US20070131222A1 - Energy collection device - Google Patents
Energy collection device Download PDFInfo
- Publication number
- US20070131222A1 US20070131222A1 US11/302,475 US30247505A US2007131222A1 US 20070131222 A1 US20070131222 A1 US 20070131222A1 US 30247505 A US30247505 A US 30247505A US 2007131222 A1 US2007131222 A1 US 2007131222A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- energy
- energy collection
- heat
- collection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000005611 electricity Effects 0.000 claims abstract description 8
- 239000012530 fluid Substances 0.000 claims description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 241000287828 Gallus gallus Species 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 238000005406 washing Methods 0.000 claims description 7
- 230000002528 anti-freeze Effects 0.000 claims description 3
- 230000003028 elevating effect Effects 0.000 claims 1
- 239000011521 glass Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229920006328 Styrofoam Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- -1 sheetrock Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0014—Recuperative heat exchangers the heat being recuperated from waste air or from vapors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/40—Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/70—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S25/10—Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V50/00—Use of heat from natural sources, e.g. from the sea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/60—Solar heat collectors integrated in fixed constructions, e.g. in buildings
- F24S20/67—Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Definitions
- the embodiments of the present invention relate to energy collection devices, and more particularly to an energy collection device that can harness solar energy as heat or electricity.
- one embodiment of the present invention is an energy collection device capable of absorbing thermal energy, the energy collection device comprising a housing; a passage within the housing having a first and a second end; said passage adapted to contain a fluid, having a first heat energy, wherein the passage accepts the fluid through a first end thereof such that the fluid may absorb thermal energy within the passage and directs the fluid, having a second heat energy, through the second end of the passage.
- the energy collection device may be elevated (e.g., over a roof) or in a second embodiment the energy collection device may act as the surface (e.g., the roof).
- the energy collection device can also be incorporated within an energy collection system.
- FIG. 1 illustrates a perspective view of an energy collection device elevated over a roof of a structure
- FIG. 2 illustrates a perspective view of an energy collection device mounted to a wall of a structure
- FIG. 3 illustrates a perspective view of an energy collection device functioning as a walkway cover
- FIG. 4 illustrates a perspective view of barrier devices for the energy collection devices of FIGS. 1-3 ;
- FIG. 5 illustrates a block diagram of an energy collection device in a home or building
- FIG. 6 illustrates a collection device positioned above a boiler situated in a laundromat.
- FIG. 1 illustrates a perspective view of an energy collection device 100 elevated over a roof 102 .
- the energy collection device 100 incorporates a tube or pipe 104 having an inlet 106 and an outlet 108 for circulating fluids such as water through the housing.
- the pipe 104 can also circulate viscous fluids like oil, antifreeze, or other viscous fluids capable of absorbing and transferring heat.
- the pipe 104 can circulate gaseous fluids such as xenon and argon.
- the pipe 104 can be fabricated of clear plastic, copper, metallic alloy, or any appropriate material for optimal thermal absorption.
- the use of a black-colored pipe 104 or painted pipe 104 increases the rate of heat absorption and the ability of the fluid to retain solar heat generated by the sun 101 .
- the housing 110 may be manufactured of wood, plastic, or other materials with a high specific heat like stone, concrete, or adobe.
- fiberglass and other protective materials can be used to insulate the pipe 104 .
- the housing 110 of the energy collection device 100 is shown rectangular in shape, it can take any shape as necessary to collect radiant energy from the sun 101 .
- the energy collection device 100 is elevated and maintained in position by support posts 112 .
- the support posts 112 allow the device 100 to be positioned on a structure without having to remove roofing shingles or other composite roofing materials.
- the support posts 112 are metal or plastic with one end coupled to the housing 110 and the other end coupled to the roof 102 . Screws and other fasteners can be used to connect the support posts 112 to the roof 102 and the housing 110 .
- the gap or spacing created between the energy collection device 100 and the roof 102 allows the energy collection device 100 to first function as a shade or an awning for the roof 102 .
- the energy collection device 100 not only reduces the amount of heat or sunlight exposure 101 at the rooftop surface 102 , the spacing created by the support posts 112 also allows convection airflow over the roof 102 thereby dissipating heat near the rooftop surface 102 .
- the energy collection device 100 or multiple such devices can be used as roofing materials in place of shingles and other composite roofing materials.
- the housing 110 of the energy collection device 100 must be constructed of a sturdy material, such as aluminum, copper, or other metallic alloy that is strong enough to support a person's weight such that people are able to walk on the housing(s) without damaging or collapsing the same.
- the basic operation of the energy collection device 100 is as follows. While elevated over the roof 102 , the energy collection device 100 is exposed to the sun's energy in the form of visible and ultraviolet light. The energy collection device 100 also collects other forms of energy including but not limited to rising heat from inside the house, energy emanating from the earth's surface (not shown), and energy waves and radiant energy from celestial bodies and gravitational forces exerted thereon (not shown).
- the collective energy sources provide thermal energy to heat the fluid within the pipe 104 .
- the heated fluid is circulated through the pipe 104 within the energy collection device 100 .
- the heated fluid can then be distributed for domestic hot water use, for heating a building, or can be transferred or stored for other uses.
- the efficiency of the energy collection and absorption depends on various factors including the material used to fabricate the pipe 104 and housing 110 , as well as any insulation that may surround the pipe 104 .
- FIG. 2 illustrates a perspective view of an energy collection device 100 mounted to a wall 114 on a side of a building (not shown).
- the energy collection device 100 can also be mounted to fences, floors, windows, awnings, patio covers, swimming pool covers, walkway covers, or any area where energy collection and/or shade is desirable. Additionally, the energy collection device 100 can be mounted to the different surfaces without support posts 112 . As described above, the energy collection device 100 can be manipulated into any shape necessary to accomplish the objective of maximum energy collection and absorption, and can also be shaped (e.g., parabolic) to intentionally capture a certain spectrum of solar radiation. The energy collection device 100 can also be employed to minimize heat and energy loss by insulating buildings and vehicles, and are ideal for farms, ranches, laundromats, Indian reservations and military bases.
- FIG. 3 shows a perspective view of a walkway cover 100 ′ elevated over a ground surface 116 and constructed of an energy collection device 100 .
- the energy collection device 100 can serve as patio cover elevated over a backyard cement slab 116 .
- the energy collection device 100 has a pipe 104 with an inlet 106 and an outlet 108 similar to that previously described.
- the energy collection device 100 is maintained by support posts 112 as described above, whereby the height and size of the support posts 112 can be adjusted accordingly.
- the support posts 112 are at least seven foot tall to allow people to walk comfortably under the walkway cover 100 .
- the walkway cover housing 110 can be plastic, metallic, or comprise a single-pane or double-pane glass having high ultraviolet transmittance characteristics.
- the glass can be tinted or painted on both sides to increase its heat absorption efficiency.
- the glass can also be tinted or painted to increase heat transfer or light absorption.
- gaseous fluids (not shown) between the double-pane glass housing 110 may be maintained in an excited state to reduce nighttime heat loss.
- the walkway cover 100 collects heat and energy from the sun 101 and transfer it for immediate use at the point of collection with its pipe circulation system, while also shading and blocking the amount of radiation and exposure to sunlight 101 thereunder.
- FIG. 4 illustrates barrier devices 118 that can be placed at the edges of the energy collection devices 100 illustrated in previous figures.
- the barrier devices 118 can be made of glass, plastic, or acrylic, and function like panel sidings by insulating the areas shaded by the energy collection device 100 .
- the barrier devices 118 can be sized to form walls for the energy collection device 100 such that the barrier devices 118 trap air and insulate the area between the energy collection device 100 and the respective roof 102 , wall 114 , or ground 116 , thereby minimizing heat loss to the atmosphere.
- the subsequent increase in the roof 102 or wall 114 insulation translates into lower heating bills.
- FIG. 5 illustrates an energy collection system 120 using water as the heat-carrying fluid in the energy collection device 100 .
- a ground water supply enters the system 120 from an inlet line 122 .
- the incoming water supply can be initially delivered to a water tank 124 in the path of the inlet line 122 as illustrated.
- the water tank 124 can be situated in a backyard or next to a building and colored black to increase its thermal absorption.
- the water within the water tank 124 is thereby pre-heated by the sun 101 and other sources of radiant or thermal energy, and may exhibit a slight rise in water temperature.
- the water in the water tank 124 subsequently leaves via an external mechanical pump 126 .
- the water tank 124 may not be necessary and the mechanical pump 126 can pump water directly from the inlet line 122 into the inlet 106 of the energy collection device 100 .
- the external pump 126 may not be necessary if ground water is delivered directly from city or local municipalities, or from natural underground springs.
- the energy collection device 100 can be elevated over a roof 102 or a wall 114 of a building 128 . Likewise, the energy collection device 100 can serve as a walkway cover or in other scenarios as previously described.
- the heated water exits the energy collection device 100 through the outlet 108 and travels into a hot water heater (not shown) inside the building 128 .
- the heated water can be converted for heating the house or commercial structure 128 using known materials and methods.
- the heated water can exit the outlet 108 and be transferred to a depository 130 for future use.
- the hot water leaving the outlet 108 can be carried to a steam boiler or hot water boiler 130 within a shed 132 .
- the shed 132 can be constructed of cinder blocks or energy collection devices 100 .
- a secondary energy source e.g., a flame
- the generated steam can be recovered within the shed 132 and converted into electricity using known electric generators (not shown). In other words, the steam generated can be used to charge an electric generator.
- the converted electricity can subsequently be delivered and used in the building 128 using known methods 134 .
- the devices 100 can also be located within the building's interior. Likewise, although the energy collection devices 100 are situated over or above a structure, they can also be embedded within or underneath the structure. For example, in a two-story house, the energy collection device 100 can be embedded within the floorboard of the second floor thereby collecting heat circulating within the house. Likewise, the energy collection device 100 can be embedded in between the floorboards of multi-story buildings. In addition, the energy collection device 100 can be mounted in an attic underneath the roof 102 , which can collect a tremendous amount of heat especially during summer. The energy collection device 100 as described can be embedded within styrofoam, sheetrock, brick, as well as any economically feasible material.
- FIG. 6 shows a laundromat layout with multiple washing machines 150 - 1 through 150 -N, dryers 155 - 1 through 155 -N and an energy collection device 100 positioned above a furnace or broiler 160 .
- the energy collection device 100 may be attached to the ceiling such that it hangs down over the broiler 160 .
- the broiler 160 is responsible for providing hot water to the washing machines 150 - 1 through 150 -N and hot air to the dryers 155 - 1 through 155 -N. Normally, excess heat from the broiler 160 is discharged, along with heat from the dryers 155 - 1 through 155 -N, into the atmosphere.
- the energy collection device 100 is used without the pipe 104 or fluid. That is, the shade created by the housing 110 reduces the heat temperature of the roof or wall thereby maintaining a cooler temperature within the subject structure. Indeed, a simple canvas or similar material elevated over a roof or wall with supports will reduce the roof or wall temperature thereby maintaining a cooler temperature within the structure.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
- Photovoltaic Devices (AREA)
Abstract
Described is an energy collection device for harnessing energy, including solar energy, as heat or electricity. The energy collection device can be situated over a roof or mounted to a wall. Additionally, the energy collection device can also be made into a walkway cover or used internally at locations which produce heat (e.g., laundromat). The energy collection device is capable of collecting and absorbing thermal energy from the sun, atmosphere or heat-producing device and transferring it to a point of source for immediate or future use.
Description
- The embodiments of the present invention relate to energy collection devices, and more particularly to an energy collection device that can harness solar energy as heat or electricity.
- Solar power involves methods of harnessing energy from sun light. It has become of increasing interest as environmental costs and limited supplies of other power sources, such as fossil fuels, are realized. Traditional methods of harnessing solar power involve great expensive and complicated solar cells such as photovoltaic semiconductor cells for producing electricity from solar energy. For most people, the solar cells are cost prohibitive and, therefore, impractical. Thus, there exists a need for a simple, efficient, and easy-to-use energy collection device that can be readily constructed and installed in residential or commercial settings.
- Accordingly, one embodiment of the present invention is an energy collection device capable of absorbing thermal energy, the energy collection device comprising a housing; a passage within the housing having a first and a second end; said passage adapted to contain a fluid, having a first heat energy, wherein the passage accepts the fluid through a first end thereof such that the fluid may absorb thermal energy within the passage and directs the fluid, having a second heat energy, through the second end of the passage. In one embodiment the energy collection device may be elevated (e.g., over a roof) or in a second embodiment the energy collection device may act as the surface (e.g., the roof).
- The types of fluid that can be used include water and viscous fluids like oil, or antifreeze. As set forth in more detail below, the energy collection device can also be incorporated within an energy collection system.
- Other variations, embodiments and features of the present invention will become evident from the following detailed description, drawings and claims.
-
FIG. 1 illustrates a perspective view of an energy collection device elevated over a roof of a structure; -
FIG. 2 illustrates a perspective view of an energy collection device mounted to a wall of a structure; -
FIG. 3 illustrates a perspective view of an energy collection device functioning as a walkway cover; -
FIG. 4 illustrates a perspective view of barrier devices for the energy collection devices ofFIGS. 1-3 ; -
FIG. 5 illustrates a block diagram of an energy collection device in a home or building; and -
FIG. 6 illustrates a collection device positioned above a boiler situated in a laundromat. - It will be appreciated by those of ordinary skill in the art that the invention can be embodied in other specific forms without departing from the spirit or essential character thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive.
- Initial reference is made to
FIG. 1 , which illustrates a perspective view of anenergy collection device 100 elevated over aroof 102. Theenergy collection device 100 incorporates a tube orpipe 104 having aninlet 106 and anoutlet 108 for circulating fluids such as water through the housing. Thepipe 104 can also circulate viscous fluids like oil, antifreeze, or other viscous fluids capable of absorbing and transferring heat. Alternatively, thepipe 104 can circulate gaseous fluids such as xenon and argon. Although only asingle pipe 104 is illustrated, there can bemultiple pipes 104 and/or loops or coils ofpipes 104 havingmultiple inlets 106 and/oroutlets 108 in a pre-established or arbitrary arrangement. Thepipe 104 can be fabricated of clear plastic, copper, metallic alloy, or any appropriate material for optimal thermal absorption. The use of a black-colored pipe 104 or paintedpipe 104 increases the rate of heat absorption and the ability of the fluid to retain solar heat generated by thesun 101. Thehousing 110 may be manufactured of wood, plastic, or other materials with a high specific heat like stone, concrete, or adobe. Optionally, fiberglass and other protective materials (not shown) can be used to insulate thepipe 104. Although thehousing 110 of theenergy collection device 100 is shown rectangular in shape, it can take any shape as necessary to collect radiant energy from thesun 101. - As illustrated, the
energy collection device 100 is elevated and maintained in position bysupport posts 112. Thesupport posts 112 allow thedevice 100 to be positioned on a structure without having to remove roofing shingles or other composite roofing materials. Thesupport posts 112 are metal or plastic with one end coupled to thehousing 110 and the other end coupled to theroof 102. Screws and other fasteners can be used to connect thesupport posts 112 to theroof 102 and thehousing 110. The gap or spacing created between theenergy collection device 100 and theroof 102 allows theenergy collection device 100 to first function as a shade or an awning for theroof 102. In other words, theenergy collection device 100 not only reduces the amount of heat orsunlight exposure 101 at therooftop surface 102, the spacing created by thesupport posts 112 also allows convection airflow over theroof 102 thereby dissipating heat near therooftop surface 102. - Alternatively, the
energy collection device 100 or multiple such devices can be used as roofing materials in place of shingles and other composite roofing materials. In order to do so, thehousing 110 of theenergy collection device 100 must be constructed of a sturdy material, such as aluminum, copper, or other metallic alloy that is strong enough to support a person's weight such that people are able to walk on the housing(s) without damaging or collapsing the same. - The basic operation of the
energy collection device 100 is as follows. While elevated over theroof 102, theenergy collection device 100 is exposed to the sun's energy in the form of visible and ultraviolet light. Theenergy collection device 100 also collects other forms of energy including but not limited to rising heat from inside the house, energy emanating from the earth's surface (not shown), and energy waves and radiant energy from celestial bodies and gravitational forces exerted thereon (not shown). The collective energy sources provide thermal energy to heat the fluid within thepipe 104. The heated fluid is circulated through thepipe 104 within theenergy collection device 100. The heated fluid can then be distributed for domestic hot water use, for heating a building, or can be transferred or stored for other uses. The efficiency of the energy collection and absorption depends on various factors including the material used to fabricate thepipe 104 andhousing 110, as well as any insulation that may surround thepipe 104. - Reference is now made to
FIG. 2 , which illustrates a perspective view of anenergy collection device 100 mounted to awall 114 on a side of a building (not shown). Theenergy collection device 100 can also be mounted to fences, floors, windows, awnings, patio covers, swimming pool covers, walkway covers, or any area where energy collection and/or shade is desirable. Additionally, theenergy collection device 100 can be mounted to the different surfaces withoutsupport posts 112. As described above, theenergy collection device 100 can be manipulated into any shape necessary to accomplish the objective of maximum energy collection and absorption, and can also be shaped (e.g., parabolic) to intentionally capture a certain spectrum of solar radiation. Theenergy collection device 100 can also be employed to minimize heat and energy loss by insulating buildings and vehicles, and are ideal for farms, ranches, laundromats, Indian reservations and military bases. - Reference is now made to
FIG. 3 , which shows a perspective view of awalkway cover 100′ elevated over aground surface 116 and constructed of anenergy collection device 100. Similarly, theenergy collection device 100 can serve as patio cover elevated over abackyard cement slab 116. As illustrated, theenergy collection device 100 has apipe 104 with aninlet 106 and anoutlet 108 similar to that previously described. Theenergy collection device 100 is maintained bysupport posts 112 as described above, whereby the height and size of thesupport posts 112 can be adjusted accordingly. In this embodiment, thesupport posts 112 are at least seven foot tall to allow people to walk comfortably under thewalkway cover 100. Like thehousing 100 shown inFIGS. 1-2 , thewalkway cover housing 110 can be plastic, metallic, or comprise a single-pane or double-pane glass having high ultraviolet transmittance characteristics. For a single-pane glass housing 110, the glass can be tinted or painted on both sides to increase its heat absorption efficiency. For a double-pane glass housing 110, the glass can also be tinted or painted to increase heat transfer or light absorption. Furthermore, gaseous fluids (not shown) between the double-pane glass housing 110 may be maintained in an excited state to reduce nighttime heat loss. As described above, thewalkway cover 100 collects heat and energy from thesun 101 and transfer it for immediate use at the point of collection with its pipe circulation system, while also shading and blocking the amount of radiation and exposure tosunlight 101 thereunder. -
FIG. 4 illustratesbarrier devices 118 that can be placed at the edges of theenergy collection devices 100 illustrated in previous figures. Thebarrier devices 118 can be made of glass, plastic, or acrylic, and function like panel sidings by insulating the areas shaded by theenergy collection device 100. Thebarrier devices 118 can be sized to form walls for theenergy collection device 100 such that thebarrier devices 118 trap air and insulate the area between theenergy collection device 100 and therespective roof 102,wall 114, orground 116, thereby minimizing heat loss to the atmosphere. The subsequent increase in theroof 102 orwall 114 insulation translates into lower heating bills. -
FIG. 5 illustrates anenergy collection system 120 using water as the heat-carrying fluid in theenergy collection device 100. As shown, a ground water supply enters thesystem 120 from aninlet line 122. The incoming water supply can be initially delivered to awater tank 124 in the path of theinlet line 122 as illustrated. Thewater tank 124 can be situated in a backyard or next to a building and colored black to increase its thermal absorption. The water within thewater tank 124 is thereby pre-heated by thesun 101 and other sources of radiant or thermal energy, and may exhibit a slight rise in water temperature. The water in thewater tank 124 subsequently leaves via an externalmechanical pump 126. Alternatively, thewater tank 124 may not be necessary and themechanical pump 126 can pump water directly from theinlet line 122 into theinlet 106 of theenergy collection device 100. Likewise, theexternal pump 126 may not be necessary if ground water is delivered directly from city or local municipalities, or from natural underground springs. - As previously described, the
energy collection device 100 can be elevated over aroof 102 or awall 114 of abuilding 128. Likewise, theenergy collection device 100 can serve as a walkway cover or in other scenarios as previously described. After the water from theinlet 106 enters thepipe 104 of theenergy collection device 100 and becomes heated by thesun 101 and other sources of heat in the ambient atmosphere, the heated water exits theenergy collection device 100 through theoutlet 108 and travels into a hot water heater (not shown) inside thebuilding 128. Alternatively, the heated water can be converted for heating the house orcommercial structure 128 using known materials and methods. Likewise, the heated water can exit theoutlet 108 and be transferred to adepository 130 for future use. For example, the hot water leaving theoutlet 108 can be carried to a steam boiler orhot water boiler 130 within ashed 132. The shed 132 can be constructed of cinder blocks orenergy collection devices 100. As the heated water within thehot water boiler 130 continues to rise in temperature due to its confinement within theshed 132, the water may eventually reach boiling temperature and generate steam. A secondary energy source (e.g., a flame) may also be in communication with theboiler 130 to ensure the water reaches a boiling temperature. However, the energy required of the secondary energy source will be small given the high water temperature it will be working on. The generated steam can be recovered within theshed 132 and converted into electricity using known electric generators (not shown). In other words, the steam generated can be used to charge an electric generator. The converted electricity can subsequently be delivered and used in thebuilding 128 using knownmethods 134. - Although the previously described
energy collection devices 100 are usually external to a building, the devices can also be located within the building's interior. Likewise, although theenergy collection devices 100 are situated over or above a structure, they can also be embedded within or underneath the structure. For example, in a two-story house, theenergy collection device 100 can be embedded within the floorboard of the second floor thereby collecting heat circulating within the house. Likewise, theenergy collection device 100 can be embedded in between the floorboards of multi-story buildings. In addition, theenergy collection device 100 can be mounted in an attic underneath theroof 102, which can collect a tremendous amount of heat especially during summer. Theenergy collection device 100 as described can be embedded within styrofoam, sheetrock, brick, as well as any economically feasible material. -
FIG. 6 shows a laundromat layout with multiple washing machines 150-1 through 150-N, dryers 155-1 through 155-N and anenergy collection device 100 positioned above a furnace orbroiler 160. Theenergy collection device 100 may be attached to the ceiling such that it hangs down over thebroiler 160. Thebroiler 160 is responsible for providing hot water to the washing machines 150-1 through 150-N and hot air to the dryers 155-1 through 155-N. Normally, excess heat from thebroiler 160 is discharged, along with heat from the dryers 155-1 through 155-N, into the atmosphere. By positioning thecollection device 100 over thebroiler 160, excess broiler heat rises and is absorbed by the fluid therein. The heated fluid can then be directed to the washing machines 150-1 through 150-N or used in some other practical manner. Also, as shown, the excess heat from the dryers 155-1 through 155-N is channeled viapipe 165 to thebroiler 160 thereby reducing the energy load needed to operate thebroiler 160. It is also possible to direct the excess dryer heat to thecollection device 100 to assist in heating the fluid. - In another embodiment, the
energy collection device 100 is used without thepipe 104 or fluid. That is, the shade created by thehousing 110 reduces the heat temperature of the roof or wall thereby maintaining a cooler temperature within the subject structure. Indeed, a simple canvas or similar material elevated over a roof or wall with supports will reduce the roof or wall temperature thereby maintaining a cooler temperature within the structure. - Although the invention has been described in detail with reference to several embodiments, additional variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
Claims (34)
1. An energy collection device for absorbing thermal energy, the energy collection device comprising:
a housing;
a passage within the housing, said passage having a first and a second end; and
wherein said passage is adapted to contain a fluid, having a first heat energy, wherein the passage accepts the fluid through a first end thereof, such that the fluid may absorb thermal energy within the passage, and directs the fluid, having a second heat energy, through the second end of the passage.
2. The energy collection device of claim 1 , wherein the fluid is viscous.
3. The energy collection device of claim 1 , wherein the fluid is gaseous.
4. The energy collection device of claim 1 , wherein the second heat energy is higher than the first heat energy.
5. The energy collection device of claim 1 , further comprising support posts operable to couple the housing to a surface.
6. The energy collection device of claim 5 , wherein the surface is a roof or a wall.
7. The energy collection device of claim 1 , wherein the fluid is water, oil, or antifreeze.
8. The energy collection device of claim 1 , wherein the thermal energy comprises at least visible and ultraviolet light generated by the sun.
9. The energy collection device of claim 1 , wherein the fluid, having the second heat energy, is harnessed to produce heat or electricity.
10. An energy collection system, comprising:
one or more energy collection devices for absorbing thermal energy, the energy collection devices comprising:
a housing;
a passage within the housing having a first and a second end, said passage adapted to contain a fluid, having a first heat energy, wherein the passage accepts the fluid through a first end thereof, such that the fluid may absorb thermal energy within the passage, and directs the fluid, having a second heat energy, through the second end of the passage;
a fluid system operable to move the fluid having the second heat energy from the energy collection device to a point of usage; and
a reservoir to stock the fluid having the second heat energy for subsequent use.
11. The energy collection system of claim 10 , wherein the point of usage is a residential or commercial building.
12. The energy collection system of claim 10 , wherein the subsequent use comprises converting the fluid having the second heat energy into heat or electricity.
13. The energy collection system of claim 10 , wherein the reservoir comprises a steam boiler or a hot water boiler.
14. The energy collection system of claim 10 , further comprising an apparatus for preheating a fluid having a first heat energy.
15. The energy collection system of claim 14 , wherein the apparatus is a water tank.
16. The energy collection system of claim 10 , wherein the fluid is viscous.
17. The energy collection device of claim 10 , wherein the fluid is gaseous.
18. An energy collection system, comprising:
one or more washing machines and dryers;
a broiler for providing heat to the washing machines and/or dryers;
one or more energy collection devices for absorbing thermal energy, the energy collection devices comprising:
a housing;
a passage within the housing having a first and a second end, said passage adapted to contain a fluid, having a first heat energy, wherein the passage accepts the fluid through a first end thereof, such that the fluid may absorb thermal energy within the passage, and directs the fluid, having a second heat energy, through the second end of the passage; and
wherein the one or more energy collection devices is positioned above the broiler to capture excess heat released by the broiler.
19. The energy collection system of claim 18 , further comprising means for directing excess heat from the dryers to the broiler and/or energy collection device.
20. The energy collection system of claim 18 , further comprising means for directing the fluid, having a second heat energy, to a point of usage.
21. A method of collecting thermal energy comprising:
positioning one or more housings, having fluid channels passing therethrough, externally on a structure or over a heat-producing device so that a volume defined by the housing is able to capture thermal energy from the sun or the heat-producing device; and
causing fluid to circulate through the fluid channels such that the fluid absorbs the captured thermal energy thereby raising a temperature of the fluid.
22. The method of claim 21 , further comprising elevating the one or more housings externally on the structure.
23. The method of claim 21 , further comprising utilizing the heated fluid to generate electricity.
24. The method of claim 21 , further comprising directing the heated fluid to a point of usage.
25. The method of claim 21 , further comprising utilizing the heated fluid in the structure.
26. The method of claim 21 , further comprising storing the heated fluid for subsequent use.
27. The method of claim 21 , wherein the heat-producing device is a broiler or furnace.
28. A method of collecting thermal energy in a laundromat having multiple washing machines, dryers and a broiler, comprising:
positioning one or more housings, having fluid channels passing therethrough, over the broiler so that a volume defined by the housing is able to capture thermal energy released by the broiler; and
causing fluid to circulate through the fluid channels such that the fluid absorbs the captured thermal energy thereby raising a temperature of the fluid.
29. The method of collecting thermal energy of claim 28 , further comprising directing the heated fluid to the washing machines and/or the broiler.
30. The method of collecting thermal energy of claim 28 , wherein the housing is parabolic.
31. The method of collecting thermal energy of claim 28 , further comprising hanging said energy collection device over the broiler from a ceiling of the laundromat.
32. A shading device comprising:
a material operable to block light and heat energy generated by the sun; and
means for connecting, in an elevated arrangement such that a space is created between the material and the surface, the material to a surface of a structure requiring shade.
33. The device of claim 32 , wherein the material is canvas.
34. The device of claim 32 , wherein elongated supports are used to connect the material, in an elevated arrangement, over the subject surface.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/302,475 US20070131222A1 (en) | 2005-12-13 | 2005-12-13 | Energy collection device |
| US11/564,696 US20070131223A1 (en) | 2005-12-13 | 2006-11-29 | Energy concentration and collection devices |
| PCT/US2006/046917 WO2007070386A2 (en) | 2005-12-13 | 2006-12-08 | Energy concentration and collection devices |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/302,475 US20070131222A1 (en) | 2005-12-13 | 2005-12-13 | Energy collection device |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/564,696 Continuation-In-Part US20070131223A1 (en) | 2005-12-13 | 2006-11-29 | Energy concentration and collection devices |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070131222A1 true US20070131222A1 (en) | 2007-06-14 |
Family
ID=38138047
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/302,475 Abandoned US20070131222A1 (en) | 2005-12-13 | 2005-12-13 | Energy collection device |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20070131222A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110180060A1 (en) * | 2010-01-25 | 2011-07-28 | National Yunlin University Of Science & Technology | Pavement element |
| CN104344451A (en) * | 2013-07-26 | 2015-02-11 | 福州斯狄渢电热水器有限公司 | Solar heater |
| US20150041034A1 (en) * | 2012-03-14 | 2015-02-12 | The Yokohama Rubber Co., Ltd. | Pneumatic Tire |
| FR3079603A1 (en) * | 2018-03-28 | 2019-10-04 | Jean Martin | SOLAR SENSOR DEVICE, INSTALLATION AND CONSTRUCTION THEREOF |
| US12320553B1 (en) * | 2022-07-19 | 2025-06-03 | Kevin Huguenard | Storage shed with integrated solar roof |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3923038A (en) * | 1974-07-18 | 1975-12-02 | John M Cutchaw | Solar energy collector panel |
| US4036208A (en) * | 1975-12-29 | 1977-07-19 | Uop Inc. | Finned tube solar energy absorber |
| US4064868A (en) * | 1976-10-08 | 1977-12-27 | Halstead Industries, Inc. | Solar heat collector |
| US4121568A (en) * | 1976-04-20 | 1978-10-24 | James Percival Olsen | Solar panel flat plate collector |
| US4140103A (en) * | 1976-07-07 | 1979-02-20 | The Broken Hill Proprietary Company Limited | Solar energy collectors |
| US4267821A (en) * | 1978-07-05 | 1981-05-19 | Nelson Cecil O | Solar energy collector |
| US4513732A (en) * | 1981-11-10 | 1985-04-30 | Feldman Jr Karl T | Passive integral solar heat collector system |
-
2005
- 2005-12-13 US US11/302,475 patent/US20070131222A1/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3923038A (en) * | 1974-07-18 | 1975-12-02 | John M Cutchaw | Solar energy collector panel |
| US4036208A (en) * | 1975-12-29 | 1977-07-19 | Uop Inc. | Finned tube solar energy absorber |
| US4121568A (en) * | 1976-04-20 | 1978-10-24 | James Percival Olsen | Solar panel flat plate collector |
| US4140103A (en) * | 1976-07-07 | 1979-02-20 | The Broken Hill Proprietary Company Limited | Solar energy collectors |
| US4064868A (en) * | 1976-10-08 | 1977-12-27 | Halstead Industries, Inc. | Solar heat collector |
| US4267821A (en) * | 1978-07-05 | 1981-05-19 | Nelson Cecil O | Solar energy collector |
| US4513732A (en) * | 1981-11-10 | 1985-04-30 | Feldman Jr Karl T | Passive integral solar heat collector system |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110180060A1 (en) * | 2010-01-25 | 2011-07-28 | National Yunlin University Of Science & Technology | Pavement element |
| US20150041034A1 (en) * | 2012-03-14 | 2015-02-12 | The Yokohama Rubber Co., Ltd. | Pneumatic Tire |
| CN104344451A (en) * | 2013-07-26 | 2015-02-11 | 福州斯狄渢电热水器有限公司 | Solar heater |
| FR3079603A1 (en) * | 2018-03-28 | 2019-10-04 | Jean Martin | SOLAR SENSOR DEVICE, INSTALLATION AND CONSTRUCTION THEREOF |
| US12320553B1 (en) * | 2022-07-19 | 2025-06-03 | Kevin Huguenard | Storage shed with integrated solar roof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Chel et al. | Renewable energy technologies for sustainable development of energy efficient building | |
| JP6106267B2 (en) | Heating and power generation equipment using solar energy | |
| ES2648213T3 (en) | Roof support with structurally integrated solar collector | |
| KR101621315B1 (en) | Sunbeam panel supporting apparatus for installation on veranda | |
| US6244062B1 (en) | Solar collector system | |
| CN114041032B (en) | Solar roof tile, solar energy system and method for obtaining energy from solar radiation | |
| CN107166752A (en) | Hollow glass solar heat collector and solar building | |
| KR101251937B1 (en) | Heating and electricity generation apparatus using solar energy | |
| KR101033805B1 (en) | Adjustable angle solar collector suitable for installation in the open area of the building | |
| US5081982A (en) | Solar window air heater | |
| US20070131222A1 (en) | Energy collection device | |
| KR101594001B1 (en) | Solar heat collection device installed on the balcony railing | |
| WO2024081208A1 (en) | Solar concentrating roof-integrated multi-process energy supply system | |
| KR101269593B1 (en) | Solar heating system | |
| US20070131223A1 (en) | Energy concentration and collection devices | |
| US20120132257A1 (en) | Solar Electricity and Heat Transfer Systems | |
| JP3848652B2 (en) | Solar system house | |
| KR20130068498A (en) | Solar heat accumulator | |
| KR101114504B1 (en) | Overheat prevented structures of Solar energy devices for public building simultaneously use solar thermal and photovoltaic system | |
| KR100795172B1 (en) | Movable double skin system using solar cell module | |
| KR100449831B1 (en) | Building Veranda Structure with Solar Absorption Converter | |
| GB2567539A (en) | Engen design principles | |
| US8365500B2 (en) | Optimized building integrated hybrid roofing system | |
| GB2564849A (en) | Solar ledges | |
| EFFICIENCY | Energy Efficiency |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |