US20070227303A1 - Process for producing largely nonferrous metal chalcogenides or arsenides with a grain size distribution in the nanometer range - Google Patents
Process for producing largely nonferrous metal chalcogenides or arsenides with a grain size distribution in the nanometer range Download PDFInfo
- Publication number
- US20070227303A1 US20070227303A1 US11/330,069 US33006906A US2007227303A1 US 20070227303 A1 US20070227303 A1 US 20070227303A1 US 33006906 A US33006906 A US 33006906A US 2007227303 A1 US2007227303 A1 US 2007227303A1
- Authority
- US
- United States
- Prior art keywords
- reaction
- nonferrous
- arsenides
- grinding
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 31
- 239000002184 metal Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 31
- 150000004770 chalcogenides Chemical class 0.000 title claims abstract description 16
- 238000009826 distribution Methods 0.000 title claims description 3
- 238000000227 grinding Methods 0.000 claims abstract description 22
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 13
- 239000011593 sulfur Substances 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 11
- 239000000376 reactant Substances 0.000 claims abstract description 5
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 4
- 239000011669 selenium Substances 0.000 claims abstract description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 239000011541 reaction mixture Substances 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 238000002441 X-ray diffraction Methods 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 239000000654 additive Substances 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 229910052733 gallium Inorganic materials 0.000 claims 1
- 229910052738 indium Inorganic materials 0.000 claims 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims 1
- 150000001247 metal acetylides Chemical class 0.000 claims 1
- 229910001092 metal group alloy Inorganic materials 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 239000011733 molybdenum Substances 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 150000004760 silicates Chemical class 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 1
- 229910052721 tungsten Inorganic materials 0.000 claims 1
- 239000010937 tungsten Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 238000010327 methods by industry Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- NNLOHLDVJGPUFR-UHFFFAOYSA-L calcium;3,4,5,6-tetrahydroxy-2-oxohexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(=O)C([O-])=O.OCC(O)C(O)C(O)C(=O)C([O-])=O NNLOHLDVJGPUFR-UHFFFAOYSA-L 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000010303 mechanochemical reaction Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- ALRFTTOJSPMYSY-UHFFFAOYSA-N tin disulfide Chemical compound S=[Sn]=S ALRFTTOJSPMYSY-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G1/00—Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/20—Methods for preparing sulfides or polysulfides, in general
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/007—Tellurides or selenides of metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G1/00—Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
- C01G1/12—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G19/00—Compounds of tin
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G29/00—Compounds of bismuth
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the invention relates to a process for producing largely nonferrous metal chalcogenides or arsenides with a grain size distribution in the nanometer range.
- the concept “largely nonferrous” is used for the purposes of the invention since in an industrial production process and the materials used impurities with iron can never be entirely excluded. For example, an iron content of at most 50 ppm is cited.
- chalcogens metals
- crystalline metal chalcogenides and arsenides which have a defined chemical composition which is not ordinarily present in naturally occurring ore minerals are required.
- the metal chalcogenides and arsenides which are required for technical applications are therefore produced synthetically from defined parent materials.
- metal chalcogenides can be precipitated from metal salt and alkali chalcogenide salt solutions, however amorphous products also being obtained which must be converted into a crystalline form by heat treatment. This method is complex since expensive metal salts are used as the parent products. Furthermore, the impurities which occur must be separated and disposed of.
- DE 198 15 992 A1 proposes a process in which a solid lubricant based on tin sulfide can be produced by heating a tin powder-sulfur mixture in a muffle furnace at 200-1500° C. by thermal reaction. Since sulfur has a melting point of 119.7° C. and tin has a melting point of 232° C., at a reaction temperature of only 200° C. all the sulfur is present in liquid form. Furthermore, the reaction proceeds exothermally, so that as the temperature continues to rise the sulfur used begins to boil and thus toxic sulfur vapors are formed. These sulfur vapors also contain highly toxic sulfur dioxide which is likewise environmentally harmful and therefore must be bound by suitable process techniques.
- the object of this invention is therefore to make available an industrially applicable, environmentally friendly process in which metal chalcogenides or arsenides are obtained in largely nonferrous form with grain sizes in the nanometer range.
- a process of the initially mentioned type is proposed which is characterized in that the nonferrous metal powder with reactants selected from the group sulfur, selenium, tellurium and arsenic is ground in a reaction mill in an inert atmosphere.
- the rpm of the vibratory mill is 960 min ⁇ 1 , the vibratory circle diameter is 20 mm.
- the degree of filling with the grinding media is 80%.
- a crystalline reaction product is obtained which has an average agglomerate grain size of 16.4 ⁇ m.
- the size of the individual crystals is in the nanometer range.
- metal chalcogenides or arsenides are obtained by mechanochemical reaction of the solid reaction components at temperatures of roughly 100° C. in only one single process step.
- a mixture of the reactants metal powder and chalcogenide powder or arsenic powder in a precomputed stoichiometric ratio is ground under a protective gas (nitrogen or argon) in a suitable grinding assembly, for example an eccentrically driven vibratory mill.
- a protective gas nitrogen or argon
- the temperature during grinding rises due to the added mechanical energy and due to the reaction heat which is being released, but the melting point is not reached so that a liquid phase is not formed.
- the grinding media act as a heat-absorbing buffer due to their high heat capacity, in continuous operation corresponding cooling of the grinding assembly however being necessary.
- the conventional grinding time can be reduced by using especially fine-grain initial powders.
- dispersed phases such as graphite or metal oxide which are intimately ground into the crystal structure which forms during the grinding process can be added to the reaction mixture.
- nonferrous hard metals such as tungsten carbide or zirconium oxide or a nonferrous pseudoalloy of tungsten carbide with a metallic binding matrix, for example cobalt which does not react with the free sulfur of the reaction mixture or the already formed sulfides—as claimed in the invention
- the synthesis of highly pure metal chalcogenides or arsenides for electrochemical or photovoltaic applications is thus possible using pure parent materials. No significant oxide content and environmentally harmful, gaseous emission could be detected either.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
The invention relates to a process for producing largely nonferrous metal chalcogenides or arsenides which can be easily carried out in terms of process engineering in an environmentally-friendly manner. This is because in a single process step the desired, largely nonferrous metal chalcogenide or arsenide is obtained from a nonferrous metal powder by reaction with reactants selected from the group sulfur, selenium, tellurium, and arsenic by grinding in a reaction mill in an inert atmosphere.
Description
- The invention relates to a process for producing largely nonferrous metal chalcogenides or arsenides with a grain size distribution in the nanometer range. The concept “largely nonferrous” is used for the purposes of the invention since in an industrial production process and the materials used impurities with iron can never be entirely excluded. For example, an iron content of at most 50 ppm is cited.
- The elements sulfur, selenium and tellurium form, besides oxygen, the 6th main group of the periodic system and are called chalcogens (metallogens). Their compounds with metals in the earth's crust of course form naturally occurring ore minerals. For technical applications such as lubricants and friction materials, electrode materials for rechargeable high-performance batteries and semiconductor materials, crystalline metal chalcogenides and arsenides which have a defined chemical composition which is not ordinarily present in naturally occurring ore minerals are required. The metal chalcogenides and arsenides which are required for technical applications are therefore produced synthetically from defined parent materials.
- Thus metal chalcogenides can be precipitated from metal salt and alkali chalcogenide salt solutions, however amorphous products also being obtained which must be converted into a crystalline form by heat treatment. This method is complex since expensive metal salts are used as the parent products. Furthermore, the impurities which occur must be separated and disposed of.
- In addition, producing metal chalcogenides by grinding of reaction mixtures is known, steel balls being used as the grinding media. When using steel balls however large amounts of iron pass into the material being ground with the formation of FeS or complex sulfides as the grinding media are consumed. When grinding thermally reacted reaction products with steel balls, likewise iron passes into the material to be ground.
- Therefore DE 198 15 992 A1 proposes a process in which a solid lubricant based on tin sulfide can be produced by heating a tin powder-sulfur mixture in a muffle furnace at 200-1500° C. by thermal reaction. Since sulfur has a melting point of 119.7° C. and tin has a melting point of 232° C., at a reaction temperature of only 200° C. all the sulfur is present in liquid form. Furthermore, the reaction proceeds exothermally, so that as the temperature continues to rise the sulfur used begins to boil and thus toxic sulfur vapors are formed. These sulfur vapors also contain highly toxic sulfur dioxide which is likewise environmentally harmful and therefore must be bound by suitable process techniques. After the end of the reaction the initially liquid mass must be cooled and the crystalline reaction product obtained must be ground to the desired grain size. Therefore, in the process according to DE 198 51 992 A1 several time-consuming and labor-intensive process steps are necessary to obtain the final product. Furthermore, when the final product which contains still free sulfur is ground, in conventional grinding assemblies iron sulfide can be formed in part by taking up iron.
- The object of this invention is therefore to make available an industrially applicable, environmentally friendly process in which metal chalcogenides or arsenides are obtained in largely nonferrous form with grain sizes in the nanometer range.
- As claimed in the invention, a process of the initially mentioned type is proposed which is characterized in that the nonferrous metal powder with reactants selected from the group sulfur, selenium, tellurium and arsenic is ground in a reaction mill in an inert atmosphere.
- Advantageous embodiments of the process as claimed in the invention are disclosed according to the dependent claims.
- The invention is detailed below using possible embodiments.
- In an eccentrically driven vibratory mill, 66 kg of a mixture of 53.6 kg bismuth power with an average grain size of d50=15 μm and 12.4 kg sulfur powder are ground for 120 minutes using 3720 kg of hard metal balls with a diameter of 35 mm. The rpm of the vibratory mill is 960 min−1, the vibratory circle diameter is 20 mm. The degree of filling with the grinding media is 80%. A crystalline reaction product is obtained which has an average agglomerate grain size of 16.4 μm. The size of the individual crystals is in the nanometer range.
- In an eccentrically driven vibratory mill, 14.592 kg of a reaction mixture consisting of 11.52 kg air-vaporized tin powder with an average grain size of d50=40 μm and 3.072 kg sulfur powder are ground for 60 minutes using 930 kg of hard metal balls with a diameter of 15 mm. A crystalline reaction product is obtained which has an average agglomerate grain size of 18.7 μm. During grinding, at intervals of 15 minutes samples are taken and are studied by means of x-ray diffractometry. With increasing length of grinding the proportion of SnS increases until the metallic tin and the sulfur have reacted almost completely. The iron content of the product is less than 50 ppm.
- In a laboratory eccentrically driven vibratory mill, 552 g of a reaction mixture consisting of 360 g air-vaporized tin powder with an average grain size of d50=10 μm and of 192 kg sulfur powder were ground for 30 minutes using 36 kg of hard metal balls with a diameter of 15 mm. A crystalline reaction product of tin sulfide SnS2 with an average grain size of 12.1 μm is obtained.
- In these exemplary embodiments metal chalcogenides or arsenides are obtained by mechanochemical reaction of the solid reaction components at temperatures of roughly 100° C. in only one single process step. To do this, a mixture of the reactants metal powder and chalcogenide powder or arsenic powder in a precomputed stoichiometric ratio is ground under a protective gas (nitrogen or argon) in a suitable grinding assembly, for example an eccentrically driven vibratory mill. The temperature during grinding rises due to the added mechanical energy and due to the reaction heat which is being released, but the melting point is not reached so that a liquid phase is not formed. In the grinding process the grinding media act as a heat-absorbing buffer due to their high heat capacity, in continuous operation corresponding cooling of the grinding assembly however being necessary.
- Furthermore, to achieve a certain degree of reaction the conventional grinding time can be reduced by using especially fine-grain initial powders.
- Likewise dispersed phases such as graphite or metal oxide which are intimately ground into the crystal structure which forms during the grinding process can be added to the reaction mixture.
- By use of nonferrous hard metals—such as tungsten carbide or zirconium oxide or a nonferrous pseudoalloy of tungsten carbide with a metallic binding matrix, for example cobalt which does not react with the free sulfur of the reaction mixture or the already formed sulfides—as claimed in the invention, it is possible to carry out the grinding process without absorbing iron and the associated wear of the mill armoring and grinding media. The synthesis of highly pure metal chalcogenides or arsenides for electrochemical or photovoltaic applications is thus possible using pure parent materials. No significant oxide content and environmentally harmful, gaseous emission could be detected either.
Claims (15)
1-14. (canceled)
15. Process for producing largely nonferrous metal chalcogenides or arsenides with a grain size distribution in the nanometer range, characterized in that the nonferrous metal powder with reactants selected from the group sulfur, selenium, tellurium and arsenic is ground in a reaction mill in an inert atmosphere.
16. Process as claimed in claim 15 , wherein the reaction mill is a multimodule eccentrically driven vibratory mill.
17. Process as claimed in claim 15 , wherein the mill lining and the grinding media consist of nonferrous hard metal and/or a nonferrous pseudoalloy of tungsten carbide with a metallic binding matrix.
18. Process as claimed in claim 17 , wherein the metallic binding matrix consists of cobalt.
19. Process as claimed in claim 17 , wherein the nonferrous hard metals are tungsten carbide and/or zirconium oxide.
20. Process as claimed in claim 15 , wherein the metal powder and reactants are used in stoichiometric ratios with reference to the metal chalcogenides or arsenides to be produced.
21. Process as claimed in claim 15 , wherein the progress of grinding is monitored by x-ray diffraction analysis.
22. Process as claimed in claim 15 , wherein reaction grinding takes place in batch operation.
23. Process as claimed in claim 15 , wherein elements selected from the group bismuth, tin, copper, indium, gallium, zinc, aluminum, titanium, molybdenum and tungsten are used as the metal powder.
24. Process as claimed in claim 15 , wherein the metal powder is used as a nonferrous metal alloy.
25. Process as claimed in claim 15 , wherein mixtures of two or more pure metals except for iron are used as the metal powder.
26. Process as claimed in claim 15 , wherein other powdered additives such as graphite, carbides, nitrides, oxides or silicates which do not participate in the reaction itself, but are present intimately mixed with the reaction product after grinding, are added to the reaction mixture.
27. Process as claimed in claim 15 , wherein to prevent formation of agglomerates paraffins are added to the reaction mixture.
28. Process as claimed in claim 15 , wherein the metal chalcogenides or arsenides produced are free of iron.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT0004605A AT501253B1 (en) | 2005-01-13 | 2005-01-13 | METHOD FOR THE PRODUCTION OF LARGE IRON-FREE METAL CHALKOGENIDES WITH A NANEOUS GRAIN SIZE DISTRIBUTION |
| ATA46/2005 | 2005-01-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070227303A1 true US20070227303A1 (en) | 2007-10-04 |
Family
ID=36295404
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/330,069 Abandoned US20070227303A1 (en) | 2005-01-13 | 2006-01-12 | Process for producing largely nonferrous metal chalcogenides or arsenides with a grain size distribution in the nanometer range |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20070227303A1 (en) |
| EP (1) | EP1681270B1 (en) |
| AT (2) | AT501253B1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102363530A (en) * | 2011-08-03 | 2012-02-29 | 北京科技大学 | Preparation method of Cu1.8+xS binary thermoelectric material |
| JP2015120607A (en) * | 2013-12-20 | 2015-07-02 | 日本化学工業株式会社 | Method for producing tin sulfide |
| JP2015120608A (en) * | 2013-12-20 | 2015-07-02 | 日本化学工業株式会社 | SnS2 |
| JP2018052788A (en) * | 2016-09-30 | 2018-04-05 | 日本精鉱株式会社 | Method for producing powder containing tin sulfide |
| US11807724B2 (en) | 2018-01-20 | 2023-11-07 | Gregor Luthe | Mechanochemical process for producing valuable products free from persistent organic pollutants and other organohalogen compounds from waste comprising plastics and plastic laminates |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102019006084A1 (en) | 2019-02-12 | 2020-08-13 | Elke Münch | Mechanochemical process |
| AT523321B1 (en) * | 2019-12-30 | 2021-09-15 | Rimmer Dipl Ing Dr Karl | METHOD AND DEVICE FOR THE MANUFACTURING OF ANTIMONY TRISULFIDE |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4176170A (en) * | 1977-04-01 | 1979-11-27 | Bell Telephone Laboratories, Incorporated | Ternary ionic conductors |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19815992C2 (en) * | 1998-04-09 | 2000-09-14 | Chemetall Ges Mbh Wien | Solid lubricants based on tin sulfide and carbon |
-
2005
- 2005-01-13 AT AT0004605A patent/AT501253B1/en not_active IP Right Cessation
-
2006
- 2006-01-05 EP EP06450002A patent/EP1681270B1/en not_active Not-in-force
- 2006-01-05 AT AT06450002T patent/ATE515479T1/en active
- 2006-01-12 US US11/330,069 patent/US20070227303A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4176170A (en) * | 1977-04-01 | 1979-11-27 | Bell Telephone Laboratories, Incorporated | Ternary ionic conductors |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102363530A (en) * | 2011-08-03 | 2012-02-29 | 北京科技大学 | Preparation method of Cu1.8+xS binary thermoelectric material |
| JP2015120607A (en) * | 2013-12-20 | 2015-07-02 | 日本化学工業株式会社 | Method for producing tin sulfide |
| JP2015120608A (en) * | 2013-12-20 | 2015-07-02 | 日本化学工業株式会社 | SnS2 |
| JP2018052788A (en) * | 2016-09-30 | 2018-04-05 | 日本精鉱株式会社 | Method for producing powder containing tin sulfide |
| US11807724B2 (en) | 2018-01-20 | 2023-11-07 | Gregor Luthe | Mechanochemical process for producing valuable products free from persistent organic pollutants and other organohalogen compounds from waste comprising plastics and plastic laminates |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1681270A3 (en) | 2008-07-02 |
| EP1681270B1 (en) | 2011-07-06 |
| ATE515479T1 (en) | 2011-07-15 |
| AT501253A1 (en) | 2006-07-15 |
| AT501253B1 (en) | 2006-11-15 |
| EP1681270A2 (en) | 2006-07-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6749663B2 (en) | Ultra-coarse, monocrystalline tungsten carbide and a process for the preparation thereof, and hardmetal produced therefrom | |
| US7910080B2 (en) | Phosphorous pentoxide producing methods | |
| JP5271035B2 (en) | Method for producing lithium iron sulfide and method for producing lithium sulfide transition metal | |
| US20080219909A1 (en) | Phosphorous Pentoxide Producing Methods | |
| WO2022009810A1 (en) | Method for producing lithium sulfide | |
| JPWO2008075789A1 (en) | Thermoelectric conversion material, method for producing the same, and thermoelectric conversion element | |
| US20070227303A1 (en) | Process for producing largely nonferrous metal chalcogenides or arsenides with a grain size distribution in the nanometer range | |
| Nuraeni et al. | Recovery of cobalt and lithium by carbothermic reduction of LiCoO2 cathode material: a kinetic study | |
| JP4280292B2 (en) | Method for producing ferromolybdenum | |
| JP2009263723A (en) | Method for producing ferromolybdenum | |
| Cham et al. | Influence of temperature on carbon dissolution of cokes in molten iron | |
| JP5446735B2 (en) | Method for producing metal manganese | |
| AU2007354897B2 (en) | Phosphorous pentoxide producing methods | |
| JP2011246760A (en) | Method of manufacturing ferromolybdenum, and ferromolybdenum | |
| JP2010090431A (en) | Method for producing ferro-alloy containing nickel and vanadium | |
| KR100407194B1 (en) | Method of producing metal sulfides | |
| CN102409164A (en) | Anti-caking roasting method for mixed rare earth ore | |
| Gilmore et al. | SHS of copper Chevrel phase compounds | |
| Kang et al. | Synthesis of Ti2SnC MAX phase by mechanical activation and melt infiltration | |
| Gaal et al. | An investigation into aspects of liquid phase reduction of manganese and silica containing slag | |
| Mitrasinovic | Characterization of the Cu-Si System and Utilization of Metallurgical Techniques in Silicon Refining for Solar Cell Applications | |
| Li et al. | The phase structure, transitions, and non-isothermal crystallization kinetics of Zn2V2O7 glass | |
| McCarthy | Interfacial phenomena and dissolution of carbon from chars into liquid iron during pulverised coal injection in a blast furnace | |
| Wermers | Recycling of fine silicon particles for solar grade silicon production | |
| Jilin et al. | Carbon Thermal Reduction Process for Smelting Magnesium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |