US20070237629A1 - Gas turbine compressor casing flowpath rings - Google Patents
Gas turbine compressor casing flowpath rings Download PDFInfo
- Publication number
- US20070237629A1 US20070237629A1 US11/397,560 US39756006A US2007237629A1 US 20070237629 A1 US20070237629 A1 US 20070237629A1 US 39756006 A US39756006 A US 39756006A US 2007237629 A1 US2007237629 A1 US 2007237629A1
- Authority
- US
- United States
- Prior art keywords
- flowpath
- ring
- compressor
- rings
- casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004044 response Effects 0.000 claims abstract description 7
- 230000001052 transient effect Effects 0.000 claims abstract description 5
- 239000012212 insulator Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000003754 machining Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 230000008439 repair process Effects 0.000 abstract description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/04—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/11—Shroud seal segments
Definitions
- the present invention relates to compressor rotors and stator casings and, more particularly, to rings set in dedicated grooves in the stator casing that define the outer flowpath and that can be easily replaced in the event of rotor airfoil tip rubbing.
- gas turbines attain optimum performance when the clearance 22 between rotating blades 20 and the casing 12 is maintained at an optimal distance, which is generally very small, e.g., 40-80 mils at steady state temperatures.
- This clearance must be made large enough, however, to account for part stack up tolerance, mechanical and thermal growth differences between the casing 12 and the rotating airfoil 20 .
- a common occurrence in gas turbine compressors is rotor blades rubbing on compressor casings for various reasons. Rubbing can be caused by a number of conditions such as improper alignment between the rotor 18 and the casing, casing joint slippage at the horizontal and vertical flanges, or transient thermal response differences between the casing 12 and rotating parts.
- the end result is airfoil 20 tip loss and/or casing flowpath wear. These conditions lead to a loss of compressor performance and surge margin. If rubs are severe enough, the casing and rotating airfoils have to be replaced. Typically, this will result in loss of service of the gas turbine for an extended period of time.
- a flowpath ring is securable in a machined groove of a compressor stator casing.
- the flowpath ring includes a connector section engageable with the machined groove where the connector section is shaped corresponding to the machined groove.
- a flowpath section is disposed radially inward relative to the connector section and includes a clearance surface disposed facing a compressor rotor blade and defining a blade flowpath when secured in the compressor stator casing machined groove.
- a gas turbine compressor in an another exemplary embodiment of the invention, includes a stator casing having airfoil grooves each supporting a plurality of stator airfoils.
- a rotor supports a plurality of rotor blades for rotation relative to the stator casing.
- a plurality of the noted flowpath rings are secured in respective ring grooves in the stator casing.
- FIG. 1 is a cross-sectional view of a typical gas turbine compressor
- FIG. 2 shows the machined stator casing including ring grooves between the stator grooves
- FIG. 3 shows flowpath rings secured in the stator ring grooves
- FIG. 4 illustrates the flowpath rings including air gap insulators
- FIG. 5 shows the flowpath ring including seals to minimize back side leakage.
- replaceable rings By utilizing easily replaceable rings installed in the casing where the rotor blades may rub the casing, flowpath repairs can be effected rapidly and efficiently. Additionally, replaceable rings (or flowpath rings) can reduce the rate of heat transfer into the casing, thereby changing the transient and steady state matching of the rotor and casing thermal growth. This allows for a passive clearance controlling design feature that permits tighter clearances between the rotor blades and the casing, adding to overall engine performance and surge margins.
- a gas turbine includes a stator casing 12 having a plurality of airfoil grooves 14 machined therein as is conventional.
- the airfoil grooves 14 are formed generally continuously in the inside circumference of the stator casing 12 .
- the airfoil grooves 14 each support a plurality of stator airfoils 16 as is also conventional.
- a rotor 18 supports a plurality of rotor blades 20 for rotation relative to the stator casing 12 .
- gas turbines attain optimum performance when the clearance, designated by reference numeral 22 , between rotating airfoils and the stator casing 12 is maintained at an optimal distance, which is generally very small (e.g., 40-80 mils at steady state temperature).
- a common occurrence during the operation of a gas turbine compressor is rubbing or contact between tips of the rotor blades 20 and the stator casing 12 .
- the end result is rotor tip loss and/or casing flowpath wear, which can lead to a loss of compressor performance and surge margin.
- the stator casing 12 and rotor blades 20 may require replacement, resulting in loss of service of the turbine for an extended period of time.
- the stator casing 12 is machined with additional grooves 24 preferably interposed between adjacent ones of the airfoil grooves 14 .
- the machining process for forming the ring grooves 24 is very similar to the conventional process conducted in machining the stator airfoil grooves 14 , and details of the manufacturing/machining process will not be described.
- a plurality of flowpath rings 26 are secured in respective ring grooves 24 in the stator casing 12 .
- the flowpath rings 26 include a connector section 28 shaped corresponding to the machined groove 24 and a flowpath section 30 disposed radially inward relative to the casing 12 (i.e., toward the rotor 18 ).
- the flowpath section 30 includes a clearance surface 32 disposed facing the turbine rotor blades 20 and defining a blade flowpath when the flowpath rings 26 are secured in the stator casing 12 .
- the flowpath rings 26 are each formed of a plurality of ring segments to minimize binding in the groove 24 .
- the flowpath rings 26 can be used to optimize tip clearance by using an abradable coating 34 formed on the clearance surface 32 of the flowpath rings 26 .
- the clearance surface 32 includes a groove 36 or the like in which the abradable coating 34 is disposed.
- abradable coatings that can be used for this application are aluminium silicon alloy/polymer composite, nickel/graphite composite, aluminium bronze/polymer composites.
- the flowpath rings 26 may additionally include at least one air gap insulator 38 formed on a casing side surface as shown.
- the air gap insulators 38 are preferably machined as a groove in the casing side surface.
- An optimum air gap on the casing side of the flowpath rings 26 can serve to insulate the casing 12 from the rapid transient response of the flowpath temperature.
- the air gap insulators 38 control heat transfer between the flowpath rings 26 and the casing 12 to thereby control the rate of heating or cooling of the casing 12 in response to temperature changes in the flowpath.
- Increases to the air gap insulator 38 thickness and decreases in the surface area of the points of contact will reduce the rate of heat transfer and thus reduce the casing thermal responsiveness.
- a seal 40 ( FIG. 5 ) may be interposed between the casing side surface of the rings 26 and the stator casing 12 .
- an additional groove or notch 42 may be formed in the casing side surface of the ring flowpath section 30 to accommodate the seal 40 .
- the seal 40 is formed of a metallic wire/rope or other suitable material.
- the flowpath rings are replaceable, flowpath repairs due to rotor blade tip rubbing can be quickly facilitated in a reliable and cost effective manner. Thus, even on units with heavy rubbing, original performance and compressor surge margin can be restored. Moreover, the cycle time and associated cost to replace the flowpath rings is considerably less than to replace casings. Additionally, the flowpath rings 26 allow for a better thermal match between rotors and compressor casings, allowing a designer to better match the thermal responses and thereby run with tighter clearances. As noted, the compressor casing flowpath rings can be coated with an abradable material to allow closer clearances and an improvement in compressor performance.
- the flowpath rings can be installed in new units as a performance enhancement feature, particularly if combined with abradable coatings. Since the flowpath ring grooves can be machined into a stator casing in the same manner as stator slots with similar tolerance control, the flowpath rings can be accommodated with minimal cost and cycle impact on the casing.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
A flowpath ring is securable in a machined groove of a gas turbine compressor stator casing. The ring includes a connector section engageable with and shaped corresponding to the machined groove. A flowpath section is disposed radially inward relative to the connector section and includes a clearance surface disposed facing a turbine rotor blade. The flowpath section defines a blade flowpath when secured in the turbine stator casing machined groove. The use of flowpath rings facilitates flowpath repair if rotor blade tip rubs occur. Additionally, the rings enable better matching of transient thermal responses between the compressor rotor and compressor casings.
Description
- The present invention relates to compressor rotors and stator casings and, more particularly, to rings set in dedicated grooves in the stator casing that define the outer flowpath and that can be easily replaced in the event of rotor airfoil tip rubbing.
- With reference to
FIG. 1 , showing a cross-sectional view of a typical gas turbine, gas turbines attain optimum performance when theclearance 22 betweenrotating blades 20 and thecasing 12 is maintained at an optimal distance, which is generally very small, e.g., 40-80 mils at steady state temperatures. This clearance must be made large enough, however, to account for part stack up tolerance, mechanical and thermal growth differences between thecasing 12 and the rotatingairfoil 20. - A common occurrence in gas turbine compressors is rotor blades rubbing on compressor casings for various reasons. Rubbing can be caused by a number of conditions such as improper alignment between the
rotor 18 and the casing, casing joint slippage at the horizontal and vertical flanges, or transient thermal response differences between thecasing 12 and rotating parts. The end result isairfoil 20 tip loss and/or casing flowpath wear. These conditions lead to a loss of compressor performance and surge margin. If rubs are severe enough, the casing and rotating airfoils have to be replaced. Typically, this will result in loss of service of the gas turbine for an extended period of time. - With continued reference to
FIG. 1 , current industrial gas turbine compressor casings are built withcircumferential slots 14 machined into the casing forstationary airfoils 16. Between the slots, thecasing 12 is machined to a cylindrical or conical shape and forms the outer flowpath for the rotatingblades 20. With current designs, the casing thickness is the main design variable that can be changed in an effort to thermally match the displacements of thecasing 12 androtor 18. - In an exemplary embodiment of the invention, a flowpath ring is securable in a machined groove of a compressor stator casing. The flowpath ring includes a connector section engageable with the machined groove where the connector section is shaped corresponding to the machined groove. A flowpath section is disposed radially inward relative to the connector section and includes a clearance surface disposed facing a compressor rotor blade and defining a blade flowpath when secured in the compressor stator casing machined groove.
- In an another exemplary embodiment of the invention, a gas turbine compressor includes a stator casing having airfoil grooves each supporting a plurality of stator airfoils. A rotor supports a plurality of rotor blades for rotation relative to the stator casing. A plurality of the noted flowpath rings are secured in respective ring grooves in the stator casing.
-
FIG. 1 is a cross-sectional view of a typical gas turbine compressor; -
FIG. 2 shows the machined stator casing including ring grooves between the stator grooves; -
FIG. 3 shows flowpath rings secured in the stator ring grooves; -
FIG. 4 illustrates the flowpath rings including air gap insulators; and -
FIG. 5 shows the flowpath ring including seals to minimize back side leakage. - It would be desirable to facilitate repairs in rotor flowpaths due to rotor airfoil tip rubbing. In this manner, optimum clearances can be restored while recovering performance and surge margin. Also, clearances can be made tighter in order to increase performance and surge margin.
- By utilizing easily replaceable rings installed in the casing where the rotor blades may rub the casing, flowpath repairs can be effected rapidly and efficiently. Additionally, replaceable rings (or flowpath rings) can reduce the rate of heat transfer into the casing, thereby changing the transient and steady state matching of the rotor and casing thermal growth. This allows for a passive clearance controlling design feature that permits tighter clearances between the rotor blades and the casing, adding to overall engine performance and surge margins.
- With reference to
FIGS. 1-3 , a gas turbine includes astator casing 12 having a plurality ofairfoil grooves 14 machined therein as is conventional. Theairfoil grooves 14 are formed generally continuously in the inside circumference of thestator casing 12. The airfoil grooves 14 each support a plurality ofstator airfoils 16 as is also conventional. - A
rotor 18 supports a plurality ofrotor blades 20 for rotation relative to thestator casing 12. As noted, gas turbines attain optimum performance when the clearance, designated byreference numeral 22, between rotating airfoils and thestator casing 12 is maintained at an optimal distance, which is generally very small (e.g., 40-80 mils at steady state temperature). A common occurrence during the operation of a gas turbine compressor is rubbing or contact between tips of therotor blades 20 and thestator casing 12. The end result is rotor tip loss and/or casing flowpath wear, which can lead to a loss of compressor performance and surge margin. Moreover, if rubs are severe enough, thestator casing 12 androtor blades 20 may require replacement, resulting in loss of service of the turbine for an extended period of time. - With reference to
FIG. 2 , thestator casing 12 is machined withadditional grooves 24 preferably interposed between adjacent ones of theairfoil grooves 14. The machining process for forming thering grooves 24 is very similar to the conventional process conducted in machining thestator airfoil grooves 14, and details of the manufacturing/machining process will not be described. - A plurality of flowpath rings 26 (
FIG. 3 ) are secured inrespective ring grooves 24 in thestator casing 12. Theflowpath rings 26 include a connector section 28 shaped corresponding to themachined groove 24 and aflowpath section 30 disposed radially inward relative to the casing 12 (i.e., toward the rotor 18). Theflowpath section 30 includes aclearance surface 32 disposed facing theturbine rotor blades 20 and defining a blade flowpath when theflowpath rings 26 are secured in thestator casing 12. Preferably, theflowpath rings 26 are each formed of a plurality of ring segments to minimize binding in thegroove 24. - The
flowpath rings 26 can be used to optimize tip clearance by using anabradable coating 34 formed on theclearance surface 32 of theflowpath rings 26. Preferably, theclearance surface 32 includes agroove 36 or the like in which theabradable coating 34 is disposed. Examples of abradable coatings that can be used for this application are aluminium silicon alloy/polymer composite, nickel/graphite composite, aluminium bronze/polymer composites. By using theabradable coating 34, therotor blades 20 can serve to carve/cut the coating during the clearance pinch-point to attain an optimal steady state running clearance. - With reference to
FIG. 4 , theflowpath rings 26 may additionally include at least oneair gap insulator 38 formed on a casing side surface as shown. Theair gap insulators 38 are preferably machined as a groove in the casing side surface. An optimum air gap on the casing side of theflowpath rings 26 can serve to insulate thecasing 12 from the rapid transient response of the flowpath temperature. Theair gap insulators 38 control heat transfer between theflowpath rings 26 and thecasing 12 to thereby control the rate of heating or cooling of thecasing 12 in response to temperature changes in the flowpath. Increases to theair gap insulator 38 thickness and decreases in the surface area of the points of contact will reduce the rate of heat transfer and thus reduce the casing thermal responsiveness. These are the primary design variables which may be used to match the casing response to therotor 18 response. - Moreover, in order to further minimize flowpath gas leakage behind the
rings 26, a seal 40 (FIG. 5 ) may be interposed between the casing side surface of therings 26 and thestator casing 12. As shown inFIG. 5 , an additional groove ornotch 42 may be formed in the casing side surface of thering flowpath section 30 to accommodate theseal 40. Preferably, theseal 40 is formed of a metallic wire/rope or other suitable material. - Since the flowpath rings are replaceable, flowpath repairs due to rotor blade tip rubbing can be quickly facilitated in a reliable and cost effective manner. Thus, even on units with heavy rubbing, original performance and compressor surge margin can be restored. Moreover, the cycle time and associated cost to replace the flowpath rings is considerably less than to replace casings. Additionally, the
flowpath rings 26 allow for a better thermal match between rotors and compressor casings, allowing a designer to better match the thermal responses and thereby run with tighter clearances. As noted, the compressor casing flowpath rings can be coated with an abradable material to allow closer clearances and an improvement in compressor performance. As would be appreciated by those of ordinary skill in the art, the flowpath rings can be installed in new units as a performance enhancement feature, particularly if combined with abradable coatings. Since the flowpath ring grooves can be machined into a stator casing in the same manner as stator slots with similar tolerance control, the flowpath rings can be accommodated with minimal cost and cycle impact on the casing. - While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Claims (20)
1. A flowpath ring securable in a machined groove of a compressor stator casing, the flowpath ring comprising:
a connector section engageable with the machined groove, the connector section being shaped corresponding to the machined groove; and
a flowpath section disposed radially inward relative to the connector section, the flowpath section including a clearance surface disposed facing a compressor rotor blade and defining a blade flowpath when secured in the compressor stator casing machined groove.
2. A flowpath ring according to claim 1 , wherein the flowpath ring comprises a plurality of segments.
3. A flowpath ring according to claim 1 , wherein the ring is attachable in the compressor stator casing machined groove between adjacent stator airfoils.
4. A flowpath ring according to claim 1 , further comprising an abradable coating on the clearance surface.
5. A flowpath ring according to claim 4 , further comprising a groove in the clearance surface, the abradable coating being disposed in the groove.
6. A flowpath ring according to claim 1 , further comprising at least one air gap insulator disposed on a casing side surface of the flowpath ring.
7. A flowpath ring according to claim 6 , wherein the air gap insulator comprises a groove formed in the casing side surface.
8. A flowpath ring according to claim 6 , wherein the air gap insulator further comprises a seal interposable between the casing side surface of the flowpath ring and the casing.
9. A flowpath ring according to claim 1 , comprising a substantially T-shaped cross-section, wherein the connector section defines a stem of the T-shape, and wherein the flowpath section defines a cross of the T-shape.
10. A compressor comprising:
a stator casing having airfoil grooves each supporting a plurality of stator airfoils;
a rotor supporting a plurality of rotor blades for rotation relative to the stator casing; and
a plurality of flowpath rings secured in respective ring grooves in the stator casing, wherein each of the flowpath rings comprises:
a connector section engaged with the ring groove, the connector section being shaped corresponding to the ring groove, and
a flowpath section disposed radially inward relative to the connector section, the flowpath section including a clearance surface disposed facing the rotor blades and defining a blade flowpath.
11. A compressor according to claim 10 , wherein each of the flowpath rings comprises a plurality of segments.
12. A compressor according to claim 10 , wherein the ring grooves are formed between adjacent ones of the airfoil grooves.
13. A compressor according to claim 10 , wherein each of the flowpath rings further comprises an abradable coating on the clearance surface.
14. A compressor according to claim 10 , wherein each of the flowpath rings further comprises at least one air gap insulator disposed on a casing side surface thereof.
15. A compressor according to claim 14 , wherein the air gap insulator comprises a groove formed in the casing side surface.
16. A compressor according to claim 14 , wherein the air gap insulator further comprises a seal interposable between the casing side surface of the flowpath ring and the casing.
17. A compressor according to claim 10 , wherein each of the flowpath rings comprises a substantially T-shaped cross-section, wherein the connector section defines a stem of the T-shape, and wherein the flowpath section defines a cross of the T-shape.
18. A compressor according to claim 10 , wherein each of the flowpath rings is shaped to match transient thermal responses between the rotor and the stator casing.
19. A method of assembling a stator casing, the method comprising:
machining a plurality of airfoil grooves each for supporting a plurality of stator airfoils;
machining a plurality of ring grooves interposed between adjacent ones of the airfoil grooves; and
securing a plurality of the flowpath rings of claim 1 in respective ones of the ring grooves.
20. A method of restoring original performance and compressor surge margin or modifying performance and compressor surge margin in the compressor of claim 10 , the method comprising removing damaged ones of the flowpath rings, and inserting replacement rings.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/397,560 US20070237629A1 (en) | 2006-04-05 | 2006-04-05 | Gas turbine compressor casing flowpath rings |
| JP2007097669A JP2007278287A (en) | 2006-04-05 | 2007-04-03 | Gas turbine compressor casing flowpath ring and assembly method of stator casing |
| KR1020070033267A KR20070100133A (en) | 2006-04-05 | 2007-04-04 | Flow path ring of compressor stator casing and fixing method of stator casing |
| EP07105674A EP1843010A2 (en) | 2006-04-05 | 2007-04-04 | Gas turbine compressor casing flowpath rings |
| CNA200710089872XA CN101050774A (en) | 2006-04-05 | 2007-04-05 | Gas turbine compressor casing flowpath rings |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/397,560 US20070237629A1 (en) | 2006-04-05 | 2006-04-05 | Gas turbine compressor casing flowpath rings |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070237629A1 true US20070237629A1 (en) | 2007-10-11 |
Family
ID=38050207
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/397,560 Abandoned US20070237629A1 (en) | 2006-04-05 | 2006-04-05 | Gas turbine compressor casing flowpath rings |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20070237629A1 (en) |
| EP (1) | EP1843010A2 (en) |
| JP (1) | JP2007278287A (en) |
| KR (1) | KR20070100133A (en) |
| CN (1) | CN101050774A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8602720B2 (en) | 2010-06-22 | 2013-12-10 | Honeywell International Inc. | Compressors with casing treatments in gas turbine engines |
| US20140003926A1 (en) * | 2012-06-28 | 2014-01-02 | Alstom Technology Ltd | Compressor for a gas turbine and method for repairing and/or changing the geometry of and/or servicing said compressor |
| CN116604272A (en) * | 2021-03-31 | 2023-08-18 | 中国航发常州兰翔机械有限责任公司 | Frock is used in repair of aeroengine axial compressor cartridge receiver runner |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9643286B2 (en) * | 2007-04-05 | 2017-05-09 | United Technologies Corporation | Method of repairing a turbine engine component |
| EP2075416B1 (en) * | 2007-12-27 | 2011-05-18 | Techspace Aero | Method for manufacturing a turboshaft engine element and device obtained using same |
| US8092168B2 (en) * | 2009-04-10 | 2012-01-10 | General Electric Company | Patch plug repair of a compressor case stator ring hook, near the horizontal joint |
| JP4916560B2 (en) | 2010-03-26 | 2012-04-11 | 川崎重工業株式会社 | Gas turbine engine compressor |
| US20110299977A1 (en) * | 2010-06-03 | 2011-12-08 | General Electric Company | Patch ring segment for a turbomachine compressor |
| US8529210B2 (en) * | 2010-12-21 | 2013-09-10 | Hamilton Sundstrand Corporation | Air cycle machine compressor rotor |
| CN102102543B (en) * | 2011-03-11 | 2013-05-15 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Turbine rotor blade of gas turbine |
| CN102102544B (en) * | 2011-03-11 | 2013-10-02 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Turbine rotor blade of gas turbine |
| US9121301B2 (en) * | 2012-03-20 | 2015-09-01 | General Electric Company | Thermal isolation apparatus |
| FR3011033B1 (en) * | 2013-09-25 | 2018-02-02 | Safran Aircraft Engines | FIXING ABRADABLE SECTIONS HELD BY SLIDE |
| CN112160933B (en) * | 2020-10-19 | 2022-06-14 | 杭州汽轮动力集团有限公司 | Detachable blade tip sealing ring of axial flow compressor and mounting method |
| CN114017134B (en) * | 2021-11-12 | 2024-12-20 | 中国航发沈阳发动机研究所 | A method for adjusting the thermal deformation rate of a casing by changing the thermal capacity of the casing |
Citations (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US994029A (en) * | 1907-08-12 | 1911-05-30 | Charles Algernon Parsons | Strips for turbine-blades. |
| US3689174A (en) * | 1971-01-11 | 1972-09-05 | Westinghouse Electric Corp | Axial flow turbine structure |
| US3849023A (en) * | 1973-06-28 | 1974-11-19 | Gen Electric | Stator assembly |
| US4411594A (en) * | 1979-06-30 | 1983-10-25 | Rolls-Royce Limited | Support member and a component supported thereby |
| US4422648A (en) * | 1982-06-17 | 1983-12-27 | United Technologies Corporation | Ceramic faced outer air seal for gas turbine engines |
| US4522559A (en) * | 1982-02-19 | 1985-06-11 | General Electric Company | Compressor casing |
| US4543039A (en) * | 1982-11-08 | 1985-09-24 | Societe National D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." | Stator assembly for an axial compressor |
| US5088775A (en) * | 1990-07-27 | 1992-02-18 | General Electric Company | Seal ring with flanged end portions |
| US5685693A (en) * | 1995-03-31 | 1997-11-11 | General Electric Co. | Removable inner turbine shell with bucket tip clearance control |
| US5809772A (en) * | 1996-03-29 | 1998-09-22 | General Electric Company | Turbofan engine with a core driven supercharged bypass duct |
| US6065756A (en) * | 1997-12-10 | 2000-05-23 | General Electric Co. | Flex seal for gas turbine expansion joints |
| US6382632B1 (en) * | 2001-02-21 | 2002-05-07 | General Electric Company | Repositionable brush seal for turbomachinery |
| US6450763B1 (en) * | 2000-11-17 | 2002-09-17 | General Electric Company | Replaceable variable stator vane for gas turbines |
| US6467339B1 (en) * | 2000-07-13 | 2002-10-22 | United Technologies Corporation | Method for deploying shroud segments in a turbine engine |
| US6602050B1 (en) * | 1999-03-24 | 2003-08-05 | Siemens Aktiengesellschaft | Covering element and arrangement with a covering element and a support structure |
| US6609886B2 (en) * | 2001-12-28 | 2003-08-26 | General Electric Company | Composite tubular woven seal for gas turbine nozzle and shroud interface |
| US6652227B2 (en) * | 2001-04-28 | 2003-11-25 | Alstom (Switzerland) Ltd. | Gas turbine seal |
| US6659472B2 (en) * | 2001-12-28 | 2003-12-09 | General Electric Company | Seal for gas turbine nozzle and shroud interface |
| US6685425B2 (en) * | 2002-06-26 | 2004-02-03 | General Electric Company | Inlet bleed heater for heating inlet air to a compressor and methods of fabricating and transporting the heater |
| US6792691B2 (en) * | 2002-11-12 | 2004-09-21 | General Electric Company | Gage for milled blade ring segments |
| US6807803B2 (en) * | 2002-12-06 | 2004-10-26 | General Electric Company | Gas turbine exhaust diffuser |
| US6997673B2 (en) * | 2003-12-11 | 2006-02-14 | Honeywell International, Inc. | Gas turbine high temperature turbine blade outer air seal assembly |
-
2006
- 2006-04-05 US US11/397,560 patent/US20070237629A1/en not_active Abandoned
-
2007
- 2007-04-03 JP JP2007097669A patent/JP2007278287A/en not_active Withdrawn
- 2007-04-04 KR KR1020070033267A patent/KR20070100133A/en not_active Withdrawn
- 2007-04-04 EP EP07105674A patent/EP1843010A2/en not_active Withdrawn
- 2007-04-05 CN CNA200710089872XA patent/CN101050774A/en active Pending
Patent Citations (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US994029A (en) * | 1907-08-12 | 1911-05-30 | Charles Algernon Parsons | Strips for turbine-blades. |
| US3689174A (en) * | 1971-01-11 | 1972-09-05 | Westinghouse Electric Corp | Axial flow turbine structure |
| US3849023A (en) * | 1973-06-28 | 1974-11-19 | Gen Electric | Stator assembly |
| US4411594A (en) * | 1979-06-30 | 1983-10-25 | Rolls-Royce Limited | Support member and a component supported thereby |
| US4522559A (en) * | 1982-02-19 | 1985-06-11 | General Electric Company | Compressor casing |
| US4422648A (en) * | 1982-06-17 | 1983-12-27 | United Technologies Corporation | Ceramic faced outer air seal for gas turbine engines |
| US4543039A (en) * | 1982-11-08 | 1985-09-24 | Societe National D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." | Stator assembly for an axial compressor |
| US5088775A (en) * | 1990-07-27 | 1992-02-18 | General Electric Company | Seal ring with flanged end portions |
| US5913658A (en) * | 1995-03-31 | 1999-06-22 | General Electric Co. | Removable inner turbine shell with bucket tip clearance control |
| US5906473A (en) * | 1995-03-31 | 1999-05-25 | General Electric Co. | Removable inner turbine shell with bucket tip clearance control |
| US5685693A (en) * | 1995-03-31 | 1997-11-11 | General Electric Co. | Removable inner turbine shell with bucket tip clearance control |
| US6079943A (en) * | 1995-03-31 | 2000-06-27 | General Electric Co. | Removable inner turbine shell and bucket tip clearance control |
| US6082963A (en) * | 1995-03-31 | 2000-07-04 | General Electric Co. | Removable inner turbine shell with bucket tip clearance control |
| US5779442A (en) * | 1995-03-31 | 1998-07-14 | General Electric Company | Removable inner turbine shell with bucket tip clearance control |
| US5809772A (en) * | 1996-03-29 | 1998-09-22 | General Electric Company | Turbofan engine with a core driven supercharged bypass duct |
| US6065756A (en) * | 1997-12-10 | 2000-05-23 | General Electric Co. | Flex seal for gas turbine expansion joints |
| US6602050B1 (en) * | 1999-03-24 | 2003-08-05 | Siemens Aktiengesellschaft | Covering element and arrangement with a covering element and a support structure |
| US6467339B1 (en) * | 2000-07-13 | 2002-10-22 | United Technologies Corporation | Method for deploying shroud segments in a turbine engine |
| US6450763B1 (en) * | 2000-11-17 | 2002-09-17 | General Electric Company | Replaceable variable stator vane for gas turbines |
| US6382632B1 (en) * | 2001-02-21 | 2002-05-07 | General Electric Company | Repositionable brush seal for turbomachinery |
| US6652227B2 (en) * | 2001-04-28 | 2003-11-25 | Alstom (Switzerland) Ltd. | Gas turbine seal |
| US6609886B2 (en) * | 2001-12-28 | 2003-08-26 | General Electric Company | Composite tubular woven seal for gas turbine nozzle and shroud interface |
| US6659472B2 (en) * | 2001-12-28 | 2003-12-09 | General Electric Company | Seal for gas turbine nozzle and shroud interface |
| US6685425B2 (en) * | 2002-06-26 | 2004-02-03 | General Electric Company | Inlet bleed heater for heating inlet air to a compressor and methods of fabricating and transporting the heater |
| US6792691B2 (en) * | 2002-11-12 | 2004-09-21 | General Electric Company | Gage for milled blade ring segments |
| US6807803B2 (en) * | 2002-12-06 | 2004-10-26 | General Electric Company | Gas turbine exhaust diffuser |
| US6997673B2 (en) * | 2003-12-11 | 2006-02-14 | Honeywell International, Inc. | Gas turbine high temperature turbine blade outer air seal assembly |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8602720B2 (en) | 2010-06-22 | 2013-12-10 | Honeywell International Inc. | Compressors with casing treatments in gas turbine engines |
| US20140003926A1 (en) * | 2012-06-28 | 2014-01-02 | Alstom Technology Ltd | Compressor for a gas turbine and method for repairing and/or changing the geometry of and/or servicing said compressor |
| CN116604272A (en) * | 2021-03-31 | 2023-08-18 | 中国航发常州兰翔机械有限责任公司 | Frock is used in repair of aeroengine axial compressor cartridge receiver runner |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20070100133A (en) | 2007-10-10 |
| EP1843010A2 (en) | 2007-10-10 |
| CN101050774A (en) | 2007-10-10 |
| JP2007278287A (en) | 2007-10-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1843010A2 (en) | Gas turbine compressor casing flowpath rings | |
| EP1502009B1 (en) | Attachment of a ceramic shroud in a metal housing | |
| US8419356B2 (en) | Turbine seal assembly | |
| US4676715A (en) | Turbine rings of gas turbine plant | |
| US8388310B1 (en) | Turbine disc sealing assembly | |
| US8105023B2 (en) | Steam turbine | |
| US8215914B2 (en) | Compliant seal for rotor slot | |
| EP2568121B1 (en) | Stepped conical honeycomb seal carrier and corresponding annular seal | |
| CN107002690A (en) | Runner assembly for the turbogenerator including self-supporting rotor case | |
| CA2844646C (en) | Rotor seal wire groove repair | |
| US6692228B2 (en) | Rotor insert assembly and method of retrofitting | |
| JP2010019261A (en) | Spring seal for turbine dovetail | |
| EP2636851B1 (en) | Turbine assembly and method for supporting turbine components | |
| EP2636850B1 (en) | Stator of a gas turbine | |
| US20190136700A1 (en) | Ceramic matrix composite tip shroud assembly for gas turbines | |
| US9206700B2 (en) | Outer vane support ring including a strong back plate in a compressor section of a gas turbine engine | |
| US20110182721A1 (en) | Sealing arrangement for a gas turbine engine | |
| JPH02149701A (en) | axial steam turbine | |
| US20090206554A1 (en) | Steam turbine engine and method of assembling same | |
| US8939717B1 (en) | Vane outer support ring with no forward hook in a compressor section of a gas turbine engine | |
| CN115298415B (en) | Turbine rotating assembly including annular clamping member | |
| CA2562712C (en) | Steam/gas turbine pressure stage with universal shroud |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOREE, JEFF;POCCIA, NICHOLAS P.;GAGNE, LYNN C.;AND OTHERS;REEL/FRAME:017761/0340;SIGNING DATES FROM 20060328 TO 20060330 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |