US20070190105A1 - Local system for the release of active principle and process for its manufacture - Google Patents
Local system for the release of active principle and process for its manufacture Download PDFInfo
- Publication number
- US20070190105A1 US20070190105A1 US11/620,172 US62017207A US2007190105A1 US 20070190105 A1 US20070190105 A1 US 20070190105A1 US 62017207 A US62017207 A US 62017207A US 2007190105 A1 US2007190105 A1 US 2007190105A1
- Authority
- US
- United States
- Prior art keywords
- polymerisation
- polymethyl methacrylate
- paste
- release
- local system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 24
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 22
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims abstract description 14
- 239000003242 anti bacterial agent Substances 0.000 claims abstract description 13
- 238000001746 injection moulding Methods 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 12
- 239000003999 initiator Substances 0.000 claims abstract description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229940088710 antibiotic agent Drugs 0.000 claims abstract description 10
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000012190 activator Substances 0.000 claims abstract description 9
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 230000005484 gravity Effects 0.000 claims abstract description 4
- 150000004982 aromatic amines Chemical class 0.000 claims abstract description 3
- 229940125717 barbiturate Drugs 0.000 claims abstract description 3
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 3
- 150000003839 salts Chemical class 0.000 claims abstract description 3
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 4
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 claims description 4
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 claims description 2
- 239000004809 Teflon Substances 0.000 claims description 2
- 229920006362 Teflon® Polymers 0.000 claims description 2
- 230000000977 initiatory effect Effects 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 5
- 239000007924 injection Substances 0.000 abstract description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- 230000003115 biocidal effect Effects 0.000 description 6
- 239000002639 bone cement Substances 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 3
- 206010031252 Osteomyelitis Diseases 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- RDEIXVOBVLKYNT-HDZPSJEVSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-[(1r)-1-aminoethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol;(2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(aminomethyl)oxan-2 Chemical compound OS(O)(=O)=O.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@@H](CN)O2)N)[C@@H](N)C[C@H]1N.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@H](O2)[C@@H](C)N)N)[C@@H](N)C[C@H]1N.O1[C@H]([C@@H](C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N RDEIXVOBVLKYNT-HDZPSJEVSA-N 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- 108010059993 Vancomycin Proteins 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 229960002518 gentamicin Drugs 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910000811 surgical stainless steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RDEIXVOBVLKYNT-VQBXQJRRSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(1-aminoethyl)oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol;(2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(aminomethyl)oxan-2-yl]o Chemical compound OS(O)(=O)=O.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@@H](CN)O2)N)[C@@H](N)C[C@H]1N.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@H](O2)C(C)N)N)[C@@H](N)C[C@H]1N.O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N RDEIXVOBVLKYNT-VQBXQJRRSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 108010053950 Teicoplanin Proteins 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- DDTDNCYHLGRFBM-YZEKDTGTSA-N chembl2367892 Chemical compound CC(=O)N[C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1O[C@@H]([C@H]1C(N[C@@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(O)C=C(C=4)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@H](CC=4C=C(Cl)C(O5)=CC=4)C(=O)N3)C(=O)N1)C(O)=O)=O)C(C=C1Cl)=CC=C1OC1=C(O[C@H]3[C@H]([C@@H](O)[C@H](O)[C@H](CO)O3)NC(C)=O)C5=CC2=C1 DDTDNCYHLGRFBM-YZEKDTGTSA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 229960001200 clindamycin hydrochloride Drugs 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001804 debridement Methods 0.000 description 1
- 208000013210 hematogenous Diseases 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229960001608 teicoplanin Drugs 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 229960001572 vancomycin hydrochloride Drugs 0.000 description 1
- LCTORFDMHNKUSG-XTTLPDOESA-N vancomycin monohydrochloride Chemical compound Cl.O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 LCTORFDMHNKUSG-XTTLPDOESA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J2200/00—General characteristics or adaptations
- A61J2200/20—Extrusion means, e.g. for producing pharmaceutical forms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1611—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1635—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
- A61L2300/406—Antibiotics
Definitions
- the object of the invention is a locally effective system for the release of active principle which system consists of approximately spherical or rotation symmetrical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and one or more pharmaceutical active principles.
- Osteomyelitis can be hematogenous, post-traumatic or postoperative. Particularly difficult to treat is the chronic form of osteomyelitis which, in extreme cases, can lead to the loss of limbs and even to septicaemia.
- a common method is surgical remediation by radical surgical debridement. During this procedure, the infected or necrotic bone is excised extensively. Subsequently, the bone cavity is filled with a local carrier of antibiotics or treated by repeated rinse-suction drainage. As a result of the local release of large quantities of antibiotics, the bacterial germs remaining in the adjacent bone areas, too, are effectively controlled when using a sufficiently bone-accessible bactericidal antibiotic such as gentamicin sulphate and clindamycin hydrochloride.
- a sufficiently bone-accessible bactericidal antibiotic such as gentamicin sulphate and clindamycin hydrochloride.
- this active principle carrier it was proposed by Heuser and Dingeldein in 1978, to add glycine or other amino acids to improve the release of the antibiotic (DE 26 51 441). Following contact with the discharge from the wound, the incorporated amino acids are dissolved and form pore systems from which the active principle is able to diffuse out. In this way an improved release of active principle is achieved.
- Gentamicin is an antibiotic which is extremely thermally stable. In view of the increasing spread of resistant and, in particular, multi-resistant bacteria, however, further antibiotics are desirable in local systems for the release of active principle. Unfortunately, these antibiotics, such as vancomycin and teicoplanin are thermally unstable. As a result, it has not been possible so far to produce local systems for the release of active principle with these antibiotics by injection moulding.
- EP 796 712 An alternative in this respect is suggested in EP 796 712, according to which it is possible to produce implant materials using thermally labile active principles.
- a conventional PMMA bone cement is mixed with one or several antibiotics and transferred into corresponding moulds made of plastic, for example.
- Conventional PMMA bone cements consist of a powder component—composed of a polymer powder, an opaquer for x-ray beams and a polymerisations initiator—and a liquid monomer component containing methyl methacrylate, a stabilisator and a polymerisation activator. After mixing both components, the polymerisation activator and the polymerisation initiator meet each other and radical polymerisation of the methyl methacrylate is initiated.
- the invention is based on the object of developing a locally effective system for the release of active principle which can be produced continuously.
- the production process is to make it possible to integrate also thermally labile antibiotics into the systems for the release of active principle.
- the disadvantages of the processes described in DE 23 20 373 and EP 796 712 are to be overcome.
- the object has been achieved by developing a local system for the release of active principle which system consists of spherical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and a pharmaceutical active principle and which are produced by radical polymerisation, radical polymerisation activators effective in the temperature range of 10-80° C. or residues of such polymerisation activators, in particular from the groups of aromatic amines, heavy metal salts and barbiturates not being contained therein.
- system for the release of active principle according to the invention does not contain N,N-dimethyl aniline, N,N-dimethyl-p-toluidine, N,N,-bis-hydroxyethyl-p-toluidine or their consequential products formed during the initiation of radical polymerisation.
- the invention also relates to a process for the production of the local active principle system in the case of which
- Heating can be effected e.g. by the effect of infrared radiation or by the effect of hot air or by the effect of microwaves.
- Thermally decomposing radical initiators which the expert would consider as commonly used are in particular those from the group consisting of dibenzoyl peroxide, dilauroyl peroxide and azoisobutyrodinitrile.
- a wire is preferably used which is preheated to a temperature in the region of the de-composition temperature of the thermal initiator.
- the injection moulding tool is preferably made of Teflon or another inert plastic.
- approximately spherical bodies with a diameter of 7 mm are injection moulded by means of an injection moulding device on a polyfilic, surgical steel wire. The spray moulding process takes place at room temperature. Subsequently, the bodies are hardened in a dryer tunnel at a temperature of 80° C.
- the bodies formed have a mass of ⁇ 240 mg.
- a paste of 570.0 g of polymethyl methacrylate co-methyl acrylate (molecular weight 800,000 g/mole), 285.0 g of methyl methacrylate, 89.0 g of zirconium dioxide, 45.0 g of vancomycin hydrochloride, 8.8 g of a mixture of dibenzoyl peroxide and water in a weight ratio of 3:1 and 15.0 g of glycine is produced by intense mixing.
- approximately spherical bodies with a diameter of 7 mm are injection moulded by means of an injection moulding device on a polyfilic, surgical steel wire. Immediately afterwards, the bodies are hardened continually with a heating radiator while the injection-moulded bodies are heated to 60-70° C. by the effect of IR radiation and polymerisation is initiated.
- the cured bodies have a mass of ⁇ 240 mg.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Pharmacology & Pharmacy (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Transplantation (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Physical Education & Sports Medicine (AREA)
- Molecular Biology (AREA)
- Rheumatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Neurosurgery (AREA)
- Oncology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Communicable Diseases (AREA)
- Pain & Pain Management (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
Abstract
A local system for the release of active principle is described which consists of approximately spherical or rotation symmetrical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and one or more pharmaceutical active principles, in particular antibiotics, and which are produced by radical polymerisation, radical polymerisation activators effective in the temperature range of 10-80° C. or residues of these polymerisation activators from the groups of aromatic amines, heavy metal salts and barbiturates not being contained therein.
A process for the production of the local system for the release of active principle in the case of which
-
- a) a paste is produced by mixing methyl methacrylate, polymethyl methacrylate or poly-methyl methacrylate co-methyl acrylate, zirconium dioxide and/or barium sulphate, one or more pharmaceutical active principles and a thermally decomposing radical initiator, the paste having a viscosity such that it cannot be deformed at room temperature by the effect of gravity;
- b) the paste is injection moulded by an injection moulding device without heating at room temperature into approximately spherical or rotation-symmetrical bodies or the approximately spherical or rotation symmetrical bodies are injection-moulded onto a wire;
- c) the bodies are heated to a temperature at which the polymerisation initiator decomposes.
Description
- The object of the invention is a locally effective system for the release of active principle which system consists of approximately spherical or rotation symmetrical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and one or more pharmaceutical active principles.
- One of the major challenges in bone surgery is even today posed by the treatment of osteomyelitis. Osteomyelitis can be hematogenous, post-traumatic or postoperative. Particularly difficult to treat is the chronic form of osteomyelitis which, in extreme cases, can lead to the loss of limbs and even to septicaemia.
- A common method is surgical remediation by radical surgical debridement. During this procedure, the infected or necrotic bone is excised extensively. Subsequently, the bone cavity is filled with a local carrier of antibiotics or treated by repeated rinse-suction drainage. As a result of the local release of large quantities of antibiotics, the bacterial germs remaining in the adjacent bone areas, too, are effectively controlled when using a sufficiently bone-accessible bactericidal antibiotic such as gentamicin sulphate and clindamycin hydrochloride.
- Spherical local systems for the release of active principle composed of polymethyl methacrylate, zirconium dioxide and an antibiotic were described for the first time by Klaus Klemm in 1975 (DE 23 20 373). This concept proved to be basically successful although it had the disadvantage that only a small part of the active principle contained in the spheres was released.
- As a further development of this active principle carrier, it was proposed by Heuser and Dingeldein in 1978, to add glycine or other amino acids to improve the release of the antibiotic (DE 26 51 441). Following contact with the discharge from the wound, the incorporated amino acids are dissolved and form pore systems from which the active principle is able to diffuse out. In this way an improved release of active principle is achieved.
- Local systems for the release of active principle composed mainly of polymethyl methacrylate, an opaquer for x-ray beams and an antibiotic can be produced either by a special injection moulding process (DE 23 20 373) or by casting antibiotic-containing polymethyl methacrylate bone cements in special moulds (EP 796 712). Injection moulding has the crucial disadvantage that temperatures of >120° C. are required in order to melt the polymer. As a result, it is not possible to integrate thermally labile antibiotics or other thermally labile active principles into these local systems for the release of active principles. As a result, the system for the release of active principle charged with gentamicin, which is produced by conventional injection moulding, has been the only one to be available on the market under the name of Septopal®. Gentamicin is an antibiotic which is extremely thermally stable. In view of the increasing spread of resistant and, in particular, multi-resistant bacteria, however, further antibiotics are desirable in local systems for the release of active principle. Unfortunately, these antibiotics, such as vancomycin and teicoplanin are thermally unstable. As a result, it has not been possible so far to produce local systems for the release of active principle with these antibiotics by injection moulding.
- An alternative in this respect is suggested in EP 796 712, according to which it is possible to produce implant materials using thermally labile active principles. During this process, a conventional PMMA bone cement is mixed with one or several antibiotics and transferred into corresponding moulds made of plastic, for example. Conventional PMMA bone cements consist of a powder component—composed of a polymer powder, an opaquer for x-ray beams and a polymerisations initiator—and a liquid monomer component containing methyl methacrylate, a stabilisator and a polymerisation activator. After mixing both components, the polymerisation activator and the polymerisation initiator meet each other and radical polymerisation of the methyl methacrylate is initiated. After a few minutes, the PMMA bone cement has been cured. As a result of this curing behaviour, it is possible to produce chain-type systems for the release of active principle by means of the moulds proposed in EP 796 712 by using conventional PMMA bone cements only in a batchwise process. Continuous production under industrial conditions is consequently not possible. In the case of this manufacturing process, N,N-dimethyl-p-toluidine is used as polymerisation activator in the PMMA bone cement.
- The invention is based on the object of developing a locally effective system for the release of active principle which can be produced continuously. The production process is to make it possible to integrate also thermally labile antibiotics into the systems for the release of active principle. The disadvantages of the processes described in DE 23 20 373 and EP 796 712 are to be overcome.
- The object has been achieved by developing a local system for the release of active principle which system consists of spherical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and a pharmaceutical active principle and which are produced by radical polymerisation, radical polymerisation activators effective in the temperature range of 10-80° C. or residues of such polymerisation activators, in particular from the groups of aromatic amines, heavy metal salts and barbiturates not being contained therein.
- In particular, the system for the release of active principle according to the invention does not contain N,N-dimethyl aniline, N,N-dimethyl-p-toluidine, N,N,-bis-hydroxyethyl-p-toluidine or their consequential products formed during the initiation of radical polymerisation.
- The invention also relates to a process for the production of the local active principle system in the case of which
-
- a) a paste is produced by mixing methyl methacrylate, polymethyl methacrylate or poly-methyl methacrylate co-methyl acrylate, zirconium dioxide and/or barium sulphate, one or more pharmaceutical active principles and a thermally decomposing radical initiator, the paste having a viscosity such that it is not deformed at room temperature by the effect of gravity;
- b) the paste is injection moulded by an injection moulding device without heating at room temperature into approximately spherical or rotation symmetrical bodies or the approximately spherical or rotation symmetrical bodies are injection-moulded onto a wire;
- c) the bodies are heated to a temperature at which the polymerisation initiator decomposes.
- Heating can be effected e.g. by the effect of infrared radiation or by the effect of hot air or by the effect of microwaves.
- It is important for the bodies produced from the paste to be mechanically stable before curing to such an extent that these are not deformed as a result of their inherent mass by the effect of gravity or, if the bodies are injection-moulded onto threads, become detached from the threads.
- Thermally decomposing radical initiators which the expert would consider as commonly used are in particular those from the group consisting of dibenzoyl peroxide, dilauroyl peroxide and azoisobutyrodinitrile.
- In step b) a wire is preferably used which is preheated to a temperature in the region of the de-composition temperature of the thermal initiator. By preheating the wire it is possible to initiate polymerisation in the interior of the injection moulded body before curing is effected by the effect of infrared radiation, hot air or by microwaves. As a result, the bodies adhere in a particularly stable manner on the wire.
- The injection moulding tool is preferably made of Teflon or another inert plastic.
- The invention will be explained by the following examples though without restricting the invention.
- A paste of 570.0 g of polymethyl methacrylate co-methyl acrylate (molecular weight 800,000 g/mole), 285.0 g of methyl methacrylate, 89.0 g of zirconium dioxide, 42.0 g of gentamicin sulphate (AK 600), 8.8 g of a mixture of dibenzoyl peroxide and water in a weight ratio of 3:1 and 15.0 g of glycine is produced by intense mixing. Using this viscous paste, approximately spherical bodies with a diameter of 7 mm are injection moulded by means of an injection moulding device on a polyfilic, surgical steel wire. The spray moulding process takes place at room temperature. Subsequently, the bodies are hardened in a dryer tunnel at a temperature of 80° C. The bodies formed have a mass of ˜240 mg.
- A paste of 570.0 g of polymethyl methacrylate co-methyl acrylate (molecular weight 800,000 g/mole), 285.0 g of methyl methacrylate, 89.0 g of zirconium dioxide, 45.0 g of vancomycin hydrochloride, 8.8 g of a mixture of dibenzoyl peroxide and water in a weight ratio of 3:1 and 15.0 g of glycine is produced by intense mixing. Using the paste formed, approximately spherical bodies with a diameter of 7 mm are injection moulded by means of an injection moulding device on a polyfilic, surgical steel wire. Immediately afterwards, the bodies are hardened continually with a heating radiator while the injection-moulded bodies are heated to 60-70° C. by the effect of IR radiation and polymerisation is initiated. The cured bodies have a mass of ˜240 mg.
Claims (8)
1. A local system for the release of active principle which consists of approximately spherical or rotation symmetrical bodies which are composed essentially of polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide or barium sulphate and one or more pharmaceutical active principles, and which are produced by radical polymerisation, wherein radical polymerisation activators effective in the temperature range of 10-80° C. or residues of these polymerisation activators selected from the group consisting of aromatic amines, heavy metal salts and barbiturates are not contained therein.
2. Local system for the release of active principle according to claim 1 , wherein N,N-dimethyl aniline, N,N-dimethyl-p-toluidine, N,N,-bis-hydroxyethyl-p-toluidine or their consequential products formed during the initiation of radical polymerisation are not contained therein.
3. Process for the production of the local system of claim 1 which comprises
a) producing a paste by mixing methyl methacrylate, polymethyl methacrylate or polymethyl methacrylate co-methyl acrylate, zirconium dioxide and/or barium sulphate, one or more pharmaceutical active principles and a thermally decomposing radical initiator, the paste having a viscosity sufficient to prevent deformation at room temperature by the effect of gravity;
b) injection moulding the paste by an injection moulding device without heating at room temperature into approximately spherical or rotationally symmetrical bodies or injection moulding approximately spherical or rotation symmetrical bodies onto a wire;
c) heating the bodies to a temperature at which the polymerisation initiator decomposes.
4. Process according to claim 3 , wherein in step c) heating is by the effect of infrared radiation or by the effect of air or by the effect of microwaves.
5. Process according to claim 3 , wherein the decomposing radical initiator is one or more of the substances selected from the group consisting of dibenzoyl peroxide, dilauroyl peroxide and azoisobutyrodinitrile.
6. Process according to claim 3 , wherein in step b) a wire is used which is preheated to a temperature in the region of the decomposition temperature of the thermal initiator.
7. Process according to claim 3 , wherein the injection moulding tool is made of Teflon or another inert plastic.
8. The local system of claim 1 , wherein said active principles are antibiotics.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/949,260 US8758827B2 (en) | 2006-02-10 | 2010-11-18 | Local system for the release of active principle and process for its manufacture |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102006006510.7 | 2006-02-10 | ||
| DE102006006510A DE102006006510A1 (en) | 2006-02-10 | 2006-02-10 | Local drug delivery system and a method for its production |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/949,260 Division US8758827B2 (en) | 2006-02-10 | 2010-11-18 | Local system for the release of active principle and process for its manufacture |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070190105A1 true US20070190105A1 (en) | 2007-08-16 |
Family
ID=38080014
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/620,172 Abandoned US20070190105A1 (en) | 2006-02-10 | 2007-01-05 | Local system for the release of active principle and process for its manufacture |
| US12/949,260 Expired - Fee Related US8758827B2 (en) | 2006-02-10 | 2010-11-18 | Local system for the release of active principle and process for its manufacture |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/949,260 Expired - Fee Related US8758827B2 (en) | 2006-02-10 | 2010-11-18 | Local system for the release of active principle and process for its manufacture |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US20070190105A1 (en) |
| EP (1) | EP1818039B1 (en) |
| JP (1) | JP4686488B2 (en) |
| CN (1) | CN101015697B (en) |
| AU (1) | AU2007200072B2 (en) |
| BR (1) | BRPI0700258A (en) |
| CA (1) | CA2572764A1 (en) |
| DE (1) | DE102006006510A1 (en) |
| ZA (1) | ZA200701174B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110112210A1 (en) * | 2008-06-30 | 2011-05-12 | Heraeus Medical Gmbh | Pmma paste |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102007052116B4 (en) * | 2007-10-22 | 2013-02-21 | Heraeus Medical Gmbh | One-component bone cement pastes, their use and methods of curing them |
| DE102007050762B3 (en) * | 2007-10-22 | 2009-05-07 | Heraeus Medical Gmbh | Paste polymethyl methacrylate bone cement and its use |
| DE102008030312A1 (en) * | 2008-06-30 | 2010-01-14 | Heraeus Medical Gmbh | Polymethylmethacrylate-based paste used in single- or two-component bone cements or active substance release systems, has self-sterile composition |
| CA2797904C (en) * | 2011-12-20 | 2015-01-27 | Heraeus Medical Gmbh | Paste-like bone cement |
| EP2664349B1 (en) * | 2012-05-16 | 2016-02-03 | Heraeus Medical GmbH | Bone cement in paste form |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3882858A (en) * | 1973-04-21 | 1975-05-13 | Merck Patent Gmbh | Surgical synthetic-resin material and method of treating osteomyelitis |
| US4191740A (en) * | 1976-11-11 | 1980-03-04 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Synthetic resin-base, antibiotic compositions containing amino acids |
| US4782118A (en) * | 1985-06-20 | 1988-11-01 | Ceraver, S.A. | Cement for fixing a bone prosthesis |
| US5958465A (en) * | 1996-02-22 | 1999-09-28 | Merck Patent Gesellschaft | Apparatus for the production of drug-containing implants in the form of strings of beads |
| US6160033A (en) * | 1996-08-22 | 2000-12-12 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Process for producing bone cement containing active substances |
| US20040109894A1 (en) * | 2002-12-09 | 2004-06-10 | Adi Shefer | PH triggered targeted controlled release systems for the delivery of pharmaceutical active ingredients |
| US6759449B2 (en) * | 2000-11-28 | 2004-07-06 | Tokuyama Dental Corporation | Dental adhesive composition |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US616033A (en) * | 1898-12-13 | sturcke | ||
| DE2651441C2 (en) * | 1976-11-11 | 1987-01-08 | Merck Patent Gmbh, 6100 Darmstadt | Antibiotic-containing agent |
| DE2917037C2 (en) * | 1979-04-27 | 1980-12-11 | Josef Dipl.-Chem. Dr. 8000 Muenchen Gaensheimer | Parenterally medicinal, partially absorbable multi-component material based on polymeric substances |
| EP0061108B1 (en) * | 1981-03-19 | 1986-12-30 | mundipharma GmbH | Bone implant of tricalcium phosphate with mikroporous and macroporous structure, process for its preparation and its use |
| US5286791A (en) * | 1992-05-29 | 1994-02-15 | Himont Incorporated | Impact modified graft copolymer compositions containing broad molecular weight distribution polypropylene |
| KR0139235B1 (en) * | 1994-01-29 | 1998-04-28 | 조세현 | Cement bead composition for orthopaedic surgery and its manufacturing process |
| US5968999A (en) * | 1997-10-28 | 1999-10-19 | Charlotte-Mecklenburg Hospital Authority | Bone cement compositions |
-
2006
- 2006-02-10 DE DE102006006510A patent/DE102006006510A1/en not_active Ceased
-
2007
- 2007-01-03 CA CA002572764A patent/CA2572764A1/en not_active Abandoned
- 2007-01-05 US US11/620,172 patent/US20070190105A1/en not_active Abandoned
- 2007-01-08 AU AU2007200072A patent/AU2007200072B2/en not_active Ceased
- 2007-01-25 EP EP07001577.1A patent/EP1818039B1/en not_active Not-in-force
- 2007-02-09 JP JP2007030742A patent/JP4686488B2/en not_active Expired - Fee Related
- 2007-02-09 ZA ZA200701174A patent/ZA200701174B/en unknown
- 2007-02-09 CN CN200710084031XA patent/CN101015697B/en not_active Expired - Fee Related
- 2007-02-12 BR BRPI0700258-0A patent/BRPI0700258A/en not_active IP Right Cessation
-
2010
- 2010-11-18 US US12/949,260 patent/US8758827B2/en not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3882858A (en) * | 1973-04-21 | 1975-05-13 | Merck Patent Gmbh | Surgical synthetic-resin material and method of treating osteomyelitis |
| US4191740A (en) * | 1976-11-11 | 1980-03-04 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Synthetic resin-base, antibiotic compositions containing amino acids |
| US4782118A (en) * | 1985-06-20 | 1988-11-01 | Ceraver, S.A. | Cement for fixing a bone prosthesis |
| US5958465A (en) * | 1996-02-22 | 1999-09-28 | Merck Patent Gesellschaft | Apparatus for the production of drug-containing implants in the form of strings of beads |
| US6160033A (en) * | 1996-08-22 | 2000-12-12 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Process for producing bone cement containing active substances |
| US6759449B2 (en) * | 2000-11-28 | 2004-07-06 | Tokuyama Dental Corporation | Dental adhesive composition |
| US20040109894A1 (en) * | 2002-12-09 | 2004-06-10 | Adi Shefer | PH triggered targeted controlled release systems for the delivery of pharmaceutical active ingredients |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110112210A1 (en) * | 2008-06-30 | 2011-05-12 | Heraeus Medical Gmbh | Pmma paste |
Also Published As
| Publication number | Publication date |
|---|---|
| US8758827B2 (en) | 2014-06-24 |
| EP1818039A2 (en) | 2007-08-15 |
| US20110062637A1 (en) | 2011-03-17 |
| CA2572764A1 (en) | 2007-08-10 |
| DE102006006510A1 (en) | 2007-08-23 |
| CN101015697A (en) | 2007-08-15 |
| EP1818039B1 (en) | 2013-07-31 |
| EP1818039A3 (en) | 2012-07-04 |
| CN101015697B (en) | 2012-05-23 |
| AU2007200072B2 (en) | 2009-09-10 |
| JP2007209763A (en) | 2007-08-23 |
| JP4686488B2 (en) | 2011-05-25 |
| AU2007200072A1 (en) | 2007-08-30 |
| BRPI0700258A (en) | 2007-11-06 |
| ZA200701174B (en) | 2008-07-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8758827B2 (en) | Local system for the release of active principle and process for its manufacture | |
| AU772291B2 (en) | Antibiotic(s)-polymer combination | |
| ES2700677T3 (en) | Compositions for bone implant that can initially be deformed plastically | |
| EP1482996B1 (en) | Porous biocompatible implant material and method for its fabrication | |
| US5968999A (en) | Bone cement compositions | |
| US20040013703A1 (en) | Bioabsorbable plugs containing drugs | |
| CN100502954C (en) | Bioabsorbable Composite Materials | |
| US20220331492A1 (en) | Composition and method for controlled drug release from a tissue | |
| JP2014528734A (en) | Bone putty | |
| Niikura et al. | Vancomycin-impregnated calcium phosphate cement for methicillin-resistant Staphylococcus aureus femoral osteomyelitis | |
| US7419681B2 (en) | Method to enhance drug release from a drug-releasing material | |
| JP2022068212A (en) | Scaffold material, methods, and uses | |
| JPH07508433A (en) | Granular polymer materials or polymer fibers and their production method | |
| JPH04279520A (en) | Pharmaceutical preparation for embedding in bone | |
| Udomkusonsri et al. | Elution profiles of cefazolin from PMMA and calcium sulfate beads prepared from commercial cefazolin formulations | |
| US20250302768A1 (en) | Nanoparticle doped polyethylene glycol based gels and medical devices for drug delivery | |
| JPH07157439A (en) | Formulation for embedding in bone |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HERAEUS KULZER GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUHN, KLAUS-DIETER;VOGT, SEBASTIAN;REEL/FRAME:018912/0658;SIGNING DATES FROM 20070116 TO 20070118 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |