US20070149441A1 - Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same - Google Patents
Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same Download PDFInfo
- Publication number
- US20070149441A1 US20070149441A1 US11/706,922 US70692207A US2007149441A1 US 20070149441 A1 US20070149441 A1 US 20070149441A1 US 70692207 A US70692207 A US 70692207A US 2007149441 A1 US2007149441 A1 US 2007149441A1
- Authority
- US
- United States
- Prior art keywords
- substituted
- derivatives
- group
- halogen
- phosphorous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical class CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 title claims abstract description 206
- 239000000017 hydrogel Substances 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 14
- 230000015572 biosynthetic process Effects 0.000 title abstract description 14
- 238000004132 cross linking Methods 0.000 claims abstract description 49
- 150000001412 amines Chemical class 0.000 claims abstract description 30
- 239000011159 matrix material Substances 0.000 claims abstract description 24
- 239000003106 tissue adhesive Substances 0.000 claims abstract description 7
- 238000004113 cell culture Methods 0.000 claims abstract description 6
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims abstract 13
- 239000000203 mixture Substances 0.000 claims description 49
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 44
- 125000000524 functional group Chemical group 0.000 claims description 44
- 210000001519 tissue Anatomy 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 37
- 150000002148 esters Chemical class 0.000 claims description 33
- 150000002016 disaccharides Chemical class 0.000 claims description 29
- 239000003102 growth factor Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 210000000845 cartilage Anatomy 0.000 claims description 24
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 22
- 229910052760 oxygen Inorganic materials 0.000 claims description 22
- 239000001301 oxygen Substances 0.000 claims description 22
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 22
- 229910052717 sulfur Inorganic materials 0.000 claims description 22
- 239000011593 sulfur Substances 0.000 claims description 22
- 239000004971 Cross linker Substances 0.000 claims description 20
- 230000000975 bioactive effect Effects 0.000 claims description 19
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- -1 keto, amino, oxycarbonyl Chemical group 0.000 claims description 16
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 15
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 15
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 15
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 claims description 14
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 12
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 claims description 11
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 claims description 11
- 239000003814 drug Substances 0.000 claims description 11
- 238000006467 substitution reaction Methods 0.000 claims description 11
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 150000007942 carboxylates Chemical class 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 230000004962 physiological condition Effects 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 102000004127 Cytokines Human genes 0.000 claims description 7
- 108090000695 Cytokines Proteins 0.000 claims description 7
- 229940079593 drug Drugs 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 6
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims description 5
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 5
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical group C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims description 5
- 230000002792 vascular Effects 0.000 claims description 5
- 230000003416 augmentation Effects 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 4
- 230000000144 pharmacologic effect Effects 0.000 claims description 4
- 206010015946 Eye irritation Diseases 0.000 claims description 3
- 230000002500 effect on skin Effects 0.000 claims description 3
- 231100000013 eye irritation Toxicity 0.000 claims description 3
- 210000005036 nerve Anatomy 0.000 claims description 3
- 230000001575 pathological effect Effects 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 3
- 229940035676 analgesics Drugs 0.000 claims description 2
- 238000004873 anchoring Methods 0.000 claims description 2
- 239000000730 antalgic agent Substances 0.000 claims description 2
- 230000000844 anti-bacterial effect Effects 0.000 claims description 2
- 230000000843 anti-fungal effect Effects 0.000 claims description 2
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 2
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 2
- 229940088710 antibiotic agent Drugs 0.000 claims description 2
- 239000002246 antineoplastic agent Substances 0.000 claims description 2
- 239000003443 antiviral agent Substances 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims description 2
- 239000002327 cardiovascular agent Substances 0.000 claims description 2
- 229940125692 cardiovascular agent Drugs 0.000 claims description 2
- 229960003444 immunosuppressant agent Drugs 0.000 claims description 2
- 239000003018 immunosuppressive agent Substances 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 239000000932 sedative agent Substances 0.000 claims description 2
- 229940125723 sedative agent Drugs 0.000 claims description 2
- 150000003431 steroids Chemical class 0.000 claims description 2
- IMCGHZIGRANKHV-AJNGGQMLSA-N tert-butyl (3s,5s)-2-oxo-5-[(2s,4s)-5-oxo-4-propan-2-yloxolan-2-yl]-3-propan-2-ylpyrrolidine-1-carboxylate Chemical compound O1C(=O)[C@H](C(C)C)C[C@H]1[C@H]1N(C(=O)OC(C)(C)C)C(=O)[C@H](C(C)C)C1 IMCGHZIGRANKHV-AJNGGQMLSA-N 0.000 claims description 2
- 125000004429 atom Chemical group 0.000 claims 42
- 229910052736 halogen Inorganic materials 0.000 claims 22
- 150000002367 halogens Chemical class 0.000 claims 22
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 21
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 15
- 229910021645 metal ion Inorganic materials 0.000 claims 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 14
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 7
- 150000001336 alkenes Chemical class 0.000 claims 7
- 150000001345 alkine derivatives Chemical class 0.000 claims 7
- 150000003857 carboxamides Chemical class 0.000 claims 7
- 125000000623 heterocyclic group Chemical group 0.000 claims 7
- 150000002463 imidates Chemical class 0.000 claims 7
- 150000003462 sulfoxides Chemical class 0.000 claims 7
- 208000031737 Tissue Adhesions Diseases 0.000 claims 3
- 230000000840 anti-viral effect Effects 0.000 claims 1
- 229940121375 antifungal agent Drugs 0.000 claims 1
- 229940121357 antivirals Drugs 0.000 claims 1
- 230000003190 augmentative effect Effects 0.000 claims 1
- 230000001268 conjugating effect Effects 0.000 claims 1
- 238000005461 lubrication Methods 0.000 claims 1
- 229920002674 hyaluronan Polymers 0.000 abstract description 173
- 229960003160 hyaluronic acid Drugs 0.000 abstract description 160
- 230000017423 tissue regeneration Effects 0.000 abstract description 8
- 238000012377 drug delivery Methods 0.000 abstract description 3
- 238000007385 chemical modification Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 50
- 150000001299 aldehydes Chemical class 0.000 description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 24
- 0 *N.C.CC(=O)O.CC(C)=O.I.I[IH]I.[1*]/N=C(/N[2*])OC(C)=O.[1*]N=C=N[2*].[3*]C1=C([4*])N(O)N=N1.[3*]C1=C([4*])N(OC(C)=O)N=N1.[V]I Chemical compound *N.C.CC(=O)O.CC(C)=O.I.I[IH]I.[1*]/N=C(/N[2*])OC(C)=O.[1*]N=C=N[2*].[3*]C1=C([4*])N(O)N=N1.[3*]C1=C([4*])N(OC(C)=O)N=N1.[V]I 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- 230000008439 repair process Effects 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 239000000499 gel Substances 0.000 description 18
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 238000005859 coupling reaction Methods 0.000 description 14
- 230000011164 ossification Effects 0.000 description 14
- 229940099552 hyaluronan Drugs 0.000 description 13
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 13
- 238000002513 implantation Methods 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 239000012620 biological material Substances 0.000 description 12
- 210000001612 chondrocyte Anatomy 0.000 description 12
- 230000008878 coupling Effects 0.000 description 12
- 238000010168 coupling process Methods 0.000 description 12
- 230000001404 mediated effect Effects 0.000 description 12
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 12
- 238000001356 surgical procedure Methods 0.000 description 12
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 11
- 230000008595 infiltration Effects 0.000 description 11
- 238000001764 infiltration Methods 0.000 description 11
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000002316 cosmetic surgery Methods 0.000 description 9
- 150000003141 primary amines Chemical class 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 8
- 241000700159 Rattus Species 0.000 description 8
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical group O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 8
- 230000001588 bifunctional effect Effects 0.000 description 8
- 210000000988 bone and bone Anatomy 0.000 description 8
- 150000001718 carbodiimides Chemical class 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 7
- 229920002385 Sodium hyaluronate Polymers 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 7
- 238000006731 degradation reaction Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 239000012264 purified product Substances 0.000 description 7
- 229940010747 sodium hyaluronate Drugs 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 108010003272 Hyaluronate lyase Proteins 0.000 description 6
- 102000009066 Hyaluronoglucosaminidase Human genes 0.000 description 6
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 6
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 239000005700 Putrescine Substances 0.000 description 6
- 102000011117 Transforming Growth Factor beta2 Human genes 0.000 description 6
- 101800000304 Transforming growth factor beta-2 Proteins 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 229960002773 hyaluronidase Drugs 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 6
- 238000007920 subcutaneous administration Methods 0.000 description 6
- WZUVPPKBWHMQCE-XJKSGUPXSA-N (+)-haematoxylin Chemical compound C12=CC(O)=C(O)C=C2C[C@]2(O)[C@H]1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-XJKSGUPXSA-N 0.000 description 5
- 108010067219 Aggrecans Proteins 0.000 description 5
- 102000016284 Aggrecans Human genes 0.000 description 5
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Natural products C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 5
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 5
- 230000000399 orthopedic effect Effects 0.000 description 5
- 239000012188 paraffin wax Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000002381 testicular Effects 0.000 description 5
- GVJXGCIPWAVXJP-UHFFFAOYSA-N 2,5-dioxo-1-oxoniopyrrolidine-3-sulfonate Chemical compound ON1C(=O)CC(S(O)(=O)=O)C1=O GVJXGCIPWAVXJP-UHFFFAOYSA-N 0.000 description 4
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 4
- 102000012422 Collagen Type I Human genes 0.000 description 4
- 108010022452 Collagen Type I Proteins 0.000 description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 4
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 4
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 4
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 4
- 150000007930 O-acyl isoureas Chemical class 0.000 description 4
- 241000906034 Orthops Species 0.000 description 4
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 4
- 230000022159 cartilage development Effects 0.000 description 4
- 229940096422 collagen type i Drugs 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- 238000007306 functionalization reaction Methods 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- JWEJEAXHHKJKQE-UHFFFAOYSA-N methyl 5-(2,2-dimethoxyethylamino)-5-oxopentanoate Chemical compound COC(OC)CNC(=O)CCCC(=O)OC JWEJEAXHHKJKQE-UHFFFAOYSA-N 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- VOTJUWBJENROFB-UHFFFAOYSA-N 1-[3-[[3-(2,5-dioxo-3-sulfopyrrolidin-1-yl)oxy-3-oxopropyl]disulfanyl]propanoyloxy]-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCSSCCC(=O)ON1C(=O)C(S(O)(=O)=O)CC1=O VOTJUWBJENROFB-UHFFFAOYSA-N 0.000 description 3
- 208000036487 Arthropathies Diseases 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 208000012659 Joint disease Diseases 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 150000001241 acetals Chemical class 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000000181 anti-adherent effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000001188 articular cartilage Anatomy 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 238000012869 ethanol precipitation Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 229940097043 glucuronic acid Drugs 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 229960002885 histidine Drugs 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 210000002435 tendon Anatomy 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000029663 wound healing Effects 0.000 description 3
- QKWWDTYDYOFRJL-UHFFFAOYSA-N 2,2-dimethoxyethanamine Chemical compound COC(CN)OC QKWWDTYDYOFRJL-UHFFFAOYSA-N 0.000 description 2
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 2
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical class OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 2
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 2
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 2
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 2
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000002262 Schiff base Substances 0.000 description 2
- 150000004753 Schiff bases Chemical class 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 208000025865 Ulcer Diseases 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000012867 bioactive agent Substances 0.000 description 2
- 229940112869 bone morphogenetic protein Drugs 0.000 description 2
- XZOWIJDBQIHMFC-UHFFFAOYSA-N butanamide Chemical compound CCCC(N)=O.CCCC(N)=O XZOWIJDBQIHMFC-UHFFFAOYSA-N 0.000 description 2
- HCOMFAYPHBFMKU-UHFFFAOYSA-N butanedihydrazide Chemical compound NNC(=O)CCC(=O)NN HCOMFAYPHBFMKU-UHFFFAOYSA-N 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 230000003399 chemotactic effect Effects 0.000 description 2
- 239000005482 chemotactic factor Substances 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000035194 endochondral ossification Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000002682 general surgery Methods 0.000 description 2
- 150000002429 hydrazines Chemical class 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- KPNBUPJZFJCCIQ-LURJTMIESA-N methyl L-lysinate Chemical compound COC(=O)[C@@H](N)CCCCN KPNBUPJZFJCCIQ-LURJTMIESA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 2
- 239000012038 nucleophile Substances 0.000 description 2
- 238000005935 nucleophilic addition reaction Methods 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- HATIEXJZXOLRAO-UHFFFAOYSA-N octanedihydrazide Chemical compound NNC(=O)CCCCCCC(=O)NN HATIEXJZXOLRAO-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 239000003223 protective agent Substances 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000002278 reconstructive surgery Methods 0.000 description 2
- 238000005932 reductive alkylation reaction Methods 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 230000006032 tissue transformation Effects 0.000 description 2
- 231100000397 ulcer Toxicity 0.000 description 2
- 210000002229 urogenital system Anatomy 0.000 description 2
- 238000007631 vascular surgery Methods 0.000 description 2
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 1
- QQHITEBEBQNARV-UHFFFAOYSA-N 3-[[2-carboxy-2-(2,5-dioxopyrrolidin-1-yl)-2-sulfoethyl]disulfanyl]-2-(2,5-dioxopyrrolidin-1-yl)-2-sulfopropanoic acid Chemical compound O=C1CCC(=O)N1C(S(O)(=O)=O)(C(=O)O)CSSCC(S(O)(=O)=O)(C(O)=O)N1C(=O)CCC1=O QQHITEBEBQNARV-UHFFFAOYSA-N 0.000 description 1
- JDRMYOQETPMYQX-UHFFFAOYSA-M 4-methoxy-4-oxobutanoate Chemical compound COC(=O)CCC([O-])=O JDRMYOQETPMYQX-UHFFFAOYSA-M 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- MTKMBTSDXFWIBF-UHFFFAOYSA-N C=OC1OC(C)C(NC(C)=O)C(OC2OC(C(=O)O)C(OC)C(O)C2O)C1O.I.II.[H]C(=O)C(OC(C(=O)O)C(OC)C([H])=O)OC1C(O)C(O=C)OC(C)C1NC(C)=O Chemical compound C=OC1OC(C)C(NC(C)=O)C(OC2OC(C(=O)O)C(OC)C(O)C2O)C1O.I.II.[H]C(=O)C(OC(C(=O)O)C(OC)C([H])=O)OC1C(O)C(O=C)OC(C)C1NC(C)=O MTKMBTSDXFWIBF-UHFFFAOYSA-N 0.000 description 1
- KLZGKIDSEJWEDW-UHFFFAOYSA-N CC(=O)NCCCCN Chemical compound CC(=O)NCCCCN KLZGKIDSEJWEDW-UHFFFAOYSA-N 0.000 description 1
- DAKZISABEDGGSV-UHFFFAOYSA-N CC(=O)NCCN Chemical compound CC(=O)NCCN DAKZISABEDGGSV-UHFFFAOYSA-N 0.000 description 1
- QWWFLZVQILKOHH-UHFFFAOYSA-N CC(=O)ON1N=NC(C)C1C Chemical compound CC(=O)ON1N=NC(C)C1C QWWFLZVQILKOHH-UHFFFAOYSA-N 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 101150099575 CDC37 gene Proteins 0.000 description 1
- FWHBBEZPJALIIF-UHFFFAOYSA-N COC(=O)C(CC1=CNC=N1)NC(C)=O Chemical compound COC(=O)C(CC1=CNC=N1)NC(C)=O FWHBBEZPJALIIF-UHFFFAOYSA-N 0.000 description 1
- HHOLXTXLQMKUGJ-UHFFFAOYSA-N COC(=O)C(CCCCN)NC(C)=O Chemical compound COC(=O)C(CCCCN)NC(C)=O HHOLXTXLQMKUGJ-UHFFFAOYSA-N 0.000 description 1
- YGEAEJNJEVNVLG-UHFFFAOYSA-N COC(CNC(C)=O)OC Chemical compound COC(CNC(C)=O)OC YGEAEJNJEVNVLG-UHFFFAOYSA-N 0.000 description 1
- DINIAWPGKVDSJD-UHFFFAOYSA-N COC1OC(CO)C(O)C(OC2OC(C(=O)O)C(OC3OC(CO)C(O)C(OC4OC(C(=O)O)C(OC)C(O)C4O)C3NC(C)=O)C(O)C2O)C1NC(C)=O Chemical compound COC1OC(CO)C(O)C(OC2OC(C(=O)O)C(OC3OC(CO)C(O)C(OC4OC(C(=O)O)C(OC)C(O)C4O)C3NC(C)=O)C(O)C2O)C1NC(C)=O DINIAWPGKVDSJD-UHFFFAOYSA-N 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- RZSYLLSAWYUBPE-UHFFFAOYSA-L Fast green FCF Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC(O)=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 RZSYLLSAWYUBPE-UHFFFAOYSA-L 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 241000722985 Fidia Species 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- BXRMEWOQUXOLDH-LURJTMIESA-N L-Histidine methyl ester Chemical compound COC(=O)[C@@H](N)CC1=CN=CN1 BXRMEWOQUXOLDH-LURJTMIESA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- ODYCAZSSUVCHNU-XLAORIBOSA-N Laurencin Natural products CC[C@H]1C[C@H](CC=CC[C@@H]1Br)[C@@H](CC=CC#C)OC(=O)C ODYCAZSSUVCHNU-XLAORIBOSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- 150000007945 N-acyl ureas Chemical class 0.000 description 1
- 206010073853 Osteochondral fracture Diseases 0.000 description 1
- 201000009859 Osteochondrosis Diseases 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229920001744 Polyaldehyde Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 241000219061 Rheum Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical class [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000897276 Termes Species 0.000 description 1
- 108060008539 Transglutaminase Proteins 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241001433070 Xiphoides Species 0.000 description 1
- DWAYENIPKPKKMV-ILKKLZGPSA-N [(2s)-3-(1h-imidazol-3-ium-4-yl)-1-methoxy-1-oxopropan-2-yl]azanium;dichloride Chemical compound Cl.Cl.COC(=O)[C@@H](N)CC1=CN=CN1 DWAYENIPKPKKMV-ILKKLZGPSA-N 0.000 description 1
- GSTNRQDHTULKSC-UHFFFAOYSA-N [H]N(C(C)=O)N([H])C(=O)CCC(=O)NCC(OC)OC Chemical compound [H]N(C(C)=O)N([H])C(=O)CCC(=O)NCC(OC)OC GSTNRQDHTULKSC-UHFFFAOYSA-N 0.000 description 1
- GPTRAEKKCJNZEX-UHFFFAOYSA-N [H]N(C(C)=O)N([H])C(=O)CCCCC(=O)NN Chemical compound [H]N(C(C)=O)N([H])C(=O)CCCCC(=O)NN GPTRAEKKCJNZEX-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000005882 aldol condensation reaction Methods 0.000 description 1
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 1
- 238000010640 amide synthesis reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 150000003939 benzylamines Chemical class 0.000 description 1
- 238000007068 beta-elimination reaction Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- NNTOJPXOCKCMKR-UHFFFAOYSA-N boron;pyridine Chemical compound [B].C1=CC=NC=C1 NNTOJPXOCKCMKR-UHFFFAOYSA-N 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- ULEAQRIQMIQDPJ-UHFFFAOYSA-N butane-1,2-diamine Chemical compound CCC(N)CN ULEAQRIQMIQDPJ-UHFFFAOYSA-N 0.000 description 1
- JDRMYOQETPMYQX-UHFFFAOYSA-N butanedioic acid monomethyl ester Natural products COC(=O)CCC(O)=O JDRMYOQETPMYQX-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000008619 cell matrix interaction Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 230000002648 chondrogenic effect Effects 0.000 description 1
- 239000000512 collagen gel Substances 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- QTCANKDTWWSCMR-UHFFFAOYSA-N costic aldehyde Natural products C1CCC(=C)C2CC(C(=C)C=O)CCC21C QTCANKDTWWSCMR-UHFFFAOYSA-N 0.000 description 1
- 239000011243 crosslinked material Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000003381 deacetylation reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- CCGKOQOJPYTBIH-UHFFFAOYSA-N ethenone Chemical compound C=C=O CCGKOQOJPYTBIH-UHFFFAOYSA-N 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 102000013373 fibrillar collagen Human genes 0.000 description 1
- 108060002894 fibrillar collagen Proteins 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N glucosamine group Chemical group OC1[C@H](N)[C@@H](O)[C@H](O)[C@H](O1)CO MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Substances CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 210000003035 hyaline cartilage Anatomy 0.000 description 1
- 229940014041 hyaluronate Drugs 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- SXZCBVCQHOJXDR-ILKKLZGPSA-N hydron;methyl (2s)-2,6-diaminohexanoate;dichloride Chemical compound Cl.Cl.COC(=O)[C@@H](N)CCCCN SXZCBVCQHOJXDR-ILKKLZGPSA-N 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- ISTFUJWTQAMRGA-UHFFFAOYSA-N iso-beta-costal Natural products C1C(C(=C)C=O)CCC2(C)CCCC(C)=C21 ISTFUJWTQAMRGA-UHFFFAOYSA-N 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 210000000982 limb bud Anatomy 0.000 description 1
- 108700041430 link Proteins 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N methanediimine Chemical compound N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- KQSSATDQUYCRGS-UHFFFAOYSA-N methyl glycinate Chemical compound COC(=O)CN KQSSATDQUYCRGS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000013048 microbiological method Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000004264 monolayer culture Methods 0.000 description 1
- RQUGVTLRYOAFLV-UHFFFAOYSA-N n-(4-aminobutyl)-4-azido-2-hydroxybenzamide Chemical compound NCCCCNC(=O)C1=CC=C(N=[N+]=[N-])C=C1O RQUGVTLRYOAFLV-UHFFFAOYSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000005305 organ development Effects 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 208000007656 osteochondritis dissecans Diseases 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000012048 reactive intermediate Substances 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- OARRHUQTFTUEOS-UHFFFAOYSA-N safranin Chemical compound [Cl-].C=12C=C(N)C(C)=CC2=NC2=CC(C)=C(N)C=C2[N+]=1C1=CC=CC=C1 OARRHUQTFTUEOS-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 210000001562 sternum Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 210000001258 synovial membrane Anatomy 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical class CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000008364 tissue synthesis Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 102000003601 transglutaminase Human genes 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 210000004127 vitreous body Anatomy 0.000 description 1
- 210000002417 xiphoid bone Anatomy 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- A61K31/726—Glycosaminoglycans, i.e. mucopolysaccharides
- A61K31/728—Hyaluronic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/08—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/20—Polysaccharides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0063—Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
- C08B37/0072—Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/70—Polysaccharides
- C12N2533/80—Hyaluronan
Definitions
- This invention is directed to biomaterials for spatially and temporally controlled delivery of bioactive agents such as drugs, growth factors, cytokines or cells.
- this invention teaches versatile methods for chemical crosslinking of high molecular weight hyaluronic acid under physiological conditions in situ, to form polymerizable biodegradable materials.
- the methods are based on the introduction of functional groups into hyaluronic-acid (HA) via formation of an active ester at the carboxylate of the glucuronic acid moiety as an intermediate and subsequent substitution with a side chain containing a nucleophilic group on one end and a (protected) functional group on the other end.
- the introduced functional groups allow for crosslinking of the HA derivatives.
- Crosslinked hyaluronic acid hydrogels of this invention are useful in various surgical applications and as a temporary scaffold for tissue regeneration, e.g., in cartilage repair.
- Chondrocytes may be obtained from a low-loaded area of a joint and proliferated in culture (see Grande; Brittberg; Shortkroff, supra), or mesenchymal stem cells may be harvested, e.g., from the iliac crest marrow, and induced to differentiate along the chondrocyte lineage using growth factors (Harada et al., Bone 9, 177-183 (1988); Wakitani et al., J. Bone Joint Surg. 76-A, 579-592 (1994)).
- the chondrocyte transplantation procedures currently attempted clinically, although promising, are hampered because technically they are very challenging, the cell preparation is very expensive, and the potential patient pool is limited by age, defect location, history of disease, etc.
- a second approach is aimed at the recruitment of mesenchymal stem cells from the surrounding connective tissue, e.g., synovium, using chemotactic and/or mitogenic factors (Hunziker and Rosenberg, J. Bone Joint Surg. 78-A, 721-733 (1996); see also U.S. Pat. No. 5,368,858).
- chemotactic and/or mitogenic factors Hunziker and Rosenberg, J. Bone Joint Surg. 78-A, 721-733 (1996); see also U.S. Pat. No. 5,368,858.
- the availability of growth factors and cytokines in recombinant form and the lack of complicated cell transplantation make this procedure a very attractive alternative.
- the shortcoming of both procedures is the difficulty to stably anchor the repair-inducing factors, whether tissue grafts, cells, or growth factors, within the defect site.
- Hyaluronic acid is unique among glycosaminoglycans in that it is not covalently bound to a polypeptide. HA is also unique in having a relatively simple structure of repeating nonsulfated disaccharide units composed of D-glucuronic acid (GIcUA) and N-acetyl-D-glucosamine (GIcNAc) (Scott et al., The Chemistry. Biology and Medical Applications of Hyaluronan and Its Derivatives , T. C. Laurent (ed.), Portland Press, London, (hereinafter “ Hyaluronan and Its Derivatives ”), pp. 7-15 (1998)). Its molecular mass is typically several million Daltons. HA is also referred to as hyaluronan or hyaluronate, and exists in several salt forms (see formula I).
- HA is an abundant component of cartilage and plays a key structural role in the organization of the cartilage extracellular matrix as an organizing structure for the assembly of aggrecan, the large cartilage proteoglycan (Laurent and Fraser, FASEB J. 6, 2397-2404 (1992); Morgelin et al., Biophys. Chem. 50, 113-128 (1994)).
- the noncovalent interactions of aggrecan and link protein with HA lead to the assembly of a large number of aggrecan molecules along the HA-chain and mediate retention of aggrecan in the tissue.
- the highly negatively charged aggrecan/HA assemblies are largely responsible for the viscoelastic properties of cartilage by immobilizing water molecules.
- a number of cell surface receptors for HA have been described and shown to play a critical role in the assembly of the pericellular matrix of chondrocytes and other cells, e.g., isoforms of CD44 and vertebrate homologues of Cdc37 (Knudson and Knudson, FASEB J. 7, 1233-1241 (1993); Grammatikakis et al., J. Biol. Chem. 270, 16198-16205 (1995)), or to be involved in receptor-mediated endocytosis and degradation of HA to control HA levels in tissues and body fluids (Laurent and Fraser, supra; Fraser et al., Hyaluronan and Its Derivatives , pp. 85-92 (1998)).
- HA and its salts are currently being used in therapy for arthropathies by intraarticular injection (Strachnan et al., Ann. Rheum. Dis. 49, 949-952 (1990); Adams, Hyaluronan and Its Derivatives , pp. 243-253 (1998)), in opthalmic surgery for intraocular lens implantation (Denlinger, Hyaluronan and Its Derivatives , pp.
- modified HA molecules show altered physical characteristics such as decreased solubility in water and/or the chemical reaction strategies used are not designed for crosslinking of HA under physiological conditions (in an aqueous environment, at pH 6.5-8.0).
- polyaldehydes can be generated by oxidizing sugars using periodate (Wong, CRC Press, Inc., Boca Rayton, Fla., pp. 27 (1993); European Patent No. 9615888).
- Periodate treatment oxidizes the proximal hydroxyl groups (at C2 and C3 carbons of glucuronic acid moiety) to aldehydes thereby opening the sugar ring to form a linear chain (Scheme 1).
- periodate oxidation allows for the formation of a large number of functional groups, the disadvantage is the loss of the native backbone structure. Consequently, the generated derivative may not be recognized as HA by cells.
- hydrogels formed by using periodate oxidized HA as a crosslinker e.g., in combination with the HA-amines described herein, showed very limited tissue transformation and poor cellular infiltration in the rat ectopic bone formation model ( FIG. 6 ). This is in sharp contrast to the HA-aldehyde derivatives described herein.
- HA derivatives and methodology for in situ polymerization thereof to provide a biodegradable scaffold for tissue regeneration.
- the HA materials can be polymerized in the presence of cells to serve as a vehicle for cell transplantation.
- Biomaterials for spatially and temporally controlled delivery of bioactive agents such as drugs, growth factors, cytokines or cells, are a key factor for tissue repair.
- in situ polymerizable biodegradable materials are needed for cartilage resurfacing that are designed to withstand the mechanical forces in a joint.
- hydrogels with modified hyaluronic acid and bifunctional crosslinkers or mixtures of hyaluronic acid carrying different functionalities using active ester- or aldehyde-mediated reactions Physical and chemical properties of the hydrogels of this invention were evaluated using biomechanical testing, and by assaying sensitivity towards degradation by glycosidases such as testicular hyaluronidase. Biocompatibility was evaluated using cell culture assays and subcutaneous implantation of the hyaluronic acid materials in rats.
- This in vivo assay is also the established model for induction of ectopic bone formation by members of the transforming growth factor ⁇ family (TGF- ⁇ ), and several crosslinked hyaluronic acid materials of this invention gave excellent ectopic bone formation in vivo when loaded with appropriate growth factor(s).
- TGF- ⁇ transforming growth factor ⁇ family
- compositions of the invention have many therapeutic uses.
- compositions of the invention may be used to stem hemorrhage in general surgery, reconstruct nerves and vessels in reconstructive, neuro- and plastic surgery, and to anchor skin, vascular, or cartilage transplants or grafts in orthopedic, vascular, and plastic surgery.
- Compositions of the invention are also useful as vehicles for the delivery of cells or bioactive molecules such as growth factors to stimulate focal repair. Local delivery of growth factors facilitates wound healing and tissue regeneration in many situations, not only in promoting bone formation and stimulating-cartilage repair in orthopedic procedures, but also, e.g., in treating pathological wound conditions such as chronic ulcers.
- compositions may also serve as a scaffold to generate artificial tissues through proliferation of autologous cells in culture.
- the anti-adhesive property of some compositions with respect to cells render such compositions particularly suitable to generate tissue separations and to prevent adhesions following surgery.
- the viscoelastic properties of HA make it particularly well suited for this purpose, and it is used clinically to achieve temporal pain relief by repeated intraarticular injections in arthropathies as a “joint lubricant”, as a protective agent for eye irritations and in ophthalmic surgery, as a barrier to cells in facial and other reconstructions in plastic surgery and dentistry, in reconstructive surgery of tendons, in surgical procedures in the urogenital system, and in thoracic surgery.
- compositions of the invention also renders them suitable for tissue augmentation in plastic surgery, where the HA matrix serves primarily as an inert biocompatible filler material (Balasz and Laurent, Hyaluronan and Its Derivatives , pp. 325-326 (1998)), e.g., for filling dermal creases or lip reconstruction.
- HA matrix serves primarily as an inert biocompatible filler material (Balasz and Laurent, Hyaluronan and Its Derivatives , pp. 325-326 (1998)), e.g., for filling dermal creases or lip reconstruction.
- HA hydrogels match several of the desired properties for a biodegradable material biocompatible with cells.
- the relatively simple repetitive structure of HA allows for specific modification and introduction of a large number of functional groups, for crosslinking to generate hydrogels with excellent physical properties.
- HA hydrogels have also successfully been used as a delivery vehicle in chondrocyte transplantation studies (Robinson et al., Calcif. Tissue Int. 46, 246-253 (1990)) and HA has proven its biocompatibility in various forms in clinical practice (for review see Laurent and Fraser, supra; Balazs and Laurent, supra).
- FIG. 1 shows the results of a ninhydrin test after reductive alkylation of HA and HA-aldehyde in the presence of putrescine. Reductive alkylation was carried out with an excess of putrescine in the presence of pyridine borane. HA or derivatives thereof were purified by repeated ethanol precipitation prior to detection of free amino groups on the HA chain by using the ninhydrin test (Sheng et al., Anal. Biochem. 211, 242-249 (1993)).
- FIG. 2 shows 1 H NMR of native HA ( FIG. 2A ) and an HA-derivative with protected aldehyde functionality ( FIG. 2B ) in D 2 O at 300 Mhz. Peaks are assigned as indicated on the structural formula.
- FIG. 3 shows 1 H NMR of HA-derivatives with amine functionality formed from putrescine ( FIG. 3A ), histidine ( FIG. 3B ), lysine ( FIG. 3C ), and adipic dihydrazide ( FIG. 3D ) in D 1 O at 300 Mhz. Peaks are assigned as indicated on the structural formula.
- FIG. 4 shows digestion of crosslinked HA hydrogels with hyaluronidase.
- HA-hydrogels were formed by crosslinking 12 mg/ml highly modified ( ⁇ 65-70%) HA-amine (adipic dihydrazido-HA) with 15 mg/ml (SPA) 2 -PEG. Gels were incubated with different concentrations of bovine testicular hyaluronidase for the indicated time and the degradation of the gels was measured by the release of glucuronic acid into the supernatant using the carbazole method (Bitter and Muir, Anal Biochem. 4, 330-334 (1962)).
- FIG. 4A HA-hydrogels were formed by crosslinking 12 mg/ml highly modified ( ⁇ 65-70%) HA-amine (adipic dihydrazido-HA) with 15 mg/ml (SPA) 2 -PEG. Gels were incubated with different concentrations of bovine testicular hyaluronidase
- HA-hydrogels were formed by crosslinking 12 mg/ml optimally modified ( ⁇ 20-25%) HA-amine (adipic dihydrazido-HA) with 15 mg/ml (SPA) 2 -PEG ( ⁇ ); 12 mg/ml highly modified ( ⁇ 65-70%) adipic dihydrazido-HA with 15 mg/ml (SPA) 2 -PEG ( ⁇ ); 12 mg/ml optimally modified ( ⁇ 20-25%) lysine methylester-HA with either 15 mg/ml (SPA) 2 -PEG ( ⁇ ) or 0.44 mg/ml glutaraldehyde ( ⁇ ), and 12 mg/ml optimally modified ( ⁇ 10-15%) diaminobutyl-HA with 15 mg/ml (SPA) 2 -PEG (o). Gels were incubated with different concentrations of bovine testicular hyaluronidase for the indicated time and the degradation of the gels was measured as in FIG. 4A above.
- FIG. 5 shows phase contrast images of cells cultured on different crosslinked HA hydrogels.
- FIG. 5A Dedifferentiated chondrocytes cultured on a hydrogel formed from highly modified ( ⁇ 65-70%) HA-amine (adipic dihydrazido-HA) crosslinked with 5 mg/ml (SPA) 2 -PEG aggregate as a consequence of inability to adhere to substratum.
- FIG. 5B Cells cultured on a hydrogel made up by the same HA-amine crosslinked with 0.25 mg/ml glutaraldehyde show a rounded morphology and no aggregation indicating that they are able to adhere to the substratum.
- FIG. 5A Dedifferentiated chondrocytes cultured on a hydrogel formed from highly modified ( ⁇ 65-70%) HA-amine (adipic dihydrazido-HA) crosslinked with 5 mg/ml (SPA) 2 -PEG aggregate as a consequence of inability to adhere to substra
- 5C Cells cultured on a hydrogel formed from the HA-amine (adipic dihydrazido-HA) modified to a degree of ⁇ 20-25% and crosslinked with 2 mg/ml (SPA) 2 -PEG adhere to the substratum, spread and subsequently infiltrate the hydrogel. All images show cells 24 h post seeding but morphology remains the same even after several days in culture.
- HA-amine adipic dihydrazido-HA
- SPA 2 mg/ml
- FIG. 6 shows in vivo evaluation of HA hydrogels formed from different HA derivatives using aldehyde-mediated crosslinking.
- Subcutaneous implantation in rats of HA hydrogels consisting of ( FIG. 6A ) 12 mg/mn optimally modified ( ⁇ 20-25%) HA-amine (adipic dihydrazido-HA) crosslinked with 0.25 mg/ml glutaraldehyde, ( FIG. 6B ) 7 mg/ml of the same HA-amine crosslinked with 7 mg/ml HA-aldehyde (periodate oxidized), ( FIG.
- FIG. 6C 7 mg/ml of the same HA-amine crosslinked with 7 mg/ml HA-aldehyde (deprotected amino-dimethyl acetal-HA, ⁇ 10-15% modified), or ( FIG. 6D ) 7 mg/ml of the same HA-amine crosslinked with 7 mg/ml HA-aldehyde (deprotected hydrazido-dimethyl acetal-HA, ⁇ 40-45% modified).
- the hydrogels also contained 1 mg/ml prefibrillized intact collagen type I, 200 ⁇ g/ml BMP-2 and 500 ng/ml IGF-1 to induce bone formation.
- Tissue specimens were harvested 10 days post implantation, fixed in formalin and processed for histology by paraffin embedding. Sections were stained with Haematoxylin/Eosin. mn, matrix material (note: matrix material shrinks during dehydration); s, skin (indicates orientation of implant).
- FIG. 7 shows in vivo evaluation of HA hydrogels crosslinked with different NHS-esters.
- Subcutaneous implantation in rats of HA hydrogels consisting of ( FIG. 7A ) 12 mg/ml highly modified ( ⁇ 65-70%) HA-amine (adipic dihydrazido-HA) crosslinked with 15 mg/nl (SPA) 2 -PEG, ( FIG. 7B ) 12 mg/ml optimally modified ( ⁇ 20-25%) HA-amine (adipic dihydrazido-HA) crosslinked with 15 mg/ml SPA 2 -PEG, or ( FIG.
- the hydrogels also contained 1 mg/ml prefibrillized intact collagen type I, 200 ⁇ g/ml BMP-2 and 50 ng/ml TGF- ⁇ 2 to induce bone formation.
- Tissue specimens were harvested 10 days post implantation, fixed in formalin and processed for histology by paraffin embedding. Sections were stained with Haematoxylin/Eosin. m, matrix material (note: matrix material shrinks during dehydration); s, skin (indicates orientation of implant).
- FIG. 8 shows differential effect of growth factors incorporated into HA hydrogels on tissue transformation.
- the hydrogels also contained 1 mg/ml prefibrillized intact collagen type I, and were supplemented either with 200 ⁇ g/ml BMP-2 and 500 ng/ml IGF-1 ( FIG. 8A ), or 200 ⁇ g/ml BMP-2 and 50 ng/ml TGF- ⁇ 2 ( FIG. 8B ).
- Tissue specimens were harvested 10 days post implantation, fixed in formalin and processed for histology by paraffin embedding. Sections were stained with Haematoxylin/Eosin.
- Scheme 1 illustrates periodate oxidation of hyaluronic acid.
- Scheme 2 illustrates coupling of amines to hyaluronic acid with EDC via an active triazole ester intermediate.
- Scheme 3 illustrates coupling of amines to hyaluronic acid with EDC via an active N-hydroxysuccinimde ester intermediate.
- Scheme 4 illustrates crosslinking of amnine functionalized hyaluronic acid with various bifunctional N-hydroxysuccinimde ester crosslinkers to form hydrogels.
- SPA SPA 2 -PEG; 2. DTSSP.
- Scheme 5 illustrates crosslinking of amine functionalized hyaluronic acid with glutaraldehyde to form hydrogels.
- glutaraldehyde is also known to undergo polymerization by aldol condensation yielding polymers with ⁇ , ⁇ -unsaturated aldehydes at neutral or slightly alkaline pH (Richards and Knowles, J. Mol. Biol. 37, 231-233 (1968)).
- nucleophilic addition of amines at the ethylenyl double bond creates a stable crosslink.
- Scheme 6 illustrates formation of hydrogels with aldehyde functionalized hyaluronic acid. (1. amine functionalized HA; 2. bifunctional amine)
- HA behaves like a hydrogel in an aqueous media even in the absence of crosslinks because it forms a network stabilized by hydrogen bonds and van der Waals forces (Laurent and Fraser, supra).
- Direct carbodiimide-mediated coupling of amines to the carboxyl group of HA in an aqueous environment e.g., with EDC (1-ethyl-3-[3-dimethylarninopropyl]carbodiimide)
- EDC 1-ethyl-3-[3-dimethylarninopropyl]carbodiimide
- HA is soluble in H 2 O or other aprotic polar solvents in native form and when prepared as a sodium salt or when prepared as a tetrabutylammonium salt as described in U.S. Pat. No. 4,957,744, respectively.
- Simple primary amines e.g., putrescine, which typically have pKa values>9 do not form significant amounts of adduct under acidic coupling conditions.
- the N-hydroxysulfosuccinimide-derived intermediate allows for the coupling reaction to be carried out at neutral pH (about 7.0 to 8.5) and consequently yields products by reaction with simple primary amines (Scheme 3).
- R and R′ are alkyl, aryl, alkylaryl or arylalkyl side chains which may contain hetero atoms such as oxygen, nitrogen, and sulfur.
- the side chain may be branched or unbranched, and be saturated or may contain one or more multiple bonds.
- the carbon atoms of the side chain may be continuous or may be separated by one or more functional groups such as an oxygen atom, a keto group, an amino group, an oxycarbonyl group, etc.
- the side chain may be substituted with aryl moieties or halogen atoms, or may in whole or in part be formed by ring structures such as cyclopentyl, cyclohexyl, cycloheptyl, etc.
- the side chain may have a terminal functional group for crosslinking such as aldehyde, amine, arylazide, hydrazide, maleimide, sulfhydryl, etc.
- the side chain may be a bioactive peptide, e.g., containing receptor binding sites, crosslinking sites for transglutarninases, or proteolytic cleavage sites.
- Terminal functional groups of the side chain useful for crosslinking of HA under physiological conditions may be selected from the following list:
- Arylazides e.g., 4-(p-azidosalicylamido)butylamine
- sulfhydryls e.g., S-methylsulfide cysteine H 2 N—R—SH (XI)
- Peptides e.g., H 2 N-APQQEA, comprising substrate sites for enzymatic crosslinking, e.g., by transglutarninases (Parameswaran et al., Proc. Natl. Acad. Sci. U.S.A. 87, 8472-8475 (1990); Hohenadl et al., J. Biol. Chem. 270, 23415-23420 (1995)).
- the carbodiimides useful in this reaction may be represented by the following formula: R—N ⁇ C ⁇ N—R′ (XII) wherein R and R′ comprise side chains of variable structure as described above in detail. Carbodiimides which are soluble in an aqueous media are preferred.
- the active ester may be of the following class and be formed by carbodiimide-mediated coupling of a compound for preparation of these active esters known to a person in the art:
- Triazole Esters e.g. 1-hydroxybenzotriazole
- a side chain containing a protected aldehyde in the form of an acetal was prepared as follows. N-(2,2-dimethoxyethyl)-4-(methoxycarbonyl)butanamide was obtained from aminoacet-aldehyde dimethyl acetal and mono-methyl succinate using EDC coupling. An amino group for the coupling to HA was subsequently introduced by reacting the product with hydrazine, yielding the desired side chain with the protected aldehyde, N-(2,2-dimethoxyethyl)-4-(hydrazido)butanamide. The side chain was coupled to HA using HOBT and EDC (Scheme 2).
- Diaminoethane, lysine methyl ester, histidine, and adipic, succinic or suberic dihydrazide was coupled to HA using HOBT and EDC (up to 5-fold excess depending on the desired degree of modification) and adjusting the pH to ⁇ 6.5 by repeated addition of 0.1M HCl during the reaction (Scheme 2).
- HA-derivatives were also prepared in a similar manner using N-hydroxysulfosuccinimide and primary amines containing unconjugated amino groups with a higher pKa (>9) such as 1,4-diaminobutane or 1,6 diaminohexane (Scheme 3).
- the HA derivatives were purified by repeated ethanol precipitation and by extensive dialysis, and the nature of the HA derivatives was confirmed by 1 H NMR ( FIG. 3 ).
- the degree of modification was calculated from the NMR data and found to be as high as 70%. Reaction conditions were subsequently adjusted such that a degree of modification of approximately 20% was achieved. Limiting the amount of carbodiimide proved to be most successful in controlling the degree of modification.
- a degree of modification of 10-25% yielded efficient crosslinking but also a molecule that would still be recognized by glycosidases and by HA receptors as HA and thus allow for recognition and processing of the material by cells (see below).
- the functionalized HA molecules can be crosslinked by reacting HA derivatives with different functionalities or using homo- or heterobifunctional crosslinkers which are available in large variety.
- the following basic reaction schemes are suitable for crosslinking of the described forms of modified HA (see Examples 9-12):
- HA-amine derivatives Mr ⁇ 10 6
- bifunctional active esters e.g. polyethyleneglycol-bis-succinimnidyl-propionate [(SPA) 2 -PEG] and reducible 3,3′-dithiobis(sulfo-succinimidyl-propionate) (DTSSP) (Scheme 4), or bifunctional aldehydes, e.g. glutaraldehyde (Scheme 5), generated excellent hydrogels.
- Stable gels could be formed by crosslinking 5 to 25 mg/ml HA derivative with >0.05 mM aldehyde or >0.2 mM active ester (numbers are reflecting functional group concentrations).
- Optimal gels were generated by crosslinking 10-15mg/ml HA derivative, modified to a degree of about 10-25%, with about 0.2 mM aldehyde or 0.6 mM active ester.
- crosslinking of the HA-aldehyde derivatives (Mr ⁇ 10 6 ) (optimally about 10-15 mg/ml) with bifunctional amines (optimally about 0.2 mM) yielded excellent gels (Scheme 6).
- Conjugated amines such as dihydrazines or benzylamines are required for in situ polymerization of HA in this case to resonance stabilize the instable Schiff base product formed by reaction of an aldehyde with a primary amine (i.e.
- Hydrogels were also formed from an equimolar mixture of HA-aldehyde derivatives and the different HA-amine derivatives (Scheme 6). Optimal gels were formed with ⁇ 15 mg/ml of the HA derivatives. At the optimal concentrations of HA and crosslinker, gelation occurred typically in about 30 sec. to 5 min. which is suitable for in situ polymerization.
- the crosslinked HA hydrogels were sensitive to glycosidases, i.e. testicular hyaluronidase, indicating that they are biodegradable ( FIG. 4 ).
- HA hydrogels with cell adhesion molecules such as fibronectin (in the range of 0.1 to 1 mg/ml) did induce adhesion and spreading of cells on the materials independent of the nature of the crosslinker and the crosslinking density, but did not change the results with regard to cell infiltration, demonstrating that the lack of infiltration is due to the high crosslinking density and not the absence of cell-matrix interactions. See below and FIG. 7 .
- cell adhesion molecules such as fibronectin
- Subcutaneous implantation of biomaterials in rats is the established model for evaluation of biocompatibility of biomaterials (Laurencin et al., J. Biomed. Mat. Res. 24, 1463-1481 (1990)) and for induction of ectopic bone formation by members of the TGF- ⁇ gene family, and bone morphogenetic proteins (BMP) in particular (Wang et al., Proc. Natl. Acad. Sci. U.S.A. 87, 2220-2224 (1990); Sampath et al., J. Biol. Chem. 267, 20352-20362 (1992)). Taking into consideration the cell culture results, we have formulated a number of HA hydrogels for in vivo biocompatibility testing in this model.
- FIGS. 6 and 7 Implantation of prepolymerized HA hydrogel discs loaded with recombinant BMP-2 and IGF-1 or TGF- ⁇ 2 subcutaneously in rats showed a mild fibrosis with a varying degree of cartilage and bone formation depending on the nature of the HA biomaterial ( FIGS. 6 and 7 ).
- the growth factors were mixed with the HA derivatives prior to gelling and the induction of bone formation suggests that neither reaction mechanism used for HA crosslinking (aldehyde or active ester-mediated reactions) significantly affected the biological activity of the growth factors. Little inflammation was observed with active ester crosslinked HA-amine derivatives ( FIG. 7 ) or with HA-amine derivatives crosslinked with various HA-aldehyde derivatives ( FIGS.
- the infiltration and transformation rate was similar with BMP-2/IGF-1 and BMP-2/TGF- ⁇ 2 loaded biomaterials, indicating that the resorption rate is a material property.
- the newly formed tissue was largely cartilage in the first group and largely bone in the second group ( FIG. 8 ), exemplifying the angiogenic effect of TGF- ⁇ 2 (Yang and Moses, J. Cell. Biol., 111, 731-741 (1990)).
- This demonstrates that the biological activity of the HA material can be modulated by inclusion of different bioactive factors.
- the lack of significant adverse effects and the demonstration of the desired biological activity of these novel HA biomaterials in vivo demonstrates their usefulness as a delivery vehicle for cells and growth factors in the field of tissue regeneration.
- HA a virus that has been used for the production of HA.
- Extraction from tissue typically uses fresh or frozen cocks' combs (U.S. Pat. No. 5,336,767), although other tissues including the synovial fluid of joints (Kvam et al., Anal. Biochem. 211, 44-49 (1993)), human umbilical cord tissue, bovine vitreous humor, and bovine tracheae, have been used.
- the HA raw material for preparing the compositions of the invention preferably consists of high molecular weight HA, more preferably of molecular weight greater than 0.5 million daltons, and more preferably of molecular weight greater than one million daltons.
- the HA raw material for the compositions of examples of this invention described herein was obtained from Genzyme Corp. (Cambridge, Mass.), and had a molecular weight greater than one million daltons. The size of the HA was unchanged after derivatization.
- compositions of the invention have many therapeutic uses.
- the fact that the compositions may be cured in a surgically practical time frame of one to five minutes in situ with concurrent crosslinking to the tissue surfaces allows for employment as a tissue glue.
- Many situations in various surgical applications require such adhesives.
- the compositions of the invention may be used to stem hemorrhage in general surgery, reconstruct nerves and vessels in reconstructive, neuro- and plastic surgery, and to anchor skin, vascular, or cartilage transplants or grafts in orthopedic, vascular, and plastic surgery.
- HA which affects the crosslinking density of the material and interaction with cellular proteins, including receptors and glycosidases
- concentration of the crosslinker which affects the crosslinking density of the material
- size of the generated cross-bridge which affects the pore size of the material
- nature of the crosslinking mechanism which determines polymerization time and the specificity of the reaction
- (5) the nature of the cross-bridge which provides biological cues. See FIGS. 4, 5 , and 7 for data concerning HA hydrogels with different crosslinking densities and pore sizes.
- active ester- or photo-crosslinking are preferred to form materials for applications requiring fast gelation and strong bonding with tissue surfaces, such as tissue glues.
- Materials with anti-adhesive properties which are useful to form tissue separations or for tissue augmentation, are formed from highly modified HA derivatives with low molecular weight crosslinkers, which generates a dense material with very small pores, thereby minimizing cell adhesion and infiltration.
- biodegradable scaffolds for tissue repair are formed from HA with a limited degree of derivativization and high molecular weight crosslinkers, which generate a porous, biodegradable material.
- the crossbridge may even contain biological cues, such as peptide sequences, which facilitate material degradation by, for example, proteolysis or cellular infiltration (e.g., the RGD sequence).
- compositions of this invention were designed to serve as a vehicle for the delivery of cells or bioactive molecules such as growth factors to stimulate focal repair.
- the crosslinked HA derivatives are porous hydrogels in which biologically or therapeutically active compounds (e.g., growth factors, cytokines, drugs, and the like) can be physically or chemically incorporated. These compounds will then be subject to sustained release by chemical, enzymatic, and physical erosion of the hydrogel and/or the covalent linkage between the HA chain and biologically active compound over a period of time. Local delivery of growth factors with such a scaffold facilitates wound healing and tissue regeneration in many situations.
- biologically or therapeutically active compounds e.g., growth factors, cytokines, drugs, and the like
- compositions of the invention may be used not only to promote bone formation and stimulate cartilage repair in orthopedic procedures, as described more fully below, but also to treat pathological wound conditions such as chronic ulcers. They may also serve as a scaffold to generate artificial tissues, e.g., cartilage (Hauselmann et al., Am. J. Physiol. 271, C742-752 (1996)), through proliferation of autologous cells in culture. Similar procedures for generation of equivalents of other tissues or organs, including skin, liver, and others, in culture may be developed in the future and may be used in combination with the compositions of the invention.
- cartilage Heauselmann et al., Am. J. Physiol. 271, C742-752 (1996)
- Similar procedures for generation of equivalents of other tissues or organs, including skin, liver, and others, in culture may be developed in the future and may be used in combination with the compositions of the invention.
- Highly crosslinked materials have an anti-adhesive property with respect to cells, and such compositions may be used to generate tissue separations and to prevent adhesions following surgery. See FIGS. 5A and 7C , showing highly modified HA-amine, i.e., adipic dihyrazido HA, preferably crosslinked with low molecular weight bifunctional NHS-ester.
- the viscoelastic properties of HA make it particularly well suited for this purpose, and it is used clinically to achieve temporal pain relief by repeated intraarticular injections in arthropathies as a “joint lubricant”, and as a protective agent for eye irritations and in ophthalmic surgery.
- the technique of tissue separation is used in facial reconstruction in plastic surgery and dentistry.
- compositions of the invention also renders them suitable for tissue augmentation in plastic surgery, where the HA matrix serves primarily as a biocompatible filler material, e.g., for filling dermal creases or lip reconstruction.
- a biocompatible filler material e.g., for filling dermal creases or lip reconstruction.
- HA hydroxyapatitin
- the half-life of pharmacological compounds, both synthetic and biological, has been shown to be drastically increased when delivered in a form conjugated to HA (Larsen and Balazs, Adv. Drug Delivery Rev. 7, 279-293 (1991), Drobnik, J., Drug Delivery Rev. 7, 295-308 (1991)).
- the functionalized forms of HA provided by this invention allow for easy substitution with pharmacologically active agents, such as anti-inflammatories, analgesics, steroids, cardiovascular agents, anti-tumor agents, immunosuppressants, sedatives, anti-bacterial, anti-fungal, and anti-viral agents, etc., and may be used for sustained drug release over time, either locally in hydrogel form or systemically in free form.
- pharmacologically active agents such as anti-inflammatories, analgesics, steroids, cardiovascular agents, anti-tumor agents, immunosuppressants, sedatives, anti-bacterial, anti-fungal, and
- the functionalized forms of HA of this invention have applications as a tissue glue or bioactive matrix material in the treatment of chondral and osteochondral fractures, osteochondritis dissecans, meniscal tears, as well as ruptured ligaments, tendons, or myotendineous junctions.
- the HA materials of this invention may serve to facilitate anchorage of chondral or osteochondral transplants or grafts, or other biological or artificial implant materials, or to stimulate new bone or cartilage formation by serving as a scaffold for cells or as a delivery vehicle for growth factors.
- One general approach to promote articular cartilage repair based on the compositions of the invention comprises using: (1) in situ polymerized HA hydrogel as a matrix to fill the defect which is to be repaired and to provide a scaffold for repair cells, (2) an optional chemotactic agent to attract repair cells to the matrix and defect site, or alternatively, autologous chondrocytes or mesenchymal stem cells, (3) an optional factor to promote cellular proliferation of repair cells in the matrix and defect site; (4) sustained release of a transforming factor by the HA hydrogel over time to promote differentiation of the repair cells into chondrocytes which produce new cartilage; and (5) an optional anti-angiogenic factor to prevent vascularization and endochondral ossification of the newly formed cartilage.
- suitable factors are known to those skilled in the art, and may be found in, e.g., U.S. Pat. No. 5,368,858.
- HA hydrogels Delivery of growth factors in active form may require supplementation of the HA hydrogels with additional ingredients, such as growth factor binding molecules like heparin and collagen.
- additional ingredients such as growth factor binding molecules like heparin and collagen.
- crosslinked hyaluronic acid hydrogels that are rapidly infiltrated by cells such as those formed from an HA-amine derivative crosslinked with a polyvalent high molecular weight NHS-ester crosslinker, e.g., (SPAs-PEG, are selected which are resorbed and replaced by repair tissue within about 2 to 3 weeks.
- cells and/or growth factors may be mixed in prior to gelling.
- the pH was subsequently adjusted to 7.0 with 1M NaOH and NaCl added to produce a 5% w/v solution.
- HA was precipitated by addition of three volume equivalents of ethanol.
- the precipitate was redissolved in H 2 O at a concentration of approximately 5 mg/ml and the precipitation repeated twice.
- the purified product was freeze dried and kept at 4° C. under N 2 . See FIG. 2B for NMR data of the product.
- HA-acetals to form HA-aldehydes The acetal modified HA(formula XII) was dissolved in H 2 O to a concentration of 5-10 mg/ml and 1M HCl was added to give a final concentration of 0.025M. The solution was then allowed to stand at room temperature for 0.5 to 1.0 h. The solution was neutralized by the addition of 1M NaOH, yielding the deprotected HA-aldehyde (formula XXII). HA—CO—R—CH(OCH 3 ) 2 (XXI) ⁇ HA—CO—R—CHO (XXII)
- Diaminoethane-HA (formula XXIII)—Sodium hyaluronate (100 mg, 0.25 mmol) and 1,2-diaminoethane HCl (0.998 g, 7.5 mmol) was dissolved in H 2 O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 6.5 and HOBT (169 mg, 1.25 mmol) predissolved in a 1:1 mixture of water and DMSO (1 ml) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCl added to produce a 5% w/v solution.
- HA was precipitated by addition of three volume equivalents of ethanol. The precipitate was redissolved in H 2 O at a concentration of approximately 5 mg/ml and the precipitation repeated twice. The purified product was freeze dried and kept at 4° C. under N 2 .
- L-Lysine methyl ester-HA (formula XXIV)—Sodium hyaluronate (100 mg, 0.25 mmol) and L-lysine methyl ester dihydrochloride (1.748 g, 7.5 mmol) was dissolved in H 2 O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 6.5 and HOBT (169 mg, 1.25 mmol) predissolved in a 1:1 mixture of water and DMSO (1 ml) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCl added to produce a 5% w/v solution.
- HA was precipitated by addition of three volume equivalents of ethanol.
- the precipitate was redissolved in H 2 O at a concentration of approximately 5 mg/ml and the precipitation repeated twice.
- the purified product was freeze dried and kept at 4° C. under N 2 . See FIG. 3C for NMR data of the product.
- L-Histidine methyl ester HA (formula XXV)—Sodium hyaluronate (100 mg, 0.25 mmol) and L-histidine methyl ester dihydrochloride (1.815 g, 7.5 mmol) was dissolved in H 2 O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 6.5 and HOBT(169 mg, 1.25 mmol) predissolved in a 1:1 mixture of H 2 O and DMSO (1 ml) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCl added to produce a 5% w/v solution.
- HA was precipitated by addition of three volume equivalents of ethanol.
- the precipitate was redissolved in H 2 O at a concentration of approximately 5 mg/ml and the precipitation repeated twice.
- the purified product was freeze dried and kept at 4° C. under N 2 . See FIG. 3B for NMR data of the product.
- Hydrazido-HA (formula XXVI)—Sodium hyaluronate (100 mg, 0.25 mmol) and dihydrazide i.e. adipic dihydrazide (1.31 g, 7.5 mmol) was dissolved in H 2 O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 6.5 and HOBT (169 mg, 1.25 mmol) predissolved in a 1:1 mixture of water and DMSO (1 ml) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1 M NaOH and NaCl added to produce a 5% w/v solution.
- HA was precipitated by addition of three volume equivalents of ethanol.
- the precipitate was redissolved in H 2 O at a concentration of approximately 5 mg/ml and the precipitation repeated twice.
- the purified product was freeze dried and kept at 4° C. under N 2 . See FIG. 3D for NMR data of the product.
- Diaminoalkyl-HA (formula XXVII)—Sodium hyaluronate (100 mg, 0.25 mmol) and a diaminoalkane, i.e. 1,2-diaminobutane HCl (1.208 g, 7.5 mmol) was dissolved in H 2 O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 7.5 and NHS.S0 3 Na (268 mg, 1.25 mmol) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCG added to produce a 5% w/v solution.
- HA was precipitated by addition of three volume equivalents of ethanol.
- the precipitate was redissolved in H 2 O at a concentration of approximately 5 mg/ml and the precipitation repeated twice.
- the purified product was freeze dried and kept at 4° C. under N 2 . See FIG. 3A for NMR data of the product.
- crosslinked HA hydrogels The general procedure for forming crosslinked HA hydrogels is as follows: Modified HA is dissolved by agitation in H 2 O or phosphate buffered saline (pH 7.4-8.5) at a concentration of 5-25 mg/ml. The degree of modification of the HA derivative is derived from the integration of the 1 H NMR peaks. After complete dissolution, the HA derivative solution is transferred to a 1 ml syringe. When reacting the HA derivatives with low molecular weight crosslinkers, a slight excess of the compound (about 1.1 molar equivalent of functional groups) is dissolved in a second 1 ml syringe in 1/10 of the HA derivative volume immediately prior to use.
- the syringes are connected while paying special attention to excluded air, the contents are rapidly mixed, typically with 20 passages, and then extruded.
- 0.5-1.0 equivalent of HA-aldehyde is mixed with 1 equivalent of HA-hydrazine, depending on the degree of modification of the HA derivatives.
- gelation occurs within about 30 seconds to several minutes, depending on the formulation, and the gel properties do not significantly change after approximately 5 minutes.
- HA hydrogels are formed in 1 ml syringes by crosslinking 12 mg/ml HA-amnine in phosphate buffered saline with various crosslinkers as indicated in FIG. 4 . Gelling is allowed to occur for 1 hour at 37° C. for the reaction to be complete, after which identical ⁇ 100 ⁇ l cylindrical gels are formed by cutting the syringes with a razor blade.
- the gels are incubated with different concentrations of bovine testicular hyaluronidase (Sigma) 50-5000 U/mL in 400 ⁇ l of 30 mM citric acid, 150 mM Na 2 HPO 4 , pH 6.3, 150 mM NaCl for the indicated time 0-48 hours. Degradation of the gels is determined from the release of glucuronic acid into the supernatant as measured using the carbazole method (Bitter and Muir, supra). See FIG. 4 .
- Crosslinked HA hydrogels as a matrix for cell culture Chodedrocytes were isolated from bovine nose cartilage according to established procedures (Hauselmann et al., Matrix 12, 116-129 (1992; Kuttner et al., J. Cell Biol. 93, 743-750 (1982)), cultured in Ham's F12 medium containing 5% fetal bovine serum and antibiotics, and dedifferentiated by monolayer culture on plastic.
- cells 2.5 ⁇ 10 5
- HA hydrogels were polymerized in 24-well plates ( ⁇ 15mm diameter and 3mm height) for 1 h at room temperature, and extensively rinsed with phosphate buffered saline. Cell adhesion molecules or chemotactic factors, e.g. IGF-1, were added to the HA solution prior to crosslinking when desired. After 24 h, cells (2.5 ⁇ 10 5 ) were seeded on top of the HA-hydrogels and cultured as above.
- gels were fixed in phosphate buffered 4% paraformaldehyde and processed for paraffin embedding. Cell infiltration was assessed by staining sections with Haematoxylin/Eosin. See FIG. 5 .
- HA hydrogels were polymerized in 3 ml syringes as described.
- Collagen fibrils were prepared by slow polymerization (from dilute solutions of 2-3 mg/ml) of acid-solubilized couagen in phosphate buffered saline and harvested by centrifugation following standard protocols (McPherson et al., Collagen Rel. Res. 5, 119-135 (1985)). Gelling of the HA hydrogels was allowed to occur for 24 h at room temperature for the reaction to be complete, after which identical ⁇ 3mm thick cylindrical gels were prepared by cutting the syringes with a razor blade. HA hydrogel discs were then placed in each pocket and the skin incisions closed with sutures. Ten days post operatively, the rats were euthanized and the appearance of the implant sites, i.e.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Polymers & Plastics (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Dermatology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cell Biology (AREA)
- Materials Engineering (AREA)
- Microbiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Transplantation (AREA)
- General Engineering & Computer Science (AREA)
- Surgery (AREA)
- Materials For Medical Uses (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Cosmetics (AREA)
- Medicinal Preparation (AREA)
Abstract
Methods for chemical modification of hyaluronic acid, formation of amine or aldehyde functionalized hyaluronic acid, and the cross-linking thereof to form hydrogels are provided. Functionalized hyaluronic acid hydrogels of this invention can be polymerized in situ, are biodegradable, and can serve as a tissue adhesive, a tissue separator, a drug delivery system, a matrix for cell cultures, and a temporary scaffold for tissue regeneration.
Description
- This invention is directed to biomaterials for spatially and temporally controlled delivery of bioactive agents such as drugs, growth factors, cytokines or cells. In particular, this invention teaches versatile methods for chemical crosslinking of high molecular weight hyaluronic acid under physiological conditions in situ, to form polymerizable biodegradable materials. The methods are based on the introduction of functional groups into hyaluronic-acid (HA) via formation of an active ester at the carboxylate of the glucuronic acid moiety as an intermediate and subsequent substitution with a side chain containing a nucleophilic group on one end and a (protected) functional group on the other end. The introduced functional groups allow for crosslinking of the HA derivatives. Crosslinked hyaluronic acid hydrogels of this invention are useful in various surgical applications and as a temporary scaffold for tissue regeneration, e.g., in cartilage repair.
- Repair of Articular Cartilage
- The failure of regenerating persistent hyaline cartilage by surgical procedures has prompted investigators to attempt repair using biological strategies. The biological repair of articular cartilage is, with a few exceptions, still at an experimental stage. Biological cartilage repair has been approached in two basic ways. First, autologous chondrocytes have been transplanted into a lesion to induce repair (Grande et al., J. Orthop. Res. 7, 208-214 (1989); Brittberg et al., New EngI. J. Med. 331, 889-895 (1994); Shortkroffet al., Biomaterials 17, 147-154 (1996)). Chondrocytes may be obtained from a low-loaded area of a joint and proliferated in culture (see Grande; Brittberg; Shortkroff, supra), or mesenchymal stem cells may be harvested, e.g., from the iliac crest marrow, and induced to differentiate along the chondrocyte lineage using growth factors (Harada et al., Bone 9, 177-183 (1988); Wakitani et al., J. Bone Joint Surg. 76-A, 579-592 (1994)). The chondrocyte transplantation procedures currently attempted clinically, although promising, are hampered because technically they are very challenging, the cell preparation is very expensive, and the potential patient pool is limited by age, defect location, history of disease, etc. Cells have also been transplanted into cartilage defects in the form of perichondral grafts, e.g., obtained from costal cartilage, but with limited success due to the limit in donor material and the complication of endochondral ossification of the graft site observed in longterm follow-up (Aniel et al., Connect. Tissue Res. 18, 27-39 (1988); O'Driscoll et al., J. Bone Joint Surg. 70-A, 595-606 (1988); Homminga et al., Acta Orthop. Scand. 326-329 (1989); Homminga et al., J. Bone Joint Surg. 72-B, 1003-1007 (1990)). A second approach is aimed at the recruitment of mesenchymal stem cells from the surrounding connective tissue, e.g., synovium, using chemotactic and/or mitogenic factors (Hunziker and Rosenberg, J. Bone Joint Surg. 78-A, 721-733 (1996); see also U.S. Pat. No. 5,368,858). The availability of growth factors and cytokines in recombinant form and the lack of complicated cell transplantation make this procedure a very attractive alternative. The shortcoming of both procedures is the difficulty to stably anchor the repair-inducing factors, whether tissue grafts, cells, or growth factors, within the defect site. Also, outlining of the space that is to be repaired, e.g., by filling it with a matrix material, appears to be crucial to recreate a level cartilage surface (Hunziker and Rosenberg, supra). Thus far, the availability of candidate matrix materials has been the limiting factor, and anchoring of materials seeded with chondrocytes and/or chondrogenic factors difficult, explaining the unsatisfactory results obtained with currently available materials such as polylactic acid and polyglycolic acid scaffolds (Freed et al., J. Biomed. Mat. Res. 28, 891-899 (1994); Chu et al., J. Biomed. Mat. Res. 29, 1147-1154 (1995)); calcium phosphate minerals (Nakahara et al., Clin. Orthop. 276, 291-298 (1992)), fibrin sealants (Itay et al., Clin. Orthop. 220, 284-303 (1987)), and collagen gels (Wakitani et al., J. Bone Joint Surg. 71-B, 74-80 (1989)). We have developed novel biodegradable materials based on hyaluronic acid which are optimized for the biological requirements posed on a repair material in a synovial joint and which allow in situ polymerization.
- Biology of Hyaluronic Acid and Its Therapeutic Use
- Hyaluronic acid (HA) is unique among glycosaminoglycans in that it is not covalently bound to a polypeptide. HA is also unique in having a relatively simple structure of repeating nonsulfated disaccharide units composed of D-glucuronic acid (GIcUA) and N-acetyl-D-glucosamine (GIcNAc) (Scott et al., The Chemistry. Biology and Medical Applications of Hyaluronan and Its Derivatives, T. C. Laurent (ed.), Portland Press, London, (hereinafter “Hyaluronan and Its Derivatives”), pp. 7-15 (1998)). Its molecular mass is typically several million Daltons. HA is also referred to as hyaluronan or hyaluronate, and exists in several salt forms (see formula I).
- HA is an abundant component of cartilage and plays a key structural role in the organization of the cartilage extracellular matrix as an organizing structure for the assembly of aggrecan, the large cartilage proteoglycan (Laurent and Fraser, FASEB J. 6, 2397-2404 (1992); Morgelin et al., Biophys. Chem. 50, 113-128 (1994)). The noncovalent interactions of aggrecan and link protein with HA lead to the assembly of a large number of aggrecan molecules along the HA-chain and mediate retention of aggrecan in the tissue. The highly negatively charged aggrecan/HA assemblies are largely responsible for the viscoelastic properties of cartilage by immobilizing water molecules. A number of cell surface receptors for HA have been described and shown to play a critical role in the assembly of the pericellular matrix of chondrocytes and other cells, e.g., isoforms of CD44 and vertebrate homologues of Cdc37 (Knudson and Knudson, FASEB J. 7, 1233-1241 (1993); Grammatikakis et al., J. Biol. Chem. 270, 16198-16205 (1995)), or to be involved in receptor-mediated endocytosis and degradation of HA to control HA levels in tissues and body fluids (Laurent and Fraser, supra; Fraser et al., Hyaluronan and Its Derivatives, pp. 85-92 (1998)). Blocking of the interaction of these receptors with HA in prechondrogenic micromass cultures from embryonic limb bud mesoderm inhibits chondrogenesis, indicating that the establishment and maintainance of a differentiated chondrocyte phenotype is at least in part dependent on HA and HA-receptor interactions (Maleski and Knudson, Exp. Cell. Res. 225, 55-66 (1996)).
- HA and its salts are currently being used in therapy for arthropathies by intraarticular injection (Strachnan et al., Ann. Rheum. Dis. 49, 949-952 (1990); Adams, Hyaluronan and Its Derivatives, pp. 243-253 (1998)), in opthalmic surgery for intraocular lens implantation (Denlinger, Hyaluronan and Its Derivatives, pp. 235-242 (1998), to promote wound healing in various tissues (King et al., Surgery 109, 76-84 (1991)), or more recently, in derivatized and/or crosslinked form to manufacture thin films which are used for tissue separation (for review see Laurent and Fraser, supra; Weiss, Hyaluronan and Its Derivatives, pp. 255-266 (1998); Larsen, Hyaluronan and Its Derivatives, pp. 267-281 (1998); Band, Hyaluronan and Its Derivatives, pp. 33-42 (1998)). Extensive efforts have been made by various laboratories to produce derivatives of HA with unique properties for specific biomedical applications. Most of the developments have been focusing on the production of materials such as films or sponges for implantation and the substitution of HA with therapeutic agents for delayed release and/or prolonged effect (for review see Band, supra; Prestwich et al., Hyaluronan and Its Derivatives, pp. 43-65 (1998); Gustafson, Hyaluronan and Its Derivatives, pp. 291-304 (1998)). Strategies have included esterification of HA (U.S. Pat. Nos. 4,957,744 and 5,336,767), acrylation of HA (U.S. Pat. No. 5,410,016), and cross-linking of HA using divinyl sulfone (U.S. Pat. No. 4,582,865) or glycidyl ether (U.S. Pat. No. 4,713,448). However, the modified HA molecules show altered physical characteristics such as decreased solubility in water and/or the chemical reaction strategies used are not designed for crosslinking of HA under physiological conditions (in an aqueous environment, at pH 6.5-8.0).
- It is well known that polyaldehydes can be generated by oxidizing sugars using periodate (Wong, CRC Press, Inc., Boca Rayton, Fla., pp. 27 (1993); European Patent No. 9615888). Periodate treatment oxidizes the proximal hydroxyl groups (at C2 and C3 carbons of glucuronic acid moiety) to aldehydes thereby opening the sugar ring to form a linear chain (Scheme 1). While periodate oxidation allows for the formation of a large number of functional groups, the disadvantage is the loss of the native backbone structure. Consequently, the generated derivative may not be recognized as HA by cells. In fact, hydrogels formed by using periodate oxidized HA as a crosslinker, e.g., in combination with the HA-amines described herein, showed very limited tissue transformation and poor cellular infiltration in the rat ectopic bone formation model (
FIG. 6 ). This is in sharp contrast to the HA-aldehyde derivatives described herein. - The introduction of free amino groups on HA, which could be used for further convenient coupling reactions under mild physiological conditions, has been a subject of great interest. Previous methods have produced a free amino group on high molecular weight HA by alkaline N-deacetylation of its glucosamine moiety (Curvall et al., Carbohydr. Res. 41, 235-239 (1975); Dahl et al., Anal. Biochem. 175, 397-407 (1988)). However, concomitant degradations of HA via beta-elimination in the glucuronic acid moiety was observed under the harsh reaction conditions needed. This is of particular concern because low molecular weight HA fragments, in contrast to high molecular weight HA, have been shown to be capable of provoking inflammatory responses (Noble et al., Hyaluronan and Its Derivatives, pp. 219-225 (1998)). An early report claimed that carbodilmide-catalyzed reaction of HA with glycine methyl ester, a monofunctional amine, led to the formation of an amide linkage (Danishefsky and Siskovic, Carbohydr. Res. 16, 199-201 (1971)). This however, has been proven by a number of studies not to be the case (Kuo et al., Bioconjugate Chem. 2, 232-241 (1991); Ogamo et al., Carboh dr. Res. 105, 69-85 (1982)). Under mildly acidic conditions the unstable intermediate O-acylisourea is readily formed, which in the absence of nucleophiles, rearranges by a cyclic electronic displacement to a stable N-acylurea (Kurzer and Douraghi-Zedeh, Chem. Rev. 67, 107-152 (1967)). This O→N migration of the O-acylisourea also occurs when the nucleophile is a primary amine (Kuo et al., supra) and any amide formation that does occur is insignificant as reported by Ogamo et al., supra. Experiments where high molecular weight HA (Mr˜2×10 Da) was reacted with an excess of the fluorescent label 5-aminofluorescine in the presence of the carbodiimide EDC achieved only 0.86% of theoretical labelling. The introduction of a terminal hydrazido group on HA with a variable spacer has recently been achieved and has led to the ability to conduct further coupling and crosslinking reactions (Pouyani and Prestwich, Bioconjugate Chem. 5, 339-347 (1994), U.S. Pat. Nos. 5,616,568, 5,652,347, and 5,502,08 1; Vercruysse et al., Bioconjupate Chem. 8, 686-694 (1997)).
- It is an objective of this invention to provide a method for more versatile modification of HA with various functional groups that allow for crosslinking of the HA derivatives under physiological conditions. It is another objective that the method of functionalization does not compromise the molecular weight or chemical identity (except of the target carboxyl group for coupling) of HA. It is a further objective that the method of functionalization provides HA molecules that are well tolerated in vivo and are biodegradable.
- It is also an objective of this invention to identify HA derivatives and methodology for in situ polymerization thereof to provide a biodegradable scaffold for tissue regeneration. It is another objective that the HA materials can be polymerized in the presence of cells to serve as a vehicle for cell transplantation. It is a further objective to provide methodology for functionalization and cross-linking of HA that allows for variations in the biomechanical properties of the formed gels as well as in the sensitivity to cellular infiltration and degradation.
- Biomaterials for spatially and temporally controlled delivery of bioactive agents such as drugs, growth factors, cytokines or cells, are a key factor for tissue repair. In particular, in situ polymerizable biodegradable materials are needed for cartilage resurfacing that are designed to withstand the mechanical forces in a joint. We have developed a versatile method for chemical crosslinking of high molecular weight hyaluronic acid under physiological conditions. The method is based on the introduction of functional groups into hyaluronic acid by formation of an active ester at the carboxylate of the glucuronic acid moiety and subsequent substitution with a side chain containing a nucleophilic group on one end and a (protected) functional group on the other end. We have formed hyaluronic acid with amino or aldehyde functionality, and formed hydrogels with modified hyaluronic acid and bifunctional crosslinkers or mixtures of hyaluronic acid carrying different functionalities using active ester- or aldehyde-mediated reactions. Physical and chemical properties of the hydrogels of this invention were evaluated using biomechanical testing, and by assaying sensitivity towards degradation by glycosidases such as testicular hyaluronidase. Biocompatibility was evaluated using cell culture assays and subcutaneous implantation of the hyaluronic acid materials in rats. This in vivo assay is also the established model for induction of ectopic bone formation by members of the transforming growth factor β family (TGF-β), and several crosslinked hyaluronic acid materials of this invention gave excellent ectopic bone formation in vivo when loaded with appropriate growth factor(s).
- As set forth below in the detailed description of the invention, the compositions of the invention have many therapeutic uses. For example, compositions of the invention may be used to stem hemorrhage in general surgery, reconstruct nerves and vessels in reconstructive, neuro- and plastic surgery, and to anchor skin, vascular, or cartilage transplants or grafts in orthopedic, vascular, and plastic surgery. Compositions of the invention are also useful as vehicles for the delivery of cells or bioactive molecules such as growth factors to stimulate focal repair. Local delivery of growth factors facilitates wound healing and tissue regeneration in many situations, not only in promoting bone formation and stimulating-cartilage repair in orthopedic procedures, but also, e.g., in treating pathological wound conditions such as chronic ulcers. These compositions may also serve as a scaffold to generate artificial tissues through proliferation of autologous cells in culture. On the other hand, the anti-adhesive property of some compositions with respect to cells render such compositions particularly suitable to generate tissue separations and to prevent adhesions following surgery. The viscoelastic properties of HA make it particularly well suited for this purpose, and it is used clinically to achieve temporal pain relief by repeated intraarticular injections in arthropathies as a “joint lubricant”, as a protective agent for eye irritations and in ophthalmic surgery, as a barrier to cells in facial and other reconstructions in plastic surgery and dentistry, in reconstructive surgery of tendons, in surgical procedures in the urogenital system, and in thoracic surgery. The injectable nature of the compositions of the invention also renders them suitable for tissue augmentation in plastic surgery, where the HA matrix serves primarily as an inert biocompatible filler material (Balasz and Laurent, Hyaluronan and Its Derivatives, pp. 325-326 (1998)), e.g., for filling dermal creases or lip reconstruction.
- HA hydrogels match several of the desired properties for a biodegradable material biocompatible with cells. The relatively simple repetitive structure of HA allows for specific modification and introduction of a large number of functional groups, for crosslinking to generate hydrogels with excellent physical properties. HA hydrogels have also successfully been used as a delivery vehicle in chondrocyte transplantation studies (Robinson et al., Calcif. Tissue Int. 46, 246-253 (1990)) and HA has proven its biocompatibility in various forms in clinical practice (for review see Laurent and Fraser, supra; Balazs and Laurent, supra).
- The reaction mechanisms we have explored for in situ polymerization of HA derivatives are compatible with an aqueous environment and are non-toxic to cells. The aldehyde-mediated crosslinking strategies follow reactions occurring physiologically in crosslinking of fibrillar collagens and elastin. NHS-esters provide an alternative for rapid formation of stable bonds under physiological conditions, primarily by reaction with primary amines. The technology of NHS-ester-mediated protein crosslinking has been developed for materials with applications in plastic surgery that require in situ polymerization (U.S. Pat. No. 5,413,791)).
-
FIG. 1 shows the results of a ninhydrin test after reductive alkylation of HA and HA-aldehyde in the presence of putrescine. Reductive alkylation was carried out with an excess of putrescine in the presence of pyridine borane. HA or derivatives thereof were purified by repeated ethanol precipitation prior to detection of free amino groups on the HA chain by using the ninhydrin test (Sheng et al., Anal. Biochem. 211, 242-249 (1993)). -
FIG. 2 shows 1H NMR of native HA (FIG. 2A ) and an HA-derivative with protected aldehyde functionality (FIG. 2B ) in D2O at 300 Mhz. Peaks are assigned as indicated on the structural formula. -
FIG. 3 shows 1H NMR of HA-derivatives with amine functionality formed from putrescine (FIG. 3A ), histidine (FIG. 3B ), lysine (FIG. 3C ), and adipic dihydrazide (FIG. 3D ) in D1O at 300 Mhz. Peaks are assigned as indicated on the structural formula. -
FIG. 4 shows digestion of crosslinked HA hydrogels with hyaluronidase. InFIG. 4A , HA-hydrogels were formed by crosslinking 12 mg/ml highly modified (˜65-70%) HA-amine (adipic dihydrazido-HA) with 15 mg/ml (SPA)2-PEG. Gels were incubated with different concentrations of bovine testicular hyaluronidase for the indicated time and the degradation of the gels was measured by the release of glucuronic acid into the supernatant using the carbazole method (Bitter and Muir, Anal Biochem. 4, 330-334 (1962)). InFIG. 4B , HA-hydrogels were formed by crosslinking 12 mg/ml optimally modified (˜20-25%) HA-amine (adipic dihydrazido-HA) with 15 mg/ml (SPA)2-PEG (⋄); 12 mg/ml highly modified (˜65-70%) adipic dihydrazido-HA with 15 mg/ml (SPA)2-PEG (Δ); 12 mg/ml optimally modified (˜20-25%) lysine methylester-HA with either 15 mg/ml (SPA)2-PEG (Λ) or 0.44 mg/ml glutaraldehyde (□), and 12 mg/ml optimally modified (˜10-15%) diaminobutyl-HA with 15 mg/ml (SPA)2-PEG (o). Gels were incubated with different concentrations of bovine testicular hyaluronidase for the indicated time and the degradation of the gels was measured as inFIG. 4A above. -
FIG. 5 shows phase contrast images of cells cultured on different crosslinked HA hydrogels.FIG. 5A : Dedifferentiated chondrocytes cultured on a hydrogel formed from highly modified (˜65-70%) HA-amine (adipic dihydrazido-HA) crosslinked with 5 mg/ml (SPA)2-PEG aggregate as a consequence of inability to adhere to substratum.FIG. 5B : Cells cultured on a hydrogel made up by the same HA-amine crosslinked with 0.25 mg/ml glutaraldehyde show a rounded morphology and no aggregation indicating that they are able to adhere to the substratum.FIG. 5C : Cells cultured on a hydrogel formed from the HA-amine (adipic dihydrazido-HA) modified to a degree of ˜20-25% and crosslinked with 2 mg/ml (SPA)2-PEG adhere to the substratum, spread and subsequently infiltrate the hydrogel. All images show cells 24 h post seeding but morphology remains the same even after several days in culture. -
FIG. 6 shows in vivo evaluation of HA hydrogels formed from different HA derivatives using aldehyde-mediated crosslinking. Subcutaneous implantation in rats of HA hydrogels consisting of (FIG. 6A ) 12 mg/mn optimally modified (˜20-25%) HA-amine (adipic dihydrazido-HA) crosslinked with 0.25 mg/ml glutaraldehyde, (FIG. 6B ) 7 mg/ml of the same HA-amine crosslinked with 7 mg/ml HA-aldehyde (periodate oxidized), (FIG. 6C ) 7 mg/ml of the same HA-amine crosslinked with 7 mg/ml HA-aldehyde (deprotected amino-dimethyl acetal-HA, ˜10-15% modified), or (FIG. 6D ) 7 mg/ml of the same HA-amine crosslinked with 7 mg/ml HA-aldehyde (deprotected hydrazido-dimethyl acetal-HA, ˜40-45% modified). The hydrogels also contained 1 mg/ml prefibrillized intact collagen type I, 200 μg/ml BMP-2 and 500 ng/ml IGF-1 to induce bone formation. Tissue specimens were harvested 10 days post implantation, fixed in formalin and processed for histology by paraffin embedding. Sections were stained with Haematoxylin/Eosin. mn, matrix material (note: matrix material shrinks during dehydration); s, skin (indicates orientation of implant). -
FIG. 7 shows in vivo evaluation of HA hydrogels crosslinked with different NHS-esters. Subcutaneous implantation in rats of HA hydrogels consisting of (FIG. 7A ) 12 mg/ml highly modified (˜65-70%) HA-amine (adipic dihydrazido-HA) crosslinked with 15 mg/nl (SPA)2-PEG, (FIG. 7B ) 12 mg/ml optimally modified (˜20-25%) HA-amine (adipic dihydrazido-HA) crosslinked with 15 mg/ml SPA2-PEG, or (FIG. 7C ) 12 mg/ml of the same optimally modified F-Lamine crosslinked with 3 mg/ml DTSSP (crosslinker concentrations are equal on a molar basis). The hydrogels also contained 1 mg/ml prefibrillized intact collagen type I, 200 μg/ml BMP-2 and 50 ng/ml TGF-β2 to induce bone formation. Tissue specimens were harvested 10 days post implantation, fixed in formalin and processed for histology by paraffin embedding. Sections were stained with Haematoxylin/Eosin. m, matrix material (note: matrix material shrinks during dehydration); s, skin (indicates orientation of implant). -
FIG. 8 shows differential effect of growth factors incorporated into HA hydrogels on tissue transformation. Subcutaneous implantation in rats of the HA hydrogel formed from 12 mg/ml optimally modified (˜20-25%) HA-amine (adipic dihydrazido-HA) crosslinked with 15 mg/ml (SPA)1-PEG. The hydrogels also contained 1 mg/ml prefibrillized intact collagen type I, and were supplemented either with 200 μg/ml BMP-2 and 500 ng/ml IGF-1 (FIG. 8A ), or 200 μg/ml BMP-2 and 50 ng/ml TGF-β2 (FIG. 8B ). Tissue specimens were harvested 10 days post implantation, fixed in formalin and processed for histology by paraffin embedding. Sections were stained with Haematoxylin/Eosin. -
Scheme 1 illustrates periodate oxidation of hyaluronic acid. -
Scheme 2 illustrates coupling of amines to hyaluronic acid with EDC via an active triazole ester intermediate. -
Scheme 3 illustrates coupling of amines to hyaluronic acid with EDC via an active N-hydroxysuccinimde ester intermediate. -
Scheme 4 illustrates crosslinking of amnine functionalized hyaluronic acid with various bifunctional N-hydroxysuccinimde ester crosslinkers to form hydrogels. (1. (SPA)2-PEG; 2. DTSSP). -
Scheme 5 illustrates crosslinking of amine functionalized hyaluronic acid with glutaraldehyde to form hydrogels. In addition to the conventional reaction of aldehydes with amines that results in the formation of a Schiff base, glutaraldehyde is also known to undergo polymerization by aldol condensation yielding polymers with α,β-unsaturated aldehydes at neutral or slightly alkaline pH (Richards and Knowles, J. Mol. Biol. 37, 231-233 (1968)). Subsequent, nucleophilic addition of amines at the ethylenyl double bond creates a stable crosslink. -
- Using the methods of our invention, we generate an activated form of HA that differs minimally from native HA to conserve its unique physico-chemical properties. We also effect a minimal change affecting only a relatively small number of dissaccharide units of native HA so that we do not alter its property to serve as a cell substratum.
- We initially attempted to generate an aldehyde derivative of HA by reduction of the carboxyl groups of the glucuronic acid moieties into aldehydes using 9-borabicyclo-3,3-nonane, a method that allows direct conversion of the carboxylic acid into the aldehyde (Cha et al., Bull. Korean Chem. Soc. 9, 48-52 (1988), Cha et al., Org. Prep. Proc. Int. 21, 451-477 (1989)):
HA—COOH (I)→HA—CHO (II) - However, even though preliminary testing indicated the conversion of the carboxyl groups into aldehydes to a degree of approximately 5-10% (
FIG. 1 ), mixtures of concentrated, viscous HA-aldehyde solutions (˜10 mg/ml) with ‘small’ polyarnines such as putrescine, lysine, polylysine, histidine, or polyhistidine did not generate stable gels in a reasonable time frame to be suitable for in situ polymerization. It is important to note that the chemical properties of HA are determined not merely by its functional groups per se but also by the accessibility of these functional groups of HA in an aqueous environment, which is related to the overall conformational structure and rheological properties of HA. HA behaves like a hydrogel in an aqueous media even in the absence of crosslinks because it forms a network stabilized by hydrogen bonds and van der Waals forces (Laurent and Fraser, supra). To increase the accessibility of functional groups, we introduced a spacer between the functional group and the HA chain. - Introducing a Functionalized Side Chain Onto HA
- We subsequently developed methodology for introducing side chains into HA by carbodimide-mediated coupling of primary or secondary amines to the carboxyl group of the glucuronic acid moiety using an active ester intermediate. We have used this methodology to generate HA with different terminal functional groups for crosslinking including acetals, aldehydes, amines, and hydrazides. A wide range of functionalized amines are commercially available which allows us to introduce a wide variety of different functional groups useful for crosslinking under physiological conditions using this methodology, including maleimides that react specifically with sulfflydryls or arylazides for photocrosslinking besides the amines and aldehydes described below.
- Direct carbodiimide-mediated coupling of amines to the carboxyl group of HA in an aqueous environment, e.g., with EDC (1-ethyl-3-[3-dimethylarninopropyl]carbodiimide), does not yield the predicted product since the O-acyl isourea that is formed as a reactive intermediate rearranges rapidly to a stable N-acyl urea (Kuo et al., supra). We have demonstrated that by “rescuing” the active O-acyl isourea by formation of a more hydrolysis resistant and non-rearrangable active ester intermediate, the coupling of primary amines to HA is possible. A wide variety of active carboxylic esters exist and could be formed for further reaction including NHS-esters, nitrophenol esters, triazole esters, sulfonic esters, etc., as long as the reagent for their preparation is soluble in H2O or in other polar solvents such as dimethylsulfoxide or dimethylformamide. HA is soluble in H2O or other aprotic polar solvents in native form and when prepared as a sodium salt or when prepared as a tetrabutylammonium salt as described in U.S. Pat. No. 4,957,744, respectively. We have formed active esters of HA with 1-hydroxybenzotriazole (HOBT) or N-hydroxysulfo-succinimide using the H2O soluble carbodiimide EDC for coupling. Nucleophilic addition to the ester formed from HOBT requires the amine to be presented in unprotonated form at acidic pH (about 5.5 to 7.0). Only a limited number of amines including hydrazines and activated amines, e.g., ethylene diamine, have pKa values in a suitable range and are consequently unprotonated and reactive with the ester-intermediate formed with HOBT (Scheme 2). Simple primary amines, e.g., putrescine, which typically have pKa values>9 do not form significant amounts of adduct under acidic coupling conditions. The N-hydroxysulfosuccinimide-derived intermediate allows for the coupling reaction to be carried out at neutral pH (about 7.0 to 8.5) and consequently yields products by reaction with simple primary amines (Scheme 3).
- Consequently, this methodology allows for the following reactions to be carried out:
HA—COOH (I)+H2N—R (III)→HA—CO—NH—R (IV)
HA—COOH (I)+R′—NH—R (V)→HA—CO—NR′—R (VI)
wherein R and R′ are alkyl, aryl, alkylaryl or arylalkyl side chains which may contain hetero atoms such as oxygen, nitrogen, and sulfur. The side chain may be branched or unbranched, and be saturated or may contain one or more multiple bonds. The carbon atoms of the side chain may be continuous or may be separated by one or more functional groups such as an oxygen atom, a keto group, an amino group, an oxycarbonyl group, etc. The side chain may be substituted with aryl moieties or halogen atoms, or may in whole or in part be formed by ring structures such as cyclopentyl, cyclohexyl, cycloheptyl, etc. The side chain may have a terminal functional group for crosslinking such as aldehyde, amine, arylazide, hydrazide, maleimide, sulfhydryl, etc. The side chain may be a bioactive peptide, e.g., containing receptor binding sites, crosslinking sites for transglutarninases, or proteolytic cleavage sites. - Terminal functional groups of the side chain useful for crosslinking of HA under physiological conditions may be selected from the following list:
- 1. Aldehydes, see Examples
H2N—R—CHO (VII) - 2. Amines, see Examples
H2N—R—NH1 (VIII) -
-
- 5. sulfhydryls, e.g., S-methylsulfide cysteine
H2N—R—SH (XI) - 6. Peptides, e.g., H2N-APQQEA, comprising substrate sites for enzymatic crosslinking, e.g., by transglutarninases (Parameswaran et al., Proc. Natl. Acad. Sci. U.S.A. 87, 8472-8475 (1990); Hohenadl et al., J. Biol. Chem. 270, 23415-23420 (1995)).
- The carbodiimides useful in this reaction may be represented by the following formula:
R—N═C═N—R′ (XII)
wherein R and R′ comprise side chains of variable structure as described above in detail. Carbodiimides which are soluble in an aqueous media are preferred. - The active ester may be of the following class and be formed by carbodiimide-mediated coupling of a compound for preparation of these active esters known to a person in the art:
-
-
-
- A side chain containing a protected aldehyde in the form of an acetal was prepared as follows. N-(2,2-dimethoxyethyl)-4-(methoxycarbonyl)butanamide was obtained from aminoacet-aldehyde dimethyl acetal and mono-methyl succinate using EDC coupling. An amino group for the coupling to HA was subsequently introduced by reacting the product with hydrazine, yielding the desired side chain with the protected aldehyde, N-(2,2-dimethoxyethyl)-4-(hydrazido)butanamide. The side chain was coupled to HA using HOBT and EDC (Scheme 2). An acetal side chain with a simple primary amine, 1-aminoethyl-dimethylacetal, was conjugated to HA using N-hydroxysuccinimide and EDC (Scheme 3). The HA-derivatives were purified by ethanol precipitation. The nature of the HA-derivatives was confirmed by 1H NMR (
FIG. 2 ). The HA-acetal derivatives are easily activated to the reactive aldehydes by mild acid treatment. Other HA-aldehyde derivatives with variations in the length of the side chain have been prepared in a similar manner. See Examples 1-3. - Preparation of HA-amine Derivatives
- Diaminoethane, lysine methyl ester, histidine, and adipic, succinic or suberic dihydrazide was coupled to HA using HOBT and EDC (up to 5-fold excess depending on the desired degree of modification) and adjusting the pH to ˜6.5 by repeated addition of 0.1M HCl during the reaction (Scheme 2). HA-derivatives were also prepared in a similar manner using N-hydroxysulfosuccinimide and primary amines containing unconjugated amino groups with a higher pKa (>9) such as 1,4-diaminobutane or 1,6 diaminohexane (Scheme 3). The HA derivatives were purified by repeated ethanol precipitation and by extensive dialysis, and the nature of the HA derivatives was confirmed by 1H NMR (
FIG. 3 ). The degree of modification was calculated from the NMR data and found to be as high as 70%. Reaction conditions were subsequently adjusted such that a degree of modification of approximately 20% was achieved. Limiting the amount of carbodiimide proved to be most successful in controlling the degree of modification. A degree of modification of 10-25% yielded efficient crosslinking but also a molecule that would still be recognized by glycosidases and by HA receptors as HA and thus allow for recognition and processing of the material by cells (see below). Similar HA derivatives were synthesized using succinic, adipic or suberic dihydrazide or diaminoethane, -butane, or -hexane to study the effect of the length of the spacer separating the introduced functional group from the HA-chain on the subsequent crosslinking. See Examples 4-8. - Crosslinked HA Hydrogels
- The functionalized HA molecules can be crosslinked by reacting HA derivatives with different functionalities or using homo- or heterobifunctional crosslinkers which are available in large variety. The following basic reaction schemes are suitable for crosslinking of the described forms of modified HA (see Examples 9-12):
- 1. Aldehyde-Mediated Crosslinking
R1—CHO+H2N—R2→R1—CH═N—R2 -
-
-
- 5. Enzymatic Crosslinking (transglutaminase)
R1—(CH)2—CONH2+H2N—R2→R1—(CH)2—CO—NH—R2 - Crosslinking of the HA-amine derivatives (Mr˜106) with bifunctional active esters, e.g. polyethyleneglycol-bis-succinimnidyl-propionate [(SPA)2-PEG] and reducible 3,3′-dithiobis(sulfo-succinimidyl-propionate) (DTSSP) (Scheme 4), or bifunctional aldehydes, e.g. glutaraldehyde (Scheme 5), generated excellent hydrogels. Stable gels could be formed by crosslinking 5 to 25 mg/ml HA derivative with >0.05 mM aldehyde or >0.2 mM active ester (numbers are reflecting functional group concentrations). Optimal gels were generated by crosslinking 10-15mg/ml HA derivative, modified to a degree of about 10-25%, with about 0.2 mM aldehyde or 0.6 mM active ester. Similarly, crosslinking of the HA-aldehyde derivatives (Mr˜106) (optimally about 10-15 mg/ml) with bifunctional amines (optimally about 0.2 mM) yielded excellent gels (Scheme 6). Conjugated amines such as dihydrazines or benzylamines are required for in situ polymerization of HA in this case to resonance stabilize the instable Schiff base product formed by reaction of an aldehyde with a primary amine (i.e. hydrazines yield a more stable hydrazone linkage). Hydrogels were also formed from an equimolar mixture of HA-aldehyde derivatives and the different HA-amine derivatives (Scheme 6). Optimal gels were formed with ˜15 mg/ml of the HA derivatives. At the optimal concentrations of HA and crosslinker, gelation occurred typically in about 30 sec. to 5 min. which is suitable for in situ polymerization. The crosslinked HA hydrogels were sensitive to glycosidases, i.e. testicular hyaluronidase, indicating that they are biodegradable (
FIG. 4 ). - A number of different tests including cell culture assays and animal experiments served to assess biocompatibilty of the formulated biomaterials. Embedding of chondrocytes into the polymerizing HA hydrogels showed that neither aldehyde nor NHS-ester-mediated crosslinking was toxic to cells at the concentrations employed. Seeding of cells on top of prepolymerized HA hydrogels showed a wide variety of cellular behaviours depending on the nature of the crosslinker and crosslinking density (
FIG. 5 ). Highly crosslinked HA hydrogels were impenetrable to cells (FIGS. 5 , A and B), while optimally crosslinked gels were infiltrated (FIG. 5C ). Supplementation of the HA hydrogels with cell adhesion molecules such as fibronectin (in the range of 0.1 to 1 mg/ml) did induce adhesion and spreading of cells on the materials independent of the nature of the crosslinker and the crosslinking density, but did not change the results with regard to cell infiltration, demonstrating that the lack of infiltration is due to the high crosslinking density and not the absence of cell-matrix interactions. See below andFIG. 7 . - Subcutaneous implantation of biomaterials in rats is the established model for evaluation of biocompatibility of biomaterials (Laurencin et al., J. Biomed. Mat. Res. 24, 1463-1481 (1990)) and for induction of ectopic bone formation by members of the TGF-β gene family, and bone morphogenetic proteins (BMP) in particular (Wang et al., Proc. Natl. Acad. Sci. U.S.A. 87, 2220-2224 (1990); Sampath et al., J. Biol. Chem. 267, 20352-20362 (1992)). Taking into consideration the cell culture results, we have formulated a number of HA hydrogels for in vivo biocompatibility testing in this model. Implantation of prepolymerized HA hydrogel discs loaded with recombinant BMP-2 and IGF-1 or TGF-β2 subcutaneously in rats showed a mild fibrosis with a varying degree of cartilage and bone formation depending on the nature of the HA biomaterial (
FIGS. 6 and 7 ). The growth factors were mixed with the HA derivatives prior to gelling and the induction of bone formation suggests that neither reaction mechanism used for HA crosslinking (aldehyde or active ester-mediated reactions) significantly affected the biological activity of the growth factors. Little inflammation was observed with active ester crosslinked HA-amine derivatives (FIG. 7 ) or with HA-amine derivatives crosslinked with various HA-aldehyde derivatives (FIGS. 6B-6D ) while a stimulation of foreign body giant cells was seen when the same HA-amine derivatives were crosslinked with glutaraldehyde (FIG. 6A ). The degree of modification of HA strongly affected the resorption and transformation rate of the biomaterials (FIGS. 7A, 7B ). Nevertheless, limited bone formation was seen even with a biomaterial formed from a highly modified (65-70%) HA-amine derivative (FIG. 7A ). The absence of bone formation with a smaller bifunctional NHS-ester crosslinker indicates that the size of the generated crossbridge is crucial for resorption and cellular infiltration (FIG. 7C ). This is probably due to the difference in pore size of the material formed with crosslinkers of different sizes. The infiltration and transformation rate was similar with BMP-2/IGF-1 and BMP-2/TGF-β2 loaded biomaterials, indicating that the resorption rate is a material property. However, at ten days post-implantation, the newly formed tissue was largely cartilage in the first group and largely bone in the second group (FIG. 8 ), exemplifying the angiogenic effect of TGF-β2 (Yang and Moses, J. Cell. Biol., 111, 731-741 (1990)). This demonstrates that the biological activity of the HA material can be modulated by inclusion of different bioactive factors. The lack of significant adverse effects and the demonstration of the desired biological activity of these novel HA biomaterials in vivo demonstrates their usefulness as a delivery vehicle for cells and growth factors in the field of tissue regeneration. - There are several approaches to the production of HA, including extraction from tissue and biosynthesis. Extraction from tissue typically uses fresh or frozen cocks' combs (U.S. Pat. No. 5,336,767), although other tissues including the synovial fluid of joints (Kvam et al., Anal. Biochem. 211, 44-49 (1993)), human umbilical cord tissue, bovine vitreous humor, and bovine tracheae, have been used. It is also possible to prepare HA by microbiological methods, such as by cultivating a microorganism belonging to the genus Streptococcus which is anhemolytic and capable of producing HA in a culture medium (U.S. Pat. Nos. 4,897,349; 4,801,539; 4,780,414; 4,517,295; 5,316,926). The HA raw material for preparing the compositions of the invention preferably consists of high molecular weight HA, more preferably of molecular weight greater than 0.5 million daltons, and more preferably of molecular weight greater than one million daltons. The HA raw material for the compositions of examples of this invention described herein was obtained from Genzyme Corp. (Cambridge, Mass.), and had a molecular weight greater than one million daltons. The size of the HA was unchanged after derivatization.
- The compositions of the invention have many therapeutic uses. The fact that the compositions may be cured in a surgically practical time frame of one to five minutes in situ with concurrent crosslinking to the tissue surfaces allows for employment as a tissue glue. Many situations in various surgical applications require such adhesives. For example, the compositions of the invention may be used to stem hemorrhage in general surgery, reconstruct nerves and vessels in reconstructive, neuro- and plastic surgery, and to anchor skin, vascular, or cartilage transplants or grafts in orthopedic, vascular, and plastic surgery. Those of skill in the art may choose and design particular embodiments of the invention which are particularly suitable for a desired application, by adjusting several factors, including: (1) the degree of functionalization of HA, which affects the crosslinking density of the material and interaction with cellular proteins, including receptors and glycosidases; (2) the concentration of the crosslinker, which affects the crosslinking density of the material; (3) the size of the generated cross-bridge, which affects the pore size of the material; (4) the nature of the crosslinking mechanism, which determines polymerization time and the specificity of the reaction; and (5) the nature of the cross-bridge, which provides biological cues. See
FIGS. 4, 5 , and 7 for data concerning HA hydrogels with different crosslinking densities and pore sizes. Generally, active ester- or photo-crosslinking are preferred to form materials for applications requiring fast gelation and strong bonding with tissue surfaces, such as tissue glues. Materials with anti-adhesive properties, which are useful to form tissue separations or for tissue augmentation, are formed from highly modified HA derivatives with low molecular weight crosslinkers, which generates a dense material with very small pores, thereby minimizing cell adhesion and infiltration. Conversely, biodegradable scaffolds for tissue repair are formed from HA with a limited degree of derivativization and high molecular weight crosslinkers, which generate a porous, biodegradable material. The crossbridge may even contain biological cues, such as peptide sequences, which facilitate material degradation by, for example, proteolysis or cellular infiltration (e.g., the RGD sequence). - Compositions of this invention were designed to serve as a vehicle for the delivery of cells or bioactive molecules such as growth factors to stimulate focal repair. The crosslinked HA derivatives are porous hydrogels in which biologically or therapeutically active compounds (e.g., growth factors, cytokines, drugs, and the like) can be physically or chemically incorporated. These compounds will then be subject to sustained release by chemical, enzymatic, and physical erosion of the hydrogel and/or the covalent linkage between the HA chain and biologically active compound over a period of time. Local delivery of growth factors with such a scaffold facilitates wound healing and tissue regeneration in many situations. For example, the compositions of the invention may be used not only to promote bone formation and stimulate cartilage repair in orthopedic procedures, as described more fully below, but also to treat pathological wound conditions such as chronic ulcers. They may also serve as a scaffold to generate artificial tissues, e.g., cartilage (Hauselmann et al., Am. J. Physiol. 271, C742-752 (1996)), through proliferation of autologous cells in culture. Similar procedures for generation of equivalents of other tissues or organs, including skin, liver, and others, in culture may be developed in the future and may be used in combination with the compositions of the invention.
- Highly crosslinked materials have an anti-adhesive property with respect to cells, and such compositions may be used to generate tissue separations and to prevent adhesions following surgery. See
FIGS. 5A and 7C , showing highly modified HA-amine, i.e., adipic dihyrazido HA, preferably crosslinked with low molecular weight bifunctional NHS-ester. The viscoelastic properties of HA make it particularly well suited for this purpose, and it is used clinically to achieve temporal pain relief by repeated intraarticular injections in arthropathies as a “joint lubricant”, and as a protective agent for eye irritations and in ophthalmic surgery. The technique of tissue separation is used in facial reconstruction in plastic surgery and dentistry. Prevention of the formation of adhesions is particularly relevant in reconstructive surgery of tendons, in surgical procedures in the urogenital system, and in thoracic surgery. Many different HA-based materials are already in clinical use in these areas. (See products manufactured by Anika Therapeutics, Inc. (Woburn, Mass.), Biomatrix, Inc. (Ridgefield, N.J.), Genzyme Corp. (Cambridge, Mass.), and Fidia, S.p.A. (Abano Terme, Italy)). Those of skill in the art may choose and design particular embodiments of the invention which are particularly suitable for a desired application by selecting distinct features as outlined above. - The injectable nature of the compositions of the invention also renders them suitable for tissue augmentation in plastic surgery, where the HA matrix serves primarily as a biocompatible filler material, e.g., for filling dermal creases or lip reconstruction. Again, those of skill in the art may choose and design particular embodiments of the invention which are particularly suitable for a desired application, as outlined above.
- The half-life of pharmacological compounds, both synthetic and biological, has been shown to be drastically increased when delivered in a form conjugated to HA (Larsen and Balazs, Adv. Drug Delivery Rev. 7, 279-293 (1991), Drobnik, J., Drug Delivery Rev. 7, 295-308 (1991)). The functionalized forms of HA provided by this invention allow for easy substitution with pharmacologically active agents, such as anti-inflammatories, analgesics, steroids, cardiovascular agents, anti-tumor agents, immunosuppressants, sedatives, anti-bacterial, anti-fungal, and anti-viral agents, etc., and may be used for sustained drug release over time, either locally in hydrogel form or systemically in free form.
- In orthopedic surgery, the functionalized forms of HA of this invention have applications as a tissue glue or bioactive matrix material in the treatment of chondral and osteochondral fractures, osteochondritis dissecans, meniscal tears, as well as ruptured ligaments, tendons, or myotendineous junctions. The HA materials of this invention may serve to facilitate anchorage of chondral or osteochondral transplants or grafts, or other biological or artificial implant materials, or to stimulate new bone or cartilage formation by serving as a scaffold for cells or as a delivery vehicle for growth factors. One general approach to promote articular cartilage repair based on the compositions of the invention comprises using: (1) in situ polymerized HA hydrogel as a matrix to fill the defect which is to be repaired and to provide a scaffold for repair cells, (2) an optional chemotactic agent to attract repair cells to the matrix and defect site, or alternatively, autologous chondrocytes or mesenchymal stem cells, (3) an optional factor to promote cellular proliferation of repair cells in the matrix and defect site; (4) sustained release of a transforming factor by the HA hydrogel over time to promote differentiation of the repair cells into chondrocytes which produce new cartilage; and (5) an optional anti-angiogenic factor to prevent vascularization and endochondral ossification of the newly formed cartilage. Examples of suitable factors are known to those skilled in the art, and may be found in, e.g., U.S. Pat. No. 5,368,858.
- Delivery of growth factors in active form may require supplementation of the HA hydrogels with additional ingredients, such as growth factor binding molecules like heparin and collagen. For example, for cartilage repair, crosslinked hyaluronic acid hydrogels that are rapidly infiltrated by cells such as those formed from an HA-amine derivative crosslinked with a polyvalent high molecular weight NHS-ester crosslinker, e.g., (SPAs-PEG, are selected which are resorbed and replaced by repair tissue within about 2 to 3 weeks. In some cases, cells and/or growth factors may be mixed in prior to gelling.
- The following are illustrative examples, which are not intended to limit the scope of the present invention.
- Preparation of N-(2,2-dimethoxyethyl)-4-(methoxycarbonyl)butanamide (1) - EDC (4.98 g, 0.026 mol) was added to a mixture of aminoacetaldehyde dimethyl acetal (2.18 ml, 20 mmol) and methyl monoester of succinic acid (2.64 g, 20 mmol) in 75 ml of dichloromethane, and the reaction mixture stirred for 24 h at room temperature. The solution was extracted successively with 50 ml each of ice cold solutions of 0.75M sulfuric acid, 1M NaCl, saturated sodium bicarbonate, and 1M NaCl. The organic phase was collected and dried with sodium sulfate. The solvent was evaporated under reduced pressure yielding a syrup, which showed a single spot on charring upon TLC in solvent A (Rf 0.75) and solvent B (Rf 0.24). The apparent yield of 1 was 65%.
- 1H NMR in CDCl3 δ 5.70 (bs, 1H, NH), 4.34 [t, 1H, CH—(OCH3), 3.67 (s, 3H, COOCH3), 3.43-3.35 (s and t, 8H, CH3OC and CHCH2NH), 2.38-2.26 (m, 4H, CH2CO).
- Formation of Acyl-hydrazide (2) from 1-Anhydrous hydrazine (248 μl, 7.9 mmol) was added to a solution of 1 (1.73 g, 7.9 mmol) in 5 ml of anhydrous methanol. The mixture was stirred at room temperature overnight and the solvent subsequently evaporated under reduced pressure yielding a solid residue. The residue was dissolved in H2O (6 ml) and extracted three times with an equal volume of dichloromethane. The aqueous solution was evaporated to dryness under reduced pressure and then further dried overnight in vacuo. The crystaline solid (1.04 g, 82% yield) was homogeneous on TLC in solvent A (Rf 0.10) when visualized by charring. The 1H NMR spectrum indicated the loss of the ester methoxy group when compared to 1.
- Preparation of Hydrazido-dimethyl acetal-HA (formula XIX) -Sodium hyaluronate (100 mg, 0.25 mmol) and N-(2,2-dimethoxyethyl)-4-(hydrazido)butanamide (2) (1.646 g, 7.5 mmol) was dissolved in H2O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 6.5 and HOBT (169 mg, 1.25 mmol) predissolved in a 1:1 mixture of water and DMSO (1 ml) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCl added to produce a 5% w/v solution. HA was precipitated by addition of three volume equivalents of ethanol. The precipitate was redissolved in H2O at a concentration of approximately 5 mg/ml and the precipitation repeated twice. The purified product was freeze dried and kept at 4° C. under N2. See
FIG. 2B for NMR data of the product. - Preparation of Aminoacetaldehyde-dimethyl acetal-HA (formula XX)-Sodium hyaluronate (100 mg, 0.25 mmol) and 2,2-dimethoxyethylarnine (0.788 g, 7.5 mmol) was dissolved in H2O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 7.5 and NHS.SO3Na (268 mg, 1.25 mmol) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCl added to produce a 5% w/v solution. HA was precipitated by addition of three volume equivalents of ethanol. The precipitate was redissolved in H2O at a concentration of approximately 5 mg/ml and the precipitation repeated twice. The purified product was freeze dried and kept at 4° C. under N2.
- Deprotection of HA-acetals to form HA-aldehydes—The acetal modified HA(formula XII) was dissolved in H2O to a concentration of 5-10 mg/ml and 1M HCl was added to give a final concentration of 0.025M. The solution was then allowed to stand at room temperature for 0.5 to 1.0 h. The solution was neutralized by the addition of 1M NaOH, yielding the deprotected HA-aldehyde (formula XXII).
HA—CO—R—CH(OCH3)2 (XXI)→HA—CO—R—CHO (XXII) - Preparation of Diaminoethane-HA (formula XXIII)—Sodium hyaluronate (100 mg, 0.25 mmol) and 1,2-diaminoethane HCl (0.998 g, 7.5 mmol) was dissolved in H2O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 6.5 and HOBT (169 mg, 1.25 mmol) predissolved in a 1:1 mixture of water and DMSO (1 ml) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCl added to produce a 5% w/v solution. HA was precipitated by addition of three volume equivalents of ethanol. The precipitate was redissolved in H2O at a concentration of approximately 5 mg/ml and the precipitation repeated twice. The purified product was freeze dried and kept at 4° C. under N2.
- Preparation of L-Lysine methyl ester-HA (formula XXIV)—Sodium hyaluronate (100 mg, 0.25 mmol) and L-lysine methyl ester dihydrochloride (1.748 g, 7.5 mmol) was dissolved in H2O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 6.5 and HOBT (169 mg, 1.25 mmol) predissolved in a 1:1 mixture of water and DMSO (1 ml) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCl added to produce a 5% w/v solution. HA was precipitated by addition of three volume equivalents of ethanol. The precipitate was redissolved in H2O at a concentration of approximately 5 mg/ml and the precipitation repeated twice. The purified product was freeze dried and kept at 4° C. under N2. See
FIG. 3C for NMR data of the product. - Example 6
- Preparation of L-Histidine methyl ester HA (formula XXV)—Sodium hyaluronate (100 mg, 0.25 mmol) and L-histidine methyl ester dihydrochloride (1.815 g, 7.5 mmol) was dissolved in H2O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 6.5 and HOBT(169 mg, 1.25 mmol) predissolved in a 1:1 mixture of H2O and DMSO (1 ml) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCl added to produce a 5% w/v solution. HA was precipitated by addition of three volume equivalents of ethanol. The precipitate was redissolved in H2O at a concentration of approximately 5 mg/ml and the precipitation repeated twice. The purified product was freeze dried and kept at 4° C. under N2. See
FIG. 3B for NMR data of the product. - Preparation of Hydrazido-HA (formula XXVI)—Sodium hyaluronate (100 mg, 0.25 mmol) and dihydrazide i.e. adipic dihydrazide (1.31 g, 7.5 mmol) was dissolved in H2O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 6.5 and HOBT (169 mg, 1.25 mmol) predissolved in a 1:1 mixture of water and DMSO (1 ml) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1 M NaOH and NaCl added to produce a 5% w/v solution. HA was precipitated by addition of three volume equivalents of ethanol. The precipitate was redissolved in H2O at a concentration of approximately 5 mg/ml and the precipitation repeated twice. The purified product was freeze dried and kept at 4° C. under N2. See
FIG. 3D for NMR data of the product. - Preparation of Diaminoalkyl-HA (formula XXVII)—Sodium hyaluronate (100 mg, 0.25 mmol) and a diaminoalkane, i.e. 1,2-diaminobutane HCl (1.208 g, 7.5 mmol) was dissolved in H2O (40 ml, 2.5 mg/ml HA). The pH was adjusted to 7.5 and NHS.S03Na (268 mg, 1.25 mmol) and EDC (240 mg, 1.25 mmol) was added and the reaction mixture was stirred overnight. The pH was subsequently adjusted to 7.0 with 1M NaOH and NaCG added to produce a 5% w/v solution. HA was precipitated by addition of three volume equivalents of ethanol. The precipitate was redissolved in H2O at a concentration of approximately 5 mg/ml and the precipitation repeated twice. The purified product was freeze dried and kept at 4° C. under N2. See
FIG. 3A for NMR data of the product. - Formation of crosslinked HA hydrogels—The general procedure for forming crosslinked HA hydrogels is as follows: Modified HA is dissolved by agitation in H2O or phosphate buffered saline (pH 7.4-8.5) at a concentration of 5-25 mg/ml. The degree of modification of the HA derivative is derived from the integration of the 1H NMR peaks. After complete dissolution, the HA derivative solution is transferred to a 1 ml syringe. When reacting the HA derivatives with low molecular weight crosslinkers, a slight excess of the compound (about 1.1 molar equivalent of functional groups) is dissolved in a second 1 ml syringe in 1/10 of the HA derivative volume immediately prior to use. The syringes are connected while paying special attention to excluded air, the contents are rapidly mixed, typically with 20 passages, and then extruded. When reacting HA derivative molecules with different functionalities, 0.5-1.0 equivalent of HA-aldehyde is mixed with 1 equivalent of HA-hydrazine, depending on the degree of modification of the HA derivatives. At room temperature, gelation occurs within about 30 seconds to several minutes, depending on the formulation, and the gel properties do not significantly change after approximately 5 minutes.
- Digestion of crosslinked HA hydrogels with hyaluronidase—The general procedure for digestion of crosslinked HA hydrogels is as follows: HA hydrogels are formed in 1 ml syringes by crosslinking 12 mg/ml HA-amnine in phosphate buffered saline with various crosslinkers as indicated in
FIG. 4 . Gelling is allowed to occur for 1 hour at 37° C. for the reaction to be complete, after which identical ˜100 μl cylindrical gels are formed by cutting the syringes with a razor blade. The gels are incubated with different concentrations of bovine testicular hyaluronidase (Sigma) 50-5000 U/mL in 400 μl of 30 mM citric acid, 150 mM Na2HPO4, pH 6.3, 150 mM NaCl for the indicated time 0-48 hours. Degradation of the gels is determined from the release of glucuronic acid into the supernatant as measured using the carbazole method (Bitter and Muir, supra). SeeFIG. 4 . - Crosslinked HA hydrogels as a matrix for cell culture—Chondrocytes were isolated from bovine nose cartilage according to established procedures (Hauselmann et al., Matrix 12, 116-129 (1992; Kuttner et al., J. Cell Biol. 93, 743-750 (1982)), cultured in Ham's F12 medium containing 5% fetal bovine serum and antibiotics, and dedifferentiated by monolayer culture on plastic. For cytotoxicity studies, cells (2.5×105) were embedded into the HA hydrogels by gently mixing the trypsinized cells ( about 50 to 100 μl) with the polymerizing HA and crosslinker mixture (approximately 400 μl gel volume) prior to complete setting. Agarose embedded cells served as a control. After adaptation to the culture conditions (24 h), cell proliferation and metabolic activity was assessed by pulse labeling with [3H]thynfidine and [35S]methionine. For cell infiltration studies, HA hydrogels were polymerized in 24-well plates (˜15mm diameter and 3mm height) for 1 h at room temperature, and extensively rinsed with phosphate buffered saline. Cell adhesion molecules or chemotactic factors, e.g. IGF-1, were added to the HA solution prior to crosslinking when desired. After 24 h, cells (2.5×105) were seeded on top of the HA-hydrogels and cultured as above. At different time points post seeding, gels were fixed in phosphate buffered 4% paraformaldehyde and processed for paraffin embedding. Cell infiltration was assessed by staining sections with Haematoxylin/Eosin. See
FIG. 5 . - Subcutaneous implantation of HA hydrogels in rats—Rats (2-3 per test material) were anaesthetized with ketamine/xylazine, the ventral thorax and abdomen shaved, and prepared aseptically. A small vertical incision was made on either side of the xiphoid cartilage of the sternum and the skin undermined with a blunt instrument to separate the skin from the underlying tissue. HA hydrogels were polymerized in 3 ml syringes as described. For induction of chondro-osseous differentiation, 1 mg/ml prefibrillized intact collagen type I (Organogenesis, Canton, Mass.), 200 μg/ml recombinant BMP-2 (Genetics Institute, Cambridge, Mass.), and 500 ng/ml IGF-1 (Celtrix Pharmaceuticals, Santa Clara, Calif.) or 50 ng/ml TGF-β2 (Celtrix Pharmaceuticals, Santa Clara, Calif.) were mixed with the HA solution prior to crosslinking. Collagen fibrils were prepared by slow polymerization (from dilute solutions of 2-3 mg/ml) of acid-solubilized couagen in phosphate buffered saline and harvested by centrifugation following standard protocols (McPherson et al., Collagen Rel. Res. 5, 119-135 (1985)). Gelling of the HA hydrogels was allowed to occur for 24 h at room temperature for the reaction to be complete, after which identical ˜3mm thick cylindrical gels were prepared by cutting the syringes with a razor blade. HA hydrogel discs were then placed in each pocket and the skin incisions closed with sutures. Ten days post operatively, the rats were euthanized and the appearance of the implant sites, i.e. degree of inflammation, grossly examined and tissue specimens harvested and processed for histology by fixation in phosphate buffered formalin and paraffin embedding. Sections were stained with Haematoxylin/Eosin and with Safranin-O/fast green, and cell infiltration and transformation (cartilage and bone formation) induced by the biomaterial as well as signs of fibrosis and inflammation in the surrounding tissue evaluated. See
FIGS. 6-8 .
Claims (33)
1. A composition comprising derivatives of hyaluronic acid (ha) comprising disaccharide: subunits, wherein at least one of said disaccharide subunits is a substituted disaccharide subunit having a substitution at a carboxyl group, such that the substituted disaccharide subunit is of the formula:
wherein each of R′ and R″ is a side chain comprising one or more functional groups selected from the group consisting of hydrogen; bioactive peptide; alkyl; aryl; alkylaryl; arylalkyl; substituted alkylaryl containing an atom or atoms of oxygen, nitrogen, sulfur, or phosphorous; substituted arylalkyl containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen, or metal ion; and substituted heterocycle containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen or metal ion;
wherein said functional groups within or among each of said R′ or R″ side chains are either bound directly to each other or are separated by a member selected from the group consisting of ether, keto, amino, oxycarbonyl, sulfate, sulfoxide, carboxamide, alkyne and alkene; and
wherein each of said R′ and R″ side chains terminates with a terminal functional group selected from hydrogen, peptide, aldehyde, amine, hydrazide, maleimide, sulfhydryl, active ester, ester, carboxylate, imidoester, halogen and hydroxyl,
wherein said terminal functional groups of each of said R′ and R″ side chains may be bound directly to each other, with the proviso that when one of R′ or R″ is hydrogen, halogen or univalent metal ion, then R′ and R″ may not be bound directly to each other, and
wherein said derivatives of hyaluronic acid are covalently crosslinked via one of said terminal functional groups.
2. The composition of claim 1 , wherein at least one of said terminal functional groups is selected from peptide, aldehyde, amine, hydrazide, maleimide, sulfhydryl and active ester, whereby said composition is amenable to crosslinking.
3. The composition of claim 1 , wherein the molecular weight of said composition is at least 100,000 daltons.
4. The composition of claim 1 , wherein the molecular weight of said composition is at most 100,000 daltons.
5. The composition of claim 1 , wherein the molecular weight of said composition is at least 1,000,000 daltons.
6. The composition of claim 1 , wherein said composition is water soluble.
7. A hydrogel of crosslinked HA derivatives, wherein said HA derivatives are compositions according to claim 1 .
8. The hydrogel of crosslinked HA derivatives of claim 7 , wherein said hydrogel is biodegradable.
9. A tissue adhesive comprising a hydrogel of claim 7 , wherein the side chain is selected from activated ester, aldehyde and maleimide.
10. A tissue adhesive comprising a hydrogel of claim 7 , wherein the crosslinked HA derivatives are formed using a cross-linker selected from polyvalent active ester, aldehyde and maleimide.
11. A tissue adhesive comprising a hydrogel of claim 7 , wherein the crosslinked hydrogel is formed in the presence of at least one member selected from growth factors, cytokines, drugs, and bioactive peptides.
12. The tissue adhesive of claim 11 , wherein the crosslinked hydrogel is formed in the presence of a growth factor and wherein the growth factor is TGF-beta or BMP-2.
13. A matrix for cell cultures comprising the hydrogel of claim 7 , wherein the crosslinked HA-derivatives are formed using a cross-linker selected from polyvalent active ester, aldehyde, amine, arylazide, maleimide, and sulfhydryl.
14. A matrix for cell cultures comprising the hydrogel of claim 7 , wherein the crosslinked hydrogel is formed in the presence of at least one member selected from growth factors, cytokines, drugs, and bioactive peptides.
15. The matrix of claim 14 , wherein the crosslinked hydrogel is formed in the presence of a growth factor and wherein the growth factor is TGF-beta or BMP-2.
16. A matrix for a scaffold comprising the hydrogel of claim 7 , wherein the crosslinked HA-derivatives are formed using a cross-linker selected from polyvalent active ester, aldehyde, amine, maleimide and sulfhydryl.
17. A matrix for a scaffold comprising the hydrogel of claim 7 , wherein the crosslinked hydrogel is formed in the presence of at least one member selected from growth factors, cytokines, drugs, and bioactive peptides.
18. The matrix of claim 17 , wherein the crosslinked hydrogel is formed in the presence of a growth factor and wherein the growth factor is TGF-beta or BMP-2.
19. The matrix of claim 17 , wherein the matrix further comprises cells.
20. A method of forming a crosslinked biodegradable material under physiological conditions from a composition comprising derivatives of hyaluronic acid comprising disaccharide subunits, wherein at least one of said disaccharide subunits is a substituted disaccharide subunit having a substitution at a carboxyl group, such that the substituted disaccharide subunit is of the formula:
wherein each of R′ and R″ is a side chain comprising one or more functional groups selected from the group consisting of hydrogen; bioactive peptide; alkyl; aryl; alkylaryl; arylalkyl; substituted alkylaryl containing an atom or atoms of oxygen, nitrogen, sulfur, or phosphorous; substituted arylalkyl containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen, or metal ion; and substituted heterocycle containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen or metal ion;
wherein said functional groups within or among each of said R′ or R″ side chains are either bound directly to each other or are separated by a member selected from the group consisting of ether, keto, amino, oxycarbonyl, sulfate, sulfoxide, carboxamide, alkyne and alkene; and
wherein each of said R′ and R″ side chains terminates with a terminal functional group selected from the group consisting of hydrogen, peptide, aldehyde, amine, arylazide, hydrazide, maleimide, sulfhydryl, active ester, ester, carboxylate, imidoester, halogen and hydroxyl; and
wherein said derivatives of hyaluronic acid are modified to an extent of more than 10%,
21. The method of claim 20 , wherein the material is formed in situ.
22. A method of regenerating tissue or causing tissue adhesion, comprising contacting a tissue with a composition comprising derivatives of hyaluronic acid comprising disaccharide subunits, wherein at least one of said disaccharide subunits is a substituted disaccharide subunit having a substitution at a carboxyl group, such that the substituted disaccharide subunit is of the formula:
wherein each of R′ and R″ is a side chain comprising one or more functional groups selected from the group consisting of hydrogen; bioactive peptide; alkyl; aryl; alkylaryl; arylalkyl; substituted alkylaryl containing an atom or atoms of oxygen, nitrogen, sulfur, or phosphorous; substituted arylalkyl containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen, or metal ion; and substituted heterocycle containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen or metal ion;
wherein said functional groups within or among each of said R′ or R″ side chains are either bound directly to each other or are separated by a member selected from the group consisting of ether, keto, amino, oxycarbonyl, sulfate, sulfoxide, carboxamide, alkyne and alkene; and
wherein each of said R′ and R″ side chains terminates with a terminal functional group selected from the group consisting of hydrogen, peptide, aldehyde, amine, arylazide, hydrazide, maleimide, sulfhydryl, active ester, ester, carboxylate, imidoester, halogen and hydroxyl; and
wherein said derivatives of hyaluronic acid are modified to an extent of more than 10%.
23. The method of claim 22 , wherein the method comprising one or more of repairing cartilage, stemming hemorraging, reconstructing nerves and/or vessels, and anchoring skin, vascular or cartilage transplants or grafts.
24. A method of delivering cells or bioactive materials, comprising delivering the cells or bioactive materials in a composition comprising derivatives of hyaluronic acid comprising disaccharide subunits, wherein at least one of said disaccharide subunits is a substituted disaccharide subunit having a substitution at a carboxyl group, such that the substituted disaccharide subunit is of the formula:
wherein each of R′ and R″ is a side chain comprising one or more functional groups selected from the group consisting of hydrogen; bioactive peptide; alkyl; aryl; alkylaryl; arylalkyl; substituted alkylaryl containing an atom or atoms of oxygen, nitrogen, sulfur, or phosphorous; substituted arylalkyl containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen, or metal ion; and substituted heterocycle containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen or metal ion;
wherein said functional groups within or among each of said R′ or R″ side chains are either bound directly to each other or are separated by a member selected from the group consisting of ether, keto, amino, oxycarbonyl, sulfate, sulfoxide, carboxamide, alkyne and alkene; and
wherein each of said R′ and R″ side chains terminates with a terminal functional group selected from the group consisting of hydrogen, peptide, aldehyde, amine, arylazide, hydrazide, maleimide, sulfhydryl, active ester, ester, carboxylate, imidoester, halogen and hydroxyl; and
wherein said derivatives of hyaluronic acid are modified to an extent of more than 10%.
25. The method of claim 24 , wherein the bioactive material is a growth factor.
26. The method of claim 24 , wherein the cells or bioactive material are delivered to treat a pathological wound condition.
27. A method of generating tissue separation or preventing tissue adhesions, comprising contacting tissue with a composition comprising derivatives of hyaluronic acid comprising disaccharide subunits, wherein at least one of said disaccharide subunits is a substituted disaccharide subunit having a substitution at a carboxyl group, such that the substituted disaccharide subunit is of the formula:
wherein each of R′ and R″ is a side chain comprising one or more functional groups selected from the group consisting of hydrogen; bioactive peptide; alkyl; aryl; alkylaryl; arylalkyl; substituted alkylaryl containing an atom or atoms of oxygen, nitrogen, sulfur, or phosphorous; substituted arylalkyl containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen, or metal ion; and substituted heterocycle containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen or metal ion;
wherein said functional groups within or among each of said R′ or R″ side chains are either bound directly to each other or are separated by a member selected from the group consisting of ether, keto, amino, oxycarbonyl, sulfate, sulfoxide, carboxamide, alkyne and alkene; and
wherein each of said R′ and R″ side chains terminates with a terminal functional group selected from the group consisting of hydrogen, peptide, aldehyde, amine, arylazide, hydrazide, maleimide, sulfhydryl, active ester, ester, carboxylate, imidoester, halogen and hydroxyl; and
wherein said derivatives of hyaluronic acid are modified to an extent of more than 10%,.
28. The method of claim 27 , wherein the tissue separation or prevention of tissue adhesions is effective for joint lubrication, prevention of eye irritation or serving as a barrier to cells.
29. A method of augmenting tissue, comprising contacting tissue with a composition comprising derivatives of hyaluronic acid comprising disaccharide subunits, wherein at least one of said disaccharide subunits is a substituted disaccharide subunit having a substitution at a carboxyl group, such that the substituted disaccharide subunit is of the formula:
wherein each of R′ and R″ is a side chain comprising one or more functional groups selected from the group consisting of hydrogen; bioactive peptide; alkyl; aryl; alkylaryl; arylalkyl; substituted alkylaryl containing an atom or atoms of oxygen, nitrogen, sulfur, or phosphorous; substituted arylalkyl containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen, or metal ion; and substituted heterocycle containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen or metal ion;
wherein said functional groups within or among each of said R′ or R″ side chains are either bound directly to each other or are separated by a member selected from the group consisting of ether, keto, amino, oxycarbonyl, sulfate, sulfoxide, carboxamide, alkyne and alkene; and
wherein each of said R′ and R″ side chains terminates with a terminal functional group selected from the group consisting of hydrogen, peptide, aldehyde, amine, arylazide, hydrazide, maleimide, sulfhydryl, active ester, ester, carboxylate, imidoester, halogen and hydroxyl; and
wherein said derivatives of hyaluronic acid are modified to an extent of more than 10%.
30. The method of claim 29 , wherein the tissue augmentation is effective for filling dermal creases or lip reconstruction.
31. A method of sustaining drug release, comprising conjugating one or more pharmacological compounds to a composition comprising derivatives of hyaluronic acid comprising disaccharide subunits, wherein at least one of said disaccharide subunits is a substituted disaccharide subunit having a substitution at a carboxyl group, such that the substituted disaccharide subunit is of the formula:
wherein each of R′ and R″ is a side chain comprising one or more functional groups selected from the group consisting of hydrogen; bioactive peptide; alkyl; aryl; alkylaryl; arylalkyl; substituted alkylaryl containing an atom or atoms of oxygen, nitrogen, sulfur, or phosphorous; substituted arylalkyl containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen, or metal ion; and substituted heterocycle containing an atom or atoms of oxygen, nitrogen, sulfur, phosphorous, halogen or metal ion;
wherein said functional groups within or among each of said R′ or R″ side chains are either bound directly to each other or are separated by a member selected from the group consisting of ether, keto, amino, oxycarbonyl, sulfate, sulfoxide, carboxamide, alkyne and alkene; and
wherein each of said R′ and R″ side chains terminates with a terminal functional group selected from the group consisting of hydrogen, peptide, aldehyde, amine, arylazide, hydrazide, maleimide, sulfhydryl, active ester, ester, carboxylate, imidoester, halogen and hydroxyl; and
wherein said derivatives of hyaluronic acid are modified to an extent of more than 10%,
wherein the one or more pharmacological compounds are conjugated to the derivatives of hyaluronic acid.
32. The method of claim 31 , wherein the composition is in a free form.
33. The method of claim 31 , wherein the pharmacological compound is selected from anti-inflammatories, analgesics, steroids, cardiovascular agents, anti-tumor agents, immunosuppressants, sedatives, anti-bacterials, anti-fungals and anti-virals.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/706,922 US20070149441A1 (en) | 1998-09-18 | 2007-02-13 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/156,829 US6630457B1 (en) | 1998-09-18 | 1998-09-18 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
| US10/680,000 US7196180B2 (en) | 1998-09-18 | 2003-10-06 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
| US11/706,922 US20070149441A1 (en) | 1998-09-18 | 2007-02-13 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/680,000 Continuation US7196180B2 (en) | 1998-09-18 | 2003-10-06 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070149441A1 true US20070149441A1 (en) | 2007-06-28 |
Family
ID=22561268
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/156,829 Expired - Fee Related US6630457B1 (en) | 1998-09-18 | 1998-09-18 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
| US10/680,000 Expired - Fee Related US7196180B2 (en) | 1998-09-18 | 2003-10-06 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
| US11/706,922 Abandoned US20070149441A1 (en) | 1998-09-18 | 2007-02-13 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/156,829 Expired - Fee Related US6630457B1 (en) | 1998-09-18 | 1998-09-18 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
| US10/680,000 Expired - Fee Related US7196180B2 (en) | 1998-09-18 | 2003-10-06 | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same |
Country Status (8)
| Country | Link |
|---|---|
| US (3) | US6630457B1 (en) |
| EP (2) | EP1115433B1 (en) |
| AT (1) | ATE284229T1 (en) |
| AU (1) | AU6192299A (en) |
| CA (1) | CA2344215A1 (en) |
| DE (1) | DE69922522T2 (en) |
| IL (2) | IL142068A0 (en) |
| WO (1) | WO2000016818A1 (en) |
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070293648A1 (en) * | 2006-04-28 | 2007-12-20 | Heather Sheardown | Hyaluronic acid-retaining polymers |
| US20100272761A1 (en) * | 2009-04-24 | 2010-10-28 | Seoul National University of Technology Center for Industrial Collaboration | Synthesis of lipoamide-grafted high molecular compound and method therefor |
| US20100279952A1 (en) * | 2007-12-21 | 2010-11-04 | Ninus Caram-Lelham | Cross-linked hydrogel containing an active substance |
| US20110008444A1 (en) * | 2008-02-29 | 2011-01-13 | Ipr-Systems Sweden Ab | Composition for the formation of gels |
| US20120276069A1 (en) * | 2009-11-11 | 2012-11-01 | Hermanus Bernardus Johannes Karperien | Hydrogels based on polymers of dextran tyramine and tyramine conjugates of natural polymers |
| US20120301441A1 (en) * | 2009-11-11 | 2012-11-29 | Hermanus Bernardus Johannes Karperien | Dextran-hyaluronic acid based hydrogels |
| WO2013036072A1 (en) * | 2011-09-08 | 2013-03-14 | 신풍제약 주식회사 | Injectable therapeutic agent for arthritis |
| US8398611B2 (en) | 2010-12-28 | 2013-03-19 | Depuy Mitek, Inc. | Compositions and methods for treating joints |
| US8455436B2 (en) | 2010-12-28 | 2013-06-04 | Depuy Mitek, Llc | Compositions and methods for treating joints |
| CZ303879B6 (en) * | 2012-02-28 | 2013-06-05 | Contipro Biotech S.R.O. | Derivatives based on hyaluronic acid capable of forming hydrogels, process of their preparation, hydrogels based on these derivatives, process of their preparation and use |
| US8497023B2 (en) | 2008-08-05 | 2013-07-30 | Biomimedica, Inc. | Polyurethane-grafted hydrogels |
| US8524662B2 (en) | 2010-12-28 | 2013-09-03 | Depuy Mitek, Llc | Compositions and methods for treating joints |
| US8623839B2 (en) | 2011-06-30 | 2014-01-07 | Depuy Mitek, Llc | Compositions and methods for stabilized polysaccharide formulations |
| US8679190B2 (en) | 2004-10-05 | 2014-03-25 | The Board Of Trustees Of The Leland Stanford Junior University | Hydrogel arthroplasty device |
| CZ304512B6 (en) * | 2012-08-08 | 2014-06-11 | Contipro Biotech S.R.O. | Hyaluronic acid derivative, process for its preparation, modification process and use thereof |
| US8796234B2 (en) | 2009-11-24 | 2014-08-05 | Agency For Science, Technology And Research | Crosslinking branched molecule through thiol-disulfide exchange to form hydrogel |
| US8883915B2 (en) | 2008-07-07 | 2014-11-11 | Biomimedica, Inc. | Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same |
| US9114024B2 (en) | 2011-11-21 | 2015-08-25 | Biomimedica, Inc. | Systems, devices, and methods for anchoring orthopaedic implants to bone |
| US9403918B2 (en) | 2009-12-11 | 2016-08-02 | Contipro Pharma A.S. | Oxidized derivative of hyaluronic acid, a method of preparation thereof and a method of modification thereof |
| US9434791B2 (en) | 2009-12-11 | 2016-09-06 | Contipro Pharma A.S. | Method of preparation of an oxidized derivative of hyaluronic acid and a method of modification thereof |
| US9682099B2 (en) | 2015-01-20 | 2017-06-20 | DePuy Synthes Products, Inc. | Compositions and methods for treating joints |
| US9999678B2 (en) | 2012-11-27 | 2018-06-19 | Contipro A.S. | C6-C18-acylated derivative of hyaluronic acid and method of preparation thereof |
| US10023658B2 (en) | 2014-03-11 | 2018-07-17 | Contipro A.S. | Conjugates of oligomer of hyaluronic acid or of a salt thereof, method of preparation thereof and use thereof |
| US10414832B2 (en) | 2015-06-26 | 2019-09-17 | Contipro A.S | Derivatives of sulfated polysaccharides, method of preparation, modification and use thereof |
| US10457803B2 (en) | 2008-07-07 | 2019-10-29 | Hyalex Orthopaedics, Inc. | Orthopedic implants having gradient polymer alloys |
| US10617711B2 (en) | 2014-06-30 | 2020-04-14 | Contipro A.S. | Antitumor composition based on hyaluronic acid and inorganic nanoparticles, method of preparation thereof and use thereof |
| US10618984B2 (en) | 2016-06-27 | 2020-04-14 | Contipro A.S. | Unsaturated derivatives of polysaccharides, method of preparation thereof and use thereof |
| US10689464B2 (en) | 2015-03-09 | 2020-06-23 | Contipro A.S. | Self-supporting, biodegradable film based on hydrophobized hyaluronic acid, method of preparation and use thereof |
| US10759878B2 (en) | 2015-06-15 | 2020-09-01 | Contipro A.S. | Method of crosslinking of polysaccharides using photoremovable protecting groups |
| US10792392B2 (en) | 2018-07-17 | 2020-10-06 | Hyalex Orthopedics, Inc. | Ionic polymer compositions |
| US11015016B2 (en) | 2011-10-03 | 2021-05-25 | Hyalex Orthopaedics, Inc. | Polymeric adhesive for anchoring compliant materials to another surface |
| US11077228B2 (en) | 2015-08-10 | 2021-08-03 | Hyalex Orthopaedics, Inc. | Interpenetrating polymer networks |
| US11129790B2 (en) | 2017-05-19 | 2021-09-28 | Northeastern University | Chemo-enzymatic site-specific modification of peptides and proteins to form cleavable conjugates |
Families Citing this family (161)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IT1303738B1 (en) * | 1998-11-11 | 2001-02-23 | Aquisitio S P A | CARBOXYLATE POLYSACCHARIDE CROSS-LINKING PROCESS. |
| JP2001037472A (en) | 1999-07-28 | 2001-02-13 | Bio Quest:Kk | Three dimensional cell-culturing base medium and cell culture using the same |
| PT1223990E (en) | 1999-10-15 | 2004-12-31 | Fidia Advanced Biopolymers Srl | HYALURONIC ACID FORMULATIONS FOR ADMINISTRATION OF OSTEOGENIC PROTEINS |
| MXPA04006875A (en) * | 2002-01-18 | 2004-12-06 | Control Delivery Sys Inc | Polymeric gel system for the controlled delivery of codrugs. |
| ITPD20020064A1 (en) | 2002-03-12 | 2003-09-12 | Fidia Advanced Biopolymers Srl | FOREIGN DERIVATIVES OF HYALURONIC ACID FOR THE PREPARATION OF HYDROGELD FOR USE IN THE BIOMEDICAL, SANITARY AND SURGICAL FIELD AND AS A SYSTEM |
| US20050287135A1 (en) * | 2002-05-17 | 2005-12-29 | Wyeth | Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins |
| CA2489712C (en) | 2002-06-21 | 2016-07-12 | University Of Utah Research Foundation | Crosslinked compounds and methods of making and using thereof |
| US7034127B2 (en) * | 2002-07-02 | 2006-04-25 | Genzyme Corporation | Hydrophilic biopolymer-drug conjugates, their preparation and use |
| WO2004060404A1 (en) * | 2002-12-27 | 2004-07-22 | Chugai Seiyaku Kabushiki Kaisha | Drug carrier |
| US8138265B2 (en) | 2003-01-10 | 2012-03-20 | The Cleveland Clinic Foundation | Hydroxyphenyl cross-linked macromolecular network and applications thereof |
| US8137688B2 (en) | 2003-01-10 | 2012-03-20 | The Cleveland Clinic Foundation | Hydroxyphenyl cross-linked macromolecular network and applications thereof |
| US6982298B2 (en) | 2003-01-10 | 2006-01-03 | The Cleveland Clinic Foundation | Hydroxyphenyl cross-linked macromolecular network and applications thereof |
| US7465766B2 (en) | 2004-01-08 | 2008-12-16 | The Cleveland Clinic Foundation | Hydroxyphenyl cross-linked macromolecular network and applications thereof |
| FR2861734B1 (en) | 2003-04-10 | 2006-04-14 | Corneal Ind | CROSSLINKING OF LOW AND HIGH MOLECULAR MASS POLYSACCHARIDES; PREPARATION OF INJECTABLE SINGLE PHASE HYDROGELS; POLYSACCHARIDES AND HYDROGELS OBTAINED |
| US7641643B2 (en) * | 2003-04-15 | 2010-01-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
| DE10318801A1 (en) * | 2003-04-17 | 2004-11-04 | Aesculap Ag & Co. Kg | Flat implant and its use in surgery |
| US8073538B2 (en) * | 2003-11-13 | 2011-12-06 | Cardio Polymers, Inc. | Treatment of cardiac arrhythmia by modification of neuronal signaling through fat pads of the heart |
| EP1694712A1 (en) * | 2003-12-04 | 2006-08-30 | University of Utah Research Foundation | Modified macromolecules and methods of making and using thereof |
| WO2005054302A1 (en) * | 2003-12-05 | 2005-06-16 | Chugai Seiyaku Kabushiki Kaisha | Drug carrier and process for producing the same |
| US8124120B2 (en) * | 2003-12-22 | 2012-02-28 | Anika Therapeutics, Inc. | Crosslinked hyaluronic acid compositions for tissue augmentation |
| JP4566189B2 (en) * | 2004-03-15 | 2010-10-20 | テルモ株式会社 | Anti-adhesive material |
| US8293890B2 (en) | 2004-04-30 | 2012-10-23 | Advanced Cardiovascular Systems, Inc. | Hyaluronic acid based copolymers |
| CA2567532C (en) * | 2004-05-20 | 2013-10-01 | Mentor Corporation | Methods for making injectable polymer hydrogels |
| US8137450B2 (en) * | 2004-07-08 | 2012-03-20 | Symatese | Collagen-based lyophilised glue and the use thereof for producing an adhesive prosthesis |
| FR2873379B1 (en) * | 2004-07-23 | 2008-05-16 | Jerome Asius | PROCESS FOR THE PREPARATION OF RETICULATED HYALURONIC ACID, RETICULATED HYALURONIC ACID WHICH CAN BE OBTAINED BY THIS METHOD, IMPLANT CONTAINING THE RETICULATED HYALURONIC ACID, AND USE THEREOF |
| US8697139B2 (en) | 2004-09-21 | 2014-04-15 | Frank M. Phillips | Method of intervertebral disc treatment using articular chondrocyte cells |
| US7235592B2 (en) | 2004-10-12 | 2007-06-26 | Zimmer Gmbh | PVA hydrogel |
| US20060110429A1 (en) * | 2004-11-24 | 2006-05-25 | Therakine Corporation | Implant for intraocular drug delivery |
| PL1835923T3 (en) * | 2004-12-30 | 2014-03-31 | Genzyme Corp | Regimens for intra-articular viscosupplementation |
| US7825083B2 (en) * | 2005-02-10 | 2010-11-02 | Spine Wave, Inc. | Synovial fluid barrier |
| CA2591921A1 (en) | 2005-02-23 | 2006-08-31 | Zimmer Technology, Inc. | Blend hydrogels and methods of making |
| US20080125745A1 (en) | 2005-04-19 | 2008-05-29 | Shubhayu Basu | Methods and compositions for treating post-cardial infarction damage |
| US9539410B2 (en) | 2005-04-19 | 2017-01-10 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating post-cardial infarction damage |
| US8828433B2 (en) * | 2005-04-19 | 2014-09-09 | Advanced Cardiovascular Systems, Inc. | Hydrogel bioscaffoldings and biomedical device coatings |
| US7858080B2 (en) * | 2005-05-20 | 2010-12-28 | Agency For Science, Technology And Research | Aldehyde conjugated flavonoid preparations |
| AU2006266741B2 (en) | 2005-07-06 | 2011-09-01 | Seikagaku Corporation | Drug-introduced photo-crosslinked hyaluronic acid derived gel |
| CA2620663A1 (en) * | 2005-09-02 | 2007-03-08 | Colbar Lifescience Ltd. | Cross-linked polysaccharide and protein matrices and methods for their preparation |
| AU2006292224B2 (en) | 2005-09-19 | 2013-08-01 | Histogenics Corporation | Cell-support matrix and a method for preparation thereof |
| WO2007048831A2 (en) * | 2005-10-27 | 2007-05-03 | Coloplast A/S | Biodegradable scaffold with ecm material |
| EP1951761B1 (en) | 2005-11-22 | 2011-01-05 | Centre National De La Recherche Scientifique (Cnrs) | New derivatives of hyaluronic acid, their preparation process and their uses |
| CA2632120C (en) | 2005-12-07 | 2014-07-08 | Zimmer, Inc. | Methods of bonding or modifying hydrogels using irradiation |
| DE602006017160D1 (en) | 2005-12-22 | 2010-11-11 | Zimmer Inc | Perfluorocyclobutane crosslinked hydrogels |
| ES2428376T3 (en) | 2006-03-07 | 2013-11-07 | Prochon Biotech Ltd. | Hyaluronic acid hydrazide derivatives |
| US8110242B2 (en) | 2006-03-24 | 2012-02-07 | Zimmer, Inc. | Methods of preparing hydrogel coatings |
| AU2007235821A1 (en) * | 2006-04-07 | 2007-10-18 | Adocia | Bifunctionalized polysaccharides |
| KR100803576B1 (en) * | 2006-06-14 | 2008-02-15 | 주식회사 인피트론 | Implantable composition containing fat stem cells and fat cells |
| EP1884231A1 (en) * | 2006-08-01 | 2008-02-06 | Auriga International S.A. | Cosmetic or pharmaceutical composition containing hyaluronic acid |
| US9242005B1 (en) | 2006-08-21 | 2016-01-26 | Abbott Cardiovascular Systems Inc. | Pro-healing agent formulation compositions, methods and treatments |
| FR2908415B1 (en) * | 2006-11-10 | 2009-01-23 | Abr Dev Sarl | RETICULATED HYALURONIC ACID AND PROCESS FOR PREPARING THE SAME |
| US9005672B2 (en) | 2006-11-17 | 2015-04-14 | Abbott Cardiovascular Systems Inc. | Methods of modifying myocardial infarction expansion |
| EP2107913B1 (en) * | 2006-12-22 | 2012-02-15 | Croma-Pharma Gesellschaft m.b.H. | Use of thiolated polysaccharides for tissue augmentation |
| US8329870B2 (en) * | 2007-01-04 | 2012-12-11 | Hepacore Ltd. | Water soluble reactive derivatives of carboxy polysaccharides and fibrinogen conjugates thereof |
| AU2008256819A1 (en) * | 2007-05-23 | 2008-12-04 | Allergan, Inc. | Cross-linked collagen and uses thereof |
| US20110077737A1 (en) * | 2007-07-30 | 2011-03-31 | Allergan, Inc. | Tunably Crosslinked Polysaccharide Compositions |
| US7731988B2 (en) | 2007-08-03 | 2010-06-08 | Zimmer, Inc. | Multi-polymer hydrogels |
| US8062739B2 (en) | 2007-08-31 | 2011-11-22 | Zimmer, Inc. | Hydrogels with gradient |
| US8697044B2 (en) | 2007-10-09 | 2014-04-15 | Allergan, Inc. | Crossed-linked hyaluronic acid and collagen and uses thereof |
| US7947784B2 (en) | 2007-11-16 | 2011-05-24 | Zimmer, Inc. | Reactive compounding of hydrogels |
| EP3498299A1 (en) | 2007-11-16 | 2019-06-19 | Aclaris Therapeutics, Inc. | Compositions and methods for treating purpura |
| US8394784B2 (en) | 2007-11-30 | 2013-03-12 | Allergan, Inc. | Polysaccharide gel formulation having multi-stage bioactive agent delivery |
| US8394782B2 (en) | 2007-11-30 | 2013-03-12 | Allergan, Inc. | Polysaccharide gel formulation having increased longevity |
| US8034362B2 (en) | 2008-01-04 | 2011-10-11 | Zimmer, Inc. | Chemical composition of hydrogels for use as articulating surfaces |
| US8080260B2 (en) | 2008-02-13 | 2011-12-20 | The Cleveland Clinic Foundation | Molecular enhancement of extracellular matrix and methods of use |
| WO2009108760A2 (en) | 2008-02-26 | 2009-09-03 | Board Of Regents, The University Of Texas System | Dendritic macroporous hydrogels prepared by crystal templating |
| EP2300042A4 (en) | 2008-04-30 | 2012-05-02 | Cleveland Clinic Foundation | Compositions and methods to treat urinary incontinence |
| US8932622B2 (en) * | 2008-06-03 | 2015-01-13 | Actamax Surgical Materials, Llc | Tissue coating for preventing undesired tissue-to-tissue adhesions |
| US20100015231A1 (en) * | 2008-07-17 | 2010-01-21 | E.I. Du Pont De Nemours And Company | Low swell, long-lived hydrogel sealant |
| US8357795B2 (en) | 2008-08-04 | 2013-01-22 | Allergan, Inc. | Hyaluronic acid-based gels including lidocaine |
| ES2829971T3 (en) | 2008-09-02 | 2021-06-02 | Tautona Group Lp | Hyaluronic acid threads and / or derivatives thereof, methods to manufacture them and uses thereof |
| DE102008048227A1 (en) | 2008-09-18 | 2010-04-01 | Friedrich-Schiller-Universität Jena | Producing polyelectrolyte hydrogel bodies, useful e.g. as soft tissue implants, comprises filling a semi-permeable membrane-forming liquid and a coagulation medium in a hollow template to form hollow semipermeable membrane body |
| EP2337536B1 (en) | 2008-10-02 | 2020-08-12 | L.R. R & D Ltd. | Interface layer wound dressing |
| CN101721349B (en) | 2008-10-16 | 2011-07-20 | 常州百瑞吉生物医药有限公司 | Injectable in-situ crosslinking aquogel and preparation method and application thereof |
| EP2349357B1 (en) * | 2008-11-19 | 2012-10-03 | Actamax Surgical Materials LLC | Hydrogel tissue adhesive formed from aminated polysaccharide and aldehyde-functionalized multi-arm polyether |
| US20100160960A1 (en) * | 2008-12-19 | 2010-06-24 | E. I. Du Pont De Nemours And Company | Hydrogel tissue adhesive having increased degradation time |
| US8273373B2 (en) * | 2008-12-30 | 2012-09-25 | Case Western Reserve University | Photocrosslinked biodegradable hydrogel |
| US8968733B2 (en) | 2009-02-21 | 2015-03-03 | Sofradim Production | Functionalized surgical adhesives |
| ES2621380T3 (en) * | 2009-04-02 | 2017-07-03 | Allergan, Inc. | Hair-shaped hydrogels for soft tissue augmentation |
| JP2012523289A (en) | 2009-04-09 | 2012-10-04 | アクタマックス サージカル マテリアルズ リミテッド ライアビリティ カンパニー | Hydrogel tissue adhesive with reduced degradation time |
| SG176286A1 (en) | 2009-05-29 | 2012-01-30 | Agency Science Tech & Res | Flavonoid hydrogel |
| WO2010138074A1 (en) * | 2009-05-29 | 2010-12-02 | Hilborn Joens | Hyaluronic acid based delivery systems |
| IT1399351B1 (en) * | 2009-06-16 | 2013-04-16 | Fidia Farmaceutici | PROCEDURE FOR THE SYNTHESIS OF GLYCOSAMINOGLICAN CONJUGATES (GAG) WITH BIOLOGICALLY ACTIVE MOLECULES, POLYMERIC CONJUGATES AND RELATIVE USES |
| US8796242B2 (en) | 2009-07-02 | 2014-08-05 | Actamax Surgical Materials, Llc | Hydrogel tissue adhesive for medical use |
| US8778326B2 (en) | 2009-07-02 | 2014-07-15 | Actamax Surgical Materials, Llc | Hydrogel tissue adhesive for medical use |
| US8580951B2 (en) * | 2009-07-02 | 2013-11-12 | Actamax Surgical Materials, Llc | Aldehyde-functionalized polysaccharides |
| CN102573860A (en) | 2009-10-02 | 2012-07-11 | 巴克斯特国际公司 | Hematopoietic stem cells for use in the treatment of a kidney injury |
| CN102781463A (en) | 2009-10-07 | 2012-11-14 | 戈诺珍公司 | Methods and compositions for skin regeneration |
| AU2010314992B2 (en) | 2009-11-09 | 2016-09-15 | Spotlight Technology Partners Llc | Polysaccharide based hydrogels |
| CN107033368A (en) | 2009-11-09 | 2017-08-11 | 聚光灯技术合伙有限责任公司 | fragmentation hydrogel |
| TWI510501B (en) * | 2009-12-08 | 2015-12-01 | Kewpie Corp | Method for manufacturing purified hyaluronic acid group |
| FR2954945B1 (en) | 2010-01-04 | 2012-01-06 | Oreal | COSMETIC OR DERMATOLOGICAL COMPOSITION, COSMETIC PROCESSING METHOD, AND HYALURONIC ACID DERIVATIVE |
| US20110172180A1 (en) | 2010-01-13 | 2011-07-14 | Allergan Industrie. Sas | Heat stable hyaluronic acid compositions for dermatological use |
| US9114188B2 (en) | 2010-01-13 | 2015-08-25 | Allergan, Industrie, S.A.S. | Stable hydrogel compositions including additives |
| EP2544652A2 (en) | 2010-03-12 | 2013-01-16 | Allergan Industrie SAS | A fluid composition comprising a hyaluronan polymer and mannitol for improving skin condition. |
| PL2550027T5 (en) | 2010-03-22 | 2019-07-31 | Allergan, Inc. | Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation |
| EP2552406B1 (en) | 2010-03-26 | 2018-01-24 | Stemmatters, Biotecnologia e Medicina Regenerativa, S.A. | Photo-crosslinked gellan gum-based hydrogels: preparation methods and uses thereof |
| EP2552416B1 (en) * | 2010-03-29 | 2017-10-25 | Evonik Corporation | Compositions and methods for improved retention of a pharmaceutical composition at a local administration site |
| US8883139B2 (en) | 2010-08-19 | 2014-11-11 | Allergan Inc. | Compositions and soft tissue replacement methods |
| US9005605B2 (en) | 2010-08-19 | 2015-04-14 | Allergan, Inc. | Compositions and soft tissue replacement methods |
| US8889123B2 (en) | 2010-08-19 | 2014-11-18 | Allergan, Inc. | Compositions and soft tissue replacement methods |
| US8697057B2 (en) | 2010-08-19 | 2014-04-15 | Allergan, Inc. | Compositions and soft tissue replacement methods |
| CN102399295B (en) | 2010-09-09 | 2013-11-06 | 常州百瑞吉生物医药有限公司 | Low-sulfhydrylation-modification-degree biocompatible high-molecular sulfhydrylation derivatives, cross-linking material thereof, and purpose thereof |
| JP6042815B2 (en) | 2010-10-08 | 2016-12-14 | ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ テキサス システム | Anti-adhesion barrier membranes using alginate and hyaluronic acid for biomedical applications |
| WO2012048283A1 (en) | 2010-10-08 | 2012-04-12 | Board Of Regents, The University Of Texas System | One-step processing of hydrogels for mechanically robust and chemically desired features |
| WO2012054749A1 (en) | 2010-10-20 | 2012-04-26 | Li-Cor, Inc. | Cyanine dyes and their conjugates |
| EP2670439B1 (en) * | 2011-01-31 | 2019-03-13 | PVAC Medical Technologies Ltd. | Active principle for mitigating undesired medical conditions |
| JP6141180B2 (en) * | 2011-03-03 | 2017-06-07 | 中外製薬株式会社 | Hyaluronic acid derivatives modified with amino-carboxylic acids |
| WO2012140650A2 (en) | 2011-04-12 | 2012-10-18 | Hepacore Ltd. | Conjugates of carboxy polysaccharides with fibroblast growth factors and variants thereof |
| WO2012145439A1 (en) | 2011-04-20 | 2012-10-26 | Carbylan Biosurgery, Inc. | In-situ gel forming compositions |
| WO2012165462A1 (en) * | 2011-05-31 | 2012-12-06 | 国立大学法人 東京大学 | Hydrogel and method for producing same |
| US9408797B2 (en) | 2011-06-03 | 2016-08-09 | Allergan, Inc. | Dermal filler compositions for fine line treatment |
| US20130096081A1 (en) | 2011-06-03 | 2013-04-18 | Allergan, Inc. | Dermal filler compositions |
| US20220023186A1 (en) * | 2011-06-03 | 2022-01-27 | Allergan, Inc. | Dermal filler compositions |
| US9393263B2 (en) | 2011-06-03 | 2016-07-19 | Allergan, Inc. | Dermal filler compositions including antioxidants |
| KR102154944B1 (en) | 2011-06-03 | 2020-09-11 | 알러간 인더스트리 에스에이에스 | Dermal filler compositions including antioxidants |
| WO2013010045A1 (en) | 2011-07-12 | 2013-01-17 | Biotime Inc. | Novel methods and formulations for orthopedic cell therapy |
| US9662422B2 (en) | 2011-09-06 | 2017-05-30 | Allergan, Inc. | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
| US20130244943A1 (en) | 2011-09-06 | 2013-09-19 | Allergan, Inc. | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
| AU2015255254B2 (en) * | 2011-09-14 | 2017-07-06 | Allergan Industrie, Sas | Dermal filler compositions for fine line treatment |
| TWI561535B (en) | 2011-10-06 | 2016-12-11 | Bvw Holding Ag | Copolymers of hydrophobic and hydrophilic segments that reduce protein adsorption |
| ES2798109T3 (en) * | 2012-01-25 | 2020-12-09 | Univ Akron | Polymerizable fluorinated hydrogels for wound dressings and procedures for making them |
| EP2817014A2 (en) | 2012-02-21 | 2014-12-31 | Baxter International Inc | Pharmaceutical composition comprising cd34+ cells |
| CZ304266B6 (en) | 2012-11-27 | 2014-02-05 | Contipro Biotech S.R.O. | Endless fibers based on hyaluronate selectively oxidized in position 6 N-acetyl-D-glucosamine portion, their preparation, use, threads, yarns, fabrics and process for preparing thereof |
| US11565027B2 (en) | 2012-12-11 | 2023-01-31 | Board Of Regents, The University Of Texas System | Hydrogel membrane for adhesion prevention |
| US20140315828A1 (en) | 2013-04-22 | 2014-10-23 | Allergan, Inc. | Cross-linked silk-hyaluronic acid compositions |
| EP3027659B1 (en) | 2013-07-29 | 2020-12-09 | Actamax Surgical Materials LLC | Low swell tissue adhesive and sealant formulations |
| US9782345B2 (en) | 2013-10-17 | 2017-10-10 | Jade Therapeutics, Inc. | Ocular composition and method |
| US20170072096A1 (en) * | 2014-03-16 | 2017-03-16 | Drexel University | Novel hydrogels and methods using same |
| EP3620184A1 (en) | 2014-09-30 | 2020-03-11 | Allergan Industrie, SAS | Stable hydrogel compositions including additives |
| US10077420B2 (en) | 2014-12-02 | 2018-09-18 | Histogenics Corporation | Cell and tissue culture container |
| EP3040348A1 (en) * | 2014-12-29 | 2016-07-06 | Galderma S.A. | Graft copolymer |
| WO2016128783A1 (en) | 2015-02-09 | 2016-08-18 | Allergan Industrie Sas | Compositions and methods for improving skin appearance |
| AU2016217792B2 (en) | 2015-02-13 | 2020-07-02 | Allergan Industrie, Sas | Implants for sculpting, augmenting or correcting facial features such as the chin |
| US10563164B1 (en) | 2015-10-08 | 2020-02-18 | Charm Sciences, Inc. | Plate reader |
| EP3156044A1 (en) | 2015-10-16 | 2017-04-19 | Merz Pharma GmbH & Co. KGaA | In situ cross-linkable polysaccharide compositions and uses thereof |
| CN108884172A (en) * | 2015-12-29 | 2018-11-23 | 高德美股份公司 | carbohydrate crosslinker |
| US10495563B1 (en) | 2016-04-28 | 2019-12-03 | Charm Sciences, Inc. | Plate reader observation methods and operation |
| EP3241895A1 (en) * | 2016-05-04 | 2017-11-08 | ETH Zürich, ETH Transfer | Transglutaminase mediated high molecular weight hyaluronan hydrogels |
| PT3623390T (en) * | 2016-05-31 | 2023-10-27 | Galderma Sa | Carbohydrate crosslinker |
| CN109475573A (en) * | 2016-06-13 | 2019-03-15 | 珀杜研究基金会 | Responsive elastic polymers and methods of making and using the same |
| WO2018039496A1 (en) | 2016-08-24 | 2018-03-01 | Allergan, Inc. | Co-crosslinked hyaluronic acid-silk fibroin hydrogels for improving tissue graft viability and for soft tissue augmentation |
| US10993919B2 (en) * | 2016-10-04 | 2021-05-04 | University Of Florida Research Foundation, Inc. | Chondroprotective nanoparticles for the treatment of osteoarthritis |
| KR101877894B1 (en) * | 2016-12-09 | 2018-07-12 | 서울대학교병원 | Injectable combination drug for treating hearing loss and method of preparing the same |
| US11980700B2 (en) | 2017-03-08 | 2024-05-14 | Alafair Biosciences, Inc. | Hydrogel medium for the storage and preservation of tissue |
| SG11201908547VA (en) | 2017-03-22 | 2019-10-30 | Genentech Inc | Hydrogel cross-linked hyaluronic acid prodrug compositions and methods |
| US20230190997A1 (en) | 2017-06-26 | 2023-06-22 | Evolved By Nature, Inc. | Silk-hyaluronic acid based tissue filers and methods of using the same |
| WO2019121488A1 (en) * | 2017-12-21 | 2019-06-27 | Nicox S.A. | Nitric oxide releasing hyaluronic esters |
| CN108721695A (en) * | 2018-05-29 | 2018-11-02 | 金陵科技学院 | A kind of preparation method of injectable composite hydrogel cell carrier scaffold |
| EP3806919B1 (en) | 2018-06-15 | 2024-05-15 | Croma-Pharma GmbH | Hydrogel composition comprising a crosslinked polymer |
| CA3101408A1 (en) | 2018-06-15 | 2019-12-19 | Croma-Pharma Gmbh | Hydrogel composition comprising a crosslinked polymer |
| US20220062151A1 (en) | 2018-12-19 | 2022-03-03 | Merz Pharma Gmbh & Co. Kgaa | Aldehyde-modified hyaluronic acid, method for preparing same and applications thereof |
| SG11202106411QA (en) | 2018-12-19 | 2021-07-29 | Evolved By Nature Inc | Silk-hyaluronic acid tissue fillers and methods of making and using the same |
| US11667895B2 (en) | 2019-05-10 | 2023-06-06 | The Board Of Trustees Of The University Of Alabama | Methods and devices related to controlled delivery of phages as a theranostic tool |
| CN110279610B (en) | 2019-06-26 | 2021-06-11 | 常州百瑞吉生物医药有限公司 | Hyaluronic acid skin protection composition and preparation method and application thereof |
| CN114466869B (en) * | 2019-07-03 | 2024-03-19 | 莫莉·桑德拉·萧伊凯特 | Hydrogel composition and use thereof |
| WO2021111303A1 (en) | 2019-12-02 | 2021-06-10 | Galderma Holding SA | High molecular weight esthetic compositions |
| ES2985960T3 (en) | 2019-12-19 | 2024-11-07 | Croma Pharma Gmbh | Thiol-modified hyaluronan and hydrogel comprising cross-linked hyaluronan |
| CN113929792B (en) * | 2020-07-13 | 2023-03-10 | 孛朗孚(杭州)生物科技有限公司 | Aldehyde modified hyaluronic acid (sodium) and synthesis method and application thereof |
| CN113583262B (en) * | 2021-06-24 | 2022-03-29 | 四川大学 | Near-infrared response hyaluronic acid hydrogel for articular cartilage repair and preparation method thereof |
| WO2024124189A1 (en) * | 2022-12-08 | 2024-06-13 | The General Hospital Corporation | Corneal filler |
| WO2024159142A1 (en) * | 2023-01-27 | 2024-08-02 | Tempo Therapeutics, Inc. | Annealed microgel particle systems and methods |
| EP4567050A1 (en) | 2023-12-04 | 2025-06-11 | Quantum Beauty Cosmetics Joint Stock Company | A method for preparing a cross-linked hyaluronic acid gel |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5462976A (en) * | 1992-02-05 | 1995-10-31 | Seikagaku Kogyo Kabushiki Kaisha | Photocurable glycosaminoglycan derivatives, crosslinked glycosaminoglycans and method of production thereof |
Family Cites Families (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5166331A (en) | 1983-10-10 | 1992-11-24 | Fidia, S.P.A. | Hyaluronics acid fractions, methods for the preparation thereof, and pharmaceutical compositions containing same |
| US5512329A (en) * | 1982-09-29 | 1996-04-30 | Bsi Corporation | Substrate surface preparation |
| US4517295A (en) | 1983-02-18 | 1985-05-14 | Diagnostic, Inc. | Hyaluronic acid from bacterial culture |
| US5316926A (en) | 1983-11-25 | 1994-05-31 | Miles Inc. | Method for the microbiological production of non-antigenic hyaluronic acid |
| MX163953B (en) | 1984-03-27 | 1992-07-03 | Univ New Jersey Med | PROCEDURE FOR PREPARING A BIODEGRADABLE COLLAGEN MATRIX |
| JPS60251898A (en) | 1984-05-25 | 1985-12-12 | Shiseido Co Ltd | Preparation of hyaluronic acid by fermentation method |
| US4582865A (en) | 1984-12-06 | 1986-04-15 | Biomatrix, Inc. | Cross-linked gels of hyaluronic acid and products containing such gels |
| US4780414A (en) | 1985-01-18 | 1988-10-25 | Bio-Technology General Corp. | Method of producing high molecular weight sodium hyallronate by fermentation of streptococcus |
| US4713448A (en) | 1985-03-12 | 1987-12-15 | Biomatrix, Inc. | Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues |
| US4851521A (en) | 1985-07-08 | 1989-07-25 | Fidia, S.P.A. | Esters of hyaluronic acid |
| DE3608158A1 (en) | 1986-03-12 | 1987-09-17 | Braun Melsungen Ag | VESSELED PROSTHESIS IMPREGNATED WITH CROSSLINED GELATINE AND METHOD FOR THE PRODUCTION THEREOF |
| IT1198449B (en) | 1986-10-13 | 1988-12-21 | F I D I Farmaceutici Italiani | ESTERS OF POLYVALENT ALCOHOLS OF HYALURONIC ACID |
| US5017229A (en) | 1990-06-25 | 1991-05-21 | Genzyme Corporation | Water insoluble derivatives of hyaluronic acid |
| US5527893A (en) | 1987-09-18 | 1996-06-18 | Genzyme Corporation | Water insoluble derivatives of polyanionic polysaccharides |
| US6174999B1 (en) * | 1987-09-18 | 2001-01-16 | Genzyme Corporation | Water insoluble derivatives of polyanionic polysaccharides |
| US5162430A (en) | 1988-11-21 | 1992-11-10 | Collagen Corporation | Collagen-polymer conjugates |
| EP0449973B1 (en) | 1988-12-20 | 1996-03-20 | La Jolla Cancer Research Foundation | Polypeptide-polymer conjugates active in wound healing |
| US4897349A (en) | 1989-04-28 | 1990-01-30 | Medchem Products, Inc. | Biosynthesis of hyaluronic acid |
| US5356883A (en) | 1989-08-01 | 1994-10-18 | Research Foundation Of State University Of N.Y. | Water-insoluble derivatives of hyaluronic acid and their methods of preparation and use |
| WO1992006714A1 (en) * | 1990-10-18 | 1992-04-30 | Shiseido Co., Ltd. | Combination of hyaluronic acid with medicinal ingredient and production thereof |
| US5206023A (en) | 1991-01-31 | 1993-04-27 | Robert F. Shaw | Method and compositions for the treatment and repair of defects or lesions in cartilage |
| US5219360A (en) * | 1991-05-10 | 1993-06-15 | Fortis Research Corporation | Mammary prosthesis fill and method of making same |
| EP0591392B1 (en) * | 1991-06-21 | 1996-09-11 | Genetics Institute, Inc. | Pharmaceutical formulations of osteogenic proteins |
| FR2679778B1 (en) | 1991-08-02 | 1995-07-07 | Coletica | USE OF CROLAGEN CROSSLINKED BY A CROSSLINKING AGENT FOR THE MANUFACTURE OF A SLOW RESORPTIVE, BIOCOMPATIBLE, SUTURABLE MEMBRANE, AS WELL AS SUCH A MEMBRANE. |
| US5270300A (en) | 1991-09-06 | 1993-12-14 | Robert Francis Shaw | Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone |
| GB2261672A (en) | 1991-11-18 | 1993-05-26 | Michael Braden | The use of biomaterials for tissue repair |
| GB9206509D0 (en) | 1992-03-25 | 1992-05-06 | Jevco Ltd | Heteromorphic sponges containing active agents |
| IL105529A0 (en) | 1992-05-01 | 1993-08-18 | Amgen Inc | Collagen-containing sponges as drug delivery for proteins |
| US5565210A (en) | 1993-03-22 | 1996-10-15 | Johnson & Johnson Medical, Inc. | Bioabsorbable wound implant materials |
| US5616568A (en) | 1993-11-30 | 1997-04-01 | The Research Foundation Of State University Of New York | Functionalized derivatives of hyaluronic acid |
| IT1268955B1 (en) * | 1994-03-11 | 1997-03-18 | Fidia Advanced Biopolymers Srl | ACTIVE ESTERS OF CARBOXYL POLYSACCHARIDES |
| US5769899A (en) | 1994-08-12 | 1998-06-23 | Matrix Biotechnologies, Inc. | Cartilage repair unit |
| US6025444A (en) * | 1994-11-17 | 2000-02-15 | Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) | Cinnamic acid derivative |
| IT1269274B (en) | 1994-11-22 | 1997-03-26 | Carlo Antonio Camorani | METHOD FOR FORMING CERAMIC TILES AND RELATED PLANT |
| US5693341A (en) | 1995-03-16 | 1997-12-02 | Collagen Corporation | Affinity bound collagen matrices for the delivery of biologically active agents |
| US5817303A (en) * | 1995-05-05 | 1998-10-06 | Protein Polymer Technologies, Inc. | Bonding together tissue with adhesive containing polyfunctional crosslinking agent and protein polymer |
| JP3439481B2 (en) | 1995-11-15 | 2003-08-25 | 生化学工業株式会社 | Photocrosslinked hyaluronic acid gel and method for producing the same |
| US5939323A (en) | 1996-05-28 | 1999-08-17 | Brown University | Hyaluronan based biodegradable scaffolds for tissue repair |
| FR2754267B1 (en) | 1996-10-07 | 1999-01-22 | Dev Des Utilisations Du Collag | PROCESS FOR CROSSLINKING COLLAGEN OR GELATIN USING A MACROMOLECULAR POLYALDEHYDE AND ADHESIVE COMPOSITION |
| NZ507540A (en) * | 1998-04-28 | 2002-07-26 | Jagotec Ag | Hyaluronic acid based imaging agents containing gadolinium or iron oxide |
| EP1082963A4 (en) * | 1998-05-20 | 2004-03-17 | Chugai Pharmaceutical Co Ltd | Remedies for joint diseases bound to hyaluronic acid |
-
1998
- 1998-09-18 US US09/156,829 patent/US6630457B1/en not_active Expired - Fee Related
-
1999
- 1999-09-17 DE DE69922522T patent/DE69922522T2/en not_active Expired - Lifetime
- 1999-09-17 CA CA002344215A patent/CA2344215A1/en not_active Abandoned
- 1999-09-17 IL IL14206899A patent/IL142068A0/en active IP Right Grant
- 1999-09-17 EP EP99948783A patent/EP1115433B1/en not_active Expired - Lifetime
- 1999-09-17 WO PCT/EP1999/006913 patent/WO2000016818A1/en active IP Right Grant
- 1999-09-17 AU AU61922/99A patent/AU6192299A/en not_active Abandoned
- 1999-09-17 EP EP04028974A patent/EP1757314A1/en not_active Withdrawn
- 1999-09-17 AT AT99948783T patent/ATE284229T1/en not_active IP Right Cessation
-
2001
- 2001-03-18 IL IL142068A patent/IL142068A/en not_active IP Right Cessation
-
2003
- 2003-10-06 US US10/680,000 patent/US7196180B2/en not_active Expired - Fee Related
-
2007
- 2007-02-13 US US11/706,922 patent/US20070149441A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5462976A (en) * | 1992-02-05 | 1995-10-31 | Seikagaku Kogyo Kabushiki Kaisha | Photocurable glycosaminoglycan derivatives, crosslinked glycosaminoglycans and method of production thereof |
Cited By (51)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8679190B2 (en) | 2004-10-05 | 2014-03-25 | The Board Of Trustees Of The Leland Stanford Junior University | Hydrogel arthroplasty device |
| US9387082B2 (en) | 2004-10-05 | 2016-07-12 | The Board Of Trustees Of The Leland Stanford Junior University | Hydrogel arthroplasty device |
| US7674781B2 (en) * | 2006-04-28 | 2010-03-09 | Heather Sheardown | Hyaluronic acid-retaining polymers |
| US20070293648A1 (en) * | 2006-04-28 | 2007-12-20 | Heather Sheardown | Hyaluronic acid-retaining polymers |
| US20100279952A1 (en) * | 2007-12-21 | 2010-11-04 | Ninus Caram-Lelham | Cross-linked hydrogel containing an active substance |
| EP3456749A1 (en) | 2008-02-29 | 2019-03-20 | PVAC Medical Technologies Ltd. | A substituted polyvinyal alcohol reagent |
| US9585987B2 (en) | 2008-02-29 | 2017-03-07 | Pvac Medical Technologies Ltd | Composition for the formation of gels |
| US20110008444A1 (en) * | 2008-02-29 | 2011-01-13 | Ipr-Systems Sweden Ab | Composition for the formation of gels |
| US10752768B2 (en) | 2008-07-07 | 2020-08-25 | Hyalex Orthopaedics, Inc. | Orthopedic implants having gradient polymer alloys |
| US10457803B2 (en) | 2008-07-07 | 2019-10-29 | Hyalex Orthopaedics, Inc. | Orthopedic implants having gradient polymer alloys |
| US8883915B2 (en) | 2008-07-07 | 2014-11-11 | Biomimedica, Inc. | Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same |
| US8853294B2 (en) | 2008-08-05 | 2014-10-07 | Biomimedica, Inc. | Polyurethane-grafted hydrogels |
| US8497023B2 (en) | 2008-08-05 | 2013-07-30 | Biomimedica, Inc. | Polyurethane-grafted hydrogels |
| US8742013B2 (en) * | 2009-04-24 | 2014-06-03 | Seoul National University of Technology Center for Industrial Collaboration | Synthesis of lipoamide-grafted high molecular compound and method therefor |
| US20100272761A1 (en) * | 2009-04-24 | 2010-10-28 | Seoul National University of Technology Center for Industrial Collaboration | Synthesis of lipoamide-grafted high molecular compound and method therefor |
| US9132201B2 (en) * | 2009-11-11 | 2015-09-15 | University Of Twente, Institute For Biomedical And Technical Medicine (Mira) | Hydrogels based on polymers of dextran tyramine and tyramine conjugates of natural polymers |
| US20120301441A1 (en) * | 2009-11-11 | 2012-11-29 | Hermanus Bernardus Johannes Karperien | Dextran-hyaluronic acid based hydrogels |
| US20120276069A1 (en) * | 2009-11-11 | 2012-11-01 | Hermanus Bernardus Johannes Karperien | Hydrogels based on polymers of dextran tyramine and tyramine conjugates of natural polymers |
| US8796234B2 (en) | 2009-11-24 | 2014-08-05 | Agency For Science, Technology And Research | Crosslinking branched molecule through thiol-disulfide exchange to form hydrogel |
| US9434791B2 (en) | 2009-12-11 | 2016-09-06 | Contipro Pharma A.S. | Method of preparation of an oxidized derivative of hyaluronic acid and a method of modification thereof |
| US9403918B2 (en) | 2009-12-11 | 2016-08-02 | Contipro Pharma A.S. | Oxidized derivative of hyaluronic acid, a method of preparation thereof and a method of modification thereof |
| US8524662B2 (en) | 2010-12-28 | 2013-09-03 | Depuy Mitek, Llc | Compositions and methods for treating joints |
| US8927491B2 (en) | 2010-12-28 | 2015-01-06 | Depuy Mitek, Llc | Methods for forming compositions for treating joints comprising bone morphogenetic protein and hyaluronic acid |
| US8398611B2 (en) | 2010-12-28 | 2013-03-19 | Depuy Mitek, Inc. | Compositions and methods for treating joints |
| US11090328B2 (en) | 2010-12-28 | 2021-08-17 | Medos International Sarl | Compositions and methods for treating joints |
| US8455436B2 (en) | 2010-12-28 | 2013-06-04 | Depuy Mitek, Llc | Compositions and methods for treating joints |
| US9561260B2 (en) | 2010-12-28 | 2017-02-07 | Depuy Mitek, Llc | Compositions for treating joints comprising bone morphogenetic protein and hyaluronic acid |
| US8623839B2 (en) | 2011-06-30 | 2014-01-07 | Depuy Mitek, Llc | Compositions and methods for stabilized polysaccharide formulations |
| WO2013036072A1 (en) * | 2011-09-08 | 2013-03-14 | 신풍제약 주식회사 | Injectable therapeutic agent for arthritis |
| US11760830B2 (en) | 2011-10-03 | 2023-09-19 | Hyalex Orthopaedics, Inc. | Polymeric adhesive for anchoring compliant materials to another surface |
| US11015016B2 (en) | 2011-10-03 | 2021-05-25 | Hyalex Orthopaedics, Inc. | Polymeric adhesive for anchoring compliant materials to another surface |
| US9114024B2 (en) | 2011-11-21 | 2015-08-25 | Biomimedica, Inc. | Systems, devices, and methods for anchoring orthopaedic implants to bone |
| CZ303879B6 (en) * | 2012-02-28 | 2013-06-05 | Contipro Biotech S.R.O. | Derivatives based on hyaluronic acid capable of forming hydrogels, process of their preparation, hydrogels based on these derivatives, process of their preparation and use |
| US9492586B2 (en) | 2012-02-28 | 2016-11-15 | Contipro Biotech S.R.O. | Derivatives of hyaluronic acid capable of forming hydrogels |
| US9522966B2 (en) | 2012-08-08 | 2016-12-20 | Contipro Biotech S.R.O. | Hyaluronic acid derivative, method of preparation thereof, method of modification thereof and use thereof |
| CZ304512B6 (en) * | 2012-08-08 | 2014-06-11 | Contipro Biotech S.R.O. | Hyaluronic acid derivative, process for its preparation, modification process and use thereof |
| US9999678B2 (en) | 2012-11-27 | 2018-06-19 | Contipro A.S. | C6-C18-acylated derivative of hyaluronic acid and method of preparation thereof |
| US10023658B2 (en) | 2014-03-11 | 2018-07-17 | Contipro A.S. | Conjugates of oligomer of hyaluronic acid or of a salt thereof, method of preparation thereof and use thereof |
| US10617711B2 (en) | 2014-06-30 | 2020-04-14 | Contipro A.S. | Antitumor composition based on hyaluronic acid and inorganic nanoparticles, method of preparation thereof and use thereof |
| US10532069B2 (en) | 2015-01-20 | 2020-01-14 | DePuy Synthes Products, Inc. | Compositions and methods for treating joints |
| US9682099B2 (en) | 2015-01-20 | 2017-06-20 | DePuy Synthes Products, Inc. | Compositions and methods for treating joints |
| US10689464B2 (en) | 2015-03-09 | 2020-06-23 | Contipro A.S. | Self-supporting, biodegradable film based on hydrophobized hyaluronic acid, method of preparation and use thereof |
| US10759878B2 (en) | 2015-06-15 | 2020-09-01 | Contipro A.S. | Method of crosslinking of polysaccharides using photoremovable protecting groups |
| US10414832B2 (en) | 2015-06-26 | 2019-09-17 | Contipro A.S | Derivatives of sulfated polysaccharides, method of preparation, modification and use thereof |
| US11077228B2 (en) | 2015-08-10 | 2021-08-03 | Hyalex Orthopaedics, Inc. | Interpenetrating polymer networks |
| US10618984B2 (en) | 2016-06-27 | 2020-04-14 | Contipro A.S. | Unsaturated derivatives of polysaccharides, method of preparation thereof and use thereof |
| US11129790B2 (en) | 2017-05-19 | 2021-09-28 | Northeastern University | Chemo-enzymatic site-specific modification of peptides and proteins to form cleavable conjugates |
| US10792392B2 (en) | 2018-07-17 | 2020-10-06 | Hyalex Orthopedics, Inc. | Ionic polymer compositions |
| US10869950B2 (en) | 2018-07-17 | 2020-12-22 | Hyalex Orthopaedics, Inc. | Ionic polymer compositions |
| US11110200B2 (en) | 2018-07-17 | 2021-09-07 | Hyalex Orthopaedics, Inc. | Ionic polymer compositions |
| US11364322B2 (en) | 2018-07-17 | 2022-06-21 | Hyalex Orthopaedics, Inc. | Ionic polymer compositions |
Also Published As
| Publication number | Publication date |
|---|---|
| DE69922522D1 (en) | 2005-01-13 |
| ATE284229T1 (en) | 2004-12-15 |
| AU6192299A (en) | 2000-04-10 |
| CA2344215A1 (en) | 2000-03-30 |
| US7196180B2 (en) | 2007-03-27 |
| IL142068A0 (en) | 2002-03-10 |
| EP1757314A1 (en) | 2007-02-28 |
| DE69922522T2 (en) | 2005-12-15 |
| EP1115433A1 (en) | 2001-07-18 |
| EP1115433B1 (en) | 2004-12-08 |
| US20040072793A1 (en) | 2004-04-15 |
| IL142068A (en) | 2006-10-05 |
| US6630457B1 (en) | 2003-10-07 |
| WO2000016818A1 (en) | 2000-03-30 |
| WO2000016818A9 (en) | 2000-08-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6630457B1 (en) | Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same | |
| Bulpitt et al. | New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels | |
| US8329870B2 (en) | Water soluble reactive derivatives of carboxy polysaccharides and fibrinogen conjugates thereof | |
| JP4993465B2 (en) | Modified polymers and methods for making and using the same | |
| Park et al. | Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks | |
| US6303585B1 (en) | Cross-linked polysaccharide drug carrier | |
| AU771409B2 (en) | Injectable hyaluronic acid derivative with pharmaceuticals/cells | |
| CA2239775C (en) | Crosslinked polymer compositions and methods for their use | |
| AU2002223995B2 (en) | Cross-linked hyaluronic acid-laminin gels and use thereof in cell culture and medical implants | |
| US8940888B2 (en) | Hydrazido derivatives of hyaluronic acid | |
| US20120301441A1 (en) | Dextran-hyaluronic acid based hydrogels | |
| US20080032920A1 (en) | Macromolecules modified with electrophilic groups and methods of making and using thereof | |
| JPH07196704A (en) | Ionically cross-linked glycosaminoglycan gel for soft- tissue strengthening and drug transport | |
| US20200179419A1 (en) | Method for the manufacture and use of a bionic hydrogel composition for medical applications | |
| KR100737954B1 (en) | Hyaluronic Acid-Based Injectable Hydrogel for Tissue Regeneration | |
| US20130084278A1 (en) | Water soluble reactive derivatives of carboxy polysaccharides and fibrinogen conjugates thereof | |
| US20090047740A1 (en) | Culture aid for cells and tissues | |
| Bhattacharjee et al. | Hyaluronic Acid Hydrogel in Therapeutics Delivery and Biomedical Applications | |
| Shalaby et al. | Hyaluronic Acid-Based Systems | |
| HK1097468A (en) | Crosslinked polymer compositions and methods for their use | |
| HK1137153A (en) | Crosslinked polymer compositions and methods for their use |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |