US20070204544A1 - Additive building material mixtures containing solid microparticles - Google Patents
Additive building material mixtures containing solid microparticles Download PDFInfo
- Publication number
- US20070204544A1 US20070204544A1 US11/388,046 US38804606A US2007204544A1 US 20070204544 A1 US20070204544 A1 US 20070204544A1 US 38804606 A US38804606 A US 38804606A US 2007204544 A1 US2007204544 A1 US 2007204544A1
- Authority
- US
- United States
- Prior art keywords
- building material
- polymeric microparticles
- material mixture
- hydraulically setting
- setting building
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 49
- 239000011859 microparticle Substances 0.000 title claims abstract description 39
- 239000004566 building material Substances 0.000 title claims abstract description 35
- 239000007787 solid Substances 0.000 title description 4
- 239000000654 additive Substances 0.000 title 1
- 230000000996 additive effect Effects 0.000 title 1
- 239000004567 concrete Substances 0.000 claims description 44
- 239000011148 porous material Substances 0.000 claims description 28
- 239000004568 cement Substances 0.000 claims description 21
- 239000000178 monomer Substances 0.000 claims description 19
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 17
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims description 16
- -1 nitrogen-containing methacrylates Chemical class 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 11
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 11
- 239000004971 Cross linker Substances 0.000 claims description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 7
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical class OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 5
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 4
- 150000003440 styrenes Chemical class 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- DHNFGUDLVOSIKJ-UHFFFAOYSA-N 3-methyl-1-(3-methylbuta-1,3-dienoxy)buta-1,3-diene Chemical class CC(=C)C=COC=CC(C)=C DHNFGUDLVOSIKJ-UHFFFAOYSA-N 0.000 claims description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 3
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052925 anhydrite Inorganic materials 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 claims description 3
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 3
- 239000010440 gypsum Substances 0.000 claims description 3
- 229910052602 gypsum Inorganic materials 0.000 claims description 3
- 239000004571 lime Substances 0.000 claims description 3
- 150000002688 maleic acid derivatives Chemical class 0.000 claims description 3
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- 150000002825 nitriles Chemical group 0.000 claims description 3
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229920001567 vinyl ester resin Polymers 0.000 claims description 3
- 239000004711 α-olefin Substances 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims 6
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 claims 4
- 239000000843 powder Substances 0.000 claims 4
- NEBBLNDVSSWJLL-UHFFFAOYSA-N 2,3-bis(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(OC(=O)C(C)=C)COC(=O)C(C)=C NEBBLNDVSSWJLL-UHFFFAOYSA-N 0.000 claims 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 claims 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 2
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 claims 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims 2
- UKMBKKFLJMFCSA-UHFFFAOYSA-N [3-hydroxy-2-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(CO)OC(=O)C(C)=C UKMBKKFLJMFCSA-UHFFFAOYSA-N 0.000 claims 2
- 229910052796 boron Inorganic materials 0.000 claims 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 claims 2
- 229910052698 phosphorus Inorganic materials 0.000 claims 2
- 239000011574 phosphorus Substances 0.000 claims 2
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 2
- 230000002708 enhancing effect Effects 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 33
- 239000003570 air Substances 0.000 description 24
- 239000002253 acid Substances 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000007710 freezing Methods 0.000 description 9
- 230000008014 freezing Effects 0.000 description 9
- 230000006378 damage Effects 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 8
- 238000007792 addition Methods 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- 150000003926 acrylamides Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 125000004386 diacrylate group Chemical group 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010257 thawing Methods 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- DJKKWVGWYCKUFC-UHFFFAOYSA-N 2-butoxyethyl 2-methylprop-2-enoate Chemical compound CCCCOCCOC(=O)C(C)=C DJKKWVGWYCKUFC-UHFFFAOYSA-N 0.000 description 2
- PGMMQIGGQSIEGH-UHFFFAOYSA-N 2-ethenyl-1,3-oxazole Chemical class C=CC1=NC=CO1 PGMMQIGGQSIEGH-UHFFFAOYSA-N 0.000 description 2
- JDCUKFVNOWJNBU-UHFFFAOYSA-N 2-ethenyl-1,3-thiazole Chemical class C=CC1=NC=CS1 JDCUKFVNOWJNBU-UHFFFAOYSA-N 0.000 description 2
- KQWDURCUENVKII-UHFFFAOYSA-N 2-ethoxyethoxymethyl 2-methylprop-2-enoate Chemical compound CCOCCOCOC(=O)C(C)=C KQWDURCUENVKII-UHFFFAOYSA-N 0.000 description 2
- TURITJIWSQEMDB-UHFFFAOYSA-N 2-methyl-n-[(2-methylprop-2-enoylamino)methyl]prop-2-enamide Chemical compound CC(=C)C(=O)NCNC(=O)C(C)=C TURITJIWSQEMDB-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 2
- NUXLDNTZFXDNBA-UHFFFAOYSA-N 6-bromo-2-methyl-4h-1,4-benzoxazin-3-one Chemical compound C1=C(Br)C=C2NC(=O)C(C)OC2=C1 NUXLDNTZFXDNBA-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 101710095439 Erlin Proteins 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical class NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 2
- UXDCSXDWLVYCQF-UHFFFAOYSA-N (3-methyloxiran-2-yl)methyl 2-methylprop-2-enoate Chemical compound CC1OC1COC(=O)C(C)=C UXDCSXDWLVYCQF-UHFFFAOYSA-N 0.000 description 1
- SDXKWPVFZWZYNK-UHFFFAOYSA-N (4-ethenylphenyl)methanesulfonic acid Chemical compound OS(=O)(=O)CC1=CC=C(C=C)C=C1 SDXKWPVFZWZYNK-UHFFFAOYSA-N 0.000 description 1
- XVOUMQNXTGKGMA-OWOJBTEDSA-N (E)-glutaconic acid Chemical compound OC(=O)C\C=C\C(O)=O XVOUMQNXTGKGMA-OWOJBTEDSA-N 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- ZXHDVRATSGZISC-UHFFFAOYSA-N 1,2-bis(ethenoxy)ethane Chemical compound C=COCCOC=C ZXHDVRATSGZISC-UHFFFAOYSA-N 0.000 description 1
- VDYWHVQKENANGY-UHFFFAOYSA-N 1,3-Butyleneglycol dimethacrylate Chemical compound CC(=C)C(=O)OC(C)CCOC(=O)C(C)=C VDYWHVQKENANGY-UHFFFAOYSA-N 0.000 description 1
- XIBFXWPOZPVTIG-UHFFFAOYSA-N 1-(2-methylprop-2-enoyl)pyrrolidine-2,3-dione Chemical compound CC(=C)C(=O)N1CCC(=O)C1=O XIBFXWPOZPVTIG-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- DDPGLQRMAQYQEQ-UHFFFAOYSA-N 1-butoxypropyl 2-methylprop-2-enoate Chemical compound CCCCOC(CC)OC(=O)C(C)=C DDPGLQRMAQYQEQ-UHFFFAOYSA-N 0.000 description 1
- VMZUNDQTCLHTQD-UHFFFAOYSA-N 1-diethoxyphosphoryl-2-methylprop-2-en-1-one Chemical compound CCOP(=O)(OCC)C(=O)C(C)=C VMZUNDQTCLHTQD-UHFFFAOYSA-N 0.000 description 1
- BDHGFCVQWMDIQX-UHFFFAOYSA-N 1-ethenyl-2-methylimidazole Chemical compound CC1=NC=CN1C=C BDHGFCVQWMDIQX-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- LEWNYOKWUAYXPI-UHFFFAOYSA-N 1-ethenylpiperidine Chemical compound C=CN1CCCCC1 LEWNYOKWUAYXPI-UHFFFAOYSA-N 0.000 description 1
- UDJZTGMLYITLIQ-UHFFFAOYSA-N 1-ethenylpyrrolidine Chemical compound C=CN1CCCC1 UDJZTGMLYITLIQ-UHFFFAOYSA-N 0.000 description 1
- WIWZLDGSODDMHJ-UHFFFAOYSA-N 1-ethoxybutyl 2-methylprop-2-enoate Chemical compound CCCC(OCC)OC(=O)C(C)=C WIWZLDGSODDMHJ-UHFFFAOYSA-N 0.000 description 1
- HVBADOTWUFBZMF-UHFFFAOYSA-N 1-ethoxyethyl 2-methylprop-2-enoate Chemical compound CCOC(C)OC(=O)C(C)=C HVBADOTWUFBZMF-UHFFFAOYSA-N 0.000 description 1
- CBQFBEBEBCHTBK-UHFFFAOYSA-N 1-phenylprop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)C(C=C)C1=CC=CC=C1 CBQFBEBEBCHTBK-UHFFFAOYSA-N 0.000 description 1
- HXMAXEWUQAOKGC-UHFFFAOYSA-N 1-phenylprop-2-enylphosphonic acid Chemical compound OP(O)(=O)C(C=C)C1=CC=CC=C1 HXMAXEWUQAOKGC-UHFFFAOYSA-N 0.000 description 1
- PQDKOKTULASSPO-UHFFFAOYSA-N 2-(1,3-oxazolidin-2-yl)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC1NCCO1 PQDKOKTULASSPO-UHFFFAOYSA-N 0.000 description 1
- MGMSZKIPUNOMCS-UHFFFAOYSA-N 2-(2-ethenoxyethoxy)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC=C MGMSZKIPUNOMCS-UHFFFAOYSA-N 0.000 description 1
- DAVVKEZTUOGEAK-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethyl 2-methylprop-2-enoate Chemical compound COCCOCCOC(=O)C(C)=C DAVVKEZTUOGEAK-UHFFFAOYSA-N 0.000 description 1
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical compound CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- PDTDJRYFNGKLHD-UHFFFAOYSA-N 2-(methoxymethoxy)ethyl 2-methylprop-2-enoate Chemical compound COCOCCOC(=O)C(C)=C PDTDJRYFNGKLHD-UHFFFAOYSA-N 0.000 description 1
- PTBAHIRKWPUZAM-UHFFFAOYSA-N 2-(oxiran-2-yl)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC1CO1 PTBAHIRKWPUZAM-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- AXXUFOMEPPBIHV-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethylsulfanyl]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCSCCOC(=O)C(C)=C AXXUFOMEPPBIHV-UHFFFAOYSA-N 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- LTHJXDSHSVNJKG-UHFFFAOYSA-N 2-[2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOCCOC(=O)C(C)=C LTHJXDSHSVNJKG-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- DRFWIQLQFIYNOA-UHFFFAOYSA-N 2-[cyano(methyl)amino]ethyl 2-methylprop-2-enoate Chemical compound N#CN(C)CCOC(=O)C(C)=C DRFWIQLQFIYNOA-UHFFFAOYSA-N 0.000 description 1
- QOOHUWULLQCUGG-UHFFFAOYSA-N 2-dimethoxyphosphorylethyl 2-methylprop-2-enoate Chemical compound COP(=O)(OC)CCOC(=O)C(C)=C QOOHUWULLQCUGG-UHFFFAOYSA-N 0.000 description 1
- QQBUHYQVKJQAOB-UHFFFAOYSA-N 2-ethenylfuran Chemical compound C=CC1=CC=CO1 QQBUHYQVKJQAOB-UHFFFAOYSA-N 0.000 description 1
- XIXWTBLGKIRXOP-UHFFFAOYSA-N 2-ethenyloxolane Chemical compound C=CC1CCCO1 XIXWTBLGKIRXOP-UHFFFAOYSA-N 0.000 description 1
- ZDHWTWWXCXEGIC-UHFFFAOYSA-N 2-ethenylpyrimidine Chemical compound C=CC1=NC=CC=N1 ZDHWTWWXCXEGIC-UHFFFAOYSA-N 0.000 description 1
- YQGVJKSRGWEXGU-UHFFFAOYSA-N 2-ethenylthiolane Chemical compound C=CC1CCCS1 YQGVJKSRGWEXGU-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- GUWQIQCKFJTIRH-UHFFFAOYSA-N 2-ethylsulfinylethyl 2-methylprop-2-enoate Chemical compound CCS(=O)CCOC(=O)C(C)=C GUWQIQCKFJTIRH-UHFFFAOYSA-N 0.000 description 1
- FHPGUDZEMVTLRC-UHFFFAOYSA-N 2-ethylsulfonylethyl 2-methylprop-2-enoate Chemical compound CCS(=O)(=O)CCOC(=O)C(C)=C FHPGUDZEMVTLRC-UHFFFAOYSA-N 0.000 description 1
- SQVSEQUIWOQWAH-UHFFFAOYSA-N 2-hydroxy-3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCC(O)CS(O)(=O)=O SQVSEQUIWOQWAH-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- AKVUWTYSNLGBJY-UHFFFAOYSA-N 2-methyl-1-morpholin-4-ylprop-2-en-1-one Chemical compound CC(=C)C(=O)N1CCOCC1 AKVUWTYSNLGBJY-UHFFFAOYSA-N 0.000 description 1
- KEDHVYZRMXPBMP-UHFFFAOYSA-N 2-methyl-1-oxoprop-2-ene-1-sulfonic acid Chemical class CC(=C)C(=O)S(O)(=O)=O KEDHVYZRMXPBMP-UHFFFAOYSA-N 0.000 description 1
- UMNGRRUQHFCWGR-UHFFFAOYSA-N 2-oxopropyl 2-methylprop-2-enoate Chemical compound CC(=O)COC(=O)C(C)=C UMNGRRUQHFCWGR-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- ONPJWQSDZCGSQM-UHFFFAOYSA-N 2-phenylprop-2-enoic acid Chemical compound OC(=O)C(=C)C1=CC=CC=C1 ONPJWQSDZCGSQM-UHFFFAOYSA-N 0.000 description 1
- GQTFHSAAODFMHB-UHFFFAOYSA-N 2-prop-2-enoyloxyethanesulfonic acid Chemical compound OS(=O)(=O)CCOC(=O)C=C GQTFHSAAODFMHB-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- ORNUPNRNNSVZTC-UHFFFAOYSA-N 2-vinylthiophene Chemical compound C=CC1=CC=CS1 ORNUPNRNNSVZTC-UHFFFAOYSA-N 0.000 description 1
- KFNGWPXYNSJXOP-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCCCS(O)(=O)=O KFNGWPXYNSJXOP-UHFFFAOYSA-N 0.000 description 1
- SLJJEYCPTRKHFI-UHFFFAOYSA-N 3-[6-(2,5-dioxopyrrol-3-yl)hexyl]pyrrole-2,5-dione Chemical compound O=C1NC(=O)C(CCCCCCC=2C(NC(=O)C=2)=O)=C1 SLJJEYCPTRKHFI-UHFFFAOYSA-N 0.000 description 1
- VIRDQWZTIAVLSE-UHFFFAOYSA-N 3-ethenyl-9h-carbazole Chemical compound C1=CC=C2C3=CC(C=C)=CC=C3NC2=C1 VIRDQWZTIAVLSE-UHFFFAOYSA-N 0.000 description 1
- DPZYLEIWHTWHCU-UHFFFAOYSA-N 3-ethenylpyridine Chemical compound C=CC1=CC=CN=C1 DPZYLEIWHTWHCU-UHFFFAOYSA-N 0.000 description 1
- UIRSDPGHIARUJZ-UHFFFAOYSA-N 3-ethenylpyrrolidine Chemical compound C=CC1CCNC1 UIRSDPGHIARUJZ-UHFFFAOYSA-N 0.000 description 1
- UVRCNEIYXSRHNT-UHFFFAOYSA-N 3-ethylpent-2-enamide Chemical compound CCC(CC)=CC(N)=O UVRCNEIYXSRHNT-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- ZLPORNPZJNRGCO-UHFFFAOYSA-N 3-methylpyrrole-2,5-dione Chemical compound CC1=CC(=O)NC1=O ZLPORNPZJNRGCO-UHFFFAOYSA-N 0.000 description 1
- FQMIAEWUVYWVNB-UHFFFAOYSA-N 3-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OC(C)CCOC(=O)C=C FQMIAEWUVYWVNB-UHFFFAOYSA-N 0.000 description 1
- NYUTUWAFOUJLKI-UHFFFAOYSA-N 3-prop-2-enoyloxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCOC(=O)C=C NYUTUWAFOUJLKI-UHFFFAOYSA-N 0.000 description 1
- BTXXTMOWISPQSJ-UHFFFAOYSA-N 4,4,4-trifluorobutan-2-one Chemical compound CC(=O)CC(F)(F)F BTXXTMOWISPQSJ-UHFFFAOYSA-N 0.000 description 1
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 description 1
- GXLIFJYFGMHYDY-ZZXKWVIFSA-N 4-chlorocinnamic acid Chemical compound OC(=O)\C=C\C1=CC=C(Cl)C=C1 GXLIFJYFGMHYDY-ZZXKWVIFSA-N 0.000 description 1
- AXSCUMTZULTSIN-UHFFFAOYSA-N 4-ethenyl-3-ethylpyridine Chemical compound CCC1=CN=CC=C1C=C AXSCUMTZULTSIN-UHFFFAOYSA-N 0.000 description 1
- JBENUYBOHNHXIU-UHFFFAOYSA-N 4-ethenyl-9h-carbazole Chemical compound N1C2=CC=CC=C2C2=C1C=CC=C2C=C JBENUYBOHNHXIU-UHFFFAOYSA-N 0.000 description 1
- YKXAYLPDMSGWEV-UHFFFAOYSA-N 4-hydroxybutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCO YKXAYLPDMSGWEV-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- WXQPSNQRLRLQKR-UHFFFAOYSA-N 4-thiocyanatobutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCSC#N WXQPSNQRLRLQKR-UHFFFAOYSA-N 0.000 description 1
- LKLNVHRUXQQEII-UHFFFAOYSA-N 5-ethenyl-2,3-dimethylpyridine Chemical compound CC1=CC(C=C)=CN=C1C LKLNVHRUXQQEII-UHFFFAOYSA-N 0.000 description 1
- VJOWMORERYNYON-UHFFFAOYSA-N 5-ethenyl-2-methylpyridine Chemical compound CC1=CC=C(C=C)C=N1 VJOWMORERYNYON-UHFFFAOYSA-N 0.000 description 1
- SAPGBCWOQLHKKZ-UHFFFAOYSA-N 6-(2-methylprop-2-enoyloxy)hexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCOC(=O)C(C)=C SAPGBCWOQLHKKZ-UHFFFAOYSA-N 0.000 description 1
- BQACOLQNOUYJCE-FYZZASKESA-N Abietic acid Natural products CC(C)C1=CC2=CC[C@]3(C)[C@](C)(CCC[C@@]3(C)C(=O)O)[C@H]2CC1 BQACOLQNOUYJCE-FYZZASKESA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- LCXXNKZQVOXMEH-UHFFFAOYSA-N Tetrahydrofurfuryl methacrylate Chemical compound CC(=C)C(=O)OCC1CCCO1 LCXXNKZQVOXMEH-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- ULQMPOIOSDXIGC-UHFFFAOYSA-N [2,2-dimethyl-3-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(C)(C)COC(=O)C(C)=C ULQMPOIOSDXIGC-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical class C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000002969 artificial stone Substances 0.000 description 1
- JZQAAQZDDMEFGZ-UHFFFAOYSA-N bis(ethenyl) hexanedioate Chemical compound C=COC(=O)CCCCC(=O)OC=C JZQAAQZDDMEFGZ-UHFFFAOYSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- HABAXTXIECRCKH-UHFFFAOYSA-N bis(prop-2-enyl) butanedioate Chemical compound C=CCOC(=O)CCC(=O)OCC=C HABAXTXIECRCKH-UHFFFAOYSA-N 0.000 description 1
- QUZSUMLPWDHKCJ-UHFFFAOYSA-N bisphenol A dimethacrylate Chemical class C1=CC(OC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OC(=O)C(C)=C)C=C1 QUZSUMLPWDHKCJ-UHFFFAOYSA-N 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- KXTNMKREYTVOMX-UHFFFAOYSA-N cyanomethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC#N KXTNMKREYTVOMX-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- XRXPHPJRVWEWKQ-UHFFFAOYSA-N cyclohexyloxymethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCOC1CCCCC1 XRXPHPJRVWEWKQ-UHFFFAOYSA-N 0.000 description 1
- HYNGZZMROWTPRY-UHFFFAOYSA-N cyclopenta-1,3-diene prop-2-enoic acid Chemical compound C1C=CC=C1.OC(=O)C=C.OC(=O)C=C HYNGZZMROWTPRY-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- MOCCFFRHOQXLFQ-UHFFFAOYSA-N dimethylphosphanylmethyl 2-methylprop-2-enoate Chemical compound CP(C)COC(=O)C(C)=C MOCCFFRHOQXLFQ-UHFFFAOYSA-N 0.000 description 1
- OKIWPZFGXYWTNW-UHFFFAOYSA-N dipropoxyphosphoryl 2-methylprop-2-enoate Chemical compound CCCOP(=O)(OCCC)OC(=O)C(C)=C OKIWPZFGXYWTNW-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- WMAFNLQQGPUKCM-UHFFFAOYSA-N ethoxymethyl 2-methylprop-2-enoate Chemical compound CCOCOC(=O)C(C)=C WMAFNLQQGPUKCM-UHFFFAOYSA-N 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000011381 foam concrete Substances 0.000 description 1
- NEEVIMDYMPGZPZ-UHFFFAOYSA-N formamido 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)> NEEVIMDYMPGZPZ-UHFFFAOYSA-N 0.000 description 1
- 230000009746 freeze damage Effects 0.000 description 1
- 150000002237 fumaric acid derivatives Chemical class 0.000 description 1
- DWXAVNJYFLGAEF-UHFFFAOYSA-N furan-2-ylmethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CO1 DWXAVNJYFLGAEF-UHFFFAOYSA-N 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- VSUFNZWEKZXHNA-UHFFFAOYSA-N hexane-1,6-diol;propane-1,2,3-triol Chemical compound OCC(O)CO.OCCCCCCO VSUFNZWEKZXHNA-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- ADXPHBMQMGJRRO-UHFFFAOYSA-N hydroxymethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCO.CC(=C)C(=O)OCO.CC(=C)C(=O)OCO ADXPHBMQMGJRRO-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- LVQPBIMCRZQQBC-UHFFFAOYSA-N methoxymethyl 2-methylprop-2-enoate Chemical compound COCOC(=O)C(C)=C LVQPBIMCRZQQBC-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- YVKIOPQNPJMZIJ-UHFFFAOYSA-N methylsulfinylmethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCS(C)=O YVKIOPQNPJMZIJ-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- QYSWFAQFRNURJG-UHFFFAOYSA-N n,n-dimethyl-2-methylidenepentanamide Chemical compound CCCC(=C)C(=O)N(C)C QYSWFAQFRNURJG-UHFFFAOYSA-N 0.000 description 1
- PNLUGRYDUHRLOF-UHFFFAOYSA-N n-ethenyl-n-methylacetamide Chemical class C=CN(C)C(C)=O PNLUGRYDUHRLOF-UHFFFAOYSA-N 0.000 description 1
- OFESGEKAXKKFQT-UHFFFAOYSA-N n-ethenyl-n-methylformamide Chemical class C=CN(C)C=O OFESGEKAXKKFQT-UHFFFAOYSA-N 0.000 description 1
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical class CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical class C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 239000012875 nonionic emulsifier Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- XGRBZUSXGVNWMI-UHFFFAOYSA-N phenylmethoxymethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCOCC1=CC=CC=C1 XGRBZUSXGVNWMI-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- RZKYDQNMAUSEDZ-UHFFFAOYSA-N prop-2-enylphosphonic acid Chemical compound OP(O)(=O)CC=C RZKYDQNMAUSEDZ-UHFFFAOYSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011395 ready-mix concrete Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- FBWNMEQMRUMQSO-UHFFFAOYSA-N tergitol NP-9 Chemical compound CCCCCCCCCC1=CC=C(OCCOCCOCCOCCOCCOCCOCCOCCOCCO)C=C1 FBWNMEQMRUMQSO-UHFFFAOYSA-N 0.000 description 1
- AKZDWOQGSQXGID-UHFFFAOYSA-N thiocyanatomethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCSC#N AKZDWOQGSQXGID-UHFFFAOYSA-N 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2641—Polyacrylates; Polymethacrylates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/08—Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
- C04B16/085—Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons expanded in situ, i.e. during or after mixing the mortar, concrete or artificial stone ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0049—Water-swellable polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0057—Polymers chosen for their physico-chemical characteristics added as redispersable powders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0058—Core-shell polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/29—Frost-thaw resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention relates to the use of polymeric microparticles in hydraulically setting building material mixtures for the purpose of enhancing their frost resistance and cyclical freeze/thaw durability.
- Concrete is an important building material and is defined by DIN 1045 (07/1988) as artificial stone formed by hardening from a mixture of cement, aggregate and water, together where appropriate with concrete admixtures and concrete additions.
- DIN 1045 07/1988
- One way in which concrete is classified is by its subdivision into strength groups (BI-BII) and strength classes (B5-B55). Adding gas-formers or foam-formers to the mix produces aerated concrete or foamed concrete (Römpp Lexikon, 10th ed., 1996, Georg Thieme Verlag).
- Concrete has two time-dependent properties. Firstly, by drying out, it undergoes a reduction in volume that is termed shrinkage. The majority of the water, however, is bound in the form of water of crystallization. Concrete, rather than drying, sets: that is, the initially highly mobile cement paste (cement and water) starts to stiffen, becomes rigid, and, finally, solidifies, depending on the timepoint and progress of the chemical/mineralogical reaction between the cement and the water, known as hydration. As a result of the water-binding capacity of the cement it is possible for concrete, unlike quicklime, to harden and remain solid even under water. Secondly, concrete undergoes deformation under load, known as creep.
- the freeze/thaw cycle refers to the climatic alternation of temperatures around the freezing point of water.
- the freeze/thaw cycle is a mechanism of damage. These materials possess a porous, capillary structure and are not watertight. If a structure of this kind that is full of water is exposed to temperatures below 0° C., then the water freezes in the pores. As a result of the density anomaly of water, the ice then expands. This results in damage to the building material. Within the very fine pores, as a result of surface effects, there is a reduction in the freezing point. In micropores water does not freeze until below ⁇ 17° C.
- Valenza Methods for protecting concrete from freeze damage, U.S. Pat. No. 6,485,560 B1 (2002); M. Pigeon, B. Zuber & J. Marchand, Freeze/thaw resistance, Advanced Concrete Technology 2 (2003) 11/1-11/17; B. Erlin & B. Mather, A new process by which cyclic freezing can damage concrete—the Erlin/Mather effect, Cement & Concrete Research 35 (2005) 1407-11].
- a precondition for improved resistance of the concrete on exposure to the freezing and thawing cycle is that the distance of each point in the hardened cement from the next artificial air pore does not exceed a defined value. This distance is also referred to as the “Powers spacing factor” [T. C. Powers, The air requirement of frost-resistant concrete, Proceedings of the Highway Research Board 29 (1949) 184-202]. Laboratory tests have shown that exceeding the critical “Power spacing factor” of 500 ⁇ m leads to damage to the concrete in the freezing and thawing cycle. In order to achieve this with a limited air-pore content, the diameter of the artificially introduced air pores must therefore be less than 200-300 ⁇ m [K. Snyder, K. Natesaiyer & K. Hover, The stereological and statistical properties of entrained air voids in concrete: A mathematical basis for air void systems characterization, Materials Science of Concrete VI (2001) 129-214].
- an artificial air-pore system depends critically on the composition and the conformity of the aggregates, the type and amount of the cement, the consistency of the concrete, the mixer used, the mixing time, and the temperature, but also on the nature and amount of the agent that forms the air pores, the air entrainer. Although these influencing factors can be controlled if account is taken of appropriate production rules, there may nevertheless be a multiplicity of unwanted adverse effects, resulting ultimately in the concrete's air content being above or below the desired level and hence adversely affecting the strength or the frost resistance of the concrete.
- One type for example sodium oleate, the sodium salt of abietic acid or Vinsol resin, an extract from pine roots—reacts with the calcium hydroxide of the pore solution in the cement paste and is precipitated as insoluble calcium salt.
- These hydrophobic salts reduce the surface tension of the water and collect at the interface between cement particle, air and water. They stabilize the microbubbles and are therefore encountered at the surfaces of these air pores in the concrete as it hardens.
- the other type for example sodium lauryl sulfate (SDS) or sodium dodecylphenylsulfonate—reacts with calcium hydroxide to form calcium salts which, in contrast, are soluble, but which exhibit an abnormal solution behavior.
- the amount of fine substances in the concrete e.g. cement with different alkali content, additions such as flyash, silica dust or color additions
- additions such as flyash, silica dust or color additions
- air entrainment There may also be interactions with flow improvers that have a defoaming action, and hence expel air pores, but may also introduce them in an uncontrolled manner.
- a relatively new possibility for improving the frost resistance and cyclical freeze/thaw durability is to achieve the air content by the admixing or solid metering of polymeric microparticles (hollow microspheres) [H. Sommer, A new method of making concrete resistant to frost and de-icing salts, Betontechnik & Fertigteiltechnik 9 (1978) 476-84]. Since the microparticles generally have particle sizes of less than 100 ⁇ m, they can also be distributed more finely and uniformly in the concrete microstructure than can artificially introduced air pores. Consequently, even small amounts are sufficient for sufficient resistance of the concrete to the freezing and thawing cycle.
- microparticles of this kind for improving the frost resistance and cyclical freeze/thaw durability of concrete is already known from the prior art [cf. DE 2229094 A1, U.S. Pat. No. 4,057,526 B1, U.S. Pat. No. 4,082,562 B1, DE 3026719 A1].
- the microparticles described therein are notable in particular for the fact that they possess a void smaller than 200 ⁇ m (in diameter) and that this hollow core consists of air (or a gaseous substance). This likewise includes porous microparticles from the 100 ⁇ m scale, which may possess a multiple of relatively small voids and/or pores.
- the object on which the present invention is based was to provide a means of improving the frost resistance and cyclical freeze/thaw durability for hydraulically setting building material mixtures that develops its full activity even at relatively low levels of addition, and which, moreover, can be prepared easily and inexpensively.
- a further object was not, or not substantially, to impair the mechanical strength of the building material mixture as a result of said means.
- microparticles of single-stage or multistage synthesis are also suitable for improvements to the frost resistance and/or cyclical freeze/thaw durability for hydraulically setting building material mixtures.
- microparticles of single-stage synthesis are meant a particle (without a shell) which is synthesized homogeneously in the composition. This is all the more surprising since these polymeric microparticles do not entrain any air into the construction mixture.
- the polymeric microparticles of the invention are in homogeneous distribution in the construction mixture.
- a cavity between microparticle and cured construction mixture which possibly becomes further enlarged as a result of the contraction of the construction mixture on curing, serves as an expansion site for freezing water.
- the polymeric microparticles comprise at least one monoethylenically unsaturated monomer.
- the microparticles may be single-stage or multistage, and the comonomer composition of the individual stages may be different.
- Preferably included are, among others, nitriles of (meth)acrylic acid, and other nitrogen-containing methacrylates, such as methacryloylamidoacetonitrile, 2-methacryloyloxyethylmethylcyanamide, cyanomethyl methacrylate; carbonyl-containing methacrylates, such as oxazolidinylethyl methacrylate, N-(methacryloyloxy)formamide, acetonyl methacrylate, N-methacryloyl-morpholine, N-methacryloyl-2-pyrrolidonone; glycol dimethacrylates, such as 1,4-butanediol methacrylate, 2-butoxyethyl methacrylate, 2-eth
- styrene substituted styrenes with an alkyl substituent in the side chain, such as *methylstyrene and *ethylstyrene, for example, substituted styrenes with an alkyl substituent on the ring, such as vinyl toluene and p-methylstyrene;
- heterocyclic vinyl compounds such as 2-vinylpyridine, 3-vinylpyridine, 2-methyl-5-vinylpyridine, 3-ethyl-4-vinylpyridine, 2,3-dimethyl-5-vinylpyridine, vinylpyrimidine, vinylpiperidine, 9-vinylcarbazole, 3-vinylcarbazole, 4-vinylcarbazole, 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-vinyl-pyrrolidone, 2-vinylpyrrolidone, N-vinylpyrrolidine, 3-vinylpyrrolidine, N-vinyl-caprolactam, N-vinylbutyrolactam, vinyloxolane, vinylfuran, vinylthiophene, vinylthiolane, vinylthiazoles and hydrogenated vinylthiazoles, vinyloxazoles and hydrogenated vinyloxazoles;
- maleic acid derivatives such as diesters of maleic acid, the alcohol residues having 1 to 9 carbon atoms, maleic anhydride, methylmaleic anhydride, maleimide, and methylmaleimide;
- fumaric acid derivatives such as diesters of fumaric acid, the alcohol residues having 1 to 9 carbon atoms;
- ⁇ -olefins such as ethene, propene, n-butene, isobutene, n-pentene, isopentene, n-hexene, isohexene; cyclohexene.
- free-radically polymerizable monomers having a molar mass of greater than 200 g/mol which carry a hydrophilic radical.
- monomers which carry a polyethylene oxide block having two or more units of ethylene oxide are particularly preferred.
- Preference is given to using monomers from the group of (meth)acrylic esters of methoxypoiyethyiene glycol CH 3 O(CH 2 CH 2 O) n H, (with n 2), (meth)acrylic esters of an ethoxylated C16-C18 fatty alcohol mixture (with 2 or more ethylene oxide units), methacrylic esters of 5-tert-octylphenoxypolyethoxyethanol (with 2 or more ethylene oxide units), nonylphenoxypolyethoxyethanol (with 2 or more ethylene oxide units) or mixtures thereof.
- monoethylenically unsaturated monomers containing an acid group there may be one or more monoethylenically unsaturated monomers containing an acid group present.
- acrylic acid methacrylic acid, ethacrylic acid, a-chloroacrylic acid, a-cyanoacrylic acid, p-methylacrylic acid (crotonic acid), a-phenylacrylic acid, p-acryloyloxypropionic acid, sorbic acid, a-chlorosorbic acid, 2′-methylisocrotonic acid, cinnamic acid, p-chlorocinnamic acid, p-stearylic acid, itaconic acid, citraconic acid, mesacronic acid, glutaconic acid, aconitic acid, maleic acid, fumaric acid, tricarboxyethylene, and maleic anhydride, hydroxyl-or amino-containing esters of the above acids, preferably of acrylic or methacrylic acid, such as 2-hydroxye
- this polymer may also be based on further comonomers other than the monoethylenically unsaturated monomer containing an acid group.
- Preferred comonomers are ethylenically unsaturated sulfonic acid monomers, ethylenically unsaturated phosphonic acid monomers, and acrylamides, preferably.
- Ethylenically unsaturated sulfonic acid monomers are preferably aliphatic or aromatic vinylsulfonic acids or acrylic or methacrylic sulfonic acids.
- Preferred aliphatic or aromatic vinylsulfonic acids are vinylsulfonic acid, allylsulfonic acid, 4-vinylbenzylsulfonic acid, vinyltoluenesulfonic acid, and styrenesulfonic acid.
- Preferred acryloyl-and methacryloylsulfonic acids are sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-methacryloyloxypropylsulfonic acid, and 2-acrylamido-2-methyl-propanesulfonic acid.
- Ethylenically unsaturated phosphonic acid monomers such as vinylphosphonic acid, allylphosphonic acid, vinylbenzylphosphonic acid, acrylamidoalkylphosphonic acids, acrylamidoalkyldiphosphonic acids. Phosphonomethylated vinylamines, (meth)acryloylphosphonic acid derivatives.
- Possible acrylamides are alkyl-substituted acrylamides or aminoalkyl-substituted derivatives of acrylamide or of methacrylamide, such as N-vinyl-amides, N-vinylformamides, N-vinylacetamides, N-vinyl-N-methylacetamides, N-vinyl-N-methylformamides, N-methylol(meth)acrylamide, vinylpyrrolidone, N,N-dimethylpropylacrylamide, dimethylacrylamide or diethylacrylamide, and the corresponding methacrylamide derivatives, and also acrylamide and methacrylamide, preference being given to acrylamide.
- N-vinyl-amides such as N-vinyl-amides, N-vinylformamides, N-vinylacetamides, N-vinyl-N-methylacetamides, N-vinyl-N-methylformamides, N-methylol(meth)acrylamide, vinylpyrrol
- the chemical crosslinking can be achieved by crosslinkers generally known to the skilled worker.
- the crosslinkers may be present in any state.
- Inventively preferred crosslinkers are polyacrylic or polymethacrylic esters, which are obtained, for example, through the reaction of a polyol or ethoxylated polyol such as ethylene glycol, propylene glycol, trimethylolpropane, 1,6-hexanediol-glycerol, pentaerythritol, polyethylene glycol or polypropylene glycol with acrylic acid or methacrylic acid.
- Use may also be made of polyols, amino alcohols and also their mono(meth)acrylic esters, and monoallyl ethers.
- acrylic esters of monoallyl compounds of the polyols and amino alcohols are also also acrylic esters of monoallyl compounds of the polyols and amino alcohols.
- Another group of crosslinkers is obtained through the reaction of polyalkylenepolyamines such as diethylenetriamine and triethylenetetra-aminemethacrylic acid or methacrylic acid.
- Suitable crosslinkers include 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,3-butylene glycol diacrylate, 1,3-butylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate, ethylene glycol dimethacrylate, 1,6-hexanedioi diacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, tripropylene glycol diacrylate, tetraethylene glycol diacrylate, tetraethylene glycol diacrylate, tetraethylene glycol dimethacrylate, dipentaerythrito
- the polymeric formations of the invention can be prepared preferably by emulsion polymerization and preferably have an average particle size of 10 to 5000 nm; an average particle size of 150 to 2000 nm is particularly preferred. Most preferable are average particle sizes of 200 to 1000 nm.
- the average particle size is determined, for example, by counting a statistically significant amount of particles by means of transmission electron micrographs.
- initiators for the preparation of the polymeric formations of the invention it is possible to employ all of the initiators and regulators that are customary for emulsion polymerization.
- examples of initiators are inorganic peroxides, organic peroxides or H 2 O 2 , and also mixtures thereof with, if appropriate, one or more reducing agents.
- the water-filled polymeric microparticles are used in accordance with the invention preferably in the form of an aqueous dispersion
- the microparticles are for example coagulated—by methods known to the skilled worker—and isolated from the aqueous dispersion by means of standard methods (e.g. filtration, centrifuging, sedimentation and decanting). The material obtained can be washed and is subsequently dried.
- the polymeric formations are added to the building material mixture in a preferred amount of 0.01% to 5% by volume, in particular 0.1% to 0.5% by volume.
- the building material mixture in the form for example of concrete or mortar, may in this case include the customary hydraulically setting binders, such as cement, lime, gypsum or anhydrite, for example.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The present invention relates to the use of compact polymeric microparticles in hydraulically setting building material mixtures for the purpose of enhancing their frost resistance and cyclical freeze/thaw durability.
Description
- The present invention relates to the use of polymeric microparticles in hydraulically setting building material mixtures for the purpose of enhancing their frost resistance and cyclical freeze/thaw durability.
- Concrete is an important building material and is defined by DIN 1045 (07/1988) as artificial stone formed by hardening from a mixture of cement, aggregate and water, together where appropriate with concrete admixtures and concrete additions. One way in which concrete is classified is by its subdivision into strength groups (BI-BII) and strength classes (B5-B55). Adding gas-formers or foam-formers to the mix produces aerated concrete or foamed concrete (Römpp Lexikon, 10th ed., 1996, Georg Thieme Verlag).
- Concrete has two time-dependent properties. Firstly, by drying out, it undergoes a reduction in volume that is termed shrinkage. The majority of the water, however, is bound in the form of water of crystallization. Concrete, rather than drying, sets: that is, the initially highly mobile cement paste (cement and water) starts to stiffen, becomes rigid, and, finally, solidifies, depending on the timepoint and progress of the chemical/mineralogical reaction between the cement and the water, known as hydration. As a result of the water-binding capacity of the cement it is possible for concrete, unlike quicklime, to harden and remain solid even under water. Secondly, concrete undergoes deformation under load, known as creep.
- The freeze/thaw cycle refers to the climatic alternation of temperatures around the freezing point of water. Particularly in the case of mineral-bound building materials such as concrete, the freeze/thaw cycle is a mechanism of damage. These materials possess a porous, capillary structure and are not watertight. If a structure of this kind that is full of water is exposed to temperatures below 0° C., then the water freezes in the pores. As a result of the density anomaly of water, the ice then expands. This results in damage to the building material. Within the very fine pores, as a result of surface effects, there is a reduction in the freezing point. In micropores water does not freeze until below −17° C. Since, as a result of freeze/thaw cycling, the material itself also expands and contracts, there is additionally a capillary pump effect, which further increases the absorption of water and hence, indirectly, the damage. The number of freeze/thaw cycles is therefore critical with regard to damage.
- Decisive factors affecting the resistance of concrete to frost and to cyclical freeze/thaw under simultaneous exposure to thawing agents; are the imperviousness of its microstructure, a certain strength of the matrix, and the presence of a certain pore microstructure. The microstructure of a cement-bound concrete is traversed by capillary pores (radius: 2 μm-2 mm) and gel pores (radius: 2-50 nm). Water present in these pores differs in its state as a function of the pore diameter. Whereas water in the capillary pores retains its usual properties, that in the gel pores is classified as condensed water (mesopores: 50 nm) and adsorptively bound surface water (micropores: 2 nm), the freezing points of which may for example be well below −50° C. [M. J. Setzer, Interaction of water with hardened cement paste, Ceramic Transactions 16 (1991) 415-39]. Consequently, even when the concrete is cooled to low temperatures, some of the water in the pores remains unfrozen (metastable water). For a given temperature, however, the vapor pressure over ice is lower than that over water. Since ice and metastable water are present alongside one another simultaneously, a vapor-pressure gradient develops which leads to diffusion of the still-liquid water to the ice and to the formation of ice from said water, resulting in removal of water from the smaller pores or accumulation of ice in the larger pores. This redistribution of water as a result of cooling takes place in every porous system and is critically dependent on the type of pore distribution.
- The artificial introduction of microfine air pores in the concrete hence gives rise primarily to what are called expansion spaces for expanding ice and ice-water. Within these pores, freezing water can expand or internal pressure and stresses of ice and ice-water can be absorbed without formation of microcracks and hence without frost damage to the concrete. The fundamental way in which such air-pore systems act has been described, in connection with the mechanism of frost damage to concrete, in a large number of reviews [Schulson, Erland M. (1998) Ice damage to concrete. CRREL Special Report 98-6; S. Chatterji, Freezing of air-entrained cement-based materials and specific actions of air-entraining agents, Cement & Concrete Composites 25 (2003) 759-65; G. W. Scherer, J. Chen & J. Valenza, Methods for protecting concrete from freeze damage, U.S. Pat. No. 6,485,560 B1 (2002); M. Pigeon, B. Zuber & J. Marchand, Freeze/thaw resistance, Advanced Concrete Technology 2 (2003) 11/1-11/17; B. Erlin & B. Mather, A new process by which cyclic freezing can damage concrete—the Erlin/Mather effect, Cement & Concrete Research 35 (2005) 1407-11].
- A precondition for improved resistance of the concrete on exposure to the freezing and thawing cycle is that the distance of each point in the hardened cement from the next artificial air pore does not exceed a defined value. This distance is also referred to as the “Powers spacing factor” [T. C. Powers, The air requirement of frost-resistant concrete, Proceedings of the Highway Research Board 29 (1949) 184-202]. Laboratory tests have shown that exceeding the critical “Power spacing factor” of 500 μm leads to damage to the concrete in the freezing and thawing cycle. In order to achieve this with a limited air-pore content, the diameter of the artificially introduced air pores must therefore be less than 200-300 μm [K. Snyder, K. Natesaiyer & K. Hover, The stereological and statistical properties of entrained air voids in concrete: A mathematical basis for air void systems characterization, Materials Science of Concrete VI (2001) 129-214].
- The formation of an artificial air-pore system depends critically on the composition and the conformity of the aggregates, the type and amount of the cement, the consistency of the concrete, the mixer used, the mixing time, and the temperature, but also on the nature and amount of the agent that forms the air pores, the air entrainer. Although these influencing factors can be controlled if account is taken of appropriate production rules, there may nevertheless be a multiplicity of unwanted adverse effects, resulting ultimately in the concrete's air content being above or below the desired level and hence adversely affecting the strength or the frost resistance of the concrete.
- Artificial air pores of this kind cannot be metered directly; instead, the air entrained by mixing is stabilized by the addition of the aforementioned air entrainers [L. Du & K. J. Folliard, Mechanism of air entrainment in concrete, Cement & Concrete Research 35 (2005) 1463-71]. Conventional air entrainers are mostly surfactant-like in structure and break up the air introduced by mixing into small air bubbles having a diameter as far as possible of less than 300 μm, and stabilize them in the wet concrete microstructure. A distinction is made here between two types.
- One type—for example sodium oleate, the sodium salt of abietic acid or Vinsol resin, an extract from pine roots—reacts with the calcium hydroxide of the pore solution in the cement paste and is precipitated as insoluble calcium salt. These hydrophobic salts reduce the surface tension of the water and collect at the interface between cement particle, air and water. They stabilize the microbubbles and are therefore encountered at the surfaces of these air pores in the concrete as it hardens. The other type—for example sodium lauryl sulfate (SDS) or sodium dodecylphenylsulfonate—reacts with calcium hydroxide to form calcium salts which, in contrast, are soluble, but which exhibit an abnormal solution behavior. Below a certain critical temperature the solubility of these surfactants is very low, while above this temperature their solubility is very good. As a result of preferential accumulation at the air/water boundary they likewise reduce the surface tension, thus stabilize the microbubbles, and are preferably encountered at the surfaces of these air pores in the hardened concrete.
- The use of these prior-art air entrainers is accompanied by a host of problems [L. Du & K. J. Folliard, Mechanism of air entrainment in concrete, Cement & Concrete Research 35 (2005) 1463-71]. For example, prolonged mixing times, different mixer speeds and altered metering sequences in the case of ready-mix concretes result in the expulsion of the stabilized air (in the air pores).
- The transporting of concretes with extended transport times, poor temperature control and different pumping and conveying equipment, and also the introduction of these concretes in conjunction with altered subsequent processing, jerking and temperature conditions, can produce a significant change in an air-pore content set beforehand. In the worst case this may mean that a concrete no longer complies with the required limiting values of a certain exposure class and has therefore become unusable [EN 206-1 (2000), Concrete—Part 1: Specification, performance, production and conformity].
- The amount of fine substances in the concrete (e.g. cement with different alkali content, additions such as flyash, silica dust or color additions) likewise adversely affects air entrainment. There may also be interactions with flow improvers that have a defoaming action, and hence expel air pores, but may also introduce them in an uncontrolled manner.
- A relatively new possibility for improving the frost resistance and cyclical freeze/thaw durability is to achieve the air content by the admixing or solid metering of polymeric microparticles (hollow microspheres) [H. Sommer, A new method of making concrete resistant to frost and de-icing salts, Betonwerk & Fertigteiltechnik 9 (1978) 476-84]. Since the microparticles generally have particle sizes of less than 100 μm, they can also be distributed more finely and uniformly in the concrete microstructure than can artificially introduced air pores. Consequently, even small amounts are sufficient for sufficient resistance of the concrete to the freezing and thawing cycle. The use of polymeric microparticles of this kind for improving the frost resistance and cyclical freeze/thaw durability of concrete is already known from the prior art [cf. DE 2229094 A1, U.S. Pat. No. 4,057,526 B1, U.S. Pat. No. 4,082,562 B1, DE 3026719 A1]. The microparticles described therein are notable in particular for the fact that they possess a void smaller than 200 μm (in diameter) and that this hollow core consists of air (or a gaseous substance). This likewise includes porous microparticles from the 100 μm scale, which may possess a multiple of relatively small voids and/or pores.
- Compact polymeric microparticles have not been considered to date in practice for the purpose of enhancing the frost resistance and cyclical freeze/thaw durability.
- For the hollow microspheres, however, relatively high levels of addition are needed in order to obtain values below the critical “Power spacing factor”, the reason for this lying at least partly in the large particle diameter of >100 μm. This fact, in combination with the high preparation costs, a result of the multistage preparation processes, have been detrimental to the establishment of these technologies on the market.
- The object on which the present invention is based, therefore, was to provide a means of improving the frost resistance and cyclical freeze/thaw durability for hydraulically setting building material mixtures that develops its full activity even at relatively low levels of addition, and which, moreover, can be prepared easily and inexpensively. A further object was not, or not substantially, to impair the mechanical strength of the building material mixture as a result of said means.
- It has now been found, surprisingly, that compact polymeric microparticles of single-stage or multistage synthesis are also suitable for improvements to the frost resistance and/or cyclical freeze/thaw durability for hydraulically setting building material mixtures. By microparticles of single-stage synthesis are meant a particle (without a shell) which is synthesized homogeneously in the composition. This is all the more surprising since these polymeric microparticles do not entrain any air into the construction mixture.
- The mode of action can be explained as follows: the polymeric microparticles of the invention are in homogeneous distribution in the construction mixture. A cavity between microparticle and cured construction mixture, which possibly becomes further enlarged as a result of the contraction of the construction mixture on curing, serves as an expansion site for freezing water. The uniform distribution of these capillary-active pores, with an average spacing from one another which is smaller than the “Power spacing factor”, then provides for the increase in frost resistance and/or cyclical freeze/thaw durability.
- Through the use of the polymeric formations of the invention it is possible to keep the introduction of air into the building material mixture at an extraordinarily low level. As a result, markedly improved compressive strengths are achievable in the concrete. Consequently it is possible to achieve strength classes which can be set otherwise only by means of a substantially lower water/cement value (w/c value). Low w/c values, however, in turn considerably restrict the processability of the concrete in certain circumstances. Higher compressive strengths are of interest, in addition and in particular, insofar as it is possible to reduce the cement content of the concrete, which is needed for strength to develop, as a result of which it is possible to achieve a significant lowering in the price per m3 of concrete.
- The polymeric microparticles comprise at least one monoethylenically unsaturated monomer. The microparticles may be single-stage or multistage, and the comonomer composition of the individual stages may be different. Preferably included are, among others, nitriles of (meth)acrylic acid, and other nitrogen-containing methacrylates, such as methacryloylamidoacetonitrile, 2-methacryloyloxyethylmethylcyanamide, cyanomethyl methacrylate; carbonyl-containing methacrylates, such as oxazolidinylethyl methacrylate, N-(methacryloyloxy)formamide, acetonyl methacrylate, N-methacryloyl-morpholine, N-methacryloyl-2-pyrrolidonone; glycol dimethacrylates, such as 1,4-butanediol methacrylate, 2-butoxyethyl methacrylate, 2-ethoxyethoxymethyl methacrylate, 2-ethoxyethyl methacrylate, methacrylates of ether alcohols, such as tetrahydrofurfuryl methacrylate, vinyloxyethoxyethyl methacrylate, methoxy-ethoxyethyl methacrylate, 1-butoxypropyl methacrylate, 1-methyl-(2-vinyloxy)-ethyl methacrylate, cyclohexyloxymethyl methacrylate, methoxymethoxyethyl methacrylate, benzyloxymethyl methacrylate, furfuryl methacrylate, 2-butoxy-ethyl methacrylate, 2-ethoxyethoxymethyl methacrylate, 2-ethoxyethyl methacrylate, allyloxymethyl methacrylate, 1-ethoxybutyl methacrylate, methoxymethyl methacrylate, 1-ethoxyethyl methacrylate, ethoxymethyl methacrylate; oxiranyl methacrylates, such as 2,3-epoxybutyl methacrylate, 3,4-epoxybutyl methacrylate, glycidyl methacrylate; phosphorus-, boron-and/or silicon-containing methacrylates, such as 2-(dimethylphosphato)propyl methacrylate, 2-(ethylenephosphito)propyl methacrylate, dimethylphosphino-methyl methacrylate, dimethylphosphonoethyl methacrylate, diethyl methacryloylphosphonate, dipropyl methacryloyl phosphate; sulfur-containing methacrylates, such as ethylsulfinylethyl methacrylate, 4-thiocyanatobutyl methacrylate, ethylsulfonylethyl methacrylate, thiocyanatomethyl methacrylate, methylsulfinylmethyl methacrylate, and bis(methacryloyloxyethyl) sulfide; vinyl esters, such as vinyl acetate;
- styrene, substituted styrenes with an alkyl substituent in the side chain, such as *methylstyrene and *ethylstyrene, for example, substituted styrenes with an alkyl substituent on the ring, such as vinyl toluene and p-methylstyrene;
- heterocyclic vinyl compounds, such as 2-vinylpyridine, 3-vinylpyridine, 2-methyl-5-vinylpyridine, 3-ethyl-4-vinylpyridine, 2,3-dimethyl-5-vinylpyridine, vinylpyrimidine, vinylpiperidine, 9-vinylcarbazole, 3-vinylcarbazole, 4-vinylcarbazole, 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-vinyl-pyrrolidone, 2-vinylpyrrolidone, N-vinylpyrrolidine, 3-vinylpyrrolidine, N-vinyl-caprolactam, N-vinylbutyrolactam, vinyloxolane, vinylfuran, vinylthiophene, vinylthiolane, vinylthiazoles and hydrogenated vinylthiazoles, vinyloxazoles and hydrogenated vinyloxazoles;
- vinyl and isoprenyl ethers;
- maleic acid derivatives, such as diesters of maleic acid, the alcohol residues having 1 to 9 carbon atoms, maleic anhydride, methylmaleic anhydride, maleimide, and methylmaleimide;
- fumaric acid derivatives, such as diesters of fumaric acid, the alcohol residues having 1 to 9 carbon atoms;
- α-olefins such as ethene, propene, n-butene, isobutene, n-pentene, isopentene, n-hexene, isohexene; cyclohexene.
- In addition it has been found that by means of corresponding monomers it is possible to bring about, in addition to the ionic repulsion, the steric repulsion of the polymeric formations as well. This leads to an additional stabilization of the polymeric formations in the dispersion and the construction mixture.
- In accordance with the invention it is therefore also possible to use free-radically polymerizable monomers having a molar mass of greater than 200 g/mol which carry a hydrophilic radical. Particular preference is given to monomers which carry a polyethylene oxide block having two or more units of ethylene oxide. Preference is given to using monomers from the group of (meth)acrylic esters of methoxypoiyethyiene glycol CH3O(CH2CH2O)nH, (with n=2), (meth)acrylic esters of an ethoxylated C16-C18 fatty alcohol mixture (with 2 or more ethylene oxide units), methacrylic esters of 5-tert-octylphenoxypolyethoxyethanol (with 2 or more ethylene oxide units), nonylphenoxypolyethoxyethanol (with 2 or more ethylene oxide units) or mixtures thereof.
- In addition there may be one or more monoethylenically unsaturated monomers containing an acid group present. Preference is given to acrylic acid, methacrylic acid, ethacrylic acid, a-chloroacrylic acid, a-cyanoacrylic acid, p-methylacrylic acid (crotonic acid), a-phenylacrylic acid, p-acryloyloxypropionic acid, sorbic acid, a-chlorosorbic acid, 2′-methylisocrotonic acid, cinnamic acid, p-chlorocinnamic acid, p-stearylic acid, itaconic acid, citraconic acid, mesacronic acid, glutaconic acid, aconitic acid, maleic acid, fumaric acid, tricarboxyethylene, and maleic anhydride, hydroxyl-or amino-containing esters of the above acids, preferably of acrylic or methacrylic acid, such as 2-hydroxyethyl acrylate, N,N-dimethylaminoethyl acrylate, and the analogous derivatives of methacrylic acid, particular preference being given to acrylic acid and also methacrylic acid and preference beyond that to acrylic acid.
- In addition to the monoethylenically unsaturated monomer containing an acid group, this polymer may also be based on further comonomers other than the monoethylenically unsaturated monomer containing an acid group. Preferred comonomers are ethylenically unsaturated sulfonic acid monomers, ethylenically unsaturated phosphonic acid monomers, and acrylamides, preferably.
- Ethylenically unsaturated sulfonic acid monomers are preferably aliphatic or aromatic vinylsulfonic acids or acrylic or methacrylic sulfonic acids. Preferred aliphatic or aromatic vinylsulfonic acids are vinylsulfonic acid, allylsulfonic acid, 4-vinylbenzylsulfonic acid, vinyltoluenesulfonic acid, and styrenesulfonic acid. Preferred acryloyl-and methacryloylsulfonic acids are sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-methacryloyloxypropylsulfonic acid, and 2-acrylamido-2-methyl-propanesulfonic acid.
- Ethylenically unsaturated phosphonic acid monomers such as vinylphosphonic acid, allylphosphonic acid, vinylbenzylphosphonic acid, acrylamidoalkylphosphonic acids, acrylamidoalkyldiphosphonic acids. Phosphonomethylated vinylamines, (meth)acryloylphosphonic acid derivatives.
- Possible acrylamides are alkyl-substituted acrylamides or aminoalkyl-substituted derivatives of acrylamide or of methacrylamide, such as N-vinyl-amides, N-vinylformamides, N-vinylacetamides, N-vinyl-N-methylacetamides, N-vinyl-N-methylformamides, N-methylol(meth)acrylamide, vinylpyrrolidone, N,N-dimethylpropylacrylamide, dimethylacrylamide or diethylacrylamide, and the corresponding methacrylamide derivatives, and also acrylamide and methacrylamide, preference being given to acrylamide.
- The chemical crosslinking can be achieved by crosslinkers generally known to the skilled worker. The crosslinkers may be present in any state. Inventively preferred crosslinkers are polyacrylic or polymethacrylic esters, which are obtained, for example, through the reaction of a polyol or ethoxylated polyol such as ethylene glycol, propylene glycol, trimethylolpropane, 1,6-hexanediol-glycerol, pentaerythritol, polyethylene glycol or polypropylene glycol with acrylic acid or methacrylic acid. Use may also be made of polyols, amino alcohols and also their mono(meth)acrylic esters, and monoallyl ethers. Additionally also acrylic esters of monoallyl compounds of the polyols and amino alcohols. Another group of crosslinkers is obtained through the reaction of polyalkylenepolyamines such as diethylenetriamine and triethylenetetra-aminemethacrylic acid or methacrylic acid. Suitable crosslinkers include 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,3-butylene glycol diacrylate, 1,3-butylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate, ethylene glycol dimethacrylate, 1,6-hexanedioi diacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, tripropylene glycol diacrylate, tetraethylene glycol diacrylate, tetraethylene glycol diacrylate, tetraethylene glycol dimethacrylate, dipentaerythritol pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, trimethylol trimethacrylate, tris(2-hydroxyethyl)isocyanoratetriacrylate, tris(2-hydroxy)isocyanorate trimethacrylate, divinyl esters of polycarboxylic acids, diallyl esters of polycarboxylic acids, triallyl terephthalate, diallyl maleate, diallyl fumarate, hexamethylenebismaleimide, trivinyl trimellitate, divinyl adipate, diallyl succinate, and ethylene glycol divinyl ether, cyclopentadiene diacrylate, triallylamine, tetraallylammonium halides, divinylbenzene, divinyl ether, N,N′-methylenebisacrylamide, N,N′-methylene-bismethacrylamide, ethylene glycol dimethacrylate, and trimethylolpropane triacrylate. Crosslinkers preferred among these are N,N′-methylene-bisacrylamide, N,N′-methylenebismethacrylamide, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, and triallylamine.
- The polymeric formations of the invention can be prepared preferably by emulsion polymerization and preferably have an average particle size of 10 to 5000 nm; an average particle size of 150 to 2000 nm is particularly preferred. Most preferable are average particle sizes of 200 to 1000 nm.
- The average particle size is determined, for example, by counting a statistically significant amount of particles by means of transmission electron micrographs.
- For the preparation of the polymeric formations of the invention it is possible to employ all of the initiators and regulators that are customary for emulsion polymerization. Examples of initiators are inorganic peroxides, organic peroxides or H2O2, and also mixtures thereof with, if appropriate, one or more reducing agents.
- In accordance with the invention it is possible to employ any ionic or nonionic emulsifier during or after the preparation of the dispersion.
- Whereas the water-filled polymeric microparticles are used in accordance with the invention preferably in the form of an aqueous dispersion, it is entirely possible within the context of the present invention to add the water-filled microparticles directly as a solid to the building material mixture. For that purpose the microparticles are for example coagulated—by methods known to the skilled worker—and isolated from the aqueous dispersion by means of standard methods (e.g. filtration, centrifuging, sedimentation and decanting). The material obtained can be washed and is subsequently dried.
- The polymeric formations are added to the building material mixture in a preferred amount of 0.01% to 5% by volume, in particular 0.1% to 0.5% by volume. The building material mixture, in the form for example of concrete or mortar, may in this case include the customary hydraulically setting binders, such as cement, lime, gypsum or anhydrite, for example.
Claims (23)
1. A hydraulically setting building material mixture, consisting essentially of:
a hydraulically setting building material: and
polymeric microparticles which are synthesized in one or more stages from at least one ethylenically unsaturated monomer;
wherein said polymeric microparticles are in the form of spray-dried, coagulated or freeze-dried powder: and
wherein said ethylenically unsaturated monomer is selected from the group consisting of nitriles of (meth)acrylic acid, nitrogen-containing methacrylates, carbonyl-containing methacrylates, glycol dimethacrylates, methacrylates of ether alcohols, oxiranyl methacrylates, phosphorus-containing methacrylates, boron-containing methacrylates, silicon-containing methacrylates, sulfur-containing methacrylates, vinyl esters, styrene, substituted styrenes with an alkyl substituent in the side chain, heterocyclic vinyl compounds, vinyl ethers, isoprenyl ethers, maleic acid compounds, fumaric acid compounds, α-olefins and mixtures thereof.
2. The hydraulically setting building material mixture according to claim 1 , wherein the ethylenically unsaturated monomer is selected from the group consisting of styrene, butadiene, vinyltoluene, ethylene, propylene, vinyl acetate, vinyl chloride, vinylidene chloride, acrylonitrile, acrylamide, methacrylamide, C1-C18 alkyl esters of acrylic acid, C1-C18 alkyl esters of methacrylic acid, and mixtures thereof.
3. The hydraulically setting building material mixture according to claim 1 , wherein said polymeric microparticles further comprise at least one crosslinker.
4. The hydraulically setting building material mixture according to claim 3 , wherein said crosslinker is selected from the group consisting ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, allyl (meth)acrylate, divinylbenzene, diallylmaleate, trimethylolpropane trimethacrylate, glycerol dimethacrylate, glycerol trimethacrylate, pentaerythritol tetramethacrylate, and mixtures thereof.
5. The hydraulically setting building material mixture according to claim 1 , wherein the said polymeric microparticles are in the form of a dispersion.
6. The hydraulically setting building material mixture according to claim 1 wherein said polymeric microparticles are in the form of spray-dried, coagulated or freeze-dried powder.
7. The hydraulically setting building material mixture according to claim 1 , wherein the polymeric microparticles have an average particle size of 10 to 5000 nm.
8. The hydraulically setting building material mixture according to claim 1 , wherein the polymeric microparticles are used in an amount of 0.01% to 5% by volume, based on the volume of the building material mixture.
9. The hydraulically setting building material mixture according to claim 1 , wherein the polymeric microparticles are used in an amount of 0.1% to 0.5% by volume, based on the volume of the building material mixture.
10. The hydraulically setting building material mixture according to claim 1 , further comprising a binder selected from the group consisting of cement, lime, gypsum anhydrite and mixtures thereof.
11. The hydraulically setting building material mixture according to claim 1 , which comprises concrete or mortar.
12. A method of producing a hydraulically setting building material mixture, comprising:
adding polymeric microparticles to a setting building material,
wherein said polymeric microparticles are synthesized in one or more stages from at least one ethylenically unsaturated monomer;
wherein said polymeric microparticles are in the form of spray-dried, coagulated or freeze-dried powder,
wherein said hydraulically setting building material mixture consists essentially of said polymeric microparticles and said setting building material; and
wherein said ethylenically unsaturated monomer is selected from the group consisting of nitriles of (meth)acrylic acid, nitrogen-containing methacrylates, carbonyl-containing methacrylates, glycol dimethacrylates, methacrylates of ether alcohols, oxiranyl methacrylates, phosphorus-containing methacrylates, boron-containing methacrylates, silicon-containing methacrylates, sulfur-containing methacrylates, vinyl esters, styrene, substituted styrenes with an alkyl substituent in the side chain, heterocyclic vinyl compounds, vinyl ethers, isoprenyl ethers, maleic acid compounds, fumaric acid compounds, α-olefins and mixtures thereof.
13. The method according to claim 1 , wherein the ethylenically unsaturated monomer is selected from the group consisting of styrene, butadiene, vinyltoluene, ethylene, propylene, vinyl acetate, vinyl chloride, vinylidene chloride, acrylonitrile, acrylamide, methacrylamide, C1-C18 alkyl esters of acrylic acid, C1-C18 alkyl esters of methacrylic acid, and mixtures thereof.
14. The method according to claim 1 , wherein said polymeric microparticles further comprise at least one crosslinker.
15. The method according to claim 14 , wherein said crosslinker is selected from the group consisting of ethylene glycol di(meth)acrylate, propylene glycol di (meth)acrylate, allyl (meth)acrylate, divinylbenzene, diallylmaleate, trimethylolpropane trimethacrylate, glycerol dimethacrylate, glycerol trimethacrylate, pentaerythritol tetramethacrylate, and mixtures thereof.
16. The method according to claim 1 , wherein said polymeric microparticles are in the form of a dispersion.
17. The method according to claim 1 , wherein said polymeric microparticles are in the form of spray-dried, coagulated or freeze-dried powder.
18. The method according to claim 1 , wherein the polymeric microparticles have an average particle size of 10 to 5000 nm.
19. The method according to claim 1 , wherein the polymeric microparticles are used in an amount of 0.01% to 5% by volume, based on the volume of the building material mixture.
20. The method according to claim 1 , wherein the polymeric microparticles are used in an amount of 0.1% to 0.5% by volume, based on the volume of the building material mixture.
21. The method according to claim 1 , further comprising a binder selected from the group consisting of cement, lime, gypsum anhydrite and mixtures thereof.
22. The method according to claim 1 , which comprises concrete or mortar.
23. A hydraulically setting building material mixture, comprising:
a hydraulically setting building material; and
polymeric microparticles which are synthesized in one or more stages from at least one ethylenically unsaturated monomer;
wherein said polymeric microparticles are homogeneously distributed in said mixture; and
wherein capillary-active pores have an average spacing from one another which is smaller than a power spacing factor.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102006009840A DE102006009840A1 (en) | 2006-03-01 | 2006-03-01 | Additive building material mixtures with micro full particles |
| DE102006009840.4 | 2006-03-01 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070204544A1 true US20070204544A1 (en) | 2007-09-06 |
Family
ID=37872328
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/388,046 Abandoned US20070204544A1 (en) | 2006-03-01 | 2006-03-24 | Additive building material mixtures containing solid microparticles |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20070204544A1 (en) |
| CN (1) | CN101028972A (en) |
| DE (1) | DE102006009840A1 (en) |
| WO (1) | WO2007099009A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040116567A1 (en) * | 2001-02-07 | 2004-06-17 | Gunter Schmitt | Hot sealing compound for aluminum foils applied to polypropylene and polystyrene |
| US20070117948A1 (en) * | 2003-10-29 | 2007-05-24 | Roehm Gmbh & Co. Kg | Mixtures for producing reactive hot melt adhesives and reactive hot melt adhesives obtained on the basis thereof |
| US20070259987A1 (en) * | 2004-07-23 | 2007-11-08 | Roehm Gmbh | Low Water-Absorption Plastisol Polymers |
| US20080057205A1 (en) * | 2005-06-17 | 2008-03-06 | Roehm Gmbh | Heat-Sealing Compound For Sealing Aluminium Foil And Polyethlene Terephthalate Film To Polypropylene, Polyvinyl Chloride and Polystyrene Containers |
| US20080237529A1 (en) * | 2005-10-28 | 2008-10-02 | Evonik Roehm Gmbh | Sprayable Acoustic Compositions |
| US20080245261A1 (en) * | 2003-12-23 | 2008-10-09 | Sika Technology Ag | Dry Additive for Hydraulic Binders |
| US20080262176A1 (en) * | 2005-09-22 | 2008-10-23 | Evonik Roehm Gmbh | Process for Preparing (Meth) Acrylate-Based Aba Triblock Copolymers |
| RU2550775C1 (en) * | 2013-12-30 | 2015-05-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ФГБОУ ВПО "ИГХТУ") | Complex additive for concrete mixtures |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104558370B (en) * | 2015-01-22 | 2015-12-30 | 武汉大学 | Modified water absorbent resin is as the purposes of concrete antifreezing strongthener |
Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US288654A (en) * | 1883-11-20 | Folding basket | ||
| US288650A (en) * | 1883-11-20 | Purse-block for seines | ||
| US288659A (en) * | 1883-11-20 | John c | ||
| US288648A (en) * | 1883-11-20 | marshall | ||
| US288652A (en) * | 1883-11-20 | Railway-frog | ||
| US288658A (en) * | 1883-11-20 | nisewitz | ||
| US288665A (en) * | 1883-11-20 | benchard | ||
| US288655A (en) * | 1883-11-20 | Jambs mtjiehead | ||
| US288651A (en) * | 1883-11-20 | Michael millbe | ||
| US288657A (en) * | 1883-11-20 | Eeedeeick ntshwitz | ||
| US288656A (en) * | 1883-11-20 | Hiram b | ||
| US288653A (en) * | 1883-11-20 | Sandal | ||
| US4157998A (en) * | 1976-12-23 | 1979-06-12 | Ab Bofors | Method of producing a cement mortar with good stability in a fresh condition and a method using this mortar as a binding agent of producing a lightweight aggregate concrete with a high aggregate content |
| US6602937B2 (en) * | 2000-05-25 | 2003-08-05 | Nippon Synthetic Industry Co., Ltd. | Redispersible synthetic resin powder and use thereof |
| US6620487B1 (en) * | 2000-11-21 | 2003-09-16 | United States Gypsum Company | Structural sheathing panels |
| US20070068088A1 (en) * | 2005-09-29 | 2007-03-29 | Lars Einfeldt | Use of polymeric microparticles in building material mixtures |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5403894A (en) * | 1991-07-11 | 1995-04-04 | Rohm And Haas Company | A redispersible core-shell polymer powder |
| US5328952A (en) * | 1992-02-14 | 1994-07-12 | Rohm And Haas Company | Multi-stage polymer latex cement modifier and process of making |
| EP0654454A1 (en) * | 1993-11-22 | 1995-05-24 | Rohm And Haas Company | A core-shell polymer powder |
| DE19733157A1 (en) * | 1997-07-31 | 1999-02-04 | Wacker Chemie Gmbh | Crosslinkable powder composition redispersible in water |
| DE19833062A1 (en) * | 1998-07-22 | 2000-02-03 | Elotex Ag Sempach Station | Redispersible powder and its aqueous dispersion, process for its preparation and use |
| JP2000053711A (en) * | 1998-08-11 | 2000-02-22 | Clariant Polymer Kk | Redispersible emulsion powder and method for producing the same |
| JP2000178055A (en) * | 1998-12-17 | 2000-06-27 | Mitsubishi Rayon Co Ltd | Cement admixture and method for producing the same |
| JP2001253742A (en) * | 2000-03-10 | 2001-09-18 | Lion Corp | Freeze-thaw resistance improver for hydraulic hardened inorganic material |
-
2006
- 2006-03-01 DE DE102006009840A patent/DE102006009840A1/en not_active Withdrawn
- 2006-03-24 US US11/388,046 patent/US20070204544A1/en not_active Abandoned
- 2006-05-10 CN CN200610081746.5A patent/CN101028972A/en active Pending
-
2007
- 2007-01-30 WO PCT/EP2007/050908 patent/WO2007099009A1/en not_active Ceased
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US288654A (en) * | 1883-11-20 | Folding basket | ||
| US288650A (en) * | 1883-11-20 | Purse-block for seines | ||
| US288659A (en) * | 1883-11-20 | John c | ||
| US288648A (en) * | 1883-11-20 | marshall | ||
| US288652A (en) * | 1883-11-20 | Railway-frog | ||
| US288658A (en) * | 1883-11-20 | nisewitz | ||
| US288665A (en) * | 1883-11-20 | benchard | ||
| US288655A (en) * | 1883-11-20 | Jambs mtjiehead | ||
| US288651A (en) * | 1883-11-20 | Michael millbe | ||
| US288657A (en) * | 1883-11-20 | Eeedeeick ntshwitz | ||
| US288656A (en) * | 1883-11-20 | Hiram b | ||
| US288653A (en) * | 1883-11-20 | Sandal | ||
| US4157998A (en) * | 1976-12-23 | 1979-06-12 | Ab Bofors | Method of producing a cement mortar with good stability in a fresh condition and a method using this mortar as a binding agent of producing a lightweight aggregate concrete with a high aggregate content |
| US6602937B2 (en) * | 2000-05-25 | 2003-08-05 | Nippon Synthetic Industry Co., Ltd. | Redispersible synthetic resin powder and use thereof |
| US6620487B1 (en) * | 2000-11-21 | 2003-09-16 | United States Gypsum Company | Structural sheathing panels |
| US20070068088A1 (en) * | 2005-09-29 | 2007-03-29 | Lars Einfeldt | Use of polymeric microparticles in building material mixtures |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040116567A1 (en) * | 2001-02-07 | 2004-06-17 | Gunter Schmitt | Hot sealing compound for aluminum foils applied to polypropylene and polystyrene |
| US7498373B2 (en) | 2001-02-07 | 2009-03-03 | Roehm Gmbh & Co. Kg | Hot sealing compound for aluminum foils applied to polypropylene and polystyrene |
| US20070117948A1 (en) * | 2003-10-29 | 2007-05-24 | Roehm Gmbh & Co. Kg | Mixtures for producing reactive hot melt adhesives and reactive hot melt adhesives obtained on the basis thereof |
| US20080245261A1 (en) * | 2003-12-23 | 2008-10-09 | Sika Technology Ag | Dry Additive for Hydraulic Binders |
| US20070259987A1 (en) * | 2004-07-23 | 2007-11-08 | Roehm Gmbh | Low Water-Absorption Plastisol Polymers |
| US8933169B2 (en) | 2004-07-23 | 2015-01-13 | Kaneka Belguim N.V. | Low water-absorption plastisol polymers |
| US20080057205A1 (en) * | 2005-06-17 | 2008-03-06 | Roehm Gmbh | Heat-Sealing Compound For Sealing Aluminium Foil And Polyethlene Terephthalate Film To Polypropylene, Polyvinyl Chloride and Polystyrene Containers |
| US8025758B2 (en) | 2005-06-17 | 2011-09-27 | Evonik Rohm Gmbh | Heat-sealing compound for sealing aluminium foil and polyethylene terephthalate film to polypropylene, polyvinyl chloride and polystyrene containers |
| US20080262176A1 (en) * | 2005-09-22 | 2008-10-23 | Evonik Roehm Gmbh | Process for Preparing (Meth) Acrylate-Based Aba Triblock Copolymers |
| US7868098B2 (en) | 2005-09-22 | 2011-01-11 | Evonik Roehm Gmbh | Process for preparing (meth) acrylate-based ABA triblock copolymers |
| US20080237529A1 (en) * | 2005-10-28 | 2008-10-02 | Evonik Roehm Gmbh | Sprayable Acoustic Compositions |
| RU2550775C1 (en) * | 2013-12-30 | 2015-05-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ФГБОУ ВПО "ИГХТУ") | Complex additive for concrete mixtures |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101028972A (en) | 2007-09-05 |
| WO2007099009A1 (en) | 2007-09-07 |
| DE102006009840A1 (en) | 2007-09-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070208109A1 (en) | Additive building material mixtures containing swellable polymeric formations | |
| CA2644507A1 (en) | Additive building material mixtures comprising microparticles swollen therein | |
| CA2642986A1 (en) | Additive building material mixtures comprising microparticles, whose shells are porous and hydrophilic | |
| CA2643459A1 (en) | Additive building material mixtures comprising microparticles of different sizes | |
| CA2643456A1 (en) | Additive building material mixtures comprising spray-dried microparticles | |
| WO2007099009A1 (en) | Polymeric microparticles as additive for building material mixtures | |
| CA2642800A1 (en) | Additive building material mixtures comprising non-ionic emulsifiers | |
| CN106366239B (en) | The preparation method of high molecular polymer waterproofing agent | |
| CA2642996A1 (en) | Additive building material mixtures comprising microparticles with extremely thin shells | |
| CA2642900A1 (en) | Additive building material mixtures comprising sterically or electrostatically repelling monomers in the shells of the microparticles | |
| CA2643455A1 (en) | Additive building material mixtures comprising microparticles with apolar shells | |
| CN108821640A (en) | A kind of concrete mortar anti-crack additive and preparation method thereof | |
| US20070204543A1 (en) | Additive building material mixtures containing ionically swollen microparticles | |
| US20070197691A1 (en) | Additive building material mixtures containing ionic emulsifiers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ROEHM GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAUTZ, HOLGER;SCHATTKA, JAN HENDRIK;LOEHDEN, GERD;REEL/FRAME:018118/0074 Effective date: 20060706 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |