US20070082844A1 - Regulation of food preference using GLP-1 agonists - Google Patents
Regulation of food preference using GLP-1 agonists Download PDFInfo
- Publication number
- US20070082844A1 US20070082844A1 US11/448,545 US44854506A US2007082844A1 US 20070082844 A1 US20070082844 A1 US 20070082844A1 US 44854506 A US44854506 A US 44854506A US 2007082844 A1 US2007082844 A1 US 2007082844A1
- Authority
- US
- United States
- Prior art keywords
- glp
- food
- subject
- agonist
- intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 title claims abstract description 71
- 101710198884 GATA-type zinc finger protein 1 Proteins 0.000 title claims abstract 3
- 239000000556 agonist Substances 0.000 title abstract description 35
- 102100025101 GATA-type zinc finger protein 1 Human genes 0.000 title abstract 2
- 230000033228 biological regulation Effects 0.000 title description 3
- 235000020803 food preference Nutrition 0.000 title description 2
- 235000013305 food Nutrition 0.000 claims abstract description 134
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 60
- 235000014633 carbohydrates Nutrition 0.000 claims abstract description 60
- 230000002641 glycemic effect Effects 0.000 claims abstract description 46
- 239000003877 glucagon like peptide 1 receptor agonist Substances 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 82
- 102400000322 Glucagon-like peptide 1 Human genes 0.000 claims description 53
- -1 GLP-1 compound Chemical class 0.000 claims description 29
- 208000014679 binge eating disease Diseases 0.000 claims description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 22
- 208000008589 Obesity Diseases 0.000 claims description 17
- 235000020824 obesity Nutrition 0.000 claims description 17
- JUFFVKRROAPVBI-PVOYSMBESA-N chembl1210015 Chemical group C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)N[C@H]1[C@@H]([C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@]3(O[C@@H](C[C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C3)C(O)=O)O2)O)[C@@H](CO)O1)NC(C)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 JUFFVKRROAPVBI-PVOYSMBESA-N 0.000 claims description 16
- 230000001965 increasing effect Effects 0.000 claims description 15
- 206010006550 Bulimia nervosa Diseases 0.000 claims description 14
- 241000282414 Homo sapiens Species 0.000 claims description 13
- 201000010099 disease Diseases 0.000 claims description 12
- 229960001519 exenatide Drugs 0.000 claims description 10
- 108010011459 Exenatide Proteins 0.000 claims description 9
- 235000019788 craving Nutrition 0.000 claims description 9
- 208000035475 disorder Diseases 0.000 claims description 9
- 235000012054 meals Nutrition 0.000 claims description 9
- 241001465754 Metazoa Species 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 7
- 206010004716 Binge eating Diseases 0.000 claims description 6
- 208000032841 Bulimia Diseases 0.000 claims description 6
- 101800004266 Glucagon-like peptide 1(7-37) Proteins 0.000 claims description 6
- 102400000324 Glucagon-like peptide 1(7-37) Human genes 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 108010063245 glucagon-like peptide 1 (7-36)amide Proteins 0.000 claims description 4
- 230000037406 food intake Effects 0.000 abstract description 9
- 235000012631 food intake Nutrition 0.000 abstract description 9
- 101800000224 Glucagon-like peptide 1 Proteins 0.000 description 54
- 125000001424 substituent group Chemical group 0.000 description 35
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 33
- 235000019197 fats Nutrition 0.000 description 33
- 150000001875 compounds Chemical class 0.000 description 32
- 108090000765 processed proteins & peptides Proteins 0.000 description 31
- 229940077731 carbohydrate nutrients Drugs 0.000 description 29
- 125000006850 spacer group Chemical group 0.000 description 22
- 239000000203 mixture Substances 0.000 description 20
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 19
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 19
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 18
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 18
- 239000008103 glucose Substances 0.000 description 18
- 229960001031 glucose Drugs 0.000 description 18
- 235000009508 confectionery Nutrition 0.000 description 17
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 17
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- 235000002639 sodium chloride Nutrition 0.000 description 14
- 235000011888 snacks Nutrition 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 239000000883 anti-obesity agent Substances 0.000 description 11
- 229940125710 antiobesity agent Drugs 0.000 description 11
- 238000009472 formulation Methods 0.000 description 11
- 235000001727 glucose Nutrition 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 229940024606 amino acid Drugs 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 125000000539 amino acid group Chemical group 0.000 description 9
- 150000001413 amino acids Chemical class 0.000 description 9
- 125000003277 amino group Chemical group 0.000 description 9
- 102000004877 Insulin Human genes 0.000 description 8
- 108090001061 Insulin Proteins 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 229940125396 insulin Drugs 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 7
- 239000005557 antagonist Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 235000019219 chocolate Nutrition 0.000 description 7
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 7
- 239000004475 Arginine Substances 0.000 description 6
- 108010016626 Dipeptides Proteins 0.000 description 6
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 6
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 206010012601 diabetes mellitus Diseases 0.000 description 6
- 230000008030 elimination Effects 0.000 description 6
- 238000003379 elimination reaction Methods 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- 206010063659 Aversion Diseases 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000003524 antilipemic agent Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 5
- 229960002885 histidine Drugs 0.000 description 5
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 108010086246 Glucagon-Like Peptide-1 Receptor Proteins 0.000 description 4
- 102000007446 Glucagon-Like Peptide-1 Receptor Human genes 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000001539 anorectic effect Effects 0.000 description 4
- 239000003472 antidiabetic agent Substances 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 206010061428 decreased appetite Diseases 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 4
- YMAWOPBAYDPSLA-UHFFFAOYSA-N glycylglycine Chemical compound [NH3+]CC(=O)NCC([O-])=O YMAWOPBAYDPSLA-UHFFFAOYSA-N 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 4
- 150000002772 monosaccharides Chemical class 0.000 description 4
- 229960000698 nateglinide Drugs 0.000 description 4
- OELFLUMRDSZNSF-BRWVUGGUSA-N nateglinide Chemical compound C1C[C@@H](C(C)C)CC[C@@H]1C(=O)N[C@@H](C(O)=O)CC1=CC=CC=C1 OELFLUMRDSZNSF-BRWVUGGUSA-N 0.000 description 4
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid group Chemical group C(CCC(=O)O)(=O)O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 3
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 3
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 3
- 102100021752 Corticoliberin Human genes 0.000 description 3
- 108010022152 Corticotropin-Releasing Hormone Proteins 0.000 description 3
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 206010056465 Food craving Diseases 0.000 description 3
- 229940122355 Insulin sensitizer Drugs 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- 108010019598 Liraglutide Proteins 0.000 description 3
- YSDQQAXHVYUZIW-QCIJIYAXSA-N Liraglutide Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCNC(=O)CC[C@H](NC(=O)CCCCCCCCCCCCCCC)C(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 YSDQQAXHVYUZIW-QCIJIYAXSA-N 0.000 description 3
- 108090000189 Neuropeptides Proteins 0.000 description 3
- 102000003728 Peroxisome Proliferator-Activated Receptors Human genes 0.000 description 3
- 108090000029 Peroxisome Proliferator-Activated Receptors Proteins 0.000 description 3
- 229920003171 Poly (ethylene oxide) Chemical class 0.000 description 3
- 206010036618 Premenstrual syndrome Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 102000034527 Retinoid X Receptors Human genes 0.000 description 3
- 108010038912 Retinoid X Receptors Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229940030600 antihypertensive agent Drugs 0.000 description 3
- 239000002220 antihypertensive agent Substances 0.000 description 3
- 235000019789 appetite Nutrition 0.000 description 3
- 230000036528 appetite Effects 0.000 description 3
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 235000019577 caloric intake Nutrition 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 230000001447 compensatory effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 235000006694 eating habits Nutrition 0.000 description 3
- 235000021130 excess caloric intake Nutrition 0.000 description 3
- LMHMJYMCGJNXRS-IOPUOMRJSA-N exendin-3 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@H](C)O)[C@H](C)O)C(C)C)C1=CC=CC=C1 LMHMJYMCGJNXRS-IOPUOMRJSA-N 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229960004580 glibenclamide Drugs 0.000 description 3
- ZNNLBTZKUZBEKO-UHFFFAOYSA-N glyburide Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZNNLBTZKUZBEKO-UHFFFAOYSA-N 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 235000003642 hunger Nutrition 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000007951 isotonicity adjuster Substances 0.000 description 3
- 229960002701 liraglutide Drugs 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 201000000484 premenstrual tension Diseases 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000036186 satiety Effects 0.000 description 3
- 235000019627 satiety Nutrition 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 235000008521 threonine Nutrition 0.000 description 3
- 230000001515 vagal effect Effects 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- FFEKJBVVAJTQST-WLHGVMLRSA-N (e)-but-2-enedioic acid;1,1-dimethyl-2-(2-morpholin-4-ylphenyl)guanidine Chemical compound OC(=O)\C=C\C(O)=O.CN(C)C(N)=NC1=CC=CC=C1N1CCOCC1 FFEKJBVVAJTQST-WLHGVMLRSA-N 0.000 description 2
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 2
- UUUHXMGGBIUAPW-UHFFFAOYSA-N 1-[1-[2-[[5-amino-2-[[1-[5-(diaminomethylideneamino)-2-[[1-[3-(1h-indol-3-yl)-2-[(5-oxopyrrolidine-2-carbonyl)amino]propanoyl]pyrrolidine-2-carbonyl]amino]pentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]pyrrolidine-2-carbon Chemical compound C1CCC(C(=O)N2C(CCC2)C(O)=O)N1C(=O)C(C(C)CC)NC(=O)C(CCC(N)=O)NC(=O)C1CCCN1C(=O)C(CCCN=C(N)N)NC(=O)C1CCCN1C(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C1CCC(=O)N1 UUUHXMGGBIUAPW-UHFFFAOYSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- SWLAMJPTOQZTAE-UHFFFAOYSA-N 4-[2-[(5-chloro-2-methoxybenzoyl)amino]ethyl]benzoic acid Chemical class COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(C(O)=O)C=C1 SWLAMJPTOQZTAE-UHFFFAOYSA-N 0.000 description 2
- 102000054930 Agouti-Related Human genes 0.000 description 2
- 101710127426 Agouti-related protein Proteins 0.000 description 2
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 description 2
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 2
- 229940123208 Biguanide Drugs 0.000 description 2
- 101800001982 Cholecystokinin Proteins 0.000 description 2
- 102100025841 Cholecystokinin Human genes 0.000 description 2
- 102100032165 Corticotropin-releasing factor-binding protein Human genes 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 102000016622 Dipeptidyl Peptidase 4 Human genes 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 208000010235 Food Addiction Diseases 0.000 description 2
- 102000001267 GSK3 Human genes 0.000 description 2
- 101000930822 Giardia intestinalis Dipeptidyl-peptidase 4 Proteins 0.000 description 2
- 102000051325 Glucagon Human genes 0.000 description 2
- 108060003199 Glucagon Proteins 0.000 description 2
- FAEKWTJYAYMJKF-QHCPKHFHSA-N GlucoNorm Chemical compound C1=C(C(O)=O)C(OCC)=CC(CC(=O)N[C@@H](CC(C)C)C=2C(=CC=CC=2)N2CCCCC2)=C1 FAEKWTJYAYMJKF-QHCPKHFHSA-N 0.000 description 2
- 102000030595 Glucokinase Human genes 0.000 description 2
- 108010021582 Glucokinase Proteins 0.000 description 2
- IKAIKUBBJHFNBZ-LURJTMIESA-N Gly-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CN IKAIKUBBJHFNBZ-LURJTMIESA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 108010014905 Glycogen Synthase Kinase 3 Proteins 0.000 description 2
- 108010008488 Glycylglycine Proteins 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 102000016267 Leptin Human genes 0.000 description 2
- 108010092277 Leptin Proteins 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 108010008364 Melanocortins Proteins 0.000 description 2
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 2
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 2
- 101710151321 Melanostatin Proteins 0.000 description 2
- 102100040200 Mitochondrial uncoupling protein 2 Human genes 0.000 description 2
- 102400000064 Neuropeptide Y Human genes 0.000 description 2
- 102000004270 Peptidyl-Dipeptidase A Human genes 0.000 description 2
- 108090000882 Peptidyl-Dipeptidase A Proteins 0.000 description 2
- 102000004257 Potassium Channel Human genes 0.000 description 2
- 229940127315 Potassium Channel Openers Drugs 0.000 description 2
- 102000002727 Protein Tyrosine Phosphatase Human genes 0.000 description 2
- YASAKCUCGLMORW-UHFFFAOYSA-N Rosiglitazone Chemical compound C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O YASAKCUCGLMORW-UHFFFAOYSA-N 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 102100038803 Somatotropin Human genes 0.000 description 2
- 229940100389 Sulfonylurea Drugs 0.000 description 2
- 229940123464 Thiazolidinedione Drugs 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 230000001800 adrenalinergic effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 239000003888 alpha glucosidase inhibitor Substances 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 229940025084 amphetamine Drugs 0.000 description 2
- 239000002269 analeptic agent Substances 0.000 description 2
- 208000022531 anorexia Diseases 0.000 description 2
- 229940125708 antidiabetic agent Drugs 0.000 description 2
- 210000003818 area postrema Anatomy 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 235000012970 cakes Nutrition 0.000 description 2
- DWKPZOZZBLWFJX-UHFFFAOYSA-L calcium;1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate Chemical compound [Ca+2].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC.CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC DWKPZOZZBLWFJX-UHFFFAOYSA-L 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 229940107137 cholecystokinin Drugs 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 108010083720 corticotropin releasing factor-binding protein Proteins 0.000 description 2
- 235000012495 crackers Nutrition 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 229960003638 dopamine Drugs 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 230000002124 endocrine Effects 0.000 description 2
- 108010015174 exendin 3 Proteins 0.000 description 2
- 235000021149 fatty food Nutrition 0.000 description 2
- 238000001030 gas--liquid chromatography Methods 0.000 description 2
- 230000030136 gastric emptying Effects 0.000 description 2
- 229960001381 glipizide Drugs 0.000 description 2
- ZJJXGWJIGJFDTL-UHFFFAOYSA-N glipizide Chemical compound C1=NC(C)=CN=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZJJXGWJIGJFDTL-UHFFFAOYSA-N 0.000 description 2
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 2
- 229960004666 glucagon Drugs 0.000 description 2
- 229940043257 glycylglycine Drugs 0.000 description 2
- 108010015792 glycyllysine Proteins 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 229940126904 hypoglycaemic agent Drugs 0.000 description 2
- 150000002462 imidazolines Chemical class 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003914 insulin secretion Effects 0.000 description 2
- 230000002473 insulinotropic effect Effects 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 229940039781 leptin Drugs 0.000 description 2
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000004213 low-fat Nutrition 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 229950004994 meglitinide Drugs 0.000 description 2
- 239000002865 melanocortin Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- PKWDZWYVIHVNKS-UHFFFAOYSA-N netoglitazone Chemical compound FC1=CC=CC=C1COC1=CC=C(C=C(CC2C(NC(=O)S2)=O)C=C2)C2=C1 PKWDZWYVIHVNKS-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- URPYMXQQVHTUDU-OFGSCBOVSA-N nucleopeptide y Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 URPYMXQQVHTUDU-OFGSCBOVSA-N 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 229940127557 pharmaceutical product Drugs 0.000 description 2
- DHHVAGZRUROJKS-UHFFFAOYSA-N phentermine Chemical compound CC(C)(N)CC1=CC=CC=C1 DHHVAGZRUROJKS-UHFFFAOYSA-N 0.000 description 2
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 108020001213 potassium channel Proteins 0.000 description 2
- CACRHRQTJDKAPJ-UHFFFAOYSA-M potassium;1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate Chemical compound [K+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC CACRHRQTJDKAPJ-UHFFFAOYSA-M 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 108020000494 protein-tyrosine phosphatase Proteins 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229960002354 repaglinide Drugs 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000004400 serine Nutrition 0.000 description 2
- 229940076279 serotonin Drugs 0.000 description 2
- 239000003772 serotonin uptake inhibitor Substances 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- 235000021055 solid food Nutrition 0.000 description 2
- 210000001679 solitary nucleus Anatomy 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 235000021147 sweet food Nutrition 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- 229960002898 threonine Drugs 0.000 description 2
- 229960005371 tolbutamide Drugs 0.000 description 2
- 150000004043 trisaccharides Chemical class 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000019220 whole milk chocolate Nutrition 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- DBGIVFWFUFKIQN-VIFPVBQESA-N (+)-Fenfluramine Chemical compound CCN[C@@H](C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-VIFPVBQESA-N 0.000 description 1
- DBGIVFWFUFKIQN-UHFFFAOYSA-N (+-)-Fenfluramine Chemical compound CCNC(C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-UHFFFAOYSA-N 0.000 description 1
- HMJIYCCIJYRONP-UHFFFAOYSA-N (+-)-Isradipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)C1C1=CC=CC2=NON=C12 HMJIYCCIJYRONP-UHFFFAOYSA-N 0.000 description 1
- VXUOFDJKYGDUJI-UHFFFAOYSA-N (2-hydroxy-3-tetradecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C VXUOFDJKYGDUJI-UHFFFAOYSA-N 0.000 description 1
- XUFXOAAUWZOOIT-SXARVLRPSA-N (2R,3R,4R,5S,6R)-5-[[(2R,3R,4R,5S,6R)-5-[[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-1-cyclohex-2-enyl]amino]-2-oxanyl]oxy]-3,4-dihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound O([C@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O[C@H]1O[C@@H]([C@H]([C@H](O)[C@H]1O)N[C@@H]1[C@@H]([C@@H](O)[C@H](O)C(CO)=C1)O)C)[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O XUFXOAAUWZOOIT-SXARVLRPSA-N 0.000 description 1
- QNDFBOXBUCDYNZ-NRFANRHFSA-N (2s)-2-ethoxy-3-[4-[2-[4-[(2-methylpropan-2-yl)oxycarbonylamino]phenyl]ethoxy]phenyl]propanoic acid Chemical compound C1=CC(C[C@H](OCC)C(O)=O)=CC=C1OCCC1=CC=C(NC(=O)OC(C)(C)C)C=C1 QNDFBOXBUCDYNZ-NRFANRHFSA-N 0.000 description 1
- WMUIIGVAWPWQAW-DEOSSOPVSA-N (2s)-2-ethoxy-3-{4-[2-(10h-phenoxazin-10-yl)ethoxy]phenyl}propanoic acid Chemical compound C1=CC(C[C@H](OCC)C(O)=O)=CC=C1OCCN1C2=CC=CC=C2OC2=CC=CC=C21 WMUIIGVAWPWQAW-DEOSSOPVSA-N 0.000 description 1
- BIDNLKIUORFRQP-XYGFDPSESA-N (2s,4s)-4-cyclohexyl-1-[2-[[(1s)-2-methyl-1-propanoyloxypropoxy]-(4-phenylbutyl)phosphoryl]acetyl]pyrrolidine-2-carboxylic acid Chemical compound C([P@@](=O)(O[C@H](OC(=O)CC)C(C)C)CC(=O)N1[C@@H](C[C@H](C1)C1CCCCC1)C(O)=O)CCCC1=CC=CC=C1 BIDNLKIUORFRQP-XYGFDPSESA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- DDYAPMZTJAYBOF-ZMYDTDHYSA-N (3S)-4-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S,3R)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-4-amino-1-[[(2S,3S)-1-[[(1S)-1-carboxyethyl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3R)-2-[[2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-imidazol-4-yl)propanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]acetyl]amino]-3-hydroxybutanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]-5-oxopentanoyl]amino]-4-oxobutanoic acid Chemical class [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O DDYAPMZTJAYBOF-ZMYDTDHYSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- RUDATBOHQWOJDD-UHFFFAOYSA-N (3beta,5beta,7alpha)-3,7-Dihydroxycholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 RUDATBOHQWOJDD-UHFFFAOYSA-N 0.000 description 1
- WSEVKKHALHSUMB-RYVRVIGHSA-N (4S)-4-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2R)-5-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-carboxypropanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]-5-oxopentanoyl]amino]-4-methylsulfanylbutanoyl]amino]-4-carboxybutanoyl]amino]-4-carboxybutanoyl]amino]-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-4-amino-1-[[2-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-[[(2S)-1-amino-3-hydroxy-1-oxopropan-2-yl]carbamoyl]pyrrolidine-1-carbonyl]pyrrolidine-1-carbonyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-2-oxoethyl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N1CCC[C@H]1C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(N)=O WSEVKKHALHSUMB-RYVRVIGHSA-N 0.000 description 1
- DMJWENQHWZZWDF-PKOBYXMFSA-N (6aS,13bR)-11-chloro-7-methyl-5,6,6a,8,9,13b-hexahydronaphtho[1,2-a][3]benzazepin-12-ol Chemical compound CN1CCC2=CC(Cl)=C(O)C=C2[C@H]2C3=CC=CC=C3CC[C@H]12 DMJWENQHWZZWDF-PKOBYXMFSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 1
- WSEQXVZVJXJVFP-HXUWFJFHSA-N (R)-citalopram Chemical compound C1([C@@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-HXUWFJFHSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical compound O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 description 1
- ZPDQFUYPBVXUKS-YADHBBJMSA-N 1-stearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP(O)(=O)OC[C@H](N)C(O)=O ZPDQFUYPBVXUKS-YADHBBJMSA-N 0.000 description 1
- 102000008645 11-beta-Hydroxysteroid Dehydrogenase Type 1 Human genes 0.000 description 1
- 108010088011 11-beta-Hydroxysteroid Dehydrogenase Type 1 Proteins 0.000 description 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 1
- LUACLLSCZRRTIH-UPHRSURJSA-N 2-[[4-[(z)-4-[4-[(3,5-dioxo-1,2,4-oxadiazolidin-2-yl)methyl]phenoxy]but-2-enoxy]phenyl]methyl]-1,2,4-oxadiazolidine-3,5-dione Chemical compound O1C(=O)NC(=O)N1CC(C=C1)=CC=C1OC\C=C/COC(C=C1)=CC=C1CN1C(=O)NC(=O)O1 LUACLLSCZRRTIH-UPHRSURJSA-N 0.000 description 1
- BJBCSGQLZQGGIQ-QGZVFWFLSA-N 2-acetamidoethyl (2r)-2-(4-chlorophenyl)-2-[3-(trifluoromethyl)phenoxy]acetate Chemical compound O([C@@H](C(=O)OCCNC(=O)C)C=1C=CC(Cl)=CC=1)C1=CC=CC(C(F)(F)F)=C1 BJBCSGQLZQGGIQ-QGZVFWFLSA-N 0.000 description 1
- ROJNYKZWTOHRNU-UHFFFAOYSA-N 2-chloro-4,5-difluoro-n-[[2-methoxy-5-(methylcarbamoylamino)phenyl]carbamoyl]benzamide Chemical compound CNC(=O)NC1=CC=C(OC)C(NC(=O)NC(=O)C=2C(=CC(F)=C(F)C=2)Cl)=C1 ROJNYKZWTOHRNU-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 1
- TUBRCQBRKJXJEA-UHFFFAOYSA-N 3-[hexadecyl(dimethyl)azaniumyl]propane-1-sulfonate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O TUBRCQBRKJXJEA-UHFFFAOYSA-N 0.000 description 1
- UIAGMCDKSXEBJQ-IBGZPJMESA-N 3-o-(2-methoxyethyl) 5-o-propan-2-yl (4s)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)[C@H]1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-IBGZPJMESA-N 0.000 description 1
- LGSOKZOQANLOEU-UHFFFAOYSA-N 4-[2-(2,4-dioxo-1,3-thiazolidin-5-yl)ethoxy]benzonitrile Chemical compound S1C(=O)NC(=O)C1CCOC1=CC=C(C#N)C=C1 LGSOKZOQANLOEU-UHFFFAOYSA-N 0.000 description 1
- QBQLYIISSRXYKL-UHFFFAOYSA-N 4-[[4-[2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethoxy]phenyl]methyl]-1,2-oxazolidine-3,5-dione Chemical compound CC=1OC(C=2C=CC=CC=2)=NC=1CCOC(C=C1)=CC=C1CC1C(=O)NOC1=O QBQLYIISSRXYKL-UHFFFAOYSA-N 0.000 description 1
- NFFXEUUOMTXWCX-UHFFFAOYSA-N 5-[(2,4-dioxo-1,3-thiazolidin-5-yl)methyl]-2-methoxy-n-[[4-(trifluoromethyl)phenyl]methyl]benzamide Chemical compound C1=C(C(=O)NCC=2C=CC(=CC=2)C(F)(F)F)C(OC)=CC=C1CC1SC(=O)NC1=O NFFXEUUOMTXWCX-UHFFFAOYSA-N 0.000 description 1
- MVDXXGIBARMXSA-PYUWXLGESA-N 5-[[(2r)-2-benzyl-3,4-dihydro-2h-chromen-6-yl]methyl]-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)C1CC1=CC=C(O[C@@H](CC=2C=CC=CC=2)CC2)C2=C1 MVDXXGIBARMXSA-PYUWXLGESA-N 0.000 description 1
- RZTAMFZIAATZDJ-HNNXBMFYSA-N 5-o-ethyl 3-o-methyl (4s)-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC(Cl)=C1Cl RZTAMFZIAATZDJ-HNNXBMFYSA-N 0.000 description 1
- SLXTWXQUEZSSTJ-UHFFFAOYSA-N 6-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)cyclopropyl]pyridine-3-carboxylic acid Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C1(C=2N=CC(=CC=2)C(O)=O)CC1 SLXTWXQUEZSSTJ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- XPCFTKFZXHTYIP-PMACEKPBSA-N Benazepril Chemical compound C([C@@H](C(=O)OCC)N[C@@H]1C(N(CC(O)=O)C2=CC=CC=C2CC1)=O)CC1=CC=CC=C1 XPCFTKFZXHTYIP-PMACEKPBSA-N 0.000 description 1
- 241000212384 Bifora Species 0.000 description 1
- XNCOSPRUTUOJCJ-UHFFFAOYSA-N Biguanide Chemical compound NC(N)=NC(N)=N XNCOSPRUTUOJCJ-UHFFFAOYSA-N 0.000 description 1
- 102000013585 Bombesin Human genes 0.000 description 1
- 108010051479 Bombesin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- 229920001268 Cholestyramine Polymers 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 102100021809 Chorionic somatomammotropin hormone 1 Human genes 0.000 description 1
- 108010005939 Ciliary Neurotrophic Factor Proteins 0.000 description 1
- 102100031614 Ciliary neurotrophic factor Human genes 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002911 Colestipol Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010061435 Enalapril Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 description 1
- GGUVRMBIEPYOKL-WMVCGJOFSA-N GW 409544 Chemical compound C([C@H](NC(/C)=C\C(=O)C=1C=CC=CC=1)C(O)=O)C(C=C1)=CC=C1OCCC(=C(O1)C)N=C1C1=CC=CC=C1 GGUVRMBIEPYOKL-WMVCGJOFSA-N 0.000 description 1
- 102400001370 Galanin Human genes 0.000 description 1
- 101800002068 Galanin Proteins 0.000 description 1
- HEMJJKBWTPKOJG-UHFFFAOYSA-N Gemfibrozil Chemical compound CC1=CC=C(C)C(OCCCC(C)(C)C(O)=O)=C1 HEMJJKBWTPKOJG-UHFFFAOYSA-N 0.000 description 1
- 101800001586 Ghrelin Proteins 0.000 description 1
- 102400000442 Ghrelin-28 Human genes 0.000 description 1
- 241000282818 Giraffidae Species 0.000 description 1
- 108010088406 Glucagon-Like Peptides Proteins 0.000 description 1
- 102000058058 Glucose Transporter Type 2 Human genes 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 101000886868 Homo sapiens Gastric inhibitory polypeptide Proteins 0.000 description 1
- 101001015516 Homo sapiens Glucagon-like peptide 1 receptor Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 229940086609 Lipase inhibitor Drugs 0.000 description 1
- 108010007859 Lisinopril Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- ZPXSCAKFGYXMGA-UHFFFAOYSA-N Mazindol Chemical compound N12CCN=C2C2=CC=CC=C2C1(O)C1=CC=C(Cl)C=C1 ZPXSCAKFGYXMGA-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 1
- IBAQFPQHRJAVAV-ULAWRXDQSA-N Miglitol Chemical compound OCCN1C[C@H](O)[C@@H](O)[C@H](O)[C@H]1CO IBAQFPQHRJAVAV-ULAWRXDQSA-N 0.000 description 1
- 101710112393 Mitochondrial uncoupling protein 2 Proteins 0.000 description 1
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 102000002512 Orexin Human genes 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- MFOCDFTXLCYLKU-CMPLNLGQSA-N Phendimetrazine Chemical compound O1CCN(C)[C@@H](C)[C@@H]1C1=CC=CC=C1 MFOCDFTXLCYLKU-CMPLNLGQSA-N 0.000 description 1
- 108010003044 Placental Lactogen Proteins 0.000 description 1
- 239000000381 Placental Lactogen Substances 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 1
- 241000283080 Proboscidea <mammal> Species 0.000 description 1
- 102100024819 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 1
- 108091006299 SLC2A2 Proteins 0.000 description 1
- 241000785681 Sander vitreus Species 0.000 description 1
- 206010048636 Self-induced vomiting Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229940121991 Serotonin and norepinephrine reuptake inhibitor Drugs 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- 108010071769 Thyroid Hormone Receptors beta Proteins 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- KJADKKWYZYXHBB-XBWDGYHZSA-N Topiramic acid Chemical compound C1O[C@@]2(COS(N)(=O)=O)OC(C)(C)O[C@H]2[C@@H]2OC(C)(C)O[C@@H]21 KJADKKWYZYXHBB-XBWDGYHZSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108010021111 Uncoupling Protein 2 Proteins 0.000 description 1
- 102000008200 Uncoupling Protein 3 Human genes 0.000 description 1
- 108010021098 Uncoupling Protein 3 Proteins 0.000 description 1
- ICMGLRUYEQNHPF-UHFFFAOYSA-N Uraprene Chemical compound COC1=CC=CC=C1N1CCN(CCCNC=2N(C(=O)N(C)C(=O)C=2)C)CC1 ICMGLRUYEQNHPF-UHFFFAOYSA-N 0.000 description 1
- 102000005630 Urocortins Human genes 0.000 description 1
- 108010059705 Urocortins Proteins 0.000 description 1
- FZNCGRZWXLXZSZ-CIQUZCHMSA-N Voglibose Chemical compound OCC(CO)N[C@H]1C[C@](O)(CO)[C@@H](O)[C@H](O)[C@H]1O FZNCGRZWXLXZSZ-CIQUZCHMSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 229960002632 acarbose Drugs 0.000 description 1
- XUFXOAAUWZOOIT-UHFFFAOYSA-N acarviostatin I01 Natural products OC1C(O)C(NC2C(C(O)C(O)C(CO)=C2)O)C(C)OC1OC(C(C1O)O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O XUFXOAAUWZOOIT-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000048 adrenergic agonist Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 239000002160 alpha blocker Substances 0.000 description 1
- 229940124308 alpha-adrenoreceptor antagonist Drugs 0.000 description 1
- 229960002213 alprenolol Drugs 0.000 description 1
- PAZJSJFMUHDSTF-UHFFFAOYSA-N alprenolol Chemical compound CC(C)NCC(O)COC1=CC=CC=C1CC=C PAZJSJFMUHDSTF-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 210000004727 amygdala Anatomy 0.000 description 1
- 239000003392 amylase inhibitor Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 230000003579 anti-obesity Effects 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 210000003295 arcuate nucleus Anatomy 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 229960002274 atenolol Drugs 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 229960004530 benazepril Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229940125388 beta agonist Drugs 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 150000004283 biguanides Chemical class 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 235000015895 biscuits Nutrition 0.000 description 1
- 125000006367 bivalent amino carbonyl group Chemical group [H]N([*:1])C([*:2])=O 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 description 1
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 1
- 229960002802 bromocriptine Drugs 0.000 description 1
- SNPPWIUOZRMYNY-UHFFFAOYSA-N bupropion Chemical compound CC(C)(C)NC(C)C(=O)C1=CC=CC(Cl)=C1 SNPPWIUOZRMYNY-UHFFFAOYSA-N 0.000 description 1
- 229960001058 bupropion Drugs 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-O butylazanium Chemical compound CCCC[NH3+] HQABUPZFAYXKJW-UHFFFAOYSA-O 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- NFCRBQADEGXVDL-UHFFFAOYSA-M cetylpyridinium chloride monohydrate Chemical compound O.[Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 NFCRBQADEGXVDL-UHFFFAOYSA-M 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000010675 chips/crisps Nutrition 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229960001761 chlorpropamide Drugs 0.000 description 1
- 235000020140 chocolate milk drink Nutrition 0.000 description 1
- 235000014651 chocolate spreads Nutrition 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- YZFWTZACSRHJQD-UHFFFAOYSA-N ciglitazone Chemical compound C=1C=C(CC2C(NC(=O)S2)=O)C=CC=1OCC1(C)CCCCC1 YZFWTZACSRHJQD-UHFFFAOYSA-N 0.000 description 1
- 229950009226 ciglitazone Drugs 0.000 description 1
- 229960001653 citalopram Drugs 0.000 description 1
- KNHUKKLJHYUCFP-UHFFFAOYSA-N clofibrate Chemical compound CCOC(=O)C(C)(C)OC1=CC=C(Cl)C=C1 KNHUKKLJHYUCFP-UHFFFAOYSA-N 0.000 description 1
- 229960001214 clofibrate Drugs 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 229960002604 colestipol Drugs 0.000 description 1
- GMRWGQCZJGVHKL-UHFFFAOYSA-N colestipol Chemical compound ClCC1CO1.NCCNCCNCCNCCN GMRWGQCZJGVHKL-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001955 cumulated effect Effects 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- QQKNSPHAFATFNQ-UHFFFAOYSA-N darglitazone Chemical compound CC=1OC(C=2C=CC=CC=2)=NC=1CCC(=O)C(C=C1)=CC=C1CC1SC(=O)NC1=O QQKNSPHAFATFNQ-UHFFFAOYSA-N 0.000 description 1
- 229950006689 darglitazone Drugs 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 235000021185 dessert Nutrition 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960004597 dexfenfluramine Drugs 0.000 description 1
- 229960001767 dextrothyroxine Drugs 0.000 description 1
- 229940099371 diacetylated monoglycerides Drugs 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-O diethylammonium Chemical compound CC[NH2+]CC HPNMFZURTQLUMO-UHFFFAOYSA-O 0.000 description 1
- 229960004890 diethylpropion Drugs 0.000 description 1
- XXEPPPIWZFICOJ-UHFFFAOYSA-N diethylpropion Chemical compound CCN(CC)C(C)C(=O)C1=CC=CC=C1 XXEPPPIWZFICOJ-UHFFFAOYSA-N 0.000 description 1
- 229960004166 diltiazem Drugs 0.000 description 1
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- FUZBPOHHSBDTJQ-CFOQQKEYSA-L disodium;5-[(2r)-2-[[(2r)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate Chemical compound [Na+].[Na+].C1([C@@H](O)CN[C@@H](CC=2C=C3OC(OC3=CC=2)(C([O-])=O)C([O-])=O)C)=CC=CC(Cl)=C1 FUZBPOHHSBDTJQ-CFOQQKEYSA-L 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 229940018614 docusate calcium Drugs 0.000 description 1
- 229940018600 docusate potassium Drugs 0.000 description 1
- 229960000878 docusate sodium Drugs 0.000 description 1
- QBHFVMDLPTZDOI-UHFFFAOYSA-N dodecylphosphocholine Chemical compound CCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C QBHFVMDLPTZDOI-UHFFFAOYSA-N 0.000 description 1
- 229960001389 doxazosin Drugs 0.000 description 1
- RUZYUOTYCVRMRZ-UHFFFAOYSA-N doxazosin Chemical compound C1OC2=CC=CC=C2OC1C(=O)N(CC1)CCN1C1=NC(N)=C(C=C(C(OC)=C2)OC)C2=N1 RUZYUOTYCVRMRZ-UHFFFAOYSA-N 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 229950009714 ecopipam Drugs 0.000 description 1
- 229950000269 emiglitate Drugs 0.000 description 1
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 description 1
- 229960000873 enalapril Drugs 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229950002375 englitazone Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940031098 ethanolamine Drugs 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- NWWORXYTJRPSMC-QKPAOTATSA-N ethyl 4-[2-[(2r,3r,4r,5s)-3,4,5-trihydroxy-2-(hydroxymethyl)piperidin-1-yl]ethoxy]benzoate Chemical compound C1=CC(C(=O)OCC)=CC=C1OCCN1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](O)C1 NWWORXYTJRPSMC-QKPAOTATSA-N 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-O ethylaminium Chemical compound CC[NH3+] QUSNBJAOOMFDIB-UHFFFAOYSA-O 0.000 description 1
- HXQVQGWHFRNKMS-UHFFFAOYSA-M ethylmercurithiosalicylic acid Chemical compound CC[Hg]SC1=CC=CC=C1C(O)=O HXQVQGWHFRNKMS-UHFFFAOYSA-M 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- ZZCHHVUQYRMYLW-HKBQPEDESA-N farglitazar Chemical compound N([C@@H](CC1=CC=C(C=C1)OCCC=1N=C(OC=1C)C=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 ZZCHHVUQYRMYLW-HKBQPEDESA-N 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 229960003580 felodipine Drugs 0.000 description 1
- 229960001582 fenfluramine Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- 229960002490 fosinopril Drugs 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000012020 french fries Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 229960004675 fusidic acid Drugs 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 230000027119 gastric acid secretion Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960003627 gemfibrozil Drugs 0.000 description 1
- GNKDKYIHGQKHHM-RJKLHVOGSA-N ghrelin Chemical group C([C@H](NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)CN)COC(=O)CCCCCCC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C1=CC=CC=C1 GNKDKYIHGQKHHM-RJKLHVOGSA-N 0.000 description 1
- 229960004346 glimepiride Drugs 0.000 description 1
- WIGIZIANZCJQQY-RUCARUNLSA-N glimepiride Chemical compound O=C1C(CC)=C(C)CN1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)N[C@@H]2CC[C@@H](C)CC2)C=C1 WIGIZIANZCJQQY-RUCARUNLSA-N 0.000 description 1
- 229940124828 glucokinase activator Drugs 0.000 description 1
- 230000004190 glucose uptake Effects 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 230000004116 glycogenolysis Effects 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 235000015220 hamburgers Nutrition 0.000 description 1
- 230000007407 health benefit Effects 0.000 description 1
- 235000001497 healthy food Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 206010021654 increased appetite Diseases 0.000 description 1
- MGXWVYUBJRZYPE-YUGYIWNOSA-N incretin Chemical class C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=C(O)C=C1 MGXWVYUBJRZYPE-YUGYIWNOSA-N 0.000 description 1
- 239000000859 incretin Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229960004427 isradipine Drugs 0.000 description 1
- 235000015094 jam Nutrition 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PYIDGJJWBIBVIA-UYTYNIKBSA-N lauryl glucoside Chemical compound CCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PYIDGJJWBIBVIA-UYTYNIKBSA-N 0.000 description 1
- 239000008141 laxative Substances 0.000 description 1
- 229940125722 laxative agent Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 235000021056 liquid food Nutrition 0.000 description 1
- 229960002394 lisinopril Drugs 0.000 description 1
- CZRQXSDBMCMPNJ-ZUIPZQNBSA-N lisinopril dihydrate Chemical compound O.O.C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 CZRQXSDBMCMPNJ-ZUIPZQNBSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 1
- 229960004844 lovastatin Drugs 0.000 description 1
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229960000299 mazindol Drugs 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 229960003105 metformin Drugs 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 1
- 229960002237 metoprolol Drugs 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 229960001110 miglitol Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- SLZIZIJTGAYEKK-CIJSCKBQSA-N molport-023-220-247 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CNC=N1 SLZIZIJTGAYEKK-CIJSCKBQSA-N 0.000 description 1
- LPUQAYUQRXPFSQ-DFWYDOINSA-M monosodium L-glutamate Chemical compound [Na+].[O-]C(=O)[C@@H](N)CCC(O)=O LPUQAYUQRXPFSQ-DFWYDOINSA-M 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 239000004223 monosodium glutamate Substances 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- BFYLULHOYZNWPC-UHFFFAOYSA-N n-[[4,5-dimethyl-1-[(2-methylphenyl)methyl]imidazol-2-yl]methyl]-2,4-dimethoxy-n-(3-methylbutyl)benzamide Chemical compound COC1=CC(OC)=CC=C1C(=O)N(CCC(C)C)CC1=NC(C)=C(C)N1CC1=CC=CC=C1C BFYLULHOYZNWPC-UHFFFAOYSA-N 0.000 description 1
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 description 1
- 229960003086 naltrexone Drugs 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 230000009707 neogenesis Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229960001783 nicardipine Drugs 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- 229960000715 nimodipine Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002767 noradrenalin uptake inhibitor Substances 0.000 description 1
- 229940127221 norepinephrine reuptake inhibitor Drugs 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000003401 opiate antagonist Substances 0.000 description 1
- 108060005714 orexin Proteins 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 229960001243 orlistat Drugs 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- YDCVQGAUCOROHB-UHFFFAOYSA-N oxadiazolidine-4,5-dione Chemical class O=C1NNOC1=O YDCVQGAUCOROHB-UHFFFAOYSA-N 0.000 description 1
- 125000005489 p-toluenesulfonic acid group Chemical class 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 1
- 229940083254 peripheral vasodilators imidazoline derivative Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960000436 phendimetrazine Drugs 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 229960003562 phentermine Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229960002508 pindolol Drugs 0.000 description 1
- PHUTUTUABXHXLW-UHFFFAOYSA-N pindolol Chemical compound CC(C)NCC(O)COC1=CC=CC2=NC=C[C]12 PHUTUTUABXHXLW-UHFFFAOYSA-N 0.000 description 1
- 229960005095 pioglitazone Drugs 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000018656 positive regulation of gluconeogenesis Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000003450 potassium channel blocker Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 1
- 229960002965 pravastatin Drugs 0.000 description 1
- 229960001289 prazosin Drugs 0.000 description 1
- IENZQIKPVFGBNW-UHFFFAOYSA-N prazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1=CC=CO1 IENZQIKPVFGBNW-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- FYPMFJGVHOHGLL-UHFFFAOYSA-N probucol Chemical compound C=1C(C(C)(C)C)=C(O)C(C(C)(C)C)=CC=1SC(C)(C)SC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FYPMFJGVHOHGLL-UHFFFAOYSA-N 0.000 description 1
- 229960003912 probucol Drugs 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- JSDRRTOADPPCHY-HSQYWUDLSA-N quinapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CC2=CC=CC=C2C1)C(O)=O)CC1=CC=CC=C1 JSDRRTOADPPCHY-HSQYWUDLSA-N 0.000 description 1
- 229960001455 quinapril Drugs 0.000 description 1
- HDACQVRGBOVJII-JBDAPHQKSA-N ramipril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](C[C@@H]2CCC[C@@H]21)C(O)=O)CC1=CC=CC=C1 HDACQVRGBOVJII-JBDAPHQKSA-N 0.000 description 1
- 229960003401 ramipril Drugs 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 231100000272 reduced body weight Toxicity 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- XMSXOLDPMGMWTH-UHFFFAOYSA-N rivoglitazone Chemical compound CN1C2=CC(OC)=CC=C2N=C1COC(C=C1)=CC=C1CC1SC(=O)NC1=O XMSXOLDPMGMWTH-UHFFFAOYSA-N 0.000 description 1
- 229960004586 rosiglitazone Drugs 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 208000012672 seasonal affective disease Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 229960004425 sibutramine Drugs 0.000 description 1
- UNAANXDKBXWMLN-UHFFFAOYSA-N sibutramine Chemical compound C=1C=C(Cl)C=CC=1C1(C(N(C)C)CC(C)C)CCC1 UNAANXDKBXWMLN-UHFFFAOYSA-N 0.000 description 1
- 229960002855 simvastatin Drugs 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229960005480 sodium caprylate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 1
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 1
- OABYVIYXWMZFFJ-ZUHYDKSRSA-M sodium glycocholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 OABYVIYXWMZFFJ-ZUHYDKSRSA-M 0.000 description 1
- BYKRNSHANADUFY-UHFFFAOYSA-M sodium octanoate Chemical compound [Na+].CCCCCCCC([O-])=O BYKRNSHANADUFY-UHFFFAOYSA-M 0.000 description 1
- JAJWGJBVLPIOOH-IZYKLYLVSA-M sodium taurocholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 JAJWGJBVLPIOOH-IZYKLYLVSA-M 0.000 description 1
- IWQPOPSAISBUAH-VOVMJQHHSA-M sodium;2-[[(2z)-2-[(3r,4s,5s,8s,9s,10s,11r,13r,14s,16s)-16-acetyl-3,11-dihydroxy-4,8,10,14-tetramethyl-2,3,4,5,6,7,9,11,12,13,15,16-dodecahydro-1h-cyclopenta[a]phenanthren-17-ylidene]-6-methylheptanoyl]amino]ethanesulfonate Chemical compound [Na+].C1C[C@@H](O)[C@@H](C)[C@@H]2CC[C@]3(C)[C@@]4(C)C[C@H](C(C)=O)/C(=C(C(=O)NCCS([O-])(=O)=O)/CCCC(C)C)[C@@H]4C[C@@H](O)[C@H]3[C@]21C IWQPOPSAISBUAH-VOVMJQHHSA-M 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- VCKUSRYTPJJLNI-UHFFFAOYSA-N terazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1CCCO1 VCKUSRYTPJJLNI-UHFFFAOYSA-N 0.000 description 1
- 229960001693 terazosin Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical class C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 150000001467 thiazolidinediones Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 150000003588 threonines Chemical class 0.000 description 1
- 229960004605 timolol Drugs 0.000 description 1
- 235000015149 toffees Nutrition 0.000 description 1
- 229960002277 tolazamide Drugs 0.000 description 1
- OUDSBRTVNLOZBN-UHFFFAOYSA-N tolazamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1CCCCCC1 OUDSBRTVNLOZBN-UHFFFAOYSA-N 0.000 description 1
- 229960004394 topiramate Drugs 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- GXPHKUHSUJUWKP-UHFFFAOYSA-N troglitazone Chemical compound C1CC=2C(C)=C(O)C(C)=C(C)C=2OC1(C)COC(C=C1)=CC=C1CC1SC(=O)NC1=O GXPHKUHSUJUWKP-UHFFFAOYSA-N 0.000 description 1
- 229960001641 troglitazone Drugs 0.000 description 1
- GXPHKUHSUJUWKP-NTKDMRAZSA-N troglitazone Natural products C([C@@]1(OC=2C(C)=C(C(=C(C)C=2CC1)O)C)C)OC(C=C1)=CC=C1C[C@H]1SC(=O)NC1=O GXPHKUHSUJUWKP-NTKDMRAZSA-N 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229960001130 urapidil Drugs 0.000 description 1
- 239000000777 urocortin Substances 0.000 description 1
- RUDATBOHQWOJDD-UZVSRGJWSA-N ursodeoxycholic acid Chemical compound C([C@H]1C[C@@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-UZVSRGJWSA-N 0.000 description 1
- 229960001661 ursodiol Drugs 0.000 description 1
- 210000001186 vagus nerve Anatomy 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 235000008979 vitamin B4 Nutrition 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
- 229960001729 voglibose Drugs 0.000 description 1
- 235000012794 white bread Nutrition 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/26—Glucagons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/2278—Vasoactive intestinal peptide [VIP]; Related peptides (e.g. Exendin)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/14—Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to the use of GLP-1 agonists to reduce calorie intake from foods with a high glycemic index, or from foods wherein a high proportion of the carbohydrates is constituted by mono-and di-saccharides.
- GLP-1 has been described as an incretin hormone with a large array of effects. GLP-1 was discovered in 1984 and found to be an important incretin [Nauck, M. A.; Kleine, N.; Orskov, C.; Holst, J. J.; Willms, B.; Creutzfeldt, W., Diabetologia 1993, 36, 741-744]. It is released from the L-cells in the intestine upon a meal and potently releases insulin from the beta-cells in the pancreas. Numerous effects other than just stimulation of insulin release have been ascribed to GLP-1.
- GLP-1 In the pancreas, GLP-1 not only releases insulin, it does so in a glucose-dependent manner, and it has a number of other functionally important effects: stimulation of insulin biosynthesis, restoration of glucose sensitivity to the islets, stimulation of increased expression of the glucose transporter GLUT-2 and glucokinase.
- 4,5,6 GLP-1 also has a number of effects on regulation of beta-cell mass, stimulation of replication and growth of existing beta-cells, inhibition of apoptosis and neogenesis of new b-cells from duct precursor cells, which leads to reduced hepatic glucose output.
- GLP-1 In the gut, GLP-1 is a potent inhibitor of motility and gastric emptying and has also been shown to inhibit gastric acid secretion.
- GLP-1 has also been proposed to have direct effects on glucose uptake in liver, muscle and adipose tissue but the quantitative significance of these effects has been questioned [Kieffer, T. J.; Habener, J. F., Endocrine Reviews 1999, 20, 876-913]. New publications even suggest that it does not stop here, there may be specific receptors in the heart which along with the benefits of reducing blood glucose may prevent cardiovascular complications, and that GLP-1 stimulates memory and learning capabilities. A comprehensive review exists on the glucagon-like peptides [Kieffer, T. J.; Habener, J. F., Endocrine Reviews 1999, 20, 876-9139.
- GLP-1 reduces food intake, both after central administration and after peripheral administration (Turton, Nature 196:379;69-72, Flint J Clin Inv 1998, 101, 515-520). Also, central administration of high doses of GLP-1 induces taste aversion (Tang-Christensen, Diabetes 1998:47:530-537). However, site directed micro injections of GLP-1 into the PVN induces pharmacologically specific inhibition of feeding without induction of taste aversive behaviour (McMahon, Wellman, Am. J. Phys 1998:274,R23-R29).
- GLP-1 peripherally administered GLP-1
- the site of the anorectic action of peripherally administered GLP-1 is unknown but participation of both central and peripheral sites in GLP-1 are likely, because a recent study has shown that radiolabelled GLP-1 readily gains access to the central nervous system (Hassan, Nuci Med Biol 1999:26:413-420).
- the nucleus of the solitary tract is situated adjacent to the blood brain barrier free area postrema, and other studies using radio-labelled neuropeptides have shown that peripheral administration of neuropeptides gain access both to the area postrema as well as the adjacent subpostreme regions including the dorsal vagal complex (Whitcomb Am J Phys 1990: 259:G687-G691).
- GLP-1 peripherally administered GLP-1 enters the nucleus of the solitary tract with resulting impact on ascending neurones involved in regulation of food intake.
- Interaction of GLP-1 with vagal afferents from the gastrointestional tract should also be considered as mediator of its anorectic actions because transection of the vagus nerve renders the stomach of anaesthetised pigs insensitive to the akinetic actions of intravenously administered GLP-1 (Weftergren, Am J Phys 1998:275:984-992).
- vagal afferents and GLP-1 receptors accessible from the periphery are responsible for the anorexia induced by GLP-1, because we have seen that bilateral subdiaphragmatic vagotomy on rats carrying the anorectic GLP-1 producing tumour has no impact on the development of anorexia (Jensen, JCI 1998: 101:503-510). Last, GLP-1 has been shown to inhibit intake of different kinds of food, both rich in fat and in carbohydrate (Bjenning, Diabetes Res and Clin Prac 2000:50(1):S386).
- GLP-1 agonist has the effect of specifically modifying the intake of food associated with an unhealthy western world lifestyle. This effect could be useful in the treatment of all kinds of disorders linked to an increased intake of sweet or fat food.
- the present inventors have surprisingly found that GLP-1 agonists can be used to specifically modify the intake of food by a subject, wherein said food has a high glycemic index or food wherein mono- or di-saccharide constitute a large proportion of the total amount of carbohydrate.
- the present invention relates to a method for reducing intake of food by a subject, wherein said food has a glycemic index above 60%, or wherein said food has a glycemic index above 40% combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- the invention in another aspect, relates to a method for reducing intake of food by a subject, wherein mono-and di-saccharides in said food together constitute more than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- the invention in another aspect, relates to a method of increasing intake of food in a subject, wherein said food has a glycemic index below 60%, or wherein said food has a glycemic index below 40% combined with that less than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- the invention relates to a method of increasing intake of food in a subject wherein mono-and di-saccharides together constitute less than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- the invention relates to a method of treating a subject with an abnormal or excessive intake of food wherein the glycemic index is above 60%, or wherein the glycemic index is above 40% combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- the invention relates to a method of treating a subject with an abnormal or excessive intake of food wherein the mono- and di-saccharides together constitute more than 25% of the total amount of carbohydrates, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- the invention relates to a method for promoting the sales of a GLP-1 agonist-containing product, said method comprising the public distribution of information describing the reduced intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates attributable to the consumption of said product and optionally the benefits connected with that.
- the invention relates to a pharmaceutical product, comprising: (a) a GLP-1 agonist which reduces the intake of food with a high glycemic index or food wherein mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrates in a container; and (b) a notice associated with said container in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by said agency of said GLP-1 compound for human or veterinary administration to reduce intake of food with a high glycemic index.
- the glycemic index is a measure of the ability of food to raise the blood glucose level.
- the glycemic index of a food is determined by feeding a group consisting of at least 10 healthy people a portion of food containing 50 grams of digestible (available) carbohydrate and then measure the effect on their blood glucose levels during the following two hours. For each person, the area under their two-hour blood glucose response (glucose AUC) is measured. On another occasion, the same group of people consume 50 g of glucose, and their two-hour blood glucose response is also measured.
- the glycemic index for the food is the AUC determined for the food divided by the AUC determined for glucose multiplied by 100% (calculated as the average for the group).
- Food with a high glycemic index contain rapidly digested carbohydrate, which produces a large rapid rise and fall in the level of blood glu-cose. In contrast, foods with a low glycemic index score contain slowly digested carbohy-drate, which produces a gradual, relatively low rise in the level of blood glucose.
- mono-saccharides is intended to indicate a carbohydrate that cannot be hydrolysed to simpler carbohydrates.
- the most relevant mono-saccharides in food are glucose and fructose.
- di-saccharides is intended to indicate carbohydrates which can be hydrolysed into two mono-saccharides.
- the most relevant di-saccharides in food are sucrose, maltose and lactose.
- the amount of mono- and di-saccharides in food may be analysed specifically by enzymatic, gas-liquid chromatography (GLC) or high performance liquid chromatography (HPLC) methods.
- LLC gas-liquid chromatography
- HPLC high performance liquid chromatography
- extraction of the low molecular weight carbohydrates in aqueous ethanol, usually 80% (v/v) may be advisable before analysis.
- Relevant analysis methods are provided in e.g. Southgate, “Determination of food carbohydrates”, Elsevier, Science Publishers, Barkinggate, 1991; Greenfield, “Food composition data. Production, management and use”, Elsevier Appleid Science, London, 1992; and Department of Health, “Dietery sugars and human health, Her Majesty's Stationary Office, London, 1989.
- “carbohydrates” are defined as in “Carbohydrates in human nutrition. (FAO Food and Nutrition Paper-66)”, Report of a Joint FAO/WHO Expert Consultation, Rome, 14-18 Apr. 1997, Report of a Joint FAO/WHO Expert Consultation Rome, 14-18 Apr. 1997, namely as polyhydroxy aldehydes, ketones, alcohols, acids, their simple derivatives and their polymers having linkages of the acetal type.
- fat is intended to indicate mono-, di- and tri- carboxylic acid ester derived from glycerol and cholesterol, where the glycerols are the more important source of energy in the food of the two.
- the amount of fat in food may be determined as disclosed in FAO: Food energy—methods of analysis and conversion factors, Report of a Technical Workshop, Rome, 3-6 Dec. 2002.
- total carbohydrate content is intended to indicate the sum of carbohydrates present in the food. It is not measured as such, but rather calculated as the difference between the total weight of the food and the sum of the weights of the non-carbohydrate components [FAO: Food energy—methods of analysis and conversion factors, Report of a Technical Workshop, Rome, 3-6 Dec. 2002.
- obese or “obesity” implies an excess of adipose tissue.
- obesity is best viewed as any degree of excess adiposity that imparts a health risk. The distinction between normal and obese individuals can only be approximated, but the health risk imparted by obesity is probably a continuum with increasing adiposity.
- food is intended to indicate food in any form, i.e. both liquid and solid food, as well as basic food and candy, snacks, etc.
- abnormal or excessive intake of food is intended to indicate an intake with pathological consequences, such as obesity, or which can be ascribed to a psychological state connected with e.g. pregnancy or premenstrual tension, or to a psychological disease, such as binge eating or compulsory eating habits.
- an “effective amount” of a compound as used herein means an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of a given disease or state and its complications. An amount adequate to accomplish this is defined as “effective amount”. Effective amounts for each purpose will depend on the severity of the disease or injury as well as the weight and general state of the subject. It will be understood that determining an appropriate dosage may be achieved using routine experimentation, by constructing a matrix of values and testing different points in the matrix, which is all within the ordinary skills of a trained physician or veterinary.
- treatment means the management and care of a patient for the purpose of combating a condition, such as a disease or a disorder.
- the term is intended to include the full spectrum of treatments for a given condition from which the patient is suffering, such as administration of the active compound to alleviate the symptoms or complications, to delay the progression of the disease, disorder or condition, to alleviate or relief the symptoms and complications, and/or to cure or eliminate the disease, disorder or condition as well as to prevent the condition, wherein prevention is to be understood as the management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the administration of the active compounds to prevent the onset of the symptoms or complications.
- reducing intake of food is intended to indicate that the amount of food (measured by its energy content) eaten by a group consisting of one or more subjects being administered a GLP-1 agonist is reduced compared to a similar control group not being administered a GLP-1 agonist, as provided in the present invention.
- increasing intake of food is intended to indicate that the amount of food (measured by its energy content) eaten by a group consisting of one or more subjects being administered a GLP-1 agonist is increased compared to a similar control group not being administered a GLP-1 agonist, as provided in the present invention.
- the present invention relates to the use of GLP-1 agonists to modify the intake of specific types of food by a subject wherein the food has a high glycemic index or wherein the mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrate in said food.
- the invention provides a method for decreasing the intake of food by a subject, wherein the food has a high glycemic index or wherein the mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrate in said food, said method comprising the administration of an effective amount of a GLP-1 agonist to said subject.
- the glycemic index of the food may be above 60%, such as above 65%, such as above 70%, such as above 75%, such as above 80%, such as above 90%.
- the invention provides a method for decreasing the intake of food by a subject, wherein the food has a glycemic index above 40%, and wherein more than 30% of the total amount of energy stems from fat, the method comprising administering an effective amount of a GLP-1 agonist to said subject.
- This embodiment includes any combination of food with a glycemic index above 40%, such as above 45%, such as above 50%, such as above 55%, such as above 60%, such as above 65%, such as above 70%, such as above 75%, such as above 80%, such as above 90% and wherein more than 30% , such as more than 35%, such as more than 40%, such as more than 50%, such as more than 60%, such as more than 70%, such as more than 80% of the total amount of energy stems from fat.
- a glycemic index above 40% such as above 45%, such as above 50%, such as above 55%, such as above 60%, such as above 65%, such as above 70%, such as above 75%, such as above 80%, such as above 90% and wherein more than 30% , such as more than 35%, such as more than 40%, such as more than 50%, such as more than 60%, such as more than 70%, such as more than 80% of the total amount of energy stems from fat.
- the invention provides a method of decreasing the intake of food by a subject, wherein mono-and di-saccharides together constitute more than 25% of the total amount of carbohydrate in said food, the method comprising administering to said subject an effective amount of a GLP-1 agonist.
- mono-and di-saccharides together constitute more than 30%, such as more than 35%, such as more than 40%, such as more than 45%, such as more than 50%, such as more than 70%, such as more than 80%, such as more than 90%, or even 100%.
- more than 25% of the mono- di- and tri-saccharides together constitute more than 25% of the total amount of carbohydrtates.
- the invention provides a method of increasing the intake of food by a subject, wherein the food has a low glycemic index or wherein the mono- and di-saccharides together constitute a small proportion of the total amount of carbohydrate in said food, said method comprising the administration of an effective amount of a GLP-1 agonist to said subject.
- the glycimic index of the food may be below 60%, such as below 50%, such as below 40%, such as below 35%, such as below 30%, such as below 20%, such as below 10%, such as below 5%.
- the invention provides a method of increasing the intake of food by a subject wherein the food has a glycemic index below 40%, and wherein less than 30% of the total amount of energy stems from fat, said method comprising the administration to a subject of an effective amount of a GLP-1 agonist.
- This embodiment includes any combination of food with a glycemic index below 40%, such as below 30%, such as below 20%, such as below 10%, such as below 5% and wherein less than 30%, such as less than 20%, such as less than 10%, such as less than 5% of the total amount of energy stems from fat.
- the invention provides a method of increasing the intake of food by a subject, wherein mono- and di-saccharides together constitute less than 25% of the total amount of carbohydrates in said food, such as less than 20%, such as less that 15%, such as less than 10%.
- the food is also poor in fat as measured by how much of the total amount of energy in the food stems from fat.
- less than 30% such as less than 25%, such as less than 20%, such as less than 15%, such as less than 10%, or even less than 5% of the total energy stems from fat.
- mono-, di- and tri-saccharides together constitutes less than 25% of the total amount of carbohydrates.
- the decrease in intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates is accompanied by an increase in the intake of food with a low glycemic index or of food wherein mono-and di-saccharides together constitute as small proportion of the total amount of carbohydrates, as discussed above.
- the amount of energy in food is typically quoted in calories or joules, and it can be measured by burning the food, e.g. in a bomb calorimeter.
- the amount of energy attributable to fat can be determined by multiplying the amount of fat in the food, analysed as discussed above, with 38 kJ/g.
- the present invention also provides a method a regulating taste preferences, and in particular regulating taste preferences away from sweet and fatty food, said method comprising the administration of an effective amount of a GLP-1 agonist.
- the present invention relates to a method of normalising lifestyle, and in particular the food preference, said method comprising the administration of an effective amount of a GLP-1 agonist.
- the subject to be treated has an increased appetite, hunger or craving for sweet or fat food. This may be related to e.g. stress, quit of smoking, pregnancy, pre-menstrual tension, or it can be ascribed physiological problems or diseases, such as binge eating, compulsive eating habits and Seasonal Affective Disorder.
- BED Binge eating disorder
- BN bulimia nervosa
- subjects with BED do not, contrary to patients with BN, engage in compensatory behaviours, such as e.g. self-induced vomiting, excessive exercise, and misuse of laxatives, diuretics or enemas.
- compensatory behaviours such as e.g. self-induced vomiting, excessive exercise, and misuse of laxatives, diuretics or enemas.
- Studies have shown that 1-3% of the general population suffer from BED, whereas a higher prevalence (up to 25-30%) have been reported for obese patients [ Int J. Obesity, 2002, 26, 299-307].
- the invention relates to a method or treating BED in a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist.
- said subject is obese.
- the invention relates to the use of a GLP-1 agonist in the manufacture of a medicament for the treatment of BED in a subject.
- said subject is obese.
- BN Bulimia nervosa is characterised by the same binge eating episodes as is BED, however, BN is, however, also characterised by the above mentioned compensatory behaviour. A proportion of subjects with BN will eventually become obese to the extent that the compensatory behaviour cannot fully compensate the excess calorie intake. Studies have compared binges of patients with BN and with BED concluding that binges in subjects with BN were higher in carbohydrates and sugar content than those of subjects with BED. No difference was, however, found in the number of consumed calories [ Int. J. Obesity, 2002, 26, 299-307]. The methods of the present invention is therefore believed to be particular well-suited for the treatment of BN.
- the invention relates to a method of treating BN in a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist.
- said subject is obese.
- the invention relates to the use of a GLP-1 agonist in the manufacture of a medicament for the treatment of BN in a subject.
- said subject is obese.
- Craving for food or the intense desire to eat a particular food is normally associated with energy dense food, such as fatty or carbohydrate-rich food [ Appetite, 17, 177-185, 1991; Appetite, 17,167-175, 1991].
- energy dense food such as fatty or carbohydrate-rich food [ Appetite, 17, 177-185, 1991; Appetite, 17,167-175, 1991].
- Examples of such foods include chocolate, biscuits, cakes and snacks.
- a proportion of food cravers eventually become obese due to the excess calorie intake.
- the methods of the present invention are believed to be particular well-suited for the treatment of food craving, in particular craving for fatty or carbohydrate-rich food.
- the invention relates to a method of treating food craving, such as craving for fatty or carbohydrate-rich food, such as chocolate craving in a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist.
- a snack is typically a light, casual, hurried convenience meal eaten between real meals. Snacks are typically fatty and carbohydrate-rich. Studies have shown that there is an increasing prevalence of snacking, especially among US children, and that snacking is a significant cause for the increase in BMI in e.g children [ J. Pediatrics, 138, 493-498, 2001; Obes. Res., 11, 143-151, 2003]. A shift towards more healthy snacks could probably arrest or change the increase in BMI which has taken place over the last years. Data in shown here illustrate that GLP-1 agonists are capable of shifting fooed preferences from fatty and carbohydrate-rich food to low-fat glycemic index low food. GLP-1 agonist are therefore useful in diminishing the amount of snacking or in changing the preference of snack to more healthy snack.
- the invention provides a method of changing the snack preference in a subject to low fat, glycemic index low snack, the method comprising administration of an effective amount of a GLP-1 agonist to said subject.
- said subject is obese.
- the invention provides a method of lowering the amount a snack intake (“snacking”) of a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist.
- said subject is obese.
- GLP-1 agonists are believed to be particular useful in the treatment of obesity, wherein the obesity is caused by BED, BN, food craving (in particular chocolate craving) or snacking.
- the subject of the present invention can in principle be any animal with GLP-1 receptors, and in particular mammals, such as humans, pet animals, such as cats and dogs, and zoo animals, such as elephants, giraffes, lions and snakes.
- the invention in another embodiment, relates to a method of promoting sales, purchase, buying or trade of a GLP-1 agonist-containing product, said method comprising the public distribution of information describing the reduced intake of food with a high glycemic index or food wherein mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrates attributable to the consumption of said product and the benefits connected with that, an in particular the health benefits.
- said distribution of said information is achieved by a method selected from the group consisting of verbal communication, pamphlet distribution, print media, audio tapes, magnetic media, digital media, audiovisual media, billboards, advertising, newspapers, magazines, direct mailings, radio, television, electronic mail, braille, electronic media, banner ads, fiber optics, and laser light shows.
- said product is a pharmaceutical product.
- the GLP-1 agonist is administered to the subject in connection with a meal.
- “in connection with a meal” is intended to indicate a period of up to four hours before or after the meal, such as up to 3 hours before or after, such as up to 2 hours before or after, such as up to 1 hour before or after, such as 30 minutes before or after, such as 15 minutes before or after, such directly in connection with the meal.
- a GLP-1 agonist is understood to refer to any compound, including peptides and non-peptide compounds, which fully or partially activate the human GLP-1 receptor.
- the “GLP-1 agonist” is any peptide or non-peptide small molecule that binds to a GLP-1 receptor, preferably with an affinity constant (K D ) or a potency (EC 50 ) of below 1 ⁇ M, e.g. below 100 nM as measured by methods known in the art (see e.g. WO 98/08871) and exhibits insulinotropic activity, where insulinotropic activity may be measured in vivo or in vitro assays known to those of ordinary skill in the art.
- the GLP-1 agonist may be administered to an animal and the insulin concentration measured over time.
- the GLP-1 agonist is selected from the group consisting of GLP-1(7-36)-amide, GLP-1(7-37), a GLP-1(7-36)-amide analogue, a GLP-1(7-37) analogue, or a derivative of any of these.
- an analogue is used to designate a peptide wherein one or more amino acid residues of the parent peptide have been substituted by another amino acid residue and/or wherein one or more amino acid residues of the parent peptide have been deleted and/or wherein one or more amino acid residues have been added to the parent pep-tide. Such addition can take place either at the N-terminal end or at the C-terminal end of the parent peptide or both.
- an analogue is a peptide wherein 6 or less amino acids have been substituted and/or added and/or deleted from the parent peptide, more preferably a peptide wherein 3 or less amino acids have been substituted and/or added and/or deleted from the parent peptide, and most preferably, a peptide wherein one amino acid has been substituted and/or added and/or deleted from the parent peptide.
- a derivative is used to designate a peptide or analogue thereof which is chemically modified by introducing e.g. ester, alkyl or lipophilic functionalities on one or more amino acid residues of the peptide or analogue thereof.
- WO 93/19175 Novo Nordisk A/S
- suitable GLP-1 analogues and derivatives which can be used according to the present invention includes those referred to in WO 99/43705 (Novo Nordisk A/S), WO 99/43706 (Novo Nordisk A/S), WO 99/43707 (Novo Nordisk A/S), WO 98/08871 (Novo Nordisk A/S), WO 99/43708 (Novo Nordisk A/S), WO 99/43341 (Novo Nordisk A/S), WO 87/06941 (The General Hospital Corporation), WO 90/11296 (The General Hospital Corporation), WO 91/11457 (Buckley et al.), WO 98/43658 (Eli Lilly & Co.), EP 0708179-A2 (Eli Lilly & Co.), EP 0699686-A2 (Eli Lilly & Co.), WO 01/98331 (El
- the GLP-1 agonist is a derivative of GLP-1(7-36)-amide, GLP-1(7-37), a GLP-1(7-36)-amide analogue or a GLP-1(7-37) analogue, which comprises a lipophilic substituent.
- the GLP-1 derivative preferably has three lipophilic substituents, more preferably two lipophilic substituents, and most preferably one lipophilic substituent attached to the parent peptide (ie GLP-1(7-36)-amide, GLP-1(7-37), a GLP-1(7-36)-amide analogue or a GLP-1(7-37) analogue), where each lipophilic substituent(s) preferably has 4-40 carbon atoms, more preferably 8-30 carbon atoms, even more preferably 8-25 carbon atoms, even more preferably 12-25 carbon atoms, and most preferably 14-18 carbon atoms.
- the lipophilic substituent comprises a partially or completely hydrogenated cyclopentanophenathrene skeleton.
- the lipophilic substituent is a straight-chain or branched alkyl group.
- the lipophilic substituent is an acyl group of a straight-chain or branched fatty acid.
- the lipophilic substituent is an acyl group having the formula CH 3 (CH 2 ) n CO—, wherein n is an integer from 4 to 38, preferably an integer from 12 to 38, and most preferably is CH 3 (CH 2 ) 12 CO—, CH 3 (CH 2 ) 14 CO—, CH 3 (CH 2 ) 16 CO—, CH 3 (CH 2 ) 18 CO—, CH 3 (CH 2 ) 20 CO— and CH 3 (CH 2 ) 22 CO—.
- the lipophilic substituent is tetradecanoyl.
- the lipophilic substituent is hexadecanoyl.
- the lipophilic substituent has a group which is negatively charged such as a carboxylic acid group.
- the lipophilic substituent may be an acyl group of a straight-chain or branched alkane ⁇ , ⁇ -dicarboxylic acid of the formula HOOC(CH 2 ) m CO—, wherein m is an integer from 4 to 38, preferably an integer from 12 to 38, and most preferably is HOOC(CH 2 ) 14 CO—, HOOC(CH 2 ) 16 CO—, HOOC(CH 2 ) 18 CO—, HOOC(CH 2 ) 20 CO— or HOOC(CH 2 ) 22 CO—.
- the lipophilic substituent(s) contain a functional group which can be attached to one of the following functional groups of an amino acid of the parent GLP-1 peptide:
- a lipophilic substituent is attached to the carboxy group of the R group of any Asp and Glu residue.
- a lipophilic substituent is attached to the carboxy group attached to the alpha-carbon of the C-terminal amino acid.
- a lipophilic substituent is attached to the epsilon-amino group of any Lys residue.
- the lipophilic substituent is attached to the parent GLP-1 peptide by means of a spacer.
- a spacer must contain at least two functional groups, one to attach to a functional group of the lipophilic substituent and the other to a functional group of the parent GLP-1 peptide.
- the spacer is an amino acid residue except Cys or Met, or a dipeptide such as Gly-Lys.
- a dipeptide such as Gly-Lys means any combination of two amino acids except Cys or Met, preferably a dipeptide wherein the C-terminal amino acid residue is Lys, His or Trp, preferably Lys, and the N-terminal amino acid residue is Ala, Arg, Asp, Asn, Gly, Glu, Gln, Ile, Leu, Val, Phe, Pro, Ser, Tyr, Thr, Lys, His and Trp.
- an amino group of the parent peptide forms an amide bond with a carboxylic group of the amino acid residue or dipeptide spacer
- an amino group of the amino acid residue or dipeptide spacer forms an amide bond with a carboxyl group of the lipophilic substituent
- Preferred spacers are lysyl, glutamyl, asparagyl, glycyl, beta-alanyl and gamma-aminobutanoyl, each of which constitutes an individual embodiment. Most preferred spacers are glutamyl and beta-alanyl.
- the spacer is Lys, Glu or Asp
- the carboxyl group thereof may form an amide bond with an amino group of the amino acid residue
- the amino group thereof may form an amide bond with a carboxyl group of the lipophilic substituent.
- a further spacer may in some instances be inserted between the ⁇ -amino group of Lys and the lipophilic substituent.
- such a further spacer is succinic acid which forms an amide bond with the ⁇ -amino group of Lys and with an amino group present in the lipophilic substituent.
- such a further spacer is Glu or Asp which forms an amide bond with the ⁇ -amino group of Lys and another amide bond with a carboxyl group present in the lipophilic substituent, that is, the lipophilic substituent is a N ⁇ -acylated lysine residue.
- the spacer is an unbranched alkane ⁇ , ⁇ -dicarboxylic acid group having from 1 to 7 methylene groups, which spacer forms a bridge between an amino group of the parent peptide and an amino group of the lipophilic substituent.
- the spacer is succinic acid.
- the lipophilic substituent with the attached spacer is a group of the formula CH 3 (CH 2 ) p NH—CO(CH 2 ) q CO—, wherein p is an integer from 8 to 33, preferably from 12 to 28 and q is an integer from 1 to 6, preferably 2.
- the lipophilic substituent with the attached spacer is a group of the formula CH 3 (CH 2 ) r CO—NHCH(COOH)(CH 2 ) 2 CO—, wherein r is an integer from 4 to 24, preferably from 10 to 24.
- the lipophilic substituent with the attached spacer is a group of the formula CH 3 (CH 2 ) s CO—NHCH((CH 2 ) 2 COOH)CO—, wherein s is an integer from 4 to 24, preferably from 10 to 24.
- the lipophilic substituent is a group of the formula COOH(CH 2 ) t CO— wherein t is an integer from 6 to 24.
- the lipophilic substituent with the attached spacer is a group of the formula —NHCH(COOH)(CH 2 ) 4 NH—CO(CH 2 ) u CH 3 , wherein u is an integer from 8 to 18.
- the lipophilic substituent with the attached spacer is a group of the formula CH 3 (CH 2 ) v CO—NH—(CH 2 ) z —CO, wherein v is an integer from 4 to 24 and z is an integer from 1 to 6.
- the lipophilic substituent with the attached spacer is a group of the formula —NHCH(COOH)(CH 2 ) 4 NH—COCH((CH 2 ) 2 COOH)NH—CO(CH 2 ) w CH 3 , wherein w is an integer from 10 to 16.
- the lipophilic substituent with the attached spacer is a group of the formula —NHCH(COOH)(CH 2 ) 4 NH—CO(CH 2 ) 2 CH(COOH)NHCO(CH 2 ) X CH 3 , wherein x is zero or an integer from 1 to 22, preferably 10 to 16.
- the GLP-1 agonist is Arg 34 , Lys 26 (N ⁇ -( ⁇ -Glu(N ⁇ -hexadecanoyl)))-GLP-1 (7-37).
- the GLP-1 agonist is selected from the group consisting of Gly 8 -GLP-1(7-36)-amide, Gly 8 -GLP-1(7-37), Val 8 -GLP-1(7-36)-amide, Val 8 -GLP-1(7-37), Val 8 Asp 22 -GLP-1(7-36)-amide, Val 8 Asp 22 -GLP-1(7-37), Val 8 Glu 22 -GLP-1(7-36)-amide, Val 8 Glu 22 -GLP-1(7-37), Val 8 Lys 22 -GLP-1(7-36)-amide, Val 8 Lys 22 -GLP-1(7-37), Val 8 Arg 22 -GLP-1(7-36)-amide, Val 8 Arg 22 -GLP-1(7-37), Val 8 His 22 -GLP-1(7-36)-amide, Val 8 His 22 -GLP-1(7-37), analogues thereof and derivatives of any of these.
- the GLP-1 agonist is selected from the group consisting of Arg 26 -GLP-1(7-37); Arg 34 -GLP-1(7-37); Lys 36 -GLP-1(7-37); Arg 26,34 Lys 36 -GLP-1(7-37); Arg 26,34 -GLP-1(7-37); Arg 26,34 Lys 40 -GLP-1(7-37); Arg 26 Lys 36 -GLP-1(7-37); Arg 34 Lys 36 -GLP-1(7-37); Val 8 Arg 22 -GLP-1(7-37); Met 8 Arg 22 -GLP-1(7-37); Gly 8 His 22 -GLP-1(7-37); Val 8 His 22 -GLP-1(7-37); Met 8 His 22 -GLP-1(7-37); His 37 -GLP-1(7-37); Gly 8 -GLP-1(7-37); Val 8 -GLP-1(7-37); Met 8 His 22 -GLP-1(7
- the GLP-1 agonist is selected from the group consisting of Val 8 Trp 19 Glu 22 -GLP-1(7-37), Val 8 Glu 22 Val 25 -GLP-1(7-37), Val 8 Tyr 16 Glu 22 -GLP-1(7-37), Val 8 Trp 16 Glu 22 -GLP-1(7-37), Val 8 Leu 16 Glu 22 -GLP-1(7-37), Val 8 Tyr 18 Glu 22 -GLP-1(7-37), Val 8 Glu 22 His 37 -GLP-1(7-37), Val 8 Glu 22 Ile 33 -GLP-1(7-37), Val 8 Trp 16 Glu 22 Val 25 Ile 33 -GLP-1(7-37), Val 8 Trp 16 Glu 22 Ile 33 -GLP-1(7-37), Val 8 Trp 16 Glu 22 Ile 33 -GLP-1(7-37), Val 8 Trp 16 Glu 22 Val 25 Ile 33 -GLP-1(7-37), Val 8 Trp 16 Glu 22 Ile 33
- the GLP-1 agonist is a stable GLP-1 analogue/derivative.
- a “stable GLP-1 analogue/derivative” means a GLP-1 analogue or a derivative of a GLP-1 analogue which exhibits an in vivo plasma elimination half-life of at least 10 hours in man, as determined by the method described below. Examples of stable GLP-1 analogue/derivatives can be found in WO 98/08871 and WO 99/43706.
- the method for determination of plasma elimination half-life of a compound in man is: The compound is dissolved in an isotonic buffer, pH 7.4, PBS or any other suitable buffer. The dose is injected peripherally, preferably in the abdominal or upper thigh.
- Blood samples for determination of active compound are taken at frequent intervals, and for a sufficient duration to cover the terminal elimination part (e.g. Pre-dose, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 24 (day 2), 36 (day 2), 48 (day 3), 60 (day 3), 72 (day 4) and 84 (day 4) hours post dose).
- Determination of the concentration of active compound is performed as described in Wilken et al., Diabetologia 43(51):A143, 2000.
- Derived pharmacokinetic parameteres are calculated from the concentration-time data for each individual subject by use of non-compartmental methods, using the commercially available software WinNonlin Version 2.1 (Pharsight, Cary, N.C., USA).
- the terminal elimination rate constant is estimated by log-linear regression on the terminal log-linear part of the concentration-time curve, and used for calculating the elimination half-life.
- Stable GLP-1 analogues and derivatives are disclosed in WO 98/08871 (analogues with lipophilic substituent) and in WO 02/46227 (analogues fused to serum albumin or to Fc portion of an Ig).
- the GLP-1 agonist is formulated so as to have a half-life in man, as discussed above, of at least 10 hours. This may be obtained by sustained release formulations known in the art.
- the GLP-1 agonist is exendin-4 or exendin-3, an exendin-4 or exendin-3 analogue or a derivative of any of these.
- exendins as well as analogues, derivatives, and fragments thereof to be included within the present invention are those disclosed in WO 97/46584, U.S. Pat. No. 5,424,286 and WO 01/04156.
- U.S. Pat. No. 5,424,286 describes a method for stimulating insulin release with an exendin polypeptide.
- WO 97/46584 describes truncated versions of exendin peptide(s). The disclosed peptides increase secretion and biosynthesis of insulin, but reduce those of glucagon.
- WO 01/04156 describes exendin-4 analogues and derivatives as well as the preparation of these molecules. Exendin-4 analogues stabilized by fusion to serum albumin or Fc portion of an Ig are disclosed in WO 02/46227.
- the exendin-4 analogue is HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPSKKKKKK.
- the GLP-1 agonist is a stable exendin-4 analogue/-derivative.
- stable exendin-4 analogue/derivative refers to an exendin-4(1-39) analogue or a derivative of an exendin-4(1-39) analogue which exhibits an in vivo plasma elimination half-life of at least 10 hours in man, as determined by the method described above for a “stable GLP-1 analogue/derivative”.
- the GLP-1 agonist is Ser 38 ,Lys 39,40,41,42,43,44 -Exendin-4(1-39)amide.
- the GLP-1 agonist is selected from the non-peptide small molecule GLP-1 agonists disclosed in WO 00/42026.
- the present invention also encompasses pharmaceutically acceptable salts of the GLP-1 agonists.
- Such salts include pharmaceutically acceptable acid addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts.
- Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like.
- suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids and the like.
- compositions include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 1977, 66, 2.
- metal salts include lithium, sodium, potassium, magnesium salts and the like.
- ammonium and alkylated ammonium salts include ammonium, methylammonium, dimethylammonium, trimethylammonium, ethylammonium, hydroxyethylammonium, diethylammonium, butylammonium, tetramethylammonium salts and the like.
- Also intended as pharmaceutically acceptable acid addition salts are the hydrates which the present GLP-1 agonists are able to form.
- Peptide GLP-1 compounds can be produced by appropriate derivatization of an appropriate peptide backbone which has been produced by recombinant DNA technology or by peptide synthesis (e.g. Merrifield-type solid phase synthesis) as known in the art of peptide synthesis and peptide chemistry.
- the route of administration of GLP-1 agonists may be any route which effectively transports the active compound to the appropriate or desired site of action, such as oral, nasal, buccal, pulmonal, transdermal or parenteral.
- Medicaments or pharmaceutical compositions containing a GLP-1 agonist such as Arg 34 , Lys 26 (N ⁇ -( ⁇ -Glu(N ⁇ -hexadecanoyl)))-GLP-1(7-37) may be administered parenterally to a patient in need thereof.
- Parenteral administration may be performed by subcutaneous, intramuscular or intravenous injection by means of a syringe, optionally a pen-like syringe.
- parenteral administration can be performed by means of an infusion pump.
- a further option is a composition which may be a powder or a liquid for the administration of a GLP-1 agonist in the form of a nasal or pulmonal spray.
- the GLP-1 agonist can also be administered transdermally, e.g. from a patch, optionally an iontophoretic patch, or transmucosally, e.g. bucally.
- a patch optionally an iontophoretic patch
- transmucosally e.g. bucally.
- the dosage of GLP-1 agonist to be administered to a patient in a method of the invention is from about 0.1 ug/kg/day to about 20 ug/kg/day.
- the dosage of GLP-1 agonist to be administered to a patient in a method of the invention is from about 0.5 ug/kg/day to about 2 ug/kg/day.
- a GLP-1 agonist is co-administered together with further therapeutically active compound used in the treatment of obesity or to induce weight loss or to maintain an obtained weight loss, or used in the treatment of diseases or states where obesity is part of the etiology.
- further therapeutically active compounds include antidiabetic agents, antihyperlipidemic agents, antiobesity agents, antihypertensive agents and agents for the treatment of complications resulting from or associated with diabetes.
- Suitable antidiabetic agents include insulin, GLP-1 (glucagon like peptide-1) derivatives such as those disclosed in WO 98/08871 (Novo Nordisk A/S), which is incorporated herein by reference, as well as orally active hypoglycemic agents.
- Suitable orally active hypoglycemic agents preferably include imidazolines, sulfonylureas, biguanides, meglitinides, oxadiazolidinediones, thiazolidinediones, insulin sensitizers, ⁇ -glucosidase inhibitors, agents acting on the ATP-dependent potassium channel of the pancreatic ⁇ -cells e.g.
- potassium channel openers such as those disclosed in WO 97/26265, WO 99/03861 and WO 00/37474 (Novo Nordisk A/S) which are incorporated herein by reference, potassium channel openers, such as ormitiglinide, potassium channel blockers such as nateglinide or BTS-67582, glucagon antagonists such as those disclosed in WO 99/01423 and WO 00/39088 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), all of which are incorporated herein by reference, GLP-1 agonists such as those disclosed in WO 00/42026 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase-IV) inhibitors, PTPase (protein tyrosine phosphatase) inhibitors, glucokinase activators, such as those described in WO 02/08209 to Hoffmann La Roche, inhibitor
- Suitable additional therapeutically active compounds include insulin or insulin analogues, sulfonylurea e.g. tolbutamide, chlorpropamide, tolazamide, glibenclamide, glipizide, glimepiride, glicazide, glyburide, biguanide e.g. metformin, meglitinide e.g. repaglinide or senaglinide/nateglinide.
- sulfonylurea e.g. tolbutamide, chlorpropamide, tolazamide, glibenclamide, glipizide, glimepiride, glicazide, glyburide, biguanide e.g. metformin, meglitinide e.g. repaglinide or senaglinide/nateglinide.
- Suitable additional therapeutically active compounds include thiazolidinedione insulin sensitizer e.g. troglitazone, ciglitazone, pioglitazone, rosiglitazone, isaglitazone, darglitazone, englitazone, CS-011/Cl-1037 or T 174 or the compounds disclosed in WO 97/41097 (DRF-2344), WO 97/41119, WO 97/41120, WO 00/41121 and WO 98/45292 (Dr. Reddy's Research Foundation), which are incorporated herein by reference.
- thiazolidinedione insulin sensitizer e.g. troglitazone, ciglitazone, pioglitazone, rosiglitazone, isaglitazone, darglitazone, englitazone, CS-011/Cl-1037 or T 174 or the compounds disclosed in WO 97/41097 (DRF-2344), WO
- Suitable additional therapeutically active compounds include insulin sensitizer e.g. such as GI 262570, YM-440, MCC-555, JTT-501, AR-H039242, KRP-297, GW-409544, CRE-16336, AR-H049020, LY510929, MBX-102, CLX-0940, GW-501516 or the compounds disclosed in WO 99/19313 (NN622/DRF-2725), WO 00/50414, WO 00/63191, WO 00/63192, WO 00/63193 (Dr.
- insulin sensitizer e.g. such as GI 262570, YM-440, MCC-555, JTT-501, AR-H039242, KRP-297, GW-409544, CRE-16336, AR-H049020, LY510929, MBX-102, CLX-0940, GW-501516 or the compounds disclosed in WO 99/19313 (NN622/DRF
- Suitable additional therapeutically active compounds include ⁇ -glucosidase inhibitor e.g. voglibose, emiglitate, miglitol or acarbose.
- Suitable additional therapeutically active compounds include glycogen phosphorylase inhibitor e.g. the compounds described in WO 97/09040 (Novo Nordisk A/S).
- Suitable additional therapeutically active compounds include a glucokinase activator.
- Suitable additional therapeutically active compounds include an agent acting on the ATP-dependent potassium channel of the pancreatic ⁇ -cells e.g. tolbutamide, glibenclamide, glipizide, glicazide, BTS-67582 or repaglinide.
- Suitable additional therapeutically active compounds include nateglinide.
- Suitable additional therapeutically active compounds include an antihyperlipidemic agent or a antilipidemic agent e.g. cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.
- a antilipidemic agent e.g. cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.
- additional therapeutically active compounds include antiobesity compounds or appetite regulating agents.
- Such compounds may be selected from the group consisting of CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC3 (melanocortin 3) agonists, MC4 (melanocortin 4) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, urocortin agonists, ⁇ 3 adrenergic agonists such as CL-316243, AJ-9677, GW-0604, LY362884, LY377267 or AZ-40140, MSH (melanocyte-stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists,
- antiobesity agents are bupropion (antidepressant), topiramate (anticonvulsant), ecopipam (dopamine D1/D5 antagonist), naltrexone (opioid antagonist), and peptide YY 3-36 (Batterham et al, Nature 418, 650-654 (2002)).
- the antiobesity agent is leptin.
- the antiobesity agent is peptide YY 3-36
- the antiobesity agent is a serotonin and norepinephrine reuptake inhibitor e.g. sibutramine.
- the antiobesity agent is a lipase inhibitor e.g. orlistat.
- the antiobesity agent is an adrenergic CNS stimulating agent e.g. dexamphetamine, amphetamine, phentermine, mazindol phendimetrazine, diethylpropion, fenfluramine or dexfenfluramine.
- an adrenergic CNS stimulating agent e.g. dexamphetamine, amphetamine, phentermine, mazindol phendimetrazine, diethylpropion, fenfluramine or dexfenfluramine.
- the antiobesity agent is oxynthomodulin, as disclosed in WO 03/22304 (Imperial College).
- the antiobesity agent is a ghrelin antagoninst, e.g. as disclosed in WO 01/56592.
- the antiobesity agent is an energy expenditure modifier.
- the antiobesity agent is a 11 ⁇ -Hydroxysteroid Dehydrogenase Type 1 Inhibitor.
- antihypertensive agents include antihypertensive agents.
- antihypertensive agents are ⁇ -blockers such as alprenolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin converting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem and verapamil, and ⁇ -blockers such as doxazosin, urapidil, prazosin and terazosin.
- ⁇ -blockers such as alprenolol, atenolol, timolol, pindolo
- compositions containing GLP-1 agonists such as Arg 34 , LyS 26 (N ⁇ -( ⁇ -Glu(N ⁇ -hexadecanoyl)))-GLP-1(7-37) may be prepared by conventional techniques, e.g. as described in Remington's Pharmaceutical Sciences, 1985 or in Remington: The Science and Practice of Pharmacy, 19 th edition, 1995.
- injectable compositions of GLP-1 agonists, insulin and autoimmune agents can be prepared using the conventional techniques of the pharmaceutical industry which involves dissolving and mixing the ingredients as appropriate to give the desired end product.
- a GLP-1 agonist such as Arg 34 , Lys 26 (N ⁇ -( ⁇ -Glu(N ⁇ -hexadecanoyl)))-GLP-1(7-37) may be dissolved in an amount of water which is somewhat less than the final volume of the composition to be prepared.
- An isotonicity agent, a preservative and a buffer are added as required and the pH value of the solution is adjusted—if necessary—using an acid, e.g. hydrochloric acid, or a base, e.g. aqueous sodium hydroxide as needed.
- the volume of the solution is adjusted with water to give the desired concentration of the ingredients.
- the formulation of the GLP-1 agonist has a pH in the range from 7.0 to 10. In another embodiment of the invention the formulation has a pH in the range from 7.0 to 9.5. In a further embodiment of the invention the formulation has a pH in the range from 7.0 to 8.5. In yet another embodiment of the invention the formulation has a pH in the range from 7.0 to 8.0, preferably from 7.4 to 7.8. In a further embodiment of the invention the formulation has a pH in the range from 9.0 to 10.
- isotonic agents to be used in the formulations of the invention are those selected from the group consisting of a salt (e.g. sodium chloride), a polyhydric alcohol (e.g., xylitol, mannitol, sorbitol or glycerol), a monosaccharide (e.g. glucose or maltose), a disccharide (e.g. sucrose), an amino acid (e.g. L-glycine, L-histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine), polyethyleneglycol (e.g. PEG400), prolpylene glycol, or mixtures thereof.
- a salt e.g. sodium chloride
- a polyhydric alcohol e.g., xylitol, mannitol, sorbitol or glycerol
- a monosaccharide e.g. glucose or maltos
- the isotonic agent is selected from the group consisting of sodium chloride, glycerol, mannitol, glucose, sucrose, L-glycine, L-histidine, arginine, lysine or mixtures thereof.
- the isotonic agent constitutes an alternative embodiment of the invention.
- preservatives to be used in the formulations of the invention are phenol, m-cresol, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomerosal, or mixtures thereof.
- preservatives are phenol, m-cresol, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomerosal, or mixtures thereof.
- Each one of these specific preservatives constitutes an alternative embodiment of the invention.
- the preservative is phenol or m-cresol.
- buffers to be used in the formulations of the invention are sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, or mixtures thereof.
- Each one of these specific buffers constitutes an alternative embodiment of the invention.
- the buffer is glycylglycine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate or mixtures thereof.
- solutions containing a GLP-1 agonist may also contain a surfactant in order to improve the solubility and/or the stability of the peptide.
- the formulation further comprises a surfactant.
- the surfactant is selected from a detergent, ethoxylated castor oil, polyglycolyzed glycerides, acetylated monoglycerides, sorbitan fatty acid esters, poloxamers, such as 188 and 407, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene derivatives such as alkylated and alkoxylated derivatives (tweens, e.g.
- Tween-20, or Tween-80 monoglycerides or ethoxylated derivatives thereof, diglycerides or polyoxyethylene derivatives thereof, glycerol, cholic acid or derivatives thereof, lecithins, alcohols and phospholipids, glycerophospholipids (lecithins, kephalins, phosphatidyl serine), glyceroglycolipids (galactopyransoide), sphingophospholipids (sphingomyelin), and sphingoglycolipids (ceramides, gangliosides), DSS (docusate sodium, CAS registry no [577-11-7]), docusate calcium, CAS registry no [128-49-4]), docusate potassium, CAS registry no [7491-09-0]), SDS (sodium dodecyl sulfate or sodium lauryl sulfate), dipalmitoyl phosphatidic acid, sodium caprylate,
- N-alkyl-N,N-dimethylammonio-1-propanesulfonates 3-cholamido-1-propyldimethylammonio-1-propanesulfonate
- dodecylphosphocholine myristoyl lysophosphatidylcholine
- hen egg lysolecithin cationic surfactants (quarternary ammonium bases) (e.g.
- acylcarnitines and derivatives N ⁇ -acylated derivatives of lysine, arginine or histidine, or side-chain acylated derivatives of lysine or arginine, N ⁇ -acylated derivatives of dipeptides comprising any combination of lysine, arginine or histidine and a neutral or acidic amino acid, N ⁇ -acylated derivative of a tripeptide comprising any combination of a neutral amino acid and two charged amino acids, or the surfactant may be selected from the group of imidazoline derivatives, or mixtures thereof. Each one of these specific surfactants constitutes an alternative embodiment of the invention.
- the GLP-1 agonist is present in a formulation of the invention in a concentration from 0.1 mg/ml to 80 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1 mg/ml to 80 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1 mg/ml to 50 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1 mg/ml to 50 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1 mg/ml to 20 mg/ml.
- the GLP-1 agonist is present in a concentration from 1 mg/ml to 20 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1 mg/ml to 10 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1 mg/ml to 10 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1-5 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1-5 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1-0.5 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.6-1 mg/ml. Each one of these specific concentration ranges constitutes an alternative embodiment of the invention.
- Diet induced obesity was introduced over 21 ⁇ 2 months, by feeding 4 months old rats a diet consisting of chow and 5 alternating kinds of candy (chocolate, chocolate bisquits, sugar). The candy was changed every day, so that the same candy was offered every fifth day.
- Liraglutide is the IND name for Arg 34 , LyS 26 (N ⁇ -( ⁇ -Glu(N ⁇ -hexadecanoyl)))-GLP-1(7-37);
- Candy 1 (sugar): mono-and di-saccharides constituted 100% of the total amount of carbohydrate; candy 2 (chocolate cream filled crackers): Glycemic index 49%, 39% of the total energy stems from fat, mono-and di-saccharides constitute 57% of the total amount of carbohydrates; candy 3 (milk chocolate): Glycemic index 49%, 60% of the total energy stems from fat, mono- and di-saccharides constitute 90% of the total amount of carbohydrates; candy 4 (milk chocolate with nuts): 80% of the total energy stems from fat, mono- and di-saccharides constitute 80% of the total amount of carbohydrates; candy 5 (toffee chocolate): 80% of the total energy stems from fat, mono- and di-saccharides constitute 75% of the total amount of
- GLP-1 agonists are capable of reducing the intake of calories, and also that GLP-1 agonists induce a dislike for food with a high glycemic index or wherein the mono-and di-saccharides together constitute a large proportion of the total carbohydrate amount.
- An experiment showing the effect of GLP-1 agonists in humans may be designed as described here.
- Human subjects are administered one or several daily dose(s) of a GLP-1 agonist leading to pharmacological active GLP-1-like levels in the blood or a placebo compound.
- the subjects are given a choice of foods and drink from one or more of the groups A) to D) and one or more from the groups E) to H).
- the amount eaten and drunk of all groups of food is calculated in terms of energy intake, and the ability of the GLP-1 agonist to selectively decrease intake of the food from one or more of the groups A) to D) (unhealthy food) and increase the intake of food from one or more of the groups E) to H) (healthy food) is calculated.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Endocrinology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Diabetes (AREA)
- Vascular Medicine (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Child & Adolescent Psychology (AREA)
- Emergency Medicine (AREA)
- Nutrition Science (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Peptides Or Proteins (AREA)
- Confectionery (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
GLP-1 agonists selectively decrease the amount of food intake, wherein the food has a high glycemic index or wherein the amount of mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrates.
Description
- This application is a continuation of International Application Number PCT/DK2004/000853, filed Dec. 9, 2004, which claims priority to Danish Patent Application Number PA 2003 01816, filed Dec. 9, 2003, and U.S. Provisional Application No. 60/529,480, filed Dec. 15, 2003, the contents of each of which is incorporated herein in its entirety.
- The present invention relates to the use of GLP-1 agonists to reduce calorie intake from foods with a high glycemic index, or from foods wherein a high proportion of the carbohydrates is constituted by mono-and di-saccharides.
- Lifestyle in many parts of the world today is characterized by an enormous meal and “between-meal” intake of calories from solid food and snacks as well as drinkable calories. This lifestyle is often referred to as “western world lifestyle”, and it is generally regarded as unhealthy. Our food earlier consisted of an average of 10% protein, 30% fat and 60 % carbohydrates; the carbohydrates mostly in the form of slowly absorbed carbohydrates. The food and especially the between-meal snack consumed today often has a much higher amount of quickly absorbed carbohydrates and fat. The amount of quickly absorbed carbohydrates may be measured as the glycemic index or as the fraction of mono- and di-saccharide of the total amount of carbohydrates. The excess intake of quickly absorbed carbohydrates and/or high fat leads to reduced feelings of hunger, and to increased stress (WF Horn, N Keim. Effects of glycemic index on hunger, stress and aroursal. FASEB Journal 2003:17(4-5):A7097). Also, some human beings have cravings for sweet and/or fat food, sometimes enhanced by stress or premenstrual tension, or they may have psychological problems manifested as binge eating or compulsive eating habits. As a consequence of this western world lifestyle and the psychological disorders described above there is a general excessive intake of food like sodas, juice, chocolatemilk, sweetened coffee, candy, chocolate, cake, bisquits, crackers, french fries, burgers, white bread with jam or jelly or honey, chips, sweet and fat cereals.
- GLP-1 has been described as an incretin hormone with a large array of effects. GLP-1 was discovered in 1984 and found to be an important incretin [Nauck, M. A.; Kleine, N.; Orskov, C.; Holst, J. J.; Willms, B.; Creutzfeldt, W., Diabetologia 1993, 36, 741-744]. It is released from the L-cells in the intestine upon a meal and potently releases insulin from the beta-cells in the pancreas. Numerous effects other than just stimulation of insulin release have been ascribed to GLP-1. In the pancreas, GLP-1 not only releases insulin, it does so in a glucose-dependent manner, and it has a number of other functionally important effects: stimulation of insulin biosynthesis, restoration of glucose sensitivity to the islets, stimulation of increased expression of the glucose transporter GLUT-2 and glucokinase. 4,5,6GLP-1 also has a number of effects on regulation of beta-cell mass, stimulation of replication and growth of existing beta-cells, inhibition of apoptosis and neogenesis of new b-cells from duct precursor cells, which leads to reduced hepatic glucose output. In the gut, GLP-1 is a potent inhibitor of motility and gastric emptying and has also been shown to inhibit gastric acid secretion. The inhibition of gastric emptying leads to decreased food intake and reduced body weight [Flint, A.; Raben, A.; Astrup, A.; Holst, J. J., J Clin Inv 1998, 101, 515-520; Zander, M.; Madsbad, S.; Madsen, J. L.; Holst, J. J., Lancet 2002, 359, 824-830]11,12. Thus, the current belief is that the GLP-1 agonists may be able to control the progression of the type 2 diabetes disease by not only controlling blood glucose, but also by a number of other effects. GLP-1 has also been proposed to have direct effects on glucose uptake in liver, muscle and adipose tissue but the quantitative significance of these effects has been questioned [Kieffer, T. J.; Habener, J. F., Endocrine Reviews 1999, 20, 876-913]. New publications even suggest that it does not stop here, there may be specific receptors in the heart which along with the benefits of reducing blood glucose may prevent cardiovascular complications, and that GLP-1 stimulates memory and learning capabilities. A comprehensive review exists on the glucagon-like peptides [Kieffer, T. J.; Habener, J. F., Endocrine Reviews 1999, 20, 876-9139.
- A large number of articles have been published on the effects of GLP-1 on food intake. GLP-1 reduces food intake, both after central administration and after peripheral administration (Turton, Nature 196:379;69-72, Flint J Clin Inv 1998, 101, 515-520). Also, central administration of high doses of GLP-1 induces taste aversion (Tang-Christensen, Diabetes 1998:47:530-537). However, site directed micro injections of GLP-1 into the PVN induces pharmacologically specific inhibition of feeding without induction of taste aversive behaviour (McMahon, Wellman, Am. J. Phys 1998:274,R23-R29). In animals having their arcuate nucleus lesioned by neonatal monosodium glutamate treatment, central administration of GLP-1 has lost its anorectic potential but is still inducing taste aversion (Tang-Christensen, Diabetes 1998:47:530-537). Further support of dissociated specific satiety inducing central targets of GLP-1 and non-specific taste aversion inducing central targets come from lesion studies showing that PVN constitute a target where GLP-1 elicits satiety whereas the central amygdala and the parabrachial nuclei constitute areas involved in mediating GLP-1 induced taste aversion (van Dijk and Thiele, Neuropeptides 1999: 33, 406-414). Other studies have confirmed that there are diverse roles of GLP-1 receptors in the control of food intake and taste aversion (Kinzig, J Neuroscience 2002:22(23): 10470-10476). Also, chronic repetitive central administration of the GLP-1 antagonist, exendin-9-39, enhances food intake suggesting that an endogenous tone of satiety mediating GLP-1 exists in central pathways mediating body weight homeostasis (Meeran, Endocrinology 199:140:244-250). In a human study, continuous infusion of GLP-1 to type 2 diabetic patients gave rise to marked improvement of glycaemic control and caused moderate yet non-significant weight loss (Zander, Lancet 2002: 359, 824-830). The site of the anorectic action of peripherally administered GLP-1 is unknown but participation of both central and peripheral sites in GLP-1 are likely, because a recent study has shown that radiolabelled GLP-1 readily gains access to the central nervous system (Hassan, Nuci Med Biol 1999:26:413-420). The nucleus of the solitary tract is situated adjacent to the blood brain barrier free area postrema, and other studies using radio-labelled neuropeptides have shown that peripheral administration of neuropeptides gain access both to the area postrema as well as the adjacent subpostreme regions including the dorsal vagal complex (Whitcomb Am J Phys 1990: 259:G687-G691). Thus, it is likely that peripherally administered GLP-1 enters the nucleus of the solitary tract with resulting impact on ascending neurones involved in regulation of food intake. Interaction of GLP-1 with vagal afferents from the gastrointestional tract should also be considered as mediator of its anorectic actions because transection of the vagus nerve renders the stomach of anaesthetised pigs insensitive to the akinetic actions of intravenously administered GLP-1 (Weftergren, Am J Phys 1998:275:984-992). Probably both vagal afferents and GLP-1 receptors accessible from the periphery are responsible for the anorexia induced by GLP-1, because we have seen that bilateral subdiaphragmatic vagotomy on rats carrying the anorectic GLP-1 producing tumour has no impact on the development of anorexia (Jensen, JCI 1998: 101:503-510). Last, GLP-1 has been shown to inhibit intake of different kinds of food, both rich in fat and in carbohydrate (Bjenning, Diabetes Res and Clin Prac 2000:50(1):S386).
- Despite this in-dept knowledge it as never been described that a GLP-1 agonist has the effect of specifically modifying the intake of food associated with an unhealthy western world lifestyle. This effect could be useful in the treatment of all kinds of disorders linked to an increased intake of sweet or fat food.
- Earlier studies suggest that seretoninergic drugs effect a selective reduction in the intake of carbohydrate rich food [Wurthman, Neurophsycopharmacology, 1993, 9, 201-210].
- The present inventors have surprisingly found that GLP-1 agonists can be used to specifically modify the intake of food by a subject, wherein said food has a high glycemic index or food wherein mono- or di-saccharide constitute a large proportion of the total amount of carbohydrate. Accordingly, in one aspect the present invention relates to a method for reducing intake of food by a subject, wherein said food has a glycemic index above 60%, or wherein said food has a glycemic index above 40% combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- In another aspect, the invention relates to a method for reducing intake of food by a subject, wherein mono-and di-saccharides in said food together constitute more than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- In another aspect, the invention relates to a method of increasing intake of food in a subject, wherein said food has a glycemic index below 60%, or wherein said food has a glycemic index below 40% combined with that less than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- In still another aspect, the invention relates to a method of increasing intake of food in a subject wherein mono-and di-saccharides together constitute less than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- In still another aspect, the invention relates to a method of treating a subject with an abnormal or excessive intake of food wherein the glycemic index is above 60%, or wherein the glycemic index is above 40% combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- In still another aspect, the invention relates to a method of treating a subject with an abnormal or excessive intake of food wherein the mono- and di-saccharides together constitute more than 25% of the total amount of carbohydrates, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
- In yet another aspect, the invention relates to a method for promoting the sales of a GLP-1 agonist-containing product, said method comprising the public distribution of information describing the reduced intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates attributable to the consumption of said product and optionally the benefits connected with that.
- In yet another aspect, the invention relates to a pharmaceutical product, comprising: (a) a GLP-1 agonist which reduces the intake of food with a high glycemic index or food wherein mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrates in a container; and (b) a notice associated with said container in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by said agency of said GLP-1 compound for human or veterinary administration to reduce intake of food with a high glycemic index.
- Definitions
- The glycemic index is a measure of the ability of food to raise the blood glucose level.
- The glycemic index of a food is determined by feeding a group consisting of at least 10 healthy people a portion of food containing 50 grams of digestible (available) carbohydrate and then measure the effect on their blood glucose levels during the following two hours. For each person, the area under their two-hour blood glucose response (glucose AUC) is measured. On another occasion, the same group of people consume 50 g of glucose, and their two-hour blood glucose response is also measured. The glycemic index for the food is the AUC determined for the food divided by the AUC determined for glucose multiplied by 100% (calculated as the average for the group). Food with a high glycemic index contain rapidly digested carbohydrate, which produces a large rapid rise and fall in the level of blood glu-cose. In contrast, foods with a low glycemic index score contain slowly digested carbohy-drate, which produces a gradual, relatively low rise in the level of blood glucose.
- In the present context “mono-saccharides” is intended to indicate a carbohydrate that cannot be hydrolysed to simpler carbohydrates. The most relevant mono-saccharides in food are glucose and fructose.
- In the present context “di-saccharides” is intended to indicate carbohydrates which can be hydrolysed into two mono-saccharides. The most relevant di-saccharides in food are sucrose, maltose and lactose.
- The amount of mono- and di-saccharides in food may be analysed specifically by enzymatic, gas-liquid chromatography (GLC) or high performance liquid chromatography (HPLC) methods. Depending on the food matrix to be analyzed, extraction of the low molecular weight carbohydrates in aqueous ethanol, usually 80% (v/v), may be advisable before analysis. Relevant analysis methods are provided in e.g. Southgate, “Determination of food carbohydrates”, Elsevier, Science Publishers, Barkinggate, 1991; Greenfield, “Food composition data. Production, management and use”, Elsevier Appleid Science, London, 1992; and Department of Health, “Dietery sugars and human health, Her Majesty's Stationary Office, London, 1989.
- In the present context, “carbohydrates” are defined as in “Carbohydrates in human nutrition. (FAO Food and Nutrition Paper-66)”, Report of a Joint FAO/WHO Expert Consultation, Rome, 14-18 Apr. 1997, Report of a Joint FAO/WHO Expert Consultation Rome, 14-18 Apr. 1997, namely as polyhydroxy aldehydes, ketones, alcohols, acids, their simple derivatives and their polymers having linkages of the acetal type.
- In the present context, “fat” is intended to indicate mono-, di- and tri- carboxylic acid ester derived from glycerol and cholesterol, where the glycerols are the more important source of energy in the food of the two. The amount of fat in food may be determined as disclosed in FAO: Food energy—methods of analysis and conversion factors, Report of a Technical Workshop, Rome, 3-6 Dec. 2002.
- In the present context, “total carbohydrate content” is intended to indicate the sum of carbohydrates present in the food. It is not measured as such, but rather calculated as the difference between the total weight of the food and the sum of the weights of the non-carbohydrate components [FAO: Food energy—methods of analysis and conversion factors, Report of a Technical Workshop, Rome, 3-6 Dec. 2002.
- In the present context “obese” or “obesity” implies an excess of adipose tissue. In this context obesity is best viewed as any degree of excess adiposity that imparts a health risk. The distinction between normal and obese individuals can only be approximated, but the health risk imparted by obesity is probably a continuum with increasing adiposity. However, in the context of the present invention, individuals with a body mass index (BMI=body weight in kilograms divided by the square of the height in meters) above 25 are to be regarded as obese.
- In the present context “food”, unless otherwise stated, is intended to indicate food in any form, i.e. both liquid and solid food, as well as basic food and candy, snacks, etc.
- In the present context, “abnormal or excessive intake of food” is intended to indicate an intake with pathological consequences, such as obesity, or which can be ascribed to a psychological state connected with e.g. pregnancy or premenstrual tension, or to a psychological disease, such as binge eating or compulsory eating habits.
- An “effective amount” of a compound as used herein means an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of a given disease or state and its complications. An amount adequate to accomplish this is defined as “effective amount”. Effective amounts for each purpose will depend on the severity of the disease or injury as well as the weight and general state of the subject. It will be understood that determining an appropriate dosage may be achieved using routine experimentation, by constructing a matrix of values and testing different points in the matrix, which is all within the ordinary skills of a trained physician or veterinary.
- The term “treatment” and “treating” as used herein means the management and care of a patient for the purpose of combating a condition, such as a disease or a disorder. The term is intended to include the full spectrum of treatments for a given condition from which the patient is suffering, such as administration of the active compound to alleviate the symptoms or complications, to delay the progression of the disease, disorder or condition, to alleviate or relief the symptoms and complications, and/or to cure or eliminate the disease, disorder or condition as well as to prevent the condition, wherein prevention is to be understood as the management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the administration of the active compounds to prevent the onset of the symptoms or complications.
- In the present context “reducing intake of food” is intended to indicate that the amount of food (measured by its energy content) eaten by a group consisting of one or more subjects being administered a GLP-1 agonist is reduced compared to a similar control group not being administered a GLP-1 agonist, as provided in the present invention. Similarly, “increasing intake of food” is intended to indicate that the amount of food (measured by its energy content) eaten by a group consisting of one or more subjects being administered a GLP-1 agonist is increased compared to a similar control group not being administered a GLP-1 agonist, as provided in the present invention.
- In one embodiment, the present invention relates to the use of GLP-1 agonists to modify the intake of specific types of food by a subject wherein the food has a high glycemic index or wherein the mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrate in said food.
- In one embodiment, the invention provides a method for decreasing the intake of food by a subject, wherein the food has a high glycemic index or wherein the mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrate in said food, said method comprising the administration of an effective amount of a GLP-1 agonist to said subject. In particular, the glycemic index of the food may be above 60%, such as above 65%, such as above 70%, such as above 75%, such as above 80%, such as above 90%.
- In another embodiment, the invention provides a method for decreasing the intake of food by a subject, wherein the food has a glycemic index above 40%, and wherein more than 30% of the total amount of energy stems from fat, the method comprising administering an effective amount of a GLP-1 agonist to said subject. This embodiment includes any combination of food with a glycemic index above 40%, such as above 45%, such as above 50%, such as above 55%, such as above 60%, such as above 65%, such as above 70%, such as above 75%, such as above 80%, such as above 90% and wherein more than 30% , such as more than 35%, such as more than 40%, such as more than 50%, such as more than 60%, such as more than 70%, such as more than 80% of the total amount of energy stems from fat.
- In one embodiment, the invention provides a method of decreasing the intake of food by a subject, wherein mono-and di-saccharides together constitute more than 25% of the total amount of carbohydrate in said food, the method comprising administering to said subject an effective amount of a GLP-1 agonist. In particular mono-and di-saccharides together constitute more than 30%, such as more than 35%, such as more than 40%, such as more than 45%, such as more than 50%, such as more than 70%, such as more than 80%, such as more than 90%, or even 100%. In particular, more than 30%, such as more than 40%, such as more than 50%, such as more than 60%, such as more than 70%, such as more than 80% of the total amount of energy in said food stems from fat. In one embodiment, more than 25% of the mono- di- and tri-saccharides together constitute more than 25% of the total amount of carbohydrtates.
- In another embodiment, the invention provides a method of increasing the intake of food by a subject, wherein the food has a low glycemic index or wherein the mono- and di-saccharides together constitute a small proportion of the total amount of carbohydrate in said food, said method comprising the administration of an effective amount of a GLP-1 agonist to said subject. In particular the glycimic index of the food may be below 60%, such as below 50%, such as below 40%, such as below 35%, such as below 30%, such as below 20%, such as below 10%, such as below 5%.
- In another embodiment, the invention provides a method of increasing the intake of food by a subject wherein the food has a glycemic index below 40%, and wherein less than 30% of the total amount of energy stems from fat, said method comprising the administration to a subject of an effective amount of a GLP-1 agonist. This embodiment includes any combination of food with a glycemic index below 40%, such as below 30%, such as below 20%, such as below 10%, such as below 5% and wherein less than 30%, such as less than 20%, such as less than 10%, such as less than 5% of the total amount of energy stems from fat.
- In yet another embodiment, the invention provides a method of increasing the intake of food by a subject, wherein mono- and di-saccharides together constitute less than 25% of the total amount of carbohydrates in said food, such as less than 20%, such as less that 15%, such as less than 10%. In particular, the food is also poor in fat as measured by how much of the total amount of energy in the food stems from fat. In particular less than 30%, such as less than 25%, such as less than 20%, such as less than 15%, such as less than 10%, or even less than 5% of the total energy stems from fat. In another embodiment, mono-, di- and tri-saccharides together constitutes less than 25% of the total amount of carbohydrates.
- In another embodiment, the decrease in intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates, as discussed above, is accompanied by an increase in the intake of food with a low glycemic index or of food wherein mono-and di-saccharides together constitute as small proportion of the total amount of carbohydrates, as discussed above.
- The amount of energy in food is typically quoted in calories or joules, and it can be measured by burning the food, e.g. in a bomb calorimeter. The amount of energy attributable to fat can be determined by multiplying the amount of fat in the food, analysed as discussed above, with 38 kJ/g.
- It is well-known that many people prefer sweet and/or fatty food because they think it has a better taste. Accordingly, the present invention also provides a method a regulating taste preferences, and in particular regulating taste preferences away from sweet and fatty food, said method comprising the administration of an effective amount of a GLP-1 agonist.
- It is quite clear that the western world life style is not healthy as evidenced by the increase in obesity with all its pathological consequences, such as diabetes and cardiovascular complications, and in that sense the life style must be regarded as abnormal. Accordingly, in one embodiment, the present invention relates to a method of normalising lifestyle, and in particular the food preference, said method comprising the administration of an effective amount of a GLP-1 agonist.
- In one embodiment, the subject to be treated has an increased appetite, hunger or craving for sweet or fat food. This may be related to e.g. stress, quit of smoking, pregnancy, pre-menstrual tension, or it can be ascribed physiological problems or diseases, such as binge eating, compulsive eating habits and Seasonal Affective Disorder.
- Binge eating disorder (BED) is a fairly new diagnosable disorder—see e.g. Int. J. Obesity, 2002, 26, 299-307 and Curr. Opin. Pshyciatry, 17, 43-48, 2004. BED is characterised by binge eating episodes as is bulimia nervosa (BN). However, subjects with BED do not, contrary to patients with BN, engage in compensatory behaviours, such as e.g. self-induced vomiting, excessive exercise, and misuse of laxatives, diuretics or enemas. Studies have shown that 1-3% of the general population suffer from BED, whereas a higher prevalence (up to 25-30%) have been reported for obese patients [Int J. Obesity, 2002, 26, 299-307]. These numbers show that BED subjects may or may not be obese, and that obese patients may or may not have BED, i.e. that the cause of the obesity is BED. However, a proportion of subjects with BED eventually becomes obese due to the excess calorie intake. Laboratory studies have shown that BED patients consumed more dessert and snack (rich in fat and poor in proteins) than did an obese control group [Int. J. Obesity, 2002, 26, 299-307], and the method of the present invention is thus believed to be particular well-suited for treatment of BED.
- In one embodiment, the invention relates to a method or treating BED in a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist. In particular, said subject is obese.
- In one embodiment, the invention relates to the use of a GLP-1 agonist in the manufacture of a medicament for the treatment of BED in a subject. In particular, said subject is obese.
- Bulimia nervosa is characterised by the same binge eating episodes as is BED, however, BN is, however, also characterised by the above mentioned compensatory behaviour. A proportion of subjects with BN will eventually become obese to the extent that the compensatory behaviour cannot fully compensate the excess calorie intake. Studies have compared binges of patients with BN and with BED concluding that binges in subjects with BN were higher in carbohydrates and sugar content than those of subjects with BED. No difference was, however, found in the number of consumed calories [Int. J. Obesity, 2002, 26, 299-307]. The methods of the present invention is therefore believed to be particular well-suited for the treatment of BN.
- In one embodiment, the invention relates to a method of treating BN in a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist. In particular, said subject is obese.
- In one embodiment, the invention relates to the use of a GLP-1 agonist in the manufacture of a medicament for the treatment of BN in a subject. In particular, said subject is obese.
- Craving for food or the intense desire to eat a particular food is normally associated with energy dense food, such as fatty or carbohydrate-rich food [Appetite, 17, 177-185, 1991; Appetite, 17,167-175, 1991]. Examples of such foods include chocolate, biscuits, cakes and snacks. A proportion of food cravers eventually become obese due to the excess calorie intake. The methods of the present invention are believed to be particular well-suited for the treatment of food craving, in particular craving for fatty or carbohydrate-rich food.
- In one embodiment, the invention relates to a method of treating food craving, such as craving for fatty or carbohydrate-rich food, such as chocolate craving in a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist.
- A snack is typically a light, casual, hurried convenience meal eaten between real meals. Snacks are typically fatty and carbohydrate-rich. Studies have shown that there is an increasing prevalence of snacking, especially among US children, and that snacking is a significant cause for the increase in BMI in e.g children [J. Pediatrics, 138, 493-498, 2001; Obes. Res., 11, 143-151, 2003]. A shift towards more healthy snacks could probably arrest or change the increase in BMI which has taken place over the last years. Data in shown here illustrate that GLP-1 agonists are capable of shifting fooed preferences from fatty and carbohydrate-rich food to low-fat glycemic index low food. GLP-1 agonist are therefore useful in diminishing the amount of snacking or in changing the preference of snack to more healthy snack.
- In one embodiment, the invention provides a method of changing the snack preference in a subject to low fat, glycemic index low snack, the method comprising administration of an effective amount of a GLP-1 agonist to said subject. In particular, said subject is obese.
- In one embodiment, the invention provides a method of lowering the amount a snack intake (“snacking”) of a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist. In particular, said subject is obese.
- According to the above discussion, GLP-1 agonists are believed to be particular useful in the treatment of obesity, wherein the obesity is caused by BED, BN, food craving (in particular chocolate craving) or snacking.
- The subject of the present invention can in principle be any animal with GLP-1 receptors, and in particular mammals, such as humans, pet animals, such as cats and dogs, and zoo animals, such as elephants, giraffes, lions and snakes.
- In another embodiment, the invention relates to a method of promoting sales, purchase, buying or trade of a GLP-1 agonist-containing product, said method comprising the public distribution of information describing the reduced intake of food with a high glycemic index or food wherein mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrates attributable to the consumption of said product and the benefits connected with that, an in particular the health benefits. In particular, said distribution of said information is achieved by a method selected from the group consisting of verbal communication, pamphlet distribution, print media, audio tapes, magnetic media, digital media, audiovisual media, billboards, advertising, newspapers, magazines, direct mailings, radio, television, electronic mail, braille, electronic media, banner ads, fiber optics, and laser light shows. In particular, said product is a pharmaceutical product.
- In one embodiment of the methods of the present invention, the GLP-1 agonist is administered to the subject in connection with a meal. In the present context, “in connection with a meal” is intended to indicate a period of up to four hours before or after the meal, such as up to 3 hours before or after, such as up to 2 hours before or after, such as up to 1 hour before or after, such as 30 minutes before or after, such as 15 minutes before or after, such directly in connection with the meal.
- In the present context, “a GLP-1 agonist” is understood to refer to any compound, including peptides and non-peptide compounds, which fully or partially activate the human GLP-1 receptor. In a preferred embodiment, the “GLP-1 agonist” is any peptide or non-peptide small molecule that binds to a GLP-1 receptor, preferably with an affinity constant (KD) or a potency (EC50) of below 1 μM, e.g. below 100 nM as measured by methods known in the art (see e.g. WO 98/08871) and exhibits insulinotropic activity, where insulinotropic activity may be measured in vivo or in vitro assays known to those of ordinary skill in the art. For example, the GLP-1 agonist may be administered to an animal and the insulin concentration measured over time.
- In one embodiment, the GLP-1 agonist is selected from the group consisting of GLP-1(7-36)-amide, GLP-1(7-37), a GLP-1(7-36)-amide analogue, a GLP-1(7-37) analogue, or a derivative of any of these.
- In the present application, the designation “an analogue” is used to designate a peptide wherein one or more amino acid residues of the parent peptide have been substituted by another amino acid residue and/or wherein one or more amino acid residues of the parent peptide have been deleted and/or wherein one or more amino acid residues have been added to the parent pep-tide. Such addition can take place either at the N-terminal end or at the C-terminal end of the parent peptide or both. Typically “an analogue” is a peptide wherein 6 or less amino acids have been substituted and/or added and/or deleted from the parent peptide, more preferably a peptide wherein 3 or less amino acids have been substituted and/or added and/or deleted from the parent peptide, and most preferably, a peptide wherein one amino acid has been substituted and/or added and/or deleted from the parent peptide.
- In the present application, “a derivative” is used to designate a peptide or analogue thereof which is chemically modified by introducing e.g. ester, alkyl or lipophilic functionalities on one or more amino acid residues of the peptide or analogue thereof. Methods for identifying GLP-1 agonists are described in WO 93/19175 (Novo Nordisk A/S) and examples of suitable GLP-1 analogues and derivatives which can be used according to the present invention includes those referred to in WO 99/43705 (Novo Nordisk A/S), WO 99/43706 (Novo Nordisk A/S), WO 99/43707 (Novo Nordisk A/S), WO 98/08871 (Novo Nordisk A/S), WO 99/43708 (Novo Nordisk A/S), WO 99/43341 (Novo Nordisk A/S), WO 87/06941 (The General Hospital Corporation), WO 90/11296 (The General Hospital Corporation), WO 91/11457 (Buckley et al.), WO 98/43658 (Eli Lilly & Co.), EP 0708179-A2 (Eli Lilly & Co.), EP 0699686-A2 (Eli Lilly & Co.), WO 01/98331 (Eli Lilly & Co).
- In one embodiment, the GLP-1 agonist is a derivative of GLP-1(7-36)-amide, GLP-1(7-37), a GLP-1(7-36)-amide analogue or a GLP-1(7-37) analogue, which comprises a lipophilic substituent.
- In this embodiment of the invention, the GLP-1 derivative preferably has three lipophilic substituents, more preferably two lipophilic substituents, and most preferably one lipophilic substituent attached to the parent peptide (ie GLP-1(7-36)-amide, GLP-1(7-37), a GLP-1(7-36)-amide analogue or a GLP-1(7-37) analogue), where each lipophilic substituent(s) preferably has 4-40 carbon atoms, more preferably 8-30 carbon atoms, even more preferably 8-25 carbon atoms, even more preferably 12-25 carbon atoms, and most preferably 14-18 carbon atoms.
- In one embodiment, the lipophilic substituent comprises a partially or completely hydrogenated cyclopentanophenathrene skeleton.
- In another embodiment, the lipophilic substituent is a straight-chain or branched alkyl group.
- In yet another embodiment, the lipophilic substituent is an acyl group of a straight-chain or branched fatty acid. Preferably, the lipophilic substituent is an acyl group having the formula CH3(CH2)nCO—, wherein n is an integer from 4 to 38, preferably an integer from 12 to 38, and most preferably is CH3(CH2)12CO—, CH3(CH2)14CO—, CH3(CH2)16CO—, CH3(CH2)18CO—, CH3(CH2)20CO— and CH3(CH2)22CO—. In a more preferred embodiment, the lipophilic substituent is tetradecanoyl. In a most preferred embodiment, the lipophilic substituent is hexadecanoyl.
- In a further embodiment of the present invention, the lipophilic substituent has a group which is negatively charged such as a carboxylic acid group. For example, the lipophilic substituent may be an acyl group of a straight-chain or branched alkane α,ω-dicarboxylic acid of the formula HOOC(CH2)mCO—, wherein m is an integer from 4 to 38, preferably an integer from 12 to 38, and most preferably is HOOC(CH2)14CO—, HOOC(CH2)16CO—, HOOC(CH2)18CO—, HOOC(CH2)20CO— or HOOC(CH2)22CO—.
- In the GLP-1 derivatives of the invention, the lipophilic substituent(s) contain a functional group which can be attached to one of the following functional groups of an amino acid of the parent GLP-1 peptide:
- (a) the amino group attached to the alpha-carbon of the N-terminal amino acid,
- (b) the carboxy group attached to the alpha-carbon of the C-terminal amino acid,
- (c) the epsilon-amino group of any Lys residue,
- (d) the carboxy group of the R group of any Asp and Glu residue,
- (e) the hydroxy group of the R group of any Tyr, Ser and Thr residue,
- (f) the amino group of the R group of any Trp, Asn, Gln, Arg, and His residue, or
- (g) the thiol group of the R group of any Cys residue.
- In one embodiment, a lipophilic substituent is attached to the carboxy group of the R group of any Asp and Glu residue.
- In another embodiment, a lipophilic substituent is attached to the carboxy group attached to the alpha-carbon of the C-terminal amino acid.
- In a most preferred embodiment, a lipophilic substituent is attached to the epsilon-amino group of any Lys residue.
- In a preferred embodiment of the invention, the lipophilic substituent is attached to the parent GLP-1 peptide by means of a spacer. A spacer must contain at least two functional groups, one to attach to a functional group of the lipophilic substituent and the other to a functional group of the parent GLP-1 peptide.
- In one embodiment, the spacer is an amino acid residue except Cys or Met, or a dipeptide such as Gly-Lys. For purposes of the present invention, the phrase “a dipeptide such as Gly-Lys” means any combination of two amino acids except Cys or Met, preferably a dipeptide wherein the C-terminal amino acid residue is Lys, His or Trp, preferably Lys, and the N-terminal amino acid residue is Ala, Arg, Asp, Asn, Gly, Glu, Gln, Ile, Leu, Val, Phe, Pro, Ser, Tyr, Thr, Lys, His and Trp. Preferably, an amino group of the parent peptide forms an amide bond with a carboxylic group of the amino acid residue or dipeptide spacer, and an amino group of the amino acid residue or dipeptide spacer forms an amide bond with a carboxyl group of the lipophilic substituent.
- Preferred spacers are lysyl, glutamyl, asparagyl, glycyl, beta-alanyl and gamma-aminobutanoyl, each of which constitutes an individual embodiment. Most preferred spacers are glutamyl and beta-alanyl. When the spacer is Lys, Glu or Asp, the carboxyl group thereof may form an amide bond with an amino group of the amino acid residue, and the amino group thereof may form an amide bond with a carboxyl group of the lipophilic substituent. When Lys is used as the spacer, a further spacer may in some instances be inserted between the ε-amino group of Lys and the lipophilic substituent. In one embodiment, such a further spacer is succinic acid which forms an amide bond with the ε-amino group of Lys and with an amino group present in the lipophilic substituent. In another embodiment such a further spacer is Glu or Asp which forms an amide bond with the ε-amino group of Lys and another amide bond with a carboxyl group present in the lipophilic substituent, that is, the lipophilic substituent is a Nε-acylated lysine residue.
- In another embodiment, the spacer is an unbranched alkane α,ω-dicarboxylic acid group having from 1 to 7 methylene groups, which spacer forms a bridge between an amino group of the parent peptide and an amino group of the lipophilic substituent. Preferably, the spacer is succinic acid.
- In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula CH3(CH2)pNH—CO(CH2)qCO—, wherein p is an integer from 8 to 33, preferably from 12 to 28 and q is an integer from 1 to 6, preferably 2.
- In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula CH3(CH2)rCO—NHCH(COOH)(CH2)2CO—, wherein r is an integer from 4 to 24, preferably from 10 to 24.
- In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula CH3(CH2)sCO—NHCH((CH2)2COOH)CO—, wherein s is an integer from 4 to 24, preferably from 10 to 24.
- In a further embodiment, the lipophilic substituent is a group of the formula COOH(CH2)tCO— wherein t is an integer from 6 to 24.
- In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula —NHCH(COOH)(CH2)4NH—CO(CH2)uCH3, wherein u is an integer from 8 to 18.
- In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula CH3(CH2)vCO—NH—(CH2)z—CO, wherein v is an integer from 4 to 24 and z is an integer from 1 to 6.
- In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula —NHCH(COOH)(CH2)4NH—COCH((CH2)2COOH)NH—CO(CH2)wCH3, wherein w is an integer from 10 to 16.
- In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula —NHCH(COOH)(CH2)4NH—CO(CH2)2CH(COOH)NHCO(CH2)XCH3, wherein x is zero or an integer from 1 to 22, preferably 10 to 16.
- In yet another embodiment the GLP-1 agonist is Arg34, Lys26(Nε-(γ-Glu(Nα-hexadecanoyl)))-GLP-1 (7-37).
- In yet another embodiment the GLP-1 agonist is selected from the group consisting of Gly8-GLP-1(7-36)-amide, Gly8-GLP-1(7-37), Val8-GLP-1(7-36)-amide, Val8-GLP-1(7-37), Val8Asp22-GLP-1(7-36)-amide, Val8Asp22-GLP-1(7-37), Val8Glu22-GLP-1(7-36)-amide, Val8Glu22-GLP-1(7-37), Val8Lys22-GLP-1(7-36)-amide, Val8Lys22-GLP-1(7-37), Val8Arg22-GLP-1(7-36)-amide, Val8Arg22-GLP-1(7-37), Val8His22-GLP-1(7-36)-amide, Val8His22-GLP-1(7-37), analogues thereof and derivatives of any of these.
- In yet another embodiment the GLP-1 agonist is selected from the group consisting of Arg26-GLP-1(7-37); Arg34-GLP-1(7-37); Lys36-GLP-1(7-37); Arg26,34Lys36-GLP-1(7-37); Arg26,34-GLP-1(7-37); Arg26,34Lys40-GLP-1(7-37); Arg26Lys36-GLP-1(7-37); Arg34Lys36-GLP-1(7-37); Val8Arg22-GLP-1(7-37); Met8Arg22-GLP-1(7-37); Gly8His22-GLP-1(7-37); Val8His22-GLP-1(7-37); Met8His22-GLP-1(7-37); His37-GLP-1(7-37); Gly8-GLP-1(7-37); Val8-GLP-1(7-37); Met8-GLP-1(7-37); Gly8Asp22-GLP-1(7-37); Val8Asp22-GLP-1(7-37); Met8Asp22-GLP-1(7-37); Gly8Glu22-GLP-1(7-37); Val8 Glu22-GLP-1(7-37); Met8Glu22-GLP-1(7-37); Gly8Lys22-GLP-1(7-37); Val8Lys22-GLP-1(7-37); Met8Lys22-GLP-1(7-37); Gly8Arg22-GLP-1(7-37); Val8Lys22His37-GLP-1(7-37); Gly8Glu22His37-GLP-1(7-37); Val8Glu22His37-GLP-1(7-37); Met8Glu22His37-GLP-1(7-37); Gly8Lys22 His37-GLP-1(7-37); Met8Lys22His37-GLP-1(7-37); Gly8Arg22His37-GLP-1(7-37); Val8Arg22His37-GLP-1(7-37); Met8Arg22His37-GLP-1(7-37); Gly8His22His37-GLP-1(7-37); Val8His22His37-GLP-1(7-37); Met8His22His37-GLP-1(7-37); Gly8His37-GLP-1(7-37); Val8His37-GLP-1(7-37); Met8His37-GLP-1(7-37); Gly8Asp22His37-GLP-1(7-37); Val8Asp22His37-GLP-1(7-37); Met8Asp22His37-GLP-1(7-37); Arg26-GLP-1(7-36)-amide; Arg34-GLP-1(7-36)-amide; Lys36-GLP-1(7-36)-amide; Arg26,34Lys36-GLP-1(7-36); Arg26,34-GLP-1(7-36)-amide; Arg26,34Lys40-GLP-1(7-36)-amide; Arg26Lys36-GLP-1(7-36)-amide; Arg34Lys36-GLP-1(7-36)-amide; Gly8-GLP-1(7-36)-amide; Val8-GLP-1(7-36)-amide; Met8-GLP-1(7-36)-amide; Gly8Asp22-GLP-1(7-36)-amide; Gly8Glu22His37-GLP-1(7-36)-amide; Val8Asp22-GLP-1(7-36)-amide; Met8Asp22-GLP-1(7-36)-amide; Gly8Glu22-GLP-1(7-36)-amide; Val8Glu22-GLP-1(7-36)-amide; Met8Glu22-GLP-1(7-36)-amide; Gly8Lys22-GLP-1(7-36)-amide; Val8Lys22-GLP-1(7-36)-amide; Met8Lys22-GLP-1(7-36)-amide; Gly8His22His37-GLP-1(7-36)-amide; Gly8Arg22-GLP-1(7-36)-amide; Val8Arg22-GLP-1(7-36)-amide; Met8Arg22-GLP-1(7-36)-amide; Gly8His22-GLP-1(7-36)-amide; Val8His22-GLP-1(7-36)-amide; Met8His22-GLP-1(7-36)-amide; His37-GLP-1-(7-36)-amide; Val8Arg22His37-GLP-1(7-36)-amide; Met8Arg22His37-GLP-1(7-36)-amide; Gly8His37-GLP-1(7-36)-amide; Val8His37-GLP-1(7-36)-amide; Met8His37-GLP-1(7-36)-amide; Gly8Asp22 His37-GLP-1(7-36)-amide; Val8Asp22His37-GLP-1(7-36)-amide; Met8Asp22His37-GLP-1(7-36)-amide; Val8Glu22His37-GLP-1(7-36)-amide; Met8Glu22His37-GLP-1(7-36)-amide; Gly8Lys22 His37-GLP-1(7-36)-amide; Val8Lys22His37-GLP-1(7-36)-amide; Met8Lys22His37-GLP-1(7-36)-amide; Gly8Arg22His37-GLP-1(7-36)-amide; Val8His22His37-GLP-1(7-36)-amide; Met8His22His37-GLP-1(7-36)-amide; and derivatives thereof.
- In yet another embodiment the GLP-1 agonist is selected from the group consisting of Val8Trp19Glu22-GLP-1(7-37), Val8Glu22Val25-GLP-1(7-37), Val8Tyr16Glu22-GLP-1(7-37), Val8Trp16Glu22-GLP-1(7-37), Val8Leu16Glu22-GLP-1(7-37), Val8Tyr18Glu22-GLP-1(7-37), Val8Glu22His37-GLP-1(7-37), Val8Glu22Ile33-GLP-1(7-37), Val8Trp16Glu22Val25Ile33-GLP-1(7-37), Val8Trp16Glu22Ile33-GLP-1(7-37), Val8Glu22Val25Ile33-GLP-1(7-37), Val8Trp16Glu22Val25-GLP-1(7-37), analogues thereof and derivatives of any of these.
- In yet another embodiment the GLP-1 agonist is a stable GLP-1 analogue/derivative. Throughout this application a “stable GLP-1 analogue/derivative” means a GLP-1 analogue or a derivative of a GLP-1 analogue which exhibits an in vivo plasma elimination half-life of at least 10 hours in man, as determined by the method described below. Examples of stable GLP-1 analogue/derivatives can be found in WO 98/08871 and WO 99/43706. The method for determination of plasma elimination half-life of a compound in man is: The compound is dissolved in an isotonic buffer, pH 7.4, PBS or any other suitable buffer. The dose is injected peripherally, preferably in the abdominal or upper thigh. Blood samples for determination of active compound are taken at frequent intervals, and for a sufficient duration to cover the terminal elimination part (e.g. Pre-dose, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 24 (day 2), 36 (day 2), 48 (day 3), 60 (day 3), 72 (day 4) and 84 (day 4) hours post dose). Determination of the concentration of active compound is performed as described in Wilken et al., Diabetologia 43(51):A143, 2000. Derived pharmacokinetic parameteres are calculated from the concentration-time data for each individual subject by use of non-compartmental methods, using the commercially available software WinNonlin Version 2.1 (Pharsight, Cary, N.C., USA). The terminal elimination rate constant is estimated by log-linear regression on the terminal log-linear part of the concentration-time curve, and used for calculating the elimination half-life.
- Stable GLP-1 analogues and derivatives are disclosed in WO 98/08871 (analogues with lipophilic substituent) and in WO 02/46227 (analogues fused to serum albumin or to Fc portion of an Ig).
- In another embodiment, The GLP-1 agonist is formulated so as to have a half-life in man, as discussed above, of at least 10 hours. This may be obtained by sustained release formulations known in the art.
- In yet another embodiment the GLP-1 agonist is exendin-4 or exendin-3, an exendin-4 or exendin-3 analogue or a derivative of any of these.
- Examples of exendins as well as analogues, derivatives, and fragments thereof to be included within the present invention are those disclosed in WO 97/46584, U.S. Pat. No. 5,424,286 and WO 01/04156. U.S. Pat. No. 5,424,286 describes a method for stimulating insulin release with an exendin polypeptide. The exendin polypeptides disclosed include HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGX; wherein X═P or Y, and HX1X2GTFITSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS; wherein X1X2=SD (exendin-3) or GE (exendin-4)). WO 97/46584 describes truncated versions of exendin peptide(s). The disclosed peptides increase secretion and biosynthesis of insulin, but reduce those of glucagon. WO 01/04156 describes exendin-4 analogues and derivatives as well as the preparation of these molecules. Exendin-4 analogues stabilized by fusion to serum albumin or Fc portion of an Ig are disclosed in WO 02/46227.
- In one embodiment, the exendin-4 analogue is HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPSKKKKKK.
- In yet another embodiment the GLP-1 agonist is a stable exendin-4 analogue/-derivative. The term “stable exendin-4 analogue/derivative”, as used herein refers to an exendin-4(1-39) analogue or a derivative of an exendin-4(1-39) analogue which exhibits an in vivo plasma elimination half-life of at least 10 hours in man, as determined by the method described above for a “stable GLP-1 analogue/derivative”.
- In still another embodiment, the GLP-1 agonist is Aib8,35 GLP-1(7-36) amide (Aib=α-amino isobutyric acid).
- In still another embodiment, the GLP-1 agonist is Ser38,Lys39,40,41,42,43,44-Exendin-4(1-39)amide.
- In still another embodiment the GLP-1 agonist is selected from the non-peptide small molecule GLP-1 agonists disclosed in WO 00/42026.
- The present invention also encompasses pharmaceutically acceptable salts of the GLP-1 agonists. Such salts include pharmaceutically acceptable acid addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts. Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like. Representative examples of suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids and the like. Further examples of pharmaceutically acceptable inorganic or organic acid addition salts include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 1977, 66, 2. Examples of metal salts include lithium, sodium, potassium, magnesium salts and the like. Examples of ammonium and alkylated ammonium salts include ammonium, methylammonium, dimethylammonium, trimethylammonium, ethylammonium, hydroxyethylammonium, diethylammonium, butylammonium, tetramethylammonium salts and the like.
- Also intended as pharmaceutically acceptable acid addition salts are the hydrates which the present GLP-1 agonists are able to form.
- Peptide GLP-1 compounds can be produced by appropriate derivatization of an appropriate peptide backbone which has been produced by recombinant DNA technology or by peptide synthesis (e.g. Merrifield-type solid phase synthesis) as known in the art of peptide synthesis and peptide chemistry.
- The route of administration of GLP-1 agonists may be any route which effectively transports the active compound to the appropriate or desired site of action, such as oral, nasal, buccal, pulmonal, transdermal or parenteral.
- Medicaments or pharmaceutical compositions containing a GLP-1 agonist such as Arg34, Lys26(Nε-(γ-Glu(Nα-hexadecanoyl)))-GLP-1(7-37) may be administered parenterally to a patient in need thereof. Parenteral administration may be performed by subcutaneous, intramuscular or intravenous injection by means of a syringe, optionally a pen-like syringe. Alternatively, parenteral administration can be performed by means of an infusion pump. A further option is a composition which may be a powder or a liquid for the administration of a GLP-1 agonist in the form of a nasal or pulmonal spray. As a still further option, the GLP-1 agonist can also be administered transdermally, e.g. from a patch, optionally an iontophoretic patch, or transmucosally, e.g. bucally. The above-mentioned possible ways to administer GLP-1 agonists are not considered as limiting the scope of the invention.
- In one embodiment, the dosage of GLP-1 agonist to be administered to a patient in a method of the invention is from about 0.1 ug/kg/day to about 20 ug/kg/day.
- In another embodiment, the dosage of GLP-1 agonist to be administered to a patient in a method of the invention is from about 0.5 ug/kg/day to about 2 ug/kg/day.
- In one embodiment, A GLP-1 agonist is co-administered together with further therapeutically active compound used in the treatment of obesity or to induce weight loss or to maintain an obtained weight loss, or used in the treatment of diseases or states where obesity is part of the etiology. Examples of further therapeutically active compounds include antidiabetic agents, antihyperlipidemic agents, antiobesity agents, antihypertensive agents and agents for the treatment of complications resulting from or associated with diabetes.
- Suitable antidiabetic agents include insulin, GLP-1 (glucagon like peptide-1) derivatives such as those disclosed in WO 98/08871 (Novo Nordisk A/S), which is incorporated herein by reference, as well as orally active hypoglycemic agents.
- Suitable orally active hypoglycemic agents preferably include imidazolines, sulfonylureas, biguanides, meglitinides, oxadiazolidinediones, thiazolidinediones, insulin sensitizers, α-glucosidase inhibitors, agents acting on the ATP-dependent potassium channel of the pancreatic β-cells e.g. potassium channel openers such as those disclosed in WO 97/26265, WO 99/03861 and WO 00/37474 (Novo Nordisk A/S) which are incorporated herein by reference, potassium channel openers, such as ormitiglinide, potassium channel blockers such as nateglinide or BTS-67582, glucagon antagonists such as those disclosed in WO 99/01423 and WO 00/39088 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), all of which are incorporated herein by reference, GLP-1 agonists such as those disclosed in WO 00/42026 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase-IV) inhibitors, PTPase (protein tyrosine phosphatase) inhibitors, glucokinase activators, such as those described in WO 02/08209 to Hoffmann La Roche, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose intake modulators, GSK-3 (glycogen synthase kinase-3) inhibitors, compounds modifying the lipid metabolism such as antihyperlipidemic agents and antilipidemic agents, compounds lowering food intake, and PPAR (peroxisome proliferator-activated receptor) and RXR (retinoid X receptor) agonists such as ALRT-268, LG-1268 or LG-1069.
- Other examples of suitable additional therapeutically active compounds include insulin or insulin analogues, sulfonylurea e.g. tolbutamide, chlorpropamide, tolazamide, glibenclamide, glipizide, glimepiride, glicazide, glyburide, biguanide e.g. metformin, meglitinide e.g. repaglinide or senaglinide/nateglinide.
- Other examples of suitable additional therapeutically active compounds include thiazolidinedione insulin sensitizer e.g. troglitazone, ciglitazone, pioglitazone, rosiglitazone, isaglitazone, darglitazone, englitazone, CS-011/Cl-1037 or T 174 or the compounds disclosed in WO 97/41097 (DRF-2344), WO 97/41119, WO 97/41120, WO 00/41121 and WO 98/45292 (Dr. Reddy's Research Foundation), which are incorporated herein by reference.
- Other examples of suitable additional therapeutically active compounds include insulin sensitizer e.g. such as GI 262570, YM-440, MCC-555, JTT-501, AR-H039242, KRP-297, GW-409544, CRE-16336, AR-H049020, LY510929, MBX-102, CLX-0940, GW-501516 or the compounds disclosed in WO 99/19313 (NN622/DRF-2725), WO 00/50414, WO 00/63191, WO 00/63192, WO 00/63193 (Dr. Reddy's Research Foundation) and WO 00/23425, WO 00/23415, WO 00/23451, WO 00/23445, WO 00/23417, WO 00/23416, WO 00/63153, WO 00/63196, WO 00/63209, WO 00/63190 and WO 00/63189 (Novo Nordisk A/S), which are incorporated herein by reference.
- Other examples of suitable additional therapeutically active compounds include α-glucosidase inhibitor e.g. voglibose, emiglitate, miglitol or acarbose.
- Other examples of suitable additional therapeutically active compounds include glycogen phosphorylase inhibitor e.g. the compounds described in WO 97/09040 (Novo Nordisk A/S).
- Other examples of suitable additional therapeutically active compounds include a glucokinase activator.
- Other examples of suitable additional therapeutically active compounds include an agent acting on the ATP-dependent potassium channel of the pancreatic β-cells e.g. tolbutamide, glibenclamide, glipizide, glicazide, BTS-67582 or repaglinide.
- Other examples of suitable additional therapeutically active compounds include nateglinide.
- Other examples of suitable additional therapeutically active compounds include an antihyperlipidemic agent or a antilipidemic agent e.g. cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.
- Other examples of said additional therapeutically active compounds include antiobesity compounds or appetite regulating agents. Such compounds may be selected from the group consisting of CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC3 (melanocortin 3) agonists, MC4 (melanocortin 4) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, urocortin agonists, β3 adrenergic agonists such as CL-316243, AJ-9677, GW-0604, LY362884, LY377267 or AZ-40140, MSH (melanocyte-stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin reuptake inhibitors (fluoxetine, seroxat or citalopram), serotonin and norepinephrine reuptake inhibitors, 5HT (serotonin) agonists, bombesin agonists, galanin antagonists, growth hormone, growth factors such as prolactin or placental lactogen, growth hormone releasing compounds, TRH (thyreotropin releasing hormone) agonists, UCP 2 or 3 (uncoupling protein 2 or 3) modulators, chemical uncouplers, leptin agonists, DA (dopamine) agonists (bromocriptin, doprexin), lipase/amylase inhibitors, PPAR modulators, RXR modulators, TR β agonists, adrenergic CNS stimulating agents, AGRP (agouti related protein) inhibitors, H3 histamine antagonists such as those disclosed in WO 00/42023, WO 00/63208 and WO 00/64884, which are incorporated herein by reference, exendin-4, GLP-1 agonists and ciliary neurotrophic factor. Further antiobesity agents are bupropion (antidepressant), topiramate (anticonvulsant), ecopipam (dopamine D1/D5 antagonist), naltrexone (opioid antagonist), and peptide YY3-36 (Batterham et al, Nature 418, 650-654 (2002)).
- In one embodiment, the antiobesity agent is leptin.
- In one embodiment, the antiobesity agent is peptide YY3-36
- In one embodiment, the antiobesity agent is a serotonin and norepinephrine reuptake inhibitor e.g. sibutramine.
- In one embodiment, the antiobesity agent is a lipase inhibitor e.g. orlistat.
- In one embodiment, the antiobesity agent is an adrenergic CNS stimulating agent e.g. dexamphetamine, amphetamine, phentermine, mazindol phendimetrazine, diethylpropion, fenfluramine or dexfenfluramine.
- In one embodiment, the antiobesity agent is oxynthomodulin, as disclosed in WO 03/22304 (Imperial College).
- In one embodiment, the antiobesity agent is a ghrelin antagoninst, e.g. as disclosed in WO 01/56592.
- In one embodiment, the antiobesity agent is an energy expenditure modifier.
- In one embodiment, the antiobesity agent is a 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor.
- Other examples of suitable additional therapeutically active compounds include antihypertensive agents. Examples of antihypertensive agents are β-blockers such as alprenolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin converting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem and verapamil, and α-blockers such as doxazosin, urapidil, prazosin and terazosin.
- Pharmaceutical Compositions
- Pharmaceutical compositions containing GLP-1 agonists such as Arg34, LyS26(Nε-(γ-Glu(Nα-hexadecanoyl)))-GLP-1(7-37) may be prepared by conventional techniques, e.g. as described in Remington's Pharmaceutical Sciences, 1985 or in Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- Thus, injectable compositions of GLP-1 agonists, insulin and autoimmune agents can be prepared using the conventional techniques of the pharmaceutical industry which involves dissolving and mixing the ingredients as appropriate to give the desired end product.
- For example, a GLP-1 agonist such as Arg34, Lys26(Nε-(γ-Glu(Nα-hexadecanoyl)))-GLP-1(7-37) may be dissolved in an amount of water which is somewhat less than the final volume of the composition to be prepared. An isotonicity agent, a preservative and a buffer are added as required and the pH value of the solution is adjusted—if necessary—using an acid, e.g. hydrochloric acid, or a base, e.g. aqueous sodium hydroxide as needed. Finally, the volume of the solution is adjusted with water to give the desired concentration of the ingredients.
- In one embodiment of the invention, the formulation of the GLP-1 agonist has a pH in the range from 7.0 to 10. In another embodiment of the invention the formulation has a pH in the range from 7.0 to 9.5. In a further embodiment of the invention the formulation has a pH in the range from 7.0 to 8.5. In yet another embodiment of the invention the formulation has a pH in the range from 7.0 to 8.0, preferably from 7.4 to 7.8. In a further embodiment of the invention the formulation has a pH in the range from 9.0 to 10.
- Examples of isotonic agents to be used in the formulations of the invention are those selected from the group consisting of a salt (e.g. sodium chloride), a polyhydric alcohol (e.g., xylitol, mannitol, sorbitol or glycerol), a monosaccharide (e.g. glucose or maltose), a disccharide (e.g. sucrose), an amino acid (e.g. L-glycine, L-histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine), polyethyleneglycol (e.g. PEG400), prolpylene glycol, or mixtures thereof. In a further embodiment of the invention the isotonic agent is selected from the group consisting of sodium chloride, glycerol, mannitol, glucose, sucrose, L-glycine, L-histidine, arginine, lysine or mixtures thereof. Each one of these specific isotonic agents constitutes an alternative embodiment of the invention.
- Examples of preservatives to be used in the formulations of the invention are phenol, m-cresol, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomerosal, or mixtures thereof. Each one of these specific preservatives constitutes an alternative embodiment of the invention. In a preferred embodiment of the invention the preservative is phenol or m-cresol.
- Examples of suitable buffers to be used in the formulations of the invention are sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, or mixtures thereof. Each one of these specific buffers constitutes an alternative embodiment of the invention. In a preferred embodiment of the invention the buffer is glycylglycine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate or mixtures thereof.
- Further to the above-mentioned components, solutions containing a GLP-1 agonist may also contain a surfactant in order to improve the solubility and/or the stability of the peptide. In a further embodiment of the invention the formulation further comprises a surfactant. In a further embodiment of the invention the surfactant is selected from a detergent, ethoxylated castor oil, polyglycolyzed glycerides, acetylated monoglycerides, sorbitan fatty acid esters, poloxamers, such as 188 and 407, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene derivatives such as alkylated and alkoxylated derivatives (tweens, e.g. Tween-20, or Tween-80), monoglycerides or ethoxylated derivatives thereof, diglycerides or polyoxyethylene derivatives thereof, glycerol, cholic acid or derivatives thereof, lecithins, alcohols and phospholipids, glycerophospholipids (lecithins, kephalins, phosphatidyl serine), glyceroglycolipids (galactopyransoide), sphingophospholipids (sphingomyelin), and sphingoglycolipids (ceramides, gangliosides), DSS (docusate sodium, CAS registry no [577-11-7]), docusate calcium, CAS registry no [128-49-4]), docusate potassium, CAS registry no [7491-09-0]), SDS (sodium dodecyl sulfate or sodium lauryl sulfate), dipalmitoyl phosphatidic acid, sodium caprylate, bile acids and salts thereof and glycine or taurine conjugates, ursodeoxycholic acid, sodium cholate, sodium deoxycholate, sodium taurocholate, sodium glycocholate, N-Hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, anionic (alkyl-aryl-sulphonates) monovalent surfactants, palmitoyl lysophosphatidyl-L-serine, lysophospholipids (e.g. 1-acyl-sn-glycero-3-phosphate esters of ethanolamine, choline, serine or threonine), alkyl, alkoxyl (alkyl ester), alkoxy (alkyl ether)-derivatives of lysophosphatidyl and phosphatidylcholines, e.g. lauroyl and myristoyl derivatives of lysophosphatidylcholine, dipalmitoylphosphatidylcholine, and modifications of the polar head group, that is cholines, ethanolamines, phosphatidic acid, serines, threonines, glycerol, inositol, and the postively charged DODAC, DOTMA, DCP, BISHOP, lysophosphatidylserine and lysophosphatidylthreonine, zwitterionic surfactants (e.g. N-alkyl-N,N-dimethylammonio-1-propanesulfonates, 3-cholamido-1-propyldimethylammonio-1-propanesulfonate, dodecylphosphocholine, myristoyl lysophosphatidylcholine, hen egg lysolecithin), cationic surfactants (quarternary ammonium bases) (e.g. cetyl-trimethylammonium bromide, cetylpyridinium chloride), non-ionic surfactants, polyethyleneoxide/polypropyleneoxide block copolymers (Pluronics/Tetronics, Triton X-100, Dodecyl β-D-glucopyranoside) or polymeric surfactants (Tween-40, Tween-80, Brij-35), fusidic acid derivatives- (e.g. sodium tauro-dihydrofusidate etc.), long-chain fatty acids and salts thereof C6-C12 (eg. oleic acid and caprylic acid), acylcarnitines and derivatives, Nα-acylated derivatives of lysine, arginine or histidine, or side-chain acylated derivatives of lysine or arginine, Nα-acylated derivatives of dipeptides comprising any combination of lysine, arginine or histidine and a neutral or acidic amino acid, Nα-acylated derivative of a tripeptide comprising any combination of a neutral amino acid and two charged amino acids, or the surfactant may be selected from the group of imidazoline derivatives, or mixtures thereof. Each one of these specific surfactants constitutes an alternative embodiment of the invention.
- The use of isotonicity agents, preservatives, and surfactants are well known in the pharmaceutical arts and reference is made to Remington: The Science and Practice of Pharmacy, 20th edition, 2000.
- In a further embodiment of the invention the GLP-1 agonist is present in a formulation of the invention in a concentration from 0.1 mg/ml to 80 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1 mg/ml to 80 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1 mg/ml to 50 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1 mg/ml to 50 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1 mg/ml to 20 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1 mg/ml to 20 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1 mg/ml to 10 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1 mg/ml to 10 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1-5 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1-5 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1-0.5 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.6-1 mg/ml. Each one of these specific concentration ranges constitutes an alternative embodiment of the invention.
- All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference in their entirety and to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein (to the maximum extent permitted by law).
- All headings and sub-headings are used herein for convenience only and should not be construed as limiting the invention in any way.
- The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
- The citation and incorporation of patent documents herein is done for convenience only and does not reflect any view of the validity, patentability, and/or enforceability of such patent documents.
- This invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law.
- Diet induced obesity (DIO) was introduced over 2½ months, by feeding 4 months old rats a diet consisting of chow and 5 alternating kinds of candy (chocolate, chocolate bisquits, sugar). The candy was changed every day, so that the same candy was offered every fifth day. A lean control group was fed chow only. In the DIO group this was followed by a 12-week treatment with liraglutide (0.2 mg/kg s.c. bid, n=10). The candy and chow offer was continued for the whole treatment period also. Vehicle was given to both obese (n=14) and lean control rats (n=15). Food intake, differentiated between chow and candy, was monitored daily.
- Liraglutide significantly (p=0.009) reduced total cumulated caloric intake (4452.3±150.6 vs. 5061.2±99.9 kcal). This reduction was a selective reduction in calories obtained from candy (2863.3±200.9 vs. 3803.2±110.2 kcal, p=0.017), since there was actually an increase in calories obtained from chow (1589.0±96.9 vs.1248.5±71.6 kcal, p=0.001).
- Liraglutide is the IND name for Arg34, LyS26(Nε-(γ-Glu(Nα-hexadecanoyl)))-GLP-1(7-37); Candy 1 (sugar): mono-and di-saccharides constituted 100% of the total amount of carbohydrate; candy 2 (chocolate cream filled crackers): Glycemic index 49%, 39% of the total energy stems from fat, mono-and di-saccharides constitute 57% of the total amount of carbohydrates; candy 3 (milk chocolate): Glycemic index 49%, 60% of the total energy stems from fat, mono- and di-saccharides constitute 90% of the total amount of carbohydrates; candy 4 (milk chocolate with nuts): 80% of the total energy stems from fat, mono- and di-saccharides constitute 80% of the total amount of carbohydrates; candy 5 (toffee chocolate): 80% of the total energy stems from fat, mono- and di-saccharides constitute 75% of the total amount of carbohydrates; chow: 15% of the total energy stems from fat, mono- and di-saccharides constitute 15% of the total amount of carbohydrates;
- The data clearly shows that GLP-1 agonists are capable of reducing the intake of calories, and also that GLP-1 agonists induce a dislike for food with a high glycemic index or wherein the mono-and di-saccharides together constitute a large proportion of the total carbohydrate amount.
- An experiment showing the effect of GLP-1 agonists in humans may be designed as described here. Human subjects are administered one or several daily dose(s) of a GLP-1 agonist leading to pharmacological active GLP-1-like levels in the blood or a placebo compound. The subjects are given a choice of foods and drink from one or more of the groups A) to D) and one or more from the groups E) to H).
-
- A) The glycemic index is above 60%
- B) The glycemic index is above 40% and wherein more than 30% of the total amount of energy stems from fat
- C) The amount of mono- or di-saccharides together constitute more than 25% of total carbohydrate content
- D) The amount of mono- or di-saccharides together constitute more than 25% of total carbohydrate content and wherein more than 30% of the total amount of energy stems from fat
- E) The glycemic index is below 60%
- F) The glycemic index is below 40% and wherein less than 30% of the total amount of energy stems from fat
- G) The amount of mono- and di-saccharides together constitute together constitute less than 25% of the total carbohydrate content
- H) The amount of mono- and di-saccharides together constitute together constitute less than 25% of the total carbohydrate content, and wherein less than 30% of the total amount of energy stems from fat
- The amount eaten and drunk of all groups of food is calculated in terms of energy intake, and the ability of the GLP-1 agonist to selectively decrease intake of the food from one or more of the groups A) to D) (unhealthy food) and increase the intake of food from one or more of the groups E) to H) (healthy food) is calculated.
Claims (19)
1. A method for reducing intake of food by a subject, wherein said food has a glycemic index above 60%, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
2. A method of reducing intake of food by a subject, wherein said food has a glycemic index above 40%, and wherein more than 30% of the total energy in said food stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
3. A method for reducing intake of food by a subject, wherein mono-and di-saccharides in said food together constitute more than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
4. The method according to claim 3 , wherein more than 30% of the total energy in said food stems from fat.
5. A method of increasing intake of food by a subject, wherein said food has a glycemic index below 60%, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
6. A method of increasing intake of food by a subject, wherein said food has a glycemic index below 40%, and wherein less than 30% of the total energy in said food stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
7. A method of increasing intake of food by a subject wherein mono-and di-saccharides in said food together constitute less than 25% of the total carbohydrate content in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.
8. The method according to claim 7 , wherein less than 30% of the total energy in said food stems from fat.
9. A method for treating a disease or disorder in a subject where the disease or disorder is selected from the group consisting of binge eating, bulimia nervosa and craving for food, the method comprising administering to said subject an amount of a GLP-1 agonist effective to treat said disease or disorder.
10. A method of treating obesity in a subject, wherein said obesity is caused by binge eating disorder, bulimia nervosa, craving for food or snacking, the method comprising administering to said subject an effective amount of a GLP-1 agonist.
11. A method according to claim 1 , wherein said GLP-1 agonist is administered in connection with a meal.
12. A method according to claim 1 , wherein said subject is a human, a pet animal or a zoo animal.
13. A method according to claim 12 , wherein said subject is a human.
14. A kit comprising: (a) a GLP-1 agonist which reduces the intake of food with a high glycemic index or food wherein mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrates in a container; and (b) a notice associated with said container in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by said agency of said GLP-1 compound for human or veterinary administration to reduce intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates.
15. The method according to claim 1 , wherein said GLP-1 agonist is a GLP-1(7-36)-amide or GLP-1(7-37).
16. The method according to claim 1 , wherein said GLP-1 agonist is an analogue or a derivative of an analogue of GLP-1(7-36)-amide or GLP-1(7-37).
17. The method according to claim 16 , wherein said derivative is Arg34, Lys26(Nε-(γ-Glu(Nε-hexadecanoyl)))-GLP-1(7-37).
18. The method according to claim 1 , wherein said GLP-1 agonist is exendin-4, an exendin-4 analogue or a derivative of said exendin-4 or exendin-4 analogue.
19. The method according to claim 18 , wherein said GLP-1 agonist is exendin-4.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/778,541 US9486504B2 (en) | 2003-12-09 | 2010-05-12 | Regulation of food preference using GLP-1 agonists |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DKPA200301816 | 2003-12-09 | ||
| DKPA200301816 | 2003-12-09 | ||
| PCT/DK2004/000853 WO2005056036A2 (en) | 2003-12-09 | 2004-12-09 | Regulation of food preference using glp-1 agonists |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/DK2004/000853 Continuation WO2005056036A2 (en) | 2003-12-09 | 2004-12-09 | Regulation of food preference using glp-1 agonists |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/778,541 Continuation US9486504B2 (en) | 2003-12-09 | 2010-05-12 | Regulation of food preference using GLP-1 agonists |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070082844A1 true US20070082844A1 (en) | 2007-04-12 |
Family
ID=34673547
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/448,545 Abandoned US20070082844A1 (en) | 2003-12-09 | 2006-06-07 | Regulation of food preference using GLP-1 agonists |
| US12/778,541 Expired - Fee Related US9486504B2 (en) | 2003-12-09 | 2010-05-12 | Regulation of food preference using GLP-1 agonists |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/778,541 Expired - Fee Related US9486504B2 (en) | 2003-12-09 | 2010-05-12 | Regulation of food preference using GLP-1 agonists |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20070082844A1 (en) |
| EP (2) | EP1694356B1 (en) |
| JP (1) | JP4865565B2 (en) |
| AT (1) | ATE498404T1 (en) |
| DE (1) | DE602004031455D1 (en) |
| WO (1) | WO2005056036A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008143835A1 (en) * | 2007-05-15 | 2008-11-27 | Yale University | Ghrelin protects substantia nigra dopamine neurons |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015169789A1 (en) * | 2014-05-07 | 2015-11-12 | Novo Nordisk A/S | Treatment of diabetes type 1 using glp-1 and anti-il-21 |
| WO2020201280A1 (en) * | 2019-04-01 | 2020-10-08 | Novo Nordisk A/S | Antibodies directed against liraglutide and use thereof |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6268343B1 (en) * | 1996-08-30 | 2001-07-31 | Novo Nordisk A/S | Derivatives of GLP-1 analogs |
Family Cites Families (89)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU409983B2 (en) * | 1965-07-19 | 1970-12-31 | Imperial Chemical Industries Of Australia New Zealand Limited | Process for the manufacture of thia zolidines and thiazolidines produced thereby |
| EP1498425A1 (en) | 1986-05-05 | 2005-01-19 | The General Hospital Corporation | Use of glucagone-like-peptide 1 (GLP-1) derivatives for the preparation of pharmaceutical compositions |
| US5118666A (en) * | 1986-05-05 | 1992-06-02 | The General Hospital Corporation | Insulinotropic hormone |
| US5120712A (en) * | 1986-05-05 | 1992-06-09 | The General Hospital Corporation | Insulinotropic hormone |
| GB8809115D0 (en) | 1988-04-18 | 1988-05-18 | Turner R C | Syringes |
| JPH04504246A (en) | 1989-03-20 | 1992-07-30 | ザ・ジェネラル・ホスピタル・コーポレーション | insulin stimulating hormone |
| WO1991011457A1 (en) | 1990-01-24 | 1991-08-08 | Buckley Douglas I | Glp-1 analogs useful for diabetes treatment |
| US5412229A (en) * | 1990-08-31 | 1995-05-02 | Sumitomo Electric Industries, Ltd. | Semiconductor light detecting device making use of a photodiode chip |
| WO1992010576A1 (en) | 1990-12-13 | 1992-06-25 | The Upjohn Company | Fusion polypeptides |
| DK39892D0 (en) | 1992-03-25 | 1992-03-25 | Bernard Thorens | PEPTIDE |
| US5418218A (en) | 1992-07-10 | 1995-05-23 | The University Of Maryland At Baltimore | Histidyl-proline diketopiperazine (cyclo his-pro) a cns-active pharmacologic agent |
| US5380872A (en) * | 1992-07-14 | 1995-01-10 | Glaxo Inc. | Modulators of cholecystokinin |
| JP3502651B2 (en) * | 1993-02-08 | 2004-03-02 | トリクイント セミコンダクター テキサス、エルピー | Electrode formation method |
| NZ250844A (en) | 1993-04-07 | 1996-03-26 | Pfizer | Treatment of non-insulin dependant diabetes with peptides; composition |
| US5424286A (en) | 1993-05-24 | 1995-06-13 | Eng; John | Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same |
| US5574008A (en) | 1994-08-30 | 1996-11-12 | Eli Lilly And Company | Biologically active fragments of glucagon-like insulinotropic peptide |
| US5512549A (en) | 1994-10-18 | 1996-04-30 | Eli Lilly And Company | Glucagon-like insulinotropic peptide analogs, compositions, and methods of use |
| AU724003B2 (en) | 1995-09-08 | 2000-09-07 | Novo Nordisk A/S | 2-alkylpyrrolidines |
| WO1997026265A1 (en) | 1996-01-17 | 1997-07-24 | Novo Nordisk A/S | Fused 1,2,4-thiadiazine and fused 1,4-thiazine derivatives, their preparation and use |
| US5912229A (en) | 1996-03-01 | 1999-06-15 | Novo Nordisk Als | Use of a pharmaceutical composition comprising an appetite-suppressing peptide |
| CZ297338B6 (en) | 1996-03-01 | 2006-11-15 | Novo Nordisk A/S | Appetite-suppressing peptide, pharmaceutical composition in which the peptide is comprised and use thereof |
| CA2257119A1 (en) | 1996-06-05 | 1997-12-11 | Boehringer Mannheim Gmbh | Exendin analogues, processes for their production and pharmaceutical preparations containing them |
| AU2995497A (en) | 1996-07-26 | 1997-11-19 | Dr. Reddy's Research Foundation | Thiazolidinedione compounds having antidiabetic, hypolipidaemic, antihypertensive properties, process for their preparation and pharmaceutical compositions thereof |
| US6458924B2 (en) * | 1996-08-30 | 2002-10-01 | Novo Nordisk A/S | Derivatives of GLP-1 analogs |
| US7235627B2 (en) * | 1996-08-30 | 2007-06-26 | Novo Nordisk A/S | Derivatives of GLP-1 analogs |
| IL128332A0 (en) | 1996-08-30 | 2000-01-31 | Novo Nordisk As | GLP-1 derivatives |
| UA65549C2 (en) * | 1996-11-05 | 2004-04-15 | Елі Ліллі Енд Компані | Use of glucagon-like peptides such as glp-1, glp-1 analog, or glp-1 derivative in methods and compositions for reducing body weight |
| DE69737916T2 (en) | 1996-11-12 | 2008-04-03 | Novo Nordisk A/S | Use of GLP-1 peptides |
| ATE246190T1 (en) | 1996-12-31 | 2003-08-15 | Reddys Lab Ltd Dr | HETEROCYCLIC COMPOUNDS, METHODS FOR THE PRODUCTION THEREOF, PHARMACEUTICAL COMPOSITIONS CONTAINING SAME AND THEIR USE IN THE TREATMENT OF DIABETIS AND RELATED DISEASES |
| AU739020B2 (en) * | 1997-01-07 | 2001-10-04 | Amylin Pharmaceuticals, Inc. | Use of exendins and agonists thereof for the reduction of food intake |
| WO1998043658A1 (en) | 1997-03-31 | 1998-10-08 | Eli Lilly And Company | Glucagon-like peptide-1 analogs |
| AU2930797A (en) | 1997-05-02 | 1997-11-19 | Dr. Reddy's Research Foundation | Novel antidiabetic compounds having hypolipidaemic, antihypertensive properties, process for their preparation and pharmaceutical compositions containing them |
| US6613942B1 (en) | 1997-07-01 | 2003-09-02 | Novo Nordisk A/S | Glucagon antagonists/inverse agonists |
| BR9810378A (en) | 1997-07-01 | 2000-08-29 | Novo Nordisk As | Compound, use of the same, pharmaceutical composition, and, processes of treating type i or type ii diabetes, of treating hyperglycemia, and of decreasing blood glucose in a mammal |
| KR20010021936A (en) | 1997-07-16 | 2001-03-15 | 한센 핀 베네드, 안네 제헤르, 웨이콥 마리안느 | Fused 1,2,4-thiadiazine derivatives, their preparation and use |
| US5957896A (en) | 1997-08-11 | 1999-09-28 | Becton, Dickinson And Company | Medication delivery pen |
| US6440961B1 (en) | 1997-10-27 | 2002-08-27 | Dr. Reddy's Research Foundation | Tricyclic compounds and their use in medicine: process for their preparation and pharmaceutical compositions containing them |
| WO1999019313A1 (en) | 1997-10-27 | 1999-04-22 | Dr. Reddy's Research Foundation | Novel tricyclic compounds and their use in medicine; process for their preparation and pharmaceutical compositions containing them |
| WO1998045292A1 (en) | 1997-12-02 | 1998-10-15 | Dr. Reddy's Research Foundation | Thiazolidinedione and oxazolidinedione derivatives having antidiabetic, hypolipidaemic and antihypertensive properties |
| PT1003581E (en) * | 1998-01-30 | 2001-04-30 | Novo Nordisk As | INJECTION SYRINGE |
| DE69942307D1 (en) | 1998-02-27 | 2010-06-10 | Novo Nordisk As | N-TERMINAL CHANGED GLP-1 ABÖMMLINGE |
| EP1056775B1 (en) | 1998-02-27 | 2010-04-28 | Novo Nordisk A/S | Glp-1 derivatives of glp-1 and exendin with protracted profile of action |
| WO1999043706A1 (en) * | 1998-02-27 | 1999-09-02 | Novo Nordisk A/S | Derivatives of glp-1 analogs |
| JP2002508162A (en) | 1998-02-27 | 2002-03-19 | ノボ ノルディスク アクティーゼルスカブ | GLP-1 derivative with shortened N-terminus |
| WO1999043341A1 (en) | 1998-02-27 | 1999-09-02 | Novo Nordisk A/S | Glp-1 derivatives with helix-content exceeding 25 %, forming partially structured micellar-like aggregates |
| JP2002523333A (en) * | 1998-07-31 | 2002-07-30 | ノボ ノルディスク アクティーゼルスカブ | Use of GLP-1 and analogs to prevent type II diabetes |
| WO2000023416A1 (en) | 1998-10-21 | 2000-04-27 | Novo Nordisk A/S | New compounds, their preparation and use |
| WO2000023415A1 (en) | 1998-10-21 | 2000-04-27 | Novo Nordisk A/S | New compounds, their preparation and use |
| JP2002527516A (en) | 1998-10-21 | 2002-08-27 | ノボ ノルディスク アクティーゼルスカブ | New compounds, their production and use |
| AU6325899A (en) | 1998-10-21 | 2000-05-08 | Dr. Reddy's Research Foundation | New compounds, their preparation and use |
| JP2002527507A (en) | 1998-10-21 | 2002-08-27 | ノボ ノルディスク アクティーゼルスカブ | New compounds, their preparation and use |
| JP2002527520A (en) | 1998-10-21 | 2002-08-27 | ノボ ノルディスク アクティーゼルスカブ | New compounds, their production and use |
| US6420137B1 (en) * | 1998-11-25 | 2002-07-16 | American Home Products Corporation | Nucleic acid encoding human neurotensin subtype 2 receptor |
| CN1137125C (en) | 1998-12-18 | 2004-02-04 | 诺沃挪第克公司 | Fused 1,2,4-thiadiazine derivatives, their preparation and use |
| WO2000041121A1 (en) | 1999-01-07 | 2000-07-13 | Ccrewards.Com | Method and arrangement for issuance and management of digital coupons and sales offers |
| WO2000042026A1 (en) * | 1999-01-15 | 2000-07-20 | Novo Nordisk A/S | Non-peptide glp-1 agonists |
| EP1147092A1 (en) | 1999-01-18 | 2001-10-24 | Novo Nordisk A/S | Substituted imidazoles, their preparation and use |
| EP1173438A1 (en) | 1999-04-16 | 2002-01-23 | Novo Nordisk A/S | Substituted imidazoles, their preparation and use |
| WO2000063193A1 (en) | 1999-04-16 | 2000-10-26 | Dr. Reddy's Research Foundation | Novel polymorphic forms of an antidiabetic agent: process for their preparation and a pharmaceutical composition containing them |
| AU3831300A (en) | 1999-04-16 | 2000-11-02 | Dr. Reddy's Laboratories Limited | Novel polymorphic forms of an antidiabetic agent: process for their preparation and pharmaceutical compositions containing them |
| AU2953699A (en) | 1999-04-16 | 2000-11-02 | Dr. Reddy's Research Foundation | Novel polymorphic forms of an antidiabetic agent: process for their preparation and a pharmaceutical composition containing them |
| WO2000063209A1 (en) | 1999-04-20 | 2000-10-26 | Novo Nordisk A/S | New compounds, their preparation and use |
| HUP0200807A3 (en) | 1999-04-20 | 2003-03-28 | Novo Nordisk As | Substituted propionic acid derivatives, process for their preparation, pharmaceutical compositions containing them and their use |
| EP1171431A1 (en) | 1999-04-20 | 2002-01-16 | Novo Nordisk A/S | Compounds, their preparation and use |
| AU3958200A (en) | 1999-04-20 | 2000-11-02 | Novo Nordisk A/S | New compounds, their preparation and use |
| AU3957600A (en) | 1999-04-26 | 2000-11-10 | Boehringer Ingelheim International Gmbh | Piperidyl-imidazole derivatives, their preparations and therapeutic uses |
| EP1076066A1 (en) | 1999-07-12 | 2001-02-14 | Zealand Pharmaceuticals A/S | Peptides for lowering blood glucose levels |
| US6528486B1 (en) * | 1999-07-12 | 2003-03-04 | Zealand Pharma A/S | Peptide agonists of GLP-1 activity |
| WO2001057084A1 (en) | 2000-01-31 | 2001-08-09 | Novo Nordisk A/S | Crystallisation of a glp-1 analogue |
| US6844321B2 (en) * | 2000-01-31 | 2005-01-18 | Novo Nordisk A/S | Crystallization of a GLP-1 analogue |
| AU2001228325A1 (en) | 2000-02-01 | 2001-08-14 | Novo-Nordisk A/S | Use of compounds for the regulation of food intake |
| US20030040469A1 (en) * | 2000-03-08 | 2003-02-27 | Knudsen Liselotte Bjerre | Lowering serum lipids |
| GB0007071D0 (en) | 2000-03-24 | 2000-05-17 | Sams Bernard | One-way clutch mechanisms and injector devices |
| US6399089B1 (en) * | 2000-05-15 | 2002-06-04 | A. Glenn Braswell | Compositions and methods for regulating metabolism and balancing body weight |
| CA2412004C (en) | 2000-06-16 | 2010-12-21 | Eli Lilly And Company | Glucagon-like peptide-1 analogs |
| MXPA03000365A (en) | 2000-07-20 | 2003-05-27 | Hoffmann La Roche | Alpha-acyl and alpha-heteroatom-substituted benzene acetamide glucokinase activators. |
| EP1355942B1 (en) | 2000-12-07 | 2008-08-27 | Eli Lilly And Company | Glp-1 fusion proteins |
| ES2249384T3 (en) * | 2000-12-12 | 2006-04-01 | Neurogen Corporation | ESPIRO (ISOBENZOFURAN-1,4'-PIPERADIN) -3-ONAS AND 3H-ESPIROBENZOFURAN-1,4-PIPERIDINAS. |
| US20020187926A1 (en) * | 2001-03-07 | 2002-12-12 | Knudsen Liselotte Bjerre | Combined use of derivatives of GLP-1 analogs and PPAR ligands |
| JP5562510B2 (en) | 2001-06-28 | 2014-07-30 | ノヴォ ノルディスク アー/エス | Stable formulation of modified GLP-1 |
| GB0121709D0 (en) | 2001-09-07 | 2001-10-31 | Imp College Innovations Ltd | Food inhibition agent |
| US7041646B2 (en) * | 2001-10-05 | 2006-05-09 | Bayer Pharmaceuticals Corporation | Methods of treating type 2 diabetes with peptides acting as both GLP-1 receptor agonists and glucagon receptor antagonists |
| AU2002351752A1 (en) * | 2001-12-29 | 2003-07-30 | Novo Nordisk A/S | Combined use of a glp-1 compound and another drug for treating dyslipidemia |
| US7482321B2 (en) | 2002-01-08 | 2009-01-27 | Eli Lilly And Company | Extended glucagon-like peptide-1 analogs |
| WO2003057235A2 (en) | 2002-01-10 | 2003-07-17 | Imperial College Innovations Ltd | Modification of feeding behavior |
| AU2003239478A1 (en) | 2002-06-04 | 2003-12-22 | Eli Lilly And Company | Modified glucagon-like peptide-1 analogs |
| DE10229138B4 (en) | 2002-06-28 | 2008-01-31 | Tecpharma Licensing Ag | Product diverter with piston rod emergency reset |
| EP1569682A2 (en) | 2002-12-03 | 2005-09-07 | Novo Nordisk A/S | Combination treatment using exendin-4 and thiazolidinediones |
| WO2005046716A1 (en) * | 2003-11-13 | 2005-05-26 | Novo Nordisk A/S | Soluble pharmaceutical compositions for parenteral administration comprising a glp-1 peptide and a insulin peptide of short time action for treatment of diabetes and bulimia |
-
2004
- 2004-12-09 JP JP2006543367A patent/JP4865565B2/en not_active Expired - Fee Related
- 2004-12-09 EP EP04801177A patent/EP1694356B1/en not_active Expired - Lifetime
- 2004-12-09 DE DE602004031455T patent/DE602004031455D1/en not_active Expired - Lifetime
- 2004-12-09 AT AT04801177T patent/ATE498404T1/en not_active IP Right Cessation
- 2004-12-09 EP EP10183491.9A patent/EP2298337B1/en not_active Expired - Lifetime
- 2004-12-09 WO PCT/DK2004/000853 patent/WO2005056036A2/en not_active Ceased
-
2006
- 2006-06-07 US US11/448,545 patent/US20070082844A1/en not_active Abandoned
-
2010
- 2010-05-12 US US12/778,541 patent/US9486504B2/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6268343B1 (en) * | 1996-08-30 | 2001-07-31 | Novo Nordisk A/S | Derivatives of GLP-1 analogs |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008143835A1 (en) * | 2007-05-15 | 2008-11-27 | Yale University | Ghrelin protects substantia nigra dopamine neurons |
| US20100216706A1 (en) * | 2007-05-15 | 2010-08-26 | Horvath Tamas L | Ghrelin Protects Substantia Nigra Dopamine Neurons |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2005056036A2 (en) | 2005-06-23 |
| EP2298337B1 (en) | 2017-02-22 |
| ATE498404T1 (en) | 2011-03-15 |
| EP1694356A2 (en) | 2006-08-30 |
| EP2298337A3 (en) | 2011-06-01 |
| EP2298337A2 (en) | 2011-03-23 |
| JP2008504217A (en) | 2008-02-14 |
| US9486504B2 (en) | 2016-11-08 |
| US20100222277A1 (en) | 2010-09-02 |
| DE602004031455D1 (en) | 2011-03-31 |
| EP1694356B1 (en) | 2011-02-16 |
| WO2005056036A3 (en) | 2005-09-09 |
| JP4865565B2 (en) | 2012-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8853157B2 (en) | Methods of treating steroid-induced obesity using GLP-1 agonists | |
| Bodnaruc et al. | Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review | |
| ES2224659T3 (en) | GLUCAGON TYPE I PEPTIDE (GLP-1) IMPROVES THE RESPONSE OF BETA GLUCOSE CELLS IN SUBJECTS WITH TOLERANCE DETERIORATED TO GLUCOSE. | |
| JP5415067B2 (en) | Compositions and methods for the control, prevention and treatment of obesity and eating disorders | |
| Cooke et al. | The obesity pipeline: current strategies in the development of anti-obesity drugs | |
| Cani et al. | Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor | |
| P Bhat et al. | Current drug targets in obesity pharmacotherapy–a review | |
| Roth et al. | GLP‐1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities | |
| Sebokova et al. | Dipeptidyl peptidase IV inhibitors: the next generation of new promising therapies for the management of type 2 diabetes | |
| Hope et al. | No guts, no loss: toward the ideal treatment for obesity in the twenty-first century | |
| JP2005535569A (en) | GLP-1 agonists and cardiovascular complications | |
| Mudaliar et al. | Incretin therapies: effects beyond glycemic control | |
| JP2006515351A (en) | Correction of eating behavior | |
| Chen | Regulation of food intake and the development of anti-obesity drugs | |
| Psaltis et al. | Incretin‐based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future | |
| US9486504B2 (en) | Regulation of food preference using GLP-1 agonists | |
| Mráziková et al. | Lipidized prolactin-releasing peptide as a new potential tool to treat obesity and type 2 diabetes mellitus: preclinical studies in rodent models | |
| EP1453541A1 (en) | Use of a glucokinase activator in combination with a glucagon antagonist for treating type 2 diabetes | |
| Hou et al. | Therapeutic potential of vasoactive intestinal peptide and its receptor VPAC2 in type 2 diabetes | |
| Grandl et al. | Gut peptide agonism in the treatment of obesity and diabetes | |
| Larsen | Mechanisms behind GLP-1 induced weight loss | |
| Tanaka et al. | The role of incretins in salt-sensitive hypertension: the potential use of dipeptidyl peptidase-IV inhibitors | |
| US20030138416A1 (en) | Use of glucokinase activator in combination with a glucagon antagonist for treating type 2 diabetes | |
| Plamboeck et al. | Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both involved in regulating the metabolic stability of glucagon-like peptide-1 in vivo | |
| US20240091318A1 (en) | Combination therapy comprising long acting glp-1/glucagon and npy2 receptor agonists |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NOVO NORDISK A/S, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAUN, KIRSTEN;VON VOSS, PIA;KNUDSEN, LISELOTTE BJERRE;AND OTHERS;REEL/FRAME:018814/0345;SIGNING DATES FROM 20060818 TO 20060821 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |