the PPS resin (a), a solid is recovered from the polymerization reaction product containing the polymer, solvent, etc. after completion of polymerization. The PPS resin can be recovered by any publicly known method.
- For example, a method of recovering a granular polymer by gradual cooling after completion of polymerization reaction can also be used. In this case, the gradual cooling rate is not especially limited, but is usually about 0.1° C./min to about 3° C./min. It is not necessary to gradually cool at a constant rate throughout the gradual cooling step. For example, a method of gradually cooling at 0.1 to 1° C./min till polymer particles are precipitated, and subsequently at 1° C. or higher can also be employed.
- It is also preferred to recover the PPS resin under quick cooling conditions. One of the preferred recovery methods under such conditions is flush method. The flush method refers to flush method the polymerization reaction product from a state of high temperature and high pressure (usually 250° C. or higher and 8 kg/cm2 or higher) into an atmosphere of atmospheric pressure or reduced pressure, for recovering the polymer as a powder simultaneously with the recovery of the solvent. The flush method in this case means to jet the polymerization reaction product from a nozzle. The atmosphere into which the reaction product is flushed is particularly, for example, nitrogen or water vapor of atmospheric pressure, and the temperature is usually selected in a range from 150° C. to 250° C.
- Post-Treatment Step
- The PPS resin (a) produced after undergoing the polymerization step and the recovery step can also be treated with an acid, treated with hot water or washed with an organic solvent.
- If the acid treatment is employed, it can be performed as follows. The acid used for the acid treatment of the PPS resin is not especially limited, if it does not act to decompose the PPS resin. Examples of it include acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, silicic acid, carbonic acid, propylic acid, etc. Among them, acetic acid and hydrochloric acid can be more preferably used. An acid capable of decomposing or deteriorating the PPS resin, such as nitric acid, is not preferred.
- The acid treatment can be performed, for example, by a method of immersing the PPS resin in an acid or an acid aqueous solution, and as required, stirring or heating can also be used. For example, in the case where acetic acid is used, if the PPS resin powder is immersed in an aqueous solution of pH 4 heated to a temperature of 80 to 200° C. and is stirred for 30 minutes, a sufficient effect can be obtained. After completion of treatment, the pH can also be 4 or higher, for example, about 4 to about 8. It is preferred that the PPS resin treated with an acid is washed with cold or hot water several times to remove the remaining acid, salt, etc. It is preferred that the water used for washing is distilled water or deionized water, since the preferred effect of chemically modifying the PPS resin by acid treatment is not impaired.
- If the hot water treatment is employed, it can be performed as follows. When the hot water treatment is applied to the PPS resin used in this invention, the hot water temperature is 100° C. or higher. More preferred is 120° C. or higher, and further more preferred is 150° C. or higher. Especially preferred is 170° C. or higher. It is not preferred that the temperature is lower than 100° C., since the preferred effect of chemically modifying the PPS resin is small.
- For exhibiting the preferred effect of chemically modifying the PPS resin by the hot water washing, it is preferred that the water used is distilled water or deionized water. The operation of hot water treatment is not especially limited, and a method in which a predetermined amount of the PPS resin is added into a predetermined amount of water, being followed by heating and stirring in a pressure vessel, or a method in which hot water treatment is applied continuously, etc. can be employed. As for the ratio of the PPS resin and water, it is preferred that the amount of water is larger. Usually a bath ratio of 200 g or less of the PPS resin for 1 liter of water is selected.
- Further, since the decomposition of end groups is not preferred, it is desirable that the treatment atmosphere is an inert atmosphere for avoiding it. Furthermore, it is preferred that the PPS resin treated with hot water is washed with hot water several times for removing the remaining components.
- If an organic solvent is used for washing, it can be performed as follows. The organic solvent used for washing the PPS resin is not especially limited, if it does not act to decompose the PPS resin, etc. Examples of the organic solvent include nitrogen-containing polar solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, 1,3-dimethylimidazolidinone, hexamethyl phosphorus amide and piperazinones, sulfoxide/sulfone solvents such as dimethyl sulfoxide, dimethylsulfone and sulfolane, ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone and acetophenone, ether solvents such as dimethyl ether, dipropyl ether, dioxane and tetrahydrofuran, halogen solvents such as chloroform, methylene chloride, trichloroethylene, dichloroethylene, perchloroethylene, monochloroethane, dichloroethane, tetrachloroethane, perchloroethane and chlorobenzene, alcohol/phenol solvents such as methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, phenol, cresol, polyethylene glycol and polypropylene glycol, aromatic hydrocarbon solvents such as benzene, toluene and xylene. Among these organic solvents, it is especially preferred to use N-methyl-2-pyrrolidone, acetone, dimethylformamide, chloroform, etc. Further, one of these organic solvents can be used, or two or more of them can also be used as a mixture.
- The PPS resin can be washed with an organic solvent, for example, by a method of immersing the PPS resin into the organic solvent, and as required, stirring or heating can also be used. When the PPS resin is washed with the organic solvent, the washing temperature is not especially limited, and any desired temperature can be selected in a range from room temperature to about 300° C. If the washing temperature is higher, the washing efficiency tends to be higher, but usually at a washing temperature of room temperature to 150° C., a sufficient effect can be obtained. Washing can also be performed at a temperature higher than the boiling point of the organic solvent under pressurization in a pressure vessel. Further, the washing time is not especially limited either. In the case of batch washing, though depending on washing conditions, washing for more than 5 minutes can usually provide a sufficient effect. Continuous washing can also be employed.
- After completion of polymerization, the PPS resin (a) used in this invention can also be heated in oxygen atmosphere or heated after adding a crosslinking agent such as a peroxide for thermal oxidation crosslinking treatment, to be larger in molecular weight.
- In the case where dry heat treatment is performed for the purpose of increasing the molecular weight by thermal oxidation treatment, it is preferred that the temperature is 160 to 260° C. A more preferred range is 170 to 250° C. It is desirable that the oxygen concentration is 5 vol % or more. More desirable is 8 vol % or more. The upper limit of oxygen concentration is not especially limited, but is about 50 vol %. It is preferred that the treatment time is 0.5 to 100 hours. A more preferred range is 1 to 50 hours, and a further more preferred range is 2 to 25 hours. The device for heat treatment can be an ordinary hot air dryer, or a rotary heater or a heater with stirring blades. However, in the case where efficient and more homogeneous treatment is intended, it is more preferred to use a rotary heater or a heater with stirring blades.
- Further, dry heat treatment can also be performed for the purposes of inhibiting the thermal oxidation crosslinking and removing the volatile content. It is preferred that the temperature is 130 to 250° C. A more preferred range is 160 to 250° C. Further, it is desirable that the oxygen concentration in this case is less than 5 vol %. More desirable is less than 2 vol %. It is preferred that the treatment time is 0.5 to 50 hours. A more preferred range is 1 to 20 hours, and a further more preferred range is 1 to 10 hours. The device for heat treatment can be an ordinary hot air dryer, or a rotary heater or a heater with stirring blades. In the case where efficient and more homogeneous treatment is intended, it is more preferred to use a rotary heater or a heater with stirring blades.
- However, it is preferred that the polyamide resin (a) is substantially a straight chain PPS not increased in molecular weight by thermal oxidation crosslinking treatment, for achieving the intended excellent toughness.
- (2) Polyamide Resin
- The polyamide resin (b) is not especially limited, if it is a publicly known polyamide resin excluding nylon 46. In general, it is a polyamide mainly with an amino acid, lactam or diamine and a dicarboxylic acid as major components. Typical examples of the major components include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and para-aminomethylbenzoic acid, lactams such as ε-aminocaprolactam and ω-laurolactam, aliphatic, alicyclic and aromatic diamines such as tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-/2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine, meta-xylenediamine, para-xylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminopropyl)piperazine, aminoethylpiperazine and 2-methylpentamethylenediamine, aliphatic, alicyclic and aromatic dicarboxylic acids such as adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanoic diacid, terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodiumsulfoisophthalic acid, hexahydroterephthalic acid and hexahydroisophthalic acid. Any one of the polyamide homopolymers and copolymers derived from these raw materials can be used, or two or more of them can also be used as a mixture.
- The polyamide resins include homopolyamide resins such as polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polydodecaneamide (nylon 12), polyundecaneamide (nylon 11), polyhexamethylene terephthalamide (nylon 6T) and polyxylylene adipamide (nylon XD6) and copolyamides as copolymers thereof (nylon 6/66, nylon 6/10, nylon 6/66/610 and 66/6T), etc. Among them, a copolyamide is preferred. These polyamide resins can also be used as a mixture (“/” expresses copolymerization; hereinafter this applies).
- Among the above, nylon 6 as a homopolyamide resin or a copolyamide obtained by copolymerizing nylon 6 and another polyamide component can be preferably used, since excellent toughness can be exhibited. Especially a nylon 6/66 copolymer has a high effect of exhibiting toughness, and a nylon 6/66 copolymer in which the amount of nylon 6 copolymerized is larger than that of nylon 66 copolymerized can be especially preferably used. It is especially preferred that the copolymerization ratio by weight of nylon 6/66 copolymer is in a range of nylon 6 component/nylon 66 component=95/5 to 65/35.
- Further, since nylon 610 and nylon 612 have excellent thermal stability and relatively high strength, they are also preferred polyamides.
- On the other hand, a polyamide with 11 or more carbon atoms per one amide group in each of the recurring units constituting the polyamide of the polyamide resin (b), for example, polyamide 11 or polyamide 12, etc. is not preferred, if it is intended to obtain especially excellent toughness. The reason is estimated to be that since the interaction between PPS and a polyamide is the interaction between PPS and amide groups, the affinity with PPS declines if the amide group concentration is too low.
- Meanwhile, it is not preferred to use nylon 46 as the polyamide. The reason is not clear, but the effect of exhibiting toughness intended greatly declines.
- Therefore, the preferred polyamide resin (b) has 6 to less than 11 carbon atoms per one amide group in each of the recurring units constituting the polyamide.
- The polymerization degree of the polyamide is not especially limited, but it is preferred that the relative viscosity of the polyamide measured in concentrated sulfuric acid at a concentration of 1% and at 25° C. is 1.5 or more, since more excellent toughness can be exhibited. It is more preferred to use a polyamide with a relative viscosity of 1.8 to 5.5.
- The amount of the mixed polyamide resin (b) is selected to ensure that 99 to 60 wt % of the PPS resin (a) and 1 to 40 wt % of the polyamide resin (b) are used to make 100 wt % as the total of the ingredients (a) and (b). It is more preferred that 98 to 70 wt % of the PPS resin (a) and 2 to 30 wt % of the polyamide resin are used, and it is further more preferred that 96 to 75 wt % of the PPS resin (a) and 4 to 25 wt % of the polyamide resin are used. It is not preferred that the amount of the polyamide resin (b) is more than 40 wt %, since the excellent properties such as wet heat resistance of the PPS resin are impaired. It is not preferred either that the amount of the polyamide resin (b) is less than 1 wt %, since the effect of exhibiting toughness remarkably declines.
- (3) Compatibilizing Agent
- For exhibiting more excellent toughness, it is preferred to add 0.1 to 10 parts by weight of a compound with one or more types of groups selected from epoxy group, amino group and isocyanate group as a compatibilizing agent (c) per 100 parts by weight in total of the polyphenylene sulfide (a) and the polyamide resin (b).
- Examples of the compatibilizing agent (c) include glycidyl ethers of bisphenols such as bisphenol A, resorcinol, hydroquinone, pyrocatechol, bisphenol F, saligenin, 1,3,5-trihydroxybenzene, bisphenol S, trihydroxy-diphenyldimethylmethane, 4,4′-dihydroxybiphenyl, 1,5-dihydroxynaphthalene, cashew phenol and 2,2,5,5-tetrakis(4-hydroxyphenyl)hexane, those using a halogenated bisphenol instead of a bisphenol, glycidyl epoxy resins, for example, epoxy compounds based on a glycidyl ether such as butanediol diglycidyl ether, compounds based on a glycidyl ester such as phthalic acid glycidyl ester, and compounds based on a glycidylamine such as N-glycidylaniline, linear epoxy compounds such as epoxylated polyolefins and epoxylated soybean oil, cyclic non-glycidyl epoxy resins such as vinylcyclohexene dioxide and dicyclopentadiene dioxide.
- Further, novolak epoxy resins can also be used. A novolak epoxy resin has two or more epoxy groups and is obtained by letting epichlorohydrin react with an ordinary novolak phenol resin. Furthermore, a novolak phenol resin can be obtained by condensation reaction between a phenol and formaldehyde. The phenol used as a raw material is not especially limited, and examples of it include phenol, o-cresol, m-cresol, p-cresol, bisphenol A, resorcinol, p-tertiary-butylphenol, bisphenol F, bisphenol S, and condensation products thereof.
- Moreover, olefin copolymers having epoxy groups can also be used. The olefin copolymers having epoxy groups (epoxy group-containing olefin copolymers) include olefin copolymers obtained by introducing a monomer component with an epoxy group into an olefin (co)polymer. Further, a copolymer obtained by epoxylating the double bond portions of an olefin polymer having double bonds in the main chain can also be used.
- Examples of the functional group-containing component used for introducing a monomer component having an epoxy group into an olefin (co)polymer include monomers containing an epoxy group such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate and glycidyl citraconate.
- The method for introducing any of these epoxy group-containing components is not especially limited. For example, a method of copolymerizing it with an cc-olefin, etc. and a method of using a radical initiator for grafting into an olefin (co)polymer can be used.
- The adequate amount of the monomer component containing an epoxy group to be introduced is 0.001 to 40 mol % based on the amount of all the monomers used as the raw materials of the epoxy group-containing olefin copolymer. A preferred range is 0.01 to 35 mol %.
- An epoxy group-containing olefin copolymer is preferably an olefin copolymer containing an α-olefin and an α,β-unsaturated carboxylic acid glycidyl ester as copolymerization components. As said α-olefin, ethylene is especially preferred.
- Further, such a copolymer can also be copolymerized with an α,β-unsaturated carboxylic acid or any of alkyl esters thereof such as acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate or butyl methacrylate, styrene, acrylonitrile, etc.
- Furthermore, the olefin copolymer can be of any mode of random, alternating, block or graft copolymerization.
- Among the olefin copolymers obtained by copolymerizing an α-olefin and an α,β-unsaturated carboxylic acid glycidyl ester, an olefin copolymer obtained by copolymerizing 60 to 99 wt % of an α-olefin and 1 to 40 wt % of an α,β-unsaturated carboxylic acid glycidyl ester is especially preferred.
- The α,β-unsaturated carboxylic acid glycidyl ester is a compound represented by the following formula:
(where R is a hydrogen atom or lower alkyl group). Examples of it include glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, etc. Among them, glycidyl methacrylate can be preferably used. - Examples of the olefin copolymer containing an α-olefin and an α,β-unsaturated carboxylic acid glycidyl ester as essential copolymer components include ethylene/propylene-g-glycidyl methacrylate copolymer (“g” expresses graft; hereinafter this applies), ethylene/butene-1-g-glycidyl methacrylate copolymer, ethylene-glycidyl methacrylate copolymer-g-polystyrene, ethylene-glycidyl methacrylate copolymer-g-acrylonitrile-styrene copolymer, ethylene-glycidyl methacrylate copolymer-g-PMMA, ethylene/glycidyl acrylate copolymer, ethylene/glycidyl methacrylate copolymer, ethylene/methyl acrylate/glycidyl methacrylate copolymer and ethylene/methyl methacrylate/glycidyl methacrylate copolymer.
- Further other examples of the compatibilizing agent (c) include alkoxysilanes having one or more types of functional groups selected from epoxy group, amino group and isocyanate group. Examples of the compounds include epoxy group-containing alkoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ureido group-containing alkoxysilane compounds such as γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, and γ-(2-ureidoethyl)aminopropyltrimethoxysilane, isocyanato group-containing alkoxysilane compounds such as γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane, γ-isocyanatopropylethyldiethoxysilane and γ-isocyanatopropyltrichlorosilane, amino group-containing alkoxysilane compounds such as γ-(2-amino ethyl) aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)aminopropyltrimethoxysilane and γ-aminopropyltrimethoxysilane.
- Other examples of the compatibilizing agent (c) include isocyanate compounds such as 2,4-tolylenediisocyanate, 2,5-tolylenediisocyanate, diphenylmethane-4,4′-diisocyanate and polymethylene polyphenyl polyisocyanate.
- The amount of the compatibilizing agent (c) added is 0.1 to 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide (a) and the polyamide resin (b). A preferred range is 0.2 to 5 parts by weight.
- (4) Other Additives
- Further, a resin other than polyamide resins can also be added to the PPS resin composition to such an extent that the effect is not impaired. Examples of it include polybutylene terephthalate resins, polyethylene terephthalate resins, modified polyphenylene ether resins, polysulfone resins, polyallyl sulfone resins, polyketone resins, polyetherimide resins, polyallylate resins, liquid crystal polymers, polyethersulfone resins, polyetherketone resins, polythioetherketone resins, polyetheretherketone resins, polyimide resins, polyamideimide resins, polyethylene tetrafluoride resins, etc.
- Furthermore, for the purpose of modification, the following compounds can be added: plasticizers such as polyalkylene oxide oligomer compounds, thioether compounds, ester compounds and organic phosphorus compounds, crystal nucleating agents such as talc, kaolin, organic phosphorus compounds and polyetheretherketones, metal soaps such as montanic acid waxes, lithium stearate and aluminum stearate, releasing agents such as ethylenediamine-stearic acid-sebacic acid polycondensation product and silicone compounds, coloration preventives such as hypophosphites, lubricants, ultraviolet light absorbers, colorants, foaming agents, etc. It is not preferred that the amount of any of the compounds is more than 20 wt % based on the weight of the entire composition, since the properties peculiar to the PPS resin are impaired. Preferred is 10 wt % or less, and more preferred is 1 wt % or less.
- A filler can also be mixed with the PPS resin composition obtained by the method to such an extent that the effect is not impaired. Examples of the filler include fibrous fillers such as glass fibers, carbon fibers, carbon nanotubes, carbon nanohoms, potassium titanate whiskers, zinc oxide whiskers, calcium carbonate whiskers, wollastonite whiskers, aluminum borate whiskers, aramid fibers, alumina fibers, silicon carbide fibers, ceramic fibers, asbestos fibers, gypsum fibers and metallic fibers, and non-fibrous fillers, for example, fullerene, silicates such as talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, bentonite, asbestos and alumina silicate, metal compounds such as silicon oxide, magnesium oxide, alumina, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, hydroxides such as calcium hydroxide, magnesium hydroxide and aluminum hydroxide, glass beads, glass flakes, glass powder, ceramic beads, boron nitride, silicon carbide, carbon black, silica, graphite, etc. They can also be hollow. Two or more of the fillers can also be used together. Further, any of these fillers can also be preliminarily treated by a coupling agent such as an isocyanate compound, organic silane compound, organic titanate compound, organic borane compound or epoxy compound, for use as a filler.
- Morphology
- The PPS resin composition has the excellent heat resistance, chemicals resistance and barrier properties peculiar to the PPS resin and also has excellent toughness. To exhibit these properties, it is necessary that the PPS resin forms a sea phase (continuous phase or matrix) while the polyamide resin forms an island phase (dispersed phase). Further, it is necessary that the number average dispersed particle size of the polyamide resin is less than 500 nm. Preferred is 300 nm or less, and more preferred is 200 nm or less. It is preferred in view of productivity that the lower limit is 1 nm or more. Since the PPS resin forms a continuous phase, the excellent properties such as barrier properties, chemical resistance and heat resistance of PPS can be substantially exhibited as the properties of the obtained composition.
- Meanwhile, the average dispersed particle size refers to the number average dispersed particle size obtained by preparing an ASTM No. 4 specimen by molding a PPS resin at a molding temperature of the melting peak temperature of the PPS resin +20° C., cutting it at the central portion of it in the cross sectional direction at −20° C. to obtain a 0.1 μm or thinner dumbbell specimen, observing arbitrary 100 dispersed portions of the polyamide resin at a magnification of 20,000 times with a transmission electron microscope, measuring the maximum size and the minimum size of each of the dispersed portions, averaging them respectively, and finally obtaining an average value.
- Further, in the case where the resin composition is molded to produce a large molded article taking a long melt residence time or to produce a film or the like taking a long melt residence time, it is one of preferred properties that after the polyphenylene sulfide resin composition is melted and allowed to reside at 300° C. for 30 minutes, the number average dispersed particle size of the polyamide resin (b) is less than 500 nm.
- The number average dispersed particle size of the polyamide resin (b) after completion of melt residence refers to the number average dispersed particle size obtained, as described above, by preparing an ASTM No. 4 specimen, letting it reside in vacuum at 300° C. for 30 minutes, cooling, cutting it at the central portion of it in the cross sectional area direction at −20° C. to obtain a 0.1 μm or thinner dumbbell specimen, observing arbitrary 100 dispersed portions of the polyamide resin at a magnification of 20,000 times with a transmission electron microscope, measuring the maximum size and the minimum size of each of the dispersed portions, averaging them respectively, and finally obtaining an average value.
- It is preferred that the number average dispersed particle size of the polyamide resin after completion of melt residence is less than 500 nm. More preferred is 300 nm or less, and further more preferred is 200 nm or less. In view of productivity, it is preferred that the lower limit is 1 nm or more.
- Kneading Method
- As a typical kneading method, the raw materials are supplied into a publicly known ordinary melt kneading machine such as a single screw or double screw extruder, Banbury mixer, kneader or mixing roll mill and kneaded at a processing temperature of the melting peak temperature of the PPS resin +5 to 100° C. For more finely dispersing the polyamide resin, a relatively strong shear force is preferred. Particularly preferred is a method of using a double screw extruder with two or more kneading portions for kneading to ensure that the resin temperature during mixing may become the melting peak temperature of the PPS resin +10 to 70° C. In this case, the order of mixing the raw materials is not especially limited, and any of the following methods can be used: a method in which all the raw materials are mixed and melt-kneaded by the above-mentioned method; a method in which some raw materials are mixed and melt-kneaded by the above-mentioned method, and the remaining raw materials are mixed and melt-kneaded; a method in which some raw materials are mixed and while the mixture is melt-kneaded by a single screw or double screw extruder, the remaining raw materials are mixed using a side feeder. Further, with regard to minor additives, after the other ingredients are kneaded and pelletized by the above-mentioned method, etc., the minor additives can be added before molding, of course.
- compositions are described below more particularly in reference to examples.
- In the following examples, the material properties were measured according to the following methods.
- Tensile Test
- Sumitomo Nestal Injection Molding Machine SG75 was used to prepare an ASTM No. 4 dumbbell specimen at a resin temperature of 300° C. and at a mold temperature of 150° C. For measurement, Tensilon UTA 2.5T Tensile Tester was used for measuring at an inter-chuck distance of 64 mm and at a stress rate of 10 mm/min.
- Observation of Morphology
- The aforesaid specimen was prepared by injection molding. The specimen was cut at the central portion in the direction perpendicular to the flow direction, and the central portion of the section was stained. It was then cut to obtain a 0.1 μm or thinner specimen, and the dispersed particle size of the polyamide resin was measured at a magnification of 20,000 times with a transmission electron microscope.
- A 70-liter autoclave with a stirrer was charged with 8267.37 g (70.00 moles) of 47.5% sodium hydrosulfide, 2957.21 g (70.97 moles) of 96% sodium hydroxide, 11434.50 g (115.50 moles) of N-methyl-2-pyrrolidone (NMP), 2583.00 g (31.50 moles) of sodium acetate, and 10500 g of ion exchange water, and while nitrogen was fed at atmospheric pressure, the mixture was heated gradually up to 245° C., taking about 3 hours, to distill away 14780.1 g of water and 280 g of NMP. Then, the reaction vessel was cooled to 160° C. The amount of water remaining in the system for each mole of the supplied alkali metal sulfide was 1.06 moles including the water consumed for hydrolysis of NMP. Further, the amount of the hydrogen sulfide scattered was 0.02 mole for each mole of the supplied alkali metal sulfide.
- Subsequently 10235.46 g (69.63 moles) of p-dichlorobenzene and 9009.00 g (91.00 moles) of NMP were added, and the reaction vessel was hermetically sealed under nitrogen gas. With stirring at 240 rpm, the mixture was heated to 238° C. at a rate of 0.6° C./min, and a reaction was performed at 238° C. for 95 minutes. Then, the reaction mixture was heated to 270° C. at a rate of 0.8° C./min, and a reaction was performed at 270° C. for 100 minutes. Then, 1260 g (70 moles) of water was pressed in, taking 15 minutes, while the reaction mixture was cooled to 250° C. at a rate of 1.3° C./min. Thereafter, it was cooled to 200° C. at a rate of 1.0° C/min, and quickly cooled to about room temperature.
- The reaction mixture was taken out and diluted with 26300 g of NMP, being sieved (80 mesh) for separation into the solvent and a solid. The obtained particles were washed with 31900 g of NMP and collected by filtration. They were washed with 56000 g of ion exchange water several times and collected by filtration. They were washed with 70000 g of 0.05 wt % acetic acid aqueous solution and collected by filtration. They were washed with 70000 g of ion exchange water and collected by filtration. The obtained hydrous PPS particles were dried in hot air of 80° C. and dried at 120° C. under reduced pressure. The obtained PPS had a melt viscosity of 200 Pa·s (310° C., shear rate 1000/s).
- An aqueous solution containing 50% of the salt obtained from adipic acid and hexamethylenediamine (AH salt) and s-caprolactam (CL) were mixed to achieve an AH salt content of 20 parts by weight and a CL content of 80 parts by weight, and the mixture was supplied into a 30-liter autoclave. The autoclave was heated to 270° C. at an internal pressure of 10 kg/cm2, and subsequently with the internal temperature kept at 245° C., the pressure was gradually reduced to 0.5 kg/cm2 with stirring. Stirring was stopped. Nitrogen was used to return the pressure to atmospheric pressure, and the product was pulled out as a strand, and it was pelletized. Boiling water was used to extract and remove the unreactive material, and the residue was dried. The copolyamide 6/66 resin (copolymerization ration by weight: nylon 6 component/nylon 66 component=80/20) obtained like this had a relative viscosity of 4.20 and a melting point of 193° C.
- The respective ingredients shown in Table 1 were dry-blended, and the mixture was melt-kneaded using TEX30α double screw extruder produced by The Japan Steel Works, Ltd. (L/D=45.5, with three kneading portions) at a screw speed of 300 rpm, with the temperature set to ensure that the temperature of the resin delivered from the cylinder became 330° C. The melt-kneaded mixture was delivered as a strand that was then cut into pellets by a strand cutter. The pellets were dried overnight at 120° C. and injection-molded. In this way, samples of the respective Examples were obtained. The strengths and polyamide dispersed particle sizes of the samples were measured, and the results were as shown in Table 1.
- Eighty parts by weight of the PPS, 20 parts by weight of the polyamide and 1.0 part by weight of the compatibilizing agent respectively shown in Table 1 were dry-blended, and the mixture was melt-kneaded using TEX30α double screw extruder produced by The Japan Steel Works, Ltd. (L/D=45.5, with three kneading portions) at a screw speed of 300 rpm, with the temperature set to ensure that the temperature of the resin delivered from the cylinder became 330° C. The melt-kneaded mixture was delivered as a strand that was then cut into pellets by a strand cutter. The pellets were dried overnight at 120° C. and dry-blended with the PPS shown in Table 1 to ensure that the respective amounts became as shown in Table 1. The mixture was melt-kneaded and pelletized again by the same method as described above. The obtained pellets were injection-molded. The strength and polyamide dispersed particle size of the sample were measured, and the results were as shown in Table 1.
- Pelletization and evaluation were performed as described for Example 1, except that no polyamide was mixed. The results were as shown in Table 1. The material was poor in toughness.
- Pelletization and evaluation were performed as described for Example 1, except that a 40 mm diameter single screw extruder produced by Tanabe Plastics Kikai K.K. was used for melt-kneading at a set temperature of 300° C. and at a screw speed of 80 rpm. The results were as shown in Table 1. The polyamide dispersed particle size was large, and the material was poor in toughness.
- Nylon 6 oligomer was used as the polyamide and dry-blended with the respective ingredients shown in Table 1 at a ratio shown in Table 1, and the mixture was melt-kneaded using TEX30α double screw extruder produced by The Japan Steel Works, Ltd. (L/D=45.5, with three kneading portions) at a screw speed of 300 rpm, with the temperature set to ensure that the temperature of the resin delivered from the cylinder became 330° C. The melt-kneaded mixture was delivered as a strand that was then cut into pellets by a strand cutter. The pellets were dried overnight at 120° C. and injection-molded. The strength and polyamide dispersed particle size of the sample were measured, and the results were as shown in Table 1.
- When nylon 6 oligomer was used without using the compatibilizing agent, the polyamide dispersed particle size became large, and the mechanical properties were poor.
TABLE 1 Com- Com- Com- parative Ex- Ex- parative parative Example 1 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 ample 7 ample 8 Example 2 Example 3 PPS used PPS-1 PPS-1 PPS-1 PPS-1 PPS-1 PPS-1 PPS-1 PPS-1 PPS-1 PPS-1 PPS-1 Amount of Parts by 100 90 90 95 85 90 90 90 90 90 90 PPS weight Polyamide — PA-1 PA-2 PA-1 PA-1 PA-1 PA-2 PA-2 PA-3 PA-1 PA-4 used Amount of Parts by — 10 10 5 15 10 10 10 10 10 10 polyamide weight Com- C-1 C-1 C-1 C-1 C-1 C-2 C-3 C-3 C-3 C-1 — patibilizing agent Used Amount of Parts by 2 2 2 2 2 1 0.5 0.5 0.5 2 — com- weight patibilizing agent Tensile MPa 83 83 81 82 84 81 81 81 80 83 59 stress at yield Tensile % 25 105 215 90 85 122 215 225 230 45 90 elongation at Break Tensile GPa 2.2 2.3 2.2 2.2 2.3 2.3 2.2 2.2 2.1 2.2 1.9 modulus of Elasticity Polyamide Nm — 165 125 145 205 130 115 89 110 725 600 dispersed particle size Polyamide Nm — 320 290 290 295 330 120 95 120 950 1200 dispersed particle size after melt Residence
C-1: Bisphenol A epoxy resin (“Epikote” 1004 produced by Yuka Shell Epoxy)
C-2: Novolak phenol epoxy (ESCN-220HH produced by Sumitomo Chemical Co., Ltd.)
C-3: 3-isocyanatopropyltriethoxysilane (KBE9007 produced by Shin-Etsu Silicone)
- The PPS resin composition of this invention is especially useful for injection molding and extrusion molding to produce films and fibers, since it is very excellent in toughness. Further, said feature can be used to apply the PPS resin composition to such structures as pipes and cases of general apparatuses and motor vehicles and also to molded metal insert articles of electric and electronic apparatuses.
Claims (21)
1-7. (canceled)
8. A polyphenylene sulfide resin composition comprising about 99 to about 60 wt % of a polyphenylene sulfide resin (a) and about 1 to about 40 wt % of a polyamide resin (b), wherein the polyphenylene sulfide resin (a) forms a sea phase while the polyamide resin (b) forms an island phase, and the number average dispersed particle size of the polyamide resin (b) is less than about 500 nm.
9. The composition according to claim 8 , wherein the melt viscosity of the polyphenylene sulfide resin (a) is about 100 Pa·s (under conditions of 310° C. and shear rate 1000/s) or more.
10. The composition according to claim 8 , wherein, after the polyphenylene sulfide resin composition is melted and allowed to reside at 300° C. for 30 minutes, the number average dispersed particle size of the polyamide resin (b) is kept at less than about 500 nm.
11. The composition according to claim 8 , wherein the polyamide resin (b) has 6 to less than 11 carbon atoms per one amide group in each of the recurring units constituting the polyamide.
12. The composition according to claim 8 , wherein the polyamide resin (b) is at least one selected from the group consisting of a copolyamide, nylon 610 or nylon 612.
13. The composition according to claim 8 , wherein a compound having one or more types of groups selected from the group consisting of epoxy group, amino group and isocyanate group is added by about 0.1 to about 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide resin (a) and the polyamide resin (b), as a compatibilizing agent (c) for the polyphenylene sulfide resin (a) and the polyamide resin (b).
14. The composition according to claim 8 , which has a tensile elongation of about 80% or more.
15. The composition according to claim 9 , wherein, after the polyphenylene sulfide resin composition is melted and allowed to reside at 300° C. for 30 minutes, the number average dispersed particle size of the polyamide resin (b) is kept at less than about 500 nm.
16. The composition according to claim 9 , wherein the polyamide resin (b) has 6 to less than 11 carbon atoms per one amide group in each of the recurring units constituting the polyamide.
17. The composition according to claim 10 , wherein the polyamide resin (b) has 6 to less than 11 carbon atoms per one amide group in each of the recurring units constituting the polyamide.
18. The composition according to claim 9 , wherein the polyamide resin (b) is at least one selected from the group consisting of a copolyamide, nylon 610 or nylon 612.
19. The composition according to claim 10 , wherein the polyamide resin (b) is at least one selected from the group consisting of a copolyamide, nylon 610 or nylon 612.
20. The composition according to claim 11 , wherein the polyamide resin (b) is at least one selected from the group consisting of a copolyamide, nylon 610 or nylon 612.
21. The composition according to claim 9 , wherein a compound having one or more types of groups selected from the group consisting of epoxy group, amino group and isocyanate group is added by about 0.1 to about 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide resin (a) and the polyamide resin (b), as a compatibilizing agent (c) for the polyphenylene sulfide resin (a) and the polyamide resin (b).
22. The composition according to claim 10 , wherein a compound having one or more types of groups selected from the group consisting of epoxy group, amino group and isocyanate group is added by about 0.1 to about 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide resin (a) and the polyamide resin (b), as a compatibilizing agent (c) for the polyphenylene sulfide resin (a) and the polyamide resin (b).
23. The composition according to claim 11 , wherein a compound having one or more types of groups selected from the group consisting of epoxy group, amino group and isocyanate group is added by about 0.1 to about 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide resin (a) and the polyamide resin (b), as a compatibilizing agent (c) for the polyphenylene sulfide resin (a) and the polyamide resin (b).
24. The composition according to claim 12 , wherein a compound having one or more types of groups selected from the group consisting of epoxy group, amino group and isocyanate group is added by about 0.1 to about 10 parts by weight per 100 parts by weight in total of the polyphenylene sulfide resin (a) and the polyamide resin (b), as a compatibilizing agent (c) for the polyphenylene sulfide resin (a) and the polyamide resin (b).
25. The composition according to claim 9 , which has a tensile elongation of about 80% or more.
26. The composition according to claim 10 , which has a tensile elongation of about 80% or more.
27. The composition according to claim 11 , which has a tensile elongation of about 80% or more.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004-271757 | 2004-09-17 | ||
| JP2004271757 | 2004-09-17 | ||
| JP2005-032852 | 2005-02-09 | ||
| JP2005032852 | 2005-02-09 | ||
| PCT/JP2005/012641 WO2006030577A1 (en) | 2004-09-17 | 2005-07-08 | Polyphenylene sulfide resin composition |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2005/012641 A-371-Of-International WO2006030577A1 (en) | 2004-09-17 | 2005-07-08 | Polyphenylene sulfide resin composition |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/542,942 Division US8076423B2 (en) | 2004-09-17 | 2009-08-18 | Polyphenylene sulfide resin composition |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070265375A1 true US20070265375A1 (en) | 2007-11-15 |
Family
ID=36059838
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/662,907 Abandoned US20070265375A1 (en) | 2004-09-17 | 2005-07-08 | Polyphenylene sulfide resin composition |
| US12/542,942 Expired - Lifetime US8076423B2 (en) | 2004-09-17 | 2009-08-18 | Polyphenylene sulfide resin composition |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/542,942 Expired - Lifetime US8076423B2 (en) | 2004-09-17 | 2009-08-18 | Polyphenylene sulfide resin composition |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US20070265375A1 (en) |
| JP (1) | JP5217165B2 (en) |
| CN (1) | CN101061182B (en) |
| WO (1) | WO2006030577A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080319139A1 (en) * | 2007-06-19 | 2008-12-25 | Konica Minolta Business Technologies, Inc. | Specific resin composition of polyphenylene sulfide, and molded component, electrophotographic transfer film and image-forming apparatus, using the same |
| US20090043034A1 (en) * | 2005-09-22 | 2009-02-12 | Masanobu Ishiduka | Plant-based resin-containing composition and plant-based resin-containing molded product formed therefrom |
| US20090311501A1 (en) * | 2006-05-10 | 2009-12-17 | Toray Industries, Inc | Biaxially oriented polyarylene sulfide film |
| US20110240332A1 (en) * | 2010-03-30 | 2011-10-06 | Hitachi Cable, Ltd. | Insulated wire |
| US20140346703A1 (en) * | 2009-06-16 | 2014-11-27 | Arkema France | Bacteriostatic textile based on polyamide 11 |
| US9068078B2 (en) | 2011-09-30 | 2015-06-30 | Toray Industries, Inc. | Polyphenylene sulfide resin composition, production method thereof and molded product thereof |
| EP3480257A4 (en) * | 2016-06-29 | 2020-01-01 | Toray Industries, Inc. | POLYPHENYLENE SULFIDE RESIN COMPOSITION AND ASSOCIATED HOLLOW MOLDING |
Families Citing this family (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5029344B2 (en) * | 2007-12-25 | 2012-09-19 | 新神戸電機株式会社 | Thermoplastic resin molded product |
| US20090214863A1 (en) * | 2008-02-22 | 2009-08-27 | Chevron Phillips Chemical Company Lp | Polyphenylene Sulfide Coatings |
| JP5328626B2 (en) * | 2009-12-17 | 2013-10-30 | 信越ポリマー株式会社 | Film capacitor film manufacturing method and film capacitor film |
| CN102898836A (en) * | 2011-07-29 | 2013-01-30 | 中纺投资发展股份有限公司 | Composition of polyphenylene sulfide and polyamide, and fibers thereof |
| JP5918855B2 (en) | 2011-09-20 | 2016-05-18 | ティコナ・エルエルシー | Polyarylene sulfide / liquid crystal polymer alloy and composition containing the same |
| US8663764B2 (en) | 2011-09-20 | 2014-03-04 | Ticona Llc | Overmolded composite structure for an electronic device |
| JP6504817B2 (en) | 2011-09-20 | 2019-04-24 | ティコナ・エルエルシー | Low halogen content disulfide washed polyarylene sulfide |
| KR20140063834A (en) | 2011-09-20 | 2014-05-27 | 티코나 엘엘씨 | Low chlorine filled melt processed polyarylene sulfide composition |
| US9119307B2 (en) | 2011-09-20 | 2015-08-25 | Ticona Llc | Housing for a portable electronic device |
| CN102627851B (en) * | 2012-03-19 | 2014-04-16 | 上海锦湖日丽塑料有限公司 | Compatible polyamide-polyphenyl ether composition and preparation method thereof |
| US9394430B2 (en) | 2012-04-13 | 2016-07-19 | Ticona Llc | Continuous fiber reinforced polyarylene sulfide |
| CN102702747A (en) * | 2012-06-14 | 2012-10-03 | 南京同辉新型材料科技有限公司 | Insulating and heat-conducting high polymer and preparation method thereof |
| CN103627173A (en) * | 2012-08-24 | 2014-03-12 | 苏州汉扬精密电子有限公司 | Glass fiber strengthened polyphenylene sulfide/aromatic polyamide composite material and preparation method thereof |
| WO2014130275A2 (en) * | 2013-02-22 | 2014-08-28 | Ticona Llc | High performance polymer composition with improved flow properties |
| EP3114158A1 (en) * | 2014-03-07 | 2017-01-11 | Ticona LLC | Sintered polymeric particles having narrow particle size distribution for porous structures |
| CN104312425B (en) * | 2014-10-25 | 2016-08-31 | 中国海洋石油总公司 | A kind of polyphenylene sulfide coil coating |
| WO2016094381A1 (en) * | 2014-12-11 | 2016-06-16 | Ticona Llc | Stabilized flexible thermoplastic composition and products formed therefrom |
| WO2016133740A1 (en) | 2015-02-19 | 2016-08-25 | Ticona Llc | Method of polyarylene sulfide precipitation |
| JP6803844B2 (en) | 2015-02-19 | 2020-12-23 | ティコナ・エルエルシー | How to Form Low Viscosity Polyarylene Sulfide |
| WO2016133739A1 (en) | 2015-02-19 | 2016-08-25 | Ticona Llc | Method for forming a high molecular weight polyarylene sulfide |
| JP6783242B2 (en) | 2015-03-25 | 2020-11-11 | ティコナ・エルエルシー | How to form polyarylene sulfide with high melt viscosity |
| CN105255187A (en) * | 2015-11-14 | 2016-01-20 | 华文蔚 | Composite polyphenylene sulfide and preparation method thereof |
| CN105273404A (en) * | 2015-11-14 | 2016-01-27 | 华文蔚 | Heat conduction type compound polyphenylene sulfide and preparation method thereof |
| EP3354679B1 (en) * | 2017-01-31 | 2022-05-25 | Solvay Specialty Polymers USA, LLC. | Use of polyamide 6 (pa6) as a heat-aging stabilizer in polymer compositions comprising polyphenylene sulfide (pps) |
| EP3354682B1 (en) | 2017-01-31 | 2022-06-15 | Solvay Specialty Polymers USA, LLC. | Filled composition containing polyphenylene sulphide (pps) and polyamide 6 (pa6) |
| JP7151086B2 (en) * | 2018-01-31 | 2022-10-12 | 東レ株式会社 | Polyphenylene sulfide resin composition |
| CN108409967B (en) * | 2018-03-27 | 2019-03-15 | 广州市鹏云工程塑料有限公司 | Silicon carbide and/or aluminium nitride grafting polyphenylene sulfide and its synthetic method |
| CN109651814B (en) * | 2018-11-28 | 2021-03-26 | 中广核俊尔新材料有限公司 | High-reinforcement toughening type polyphenylene sulfide composite material and preparation method thereof |
| US11407861B2 (en) | 2019-06-28 | 2022-08-09 | Ticona Llc | Method for forming a polyarylene sulfide |
| CN115279734A (en) | 2019-12-20 | 2022-11-01 | 提克纳有限责任公司 | Method of forming polyarylene sulfide |
| WO2023038889A1 (en) | 2021-09-08 | 2023-03-16 | Ticona Llc | Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
| US12024596B2 (en) | 2021-09-08 | 2024-07-02 | Ticona Llc | Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
| CN116355410B (en) * | 2023-05-22 | 2025-02-14 | 辰东意普万新材料(广东)有限公司 | A polyphenylene sulfide polyamide composite material and its preparation and application |
| CN119505535A (en) * | 2024-10-11 | 2025-02-25 | 南京聚隆科技股份有限公司 | High-toughness polyphenylene sulfide polymer alloy, high-toughness polyphenylene sulfide film and preparation method thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4772664A (en) * | 1985-12-26 | 1988-09-20 | Asahi Kasei Kogyo Kabushiki Kaisha | Thermoplastic resin composition |
| US5859176A (en) * | 1994-11-18 | 1999-01-12 | Asahi Kasei Kogyo Kabushiki Kaisha | Polyamide resin composition |
| US6900272B2 (en) * | 1999-10-12 | 2005-05-31 | Toray Industries, Inc. | Resin structure |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4528346A (en) * | 1982-09-17 | 1985-07-09 | Dainippun Ink and Chemicals, Inc. | Resin composition |
| JPS59155462A (en) | 1983-02-23 | 1984-09-04 | Dainippon Ink & Chem Inc | Thermoplastic resin composition |
| JPS6097805A (en) * | 1983-11-02 | 1985-05-31 | Kobe Steel Ltd | Single screw kneading extruder |
| JPS63189458A (en) | 1987-02-03 | 1988-08-05 | Dainippon Ink & Chem Inc | Polyarylene sulfide resin composition for encapsulating electronic components and electronic components |
| JPH0356561A (en) | 1989-07-26 | 1991-03-12 | Sumitomo Bakelite Co Ltd | Thermoplastic resin composition |
| JP3120429B2 (en) | 1989-08-25 | 2000-12-25 | 大日本インキ化学工業株式会社 | Polyarylene sulfide resin composition |
| JPH03231969A (en) | 1989-12-07 | 1991-10-15 | Polyplastics Co | Polyarylene sulfide resin composition and production thereof |
| JP3219824B2 (en) * | 1991-01-14 | 2001-10-15 | 呉羽化学工業株式会社 | Composition comprising polyarylene sulfide and polyamide |
| JP3114758B2 (en) * | 1991-02-13 | 2000-12-04 | 東ソー株式会社 | Polyphenylene sulfide resin composition |
| JP2868043B2 (en) * | 1992-09-22 | 1999-03-10 | 三菱瓦斯化学株式会社 | Heat resistant resin composition |
| ZA956882B (en) * | 1994-08-29 | 1996-03-25 | Cabot Corp | Universal masterbatch |
| JP3314326B2 (en) * | 1995-05-30 | 2002-08-12 | ミノルタ株式会社 | Toner for developing electrostatic latent images |
| JPH10120902A (en) * | 1996-07-22 | 1998-05-12 | Toray Ind Inc | Polyphenylene sulfide resin composition |
| EP0900650A4 (en) * | 1996-11-08 | 2003-05-21 | Toray Industries | Multi-layer moldings and polyphenylene sulfide resin composition |
| JPH11293109A (en) * | 1997-11-20 | 1999-10-26 | Kureha Chem Ind Co Ltd | Thermoplastic resin composition |
| US6241375B1 (en) * | 1998-08-01 | 2001-06-05 | Peter Wang | Shear ring screw |
| JP4214669B2 (en) * | 1999-10-12 | 2009-01-28 | 東レ株式会社 | Resin structure and its use |
| JP4069629B2 (en) * | 2001-07-31 | 2008-04-02 | 東レ株式会社 | Polyphenylene sulfide resin composition and method for producing the same |
| DE10144123A1 (en) * | 2001-09-08 | 2003-03-27 | Mitsubishi Polyester Film Gmbh | Biaxially oriented polyester film with good metal adhesion, process for its production and its use |
| DE60204101T2 (en) * | 2001-11-15 | 2006-05-04 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe | Kneading apparatus and method for kneading rubber or rubber compositions |
| JP2003261687A (en) * | 2002-03-08 | 2003-09-19 | Toray Ind Inc | Plumbing components |
| JP4151336B2 (en) | 2002-07-30 | 2008-09-17 | 東レ株式会社 | Resin composition and method for producing the same |
| US7018574B2 (en) * | 2003-02-20 | 2006-03-28 | Idemitsu Kosan Co., Ltd. | Process for removing volatile components in polyarylene sulfide |
| US7098273B2 (en) * | 2003-06-26 | 2006-08-29 | Mitsubishi Gas Chemical Company, Inc. | Resin composition |
-
2005
- 2005-07-08 JP JP2006535057A patent/JP5217165B2/en not_active Expired - Lifetime
- 2005-07-08 CN CN2005800392492A patent/CN101061182B/en not_active Expired - Lifetime
- 2005-07-08 WO PCT/JP2005/012641 patent/WO2006030577A1/en not_active Ceased
- 2005-07-08 US US11/662,907 patent/US20070265375A1/en not_active Abandoned
-
2009
- 2009-08-18 US US12/542,942 patent/US8076423B2/en not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4772664A (en) * | 1985-12-26 | 1988-09-20 | Asahi Kasei Kogyo Kabushiki Kaisha | Thermoplastic resin composition |
| US5859176A (en) * | 1994-11-18 | 1999-01-12 | Asahi Kasei Kogyo Kabushiki Kaisha | Polyamide resin composition |
| US6900272B2 (en) * | 1999-10-12 | 2005-05-31 | Toray Industries, Inc. | Resin structure |
| US7115312B2 (en) * | 1999-10-12 | 2006-10-03 | Toray Industries, Inc. | Resin structure and use thereof |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090043034A1 (en) * | 2005-09-22 | 2009-02-12 | Masanobu Ishiduka | Plant-based resin-containing composition and plant-based resin-containing molded product formed therefrom |
| US20090311501A1 (en) * | 2006-05-10 | 2009-12-17 | Toray Industries, Inc | Biaxially oriented polyarylene sulfide film |
| US8138279B2 (en) * | 2006-05-10 | 2012-03-20 | Toray Industries, Inc. | Biaxially oriented polyarylene sulfide film |
| US20080319139A1 (en) * | 2007-06-19 | 2008-12-25 | Konica Minolta Business Technologies, Inc. | Specific resin composition of polyphenylene sulfide, and molded component, electrophotographic transfer film and image-forming apparatus, using the same |
| US8029908B2 (en) | 2007-06-19 | 2011-10-04 | Konica Minolta Business Technologies, Inc. | Specific resin composition of polyphenylene sulfide, and molded component, electrophotographic transfer film and image-forming apparatus, using the same |
| US20140346703A1 (en) * | 2009-06-16 | 2014-11-27 | Arkema France | Bacteriostatic textile based on polyamide 11 |
| US20110240332A1 (en) * | 2010-03-30 | 2011-10-06 | Hitachi Cable, Ltd. | Insulated wire |
| US8809684B2 (en) * | 2010-03-30 | 2014-08-19 | Hitachi Metals, Ltd. | Insulated wire |
| US9068078B2 (en) | 2011-09-30 | 2015-06-30 | Toray Industries, Inc. | Polyphenylene sulfide resin composition, production method thereof and molded product thereof |
| EP3480257A4 (en) * | 2016-06-29 | 2020-01-01 | Toray Industries, Inc. | POLYPHENYLENE SULFIDE RESIN COMPOSITION AND ASSOCIATED HOLLOW MOLDING |
| US10577501B2 (en) * | 2016-06-29 | 2020-03-03 | Toray Industries, Inc. | Polyphenylene sulfide resin composition and hollow forming products using the same |
Also Published As
| Publication number | Publication date |
|---|---|
| US20090306309A1 (en) | 2009-12-10 |
| WO2006030577A1 (en) | 2006-03-23 |
| JPWO2006030577A1 (en) | 2008-05-08 |
| CN101061182B (en) | 2011-06-22 |
| US8076423B2 (en) | 2011-12-13 |
| CN101061182A (en) | 2007-10-24 |
| JP5217165B2 (en) | 2013-06-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8076423B2 (en) | Polyphenylene sulfide resin composition | |
| JP4844559B2 (en) | Polyphenylene sulfide resin composition, production method thereof and molded product | |
| JP5206492B2 (en) | Method for producing polyphenylene sulfide resin composition and polyphenylene sulfide resin composition | |
| JP5310326B2 (en) | Polyphenylene sulfide resin composition and method for producing the same | |
| CN109415562B (en) | Polyphenylene sulfide resin composition and hollow molded article using the same | |
| JP6655392B2 (en) | Polyarylene sulfide resin composition and molded article thereof | |
| JP2010195962A (en) | Member for fluid piping comprising polyphenylene sulfide resin composition | |
| KR20160065836A (en) | Polyarylene sulfide resin composition and molded product thereof, and electric vehicle part | |
| JP2007297612A (en) | Polyphenylene sulfide resin composition | |
| JP2018009148A (en) | Method for producing polyarylene sulfide resin composition | |
| JP5156772B2 (en) | Low-swelling resin molding having a welded portion | |
| JP2011153242A (en) | Polyphenylene sulfide resin composition, and method for manufacturing the same | |
| KR20160042939A (en) | Polyarylene sulfide resin composition and molded article of same | |
| JP4941385B2 (en) | Polyethersulfone resin composition, process for producing the same, and molded article | |
| JP5050728B2 (en) | Polyetherimide resin composition | |
| JP2018154731A (en) | Method for producing polyarylene sulfide resin | |
| JP2009074044A (en) | Method for producing amorphous resin composition | |
| JP4997677B2 (en) | Composite molded body | |
| JP2012096360A (en) | Reflecting plate with metal film formed | |
| JPH11241020A (en) | Heat-resistant resin composition | |
| JP2024106326A (en) | Polyphenylene sulfide resin composition and molded article | |
| JP2008031233A (en) | Polyphenylene sulfide resin tube | |
| JPH059386A (en) | Resin composition | |
| JP2004300346A (en) | Polyarylene sulfide resin composition | |
| JP2009272076A (en) | Molded lens holder for automobile head lamp |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TORAY INDUSTRIES, INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISHIO, ATSUSHI;SAITOH, KEI;KOBAYASHI, SADAYUKI;REEL/FRAME:019085/0667 Effective date: 20070305 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |