US20070178811A1 - Dry ice blasting with chemical additives - Google Patents
Dry ice blasting with chemical additives Download PDFInfo
- Publication number
- US20070178811A1 US20070178811A1 US11/551,057 US55105706A US2007178811A1 US 20070178811 A1 US20070178811 A1 US 20070178811A1 US 55105706 A US55105706 A US 55105706A US 2007178811 A1 US2007178811 A1 US 2007178811A1
- Authority
- US
- United States
- Prior art keywords
- pellets
- additives
- methyl
- ethyl
- combinations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 192
- 235000011089 carbon dioxide Nutrition 0.000 title claims abstract description 106
- 239000000654 additive Substances 0.000 title claims abstract description 97
- 238000005422 blasting Methods 0.000 title claims abstract description 24
- 239000000126 substance Substances 0.000 title claims description 41
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 62
- 239000008188 pellet Substances 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 24
- 239000003205 fragrance Substances 0.000 claims abstract description 21
- 239000007787 solid Substances 0.000 claims abstract description 17
- 239000000645 desinfectant Substances 0.000 claims abstract description 16
- 239000004094 surface-active agent Substances 0.000 claims abstract description 16
- 230000000845 anti-microbial effect Effects 0.000 claims abstract description 15
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- 238000004140 cleaning Methods 0.000 claims abstract description 6
- 230000000694 effects Effects 0.000 claims abstract description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 58
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 claims description 23
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 18
- -1 lacititol Chemical compound 0.000 claims description 17
- 239000004599 antimicrobial Substances 0.000 claims description 14
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 claims description 10
- 239000003599 detergent Substances 0.000 claims description 9
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 claims description 9
- UFLHIIWVXFIJGU-ARJAWSKDSA-N (Z)-hex-3-en-1-ol Chemical compound CC\C=C/CCO UFLHIIWVXFIJGU-ARJAWSKDSA-N 0.000 claims description 8
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 claims description 8
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 8
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 claims description 8
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 claims description 8
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 claims description 8
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 8
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 claims description 8
- OBNCKNCVKJNDBV-UHFFFAOYSA-N ethyl butyrate Chemical compound CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 claims description 8
- RGXWDWUGBIJHDO-UHFFFAOYSA-N ethyl decanoate Chemical compound CCCCCCCCCC(=O)OCC RGXWDWUGBIJHDO-UHFFFAOYSA-N 0.000 claims description 8
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 claims description 8
- YYZUSRORWSJGET-UHFFFAOYSA-N ethyl octanoate Chemical compound CCCCCCCC(=O)OCC YYZUSRORWSJGET-UHFFFAOYSA-N 0.000 claims description 8
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 claims description 8
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 8
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 claims description 8
- AOGQPLXWSUTHQB-UHFFFAOYSA-N hexyl acetate Chemical compound CCCCCCOC(C)=O AOGQPLXWSUTHQB-UHFFFAOYSA-N 0.000 claims description 8
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 claims description 8
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 8
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims description 8
- 239000001540 sodium lactate Substances 0.000 claims description 8
- 235000011088 sodium lactate Nutrition 0.000 claims description 8
- 229940005581 sodium lactate Drugs 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 claims description 5
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 claims description 5
- 229960002216 methylparaben Drugs 0.000 claims description 5
- FQTLCLSUCSAZDY-UHFFFAOYSA-N (+) E(S) nerolidol Natural products CC(C)=CCCC(C)=CCCC(C)(O)C=C FQTLCLSUCSAZDY-UHFFFAOYSA-N 0.000 claims description 4
- YKXLOLXPAVQFLX-UAJZUDOASA-N (2Z)-3,7-dimethylocta-2,6-dienal Chemical compound CC(C)=CCC\C(C)=C/C=O.CC(C)=CCC\C(C)=C/C=O YKXLOLXPAVQFLX-UAJZUDOASA-N 0.000 claims description 4
- YKXLOLXPAVQFLX-GGTVIOIRSA-N (2e)-3,7-dimethylocta-2,6-dienal Chemical compound CC(C)=CCC\C(C)=C\C=O.CC(C)=CCC\C(C)=C\C=O YKXLOLXPAVQFLX-GGTVIOIRSA-N 0.000 claims description 4
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 claims description 4
- FQTLCLSUCSAZDY-SDNWHVSQSA-N (6E)-nerolidol Chemical compound CC(C)=CCC\C(C)=C\CCC(C)(O)C=C FQTLCLSUCSAZDY-SDNWHVSQSA-N 0.000 claims description 4
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 claims description 4
- GLZPCOQZEFWAFX-JXMROGBWSA-N (E)-Geraniol Chemical compound CC(C)=CCC\C(C)=C\CO GLZPCOQZEFWAFX-JXMROGBWSA-N 0.000 claims description 4
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 claims description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 4
- GUMOJENFFHZAFP-UHFFFAOYSA-N 2-Ethoxynaphthalene Chemical compound C1=CC=CC2=CC(OCC)=CC=C21 GUMOJENFFHZAFP-UHFFFAOYSA-N 0.000 claims description 4
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 claims description 4
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical compound C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 4
- INAXVXBDKKUCGI-UHFFFAOYSA-N 4-hydroxy-2,5-dimethylfuran-3-one Chemical compound CC1OC(C)=C(O)C1=O INAXVXBDKKUCGI-UHFFFAOYSA-N 0.000 claims description 4
- 239000001176 4-hydroxy-2,5-dimethylfuran-3-one Substances 0.000 claims description 4
- TWDOPJXHIBEHIL-UHFFFAOYSA-N 5-methyl-2-propan-2-yl-cyclohexan-1-ol Chemical compound CC(C)C1CCC(C)CC1O.CC(C)C1CCC(C)CC1O TWDOPJXHIBEHIL-UHFFFAOYSA-N 0.000 claims description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-M Aminoacetate Chemical compound NCC([O-])=O DHMQDGOQFOQNFH-UHFFFAOYSA-M 0.000 claims description 4
- 239000004251 Ammonium lactate Substances 0.000 claims description 4
- 239000005711 Benzoic acid Substances 0.000 claims description 4
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 4
- YIKYNHJUKRTCJL-UHFFFAOYSA-N Ethyl maltol Chemical compound CCC=1OC=CC(=O)C=1O YIKYNHJUKRTCJL-UHFFFAOYSA-N 0.000 claims description 4
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 claims description 4
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims description 4
- 244000246386 Mentha pulegium Species 0.000 claims description 4
- 235000016257 Mentha pulegium Nutrition 0.000 claims description 4
- 235000004357 Mentha x piperita Nutrition 0.000 claims description 4
- LQKRYVGRPXFFAV-UHFFFAOYSA-N Phenylmethylglycidic ester Chemical compound CCOC(=O)C1OC1(C)C1=CC=CC=C1 LQKRYVGRPXFFAV-UHFFFAOYSA-N 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 claims description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 4
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 claims description 4
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 4
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- 235000019286 ammonium lactate Nutrition 0.000 claims description 4
- 229940059265 ammonium lactate Drugs 0.000 claims description 4
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 claims description 4
- 229940063953 ammonium lauryl sulfate Drugs 0.000 claims description 4
- 235000010323 ascorbic acid Nutrition 0.000 claims description 4
- 239000011668 ascorbic acid Substances 0.000 claims description 4
- 229960005070 ascorbic acid Drugs 0.000 claims description 4
- RZOBLYBZQXQGFY-HSHFZTNMSA-N azanium;(2r)-2-hydroxypropanoate Chemical compound [NH4+].C[C@@H](O)C([O-])=O RZOBLYBZQXQGFY-HSHFZTNMSA-N 0.000 claims description 4
- 229960000686 benzalkonium chloride Drugs 0.000 claims description 4
- 229940077388 benzenesulfonate Drugs 0.000 claims description 4
- 235000010233 benzoic acid Nutrition 0.000 claims description 4
- 150000001558 benzoic acid derivatives Chemical class 0.000 claims description 4
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 claims description 4
- DSSYKIVIOFKYAU-UHFFFAOYSA-N camphor Chemical compound C1CC2(C)C(=O)CC1C2(C)C DSSYKIVIOFKYAU-UHFFFAOYSA-N 0.000 claims description 4
- 229960000541 cetyl alcohol Drugs 0.000 claims description 4
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 claims description 4
- 229960001927 cetylpyridinium chloride Drugs 0.000 claims description 4
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 claims description 4
- 229940117916 cinnamic aldehyde Drugs 0.000 claims description 4
- GXANMBISFKBPEX-ARJAWSKDSA-N cis-3-hexenal Chemical compound CC\C=C/CC=O GXANMBISFKBPEX-ARJAWSKDSA-N 0.000 claims description 4
- WTEVQBCEXWBHNA-JXMROGBWSA-N citral A Natural products CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 claims description 4
- WTEVQBCEXWBHNA-YFHOEESVSA-N citral B Natural products CC(C)=CCC\C(C)=C/C=O WTEVQBCEXWBHNA-YFHOEESVSA-N 0.000 claims description 4
- 235000000484 citronellol Nutrition 0.000 claims description 4
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 claims description 4
- 229940073507 cocamidopropyl betaine Drugs 0.000 claims description 4
- WOQQAWHSKSSAGF-WXFJLFHKSA-N decyl beta-D-maltopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](OCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 WOQQAWHSKSSAGF-WXFJLFHKSA-N 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 4
- OPGYRRGJRBEUFK-UHFFFAOYSA-L disodium;diacetate Chemical compound [Na+].[Na+].CC([O-])=O.CC([O-])=O OPGYRRGJRBEUFK-UHFFFAOYSA-L 0.000 claims description 4
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 claims description 4
- 239000001199 ethyl (2R,3R)-3-methyl-3-phenyloxirane-2-carboxylate Substances 0.000 claims description 4
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 235000019253 formic acid Nutrition 0.000 claims description 4
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 claims description 4
- ZQPCOAKGRYBBMR-VIFPVBQESA-N grapefruit mercaptan Chemical compound CC1=CC[C@H](C(C)(C)S)CC1 ZQPCOAKGRYBBMR-VIFPVBQESA-N 0.000 claims description 4
- UFLHIIWVXFIJGU-UHFFFAOYSA-N hex-3-en-1-ol Natural products CCC=CCCO UFLHIIWVXFIJGU-UHFFFAOYSA-N 0.000 claims description 4
- GXANMBISFKBPEX-UHFFFAOYSA-N hex-3c-enal Natural products CCC=CCC=O GXANMBISFKBPEX-UHFFFAOYSA-N 0.000 claims description 4
- 235000001050 hortel pimenta Nutrition 0.000 claims description 4
- 229940117955 isoamyl acetate Drugs 0.000 claims description 4
- 150000003893 lactate salts Chemical class 0.000 claims description 4
- 239000004310 lactic acid Substances 0.000 claims description 4
- 235000014655 lactic acid Nutrition 0.000 claims description 4
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 claims description 4
- 229960001047 methyl salicylate Drugs 0.000 claims description 4
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 claims description 4
- WASNIKZYIWZQIP-AWEZNQCLSA-N nerolidol Natural products CC(=CCCC(=CCC[C@@H](O)C=C)C)C WASNIKZYIWZQIP-AWEZNQCLSA-N 0.000 claims description 4
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 claims description 4
- 229940055577 oleyl alcohol Drugs 0.000 claims description 4
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 claims description 4
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 claims description 4
- CFNJLPHOBMVMNS-UHFFFAOYSA-N pentyl butyrate Chemical compound CCCCCOC(=O)CCC CFNJLPHOBMVMNS-UHFFFAOYSA-N 0.000 claims description 4
- FGPPDYNPZTUNIU-UHFFFAOYSA-N pentyl pentanoate Chemical compound CCCCCOC(=O)CCCC FGPPDYNPZTUNIU-UHFFFAOYSA-N 0.000 claims description 4
- 150000002978 peroxides Chemical class 0.000 claims description 4
- PHZLMBHDXVLRIX-UHFFFAOYSA-M potassium lactate Chemical compound [K+].CC(O)C([O-])=O PHZLMBHDXVLRIX-UHFFFAOYSA-M 0.000 claims description 4
- 239000001521 potassium lactate Substances 0.000 claims description 4
- 235000011085 potassium lactate Nutrition 0.000 claims description 4
- 229960001304 potassium lactate Drugs 0.000 claims description 4
- 239000004323 potassium nitrate Substances 0.000 claims description 4
- 235000010333 potassium nitrate Nutrition 0.000 claims description 4
- 239000004304 potassium nitrite Substances 0.000 claims description 4
- 235000010289 potassium nitrite Nutrition 0.000 claims description 4
- 239000000344 soap Substances 0.000 claims description 4
- 239000001632 sodium acetate Substances 0.000 claims description 4
- 235000017454 sodium diacetate Nutrition 0.000 claims description 4
- 229940083575 sodium dodecyl sulfate Drugs 0.000 claims description 4
- 229940057950 sodium laureth sulfate Drugs 0.000 claims description 4
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 claims description 4
- UNYNVICDCJHOPO-UHFFFAOYSA-N sotolone Chemical compound CC1OC(=O)C(O)=C1C UNYNVICDCJHOPO-UHFFFAOYSA-N 0.000 claims description 4
- 239000003760 tallow Substances 0.000 claims description 4
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 claims description 4
- DKZBBWMURDFHNE-UHFFFAOYSA-N trans-coniferylaldehyde Natural products COC1=CC(C=CC=O)=CC=C1O DKZBBWMURDFHNE-UHFFFAOYSA-N 0.000 claims description 4
- USMNOWBWPHYOEA-MRTMQBJTSA-N α-thujone Chemical compound O=C([C@@H]1C)C[C@@]2(C(C)C)[C@@H]1C2 USMNOWBWPHYOEA-MRTMQBJTSA-N 0.000 claims description 4
- 230000000249 desinfective effect Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000011012 sanitization Methods 0.000 claims description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 claims 3
- MPABKSCMGWLUSY-UHFFFAOYSA-N anisole;1-methoxy-4-prop-1-enylbenzene Chemical compound COC1=CC=CC=C1.COC1=CC=C(C=CC)C=C1 MPABKSCMGWLUSY-UHFFFAOYSA-N 0.000 claims 3
- 229940050410 gluconate Drugs 0.000 claims 3
- 230000008569 process Effects 0.000 abstract description 11
- 230000000996 additive effect Effects 0.000 description 50
- 239000007788 liquid Substances 0.000 description 38
- 239000007789 gas Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000007710 freezing Methods 0.000 description 7
- 230000008014 freezing Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 235000019645 odor Nutrition 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000013077 target material Substances 0.000 description 6
- 235000020971 citrus fruits Nutrition 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 235000021472 generally recognized as safe Nutrition 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000000859 sublimation Methods 0.000 description 5
- 230000008022 sublimation Effects 0.000 description 5
- 241000207199 Citrus Species 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 235000009499 Vanilla fragrans Nutrition 0.000 description 4
- 244000263375 Vanilla tahitensis Species 0.000 description 4
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 150000003505 terpenes Chemical class 0.000 description 4
- 235000007586 terpenes Nutrition 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 235000016623 Fragaria vesca Nutrition 0.000 description 3
- 240000009088 Fragaria x ananassa Species 0.000 description 3
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 3
- 235000006679 Mentha X verticillata Nutrition 0.000 description 3
- 235000002899 Mentha suaveolens Nutrition 0.000 description 3
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 235000012141 vanillin Nutrition 0.000 description 3
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 3
- 230000002407 ATP formation Effects 0.000 description 2
- 244000099147 Ananas comosus Species 0.000 description 2
- 235000007119 Ananas comosus Nutrition 0.000 description 2
- 240000004784 Cymbopogon citratus Species 0.000 description 2
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- WJUFSDZVCOTFON-UHFFFAOYSA-N veratraldehyde Chemical compound COC1=CC=C(C=O)C=C1OC WJUFSDZVCOTFON-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- XTJKNGLLPGBHHO-HNNXBMFYSA-N (2s)-5-(diaminomethylideneamino)-2-(dodecanoylamino)pentanoic acid Chemical compound CCCCCCCCCCCC(=O)N[C@H](C(O)=O)CCCN=C(N)N XTJKNGLLPGBHHO-HNNXBMFYSA-N 0.000 description 1
- 125000000545 (4R)-limonene group Chemical group 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- 235000009051 Ambrosia paniculata var. peruviana Nutrition 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 235000003097 Artemisia absinthium Nutrition 0.000 description 1
- 240000001851 Artemisia dracunculus Species 0.000 description 1
- 235000017731 Artemisia dracunculus ssp. dracunculus Nutrition 0.000 description 1
- 235000003261 Artemisia vulgaris Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical class [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 1
- 235000002787 Coriandrum sativum Nutrition 0.000 description 1
- 244000018436 Coriandrum sativum Species 0.000 description 1
- 239000004266 EU approved firming agent Substances 0.000 description 1
- 239000004097 EU approved flavor enhancer Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 240000004670 Glycyrrhiza echinata Species 0.000 description 1
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 1
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 1
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 235000010254 Jasminum officinale Nutrition 0.000 description 1
- 240000005385 Jasminum sambac Species 0.000 description 1
- 241000721662 Juniperus Species 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 235000019501 Lemon oil Nutrition 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000146226 Physalis ixocarpa Species 0.000 description 1
- 240000004760 Pimpinella anisum Species 0.000 description 1
- HLCFGWHYROZGBI-JJKGCWMISA-M Potassium gluconate Chemical compound [K+].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O HLCFGWHYROZGBI-JJKGCWMISA-M 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 235000002912 Salvia officinalis Nutrition 0.000 description 1
- 240000007164 Salvia officinalis Species 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000001138 artemisia absinthium Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 235000013532 brandy Nutrition 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 239000001666 citrus aurantium l. flower Substances 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 235000021438 curry Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000019264 food flavour enhancer Nutrition 0.000 description 1
- 235000010855 food raising agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000002316 fumigant Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 239000010501 lemon oil Substances 0.000 description 1
- 229940010454 licorice Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 239000008368 mint flavor Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000004224 potassium gluconate Substances 0.000 description 1
- 229960003189 potassium gluconate Drugs 0.000 description 1
- 235000013926 potassium gluconate Nutrition 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/003—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C11/00—Selection of abrasive materials or additives for abrasive blasts
- B24C11/005—Selection of abrasive materials or additives for abrasive blasts of additives, e.g. anti-corrosive or disinfecting agents in solid, liquid or gaseous form
Definitions
- Dry ice is generally used for many applications, like cooling and chilling purposes in the food and beverage industries.
- One of the latest uses is the use of dry ice in blasting applications. Dry ice blasting is similar to sandblasting, high-pressure water blasting, or steam blasting. Dry ice blasting systems may project small rice size pellets of dry ice at a temperature of about ⁇ 78° C. out of a jet nozzle or applicator together with compressed air onto the surface of a target material.
- the low dry ice temperature causes contaminants on the target material surface to shrink and loose adhesion to the target material.
- the warmer sub surface of the target material causes the dry ice to sublime into carbon dioxide gas which has about 800 times greater volume than the solid dry ice.
- the carbon dioxide expands behind the contaminant speeding up contaminant removal from the surface. The contaminant then typically falls to the ground, or into some receptacle. Because the dry ice evaporates, only the contaminant is left for disposal.
- Embodiments of the invention generally provide for dry ice blasting using dry ice pellets having additives.
- One embodiment of the invention provides a method for treating a surface of a target item by providing pellets which include solid carbon dioxide and one or more additives, providing a stream of pressurized gas, combining the pellets and the pressurized gas to accelerate the pellets, and exposing the surface of the target item to the accelerated pellets.
- Another embodiment of the invention provides a method for treating a surface of a target item by providing solid carbon dioxide pellets, providing a stream of pressurized gas, combining the solid carbon dioxide pellets and the stream of pressurized gas, exposing the surface of the target item to the solid carbon dioxide pellets, and using solid carbon dioxide pellets including one or more additives which are selected from at least one of antimicrobial compounds, disinfectants, detergents, odorants, and combinations thereof.
- Another embodiment of the invention provides pellets for treating surfaces of dry ice blasting target items, including dry ice and one or more additives which are releasable onto the surfaces of the target items.
- the one or more additives are selected to effect at least one of a cleaning function, a sanitizing function, disinfecting function, anti-microbial function, and an olfactory response in a human being.
- FIG. 1 is a flow chart of a process for forming a dry ice product containing an additive chemical, according to one embodiment of the invention
- FIG. 2 is a schematic illustration of one embodiment for forming extruded pellets of dry ice containing an additive chemical
- FIG. 3 is a flow chart of a process for forming a dry ice product containing an additive chemical, according to one embodiment of the invention.
- FIG. 4 is a schematic illustration of one embodiment for forming extruded pellets of dry ice containing an additive chemical.
- the term “antimicrobial” refers to a physical or chemical agent capable of causing greater than 90% reduction (1-log order reduction) in the population of bacteria or spores within 10 seconds at 60° C.
- the antimicrobial composition used in embodiments of the invention preferably provides greater than a 99% reduction (2-log order reduction), and more preferably greater than a 99.99% (4-log order reduction), and most preferably a 99.999% (5-log order reduction) in such a population preferably within 60 seconds at 60° C., and more preferably within 10 seconds at 60° C.
- fectant refers to a physical or chemical agent capable of preventing the growth and reproduction of various microorganisms (such as bacteria, fungi, protozoa, and viruses) on surfaces.
- target item or “target material” refers to equipment, devices, structures, food products, pharmaceutical products, or other items that are in need of surface treatment, sanitation, preserving, or otherwise protecting from or treated for pathogenic microorganisms.
- Dry ice blasting systems project small sized pellets of dry ice out of a jet nozzle or applicator together with compressed air onto the surface of a target material.
- Embodiments described herein incorporate additives to the dry ice pellets used in the dry ice blasting process. Dry ice blasting is well known in the art, and it is believed that any system or apparatus suitable for dry ice blasting is capable of use with embodiments of the invention.
- Dry ice for dry ice blasting may be produced by a controlled expansion of liquid CO 2 into dry ice snow.
- Additives may be added to the liquid CO 2 before the expansion of the liquid CO 2 into dry ice snow, or the additives may be sprayed onto the surfaces of dry ice snow.
- Liquid CO 2 is usually maintained at a temperature of about ⁇ 60° C. at a pressure of 5.11 atm, although embodiments of the invention are not limited to particular temperature or pressure values for maintaining liquid CO 2 .
- the additives used may have freezing points higher, lower, or similar to that of liquid CO 2 .
- Embodiments of the invention can involve mixing one or more additives with a carrier chemical to a final concentration without affecting the freezing point of the carrier chemical.
- a combined solution prepared using a carrier chemical and one or more additives should not have a freezing point higher than that of liquid CO 2 .
- liquid CO 2 combined with a carrier chemical and an additive is fed to an ice press to form dry ice.
- Yet another embodiment of the invention involves feeding liquid CO 2 and a carrier chemical and an additive to an ice press as separate streams, which then combine in the press to generate dry ice “snow” containing the additives.
- the additives may be selected from those listed by the U.S. Food and Drug Administration as being GRAS (Generally Recognized as Safe).
- the additive formulation can essentially contain an alcohol, a terpene, or polyethylene glycol as a carrier chemical in various embodiments.
- An alcohol is any organic compound in which a hydroxyl group (—OH) is bound to a carbon atom of an alkyl or substituted alkyl group.
- the general formula for a simple acyclic alcohol is C n H 2n+1 OH.
- Food grade alcohol, ethanol is a carrier chemical that has a very low freezing point, and can be used in one embodiment of the invention.
- Terpenes are another large group of chemical compounds found in nature that act as effective carrier chemicals with low freezing points.
- One such example is d-limonene, present in orange peel and extracted from the orange skin and provides a lemon-orange scent.
- the freezing point of d-Limonene is suitable for liquid CO 2 storage conditions, and is also considered to be an effective carrier chemical used in formulation preparations.
- Polyethylene glycol is a non-toxic liquid with low molecular weight, and is a common ingredient of pharmaceuticals.
- additives listed as GRAS may be dissolved directly into the carrier chemical and then mixed with liquid CO 2 or CO 2 in “snow” form before being extruded as pellets or blocks.
- Another embodiment of the invention can involve mixing one or more additives with water, and then adding the solution to the carrier chemical to a final concentration without affecting the freezing point of the carrier chemical.
- GRAS chemical additives may include flavoring agents, flavor enhancers, intensifiers, emulsifiers, binders, fillers, gelling agents, plasticizers, stabilizers, suspending agents, whipping agents, sweetening agents, flavoring agents, colors, enzymes, antioxidants, sequestrants, wetting agents, surfactants, curing and pickling agents, firming agents, fumigants, humectants, leavening agents, processing aids, surface active agents, surface finishing agents, synergists, and texturizers.
- the dry ice product may be manufactured in the form of pellets, flakes, powders, and other possible forms which may be suitable for dry ice blasting. Pellets of dry ice in the range of 1/16 inch to 1 inch may be formed. In addition, powders such as snow, flakes, or chips may be formed by methods known in the art.
- the dry ice product is essentially void of water. What is meant by “essentially void of” is that the dry ice product, if it contains water, will comprise less than 5% by weight (wt. %) water, according to one embodiment. Typically, the water content will be less than 1 wt. % in a particular embodiment. Moisture levels of up to 5,000 ppm may be helpful in maintaining the desired shape of the product.
- the carrier and additives concentrations in the dry ice may vary widely and may depend upon the end use of the product.
- the additive is incorporated into the carbon dioxide during the dry ice manufacturing process.
- the traditional first step in making dry ice is to manufacture carbon dioxide liquid. This is done by compressing CO 2 gas and removing any excess heat.
- the CO 2 is typically liquefied at pressures ranging from 200-300 pounds per square inch and at a temperature of ⁇ 20° F. to 0° F., respectively. It is typically stored in a pressure vessel at lower than ambient temperature.
- the liquid pressure is then reduced below the triple point pressure of 69.9 psi by sending it through an expansion valve. This can be done in a single step or, in many cases, by reducing the liquid pressure to 100 psi at a temperature of ⁇ 50° F.
- the liquid CO 2 is expanded inside a dry ice pelletizer to form a mixture of dry ice snow and cold gas.
- the cold gas is vented or recycled and the remaining dry ice snow is then compacted to form high density pellets.
- Dry ice is typically compacted to a density of approximately 90 lb/ft 3 .
- FIG. 1 is a flow diagram of a process 100 used to create a dry ice product, according to one embodiment of the present invention.
- an additive is combined with liquid carbon dioxide, at step 102 .
- the additive is combined with liquid carbon dioxide at a pressure above the triple point of CO 2 (70 psi), allowing the additive to fully dissolve in the liquid CO 2 .
- a carrier chemical may be combined with the additive before the additive is introduced into the liquid CO 2 in step 102 .
- the additive and the carrier may be combined with liquid carbon dioxide at a pressure above the triple point of CO 2 (70 psi), allowing the additive and the carrier to fully dissolve in the liquid CO 2 .
- step 104 the mixture of liquid CO 2 , additive, and optional carrier chemical is then allowed to flow into a pelletizer, where the mixture is expanded to generate dry ice snow and compressed into dry ice pellets (step 106 ).
- FIG. 2 depicts a processing environment used to form dry ice pellets according to process 100 .
- Liquid CO 2 is stored in tank 2 , typically at pressures of 200 to 300 psi.
- the additive in the vessel 8 is pumped through high pressure dosage pump 9 to mix with the CO 2 in the liquid CO 2 storage tank 2 .
- the additive may be co-introduced with a carrier chemical into liquid CO 2 storage tank 2 .
- the tank 2 contains any variety of mixing means such as agitators, stirrers, etc. to mix the liquid CO 2 with the additive and/or carrier chemical. If the additive and/or carrier are in gas form, then a sparger may be disposed in the tank 2 through which the additive (and carrier, if present) are introduced.
- the liquid carbon dioxide and additive from storage tank 2 are then passed via line 32 directly to a dry ice pelletizer 34 .
- Dry ice pelletizers are well known in the art, and it is believed that any dry ice pelletizer is capable of use with this embodiment.
- the liquid CO 2 is expanded to a pressure (e.g., below 70 psi) allowing the liquid to form a mixture of gas and dry ice snow.
- the dry ice snow is then extruded into pellets, typically ranging from 1/16 inch to 1 inch in diameter.
- FIG. 3 is a flow diagram of a process 200 used to create a dry ice product, according to another embodiment of the present invention.
- liquid CO 2 is flowed to a pelletizer at a pressure above the triple point of CO 2 (70 psi) (step 202 ).
- the liquid CO 2 is expanded in the pelletizer to generate dry ice snow.
- an additive is flowed to the pelletizer and sprayed onto the dry ice snow, which is then compressed into dry ice pellets (step 208 ).
- a carrier chemical may be combined with the additive before the additive is introduced into the pelletizer in step 206 .
- FIG. 4 depicts a processing environment used to form dry ice pellets according to process 200 .
- the additive from a vessel 8 is pumped through high pressure dosage pump 9 and introduced into dry ice pelletizer 34 via a nozzle 36 .
- the additive may be co-introduced with a carrier chemical via a nozzle 36 into dry ice pelletizer 34 .
- High pressure dosage pump 9 may be connected to the pelletizer 34 in a manner such that when the piston of the pelletizer 34 is retracted a measured quantity of additive is distributed on the dry ice snow formed in the pelletizer 34 .
- Additive is thus adsorbed to the dry ice snow, and as the piston is extended, the dry ice snow with adsorbed additive is pressed into pellets of dry ice and additive.
- the pellitizer 34 may produce 100 kg/hour pellets.
- the high pressure dosage pump may be set to deliver an additive flow rate of between about 1 mL/min and between about 10 ml/min.
- FIG. 4 depicts only one additive source 8 , high pressure dosage pump 9 , and nozzle 36 , it is contemplated that any number of additive sources, high pressure dosage pumps, and nozzles may be used to separately introduce a plurality of additives to the pelletizer. In one embodiment, any number of between two and ten additive sources, high pressure dosage pumps, and nozzles are provided.
- the additive may be sprayed onto the surface of ready made dry ice snow, pellets or blocks.
- the additive containing dry ice pellets embodied herein may be used in dry ice blasting systems. Such dry ice blasting systems are well known in the art, and it is believed that the additive containing dry ice may be used with any system or apparatus suitable for dry ice blasting.
- Typical dry ice blasting systems include dry ice pellet hoppers, air or other gas sources, hoses, and nozzles. Dry ice pellets may be accelerated by compressed air and passed through the hoses and nozzles, striking the target item at high velocities. A compressed air supply of about 80 psi may be used in this process. Both single-hose and dual hose systems may be used.
- Dual-hose systems flow compressed gas (such as air) through one hose to a blast applicator (or nozzle), and the Venturi effect accelerates the dry ice from a dry ice hopper through a second hose and to the blast applicator.
- the dry ice particles and compressed gas are then blasted together.
- single-hose systems there is one hose leading from the hopper to the applicator and a feeder system that feeds the dry ice particles and compressed gas into the hose and to the applicator.
- the dry ice pellets may crack and additive may be released to the target item.
- the additive may be released to the target item upon sublimation of the dry ice pellet, leaving additive and any potential carrier chemical.
- the additive may be an antimicrobial compound. Upon sublimation or cracking of the dry ice, the antimicrobial compound is released to provide an improved cleaning effect of target item. If the target item to be dry ice blasted concerns food industry, both the carrier chemical and the additive may be GRAS qualified.
- MIRENAT-N manufactured by Vedeqsa Lamirsa Group based in Barcelona, Spain and distributed in the U.S. by A & B Ingredients (Fairfield, N.J.).
- MIRENAT-N is manufactured from a naturally occurring antimicrobial compound, and its active ingredient is lauric arginate (N-lauroyl-L-Arginine ethyl ester monohydrochloride).
- lauric arginate N-lauroyl-L-Arginine ethyl ester monohydrochloride
- the formulation available for sale contains about 10% active lauric arginate and 90% food grade propylene glycol. It is possible to substitute ethanol for propylene glycol as the carrier chemical when using MIRENAT-N.
- MIRENAT-N Advantages of using MIRENAT-N include: minimal modification of original product, low application use dosage, and well known antimicrobial activity. Based on the manufacturer's specifications, MIRENAT-N can be manufactured to be lower than 11% active in ethanol. MIRENAT, either in propylene glycol, or ethanol, when treated with meat or poultry, can lose its efficacy over time, due to enzymatic reactions. Such problems can be overcome by adding other preservatives or antimicrobials to MIRENAT-N.
- antimicrobial additives used in embodiments of the invention could include natural lactic acid, ascorbic acid, benzoic acid, lactates, gluconates, and lacititol.
- the solubility of the following products manufactured by Purac (Lincolnshire, Ill.) was tested: potassium gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, and sodium diacetate. Based on solubility testing, all liquid forms of these additives were found to be ethanol soluble.
- Other antimicrobial additives could include parabens, a group of chemicals which are derivatives of phenol. Parabens are widely used as preservatives in the cosmetic and pharmaceutical industries, and are also popular in the meat processing industry.
- Methyl paraben sold by The KIC Group (Vancouver, Wash.), is also soluble in ethanol and not soluble in water. Thus, methyl paraben can be a preservative or antimicrobial added in one embodiment of the composition with ethanol as the carrier chemical.
- antimicrobials that are not directly soluble in ethanol but soluble in water can be also be used in embodiments of the invention.
- examples include potassium nitrite and potassium nitrate. These salts can be dissolved in water and further mixed with ethanol.
- the final composition of ethanol can be adjusted such that it does not freeze under liquid CO 2 storage conditions.
- the ethanol composition could be adjusted by starting with an amount of high purity ethanol and diluting the ethanol with water containing antimicrobials, such that a final composition is still compatible with liquid CO 2 temperatures.
- salts of organic acids are preservatives that act by increasing the proton concentration of the cytoplasm of many microbes. Under mild conditions, they are protonated, since they are weak acids. The relative non-polarity of these salts allows the salts to penetrate the cellular membrane of bacteria and other microorganisms. Once inside the cell, these acids dissociate (releasing protons), due to the lower proton concentration of cytoplasm. Microorganisms, to maintain their proton concentration, they must compensate for these acids by discharging protons using ATP synthesis. This in turn disrupts ATP synthesis, and causes the microbes to die. Hence, the addition of these salts can enhance the antimicrobial efficacy of the composition proposed in embodiments of the invention.
- the additive may be a disinfectant. Upon sublimation or cracking of the dry ice, the disinfectant is released to improve the disinfecting effects of the dry ice blasting of the target item.
- Suitable disinfectants may be combinations of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, and perbenzoic acid.
- the additive may be a detergent, or surfactant.
- the detergent or surfactant Upon sublimation or cracking of the dry ice, the detergent or surfactant is released so that the dry ice and detergent simultaneously act on the surface of target item to be cleaned.
- suitable detergents or surfactants are sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanol
- the additive may be an odorant.
- the odorant Upon sublimation or cracking of the dry ice, the odorant is released to neutralize unpleasant odors or to provide scent producing an olfactory response in a human being.
- suitable odorants are 1-methoxy-4-(1-propenyl)benzene (licorice), methoxybenzene (anis seed), 2-methoxy-4-(2-propenyl)phenol (clove oil), (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol (grapefruit), 2,3-benzopyrrole (jasmine), methyl 2-hydroxybenzoate (oil of wintergreen), 2-ethoxynaphthalene (orange flowers), and 3-hydroxy-4,5-dimethylfuran-2(5H)-one (maple syrup, curry, fenugreek).
- alcohols may also be suitable as odorants, such as cis-3-Hexen-1-ol (fresh cut grass), 2-ethyl-3-hydroxy-pyran-4-one (sugary, cooked fruit), 4-hydroxy-2,5-dimethyl-furan-3-one (strawberry), 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), and 1-hexanol (herbaceous, woody).
- aldehydes may also be suitable as odorants, such as benzaldehyde (marzipan, almond), hexanal (green, grassy), cinnamaldehyde (cinnamon), cis-3-hexenal (green tomatoes), (2E)-3,7-dimethylocta-2,6-dienal (lemongrass, lemon oil), furan-2-carbaldehyde (burnt oats), (2Z)-3,7-dimethylocta-2,6-dienal (citrus, lemongrass), and 4-hydroxy-3-methoxy-benzaldehyde (vanilla).
- benzaldehyde marzipan, almond
- hexanal green, grassy
- cinnamaldehyde cinnamon
- cis-3-hexenal green tomatoes
- (2E)-3,7-dimethylocta-2,6-dienal lemongrass, lemon oil
- esters may also be suitable as odorants, such as ethyl acetate (fruity, solvent), ethyl butanoate (fruity), methyl butanoate (apple, fruity) pentyl butanoate (pear, apricot), pentyl pentanoate (apple, pineapple), isoamyl acetate (banana), hexyl acetate (apple, floral, fruity), ethyl hexanoate (sweet, pineapple, fruity), ethyl octanoate (wine, fruity), ethyl decanoate (brandy, fruity), and ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate (strawberry).
- ethyl acetate fruity, solvent
- ethyl butanoate fruity
- pear, apricot pentyl pentanoate
- isoamyl acetate banan
- terpenes may also be suitable as odorants, such as 1,7,7-trimethylnorbornan-2-one (camphor), 3,7-dimethyloct-6-en-1-ol (rose), 3,7-dimethylocta-1,6-dien-3-ol (floral, citrus, coriander), (2E)-3,7-dimethylocta-2,6-dien-1-ol (rose), 3,7,11-trimethyl 1,6,10-dodecatrien-3-ol (fresh bark), 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol (citrus woody), (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one (juniper, common sage, wormwood), and 5-methyl-2-propan-2-yl-phenol (thyme-like).
- camphor 1,7,7-trimethylnorbornan-2-one
- rose
- the odorant may be d-limonene.
- D-limonene is a terpene which may be extracted from the rind of citrus fruit and is used in food manufacturing as a flavoring, and added to cleaning products such as hand cleansers to give a lemon-orange fragrance. Because d-limonene has a melting point of ⁇ 95° C. and dissolves in the liquid CO 2 , it is suitable for dry ice production. Thus, d-limonene may also be used as a carrier chemical. While not bound by any theory of operation, if the d-limonene is added before or during CO 2 expansion, the d-limonene is believed to be trapped in the structural lattices of the dry ice. As the dry ice sublimes or cracks d-limonene is released from the structural lattices of the dry ice, and a pleasant citrus scent emanates from the dry ice.
- the odorous chemical may be vanillin. Both methyl-vanillin and ethyl-vanillin may be used. In one embodiment, the vanillin may be co-introduced to the CO 2 with a carrier chemical such as ethanol or polyethylene glycol. Natural vanilla extract may also be used. As the dry ice sublimes or cracks vanillin is released from the structural lattices of the dry ice, and a pleasant vanilla scent emanates from the dry ice.
- the odorous chemical may be mint extracts or artificial mint flavoring.
- the mint flavoring may be co-introduced into the liquid CO 2 with a carrier chemical such as ethanol or polyethylene glycol. As the dry ice sublimes or cracks mint flavor is released from the structural lattices of the dry ice, and a pleasant vanilla scent emanates from the dry ice.
- the additive may consist of natural or artificial compounds having cherry odors, strawberry odors, coconut odors, chocolate odors, or any other natural of artificial odors possible.
- carrier chemicals may or may not need to be co-introduced with the additive to the CO 2 , according to different embodiments.
- the additive may be a combination of antimicrobial compounds, disinfectants, detergents, surfactants, and/or odorants.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Detergent Compositions (AREA)
- Cleaning In General (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Dry ice blasting using dry ice pellets having additives, such as antimicrobial compounds, disinfectants, surfactants, and odorants. Additives are incorporated into solid carbon dioxide by any variety of processes. The additives are selected on the basis of cleaning or olfactory effects.
Description
- This application claims the benefit under 35 U.S.C. § 119(e) to provisional application No. 60/764,302, filed Feb. 1, 2006, the entire contents of which are incorporated herein by reference.
- Dry ice is generally used for many applications, like cooling and chilling purposes in the food and beverage industries. One of the latest uses is the use of dry ice in blasting applications. Dry ice blasting is similar to sandblasting, high-pressure water blasting, or steam blasting. Dry ice blasting systems may project small rice size pellets of dry ice at a temperature of about −78° C. out of a jet nozzle or applicator together with compressed air onto the surface of a target material. The low dry ice temperature causes contaminants on the target material surface to shrink and loose adhesion to the target material. The warmer sub surface of the target material causes the dry ice to sublime into carbon dioxide gas which has about 800 times greater volume than the solid dry ice. The carbon dioxide expands behind the contaminant speeding up contaminant removal from the surface. The contaminant then typically falls to the ground, or into some receptacle. Because the dry ice evaporates, only the contaminant is left for disposal.
- Because conventional dry ice blasting provides cleaning based on using pellets of solid carbon dioxide alone, the potential applications, and/or the effectiveness for a given application, are limited. Therefore, the remains a need for improving and/or expanding the uses dry ice blasting using dry ice pellets.
- Embodiments of the invention generally provide for dry ice blasting using dry ice pellets having additives. One embodiment of the invention provides a method for treating a surface of a target item by providing pellets which include solid carbon dioxide and one or more additives, providing a stream of pressurized gas, combining the pellets and the pressurized gas to accelerate the pellets, and exposing the surface of the target item to the accelerated pellets.
- Another embodiment of the invention provides a method for treating a surface of a target item by providing solid carbon dioxide pellets, providing a stream of pressurized gas, combining the solid carbon dioxide pellets and the stream of pressurized gas, exposing the surface of the target item to the solid carbon dioxide pellets, and using solid carbon dioxide pellets including one or more additives which are selected from at least one of antimicrobial compounds, disinfectants, detergents, odorants, and combinations thereof.
- Another embodiment of the invention provides pellets for treating surfaces of dry ice blasting target items, including dry ice and one or more additives which are releasable onto the surfaces of the target items. The one or more additives are selected to effect at least one of a cleaning function, a sanitizing function, disinfecting function, anti-microbial function, and an olfactory response in a human being.
- For a further understanding of the nature and objects of the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings, in which like elements are given the same or analogous reference numbers and wherein:
-
FIG. 1 is a flow chart of a process for forming a dry ice product containing an additive chemical, according to one embodiment of the invention; -
FIG. 2 is a schematic illustration of one embodiment for forming extruded pellets of dry ice containing an additive chemical; -
FIG. 3 is a flow chart of a process for forming a dry ice product containing an additive chemical, according to one embodiment of the invention; and -
FIG. 4 is a schematic illustration of one embodiment for forming extruded pellets of dry ice containing an additive chemical. - The words and phrases used herein should be given their ordinary and customary meaning in the art by one skilled in the art unless otherwise further defined.
- In the following, reference is made to embodiments of the invention. However, it should be understood that the invention is not limited to specific described embodiments. Instead, any combination of the following features and elements, whether related to different embodiments or not, is contemplated to implement and practice the invention. Furthermore, in various embodiments the invention provides numerous advantages over the prior art. However, although embodiments of the invention may achieve advantages over other possible solutions and/or over the prior art, whether or not a particular advantage is achieved by a given embodiment is not limiting of the invention. Thus, the following aspects, features, embodiments and advantages are merely illustrative and are not considered elements or limitations of the appended claims except where explicitly recited in a claim(s). Likewise, reference to “the invention” shall not be construed as a generalization of any inventive subject matter disclosed herein and shall not be considered to be an element or limitation of the appended claims except where explicitly recited in a claim(s).
- As used herein, the term “antimicrobial” refers to a physical or chemical agent capable of causing greater than 90% reduction (1-log order reduction) in the population of bacteria or spores within 10 seconds at 60° C. The antimicrobial composition used in embodiments of the invention preferably provides greater than a 99% reduction (2-log order reduction), and more preferably greater than a 99.99% (4-log order reduction), and most preferably a 99.999% (5-log order reduction) in such a population preferably within 60 seconds at 60° C., and more preferably within 10 seconds at 60° C.
- As used herein, the term “disinfectant” refers to a physical or chemical agent capable of preventing the growth and reproduction of various microorganisms (such as bacteria, fungi, protozoa, and viruses) on surfaces.
- As used herein, the phrase “target item” or “target material” refers to equipment, devices, structures, food products, pharmaceutical products, or other items that are in need of surface treatment, sanitation, preserving, or otherwise protecting from or treated for pathogenic microorganisms.
- Dry ice blasting systems project small sized pellets of dry ice out of a jet nozzle or applicator together with compressed air onto the surface of a target material. Embodiments described herein incorporate additives to the dry ice pellets used in the dry ice blasting process. Dry ice blasting is well known in the art, and it is believed that any system or apparatus suitable for dry ice blasting is capable of use with embodiments of the invention.
- Dry ice for dry ice blasting may be produced by a controlled expansion of liquid CO2 into dry ice snow. Additives may be added to the liquid CO2 before the expansion of the liquid CO2 into dry ice snow, or the additives may be sprayed onto the surfaces of dry ice snow. Liquid CO2 is usually maintained at a temperature of about −60° C. at a pressure of 5.11 atm, although embodiments of the invention are not limited to particular temperature or pressure values for maintaining liquid CO2. In embodiments of the invention, the additives used may have freezing points higher, lower, or similar to that of liquid CO2. Embodiments of the invention can involve mixing one or more additives with a carrier chemical to a final concentration without affecting the freezing point of the carrier chemical. In a particular embodiment, a combined solution prepared using a carrier chemical and one or more additives should not have a freezing point higher than that of liquid CO2. In one embodiment of the invention, liquid CO2 combined with a carrier chemical and an additive is fed to an ice press to form dry ice. Yet another embodiment of the invention involves feeding liquid CO2 and a carrier chemical and an additive to an ice press as separate streams, which then combine in the press to generate dry ice “snow” containing the additives. In embodiments of the invention, the additives may be selected from those listed by the U.S. Food and Drug Administration as being GRAS (Generally Recognized as Safe).
- In various embodiments, the additive formulation can essentially contain an alcohol, a terpene, or polyethylene glycol as a carrier chemical in various embodiments. An alcohol is any organic compound in which a hydroxyl group (—OH) is bound to a carbon atom of an alkyl or substituted alkyl group. The general formula for a simple acyclic alcohol is CnH2n+1OH. Food grade alcohol, ethanol, is a carrier chemical that has a very low freezing point, and can be used in one embodiment of the invention. Terpenes are another large group of chemical compounds found in nature that act as effective carrier chemicals with low freezing points. One such example is d-limonene, present in orange peel and extracted from the orange skin and provides a lemon-orange scent. The freezing point of d-Limonene is suitable for liquid CO2 storage conditions, and is also considered to be an effective carrier chemical used in formulation preparations. Polyethylene glycol is a non-toxic liquid with low molecular weight, and is a common ingredient of pharmaceuticals.
- Various additives listed as GRAS may be dissolved directly into the carrier chemical and then mixed with liquid CO2 or CO2 in “snow” form before being extruded as pellets or blocks. Another embodiment of the invention can involve mixing one or more additives with water, and then adding the solution to the carrier chemical to a final concentration without affecting the freezing point of the carrier chemical.
- GRAS chemical additives may include flavoring agents, flavor enhancers, intensifiers, emulsifiers, binders, fillers, gelling agents, plasticizers, stabilizers, suspending agents, whipping agents, sweetening agents, flavoring agents, colors, enzymes, antioxidants, sequestrants, wetting agents, surfactants, curing and pickling agents, firming agents, fumigants, humectants, leavening agents, processing aids, surface active agents, surface finishing agents, synergists, and texturizers.
- The dry ice product may be manufactured in the form of pellets, flakes, powders, and other possible forms which may be suitable for dry ice blasting. Pellets of dry ice in the range of 1/16 inch to 1 inch may be formed. In addition, powders such as snow, flakes, or chips may be formed by methods known in the art.
- The dry ice product is essentially void of water. What is meant by “essentially void of” is that the dry ice product, if it contains water, will comprise less than 5% by weight (wt. %) water, according to one embodiment. Typically, the water content will be less than 1 wt. % in a particular embodiment. Moisture levels of up to 5,000 ppm may be helpful in maintaining the desired shape of the product. The carrier and additives concentrations in the dry ice may vary widely and may depend upon the end use of the product.
- In one embodiment of the invention, the additive is incorporated into the carbon dioxide during the dry ice manufacturing process. The traditional first step in making dry ice is to manufacture carbon dioxide liquid. This is done by compressing CO2 gas and removing any excess heat. The CO2 is typically liquefied at pressures ranging from 200-300 pounds per square inch and at a temperature of −20° F. to 0° F., respectively. It is typically stored in a pressure vessel at lower than ambient temperature. The liquid pressure is then reduced below the triple point pressure of 69.9 psi by sending it through an expansion valve. This can be done in a single step or, in many cases, by reducing the liquid pressure to 100 psi at a temperature of −50° F. as a first step to allow easy recovery of the flash gases. The liquid CO2 is expanded inside a dry ice pelletizer to form a mixture of dry ice snow and cold gas. The cold gas is vented or recycled and the remaining dry ice snow is then compacted to form high density pellets. Dry ice is typically compacted to a density of approximately 90 lb/ft3.
-
FIG. 1 is a flow diagram of aprocess 100 used to create a dry ice product, according to one embodiment of the present invention. In general, to manufacture the dry ice product, an additive is combined with liquid carbon dioxide, atstep 102. In one embodiment, the additive is combined with liquid carbon dioxide at a pressure above the triple point of CO2 (70 psi), allowing the additive to fully dissolve in the liquid CO2. In certain embodiments, a carrier chemical may be combined with the additive before the additive is introduced into the liquid CO2 instep 102. In this case, the additive and the carrier may be combined with liquid carbon dioxide at a pressure above the triple point of CO2 (70 psi), allowing the additive and the carrier to fully dissolve in the liquid CO2. Instep 104 the mixture of liquid CO2, additive, and optional carrier chemical is then allowed to flow into a pelletizer, where the mixture is expanded to generate dry ice snow and compressed into dry ice pellets (step 106). -
FIG. 2 depicts a processing environment used to form dry ice pellets according toprocess 100. Liquid CO2 is stored intank 2, typically at pressures of 200 to 300 psi. The additive in thevessel 8 is pumped through highpressure dosage pump 9 to mix with the CO2 in the liquid CO2 storage tank 2. The additive may be co-introduced with a carrier chemical into liquid CO2 storage tank 2. In one embodiment, thetank 2 contains any variety of mixing means such as agitators, stirrers, etc. to mix the liquid CO2 with the additive and/or carrier chemical. If the additive and/or carrier are in gas form, then a sparger may be disposed in thetank 2 through which the additive (and carrier, if present) are introduced. The liquid carbon dioxide and additive fromstorage tank 2 are then passed vialine 32 directly to adry ice pelletizer 34. Dry ice pelletizers are well known in the art, and it is believed that any dry ice pelletizer is capable of use with this embodiment. In the pelletizer, the liquid CO2 is expanded to a pressure (e.g., below 70 psi) allowing the liquid to form a mixture of gas and dry ice snow. The dry ice snow is then extruded into pellets, typically ranging from 1/16 inch to 1 inch in diameter. -
FIG. 3 is a flow diagram of aprocess 200 used to create a dry ice product, according to another embodiment of the present invention. In general, to manufacture the dry ice product, liquid CO2 is flowed to a pelletizer at a pressure above the triple point of CO2 (70 psi) (step 202). Instep 204, the liquid CO2 is expanded in the pelletizer to generate dry ice snow. Instep 206, an additive is flowed to the pelletizer and sprayed onto the dry ice snow, which is then compressed into dry ice pellets (step 208). In certain embodiments, a carrier chemical may be combined with the additive before the additive is introduced into the pelletizer instep 206. -
FIG. 4 depicts a processing environment used to form dry ice pellets according toprocess 200. InFIG. 4 , the additive from avessel 8 is pumped through highpressure dosage pump 9 and introduced intodry ice pelletizer 34 via anozzle 36. The additive may be co-introduced with a carrier chemical via anozzle 36 intodry ice pelletizer 34. Highpressure dosage pump 9 may be connected to thepelletizer 34 in a manner such that when the piston of thepelletizer 34 is retracted a measured quantity of additive is distributed on the dry ice snow formed in thepelletizer 34. Additive is thus adsorbed to the dry ice snow, and as the piston is extended, the dry ice snow with adsorbed additive is pressed into pellets of dry ice and additive. In one embodiment, thepellitizer 34 may produce 100 kg/hour pellets. In this embodiment, the high pressure dosage pump may be set to deliver an additive flow rate of between about 1 mL/min and between about 10 ml/min. - Although
FIG. 4 depicts only oneadditive source 8, highpressure dosage pump 9, andnozzle 36, it is contemplated that any number of additive sources, high pressure dosage pumps, and nozzles may be used to separately introduce a plurality of additives to the pelletizer. In one embodiment, any number of between two and ten additive sources, high pressure dosage pumps, and nozzles are provided. - In another embodiment of the invention the additive may be sprayed onto the surface of ready made dry ice snow, pellets or blocks.
- The additive containing dry ice pellets embodied herein may be used in dry ice blasting systems. Such dry ice blasting systems are well known in the art, and it is believed that the additive containing dry ice may be used with any system or apparatus suitable for dry ice blasting. Typical dry ice blasting systems include dry ice pellet hoppers, air or other gas sources, hoses, and nozzles. Dry ice pellets may be accelerated by compressed air and passed through the hoses and nozzles, striking the target item at high velocities. A compressed air supply of about 80 psi may be used in this process. Both single-hose and dual hose systems may be used. Dual-hose systems flow compressed gas (such as air) through one hose to a blast applicator (or nozzle), and the Venturi effect accelerates the dry ice from a dry ice hopper through a second hose and to the blast applicator. The dry ice particles and compressed gas are then blasted together. In single-hose systems there is one hose leading from the hopper to the applicator and a feeder system that feeds the dry ice particles and compressed gas into the hose and to the applicator. Upon impact with the target item the dry ice pellets may crack and additive may be released to the target item. Alternatively, the additive may be released to the target item upon sublimation of the dry ice pellet, leaving additive and any potential carrier chemical.
- In one embodiment of the invention, the additive may be an antimicrobial compound. Upon sublimation or cracking of the dry ice, the antimicrobial compound is released to provide an improved cleaning effect of target item. If the target item to be dry ice blasted concerns food industry, both the carrier chemical and the additive may be GRAS qualified.
- One embodiment of the invention involves the addition of the food additive MIRENAT-N, manufactured by Vedeqsa Lamirsa Group based in Barcelona, Spain and distributed in the U.S. by A & B Ingredients (Fairfield, N.J.). MIRENAT-N is manufactured from a naturally occurring antimicrobial compound, and its active ingredient is lauric arginate (N-lauroyl-L-Arginine ethyl ester monohydrochloride). The formulation available for sale contains about 10% active lauric arginate and 90% food grade propylene glycol. It is possible to substitute ethanol for propylene glycol as the carrier chemical when using MIRENAT-N. Advantages of using MIRENAT-N include: minimal modification of original product, low application use dosage, and well known antimicrobial activity. Based on the manufacturer's specifications, MIRENAT-N can be manufactured to be lower than 11% active in ethanol. MIRENAT, either in propylene glycol, or ethanol, when treated with meat or poultry, can lose its efficacy over time, due to enzymatic reactions. Such problems can be overcome by adding other preservatives or antimicrobials to MIRENAT-N.
- Other antimicrobial additives used in embodiments of the invention could include natural lactic acid, ascorbic acid, benzoic acid, lactates, gluconates, and lacititol. The solubility of the following products manufactured by Purac (Lincolnshire, Ill.) was tested: potassium gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, and sodium diacetate. Based on solubility testing, all liquid forms of these additives were found to be ethanol soluble. Other antimicrobial additives could include parabens, a group of chemicals which are derivatives of phenol. Parabens are widely used as preservatives in the cosmetic and pharmaceutical industries, and are also popular in the meat processing industry. Methyl paraben, sold by The KIC Group (Vancouver, Wash.), is also soluble in ethanol and not soluble in water. Thus, methyl paraben can be a preservative or antimicrobial added in one embodiment of the composition with ethanol as the carrier chemical.
- Other antimicrobials that are not directly soluble in ethanol but soluble in water can be also be used in embodiments of the invention. Examples include potassium nitrite and potassium nitrate. These salts can be dissolved in water and further mixed with ethanol. The final composition of ethanol can be adjusted such that it does not freeze under liquid CO2 storage conditions. The ethanol composition could be adjusted by starting with an amount of high purity ethanol and diluting the ethanol with water containing antimicrobials, such that a final composition is still compatible with liquid CO2 temperatures.
- In general, salts of organic acids (propinates, sorbates, benzoates and lactate) are preservatives that act by increasing the proton concentration of the cytoplasm of many microbes. Under mild conditions, they are protonated, since they are weak acids. The relative non-polarity of these salts allows the salts to penetrate the cellular membrane of bacteria and other microorganisms. Once inside the cell, these acids dissociate (releasing protons), due to the lower proton concentration of cytoplasm. Microorganisms, to maintain their proton concentration, they must compensate for these acids by discharging protons using ATP synthesis. This in turn disrupts ATP synthesis, and causes the microbes to die. Hence, the addition of these salts can enhance the antimicrobial efficacy of the composition proposed in embodiments of the invention.
- In one embodiment of the invention, the additive may be a disinfectant. Upon sublimation or cracking of the dry ice, the disinfectant is released to improve the disinfecting effects of the dry ice blasting of the target item. Suitable disinfectants may be combinations of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, and perbenzoic acid.
- In one embodiment of the invention, the additive may be a detergent, or surfactant. Upon sublimation or cracking of the dry ice, the detergent or surfactant is released so that the dry ice and detergent simultaneously act on the surface of target item to be cleaned. Examples of suitable detergents or surfactants are sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanolamine, cocamide diethanolamine, and cocamide triethanolamine.
- In one embodiment of the invention, the additive may be an odorant. Upon sublimation or cracking of the dry ice, the odorant is released to neutralize unpleasant odors or to provide scent producing an olfactory response in a human being. Examples of suitable odorants are 1-methoxy-4-(1-propenyl)benzene (licorice), methoxybenzene (anis seed), 2-methoxy-4-(2-propenyl)phenol (clove oil), (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol (grapefruit), 2,3-benzopyrrole (jasmine), methyl 2-hydroxybenzoate (oil of wintergreen), 2-ethoxynaphthalene (orange flowers), and 3-hydroxy-4,5-dimethylfuran-2(5H)-one (maple syrup, curry, fenugreek).
- Several alcohols may also be suitable as odorants, such as cis-3-Hexen-1-ol (fresh cut grass), 2-ethyl-3-hydroxy-pyran-4-one (sugary, cooked fruit), 4-hydroxy-2,5-dimethyl-furan-3-one (strawberry), 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), and 1-hexanol (herbaceous, woody).
- Several aldehydes may also be suitable as odorants, such as benzaldehyde (marzipan, almond), hexanal (green, grassy), cinnamaldehyde (cinnamon), cis-3-hexenal (green tomatoes), (2E)-3,7-dimethylocta-2,6-dienal (lemongrass, lemon oil), furan-2-carbaldehyde (burnt oats), (2Z)-3,7-dimethylocta-2,6-dienal (citrus, lemongrass), and 4-hydroxy-3-methoxy-benzaldehyde (vanilla).
- Several esters may also be suitable as odorants, such as ethyl acetate (fruity, solvent), ethyl butanoate (fruity), methyl butanoate (apple, fruity) pentyl butanoate (pear, apricot), pentyl pentanoate (apple, pineapple), isoamyl acetate (banana), hexyl acetate (apple, floral, fruity), ethyl hexanoate (sweet, pineapple, fruity), ethyl octanoate (wine, fruity), ethyl decanoate (brandy, fruity), and ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate (strawberry).
- Several terpenes may also be suitable as odorants, such as 1,7,7-trimethylnorbornan-2-one (camphor), 3,7-dimethyloct-6-en-1-ol (rose), 3,7-dimethylocta-1,6-dien-3-ol (floral, citrus, coriander), (2E)-3,7-dimethylocta-2,6-dien-1-ol (rose), 3,7,11-trimethyl 1,6,10-dodecatrien-3-ol (fresh bark), 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol (citrus woody), (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one (juniper, common sage, wormwood), and 5-methyl-2-propan-2-yl-phenol (thyme-like).
- In one embodiment the odorant may be d-limonene. D-limonene is a terpene which may be extracted from the rind of citrus fruit and is used in food manufacturing as a flavoring, and added to cleaning products such as hand cleansers to give a lemon-orange fragrance. Because d-limonene has a melting point of −95° C. and dissolves in the liquid CO2, it is suitable for dry ice production. Thus, d-limonene may also be used as a carrier chemical. While not bound by any theory of operation, if the d-limonene is added before or during CO2 expansion, the d-limonene is believed to be trapped in the structural lattices of the dry ice. As the dry ice sublimes or cracks d-limonene is released from the structural lattices of the dry ice, and a pleasant citrus scent emanates from the dry ice.
- In one embodiment of the invention the odorous chemical may be vanillin. Both methyl-vanillin and ethyl-vanillin may be used. In one embodiment, the vanillin may be co-introduced to the CO2 with a carrier chemical such as ethanol or polyethylene glycol. Natural vanilla extract may also be used. As the dry ice sublimes or cracks vanillin is released from the structural lattices of the dry ice, and a pleasant vanilla scent emanates from the dry ice.
- In one embodiment of the invention the odorous chemical may be mint extracts or artificial mint flavoring. In one embodiment, the mint flavoring may be co-introduced into the liquid CO2 with a carrier chemical such as ethanol or polyethylene glycol. As the dry ice sublimes or cracks mint flavor is released from the structural lattices of the dry ice, and a pleasant vanilla scent emanates from the dry ice.
- In other embodiments, the additive may consist of natural or artificial compounds having cherry odors, strawberry odors, coconut odors, chocolate odors, or any other natural of artificial odors possible. Depending on the solubility of the selected additive in liquid CO2, carrier chemicals may or may not need to be co-introduced with the additive to the CO2, according to different embodiments.
- In one embodiment, the additive may be a combination of antimicrobial compounds, disinfectants, detergents, surfactants, and/or odorants.
- Preferred processes and apparatus for practicing the present invention have been described. It will be understood and readily apparent to the skilled artisan that many changes and modifications may be made to the above-described embodiments without departing from the spirit and the scope of the present invention. The foregoing is illustrative only and that other embodiments of the integrated processes and apparatus may be employed without departing from the true scope of the invention defined in the following claims.
Claims (35)
1. A method treating a surface of a target item, comprising:
a) providing pellets, the pellets comprising:
i) solid carbon dioxide; and
ii) one or more additives;
b) providing a stream of pressurized gas;
c) combining the pellets and the pressurized gas to accelerate the pellets; and
d) exposing the surface of the target item to the accelerated pellets.
2. The method of claim 1 , wherein the one or more additives is selected from at least one of antimicrobial compounds, disinfectants, surfactants, detergents, odorants, and combinations thereof.
3. The method of claim 2 , wherein the one or more additives is an antimicrobial compound.
4. The method of claim 3 , wherein the antimicrobial compound is selected from the group consisting of lauric arginate, natural lactic acid, ascorbic acid, benzoic acid, lactates, lacititol, gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, sodium diacetate, methyl paraben, potassium nitrite, potassium nitrate, propinates, sorbates, benzoates, and combinations thereof.
5. The method of claim 2 , wherein the one or more additives is a disinfectant.
6. The method of claim 5 , wherein the disinfectant is selected from the group consisting of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, perbenzoic acid, and combinations thereof.
7. The method of claim 2 , wherein the one or more additives is a surfactant.
8. The method of claim 7 , wherein the surfactant is selected from the group consisting of sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanolamine, cocamide diethanolamine, cocamide triethanolamine, and combinations thereof.
9. The method of claim 2 , wherein the one or more additives is an odorant.
10. The method of claim 9 , wherein the odorant is selected from the group consisting of 1-methoxy-4-(1-propenyl)benzene methoxybenzene, 2-methoxy-4-(2-propenyl)phenol, (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol, 2,3-benzopyrrole, methyl 2-hydroxybenzoate, 2-ethoxynaphthalene, and 3-Hydroxy-4,5-dimethylfuran-2(5H)-one, cis-3-Hexen-1-ol, 2-ethyl-3-hydroxy-pyran-4-one, 4-hydroxy-2,5-dimethyl-furan-3-one, 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), 1-hexanol, benzaldehyde, hexanal, cinnamaldehyde, cis-3-hexenal, (2E)-3,7-dimethylocta-2,6-dienal, furan-2-carbaldehyde, (2Z)-3,7-dimethylocta-2,6-dienal, 4-hydroxy-3-methoxy-benzaldehyde, ethyl acetate, ethyl butanoate, methyl butanoate, pentyl butanoate, pentyl pentanoate, isoamyl acetate, hexyl acetate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate, 1,7,7-trimethylnorbornan-2-one, 3,7-dimethyloct-6-en-1-ol), 3,7-dimethylocta-1,6-dien-3-ol, (2E)-3,7-dimethylocta-2,6-dien-1-ol, 3,7,11-trimethyl1,6,10-dodecatrien-3-ol, 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol, (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one, 5-methyl-2-propan-2-yl-phenol, and combinations thereof.
11. The method of claim 1 , wherein the pellets further comprise a carrier chemical for suspending the one or more additives in the solid carbon dioxide.
12. The method of claim 11 , wherein the carrier chemical is selected from the group consisting of ethanol, propylene glycol, and d-limonene, and combinations thereof.
13. A method for treating a surface of a target item, comprising:
a) providing solid carbon dioxide pellets, wherein the solid carbon dioxide pellets comprise one or more additives selected from at least one of antimicrobial compounds, disinfectants, detergents, surfactants, odorants, and combinations thereof;
b) providing a stream of pressurized gas;
c) combining the solid carbon dioxide pellets and the stream of pressurized gas to accelerate the solid carbon dioxide pellets; and
d) exposing the surface of the target item to the accelerated solid carbon dioxide pellets.
14. The method of claim 13 , wherein the one or more additives is an antimicrobial compound.
15. The method of claim 14 , wherein the antimicrobial compound is selected from the group consisting of lauric arginate, natural lactic acid, ascorbic acid, benzoic acid, lactates, lacititol, gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, sodium diacetate, methyl paraben, potassium nitrite, potassium nitrate, propinates, sorbates, benzoates, and combinations thereof.
16. The method of claim 13 , wherein the one or more additives is a disinfectant.
17. The method of claim 16 , wherein the disinfectant is selected from the group consisting of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, perbenzoic acid, and combinations thereof.
18. The method of claim 13 , wherein the one or more additives is a surfactant.
19. The method of claim 18 , wherein the surfactant is selected from the group consisting of sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanolamine, cocamide diethanolamine, cocamide triethanolamine, and combinations thereof.
20. The method of claim 13 , wherein the one or more additives is an odorant.
21. The method of claim 20 , wherein the odorant is selected from the group consisting of 1-methoxy-4-(1-propenyl)benzene methoxybenzene, 2-methoxy-4-(2-propenyl)phenol, (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol, 2,3-benzopyrrole, methyl 2-hydroxybenzoate, 2-ethoxynaphthalene, and 3-Hydroxy-4,5-dimethylfuran-2(5H)-one, cis-3-Hexen-1-ol, 2-ethyl-3-hydroxy-pyran-4-one, 4-hydroxy-2,5-dimethyl-furan-3-one, 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), 1-hexanol, benzaldehyde, hexanal, cinnamaldehyde, cis-3-hexenal, (2E)-3,7-dimethylocta-2,6-dienal, furan-2-carbaldehyde, (2Z)-3,7-dimethylocta-2,6-dienal, 4-hydroxy-3-methoxy-benzaldehyde, ethyl acetate, ethyl butanoate, methyl butanoate, pentyl butanoate, pentyl pentanoate, isoamyl acetate, hexyl acetate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate, 1,7,7-trimethylnorbornan-2-one, 3,7-dimethyloct-6-en-1-ol), 3,7-dimethylocta-1,6-dien-3-ol, (2E)-3,7-dimethylocta-2,6-dien-1-ol, 3,7,11-trimethyl1,6,10-dodecatrien-3-ol, 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol, (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one, 5-methyl-2-propan-2-yl-phenol, and combinations thereof.
22. The method of claim 13 , wherein the pellets further comprise a carrier chemical for suspending the one or more additives in the solid carbon dioxide.
23. The method of claim 22 , wherein the carrier chemical is selected from the group consisting of ethanol, propylene glycol, and d-limonene, and combinations thereof.
24. Pellets for treating surfaces of dry ice blasting target items, comprising;
a) dry ice; and
b) one or more additives, wherein the one or additives are releasable onto the surfaces of the dry ice blasting target items, wherein the one or more additives are selected to effect at least one of a cleaning function, a sanitizing function, disinfecting function, anti-microbial function, and an olfactory response in a human being.
25. The pellets of claim 24 , wherein the one or more additives is selected from the group consisting of antimicrobial compounds, disinfectants, surfactants, detergents, odorants, and combinations thereof.
26. The pellets of claim 25 , wherein the one or more additives is an antimicrobial compound.
27. The pellets of claim 26 , wherein the antimicrobial compound is selected from the group consisting of lauric arginate, natural lactic acid, ascorbic acid, benzoic acid, lactates, lacititol, gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, sodium diacetate, methyl paraben, potassium nitrite, potassium nitrate, propinates, sorbates, benzoates, and combinations thereof.
28. The pellets of claim 25 , wherein the one or more additives is a disinfectant.
29. The pellets of claim 28 , wherein the disinfectant is selected from the group consisting of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, perbenzoic acid, and combinations thereof.
30. The pellets of claim 25 , wherein the one or more additives is a surfactant.
31. The pellets of claim 30 , wherein the surfactant is selected from the group consisting of sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanolamine, cocamide diethanolamine, cocamide triethanolamine, and combinations thereof.
32. The pellets of claim 25 , wherein the one or more additives is an odorant.
33. The pellets of claim 32 , wherein the odorant is selected from the group consisting of 1-methoxy-4-(1-propenyl)benzene methoxybenzene, 2-methoxy-4-(2-propenyl)phenol, (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol, 2,3-benzopyrrole, methyl 2-hydroxybenzoate, 2-ethoxynaphthalene, and 3-Hydroxy-4,5-dimethylfuran-2(5H)-one, cis-3-Hexen-1-ol, 2-ethyl-3-hydroxy-pyran-4-one, 4-hydroxy-2,5-dimethyl-furan-3-one, 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), 1-hexanol, benzaldehyde, hexanal, cinnamaldehyde, cis-3-hexenal, (2E)-3,7-dimethylocta-2,6-dienal, furan-2-carbaldehyde, (2Z)-3,7-dimethylocta-2,6-dienal, 4-hydroxy-3-methoxy-benzaldehyde, ethyl acetate, ethyl butanoate, methyl butanoate, pentyl butanoate, pentyl pentanoate, isoamyl acetate, hexyl acetate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate, 1,7,7-trimethylnorbornan-2-one, 3,7-dimethyloct-6-en-1-ol), 3,7-dimethylocta-1,6-dien-3-ol, (2E)-3,7-dimethylocta-2,6-dien-1-ol, 3,7,11-trimethyl1,6,10-dodecatrien-3-ol, 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol, (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one, 5-methyl-2-propan-2-yl-phenol, and combinations thereof.
34. The pellets of claim 24 , wherein the pellets further comprise a carrier chemical for suspending the one or more additives in the solid carbon dioxide.
35. The pellets of claim 34 , wherein the carrier chemical is selected from the group consisting of ethanol, propylene glycol, and d-limonene, and combinations thereof.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/551,057 US20070178811A1 (en) | 2006-02-01 | 2006-10-19 | Dry ice blasting with chemical additives |
| PCT/IB2007/000178 WO2007088437A2 (en) | 2006-02-01 | 2007-01-25 | Dry ice blasting with chemical additives |
| JP2008552905A JP4975045B2 (en) | 2006-02-01 | 2007-01-25 | Dry ice blast with chemical additives |
| EP07705469A EP1981686A2 (en) | 2006-02-01 | 2007-01-25 | Dry ice blasting with chemical additives |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US76430206P | 2006-02-01 | 2006-02-01 | |
| US11/551,057 US20070178811A1 (en) | 2006-02-01 | 2006-10-19 | Dry ice blasting with chemical additives |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070178811A1 true US20070178811A1 (en) | 2007-08-02 |
Family
ID=38227736
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/551,057 Abandoned US20070178811A1 (en) | 2006-02-01 | 2006-10-19 | Dry ice blasting with chemical additives |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20070178811A1 (en) |
| EP (1) | EP1981686A2 (en) |
| JP (1) | JP4975045B2 (en) |
| WO (1) | WO2007088437A2 (en) |
Cited By (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070261436A1 (en) * | 2006-02-03 | 2007-11-15 | Meenakshi Sundaram | Dry ice products and method of making same |
| EP2008770A1 (en) * | 2007-06-27 | 2008-12-31 | Linde AG | Device and process for cleaning moulds with dry ice |
| US20100024619A1 (en) * | 2006-06-23 | 2010-02-04 | Universitat Innsbruck | Device and method for machining a solid material using a water jet |
| US20100031973A1 (en) * | 2008-08-08 | 2010-02-11 | Philip Bear | Industrial cleaning system and methods related thereto |
| US20100111833A1 (en) * | 2008-10-31 | 2010-05-06 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Compositions and methods for surface abrasion with frozen particles |
| US20100324137A1 (en) * | 2009-06-22 | 2010-12-23 | Diversey, Inc. | Lauric arginate as a contact antimicrobial |
| US20120066841A1 (en) * | 2010-03-24 | 2012-03-22 | University Of South Carolina | Methods And Compositions For Dislodging Debris Particles From A Substrate |
| WO2012159679A1 (en) * | 2011-05-26 | 2012-11-29 | Ecolab Usa Inc. | Method for applying laundry finishing agent to laundry articles using solid carbon dioxide as carrier |
| US8409376B2 (en) | 2008-10-31 | 2013-04-02 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8414356B2 (en) | 2008-10-31 | 2013-04-09 | The Invention Science Fund I, Llc | Systems, devices, and methods for making or administering frozen particles |
| US20130105561A1 (en) * | 2011-11-01 | 2013-05-02 | Amee Bay, Llc | Dry ice cleaning of metal surfaces to improve welding characteristics |
| US8545857B2 (en) | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for administering compartmentalized frozen particles |
| US8545856B2 (en) | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for delivery of frozen particle adhesives |
| US8545855B2 (en) | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8545806B2 (en) | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
| US8551506B2 (en) | 2008-10-31 | 2013-10-08 | The Invention Science Fund I, Llc | Compositions and methods for administering compartmentalized frozen particles |
| US8551505B2 (en) | 2008-10-31 | 2013-10-08 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US8568363B2 (en) | 2008-10-31 | 2013-10-29 | The Invention Science Fund I, Llc | Frozen compositions and methods for piercing a substrate |
| US8603495B2 (en) | 2008-10-31 | 2013-12-10 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
| US8721583B2 (en) | 2008-10-31 | 2014-05-13 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8725420B2 (en) | 2008-10-31 | 2014-05-13 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8722068B2 (en) | 2008-10-31 | 2014-05-13 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8731841B2 (en) | 2008-10-31 | 2014-05-20 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US8731840B2 (en) | 2008-10-31 | 2014-05-20 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US8762067B2 (en) | 2008-10-31 | 2014-06-24 | The Invention Science Fund I, Llc | Methods and systems for ablation or abrasion with frozen particles and comparing tissue surface ablation or abrasion data to clinical outcome data |
| US8788211B2 (en) | 2008-10-31 | 2014-07-22 | The Invention Science Fund I, Llc | Method and system for comparing tissue ablation or abrasion data to data related to administration of a frozen particle composition |
| US8793075B2 (en) | 2008-10-31 | 2014-07-29 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| WO2015061035A1 (en) * | 2013-10-22 | 2015-04-30 | Tosoh Smd, Inc. | Optimized textured surfaces and methods of optimizing |
| US9050070B2 (en) | 2008-10-31 | 2015-06-09 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US9050317B2 (en) | 2008-10-31 | 2015-06-09 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US9060926B2 (en) | 2008-10-31 | 2015-06-23 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US9060931B2 (en) | 2008-10-31 | 2015-06-23 | The Invention Science Fund I, Llc | Compositions and methods for delivery of frozen particle adhesives |
| US9072799B2 (en) | 2008-10-31 | 2015-07-07 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US9072688B2 (en) | 2008-10-31 | 2015-07-07 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US9388330B2 (en) | 2012-12-17 | 2016-07-12 | Fuji Engineering Co., Ltd. | Bag containing blasting material |
| US20170137634A1 (en) * | 2015-11-12 | 2017-05-18 | Ecolab Usa Inc. | Identification and characterization of novel corrosion inhibitor molecules |
| WO2018178398A1 (en) * | 2017-03-31 | 2018-10-04 | Fm Marketing Gmbh | Reconditioning with dry ice blasting, remote control, and device for insertion during the reconditioning of the remote control |
| WO2020025435A1 (en) * | 2018-08-02 | 2020-02-06 | CRYOTEC Anlagenbau GmbH | Method for modifying solid carbon dioxide, coated dry ice blocks, and device for modifying dry ice |
| EP3854421A1 (en) * | 2020-01-27 | 2021-07-28 | Linde GmbH | Dry ice pellets with disinfectant effect |
| US11252971B2 (en) | 2017-07-19 | 2022-02-22 | Cryovac, Llc | Antimicrobial packaging films |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5490674B2 (en) * | 2010-12-10 | 2014-05-14 | 株式会社フジエンジニアリング | Blasting material and blasting method |
| JP2013242154A (en) * | 2012-05-17 | 2013-12-05 | Toyo Union:Kk | Decontamination method and decontamination apparatus |
| ITMI20131477A1 (en) | 2013-09-09 | 2015-03-10 | Sol Spa | PROCEDURE AND EQUIPMENT FOR CLEANING THE SURFACE OF FOOD PRODUCTS. |
| JP6363936B2 (en) * | 2013-11-06 | 2018-07-25 | 株式会社東洋ユニオン | Pollutant removal method |
| DE102016011808B4 (en) | 2016-09-30 | 2024-05-02 | Messer Se & Co. Kgaa | Method for treating a surface with a blasting agent |
Citations (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1875164A (en) * | 1931-06-12 | 1932-08-30 | American Thermos Bottle Co | Manufacture of carbon dioxide ice |
| US1937832A (en) * | 1930-03-07 | 1933-12-05 | Ralph H Mckee | Deodorization of carbon dioxide |
| US2464089A (en) * | 1944-10-11 | 1949-03-08 | Internat Carbonic Engineering | Method and apparatus for producing composite solid carbon dioxide |
| US2590542A (en) * | 1947-05-12 | 1952-03-25 | Internat Carbonic Engineering | Composite solid carbon dioxide |
| US4617064A (en) * | 1984-07-31 | 1986-10-14 | Cryoblast, Inc. | Cleaning method and apparatus |
| US5011699A (en) * | 1989-09-07 | 1991-04-30 | Japan Food Industry Association Inc. | Process for sterilizing food stuffs |
| US6086833A (en) * | 1997-09-08 | 2000-07-11 | Air Liquide America Corporation | Process and equipment for sanitizing and packaging food using ozone |
| US20020068511A1 (en) * | 2000-12-05 | 2002-06-06 | Masaki Okazawa | Dry ice cleaning method, dry ice cleaning apparatus, and part or unit cleaned by dry ice |
| US20030064665A1 (en) * | 2001-09-28 | 2003-04-03 | Opel Alan E. | Apparatus to provide dry ice in different particle sizes to an airstream for cleaning of surfaces |
| US6589480B1 (en) * | 2000-04-27 | 2003-07-08 | L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for sanitizing a food processing environment |
| US6669902B1 (en) * | 2000-11-08 | 2003-12-30 | L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Ozonated foam medium and production system and method for sanitizing a food processing environment |
| US20040005848A1 (en) * | 2000-06-22 | 2004-01-08 | Eikichi Yamaharu | Dry-ice blast device |
| US20040011378A1 (en) * | 2001-08-23 | 2004-01-22 | Jackson David P | Surface cleaning and modification processes, methods and apparatus using physicochemically modified dense fluid sprays |
| US20040033269A1 (en) * | 2002-08-06 | 2004-02-19 | Ecolab Inc. | Critical fluid antimicrobial compositions and their use and generation |
| US20040035146A1 (en) * | 2000-09-05 | 2004-02-26 | Christian Dannings | Pellet press for dry ice |
| US20040093895A1 (en) * | 2002-08-20 | 2004-05-20 | Schreiber John E. | Method of improving the biocidal efficacy of dry ice |
| US20050003741A1 (en) * | 2003-07-03 | 2005-01-06 | Carroll Robert Andrew | Injecting an air stream with sublimable particles |
| US20050106268A1 (en) * | 2003-03-11 | 2005-05-19 | Armstrong Jay T. | Mold and microbial remediation using dry ice blasting |
| US20050176009A1 (en) * | 2002-04-23 | 2005-08-11 | Doron Lancet | Polymorphic olfactory receptor genes and arrays, kits and methods utilizing information derived therefrom for genetic typing of individuals |
| US20050268646A1 (en) * | 2002-08-20 | 2005-12-08 | Yuan James T | Novel biological treating agent |
| US20070059201A1 (en) * | 2005-09-15 | 2007-03-15 | Meenakshi Sundaram | Dry ice product containing antimicrobial formulation prepared using carrier chemicals |
| US20070114488A1 (en) * | 2004-12-13 | 2007-05-24 | Cool Clean Technologies, Inc. | Cryogenic fluid composition |
| US20070261436A1 (en) * | 2006-02-03 | 2007-11-15 | Meenakshi Sundaram | Dry ice products and method of making same |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5230291A (en) * | 1975-09-02 | 1977-03-07 | Showa Tansan Kk | Perfumed dry ice and method for its production |
| JPH0669884B2 (en) * | 1983-12-29 | 1994-09-07 | 石川島播磨重工業株式会社 | High hardness dry ice manufacturing method |
| AU666415B2 (en) * | 1993-01-27 | 1996-02-08 | Dsm Ip Assets B.V. | A fungicide composition to prevent the growth of mould on foodstuff and agricultural products |
| JP4137200B2 (en) * | 1997-10-08 | 2008-08-20 | 三菱化学フーズ株式会社 | Dry ice containing allyl isothiocyanate and method for producing the same |
| US6171551B1 (en) * | 1998-02-06 | 2001-01-09 | Steris Corporation | Electrolytic synthesis of peracetic acid and other oxidants |
| CA2402520A1 (en) * | 2000-03-13 | 2001-09-20 | Kenneth Beckman | Biocidal methods and compositions |
| JP2002177828A (en) * | 2000-12-12 | 2002-06-25 | Canon Inc | Cleaning method, apparatus therefor, cleaning material using the same, and hopper |
| FR2837122A1 (en) * | 2002-03-15 | 2003-09-19 | Aero Strip | Cleaning aircraft engine and control surfaces of grease, and the like, uses a compressed air stream containing dry ice particles together with added synthetic/mineral particles |
-
2006
- 2006-10-19 US US11/551,057 patent/US20070178811A1/en not_active Abandoned
-
2007
- 2007-01-25 JP JP2008552905A patent/JP4975045B2/en not_active Expired - Fee Related
- 2007-01-25 WO PCT/IB2007/000178 patent/WO2007088437A2/en not_active Ceased
- 2007-01-25 EP EP07705469A patent/EP1981686A2/en not_active Withdrawn
Patent Citations (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1937832A (en) * | 1930-03-07 | 1933-12-05 | Ralph H Mckee | Deodorization of carbon dioxide |
| US1875164A (en) * | 1931-06-12 | 1932-08-30 | American Thermos Bottle Co | Manufacture of carbon dioxide ice |
| US2464089A (en) * | 1944-10-11 | 1949-03-08 | Internat Carbonic Engineering | Method and apparatus for producing composite solid carbon dioxide |
| US2590542A (en) * | 1947-05-12 | 1952-03-25 | Internat Carbonic Engineering | Composite solid carbon dioxide |
| US4617064A (en) * | 1984-07-31 | 1986-10-14 | Cryoblast, Inc. | Cleaning method and apparatus |
| US5011699A (en) * | 1989-09-07 | 1991-04-30 | Japan Food Industry Association Inc. | Process for sterilizing food stuffs |
| US6086833A (en) * | 1997-09-08 | 2000-07-11 | Air Liquide America Corporation | Process and equipment for sanitizing and packaging food using ozone |
| US6589480B1 (en) * | 2000-04-27 | 2003-07-08 | L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for sanitizing a food processing environment |
| US6890246B2 (en) * | 2000-06-22 | 2005-05-10 | Eikichi Yamaharu | Dry-ice blast device |
| US20040005848A1 (en) * | 2000-06-22 | 2004-01-08 | Eikichi Yamaharu | Dry-ice blast device |
| US20040035146A1 (en) * | 2000-09-05 | 2004-02-26 | Christian Dannings | Pellet press for dry ice |
| US6669902B1 (en) * | 2000-11-08 | 2003-12-30 | L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Ozonated foam medium and production system and method for sanitizing a food processing environment |
| US20020068511A1 (en) * | 2000-12-05 | 2002-06-06 | Masaki Okazawa | Dry ice cleaning method, dry ice cleaning apparatus, and part or unit cleaned by dry ice |
| US20040011378A1 (en) * | 2001-08-23 | 2004-01-22 | Jackson David P | Surface cleaning and modification processes, methods and apparatus using physicochemically modified dense fluid sprays |
| US20030064665A1 (en) * | 2001-09-28 | 2003-04-03 | Opel Alan E. | Apparatus to provide dry ice in different particle sizes to an airstream for cleaning of surfaces |
| US20050176009A1 (en) * | 2002-04-23 | 2005-08-11 | Doron Lancet | Polymorphic olfactory receptor genes and arrays, kits and methods utilizing information derived therefrom for genetic typing of individuals |
| US20040033269A1 (en) * | 2002-08-06 | 2004-02-19 | Ecolab Inc. | Critical fluid antimicrobial compositions and their use and generation |
| US20040093895A1 (en) * | 2002-08-20 | 2004-05-20 | Schreiber John E. | Method of improving the biocidal efficacy of dry ice |
| US20050268646A1 (en) * | 2002-08-20 | 2005-12-08 | Yuan James T | Novel biological treating agent |
| US20050276889A1 (en) * | 2002-08-20 | 2005-12-15 | Yuan James T | Novel method of sanitizing food products and other target items |
| US7174744B2 (en) * | 2002-08-20 | 2007-02-13 | American Air Liquide, Inc. | Method of improving the biocidal efficacy of dry ice |
| US20050106268A1 (en) * | 2003-03-11 | 2005-05-19 | Armstrong Jay T. | Mold and microbial remediation using dry ice blasting |
| US20050003741A1 (en) * | 2003-07-03 | 2005-01-06 | Carroll Robert Andrew | Injecting an air stream with sublimable particles |
| US20070114488A1 (en) * | 2004-12-13 | 2007-05-24 | Cool Clean Technologies, Inc. | Cryogenic fluid composition |
| US20070059201A1 (en) * | 2005-09-15 | 2007-03-15 | Meenakshi Sundaram | Dry ice product containing antimicrobial formulation prepared using carrier chemicals |
| US20070261436A1 (en) * | 2006-02-03 | 2007-11-15 | Meenakshi Sundaram | Dry ice products and method of making same |
Cited By (67)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070261436A1 (en) * | 2006-02-03 | 2007-11-15 | Meenakshi Sundaram | Dry ice products and method of making same |
| US20100024619A1 (en) * | 2006-06-23 | 2010-02-04 | Universitat Innsbruck | Device and method for machining a solid material using a water jet |
| EP2008770A1 (en) * | 2007-06-27 | 2008-12-31 | Linde AG | Device and process for cleaning moulds with dry ice |
| US8313581B2 (en) | 2008-08-08 | 2012-11-20 | Philip Bear | Industrial cleaning system and methods related thereto |
| US20100031973A1 (en) * | 2008-08-08 | 2010-02-11 | Philip Bear | Industrial cleaning system and methods related thereto |
| US8747568B2 (en) | 2008-08-08 | 2014-06-10 | North American Industrial Services Inc. | Industrial cleaning system and methods related thereto |
| US8731842B2 (en) | 2008-10-31 | 2014-05-20 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
| US8784385B2 (en) | 2008-10-31 | 2014-07-22 | The Invention Science Fund I, Llc | Frozen piercing implements and methods for piercing a substrate |
| US9072688B2 (en) | 2008-10-31 | 2015-07-07 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US8409376B2 (en) | 2008-10-31 | 2013-04-02 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8414356B2 (en) | 2008-10-31 | 2013-04-09 | The Invention Science Fund I, Llc | Systems, devices, and methods for making or administering frozen particles |
| US9072799B2 (en) | 2008-10-31 | 2015-07-07 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8485861B2 (en) | 2008-10-31 | 2013-07-16 | The Invention Science Fund I, Llc | Systems, devices, and methods for making or administering frozen particles |
| US8518031B2 (en) | 2008-10-31 | 2013-08-27 | The Invention Science Fund I, Llc | Systems, devices and methods for making or administering frozen particles |
| US8545857B2 (en) | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for administering compartmentalized frozen particles |
| US8545856B2 (en) | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for delivery of frozen particle adhesives |
| US8545855B2 (en) | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8545806B2 (en) | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
| US8551506B2 (en) | 2008-10-31 | 2013-10-08 | The Invention Science Fund I, Llc | Compositions and methods for administering compartmentalized frozen particles |
| US8551505B2 (en) | 2008-10-31 | 2013-10-08 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US8563012B2 (en) | 2008-10-31 | 2013-10-22 | The Invention Science Fund I, Llc | Compositions and methods for administering compartmentalized frozen particles |
| US8568363B2 (en) | 2008-10-31 | 2013-10-29 | The Invention Science Fund I, Llc | Frozen compositions and methods for piercing a substrate |
| US8603496B2 (en) | 2008-10-31 | 2013-12-10 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
| US8603495B2 (en) | 2008-10-31 | 2013-12-10 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
| US8603494B2 (en) | 2008-10-31 | 2013-12-10 | The Invention Science Fund I, Llc | Compositions and methods for administering compartmentalized frozen particles |
| US8613937B2 (en) | 2008-10-31 | 2013-12-24 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
| US9060931B2 (en) | 2008-10-31 | 2015-06-23 | The Invention Science Fund I, Llc | Compositions and methods for delivery of frozen particle adhesives |
| US8721583B2 (en) | 2008-10-31 | 2014-05-13 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8725420B2 (en) | 2008-10-31 | 2014-05-13 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8722068B2 (en) | 2008-10-31 | 2014-05-13 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8731841B2 (en) | 2008-10-31 | 2014-05-20 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US9060926B2 (en) | 2008-10-31 | 2015-06-23 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US8731840B2 (en) | 2008-10-31 | 2014-05-20 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US20100111833A1 (en) * | 2008-10-31 | 2010-05-06 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Compositions and methods for surface abrasion with frozen particles |
| US8762067B2 (en) | 2008-10-31 | 2014-06-24 | The Invention Science Fund I, Llc | Methods and systems for ablation or abrasion with frozen particles and comparing tissue surface ablation or abrasion data to clinical outcome data |
| US8788212B2 (en) | 2008-10-31 | 2014-07-22 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
| US9060934B2 (en) * | 2008-10-31 | 2015-06-23 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US8798933B2 (en) | 2008-10-31 | 2014-08-05 | The Invention Science Fund I, Llc | Frozen compositions and methods for piercing a substrate |
| US8788211B2 (en) | 2008-10-31 | 2014-07-22 | The Invention Science Fund I, Llc | Method and system for comparing tissue ablation or abrasion data to data related to administration of a frozen particle composition |
| US8793075B2 (en) | 2008-10-31 | 2014-07-29 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US8798932B2 (en) | 2008-10-31 | 2014-08-05 | The Invention Science Fund I, Llc | Frozen compositions and methods for piercing a substrate |
| US8784384B2 (en) | 2008-10-31 | 2014-07-22 | The Invention Science Fund I, Llc | Frozen compositions and array devices thereof |
| US8858912B2 (en) | 2008-10-31 | 2014-10-14 | The Invention Science Fund I, Llc | Frozen compositions and methods for piercing a substrate |
| US9056047B2 (en) | 2008-10-31 | 2015-06-16 | The Invention Science Fund I, Llc | Compositions and methods for delivery of frozen particle adhesives |
| US9040087B2 (en) | 2008-10-31 | 2015-05-26 | The Invention Science Fund I, Llc | Frozen compositions and methods for piercing a substrate |
| US9050251B2 (en) | 2008-10-31 | 2015-06-09 | The Invention Science Fund I, Llc | Compositions and methods for delivery of frozen particle adhesives |
| US9050070B2 (en) | 2008-10-31 | 2015-06-09 | The Invention Science Fund I, Llc | Compositions and methods for surface abrasion with frozen particles |
| US9050317B2 (en) | 2008-10-31 | 2015-06-09 | The Invention Science Fund I, Llc | Compositions and methods for therapeutic delivery with frozen particles |
| US20100324137A1 (en) * | 2009-06-22 | 2010-12-23 | Diversey, Inc. | Lauric arginate as a contact antimicrobial |
| US20120066841A1 (en) * | 2010-03-24 | 2012-03-22 | University Of South Carolina | Methods And Compositions For Dislodging Debris Particles From A Substrate |
| US8709164B2 (en) * | 2010-03-24 | 2014-04-29 | University Of South Carolina | Methods and compositions for dislodging debris particles from a substrate |
| WO2012159679A1 (en) * | 2011-05-26 | 2012-11-29 | Ecolab Usa Inc. | Method for applying laundry finishing agent to laundry articles using solid carbon dioxide as carrier |
| US20130105561A1 (en) * | 2011-11-01 | 2013-05-02 | Amee Bay, Llc | Dry ice cleaning of metal surfaces to improve welding characteristics |
| US9388330B2 (en) | 2012-12-17 | 2016-07-12 | Fuji Engineering Co., Ltd. | Bag containing blasting material |
| WO2015061035A1 (en) * | 2013-10-22 | 2015-04-30 | Tosoh Smd, Inc. | Optimized textured surfaces and methods of optimizing |
| US10792788B2 (en) | 2013-10-22 | 2020-10-06 | Tosoh Smd, Inc. | Optimized textured surfaces and methods of optimizing |
| US20170137634A1 (en) * | 2015-11-12 | 2017-05-18 | Ecolab Usa Inc. | Identification and characterization of novel corrosion inhibitor molecules |
| US10590282B2 (en) * | 2015-11-12 | 2020-03-17 | Ecolab Usa Inc. | Identification and characterization of novel corrosion inhibitor molecules |
| US11352507B2 (en) * | 2015-11-12 | 2022-06-07 | Ecolab Usa Inc. | Identification and characterization of novel corrosion inhibitor molecules |
| US20220267612A1 (en) * | 2015-11-12 | 2022-08-25 | Ecolab Usa Inc. | Identification and characterization of novel corrosion inhibitor molecules |
| US11732143B2 (en) * | 2015-11-12 | 2023-08-22 | Ecolab Usa Inc. | Identification and characterization of novel corrosion inhibitor molecules |
| US20240002675A1 (en) * | 2015-11-12 | 2024-01-04 | Ecolab Usa Inc. | Identification and characterization of novel corrosion inhibitor molecules |
| US12152164B2 (en) * | 2015-11-12 | 2024-11-26 | Ecolab Usa Inc. | Identification and characterization of novel corrosion inhibitor molecules |
| WO2018178398A1 (en) * | 2017-03-31 | 2018-10-04 | Fm Marketing Gmbh | Reconditioning with dry ice blasting, remote control, and device for insertion during the reconditioning of the remote control |
| US11252971B2 (en) | 2017-07-19 | 2022-02-22 | Cryovac, Llc | Antimicrobial packaging films |
| WO2020025435A1 (en) * | 2018-08-02 | 2020-02-06 | CRYOTEC Anlagenbau GmbH | Method for modifying solid carbon dioxide, coated dry ice blocks, and device for modifying dry ice |
| EP3854421A1 (en) * | 2020-01-27 | 2021-07-28 | Linde GmbH | Dry ice pellets with disinfectant effect |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2007088437A3 (en) | 2008-01-17 |
| JP4975045B2 (en) | 2012-07-11 |
| WO2007088437A2 (en) | 2007-08-09 |
| EP1981686A2 (en) | 2008-10-22 |
| JP2009525172A (en) | 2009-07-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070178811A1 (en) | Dry ice blasting with chemical additives | |
| WO2007088442A1 (en) | Dry ice products and method of making same | |
| US9034407B2 (en) | Method and system for treating food items with an additive and solid carbon dioxide | |
| US20070107463A1 (en) | Method of Improving Biocidal Efficacy of Dry Ice | |
| US8470383B2 (en) | Method and system for treating food items with an additive and liquid nitrogen | |
| CN104263551A (en) | Fruit/vegetable cleaning salt | |
| WO2002037965A2 (en) | Ozonated foam medium and production system and method for sanitizing a food processing environment | |
| CN101378879A (en) | Dry ice blasting with chemical additives | |
| CN106880304A (en) | Domestic ozone microbubble vegetables and fruits cleaning machine | |
| RU2683681C2 (en) | Method for treatment of tubers from germination with the use the reduced amount of cipc | |
| JPH0381203A (en) | biodegradable stable foam | |
| WO2001058267A1 (en) | Antibacterial agents and method for keeping freshness | |
| US20070059201A1 (en) | Dry ice product containing antimicrobial formulation prepared using carrier chemicals | |
| CN111758724A (en) | Chlorine dioxide disinfection spray with fruity flavor and preparation method thereof | |
| KR20130048640A (en) | Exfoliating method of gastropods by controlling ph | |
| CN101810183B (en) | Smoke disinfectant for preventing and treating penicillium and preparation method thereof | |
| KR100238456B1 (en) | How to Extend Kimchi's Storability | |
| US20070059415A1 (en) | Co2 containing antimicrobial formulations to treat food products during processing steps | |
| KR20220087930A (en) | Waste extinguisher powder treatment method | |
| JP2829230B2 (en) | Citrus fruit floating inhibitor | |
| CN102047948A (en) | Banana multi-effect antistaling agent | |
| JP6626637B2 (en) | Aerosol products | |
| CN102550886A (en) | Feed mildew preventive | |
| JP2003335650A (en) | Dry ice containing solid aroma component | |
| CN107779286A (en) | A kind of fruits and vegetables detergent containing Semen Pisi sativi extract |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |