US20070241030A1 - Process for the Purification of Spent Process Oil - Google Patents
Process for the Purification of Spent Process Oil Download PDFInfo
- Publication number
- US20070241030A1 US20070241030A1 US11/596,736 US59673605A US2007241030A1 US 20070241030 A1 US20070241030 A1 US 20070241030A1 US 59673605 A US59673605 A US 59673605A US 2007241030 A1 US2007241030 A1 US 2007241030A1
- Authority
- US
- United States
- Prior art keywords
- oil
- mixture
- acid
- group
- purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M175/00—Working-up used lubricants to recover useful products ; Cleaning
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/06—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
- C10G21/12—Organic compounds only
- C10G21/16—Oxygen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/06—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
- C10G21/12—Organic compounds only
- C10G21/20—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/06—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
- C10G21/12—Organic compounds only
- C10G21/27—Organic compounds not provided for in a single one of groups C10G21/14 - C10G21/26
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
- C10G31/10—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M175/00—Working-up used lubricants to recover useful products ; Cleaning
- C10M175/0008—Working-up used lubricants to recover useful products ; Cleaning with the use of adsorbentia
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M175/00—Working-up used lubricants to recover useful products ; Cleaning
- C10M175/0016—Working-up used lubricants to recover useful products ; Cleaning with the use of chemical agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M175/00—Working-up used lubricants to recover useful products ; Cleaning
- C10M175/0058—Working-up used lubricants to recover useful products ; Cleaning by filtration and centrifugation processes; apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M175/00—Working-up used lubricants to recover useful products ; Cleaning
- C10M175/02—Working-up used lubricants to recover useful products ; Cleaning mineral-oil based
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
Definitions
- the present invention relates to a process for the purification of spent process oils, i.e. process oils contaminated with solid or dissolved impurities, which have been accumulated in the oil.
- the present invention further relates to the use of various substances for the purification of spent process oil.
- process oil as used herein and in the claims generally relates to oil used in various industrial processes.
- process oils are rolling oil, honing oil, engine lubricating oil, mineral oil, paraffin oil, and paraffin oil containing chlorine.
- a common method for the destruction of process oils is destruction by burning but such destruction causes environmental problems; this is particularly true for chlorine-containing oils of the type chloroparaffinic oils.
- oils based on vegetable or mineral oil
- phase chemical methods based on organic polymers and/or polymer mixtures comprising a charged control polymer (WO95/14752).
- the main disadvantage of this process according to the prior art is due to the fact that the distribution between the target fluid and the separation additive mainly occurs between the target fluid and the surface between the target fluid and the separation additive.
- the background for this is the chemical interactions at the surface and that the density difference between the polymer/polymer mixtures and the target fluid is considerable.
- Separation with several phases involved may be employed for applications where solid dispersed impurities or dissolved substances can not be separated from a fluid with other conventional techniques such as filtration or centrifugal separation.
- Such separations are in general based on surface-chemical phenomena and comprise choosing a suitable separation additive.
- Said separation additive is under given conditions substantially insoluble in the fluid to be purified.
- the aim of the chemical separation process is to separate the target fluid to be processed from at least one impurity.
- Chemical phase separation when a substance in the fluid to be purified, depending on its interactions with the surrounding molecules migrates to the separation additive.
- Chemical phase separation may constitute steps comprising more than two phases. This may be accomplished for instance by using several different separation media, which are not miscible.
- the present invention solves the problems of unnecessary destruction of contaminated process oils by admitting recycling of contaminated process oils after purification, which can not be achieved by any known technology.
- the process according to the invention for the purification of contaminated process oil thus comprises in a first step the addition to the contaminated oil to be purified of a specific separation additive, which by chemical interactions absorbs contaminating solid, or dissolved impurities in the process oil, and in a second step, separation of said separation additive and absorbed impurities using a method selected from the group consisting of static settling, centrifugal separation, vacuum filtration, press filtration, pre-coat filtration and centrifugal filtration.
- the present invention thus comprises a process, wherein a) is selected from the group consisting of mono-, di-, and triethanolamine.
- the present invention comprises a process, wherein a) is triethanolamine.
- the present invention comprises a process, wherein b) is selected from the group consisting of lauric acid, oleic acid, pentadecanoic acid, decenoic acid, 2-ethylhexanoic acid, and caprylic acid.
- the present invention comprises a process, wherein b) is selected from the group consisting of 2-ethylhexanoic acid and caprylic acid.
- the present invention comprises a process, wherein the said separation of the two phases is carried out by one method or a combination of methods selected from the group consisting of static settling, centrifugal separation, vacuum filtration, press filtration, pre-coat filtration and centrifugal filtration.
- the present invention comprises a process, wherein the mixture of a) and b) is added in an amount of 0.0001 to 10% by weight, calculated on the weight of the spent process oil.
- the present invention comprises a process, wherein said additive in addition to components a) and b) further comprises c) at least one agent selected from the group consisting of monoethylene glycol, dipropylene monoethylether, glycerol, and propylene glycol.
- the present invention comprises a process, which is carried out at a temperature above 10° C. and preferably at ambient temperature.
- the present invention comprises use of at least one member selected from the group consisting of alkanoic acids, and alkenoic acids having from 6 to 18 carbon atoms in the preparation of a mixture for the purification of spent process oil.
- the present invention comprises use of at least one alkanolamine in the preparation of a mixture for the purification of spent process oil.
- the present invention comprises use of a liquid mixture of
- the present invention comprises a use where the spent process oil is selected from the group consisting of mineral oil, rolling oil, honing oil, drawing oil, engine lubricating oil.
- the present invention comprises a use where the temperature is above 10° C. and preferably ambient temperature.
- a separation additive is mixed with the target fluid under vigorous stirring.
- the separation additive is not soluble in the target fluid because of its polar properties and thus colloids consisting of small droplets of separation additive are formed under the stirring, which through the chemical interactions (hydrophilic, hydrophobic, and charge interactions) may absorb the unwanted solid or the dissolved impurities in the target fluid.
- the separation additive has a higher density than most mineral oils (except chloroparaffinic oils and certain other derivatised oils) the separation additive will at a gravity separation form a lower phase together with the solid or dissolved impurities and in the cases were the separation additive has a lower density than the target fluid, it will form a lighter phase.
- the mixture to be added to the oil to be purified is called the separation additive.
- a fatty acid with added alkanolamine is preferably used as a separation additive.
- the separation additive may be in liquid form at room temperature. Fatty acids of animal as well as vegetable origin are suitable candidates.
- the fatty acid is at least one selected from the group consisting of alkanoic acids and alkenoic acids having a melting point so that the mixture is liquid at the temperature at which the process is carried out.
- the temperature at which the process is carried out is generally above 10° C. and preferably at ambient temperature.
- the process temperature is preferably below the boiling point of the separation additive and the oil to be purified and any other component of the mixture.
- the separation additive is liquid at room temperature.
- Suitable fatty acids are at least one selected from the group consisting of lauric acid, oleic acid, pentadecanoic acid, decenoic acid, 2-ethylhexanoic acid, and caprylic acid.
- Preferred fatty acids are 2-ethylhexanoic acid and caprylic acid, with the latter one being particularly preferred.
- the pH value of the liquid mixture is in the range of 5 to 8, preferably 6 to 7, with 6.3 as a particularly preferred value.
- the inventor means all pH value within this range such as 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0.
- At least one alkanolamine selected from the group consisting of mono-, di-, and triethanolamine is used.
- Monoethanolamine and triethanolamine are preferred.
- Triethanolamine is particularly preferred.
- the properties of the mixture of at least one fatty acid and at least one alkanolamine should be such that the mixture is substantially insoluble in the oil to be purified.
- the mixture to be added to the process oil may further comprise at least one substance selected from the group consisting of monoethylene glycol, dipropylene glycol monoethyl ether, propylene glycol and glycerol.
- the separation additive comprising the liquid mixture described above is added to the oil to be purified in an amount from 0.0001 to 10% by weight of the oil to be purified.
- the purification mixture is for instance added in an amount of about 3% to about 5% or even up to 10% by weight of the oil to be purified.
- the continuous purification of rolling and honing oil for instance only about 0.0001 to 0.0002% by weight of the oil to be purified is required. For other applications any amounts between these extremes are used.
- the separation additive is separated from the oil to be purified with one method or a combination of methods selected from the group consisting of static settling, centrifugal separation, vacuum filtration, press filtration, pre-coat filtration and centrifugal filtration.
- Honing oil (Castrol Honilo 971) which has been used in the manufacturing of connecting rods was purified in a bypass process according to the process described above.
- a solid wall separator was connected (MAB 204, Alfa Laval) equipped as a purifier.
- a liquid wall of separation additive was supplied after which the system was by pass purified with a flow of 180-240 litres per hour.
- IVAKI dosing pump
- the dosing rate was approximately 300 ml/h.
- the separation additive was based on caprylic acid with added triethanolamine with a resulting pH value of 6.3. 70% by weight of the caprylic acid with triethanolamine was mixed with 30% by weight of ethylene glycol to bring down the viscosity of the product prior to dosing.
- the particle concentration in the oil was measured by means of turbidity (HACH).
- Chloroparaffinic oil (Castrol 5051) from a steel industry was purified in laboratory scale. The oil which had been in use for about one year was heavily contaminated with carbon particles, lime fillers, and lubricating fats (approximately 20% impurities by weight). Initially the viscosity was measured for the unpurified oil with a Brookfield viscosimeter. 5% by weight of the separation additive was added to 1 kg of the contaminated oil. The product used was caprylic acid with added monoethanolamine with a resulting pH of 6.3. The mixture was allowed to stand in a warm hood in a separation funnel at 40° C. during 18 hours after which the heavy phase (the chloroparaffinic oil phase) was separated.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Lubricants (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Fats And Perfumes (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
A process for the purification of spent process oil, which process comprises, mixing the process oil with an additive comprising a liquid mixture of a) at least one alkanolamine, and b) at least one member selected from the group consisting of alkanoic acids, and alkenoic acids having from 6 to 18 carbon atoms and the melting point/points such that the mixture of a) and b) is liquid at the temperature at which the process is carried out, with a pH-value of said mixture of a) and b) in the range of 5 to 8, preferably 6 to 7, and most preferably 6.3, and said mixture being substantially insoluble in the process oil, forming a two phase mixture upon mixing, and subsequent separation of the phase with process oil from the phase with said mixture of a) and b) with absorbed contaminants. The invention further provides use of alkanoic acids and alkenoic acids having from 6 to 18 carbon atoms in the preparation of a mixture for the purification of spent process oil as well as the use of alkanolamines.
Description
- The present invention relates to a process for the purification of spent process oils, i.e. process oils contaminated with solid or dissolved impurities, which have been accumulated in the oil. The present invention further relates to the use of various substances for the purification of spent process oil.
- All patent citations are expressly incorporated by reference in their entirety.
- There are different kinds of process oils used within for instance the steel industry. When used as lubricating agents they become contaminated by impurities, which accumulate in the oil. So far no industrially useful process is available for the purification of these oils.
- The term process oil as used herein and in the claims generally relates to oil used in various industrial processes. Non-limiting examples of process oils are rolling oil, honing oil, engine lubricating oil, mineral oil, paraffin oil, and paraffin oil containing chlorine. A common method for the destruction of process oils is destruction by burning but such destruction causes environmental problems; this is particularly true for chlorine-containing oils of the type chloroparaffinic oils.
- At present many processes within the steel industry do not have environmentally friendly alternatives to chloroparaffinic oils for efficient lubrication at high load (heavy duty operations).
- Previously it is known that oils (based on vegetable or mineral oil) may be purified from contaminants with phase chemical methods based on organic polymers and/or polymer mixtures comprising a charged control polymer (WO95/14752). The main disadvantage of this process according to the prior art is due to the fact that the distribution between the target fluid and the separation additive mainly occurs between the target fluid and the surface between the target fluid and the separation additive. The background for this is the chemical interactions at the surface and that the density difference between the polymer/polymer mixtures and the target fluid is considerable.
- Further there is an earlier described process for the separation of particular impurities in mineral oils based on flocculation with dicarboxylic acids dissolved in a suitable organic solvent (SE464306).
- Accordingly there is a continuous need for a process by means of which contaminated process oils in general and environmentally non-friendly contaminated process oils such as chloroparaffinic oils, in particular, can be purified to such an extent as to enable the recycling thereof.
- Separation with several phases involved may be employed for applications where solid dispersed impurities or dissolved substances can not be separated from a fluid with other conventional techniques such as filtration or centrifugal separation. Such separations are in general based on surface-chemical phenomena and comprise choosing a suitable separation additive. Said separation additive is under given conditions substantially insoluble in the fluid to be purified. The aim of the chemical separation process is to separate the target fluid to be processed from at least one impurity.
- The process is called a chemical phase separation when a substance in the fluid to be purified, depending on its interactions with the surrounding molecules migrates to the separation additive. Chemical phase separation may constitute steps comprising more than two phases. This may be accomplished for instance by using several different separation media, which are not miscible.
- Chemical phase separation for the purification of chloroparaffinic oils has not been reported earlier in literature. This is in particular true for chloroparaffinic oils used at “heavy duty operations” within steel industry and other manufacturing processes regarding machining of steel and iron and with the type of impurities (lubricants and particular impurities) that are thereby accumulated in the oil.
- Methods to improve the separation of impurities consisting of particular and/or dissolved inorganic or organic agents from process oils of the type rolling oil or engine lubricating oil using phase chemical methods have also not been described previously.
- The present invention solves the problems of unnecessary destruction of contaminated process oils by admitting recycling of contaminated process oils after purification, which can not be achieved by any known technology.
- According to the invention there is provided a process which solves the problem to purify process oils from solid and dissolved impurities by means of a combined surface chemical and mechanical separation process. The process according to the invention for the purification of contaminated process oil thus comprises in a first step the addition to the contaminated oil to be purified of a specific separation additive, which by chemical interactions absorbs contaminating solid, or dissolved impurities in the process oil, and in a second step, separation of said separation additive and absorbed impurities using a method selected from the group consisting of static settling, centrifugal separation, vacuum filtration, press filtration, pre-coat filtration and centrifugal filtration.
- According to one aspect of the present invention there is provided a process for the purification of spent process oil, which process comprises,
-
- mixing the process oil with an additive comprising a liquid mixture of
- a) at least one alkanolamine, and
- b) at least one member selected from the group consisting of alkanoic acids, and alkenoic acids having from 6 to 18 carbon atoms and the melting point/points such that the mixture of a) and b) is liquid at the temperature at which the process is carried out,
- with a pH-value of said mixture of a) and b) in the range of 5 to 8, preferably 6 to 7, and most preferably 6.3, and said mixture being substantially insoluble in the process oil, forming a two phase mixture upon mixing, and
- subsequent separation of the phase with process oil from the phase with said mixture of a) and b) with absorbed contaminants.
- mixing the process oil with an additive comprising a liquid mixture of
- Different preferred embodiments of the present invention are defined in the dependent claims. In another aspect the present invention thus comprises a process, wherein a) is selected from the group consisting of mono-, di-, and triethanolamine.
- In a further aspect the present invention comprises a process, wherein a) is triethanolamine.
- In another aspect the present invention comprises a process, wherein b) is selected from the group consisting of lauric acid, oleic acid, pentadecanoic acid, decenoic acid, 2-ethylhexanoic acid, and caprylic acid.
- In another aspect the present invention comprises a process, wherein b) is selected from the group consisting of 2-ethylhexanoic acid and caprylic acid.
- In another aspect the present invention comprises a process, wherein the said separation of the two phases is carried out by one method or a combination of methods selected from the group consisting of static settling, centrifugal separation, vacuum filtration, press filtration, pre-coat filtration and centrifugal filtration.
- In another aspect the present invention comprises a process, wherein the mixture of a) and b) is added in an amount of 0.0001 to 10% by weight, calculated on the weight of the spent process oil.
- In another aspect the present invention comprises a process, wherein said additive in addition to components a) and b) further comprises c) at least one agent selected from the group consisting of monoethylene glycol, dipropylene monoethylether, glycerol, and propylene glycol.
- In another aspect the present invention comprises a process, which is carried out at a temperature above 10° C. and preferably at ambient temperature.
- In still another aspect the present invention comprises use of at least one member selected from the group consisting of alkanoic acids, and alkenoic acids having from 6 to 18 carbon atoms in the preparation of a mixture for the purification of spent process oil.
- In yet another aspect the present invention comprises use of at least one alkanolamine in the preparation of a mixture for the purification of spent process oil.
- In another aspect the present invention comprises use of a liquid mixture of
-
-
- a) at least one alkanolamine, and
- b) at least one member selected from the group consisting of alkanoic acids, and alkenoic acids having from 6 to 18 carbon atoms and the melting point/points such that the mixture of a) and b) is liquid at the temperature at which the process is carried out,
- for the purification of spent process oil.
-
- In yet another aspect the present invention comprises a use where the spent process oil is selected from the group consisting of mineral oil, rolling oil, honing oil, drawing oil, engine lubricating oil.
- In another aspect the present invention comprises a use where the temperature is above 10° C. and preferably ambient temperature.
- In the first process step a separation additive is mixed with the target fluid under vigorous stirring. The separation additive is not soluble in the target fluid because of its polar properties and thus colloids consisting of small droplets of separation additive are formed under the stirring, which through the chemical interactions (hydrophilic, hydrophobic, and charge interactions) may absorb the unwanted solid or the dissolved impurities in the target fluid. Because the separation additive has a higher density than most mineral oils (except chloroparaffinic oils and certain other derivatised oils) the separation additive will at a gravity separation form a lower phase together with the solid or dissolved impurities and in the cases were the separation additive has a lower density than the target fluid, it will form a lighter phase.
- The mixture to be added to the oil to be purified is called the separation additive. A fatty acid with added alkanolamine is preferably used as a separation additive. The separation additive may be in liquid form at room temperature. Fatty acids of animal as well as vegetable origin are suitable candidates. The fatty acid is at least one selected from the group consisting of alkanoic acids and alkenoic acids having a melting point so that the mixture is liquid at the temperature at which the process is carried out. The temperature at which the process is carried out is generally above 10° C. and preferably at ambient temperature. The process temperature is preferably below the boiling point of the separation additive and the oil to be purified and any other component of the mixture. Preferably the separation additive is liquid at room temperature.
- Suitable fatty acids are at least one selected from the group consisting of lauric acid, oleic acid, pentadecanoic acid, decenoic acid, 2-ethylhexanoic acid, and caprylic acid. Preferred fatty acids are 2-ethylhexanoic acid and caprylic acid, with the latter one being particularly preferred.
- To the fatty acid or the fatty acids at least one alkanolamine is added, so that the pH value of the liquid mixture is in the range of 5 to 8, preferably 6 to 7, with 6.3 as a particularly preferred value. With a pH range of for instance 6 to 7 the inventor means all pH value within this range such as 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0. A person skilled in the art realizes that also other pH values, although not optimal, outside the interval 6 to 7 may be used, such as 5.9, 5,8, 5.7, 5.6, 5.5, 5.4, 5.3, 5.2, 5.1, 5.0 and so on, or 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0 and so on.
- For the pH adjusting process at least one alkanolamine selected from the group consisting of mono-, di-, and triethanolamine is used. Monoethanolamine and triethanolamine are preferred. Triethanolamine is particularly preferred.
- The properties of the mixture of at least one fatty acid and at least one alkanolamine should be such that the mixture is substantially insoluble in the oil to be purified.
- The mixture to be added to the process oil may further comprise at least one substance selected from the group consisting of monoethylene glycol, dipropylene glycol monoethyl ether, propylene glycol and glycerol.
- The separation additive comprising the liquid mixture described above is added to the oil to be purified in an amount from 0.0001 to 10% by weight of the oil to be purified. For chloroparaffinic oils with a high amount of solids the purification mixture is for instance added in an amount of about 3% to about 5% or even up to 10% by weight of the oil to be purified. Whereas for the continuous purification of rolling and honing oil for instance only about 0.0001 to 0.0002% by weight of the oil to be purified is required. For other applications any amounts between these extremes are used.
- The separation additive is separated from the oil to be purified with one method or a combination of methods selected from the group consisting of static settling, centrifugal separation, vacuum filtration, press filtration, pre-coat filtration and centrifugal filtration.
- The following examples serve the purpose to further illustrate the invention and are not intended to be limiting in any way.
- 3 m3 rolling oil (valsolja-20, Statoil) which has been used during a normal cycle (12 weeks) without any kind of purification and which thus would be destroyed, was pumped to a pilot plant built for this purpose. The plant consisted of a storage tank with a volume of 3 m3 to which a centrifugal separator was connected (MAB 309 Alfa Laval) equipped as a purifier. The rolling oil was mainly contaminated with particular carbon particles (90% with a particle diameter less than 2 μm) and dissolved metal stearates, which are lubricants from earlier process steps. The centrifugal separator, which was connected for by-pass purification was of the type “solid wall machine”, which is a separator only intended to continuously separate two non-miscible fluid phases from each other.
- When the experiment was started a liquid wall was filled in the centrifugal separator, comprising the separation additive. Then the corresponding separation additive was mixed into the feed to the separator prior to a static mixer. The dosing was approximately 0.1%, The separation additive consisted of caprylic acid with added triethanolamine with a resulting pH value of 6.3. 70% by weight of the fatty acid with triethanolamine was mixed with 30% by weight of ethylene glycol to bring down the viscosity of the product prior to dosing. The system was operated with circulation during 6 hours with a flow of 900 1/h. The particle reduction for the rolling oil was measured with a turbidity meter (HACH) by sampling from the separator outlet with and without dosing of product. The reduction of dissolved stearate-soaps was analysed with atom emission analysis.
- Results
TABLE 1 Quantitative FTIR analysis of the additives present in the tested rolling oil. Sample No. 1: untreated rolling oil, rolling oil used for 12 weeks (spent rolling oil), and oil purified according to example 1. Anti oxidant Ester Lauric acid Absorbance maxi- Absorbance maxi- Absorbance maxi- mum at mum at mum at Sample 3650 cm−1 1745 cm−1 1712 cm−1 Untreated oil 0.040 0.002 0.469 Spent rolling 0.021 0.011 0.332 oil Purified 0.026 0.013 0.332 according to method -
TABLE 2 Particle reduction over time by means of turbidity measure- ment of a rolling oil subjected to purification according to the invention. Prior Sample to/after Oil flow Dosing Turbidity number separator 1/h rate 1/h (NTU) 1 Prior to 900 0 1800 separator 2 After separa- 900 0 1680 tor 3 After separa- 900 0.9 53 tor 4 After separa- 900 0.9 44 tor 5 After separa- 900 0.9 37 tor 6 After separa- 900 0.9 29 tor -
TABLE 3 Analysis of untreated and treated oil with respect to the presence of trace elements. Trace element Untreated Treated oil (mg/l) oil (mg/l) (mg/l) Calcium 128 20.7 Iron >360 12.4 Magnesium 1.2 0.5 Nickel 48 1.8 Sodium 16 0.6 Zink 43 6.5 - Honing oil (Castrol Honilo 971) which has been used in the manufacturing of connecting rods was purified in a bypass process according to the process described above. To a storage tank with a volume of 1000 litre a solid wall separator was connected (MAB 204, Alfa Laval) equipped as a purifier. A liquid wall of separation additive was supplied after which the system was by pass purified with a flow of 180-240 litres per hour. To the flow of oil to the separator the separation additive was dosed with a dosing pump (IVAKI) and subsequently the oil together with separation additive was passed through a centrifugal pump and a static mixer before the inlet to the separator. The dosing rate was approximately 300 ml/h. The separation additive was based on caprylic acid with added triethanolamine with a resulting pH value of 6.3. 70% by weight of the caprylic acid with triethanolamine was mixed with 30% by weight of ethylene glycol to bring down the viscosity of the product prior to dosing. The particle concentration in the oil was measured by means of turbidity (HACH).
- Results
- The results are shown in table 4
TABLE 4 Summary and analysis in example 2. Prior Sample to/after Oil flow Dosing Turbidity number separator 1/h rate 1/h (NTU) 1 Prior to 180 0 798 separator 2 After 180 0 240 separator 3 After 180 0 184 separator 4 After 180 0.3 16 separator 5 After 240 0.3 20 separator 6 After 240 0.2 20 separator 7 After 240 0.1 28 separator 8 After 240 0.1 12 separator 9 After 240 0.1 28 separator - 25 litres of marine lubricating oil (Argina x-40) with a duty time of 12 000 hours was purified by separation with a solid wall separator (Emmie, Alfa Laval) equipped as a purifier. The oil was heavily contaminated with soot particles and inorganic particles. Prior to separation the oil was heated to 95° C. The separator was filled with a liquid wall of separation additive and subsequently 250 ml (1% weight/volume) separation additive was mixed into the lubricating oil with a mechanical mixer. The mixture used as separation additive was caprylic acid with added triethanolamine with a pH of 6.3. 70% by weight of the caprylic acid with triethanolamine was mixed with 30% by weight of ethylene glycol to bring down the viscosity of the product prior to dosing. The oil was purified by circulation through the separator until no heavy phase could be noted in the heavy phase outlet, thus all fatty acid added to the lubricating oil had been removed. The amount of impurities insoluble in n-pentan was measured in untreated and treated oil. Any influence on the additives in the oil was analysed by comparing IR-spectra for purified oil, unpurified oil and fresh oil.
- Results
- As can be seen in table 5, the amount of impurities insoluble in n-pentan decreased by 77% when subjecting the oil to extraction and separation utilizing the separation additive according to the invention.
- IR-spectra of untreated oil, treated oil and new oil were identical in the wavelength interval 6500-3577 cm−1. In the wavelength interval 3577-3070 cm−1 a small difference in the spectra can be observed between untreated and treated oil. This difference is most likely caused by the presence of water in the untreated oil. In the rest of the wavelength interval no major differences in spectra could be noticed.
TABLE 5 Rest amount of impurities insoluble in n-pentan in untreated oil and oil treated according to the invention. Sample weight Rest weight Rest amount (grams) (grams) (%) Non-purified 7.8962 0.0232 0.29 oil Purified oil 8.4631 0.0056 0.066 - Chloroparaffinic oil (Castrol 5051) from a steel industry was purified in laboratory scale. The oil which had been in use for about one year was heavily contaminated with carbon particles, lime fillers, and lubricating fats (approximately 20% impurities by weight). Initially the viscosity was measured for the unpurified oil with a Brookfield viscosimeter. 5% by weight of the separation additive was added to 1 kg of the contaminated oil. The product used was caprylic acid with added monoethanolamine with a resulting pH of 6.3. The mixture was allowed to stand in a warm hood in a separation funnel at 40° C. during 18 hours after which the heavy phase (the chloroparaffinic oil phase) was separated. When the oil had reached room temperature the viscosity was measured. As a comparison the viscosity for new chloroparaffinic oil was also measured. To study whether any residues of separation additive remained in the oil an IR analysis was conducted where the oil was compared to unpurified oil.
- Results
TABLE 6 Viscosity measurement of new, contaminated and treated oil respectively in example 4. Sample description Viscosity (Cp) Contaminated oil 253 Treated oil 82 New oil 75
Claims (14)
1. A process for the purification of spent process oil, comprising:
mixing spent process oil with an additive comprising a liquid mixture of:
a) at least one alkanolamine, and
b) at least one member selected from the group consisting of an alkanoic acid, and an alkenoic acid having from 6 to 18 carbon atoms, wherein the melting point of the alkanoic acid and the alkenoic acid is such that the mixture of a) and b) is liquid at a temperature at which the process is carried out, wherein a pH-value of said mixture of a) and b) is in the range of 5 to 8, and said mixture is substantially insoluble in process oil,
forming a two phase mixture upon mixing; and
separating a phase with process oil from a phase with said mixture of a) and b) wherein the mixture of a) and b) absorbed contaminants.
2. A process according to claim 1 , wherein a) is selected from the group consisting of monoethanolamine, diethanolamine and triethanolamine.
3. A process according to claim 1 , wherein a) is triethanolamine.
4. A process according to claim 1 , wherein b) is selected from the group consisting of lauric acid, oleic acid, pentadecanoic acid, decenoic acid, 2- ethylhexanoic acid, and caprylic acid.
5. A process according to claim 1 , wherein b) is selected from the group consisting of 2-ethylhexanoic acid and caprylic acid.
6. A process according to claim 1 , wherein said separating of the two phase mixture is carried out by one method or a combination of methods selected from the group consisting of static settling, centrifugal separation, vacuum filtration, press filtration, pre-coat filtration and centrifugal filtration.
7. A process according to claim 1 , wherein the mixture of a) and b) is added in an amount of 0.0001 to 10% by weight, calculated on the weight of the spent process oil.
8. A process according to claim 1 , wherein said additive further comprises at least one agent selected from the group consisting of monoethylene glycol, dipropylene monoethylether, glycerol, and propylene glycol.
9. A process according to claim 1 , which is carried out at a temperature above 10° C.
10. Use of at least one member selected from the group consisting of alkanoic acid, and alkenoic acid having from 6 to 18 carbon atoms in the preparation of a mixture for purification of spent process oil.
11. Use of at least one alkanolamine in the preparation of a mixture for purification of spent process oil.
12. Use of a liquid mixture for purification of spent process oil, said liquid mixture comprising:
a) at least one alkanolamine, and
b) at least one member selected from the group consisting of alkanoic acid, and alkenoic acid having from 6 to 18 carbon atoms, wherein the melting point of the alkanoic acid and the alkenoic acid is such that the mixture of a) and b) is liquid at a temperature at which the process is carried out.
13. Use according to claim 10 wherein the spent process oil is selected from the group consisting of mineral oil, rolling oil, honing oil, drawing oil and engine lubricating oil.
14. Use according to claim 10 wherein the temperature is above 10° C.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE0401291-0 | 2004-05-17 | ||
| SE0401291A SE0401291D0 (en) | 2004-05-17 | 2004-05-17 | Process for the purification of spent process oil |
| PCT/SE2005/000701 WO2005111181A1 (en) | 2004-05-17 | 2005-05-16 | Process for the purification of spent process oil |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070241030A1 true US20070241030A1 (en) | 2007-10-18 |
Family
ID=32501929
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/596,736 Abandoned US20070241030A1 (en) | 2004-05-17 | 2005-05-16 | Process for the Purification of Spent Process Oil |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US20070241030A1 (en) |
| EP (1) | EP1773971A1 (en) |
| JP (1) | JP2007538134A (en) |
| KR (1) | KR20070015581A (en) |
| CN (1) | CN1973022A (en) |
| BR (1) | BRPI0510791A (en) |
| SE (1) | SE0401291D0 (en) |
| WO (1) | WO2005111181A1 (en) |
| ZA (1) | ZA200609310B (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100144508A1 (en) * | 2007-05-10 | 2010-06-10 | Alfa Laval Corporate Ab | Method and device for cleaning of a fluid in a centrifugal separator |
| US20150265955A1 (en) * | 2014-03-19 | 2015-09-24 | Krishna Kanchi | System and method for recycling used oil |
| US11060043B2 (en) * | 2017-06-02 | 2021-07-13 | Hindustan Petroleum Corporation Limited | Formulation for enhancing lubricity of fuels |
| US11958004B2 (en) | 2019-02-08 | 2024-04-16 | Skf Recondoil Ab | Method and system for purification of contaminated oil |
| US12097453B2 (en) | 2019-02-08 | 2024-09-24 | Skf Recondoil Ab | Method and system for circular use of industrial oil |
| US12377367B2 (en) | 2020-05-18 | 2025-08-05 | Skf Recondoil Ab | Solvent extraction system and method |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102585989B (en) * | 2011-12-28 | 2013-08-07 | 重庆渝能滤油机制造有限公司 | Waste oil regeneration system |
| FR3000498B1 (en) * | 2012-12-27 | 2015-03-13 | Total Raffinage Marketing | COMBUSTIBLE COMPOSITION COMPRISING A HEAVY FUEL AND A PRODUCT FROM THE BIOMASS. |
| CN103937530B (en) * | 2013-01-21 | 2016-08-03 | 中国石油化工股份有限公司 | A kind of weight oil treatment process |
| CN104450147A (en) * | 2014-11-05 | 2015-03-25 | 华文蔚 | Environment-friendly purification method for waste oil of automobile industry |
| CN104479736A (en) * | 2014-12-03 | 2015-04-01 | 烟台市牟平区留德润滑油销售有限公司 | Waste lube distillate oil refinement method |
| EP3339405A1 (en) | 2016-12-20 | 2018-06-27 | Alfa Laval Corporate AB | Separation of contaminants from a liquid mixture |
| SE541119C2 (en) | 2017-04-28 | 2019-04-09 | Recondoil Sweden Ab | Method, system and computer program for purification of oil by reusing a sludge phase |
| SE541116C2 (en) | 2017-04-28 | 2019-04-09 | Recondoil Sweden Ab | A system, method and computer program for purification of oil by sedimentation |
| KR102650300B1 (en) | 2017-04-28 | 2024-03-22 | 레콘드오일 스웨덴 에이비 | refining of oil |
| CN107400555A (en) * | 2017-07-21 | 2017-11-28 | 浙江师范大学 | A kind of method using discarded machine oil production cutting oil and releasing agent |
| CN110747050B (en) * | 2019-11-06 | 2022-02-11 | 沈阳理工大学 | A kind of pickling agent for waste oil regeneration and pickling treatment method |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2435707A (en) * | 1941-05-31 | 1948-02-10 | Ulric B Bray | Method of and apparatus for treating oil |
| US4094770A (en) * | 1977-06-22 | 1978-06-13 | Chevron Research Company | Process for removing unfilterable solids from an oil |
| US4432865A (en) * | 1982-01-25 | 1984-02-21 | Norman George R | Process for treating used motor oil and synthetic crude oil |
| US5141628A (en) * | 1987-08-19 | 1992-08-25 | Rwe-Entsorgung Aktiengesellschaft | Method of cleaning and regenerating used oils |
| US5976357A (en) * | 1993-11-29 | 1999-11-02 | Alfa Laval Separation Ab | Purification of oil |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6395166B1 (en) * | 2000-08-30 | 2002-05-28 | Frederick J. Haydock | Method of reclaiming used motor oil for further use |
| SE524469C2 (en) * | 2002-12-12 | 2004-08-10 | Alfa Laval Corp Ab | When cleaning oil from polluting particles, put in a centrifugal separator |
-
2004
- 2004-05-17 SE SE0401291A patent/SE0401291D0/en unknown
-
2005
- 2005-05-16 JP JP2007527108A patent/JP2007538134A/en active Pending
- 2005-05-16 WO PCT/SE2005/000701 patent/WO2005111181A1/en not_active Ceased
- 2005-05-16 US US11/596,736 patent/US20070241030A1/en not_active Abandoned
- 2005-05-16 BR BRPI0510791-1A patent/BRPI0510791A/en not_active Application Discontinuation
- 2005-05-16 KR KR1020067024035A patent/KR20070015581A/en not_active Withdrawn
- 2005-05-16 EP EP05744662A patent/EP1773971A1/en not_active Withdrawn
- 2005-05-16 CN CNA2005800160052A patent/CN1973022A/en active Pending
-
2006
- 2006-11-08 ZA ZA200609310A patent/ZA200609310B/en unknown
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2435707A (en) * | 1941-05-31 | 1948-02-10 | Ulric B Bray | Method of and apparatus for treating oil |
| US4094770A (en) * | 1977-06-22 | 1978-06-13 | Chevron Research Company | Process for removing unfilterable solids from an oil |
| US4432865A (en) * | 1982-01-25 | 1984-02-21 | Norman George R | Process for treating used motor oil and synthetic crude oil |
| US5141628A (en) * | 1987-08-19 | 1992-08-25 | Rwe-Entsorgung Aktiengesellschaft | Method of cleaning and regenerating used oils |
| US5976357A (en) * | 1993-11-29 | 1999-11-02 | Alfa Laval Separation Ab | Purification of oil |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100144508A1 (en) * | 2007-05-10 | 2010-06-10 | Alfa Laval Corporate Ab | Method and device for cleaning of a fluid in a centrifugal separator |
| US8790233B2 (en) * | 2007-05-10 | 2014-07-29 | Alfa Laval Corporate Ab | Method and device for cleaning of a fluid in a centrifugal separator |
| US20150265955A1 (en) * | 2014-03-19 | 2015-09-24 | Krishna Kanchi | System and method for recycling used oil |
| US11060043B2 (en) * | 2017-06-02 | 2021-07-13 | Hindustan Petroleum Corporation Limited | Formulation for enhancing lubricity of fuels |
| US11958004B2 (en) | 2019-02-08 | 2024-04-16 | Skf Recondoil Ab | Method and system for purification of contaminated oil |
| US12097453B2 (en) | 2019-02-08 | 2024-09-24 | Skf Recondoil Ab | Method and system for circular use of industrial oil |
| US12370477B2 (en) | 2019-02-08 | 2025-07-29 | Skf Recondoil Ab | Liquid composition for purification of oil |
| US12377367B2 (en) | 2020-05-18 | 2025-08-05 | Skf Recondoil Ab | Solvent extraction system and method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2007538134A (en) | 2007-12-27 |
| KR20070015581A (en) | 2007-02-05 |
| EP1773971A1 (en) | 2007-04-18 |
| ZA200609310B (en) | 2008-06-25 |
| CN1973022A (en) | 2007-05-30 |
| BRPI0510791A (en) | 2007-11-20 |
| WO2005111181A1 (en) | 2005-11-24 |
| SE0401291D0 (en) | 2004-05-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070241030A1 (en) | Process for the Purification of Spent Process Oil | |
| US4505839A (en) | Polyalkanolamines | |
| CN101486515B (en) | Oily wastewater treatment method and whole set apparatus thereof | |
| WO2013091032A1 (en) | Method for processing of oil sludge and oil sediments | |
| US4404362A (en) | Block polymers of alkanolamines | |
| CN101665744A (en) | Method for processing fatty wastes | |
| US4959160A (en) | Process for the treatment of contaminated emulsion | |
| RU2698667C1 (en) | Method for processing oil-containing sludge and technological complex for its implementation | |
| JP2024028377A (en) | Wastewater treatment method | |
| US4731481A (en) | Polyalkanolamines | |
| Sterpu et al. | Regeneration of used engine lubricating oil by solvent extraction | |
| CN107779301B (en) | Aerospace precision industrial cleaning agent | |
| WO2002018523A9 (en) | A method of reclaiming used motor oil for further use | |
| KR102209280B1 (en) | Separation of contaminants from liquid mixtures | |
| ES2532394T3 (en) | Recovery of used cooling lubricant lubricants | |
| US4459220A (en) | Block polymers of alkanolamines as demulsifiers for O/W emulsions | |
| US4840748A (en) | Polyalkanolamines | |
| US8648219B2 (en) | Method for purifying glycerin and products obtained therefrom | |
| RU2411260C1 (en) | Method of processing oil-containing slimes | |
| RU2805550C1 (en) | Processing method for used technical liquids and oils | |
| CN1024019C (en) | Improving acid-earth process of regeneration of waste oil by using polyethylene amines condensed agent to replace sulfuric acid | |
| RU2721518C1 (en) | Mobile unit for processing emulsion intermediate layers of well products | |
| Juraev et al. | INVESTIGATION OF THE PHYSICOCHEMICAL PROPERTIES OF RECOVERED OIL BY DETERMINING THE OPTIMAL AMOUNTS OF ACIDS AND ADSORBENTS IN THE USED OIL RECYCLING PROCESS | |
| WO2013029104A1 (en) | Process for separating used-oil from water | |
| RU2156275C2 (en) | Method of processing and reusing petroleum-containing sludges |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: VIATECH SYSTEMS AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STROM, GUNNAR;REEL/FRAME:019351/0668 Effective date: 20070522 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |