US20070219269A1 - Novel aconitase - Google Patents
Novel aconitase Download PDFInfo
- Publication number
- US20070219269A1 US20070219269A1 US11/679,815 US67981507A US2007219269A1 US 20070219269 A1 US20070219269 A1 US 20070219269A1 US 67981507 A US67981507 A US 67981507A US 2007219269 A1 US2007219269 A1 US 2007219269A1
- Authority
- US
- United States
- Prior art keywords
- acnc
- activity
- protein
- aconitase
- bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010009924 Aconitate hydratase Proteins 0.000 title claims description 70
- 102100039868 Cytoplasmic aconitate hydratase Human genes 0.000 title 1
- 230000000694 effects Effects 0.000 claims abstract description 81
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims abstract description 74
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 72
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 47
- 241000894006 Bacteria Species 0.000 claims abstract description 45
- 235000019260 propionic acid Nutrition 0.000 claims abstract description 37
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 claims abstract description 32
- YNOXCRMFGMSKIJ-NFNCENRGSA-N (2S,3S)-2-methylcitric acid Chemical compound OC(=O)[C@@H](C)[C@](O)(C(O)=O)CC(O)=O YNOXCRMFGMSKIJ-NFNCENRGSA-N 0.000 claims abstract description 16
- 230000001018 virulence Effects 0.000 claims abstract description 13
- 102000009836 Aconitate hydratase Human genes 0.000 claims description 69
- 238000000034 method Methods 0.000 claims description 29
- 150000001875 compounds Chemical class 0.000 claims description 27
- 239000002773 nucleotide Substances 0.000 claims description 23
- 125000003729 nucleotide group Chemical group 0.000 claims description 23
- 101710117545 C protein Proteins 0.000 claims description 14
- 239000012634 fragment Substances 0.000 claims description 10
- 108020004707 nucleic acids Proteins 0.000 claims description 9
- 102000039446 nucleic acids Human genes 0.000 claims description 9
- 150000007523 nucleic acids Chemical class 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 108020004999 messenger RNA Proteins 0.000 claims description 3
- 208000035143 Bacterial infection Diseases 0.000 claims description 2
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 2
- 230000000295 complement effect Effects 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 6
- 238000012258 culturing Methods 0.000 claims 1
- 239000003242 anti bacterial agent Substances 0.000 abstract description 6
- 239000003112 inhibitor Substances 0.000 abstract description 4
- 108010077805 Bacterial Proteins Proteins 0.000 abstract 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 41
- 235000018102 proteins Nutrition 0.000 description 34
- 101100447171 Arabidopsis thaliana FRO2 gene Proteins 0.000 description 15
- 101100386221 Danio rerio dact1 gene Proteins 0.000 description 15
- 101100120627 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FRD1 gene Proteins 0.000 description 15
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 230000005764 inhibitory process Effects 0.000 description 12
- 150000001413 amino acids Chemical group 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 7
- 238000007792 addition Methods 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 5
- 229920002444 Exopolysaccharide Polymers 0.000 description 5
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000003292 diminished effect Effects 0.000 description 5
- -1 ibuprofen Chemical compound 0.000 description 5
- 230000002503 metabolic effect Effects 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 4
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 241000589516 Pseudomonas Species 0.000 description 4
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 4
- 239000008272 agar Substances 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 229960003669 carbenicillin Drugs 0.000 description 4
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 4
- 229960003405 ciprofloxacin Drugs 0.000 description 4
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 4
- 229930195712 glutamate Natural products 0.000 description 4
- 229940049906 glutamate Drugs 0.000 description 4
- 229960001680 ibuprofen Drugs 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 101150077061 prpD gene Proteins 0.000 description 4
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 4
- 101100345719 Bacillus subtilis (strain 168) mmgE gene Proteins 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 3
- 201000003883 Cystic fibrosis Diseases 0.000 description 3
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 3
- 239000004098 Tetracycline Substances 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229960004821 amikacin Drugs 0.000 description 3
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- ODBLHEXUDAPZAU-UHFFFAOYSA-N isocitric acid Chemical compound OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000007423 screening assay Methods 0.000 description 3
- 230000009870 specific binding Effects 0.000 description 3
- 229960002180 tetracycline Drugs 0.000 description 3
- 229930101283 tetracycline Natural products 0.000 description 3
- 235000019364 tetracycline Nutrition 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 3
- 239000000304 virulence factor Substances 0.000 description 3
- 230000007923 virulence factor Effects 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 108091023037 Aptamer Proteins 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 101100345721 Bacillus subtilis (strain 168) mmgF gene Proteins 0.000 description 2
- 101150111062 C gene Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102000012011 Isocitrate Dehydrogenase Human genes 0.000 description 2
- 108010075869 Isocitrate Dehydrogenase Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 229940022663 acetate Drugs 0.000 description 2
- 101150113917 acnA gene Proteins 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 229960002518 gentamicin Drugs 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 2
- 230000009036 growth inhibition Effects 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 101150079081 pphB gene Proteins 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 101150085802 prpB gene Proteins 0.000 description 2
- 101150029104 prpC gene Proteins 0.000 description 2
- YNCMLFHHXWETLD-UHFFFAOYSA-N pyocyanin Chemical compound CN1C2=CC=CC=C2N=C2C1=CC=CC2=O YNCMLFHHXWETLD-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 229960000707 tobramycin Drugs 0.000 description 2
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 108030005611 2-methylcitrate dehydratases Proteins 0.000 description 1
- IXTLVPXCZJJUQB-VYJQSIGYSA-N 4-[[1-[[(2r)-1-[[(2s)-5-(diaminomethylideneamino)-1-[[(2r)-1-[[(2s)-5-[formyl(hydroxy)amino]-1-[[(3s,6s,9s,12s)-9-[3-[formyl(hydroxy)amino]propyl]-3,6-bis[(1r)-1-hydroxyethyl]-2,5,8,11-tetraoxo-1,4,7,10-tetrazacyclohexadec-12-yl]amino]-1-oxopentan-2-yl]am Chemical compound C1CCCNC(=O)[C@H]([C@H](O)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCN(O)C=O)NC(=O)[C@H]1NC(=O)[C@H](CCCN(O)C=O)NC(=O)[C@@H](CO)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](CO)NC(=O)C1N(C=2C(=CC(O)=C(O)C=2)C=C2NC(=O)CCC(O)=O)C2NCC1 IXTLVPXCZJJUQB-VYJQSIGYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 102100040958 Aconitate hydratase, mitochondrial Human genes 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000588986 Alcaligenes Species 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 241000589151 Azotobacter Species 0.000 description 1
- 241000589149 Azotobacter vinelandii Species 0.000 description 1
- 101100377045 Bacillus subtilis (strain 168) yraM gene Proteins 0.000 description 1
- 241000588807 Bordetella Species 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 241000186321 Cellulomonas Species 0.000 description 1
- 241000186220 Cellulomonas flavigena Species 0.000 description 1
- 101100054574 Corynebacterium diphtheriae (strain ATCC 700971 / NCTC 13129 / Biotype gravis) acn gene Proteins 0.000 description 1
- AEMOLEFTQBMNLQ-VANFPWTGSA-N D-mannopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H]1O AEMOLEFTQBMNLQ-VANFPWTGSA-N 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 101100215150 Dictyostelium discoideum aco1 gene Proteins 0.000 description 1
- 101100378193 Dictyostelium discoideum aco2 gene Proteins 0.000 description 1
- KMHZPJNVPCAUMN-UHFFFAOYSA-N Erbon Chemical compound CC(Cl)(Cl)C(=O)OCCOC1=CC(Cl)=C(Cl)C=C1Cl KMHZPJNVPCAUMN-UHFFFAOYSA-N 0.000 description 1
- 101100075213 Escherichia coli (strain K12) lpoA gene Proteins 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 101000965314 Homo sapiens Aconitate hydratase, mitochondrial Proteins 0.000 description 1
- 101000745370 Homo sapiens Cytoplasmic aconitate hydratase Proteins 0.000 description 1
- 101000597992 Homo sapiens Iron-responsive element-binding protein 2 Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102000005298 Iron-Sulfur Proteins Human genes 0.000 description 1
- 108010081409 Iron-Sulfur Proteins Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- IAJILQKETJEXLJ-SQOUGZDYSA-N L-guluronic acid Chemical group O=C[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O IAJILQKETJEXLJ-SQOUGZDYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N O=C=O Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 229930186551 Pyoverdin Natural products 0.000 description 1
- 241000863430 Shewanella Species 0.000 description 1
- 241000736131 Sphingomonas Species 0.000 description 1
- 241000736110 Sphingomonas paucimobilis Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- 241000589636 Xanthomonas campestris Species 0.000 description 1
- 101150007274 acaA gene Proteins 0.000 description 1
- 101150053555 acnB gene Proteins 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940124350 antibacterial drug Drugs 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000006161 blood agar Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- GTZCVFVGUGFEME-HNQUOIGGSA-N cis-Aconitic acid Natural products OC(=O)C\C(C(O)=O)=C/C(O)=O GTZCVFVGUGFEME-HNQUOIGGSA-N 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- TXWRERCHRDBNLG-UHFFFAOYSA-N cubane Chemical compound C12C3C4C1C1C4C3C12 TXWRERCHRDBNLG-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- 102000056967 human ACO1 Human genes 0.000 description 1
- 102000056975 human IREB2 Human genes 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000006151 minimal media Substances 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-L oxaloacetate(2-) Chemical compound [O-]C(=O)CC(=O)C([O-])=O KHPXUQMNIQBQEV-UHFFFAOYSA-L 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- QAQREVBBADEHPA-IEXPHMLFSA-N propionyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QAQREVBBADEHPA-IEXPHMLFSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 101150020468 prpE gene Proteins 0.000 description 1
- 101150099879 prpR gene Proteins 0.000 description 1
- 108010025281 pyoverdin Proteins 0.000 description 1
- XQILZJGDWBRFIU-UHFFFAOYSA-L pyridine-3-carboxylate;trimethyl-[6-(trimethylazaniumyl)hexyl]azanium Chemical compound [O-]C(=O)C1=CC=CN=C1.[O-]C(=O)C1=CC=CN=C1.C[N+](C)(C)CCCCCC[N+](C)(C)C XQILZJGDWBRFIU-UHFFFAOYSA-L 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 244000000000 soil microbiome Species 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- OFVLGDICTFRJMM-WESIUVDSSA-N tetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O OFVLGDICTFRJMM-WESIUVDSSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- 239000001974 tryptic soy broth Substances 0.000 description 1
- 108010050327 trypticase-soy broth Proteins 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/01—Hydro-lyases (4.2.1)
- C12Y402/01003—Aconitate hydratase (4.2.1.3)
Definitions
- the invention relates to methods to control the growth and virulence of mucoid bacteria and to regulate their production of exopolysaccharide biofilms.
- the invention also is directed to methods to screen for useful antibiotics. Such screening methods employ a novel aconitase whose properties have heretofore been unknown.
- Pseudomonas aeruginosa a common soil bacterium which inhabits individuals generally, but is particularly destructive in subjects with cystic fibrosis.
- Cystic fibrosis is an autosomal recessive genetic disorder linked to dysfunctional CFTR chloride channels on cell surfaces. It is characterized by production of thick mucus which prevents clearance of bacteria, resulting in chronic infection and inflammation. Because P. aeruginosa produces biofilm in the lungs and digestive systems of these subjects, and the subjects are unable to clear this biofilm, P. aeruginosa infection is a major cause of death among such individuals.
- mucoid resembling mucus
- the mucoidy is generated by bacterial production of extracellular polysaccharides (exopolysaccharide or EPS).
- EPS extracellular polysaccharides
- Various EPS molecules that include frucose, rugose and glucose residues have been characterized.
- Examples of bacteria producing mucoid phenotype include alginate producing Pseudomonas and Azotobacter species (i.e., P.
- aeruginosa Azotobacter vinelandii
- rugose producing Vibrio species (i.e., Vibrio cholerae )
- xanthan producing Xanthomonas species (i.e., Xanthomonas campestris )
- gellan producing Sphingomonas species i.e., S. paucimobilis
- curdlan-type EPS producing Cellulomonas, Alcaligenes and Agrobacterium species (i.e., Cellulomonas flavigena, Alcalifenes faecalis ) and Shewanella, Bordetella and Streptococcus species producing various uncharacterized EPS, among others.
- Biofilms represent a typical structured adaptation environment in which many bacteria co-exist and secrete extracellular polysaccharides which aid them to stick to surfaces for growth and colonization, provide a protective barrier around them and adapt to their environment in a microbial community.
- the exopolysaccharides produced by mucoid Pseudomonas that occupy the lungs of cystic fibrosis patients are generally alginates which are O-glycosyl linked D-mannuronate and L-guluronate residues.
- the essential components required must be made available by the metabolic system of the bacterium.
- the present invention provides means to disrupt this ability by disabling an essential step in this metabolic sequence.
- mucoid bacteria contain an aconitase, designated herein that encoded by acnC which catalyzes the conversion of 2-methyl citrate to 2-methyl isocitrate.
- This aconitase which has an activity different from aconitases previously known, is required for the clearance of propionate; propionic acid is a known toxic agent for mucoid bacteria as described in PCT publication WO 01/30997, the disclosure of which is incorporated herein by reference.
- disruption of the activity or production of acnC protein along with the administration of propionic acid, or of compounds which generate propionic acid has a deleterious effect on mucoid producing bacteria. This effect resides, in large part, in inhibiting the production of the biofilm and thus inhibiting the ability of the bacterium to survive in its environment.
- the invention is directed to a method to mitigate the virulence of a mucoid bacterial culture or infection, which method comprises contacting the bacteria contained in said culture or infection with an effective amount of propionic acid or a substance which generates propionic acid in combination with effecting inhibition of the production or activity of acnC protein.
- the invention is directed to a method to screen for compounds that enhance the toxicity of propionic acid to exopolysaccharide-producing bacteria, which method comprises assessing the ability of candidate compounds to inhibit the activity of acnC protein.
- This method comprises determining the conversion of 2-methyl citrate to 2-methyl isocitrate in the presence of acnC protein and testing this in the presence and absence of a candidate compound.
- Compounds whose presence reduces the level of 2-methyl isocitrate produced, or which are otherwise shown to inhibit acnC protein, are identified as useful in enhancing the toxicity of propionic acid or its precursors.
- the invention is directed to a composition of matter which comprises an isolated form of acnC protein, compositions which comprise recombinant materials for its production and methods for producing acnC protein using the recombinant materials.
- the invention also is directed to antisense or triplex forming nucleic acid molecules and other inhibitors for the production of acnC protein.
- FIG. 1 is a diagram showing the catabolism of propionate in Pseudomonas aeruginosa.
- FIGS. 2A-2D show the nucleotide and deduced amino acid sequence of aconitase C from P. aeruginosa strain 01 (PA01) as well as homologous enzymes from other bacteria, and position of the encoding gene.
- FIG. 2A the nucleotide sequence and deduced amino acid sequence of the acnC protein is shown.
- FIG. 2B shows the amino acid sequence.
- FIG. 2C homologs for the acnC protein having at least 85% similarity were retrieved through BLAST searches and alignment of these sequence using DNASTAR.
- FIG. 2D shows a comparison of the location of the gene in P. aeruginosa and the corresponding genetic positions in S. typhimurium and E. coli.
- FIG. 3 shows a graph of the effect of 0.5% propionate added to TSBD medium containing 50 mM glutamate on wildtype PA01 as compared to PA01 with an acnC gene disruption.
- FIG. 4 shows the effect of the addition of propionate to clinical mucoid isolates.
- the present invention by elucidating the function and structure of a protein product and its encoding gene that is involved in virulence and metabolic adaptation, provides an entirely new target for the design and development of new anti-infectives, antibacterial compounds, and biofilm control agents. As this is a new target for antibacterial drugs, resistance to such drugs has not developed.
- aconitase C aconitase C
- acnC aconitase C
- Disruption of acnC completely abolishes bacterial growth in the presence of propionic acid and results in a significant reduction in the virulence factors associated with P. aeruginosa, including the production of biofilms.
- inhibition of the production of this protein or inhibition of its activity will attenuate microbial virulence in the presence of propionic acid or a material which generates it.
- No eukaryotic counterpart to aconitase C is known.
- aconitase activity catalyze the dehydration of citric acid to cis aconitate.
- the presently isolated aconitase C is capable of this activity as well, but has the additional feature of catalyzing the conversion of 2-methyl citrate to 2-methyl isocitrate as shown in FIG. 1 .
- This pathway is critical to propionate metabolism as shown.
- Propionic acid is converted to propionyl CoA and condensed with oxalacetate to obtain 2-methyl citrate.
- 2-Methyl citrate must be isomerized to 2-methyl isocitrate in order to complete the metabolic fate of propionic acid.
- 2-Methyl citrate is metabolized to succinate and pyruvate, components of the citric acid pathway. Inhibition of aconitase C thus diminishes the ability of the organism to metabolize the toxic propionic acid.
- Aconitase C and “acnC” are used interchangeably and refer to any nucleotide sequence encoding the protein with enzymatic activity, the protein itself, and the gene locus which results in the production of the protein.
- the protein In order to be defined as “aconitase C” or “acnC” the protein must exhibit the ability to convert 2-methyl citrate to 2-methyl isocitrate. This activity can readily be verified using routine enzymatic assays.
- the corresponding materials are also labeled “acaB.” In Pseudomonas, the acnC encoding gene is found downstream in the propionate operon from prpC and upstream of prpD.
- One assay is analogous to that employed for determining levels of aconitase activity known in the prior art, based on the sequence of reactions shown below: The enzymatic process shown above is monitored spectrophotometrically based on measurement of increase in OD at 340 nm with formation of NADPH from NADP + .
- the assay components include citrate and isocitrate dehydrogenase. Under appropriate conditions, the rate of NADPH production is proportional to aconitase activity.
- One aconitase unit will convert 1.0 micromol of citrate to isocitrate per minute at 25° C., pH 7.4 (Gardner and Fridovisch, J. Chem. (1992) 267:8757-8763).
- aconitase C of the present invention converts 2-methyl citrate to 2-methyl isocitrate, and as 2-methyl isocitrate is also oxidized with NADP + in the presence of isocitrate dehydrogenase, a similar assay that couples spectrophotometric measurement of NADPH production at 340 nm can be used to determine levels of aconitase C of the present invention.
- any other appropriate assay for the conversion of 2-methyl citrate to 2-methyl isocitrate can be used as a screening assay to identify compounds that will be useful in modifying the virulence of mucoid bacteria. Compounds which inhibit this activity will be useful in this regard.
- the activity of a preparation of purified and isolated aconitase C protein, recombinantly produced aconitase C protein, or even an impure preparation of aconitase C protein is tested for this conversion activity in both the presence and absence of candidate compound.
- Compounds whose presence results in a decrease in this activity are identified as useful compounds for reducing the virulence of mucoid bacteria.
- the traditional aconitase activity assay shown above can be used as a surrogate in identifying compounds with the desired activity. However, assays using the aconitase C protein per se are preferred.
- the screening assay using aconitase C protein per se is facilitated by virtue of the availability of recombinant materials for production of the required aconitase C protein.
- Described herein, as illustrative, is the amino acid sequence of the aconitase C gene derived from P. aeruginosa. Homologous proteins from other prokaryotic organisms could also be used, and can readily be retrieved using standard techniques with the information contained in the P. aeruginosa gene as a guide.
- the protein encoded by the gene in the P. aeruginosa strain 01 comprises 869 amino acids and the nucleotide sequence and deduced amino acid sequence are shown in FIG. 2A .
- the protein is found in the cytoplasm and is probably present in association with bacterial membrane and/or other enzymes involved in propionate catabolism.
- the aconitase activity in PA acnC::Gm mutant is decreased when measured by a traditional aconitase assay indicating that the catalytic site of the protein may resemble the catalytic site of the known aconitases (acnA and acnB) involving conserved cysteine and arginine residues folded to structure a docking region for an iron-sulfur (4Fe-4S) cubane cluster as well as interaction with substrates including citrate and isocitrate.
- Proteins with homology to the PA01 aconitase C protein also share the ability to convert 2-methyl citrate to 2-methyl isocitrate.
- “Aconitase C activity” is defined herein as the ability to convert 2-methyl citrate to 2-methyl isocitrate. Fragments of these sequences of shared homology which retain aconitase C activity are also included within the scope of the invention.
- FIG. 2B shows homologous sequences that are known to occur in other bacteria as retrieved through BLAST searches.
- proteins encoded by a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence encoding the amino acid sequence of the PA01 aconitase C protein are also included within the scope of the invention.
- the stringency of hybridization is defined by the wash conditions subsequent to the hybridization itself and “stringent” conditions are defined as washing in 0.1% SSC at 65° C.
- proteins which are within the scope of the present invention may be defined in terms of their ability to convert 2-methyl citrate to 2-methyl isocitrate in combination (1) with specified homology to the acnC sequence set forth in FIG. 2A or (2) with structural characteristics as defined by the ability of a nucleotide sequence encoding them to hybridize to a nucleotide sequence encoding this amino acid sequence.
- nucleic acids which encode aconitase C proteins can be defined in terms of nucleotide sequences degenerate with that set forth in FIG. 2A as encoding acnC
- nucleic acids comprising nucleotide sequences useful in the design of probes or PCR primers for recovery of acnC proteins from strains of bacteria other than PA01 and for the design of nucleic acids used to inhibit or modulate the production of native acnC will be defined structurally in terms of their homology to the non degenerate nucleotide sequence set forth as encoding acnC in FIG. 2A .
- nucleotide sequences will have at least 85% homology, preferably 90% homology, preferably 95% homology, and more preferably 98% homology to the nucleotide sequence set forth as encoding acnC in FIG. 2A or alternatively in terms of their ability to hybridize to this nucleotide sequence or its complement—i.e., which hybridize under stringent conditions to these sequences.
- one approach to modulating the virulence of mucoid bacteria comprises contacting such bacteria with a compound which inhibits the aconitase C activity in combination with a source of propionate.
- a compound which inhibits the aconitase C activity in combination with a source of propionate.
- Such compounds can be identified through the screening assay described above, or may already be known to block aconitase C activity by virtue of their ability to bind the aconitase C protein.
- antibodies or other specific binding partners for the aconitase C proteins of the invention may be employed.
- Antibodies include, in addition to immunoglobulins in general, immunoreactive portions, such as the F(ab) or F(ab′) or F(ab′) 2 fragments; antibodies may also be prepared as single-chain forms—i.e., scFv antibodies.
- scFv antibodies Various ways to manipulate antibodies for particular purposes are also well known; thus, included within the invention are humanized forms of antibodies of the invention or antibodies which are modified to correspond to the species to which they may be administered.
- Other specific binding partners include aptamers—i.e., nucleic acids which optionally have been selected through known rounds of selection using the Selex® system, for example, for specific binding to proteins with aconitase C activity.
- aptamers may be “traditional” nucleic acids or modified forms thereof, such as peptide nucleic acids.
- aconitase C activity may be inhibited in a variety of ways, including direct binding of the protein by antibodies or aptamers, and by compounds which have been shown to inhibit the activity empirically.
- aconitase C activity methods to inhibit the production of the aconitase C protein itself may also be employed.
- Such known methods include use of antisense constructs and formation of a triple helix at a critical position in the gene. In these methods, of course, the native, non-degenerate nucleotide sequence must be targeted.
- suitable targets for triplex formation or antisense inhibition include nucleotide sequences which encode aconitase C activity and which have at least 85%, preferably 90% homology, preferably 95% homology and more preferably 98% homology to the nucleotide sequence shown to encode acnC in FIG.
- oligonucleotides which operate through a mechanism of antisense complementarity are generated in situ.
- vectors containing transcriptional controls may be used to generate antisense RNA comprising nucleotide sequences complementary to the mRNA encoding aconitase C (the structural characteristics of which are described above).
- triplex formation operates at the gene level, the oligonucleotides for triplex formation are generally directly supplied.
- the mucoid bacteria for which virulence is sought to be modulated is treated both with materials which inhibit production or activity of aconitase C and with a source of propionate.
- the propionate source may be propionic acid itself or a fatty acid with an odd number of carbon atoms in the chain which generates propionic acid metabolically.
- Other materials known to be metabolized to propionic acid, such as ibuprofen, could also be substituted.
- the propionic acid portion of the treatment is contributed by any compound which is itself propionic acid or generates propionic acid in situ.
- the propionic acid source and the means for modulating aconitase C activity are supplied either simultaneously or sequentially to the mucoid bacterium target. If the targeted bacterium is present in an in vitro environment, e.g., in a foodstuff or other composition to be decontaminated, the propionic acid source and the modulator of acnC activity can be supplied directly to this material. Alternatively, the offending bacterium may have infected an organism, in which case the appropriate materials are supplied to the organism per se.
- the mammal or avian host is provided a propionic acid source and a modulator of acnC.
- administration can be by any traditional means and the materials formulated appropriately to their nature.
- administration may be by injection, transmucosal, transdermal, topical, local, systemic, oral, or in a variety of paradigms well known to practitioners.
- propionic acid generating compound When the combination of a propionic acid generating compound and inhibitor or modular of acnC is used to treat a subject, the choice of propionic acid generating compound is made appropriate to lack of toxicity and ability of the treated subject to metabolize the precursor to the desired product; thus, for example, propionic acid per se would not be used in mammalian subjects. Suitable formulations are also provided as is known in the art for effective routes of administration.
- treat bacterial infection is meant any positive change with regard to the health of the subject related to the underlying infection, not necessarily a complete recovery. Thus, reduction of the mucoid production by the bacteria, amelioration of symptoms, slowing the progression of bacterial growth, and the like, are all within the scope of “treating.”
- the genome of P. aeruginosa wildtype strain 01, a mucoid producing strain, designated herein PA01 was subjected to PCR to obtain a 900 base pair aconitase C encoding fragment.
- the forward primer was GTNGGNACNGAYTCNCAYACN and the backward primer was NCKNCCYTCRAARTTNCKRTT.
- the amplified fragment was sequenced and the amino acid sequence encoded was deduced. The complete nucleotide sequence and deduced amino acid sequence are shown in FIG. 2A .
- the position of the aconitase C encoding gene in P. aeruginosa is compared to the location of the corresponding encoding sequence in S. typhimurium and E. coli in FIG. 2C .
- E. coli and S. typhimurium catabolize propionate using proteins encoded by the prpBCDE operon (prp operon).
- prp operons have been shown to contain a set of genes—prpR, prpB, prpC, prpD and prpE.
- the prpD gene in these bacteria has been proposed to encode a protein with 2-methylcitrate dehydratase enzyme activity catalyzing the conversion of 2-methylcitrate into 2-methylisocitrate (Horswill and Escalante-Semerena, Biochemistry (2001) 40:4703-4713).
- the prp operon contains a different set of genes, some of which are homologous to the genes in the E. coli and S. typhimurium prp operons.
- the P. aeruginosa prp operon contains prpR, prpB, acnC, yraM, and prpD.
- E. coli nor typhimurium comprise acnC in the prp operon or elsewhere in their genomes. No sequences homologous to acnC gene have been found in any eukaryotic genome.
- aconitase C protein sequence which contains 869 amino acids, permitted comparison using the BLAST similarity search program to known aconitases.
- the protein showed 61% similarity using this program to E. coli aconitase A, 60% similarity to P. aeruginosa aconitase A, 61% similarity to human IRP1, 53% similarity to human IRP2, and 41% similarity to pig mitochondrial aconitase.
- the approximately 900 base pairs of the aconitase C insert obtained in Example 1 was amplified by PCR from the PA01 genome using the primers GTGGCACCGACAGCCATAC and GCGCCCGTCGAAGTTGCGGTT.
- the amplified fragment was ligated into pBluescript-2 (KS+) (Stratagene) which had been cleaved with EcoRV and treated with tack DNA polymerase and dTTP to form intermediate plasmid pBSacnC.
- An approximately 1 kb DNA that encodes gentamicin resistance (Gm R ) was isolated from pUCGm described in Schweizer, H. D., Biotechniques (1993) 15:831-834 by digesting with Smal.
- This amplified segment was cloned into the Stul site which resides in the acnC coding sequence in pBSacnC to generate pBSacnCGm.
- the approximately 2 kb DNA fragment which contains the acnC sequence which was disrupted with the Gm R cassette was isolated by treating this plasmid with HindIII and PstI and filled in with Klenow and dNTP's. This fragment was ligated to the SmaI ends of the conjugation plasmid pEX100T (Schweizer, H. D., et al., Gene (1995) 158:15-22) to obtain pEXacnCGm.
- This plasmid was used to transform E. coli S17-1 and recombinant cells containing the plasmid were combined with an approximately equal amount of PA01 cells and plated on LB plates for conjugation. After conjugation, the bacteria were plated on Pseudomonas isolation agar plates containing Gm for selection of residue P. aeruginosa cells. Mutants for disruption of the acnC gene were further selected on PIA plates containing Gm and 4% sucrose. The successful transformants are designated PA01* or PA01-acaB:Gm.
- Exotoxin A production determined by Western analysis of stationary phase supernatants did not show any change. However, hemolytic activity (tested by zone clearance on blood agar plates); proteolytic activity (tested by zone clearance on milk agar plates); elastase activity (tested by zone clearance on 2XYT-elastin plates); pyoverdin production (tested by pigment production on F agar plates); and pyocyanin production (tested by pigment production of P agar plates) were all diminished substantially.
- FIG. 3 shows illustrative results of the effect of the inclusion of 0.05% propionate in the tryptic soy broth deferrated (TSBD) plus 100 ⁇ M iron medium with and without 50 mM glutamate. As shown, growth is diminished in the presence of propionate in PA01* as compared to wildtype.
- TSBD tryptic soy broth deferrated
- PA01 and PA01* were grown in TSBD supplemented with 100 ⁇ M iron and the aconitase activity was determined at 6, 10 and 14 hours. PA01 exhibited 5, 15, and 19 units of activity per milligram of protein at these time points, respectively, while PA01* exhibited only 3, 10, and 16 units, respectively. PA01* also exhibited slightly reduced growth under these conditions.
- disruption of the acnC gene completely abolishes growth in media where propionate is the carbon source, and diminishes growth in propionate-containing media with other carbon sources. Diminished aconitase activity in converting citrate to cis aconitate is also shown.
- FRD1 is much more susceptible to propionate inhibition than wildtype PA01. While PA01 is able to grow on 0.4% propionate, inhibition of FRD1 growth occurs at levels of 0.1% propionate and inhibition is complete as low as 0.2% propionate in the medium.
- aconitase activity (measured as the conversion of citric acid to cis aconitate) is different in PA01 wildtype as compared to FRD1. While this activity was slightly higher in FRD1 after 4 hours of culture as compared to PA01, after 7 hours of culture the activity was statistically higher in PA01 cells and roughly equivalent after 14 hours.
- FIG. 4 shows the effect of the addition of propionate on the growth of various mucoid clinical isolates in comparison with a non-mucoid strain, BH1, and a revertant strain, BAB. As shown, the mucoid strains demonstrate substantial growth inhibition at low concentrations of propionate.
- FRD1 shows enhanced sensitivity to propionate, possibly due to reduced levels of TCA cycle activity, since propionic acid drains the TCA cycle intermediate oxalacetic acid.
- Ibuprofen is known to generate propionic acid when metabolized and was thus tested for its ability to inhibit the growth of FRD1.
- Other propionate-generating compounds include certain ⁇ 4 ⁇ 1 integrin antagonists described by DuPlantier, A. J., et al., Bioorg. Med. Chem. Let. (2001) 11:2593-2596. Using absorbance at 600 nm as the criterion, growth inhibition was detected at a concentration of 0.5 mg/ml of ibuprofen added to 2 ml LB cultures; the percent inhibition at this level was 19%. Inhibition increased in a dose-dependent manner to 72% at 5 mg/ml, and was similar at 10 mg/ml (73%).
- the effect on mucoid production of addition of propionate can be tested by assessing the level of attachment of the cells to plastic tubes. This was measured as the absorbance at 570 nm of plastic tubes. Levels of as low as 0.1% propionate were able to diminish significantly the attachment of FRD1 cells to plastic tubes; the effect on attachment of PA01 was less dramatic.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
A bacterial protein which converts 2-methyl citrate to 2-methyl isocitrate is a previously unknown target for antibacterial agents. The protein of this activity is associated with mucoid bacteria and inhibitors of production or activity of this protein in combination with propionic acid mitigate the virulence of these bacteria.
Description
- This application is a divisional of copending U.S. Ser. No. 10/441,919 filed 19 May 2003, which claims priority to U.S. Patent Application Ser. No. (USSN) 60/459,885, filed Apr. 1, 2003. The contents of this application is incorporated herein by reference.
- The invention relates to methods to control the growth and virulence of mucoid bacteria and to regulate their production of exopolysaccharide biofilms. The invention also is directed to methods to screen for useful antibiotics. Such screening methods employ a novel aconitase whose properties have heretofore been unknown.
- Several species of bacteria are able to secrete exopolysaccharides or alginates that are essential for virulence as the exudate provides a mechanism for adherence and colonization. One particularly important example of such bacteria is Pseudomonas aeruginosa, a common soil bacterium which inhabits individuals generally, but is particularly destructive in subjects with cystic fibrosis. Cystic fibrosis is an autosomal recessive genetic disorder linked to dysfunctional CFTR chloride channels on cell surfaces. It is characterized by production of thick mucus which prevents clearance of bacteria, resulting in chronic infection and inflammation. Because P. aeruginosa produces biofilm in the lungs and digestive systems of these subjects, and the subjects are unable to clear this biofilm, P. aeruginosa infection is a major cause of death among such individuals.
- Many bacteria exhibit mucoid (resembling mucus) phenotype as a response to their growth environment. The mucoidy is generated by bacterial production of extracellular polysaccharides (exopolysaccharide or EPS). Various EPS molecules that include frucose, rugose and glucose residues have been characterized. Examples of bacteria producing mucoid phenotype include alginate producing Pseudomonas and Azotobacter species (i.e., P. aeruginosa, Azotobacter vinelandii), rugose producing Vibrio species (i.e., Vibrio cholerae), xanthan producing Xanthomonas species (i.e., Xanthomonas campestris), gellan producing Sphingomonas species (i.e., S. paucimobilis), curdlan-type EPS producing Cellulomonas, Alcaligenes and Agrobacterium species (i.e., Cellulomonas flavigena, Alcalifenes faecalis) and Shewanella, Bordetella and Streptococcus species producing various uncharacterized EPS, among others. In fact, under unfavorable growth conditions, many bacteria can switch to a mucoid phenotype to resist the environmental stress and adapt to unfavored conditions. Biofilms represent a typical structured adaptation environment in which many bacteria co-exist and secrete extracellular polysaccharides which aid them to stick to surfaces for growth and colonization, provide a protective barrier around them and adapt to their environment in a microbial community. The exopolysaccharides produced by mucoid Pseudomonas that occupy the lungs of cystic fibrosis patients are generally alginates which are O-glycosyl linked D-mannuronate and L-guluronate residues.
- It is understood that, in order to produce these biofilms, the essential components required must be made available by the metabolic system of the bacterium. The present invention provides means to disrupt this ability by disabling an essential step in this metabolic sequence.
- The present inventors have discovered that mucoid bacteria contain an aconitase, designated herein that encoded by acnC which catalyzes the conversion of 2-methyl citrate to 2-methyl isocitrate. This aconitase, which has an activity different from aconitases previously known, is required for the clearance of propionate; propionic acid is a known toxic agent for mucoid bacteria as described in PCT publication WO 01/30997, the disclosure of which is incorporated herein by reference. Accordingly, disruption of the activity or production of acnC protein along with the administration of propionic acid, or of compounds which generate propionic acid, has a deleterious effect on mucoid producing bacteria. This effect resides, in large part, in inhibiting the production of the biofilm and thus inhibiting the ability of the bacterium to survive in its environment.
- Thus, in one aspect, the invention is directed to a method to mitigate the virulence of a mucoid bacterial culture or infection, which method comprises contacting the bacteria contained in said culture or infection with an effective amount of propionic acid or a substance which generates propionic acid in combination with effecting inhibition of the production or activity of acnC protein.
- In another aspect, the invention is directed to a method to screen for compounds that enhance the toxicity of propionic acid to exopolysaccharide-producing bacteria, which method comprises assessing the ability of candidate compounds to inhibit the activity of acnC protein. This method comprises determining the conversion of 2-methyl citrate to 2-methyl isocitrate in the presence of acnC protein and testing this in the presence and absence of a candidate compound. Compounds whose presence reduces the level of 2-methyl isocitrate produced, or which are otherwise shown to inhibit acnC protein, are identified as useful in enhancing the toxicity of propionic acid or its precursors.
- In a third aspect, the invention is directed to a composition of matter which comprises an isolated form of acnC protein, compositions which comprise recombinant materials for its production and methods for producing acnC protein using the recombinant materials. The invention also is directed to antisense or triplex forming nucleic acid molecules and other inhibitors for the production of acnC protein.
-
FIG. 1 is a diagram showing the catabolism of propionate in Pseudomonas aeruginosa. -
FIGS. 2A-2D show the nucleotide and deduced amino acid sequence of aconitase C from P. aeruginosa strain 01 (PA01) as well as homologous enzymes from other bacteria, and position of the encoding gene. InFIG. 2A , the nucleotide sequence and deduced amino acid sequence of the acnC protein is shown.FIG. 2B shows the amino acid sequence. InFIG. 2C , homologs for the acnC protein having at least 85% similarity were retrieved through BLAST searches and alignment of these sequence using DNASTAR.FIG. 2D shows a comparison of the location of the gene in P. aeruginosa and the corresponding genetic positions in S. typhimurium and E. coli. -
FIG. 3 shows a graph of the effect of 0.5% propionate added to TSBD medium containing 50 mM glutamate on wildtype PA01 as compared to PA01 with an acnC gene disruption. -
FIG. 4 shows the effect of the addition of propionate to clinical mucoid isolates. - While many currently used antibiotics and drugs target the ability of bacteria to grow, they do not necessarily reduce the ability of these bacteria to infect the host, to adapt, and to produce virulence factors. The present invention, by elucidating the function and structure of a protein product and its encoding gene that is involved in virulence and metabolic adaptation, provides an entirely new target for the design and development of new anti-infectives, antibacterial compounds, and biofilm control agents. As this is a new target for antibacterial drugs, resistance to such drugs has not developed.
- This target is exemplified herein by the isolation and manipulation of a gene from Pseudomonas aeruginosa designated aconitase C (acnC). Disruption of acnC completely abolishes bacterial growth in the presence of propionic acid and results in a significant reduction in the virulence factors associated with P. aeruginosa, including the production of biofilms. Hence, inhibition of the production of this protein or inhibition of its activity will attenuate microbial virulence in the presence of propionic acid or a material which generates it. No eukaryotic counterpart to aconitase C is known.
- It is demonstrated herein that disruption of aconitase C activity destroys the ability of mucoid bacteria to grow in the presence of propionic acid. Accordingly, it is clear that inhibitors of this activity, either those which inhibit the production of the protein or those which inhibit the activity of the protein itself will be useful in making mucoid bacteria more susceptible to propionic acid and to agents which generate propionic acid.
- Previously described aconitase activities catalyze the dehydration of citric acid to cis aconitate. The presently isolated aconitase C is capable of this activity as well, but has the additional feature of catalyzing the conversion of 2-methyl citrate to 2-methyl isocitrate as shown in
FIG. 1 . This pathway is critical to propionate metabolism as shown. Propionic acid is converted to propionyl CoA and condensed with oxalacetate to obtain 2-methyl citrate. 2-Methyl citrate must be isomerized to 2-methyl isocitrate in order to complete the metabolic fate of propionic acid. 2-Methyl citrate is metabolized to succinate and pyruvate, components of the citric acid pathway. Inhibition of aconitase C thus diminishes the ability of the organism to metabolize the toxic propionic acid. - “Aconitase C” and “acnC” are used interchangeably and refer to any nucleotide sequence encoding the protein with enzymatic activity, the protein itself, and the gene locus which results in the production of the protein. In order to be defined as “aconitase C” or “acnC” the protein must exhibit the ability to convert 2-methyl citrate to 2-methyl isocitrate. This activity can readily be verified using routine enzymatic assays. In some drawings and text herein, the corresponding materials are also labeled “acaB.” In Pseudomonas, the acnC encoding gene is found downstream in the propionate operon from prpC and upstream of prpD.
- One assay is analogous to that employed for determining levels of aconitase activity known in the prior art, based on the sequence of reactions shown below:
The enzymatic process shown above is monitored spectrophotometrically based on measurement of increase in OD at 340 nm with formation of NADPH from NADP+. The assay components include citrate and isocitrate dehydrogenase. Under appropriate conditions, the rate of NADPH production is proportional to aconitase activity. One aconitase unit will convert 1.0 micromol of citrate to isocitrate per minute at 25° C., pH 7.4 (Gardner and Fridovisch, J. Chem. (1992) 267:8757-8763). - As the aconitase C of the present invention converts 2-methyl citrate to 2-methyl isocitrate, and as 2-methyl isocitrate is also oxidized with NADP+ in the presence of isocitrate dehydrogenase, a similar assay that couples spectrophotometric measurement of NADPH production at 340 nm can be used to determine levels of aconitase C of the present invention.
- The foregoing, and any other appropriate assay for the conversion of 2-methyl citrate to 2-methyl isocitrate, can be used as a screening assay to identify compounds that will be useful in modifying the virulence of mucoid bacteria. Compounds which inhibit this activity will be useful in this regard. Thus, the activity of a preparation of purified and isolated aconitase C protein, recombinantly produced aconitase C protein, or even an impure preparation of aconitase C protein is tested for this conversion activity in both the presence and absence of candidate compound. Compounds whose presence results in a decrease in this activity are identified as useful compounds for reducing the virulence of mucoid bacteria. As a preliminary screen, the traditional aconitase activity assay shown above can be used as a surrogate in identifying compounds with the desired activity. However, assays using the aconitase C protein per se are preferred.
- The screening assay using aconitase C protein per se is facilitated by virtue of the availability of recombinant materials for production of the required aconitase C protein. Described herein, as illustrative, is the amino acid sequence of the aconitase C gene derived from P. aeruginosa. Homologous proteins from other prokaryotic organisms could also be used, and can readily be retrieved using standard techniques with the information contained in the P. aeruginosa gene as a guide. Thus, the protein encoded by the gene in the P. aeruginosa strain 01 comprises 869 amino acids and the nucleotide sequence and deduced amino acid sequence are shown in
FIG. 2A . The protein is found in the cytoplasm and is probably present in association with bacterial membrane and/or other enzymes involved in propionate catabolism. The aconitase activity in PA acnC::Gm mutant is decreased when measured by a traditional aconitase assay indicating that the catalytic site of the protein may resemble the catalytic site of the known aconitases (acnA and acnB) involving conserved cysteine and arginine residues folded to structure a docking region for an iron-sulfur (4Fe-4S) cubane cluster as well as interaction with substrates including citrate and isocitrate. - Proteins with homology to the PA01 aconitase C protein also share the ability to convert 2-methyl citrate to 2-methyl isocitrate. Thus, included within the scope of the invention are proteins which exhibit at least 85%, preferably 90%, preferably 95%, and more preferably 98% homology over the entire sequence to the sequence shown in
FIG. 2A and which exhibit aconitase C activity. “Aconitase C activity” is defined herein as the ability to convert 2-methyl citrate to 2-methyl isocitrate. Fragments of these sequences of shared homology which retain aconitase C activity are also included within the scope of the invention.FIG. 2B shows homologous sequences that are known to occur in other bacteria as retrieved through BLAST searches. - Similarly, proteins encoded by a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence encoding the amino acid sequence of the PA01 aconitase C protein are also included within the scope of the invention. The stringency of hybridization is defined by the wash conditions subsequent to the hybridization itself and “stringent” conditions are defined as washing in 0.1% SSC at 65° C.
- Thus, proteins which are within the scope of the present invention may be defined in terms of their ability to convert 2-methyl citrate to 2-methyl isocitrate in combination (1) with specified homology to the acnC sequence set forth in
FIG. 2A or (2) with structural characteristics as defined by the ability of a nucleotide sequence encoding them to hybridize to a nucleotide sequence encoding this amino acid sequence. - While nucleic acids which encode aconitase C proteins can be defined in terms of nucleotide sequences degenerate with that set forth in
FIG. 2A as encoding acnC, nucleic acids comprising nucleotide sequences useful in the design of probes or PCR primers for recovery of acnC proteins from strains of bacteria other than PA01 and for the design of nucleic acids used to inhibit or modulate the production of native acnC will be defined structurally in terms of their homology to the non degenerate nucleotide sequence set forth as encoding acnC inFIG. 2A . Thus, such nucleotide sequences will have at least 85% homology, preferably 90% homology, preferably 95% homology, and more preferably 98% homology to the nucleotide sequence set forth as encoding acnC inFIG. 2A or alternatively in terms of their ability to hybridize to this nucleotide sequence or its complement—i.e., which hybridize under stringent conditions to these sequences. - As stated above, one approach to modulating the virulence of mucoid bacteria comprises contacting such bacteria with a compound which inhibits the aconitase C activity in combination with a source of propionate. Such compounds can be identified through the screening assay described above, or may already be known to block aconitase C activity by virtue of their ability to bind the aconitase C protein. Thus, antibodies or other specific binding partners for the aconitase C proteins of the invention may be employed. “Antibodies” include, in addition to immunoglobulins in general, immunoreactive portions, such as the F(ab) or F(ab′) or F(ab′)2 fragments; antibodies may also be prepared as single-chain forms—i.e., scFv antibodies. Various ways to manipulate antibodies for particular purposes are also well known; thus, included within the invention are humanized forms of antibodies of the invention or antibodies which are modified to correspond to the species to which they may be administered. Other specific binding partners include aptamers—i.e., nucleic acids which optionally have been selected through known rounds of selection using the Selex® system, for example, for specific binding to proteins with aconitase C activity. Such aptamers may be “traditional” nucleic acids or modified forms thereof, such as peptide nucleic acids. Thus, aconitase C activity may be inhibited in a variety of ways, including direct binding of the protein by antibodies or aptamers, and by compounds which have been shown to inhibit the activity empirically.
- In addition to use of compounds which inhibit aconitase C activity, methods to inhibit the production of the aconitase C protein itself may also be employed. Such known methods include use of antisense constructs and formation of a triple helix at a critical position in the gene. In these methods, of course, the native, non-degenerate nucleotide sequence must be targeted. Thus, suitable targets for triplex formation or antisense inhibition include nucleotide sequences which encode aconitase C activity and which have at least 85%, preferably 90% homology, preferably 95% homology and more preferably 98% homology to the nucleotide sequence shown to encode acnC in
FIG. 2 or nucleotide sequences which hybridize under stringent conditions as defined above to that nucleotide sequence. Typically, oligonucleotides which operate through a mechanism of antisense complementarity are generated in situ. Thus, vectors containing transcriptional controls may be used to generate antisense RNA comprising nucleotide sequences complementary to the mRNA encoding aconitase C (the structural characteristics of which are described above). As triplex formation operates at the gene level, the oligonucleotides for triplex formation are generally directly supplied. - In the method of the invention, the mucoid bacteria for which virulence is sought to be modulated is treated both with materials which inhibit production or activity of aconitase C and with a source of propionate. The propionate source may be propionic acid itself or a fatty acid with an odd number of carbon atoms in the chain which generates propionic acid metabolically. Other materials known to be metabolized to propionic acid, such as ibuprofen, could also be substituted. Thus, the propionic acid portion of the treatment is contributed by any compound which is itself propionic acid or generates propionic acid in situ.
- The propionic acid source and the means for modulating aconitase C activity (which means include direct inhibition of activity and inhibition of production of this protein) are supplied either simultaneously or sequentially to the mucoid bacterium target. If the targeted bacterium is present in an in vitro environment, e.g., in a foodstuff or other composition to be decontaminated, the propionic acid source and the modulator of acnC activity can be supplied directly to this material. Alternatively, the offending bacterium may have infected an organism, in which case the appropriate materials are supplied to the organism per se. Thus, for example, if the targeted bacterium has infected an animal, such as a mammal or avian host, the mammal or avian host is provided a propionic acid source and a modulator of acnC. Such administration can be by any traditional means and the materials formulated appropriately to their nature. Thus, administration may be by injection, transmucosal, transdermal, topical, local, systemic, oral, or in a variety of paradigms well known to practitioners.
- When the combination of a propionic acid generating compound and inhibitor or modular of acnC is used to treat a subject, the choice of propionic acid generating compound is made appropriate to lack of toxicity and ability of the treated subject to metabolize the precursor to the desired product; thus, for example, propionic acid per se would not be used in mammalian subjects. Suitable formulations are also provided as is known in the art for effective routes of administration.
- By “treat” bacterial infection is meant any positive change with regard to the health of the subject related to the underlying infection, not necessarily a complete recovery. Thus, reduction of the mucoid production by the bacteria, amelioration of symptoms, slowing the progression of bacterial growth, and the like, are all within the scope of “treating.”
- The following examples are intended to illustrate but not to limit the invention.
- The genome of P. aeruginosa wildtype strain 01, a mucoid producing strain, designated herein PA01 was subjected to PCR to obtain a 900 base pair aconitase C encoding fragment. The forward primer was GTNGGNACNGAYTCNCAYACN and the backward primer was NCKNCCYTCRAARTTNCKRTT. The amplified fragment was sequenced and the amino acid sequence encoded was deduced. The complete nucleotide sequence and deduced amino acid sequence are shown in
FIG. 2A . - The position of the aconitase C encoding gene in P. aeruginosa is compared to the location of the corresponding encoding sequence in S. typhimurium and E. coli in
FIG. 2C . E. coli and S. typhimurium catabolize propionate using proteins encoded by the prpBCDE operon (prp operon). These prp operons have been shown to contain a set of genes—prpR, prpB, prpC, prpD and prpE. The prpD gene in these bacteria has been proposed to encode a protein with 2-methylcitrate dehydratase enzyme activity catalyzing the conversion of 2-methylcitrate into 2-methylisocitrate (Horswill and Escalante-Semerena, Biochemistry (2001) 40:4703-4713). In P. aeruginosa, the prp operon contains a different set of genes, some of which are homologous to the genes in the E. coli and S. typhimurium prp operons. The P. aeruginosa prp operon contains prpR, prpB, acnC, yraM, and prpD. Neither E. coli nor typhimurium comprise acnC in the prp operon or elsewhere in their genomes. No sequences homologous to acnC gene have been found in any eukaryotic genome. - Deduction of the aconitase C protein sequence, which contains 869 amino acids, permitted comparison using the BLAST similarity search program to known aconitases. The protein showed 61% similarity using this program to E. coli aconitase A, 60% similarity to P. aeruginosa aconitase A, 61% similarity to human IRP1, 53% similarity to human IRP2, and 41% similarity to pig mitochondrial aconitase.
- The approximately 900 base pairs of the aconitase C insert obtained in Example 1 was amplified by PCR from the PA01 genome using the primers GTGGCACCGACAGCCATAC and GCGCCCGTCGAAGTTGCGGTT. The amplified fragment was ligated into pBluescript-2 (KS+) (Stratagene) which had been cleaved with EcoRV and treated with tack DNA polymerase and dTTP to form intermediate plasmid pBSacnC. An approximately 1 kb DNA that encodes gentamicin resistance (GmR) was isolated from pUCGm described in Schweizer, H. D., Biotechniques (1993) 15:831-834 by digesting with Smal. This amplified segment was cloned into the Stul site which resides in the acnC coding sequence in pBSacnC to generate pBSacnCGm. The approximately 2 kb DNA fragment which contains the acnC sequence which was disrupted with the GmR cassette was isolated by treating this plasmid with HindIII and PstI and filled in with Klenow and dNTP's. This fragment was ligated to the SmaI ends of the conjugation plasmid pEX100T (Schweizer, H. D., et al., Gene (1995) 158:15-22) to obtain pEXacnCGm.
- This plasmid was used to transform E. coli S17-1 and recombinant cells containing the plasmid were combined with an approximately equal amount of PA01 cells and plated on LB plates for conjugation. After conjugation, the bacteria were plated on Pseudomonas isolation agar plates containing Gm for selection of residue P. aeruginosa cells. Mutants for disruption of the acnC gene were further selected on PIA plates containing Gm and 4% sucrose. The successful transformants are designated PA01* or PA01-acaB:Gm.
- The effect of acnC gene disruption on various virulent activities of PA01 were determined.
- Exotoxin A production, determined by Western analysis of stationary phase supernatants did not show any change. However, hemolytic activity (tested by zone clearance on blood agar plates); proteolytic activity (tested by zone clearance on milk agar plates); elastase activity (tested by zone clearance on 2XYT-elastin plates); pyoverdin production (tested by pigment production on F agar plates); and pyocyanin production (tested by pigment production of P agar plates) were all diminished substantially.
- When tested for growth on various carbon sources, no difference was observed when glucose, glutamate, citrate, isocitrate, succinate, acetate, pyruvate, butyrate, hexonate, or glyoxalate was used as a carbon source. However, although the wildtype could grow well on propionate, pentanate and the combination of glyoxalate and propionate as carbon sources, the acnC disrupted strain did not grow under these conditions.
-
FIG. 3 shows illustrative results of the effect of the inclusion of 0.05% propionate in the tryptic soy broth deferrated (TSBD) plus 100 μM iron medium with and without 50 mM glutamate. As shown, growth is diminished in the presence of propionate in PA01* as compared to wildtype. - The two strains were also tested for aconitase activity using the known conversion of aconitase citric acid to cis aconitic acid. PA01 and PA01* were grown in TSBD supplemented with 100 μM iron and the aconitase activity was determined at 6, 10 and 14 hours. PA01 exhibited 5, 15, and 19 units of activity per milligram of protein at these time points, respectively, while PA01* exhibited only 3, 10, and 16 units, respectively. PA01* also exhibited slightly reduced growth under these conditions.
- Thus, disruption of the acnC gene completely abolishes growth in media where propionate is the carbon source, and diminishes growth in propionate-containing media with other carbon sources. Diminished aconitase activity in converting citrate to cis aconitate is also shown.
- In addition, it has been shown that chemotaxis is affected and expression of several virulence factors is diminished.
- In addition to PA01, an additional mucosal strain, FRD1 with gentamicin resistance was subjected to disruption of the acnC gene, as was a mucoid clinical isolate. For comparison, aconitase A was also similarly disrupted. All of the strains behaved similarly in respect to their ability to grow on propanediol in the presence and absence of propionic acid. All of the strains were able to grow in 1,2-propanediol, but were less able to grow using 1,3-propanediol as carbon source. Addition of propionic acid to the medium completely abolished the ability of both PA01 and FRD1 with disrupted aconitase C genes to grow under these conditions; disruption of the acnA gene did not result in this effect.
- FRD1 is much more susceptible to propionate inhibition than wildtype PA01. While PA01 is able to grow on 0.4% propionate, inhibition of FRD1 growth occurs at levels of 0.1% propionate and inhibition is complete as low as 0.2% propionate in the medium.
- It has also been noted that aconitase activity (measured as the conversion of citric acid to cis aconitate) is different in PA01 wildtype as compared to FRD1. While this activity was slightly higher in FRD1 after 4 hours of culture as compared to PA01, after 7 hours of culture the activity was statistically higher in PA01 cells and roughly equivalent after 14 hours.
-
FIG. 4 shows the effect of the addition of propionate on the growth of various mucoid clinical isolates in comparison with a non-mucoid strain, BH1, and a revertant strain, BAB. As shown, the mucoid strains demonstrate substantial growth inhibition at low concentrations of propionate. - It has also been shown that the results of propionate treatment can be obtained using odd-numbered chain fatty acids in the medium, as the metabolic products of these fatty acids include propionate. This is shown in Table 1 below which shows results of the addition of propionate, butyrate, hexanoic acid and pentanoic acid to M9 medium on wildtype PA01*, and PA01 with two irrelevant disruptions—acaA and icdl. As shown, both the presence of 0.4% propionate and 0.4% pentanoate disrupt the growth of the strain with a disrupted acnC gene, but these additions have no effect on the other strains tested.
TABLE 1 Dis- Disrupted PA01* rupted PA01 wt acaA (Disrupted acnC) IcdI M9/propionate 0.4% + + − + M9/butyrate 0.4% +/poor +/poor +/poor +/poor M9/hexanoate 0.4% + + + + M9/pentanoate 0.4% + + − + - The effect of the addition of 0.4% propionate to LB medium containing wildtype PA01, PA01*, and the more sensitive mucoid strain FRD1, was also tested. The wildtype does not respond to 0.4% propionate, but the modified strain PA01* containing a disrupted acnC gene does show diminished growth, as does the more propionate-sensitive strain FRD1.
- FRD1, as set forth in Example 4, shows enhanced sensitivity to propionate, possibly due to reduced levels of TCA cycle activity, since propionic acid drains the TCA cycle intermediate oxalacetic acid.
- This effect was tested by supplementing M9 minimal media with various TCA cycle components in the presence of 0.4% propionate. While glucose as a carbon source failed to reverse the negative effects on growth of propionate, the cell cycle intermediates acetate, aspartate, glutamate and malate were successful in doing so.
- Ibuprofen is known to generate propionic acid when metabolized and was thus tested for its ability to inhibit the growth of FRD1. Other propionate-generating compounds include certain α4β1 integrin antagonists described by DuPlantier, A. J., et al., Bioorg. Med. Chem. Let. (2001) 11:2593-2596. Using absorbance at 600 nm as the criterion, growth inhibition was detected at a concentration of 0.5 mg/ml of ibuprofen added to 2 ml LB cultures; the percent inhibition at this level was 19%. Inhibition increased in a dose-dependent manner to 72% at 5 mg/ml, and was similar at 10 mg/ml (73%).
- As mucoid production is necessary for attachment, the effect on mucoid production of addition of propionate can be tested by assessing the level of attachment of the cells to plastic tubes. This was measured as the absorbance at 570 nm of plastic tubes. Levels of as low as 0.1% propionate were able to diminish significantly the attachment of FRD1 cells to plastic tubes; the effect on attachment of PA01 was less dramatic.
- The effect of various concentrations of propionate on the ability of antibiotics to curtail the growth of PA01 or FRD1 was tested. Levels of 0.2% propionate appeared to have no effect on PA01 growth in the presence of the antibiotics amikacin, carbenicillin, ciprofloxacin, tobramycin, and tetracycline. Growth was assured by the diameter of colonies formed in the presence of discs containing amikacin (AN-30), 30 μg, carbenicillin (CB-100), 100 μg, ciprofloxacin (CIP-5), 5 μg, tobramycin (NN-10), 10 μg, or tetracycline (TE-30), 30 μg. On the other hand, 0.2% propionate appeared to diminish the effect of CB-100 and CIP-5 on inhibiting growth of FRD1. There appears to be little, if any, effect on the efficiency of remaining antibiotics tested.
Claims (19)
1. A method to mitigate the virulence of mucoid bacteria, which method comprises contacting said bacteria with propionic acid or a compound which generates propionic acid metabolically in combination with an agent which inhibits aconitase C (acnC) activity or production of acnC protein.
2. The method of claim 1 , wherein said acnC activity is provided by a protein comprising an amino acid sequence at least 95% homologous to the amino acid sequence of acnC as set forth in FIG. 2 .
3. A method to identify a compound that, in combination with propionic acid, inhibits the virulence of mucoid bacteria, which method comprises measuring the activity of acnC in the presence and absence of a candidate compound;
comparing the activity in the presence and absence of said candidate compound,
wherein a decrease in activity in the presence of said compound, as compared to its absence, identifies said compound as able to mitigate virulence of mucoid bacteria in the presence of propionic acid.
4. The method of claim 3 , wherein said acnC activity is provided by a protein comprising the amino acid sequence at least 95% homologous to the amino acid sequence of acnC as set forth in FIG. 2 .
5. The method of claim 3 , wherein said assessing is by measuring the decrease in concentration of 2-methyl citrate or the increase in concentration of 2-methyl isocitrate.
6. The method of claim 1 , wherein the production of acnC is inhibited by administering to said bacteria a nucleotide sequence which is the complement of mRNA encoding said acnC or an expression system for said mRNA.
7. The method of claim 1 , wherein the production of acnC is inhibited by modifying said bacteria to contain a nucleotide sequence which forms a triple helix with at least a portion of the acnC gene.
8. The method of claim 1 , wherein the activity of said aconitase C is inhibited by modifying the bacteria to contain an antibody immunoreactive with said aconitase C protein or a fragment of said antibody which retains this activity.
9. The method of claim 8 , wherein said providing is accomplished by modifying said bacteria to contain an expression system for said antibody or fragment.
10. An isolated protein which has at least 95% sequence homology to the amino acid sequence of aconitase C shown in FIG. 2 over its entire length and which exhibits enzymic activity to convert 2-methyl citrate to 2-methyl isocitrate.
11. The protein of claim 10 , which has the amino acid sequence set forth in FIG. 2 or a fragment of said sequence which exhibits said activity.
12. A nucleotide sequence which encodes the protein of claim 10 .
13. A nucleotide sequence which encodes the protein of claim 11 .
14. The nucleotide sequence of claim 13 , which is the nucleotide sequence encoding acnC set forth in FIG. 2 .
15. A nucleic acid which comprises an expression system for the protein of claim 10 , which expression system comprises a nucleotide sequence encoding said protein operably linked to control sequences for its expression.
16. The nucleic acid of claim 15 , wherein said control sequences are effective in prokaryotes.
17. A recombinant host cell modified to contain the nucleic acid of claim 16 .
18. A method to produce a protein having aconitase C activity, which method comprises culturing the cells of claim 17 , whereby the expression of said nucleotide sequence is effected.
19. A method to treat a subject for bacterial infection which method comprises administering to said subject a compound which generates propionic acid metabolically in combination with an agent that inhibits aconitase C (acnC) activity or production of acnC protein.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/679,815 US20070219269A1 (en) | 2003-04-01 | 2007-02-27 | Novel aconitase |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US45988503P | 2003-04-01 | 2003-04-01 | |
| US10/441,919 US7183100B2 (en) | 2003-04-01 | 2003-05-19 | Aconitase |
| US11/679,815 US20070219269A1 (en) | 2003-04-01 | 2007-02-27 | Novel aconitase |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/441,919 Division US7183100B2 (en) | 2003-04-01 | 2003-05-19 | Aconitase |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070219269A1 true US20070219269A1 (en) | 2007-09-20 |
Family
ID=33490468
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/441,919 Expired - Lifetime US7183100B2 (en) | 2003-04-01 | 2003-05-19 | Aconitase |
| US11/679,815 Abandoned US20070219269A1 (en) | 2003-04-01 | 2007-02-27 | Novel aconitase |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/441,919 Expired - Lifetime US7183100B2 (en) | 2003-04-01 | 2003-05-19 | Aconitase |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US7183100B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11541105B2 (en) | 2018-06-01 | 2023-01-03 | The Research Foundation For The State University Of New York | Compositions and methods for disrupting biofilm formation and maintenance |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060216811A1 (en) * | 2005-02-03 | 2006-09-28 | Cunningham Alfred B | Use of bacteria to prevent gas leakage |
| CN103547684B (en) * | 2011-05-25 | 2016-11-16 | 西门子医疗保健诊断公司 | Synergistic microbicidal compositions and production method thereof and purposes |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6551795B1 (en) * | 1998-02-18 | 2003-04-22 | Genome Therapeutics Corporation | Nucleic acid and amino acid sequences relating to pseudomonas aeruginosa for diagnostics and therapeutics |
-
2003
- 2003-05-19 US US10/441,919 patent/US7183100B2/en not_active Expired - Lifetime
-
2007
- 2007-02-27 US US11/679,815 patent/US20070219269A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6551795B1 (en) * | 1998-02-18 | 2003-04-22 | Genome Therapeutics Corporation | Nucleic acid and amino acid sequences relating to pseudomonas aeruginosa for diagnostics and therapeutics |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11541105B2 (en) | 2018-06-01 | 2023-01-03 | The Research Foundation For The State University Of New York | Compositions and methods for disrupting biofilm formation and maintenance |
Also Published As
| Publication number | Publication date |
|---|---|
| US20040248276A1 (en) | 2004-12-09 |
| US7183100B2 (en) | 2007-02-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Pikuta et al. | Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska | |
| EP2194122B1 (en) | Pyruvate carboxylase overexpression for enhanced production of oxaloacetate-derived biochemicals in microbial cells | |
| Mentel et al. | Of two make one: the biosynthesis of phenazines | |
| Elomari et al. | Pseudomonas monteilii sp. nov., isolated from clinical specimens | |
| Lavrinenko et al. | Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring | |
| CN101883853B (en) | Mutant having ability to produce 1, 4-butanediol and method for preparing 1, 4-butanediol using the same | |
| Federici et al. | Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis | |
| Bernard et al. | NAD+‐Dependent d‐2‐Hydroxyisocaproate Dehydrogenase of Lactobacillus Delbrueckii subsp. Bulgaricus: Gene Cloning and Enzyme Characterization | |
| Arnau et al. | Pseudomonas yamanorum sp. nov., a psychrotolerant bacterium isolated from a subantarctic environment | |
| Han et al. | Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo) | |
| Tavafi et al. | Screening, cloning and expression of a novel alginate lyase gene from P. aeruginosa TAG 48 and its antibiofilm effects on P. aeruginosa biofilm | |
| JP2003511067A (en) | High yield protein expression systems and methods | |
| CA3083840A1 (en) | Genetically modified bacterium for producing lactate from co2 | |
| US20070219269A1 (en) | Novel aconitase | |
| Follens et al. | acs1 of Haemophilus influenzae type a capsulation locus region II encodes a bifunctional ribulose 5-phosphate reductase–CDP-ribitol pyrophosphorylase | |
| JP2009195222A (en) | New alkali alginate lyase and its application | |
| CN107217043B (en) | Lactobacillus plantarum D-lactate dehydrogenase, and coding gene and application thereof | |
| KR101163542B1 (en) | Methods of preparing for Biotransformed Vanillin from Isoeugenol | |
| O'Connor et al. | The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3 | |
| Breisch et al. | The carnitine degradation pathway of Acinetobacter baumannii and its role in virulence | |
| KR102149044B1 (en) | Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid | |
| WO2006022640A1 (en) | Novel aconitase | |
| Sripo et al. | Screening and characterization of aldehyde dehydrogenase gene from Halomonas salina strain AS11 | |
| JP3850557B2 (en) | Novel gene and transformed cell carrying the gene | |
| Poletto et al. | Selection of an Escherichia coli host that expresses mutant forms of Mycobacterium tuberculosis 2-trans enoyl-ACP (CoA) reductase and 3-ketoacyl-ACP (CoA) reductase enzymes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BIOLOGICAL TARGETS, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CANDAS, MEHMET;BULLA, LEE A.;REEL/FRAME:019072/0517 Effective date: 20030919 |
|
| AS | Assignment |
Owner name: THE BOARD OF REGENTS, UNIVERSITY OF TEXAS SYSTEM, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOLOGICAL TARGETS, INC.;REEL/FRAME:022714/0521 Effective date: 20090513 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |