US20070039527A1 - Method and plant for the treatment of materials, in particular waste materials and refuse - Google Patents
Method and plant for the treatment of materials, in particular waste materials and refuse Download PDFInfo
- Publication number
- US20070039527A1 US20070039527A1 US10/553,784 US55378404A US2007039527A1 US 20070039527 A1 US20070039527 A1 US 20070039527A1 US 55378404 A US55378404 A US 55378404A US 2007039527 A1 US2007039527 A1 US 2007039527A1
- Authority
- US
- United States
- Prior art keywords
- reactor
- treatment
- combustion
- gases
- materials according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 80
- 239000002699 waste material Substances 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 title claims description 40
- 239000007789 gas Substances 0.000 claims abstract description 63
- 238000002485 combustion reaction Methods 0.000 claims abstract description 48
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000001301 oxygen Substances 0.000 claims abstract description 30
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 30
- 239000000126 substance Substances 0.000 claims abstract description 9
- 230000006735 deficit Effects 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000003517 fume Substances 0.000 claims description 15
- 238000004064 recycling Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000002893 slag Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 12
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- 231100000331 toxic Toxicity 0.000 claims description 8
- 230000002588 toxic effect Effects 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 5
- 239000011324 bead Substances 0.000 claims description 4
- 239000000428 dust Substances 0.000 claims description 4
- 229910001385 heavy metal Inorganic materials 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000011343 solid material Substances 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 239000010802 sludge Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 2
- 239000000567 combustion gas Substances 0.000 abstract description 6
- 239000002956 ash Substances 0.000 description 14
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 150000002013 dioxins Chemical class 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 150000002240 furans Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical group 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/006—General arrangement of incineration plant, e.g. flow sheets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/008—Incineration of waste; Incinerator constructions; Details, accessories or control therefor adapted for burning two or more kinds, e.g. liquid and solid, of waste being fed through separate inlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/50—Control or safety arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L7/00—Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L7/00—Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
- F23L7/002—Supplying water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L7/00—Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
- F23L7/007—Supplying oxygen or oxygen-enriched air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/99001—Cold flame combustion or flameless oxidation processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2202/00—Combustion
- F23G2202/10—Combustion in two or more stages
- F23G2202/106—Combustion in two or more stages with recirculation of unburned solid or gaseous matter into combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2202/00—Combustion
- F23G2202/20—Combustion to temperatures melting waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2202/00—Combustion
- F23G2202/30—Combustion in a pressurised chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2206/00—Waste heat recuperation
- F23G2206/20—Waste heat recuperation using the heat in association with another installation
- F23G2206/203—Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2900/00—Special features of, or arrangements for incinerators
- F23G2900/50006—Combustion chamber walls reflecting radiant energy within the chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J1/00—Removing ash, clinker, or slag from combustion chambers
- F23J1/08—Liquid slag removal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L2900/00—Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
- F23L2900/07005—Injecting pure oxygen or oxygen enriched air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L2900/00—Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
- F23L2900/07008—Injection of water into the combustion chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/12—Heat utilisation in combustion or incineration of waste
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/32—Direct CO2 mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Definitions
- the present invention relates to a method and to a plant for the treatment of materials of various types and, in particular but in non-limiting manner, waste materials and refuse.
- the invention has been developed with particular reference to a plant which can receive as inputs any materials in solid, granular or liquid form or as sludges, and to a method which brings about the treatment thereof with the production of inert slag and gases which can easily be disposed of without damage to the environment.
- the method is preferably implemented by maintaining a pressure of between 30 and 100 bar inside the reactor, although the use of lower pressures, even only slightly above atmospheric pressure, is not excluded, in order in any case to bring about complete molecular dissociation of the materials and their sublimation inside the reactor, once the most suitable application times and temperatures for the type of material to be treated have been established.
- the transients that are implicit in the method do not ensure, at every moment during the course of the reaction and for any type of combustible material, the absence of relatively cold zones of the reactor where the volatile organic substances generated by the heating of the combustible material can recombine to form substances that are kinetically slow to oxidise, more stable thermally and, unfortunately, more toxic, such as dioxins, furans and polyaromatics.
- compositions of the incombustible ashes of the refuse also include compositions of metal oxides which do not sublime and therefore accumulate in the reactor.
- the above-mentioned plants and methods, implemented at both pilot and industrial level, have provided satisfactory results.
- it is necessary and appropriate to implement improvements which ensure, as far as possible, that the volatile organic substances produced are not in conditions such that they recombine to form substances which are kinetically slow to oxidise, more stable thermally and, unfortunately, more toxic such as dioxins and furans.
- the object of the present invention is therefore to provide a method and plant which satisfy the above-mentioned requirements in most cases and which at the same time are effective, easy to implement, and very reliable in use.
- U.S. Pat. No. 6,029,588 describes the combustion of combustible materials, including toxic refuse, in a rotary cylindrical reactor which is supplied with the combustible material, with the combustion supporter, and with preheated recycled combustion gases, the incombustible ashes being discharged at the base of the rotary drum.
- U.S. Pat. No. 5,309,850 provides for the treatment of sludges with high solids and water content in a reactor which brings about combustion of the organic substances and fusion of the incombustible ashes with subsequent solidification as inert vitreous slag.
- the reactor is supplied with sludges, combustion supporter and combustion fumes which are recycled to the reactor after the removal of water vapour by condensation and reheating.
- the fumes have the dual purpose of a thermal moderator and a vehicle for the removal of the large quantities of water that are introduced with the sludge.
- the subject of the present invention is a method and a plant having the characteristics indicated in claims 1 and 15 , respectively, which are appended to the present description.
- the plant comprises a combustion reactor which is substantially isothermic or quasi-isothermic in use at high or very temperature, including the walls, and without substantial oxygen deficit, in all of its parts.
- the means for bringing about the high exchanges and transfers of heat between the walls of the reactor and the supplied and combustion gases, and between those gases and the combustible material (mainly with the solid combustible material), is represented by IR (infra-red) radiation which leads to exchange flows and heat transfer which are greater the higher is the temperature (proportional to T 4 ).
- combustion with oxygen produces mixtures of gases with a high concentration (greater than approximately 90% by volume) of compounds which are strong absorbers-emitters of IR radiation, such as CO 2 and H 2 O (particularly the latter), that is, which are “opaque” gases and, furthermore, that this intrinsic characteristic can be further strengthened by increasing the volume density of those gases, that is, the total pressure of the combustion chamber.
- the recycled gases can perform the function of ensuring the thermal balance of a continuously operated plant by removing the excess reaction heat, owing to an appreciable heat difference between the input and the output of the reactor.
- the minimum recycling flow-rate of gases to be selected in order to minimize the impact on the reaction volume is accompanied by low temperatures of the recycled gases (just above the dew point of the burnt gases, that is about 500° K, to avoid the use of materials which are bound to a high degree in contact with acid condensates).
- the above-described instantaneous heating of the recycling stream enables the recycling temperature to be reduced to the minimum.
- the recirculation gases resulting from combustion are supplied at minimized flow-rate and/or temperature so as to minimize the overall volume of gas in the reactor for a given time spent in the reactor by the gases and to ensure the removal of the reaction heat from the reactor.
- the introduction of the water into the recirculation stream may go as far as total replacement of the fumes as recycling agent. However, it is not advisable to go so far as to cover the descending portion, from the optimum, which arises owing to the predominance of the negative effects of the reduction of the useful reaction volume due to the unfavourable differential of the molar specific heat of water in comparison with carbon dioxide.
- a substantially continuous method is therefore configured and is implemented in a compact reactor of limited dimensions, preferably but in non-limiting manner with a ceramic lining, by means of the use of technical oxygen and of pressure, at high or very high temperatures (preferably above 1900° K), and therefore with high energy exchanges between the walls, between the gases and the walls, and vice versa, with rapid heating of the combustible material and of the combustion supporter by radiation, substantially very close to the isothermic profile which constitutes one of the principal characteristics of the present invention.
- reaction pressure can be modulated (from atmospheric pressure preferably up to about 600 kpa) in dependence on the type of refuse, to ensure, for every part of the reactor, a large quantity of oxygen per unit reactor volume in a limited volume (known in the field as a hold-up) in spite of the reduction in density of the gas due to the high temperatures.
- Differences in the combustion phases flash, tar, char
- these differences give rise to situations of sudden and local oxygen-consumption peaks which are not detectable and in any case cannot be corrected by normal conventional sensor and control systems.
- the hold-up of oxygen offers a passive protection against the formation of oxygen deficit zones within the reactor by virtue of the high partial pressure of oxygen that is applicable for a given concentration at the output of the reactor, that is, without the waste of oxygen which would result if large excesses thereof, relative to the stoichiometric quantity that is necessary for theoretical correct combustion, were to be used.
- scorifiers such as silica and/or alkali-metal oxides to the combustible material supplied, at percentages which depend on the ash content of the combustible material supplied.
- the fused slag is preferably cooled and solidified as beads so as to ensure that the toxic heavy metals contained in the incombustible slag are rendered completely inert so that the release of heavy metals is below the legal limits in accordance with the solubilization in acetic acid test.
- the method of the present invention can ensure, over a wide range of types of materials in the physical form of solids, granular solids, liquids and sludges, the production, at the mouth of the reactor, of combustion fumes with a very low TOC (of the order of parts per million—ppm) and with a very low volatile ash content.
- TOC of the order of parts per million—ppm
- the performance of a method also depends on an effective control and management system.
- it is a distinctive feature of waste materials and refuse to elude effective characterization which can represent precisely the characteristics of the material that is supplied to the reactor.
- Efforts in this direction, in particular extensive characterizations assisted by statistical sampling and evaluation methods cannot overcome this distinctive feature of waste material and refuse.
- particularly efficacious optimization and control procedures such as MIMO (multiple input/multiple output) do not provide satisfactory results for the performance of the processes and for the optimization of costs, in view of uncertainties with regard to the characteristics of the material that is provided little by little to the reactor.
- control and optimization models are centred on the output parameters of the reactor, suitably adapted, for example, by speeding up the response times of the analytical sensors to render them comparable with the times that are characteristic of the phenomena involved in the reaction, the number of effective predictions for the control and for the optimization of operation can be substantially improved whilst effluent quality and safety performance are fully complied with.
- the plant and the method of the present invention have various advantageous characteristics which are innovative individually and taken as a whole, and conspicuous amongst which are: the provision of a reactor tending towards isothermy or quasi-isothermy at high temperature; the use of recirculation gases which are quantitatively minimized, minimizing temperature, but which, as such, under pressure enable a uniform high temperature to be reached in the reactor, in which a pressure greater than atmospheric pressure is, preferably but in non-limiting manner, maintained in use in order also to ensure the maximum hold-up of oxygen per unit volume, which can absorb uncontrolled fluctuations in combustion-supporter demand; immediate fusion in the reactor of the substances which cannot be gasified, saving them from dispersal as dust entrained in the combustion gases; and control of the output parameters of the reactor in order to control fluctuations due to the non-homogeneity of the materials supplied to the reactor.
- FIG. 1 shows an illustrative layout of the reactor and of the basic reaction circuit of a plant formed in accordance with the present invention.
- a plant for the treatment of materials comprises an oxidation reactor or chamber 10 with at least one input opening 11 through which the material to be treated is supplied.
- the plant of the present invention can treat solid materials in coarse pieces, loaded by means of a feeder 12 by means of a propulsion chamber 13 , as well as granular materials loaded by means of a feeder 14 , and liquids comprising in general terms, both mixtures of water and suspended and sedimented solids and viscous pitches or sludges of various densities and compositions, which are loaded into the reactor by means of a feeder 15 .
- Gaseous materials can also be loaded into the reactor 10 by means of a loader generally indicated 16 .
- the reactor 10 also comprises an input 17 to which oxygen coming from a duct 18 is supplied, mixed with a proportion of recirculated fumes coming from a duct 19 in accordance with procedures which will become clearer from the following portion of this description.
- a predetermined flow of steam may also be admitted to the duct 19 in a variable ratio according to the material treated.
- the flow-rate of oxygen is regulated automatically on the basis of the preset excess in the stream 25 output from the reactor 10 , within predefined ranges, on the basis of the quantity and quality of material supplied to the reactor which, preferably but in non-limiting manner, is admitted to the reactor in small and frequent loads.
- the reactor 10 comprises a shell, preferably made of metal and lined with a ceramic coating, and cooled externally by cooling water coming from a feeder 20 .
- the incombustible slag which is produced inside the reactor collects on its base 21 which is inclined towards an output duct 22 which, preferably but in non-limiting manner, comprises a tube made of a material with a high melting point (e.g. molybdenum, tantalum, or tungsten, treated to resist oxidation, or silicon carbide), which is heated to keep the slag liquid, and is disposed in the vicinity of a closure end 23 of the reactor 10 .
- a high melting point e.g. molybdenum, tantalum, or tungsten, treated to resist oxidation, or silicon carbide
- the liquid slag is cooled rapidly (“quenched”) in a water bath with the formation of solid beads so as to form a very dilute sludge in water which is then sent continuously from a collecting tank 24 for subsequent filtration and disposal by known means, for example, by means of a filter (not shown).
- a output duct 25 is provided on the closure end 23 of the reactor 10 and supplies the gas that is generated inside the reactor 10 towards means for recovering energy by the exchange of heat of the gases output from the reactor by known systems, which means will be identified below for simplicity of description by the term “boiler” which should be understood in its broadest sense.
- a boiler 26 which is preferably but in non-limiting manner of the type with smoke tubes, generates and superheats steam from supply water coming from a duct 27 .
- the superheated steam leaves the boiler 26 through a duct 35 and is sent for generally known uses, for example, for the supply of a turbine or the like.
- the gas output from the reactor 10 through the duct 25 is mixed with the moderator recycling gas supplied through a duct 28 .
- the moderator recycling gas represents a portion of the gas output from the boiler 26 through a duct 29 , optionally further cooled by a conventional system (not shown) and repressurized by means of a blower 30 .
- the portion of moderator recycling gas which is not sent to the duct 28 to be mixed with the gases output from the reactor 10 is sent towards a duct 31 on which a regulation system 32 acts, admitting a regulated quantity of gas into the duct 19 in order to mix it, as described above, with the oxygen supplied to the input of the reactor 10 through the duct 18 .
- the function of the stream which passes through the duct 31 is also to ensure the thermal balance of the reactor by means of an appreciable input/output heat difference to prevent the skin temperature of the coating exceeding the limits permitted for special refractory materials (about 2130° K).
- the regulator 32 is therefore modulated on the basis of the temperature sensor at the output from the reactor 10 in the stream passing through the duct 25 .
- the recirculation gases which ensure the thermal balance of plant operate continuously by removing excess reaction heat owing to the appreciable heat difference between the input and the output of the reactor and are recycled at the minimum temperature that is compatible with normal cooling means and preferably just above the dew point.
- the portion of gas output from the boiler 26 which is not recycled towards the duct 29 is expanded by an expansion valve 33 and subsequently sent to a smoke line 34 of generally known type.
- a portion of this output gas is preferably withdrawn through a duct 36 and used to pressurize the propulsion chamber 13 for the periodic admission of the solid material into the reactor 10 .
- the various components of the above-described plant are preferably mounted on one or more slides for easy transportation and mounting of the plant in the place of use.
- the method for the treatment of the materials which is implemented by the plant described above is controlled as a whole by an electronic processor which ensures that the combustion gases remain inside the reactor 10 for a predetermined minimum period of time, preferably but in non-limiting manner of about 2 seconds, at a predetermined minimum guaranteed uniform temperature, preferably but in non-limiting manner of about 1500° C.
- the combustion supporter which is supplied into the reactor 10 and which comprises a proportionally predetermined mixture of oxygen (gas transparent to IR) and moderator recycling gas, is immediately irradiated because it is highly opaque to infra-red.
- This behaviour is ensured by the absence, or low concentration in the case of the use of enriched air, of nitrogen (a gas which is transparent to IR) in the combustion-supporter mixture and by the predominant presence, instead, of carbon dioxide and of water (markedly of the latter) of which the moderator recycling gas is constituted.
- the recycled gas and the fumes that are generated behave as efficient emitters of infra-red energy which, also by virtue of the working pressures of the reactor 10 which are preferably but in non-limiting manner between 0.5 and 6 bar, thus enable a uniform temperature to be maintained inside the reactor 10 .
- the control system arranges for the implementation of a balancing regulation, which uses a determination that is not upset by the weight of the material supplied, by means of a measurement in the loading systems in a position upstream of the propulsion chambers.
- the control system intervenes instantaneously to keep the temperature and the time spent by the gases inside the reactor 10 above predetermined minimum thresholds and, in the second place, on the flow-rate of the oxygen and on the flow-rate of the refuse, that is, on the loading frequency thereof, to ensure a good quality of the gases output from the reactor 10 .
- a MIMO (multiple input/multiple output) code uses a broader range of operating data and, in particular, measurements of the composition of the gases at the output of the reactor, which are performed with characteristic response times of about, but in non-limiting manner, 2 seconds, and calculates strategies for optimizing operation for a satisfactory productivity of the material-treatment method and for the reduction of unitary and running costs.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Processing Of Solid Wastes (AREA)
- Incineration Of Waste (AREA)
- Gasification And Melting Of Waste (AREA)
- Fertilizers (AREA)
- Pretreatment Of Seeds And Plants (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Storage Of Fruits Or Vegetables (AREA)
Abstract
A plant for the treatment of materials, in particular waste materials and refuse, comprises a combustion reactor to which the material to be treated can be supplied. The Combustion reactor has an input for a combustion supporter comprising oxygen and an output for the gases that are produced during the combustion of the material inside the reactor and, in use, is substantially isothermic or quasi-isothermic or quasi-isothermic at high or very high temperature, and without substantial oxygen deficit, in all of its parts. A portion of the combustion gases is recirculated and mixed with the combustion supporter to bring about a high degree of opacification thereof, which is increased by increasing the total pressure of the combustion chamber. The substances which cannot be gasified inside the reactor are immediately fused. The parameters of the gases at the output from the reactor are constantly measured by sensors with response-time characteristics of about 2 seconds.
Description
- This application is a National Stage entry of International Application No. PCT/IB2004/001220, filed Apr. 22, 2004, the entire specification claims and drawings of which are incorporated herewith by reference.
- The present invention relates to a method and to a plant for the treatment of materials of various types and, in particular but in non-limiting manner, waste materials and refuse.
- The invention has been developed with particular reference to a plant which can receive as inputs any materials in solid, granular or liquid form or as sludges, and to a method which brings about the treatment thereof with the production of inert slag and gases which can easily be disposed of without damage to the environment.
- A known method and plant of the type indicated above are described in U.S. Pat. No. 5,337,683 and subsequent improvements in the same applicant's patent application WO 02/081970. This patent relates to a method which enables materials, for example, waste materials and refuse, to be treated in order to ensure easy and economic disposal thereof by the introduction of the materials into a pressurized reactor into which air enriched with oxygen, possibly up to 100% (that is, pure oxygen, at least within the limits achievable with the technical means available) is injected. The high temperature reached in the reactor causes complete dissociation of the molecular bonds of the material to be treated and its sublimation.
- As described in the above-mentioned U.S. Pat. No. 5,337,683, the method is preferably implemented by maintaining a pressure of between 30 and 100 bar inside the reactor, although the use of lower pressures, even only slightly above atmospheric pressure, is not excluded, in order in any case to bring about complete molecular dissociation of the materials and their sublimation inside the reactor, once the most suitable application times and temperatures for the type of material to be treated have been established.
- Another known method is described in the same applicant's WO 02/081970 which improves the method described above, enabling the pressure inside the reactor to be regulated by modulating it between a minimum value and a maximum value in accordance with predetermined rules of variation, thus increasing the yield and reducing the time required for the complete dissociation of the molecular bonds of the material inside the reactor, without thereby requiring excessively high temperatures and pressures which would result in an increase in the design and constructional complexity of the reactor.
- However, the transients that are implicit in the method do not ensure, at every moment during the course of the reaction and for any type of combustible material, the absence of relatively cold zones of the reactor where the volatile organic substances generated by the heating of the combustible material can recombine to form substances that are kinetically slow to oxidise, more stable thermally and, unfortunately, more toxic, such as dioxins, furans and polyaromatics.
- The infinite variety of compositions of the incombustible ashes of the refuse also include compositions of metal oxides which do not sublime and therefore accumulate in the reactor. The above-mentioned plants and methods, implemented at both pilot and industrial level, have provided satisfactory results. However, it has emerged from accrued experience, that it is necessary and appropriate to implement improvements which ensure, as far as possible, that the volatile organic substances produced are not in conditions such that they recombine to form substances which are kinetically slow to oxidise, more stable thermally and, unfortunately, more toxic such as dioxins and furans.
- The object of the present invention is therefore to provide a method and plant which satisfy the above-mentioned requirements in most cases and which at the same time are effective, easy to implement, and very reliable in use.
- U.S. Pat. No. 6,029,588 describes the combustion of combustible materials, including toxic refuse, in a rotary cylindrical reactor which is supplied with the combustible material, with the combustion supporter, and with preheated recycled combustion gases, the incombustible ashes being discharged at the base of the rotary drum.
- However, the combustion-temperature ceiling, which is represented by the fusion temperature of the ashes, and the presence of inevitable cold zones on the supply side (which are typical in the art) lead to the production of toxic organic by-products (dioxins and furans, etc.) which are transported by the fumes. An increase in dust (volatile ashes) which is entrained by the fumes and which contains heavy metals that are well known to be toxic, is also observed and is particularly marked as the temperature of the reactor increases. As a result, there is therefore a substantially increased load on the techniques for the after-treatment of the fumes and the problem of the organic and inorganic toxic substances is shifted from the combustion gases to liquid and solid phases, the disposal of which is problematical (and which give rise to so-called permanent leaching).
- U.S. Pat. No. 5,309,850 provides for the treatment of sludges with high solids and water content in a reactor which brings about combustion of the organic substances and fusion of the incombustible ashes with subsequent solidification as inert vitreous slag. The reactor is supplied with sludges, combustion supporter and combustion fumes which are recycled to the reactor after the removal of water vapour by condensation and reheating. The fumes have the dual purpose of a thermal moderator and a vehicle for the removal of the large quantities of water that are introduced with the sludge.
- However, although the recycled fumes from which the water has been removed are preheated, they do not eliminate the cold zones on the supply side of the reactor, with the consequences that are known in the art with regard to the formation of toxic organic substances, and the temperatures reached during combustion permit only partial segregation of the incombustible ashes and in particular of the melting fraction, since the volatile component of the ashes is entrained in the combustion fumes.
- In order to achieve the object indicated above, the subject of the present invention is a method and a plant having the characteristics indicated in
claims 1 and 15, respectively, which are appended to the present description. - In particular, experiments carried out by the Applicant have made available data which has led to the identification of the fundamental characteristics of a combustion reactor, or more generally, an oxidation chamber, in a plant according to the present invention. In greater detail, the plant comprises a combustion reactor which is substantially isothermic or quasi-isothermic in use at high or very temperature, including the walls, and without substantial oxygen deficit, in all of its parts.
- In a particular embodiment of the present invention, the means for bringing about the high exchanges and transfers of heat between the walls of the reactor and the supplied and combustion gases, and between those gases and the combustible material (mainly with the solid combustible material), is represented by IR (infra-red) radiation which leads to exchange flows and heat transfer which are greater the higher is the temperature (proportional to T4).
- Surprisingly, it has been found that combustion with oxygen produces mixtures of gases with a high concentration (greater than approximately 90% by volume) of compounds which are strong absorbers-emitters of IR radiation, such as CO2 and H2O (particularly the latter), that is, which are “opaque” gases and, furthermore, that this intrinsic characteristic can be further strengthened by increasing the volume density of those gases, that is, the total pressure of the combustion chamber.
- Similarly, it has also surprisingly been found that, during combustion with technical oxygen, the mixing of the cool oxygen with combustion fumes (in a concentration greater than 10% by volume and preferably greater than 60% by volume) produces a mixture which ensures a high degree of “opacification” of the combustion supporter, and even more so when operating under pressure and, therefore, in an irradiated reactor, ensures almost instantaneous heating of the combustion supporter supplied, to temperatures above 1300° K.
- The large cold zones in the vicinity of the supply which are typical of combustion supporters of the prior art with oxygen and/or air combustion supporter (in view of the fact that both oxygen O2 and nitrogen N2 are gases that are transparent to IR) can thus be eliminated in the above-mentioned particular embodiment of the invention.
- An advantage of the method indicated above is also clear in the determination of the stream of recycled gases. It is in fact known in the art that the recycled gases can perform the function of ensuring the thermal balance of a continuously operated plant by removing the excess reaction heat, owing to an appreciable heat difference between the input and the output of the reactor. The minimum recycling flow-rate of gases to be selected in order to minimize the impact on the reaction volume is accompanied by low temperatures of the recycled gases (just above the dew point of the burnt gases, that is about 500° K, to avoid the use of materials which are bound to a high degree in contact with acid condensates). The above-described instantaneous heating of the recycling stream enables the recycling temperature to be reduced to the minimum. Preferably, the recirculation gases resulting from combustion are supplied at minimized flow-rate and/or temperature so as to minimize the overall volume of gas in the reactor for a given time spent in the reactor by the gases and to ensure the removal of the reaction heat from the reactor.
- In the present invention, therefore, in contrast with the teachings of U.S. Pat. Nos. 5,309,850 and 6,029,588 which provide for the withdrawal of the recycling stream from the fumes after separation of the water by condensation and preheating prior to recycling to the reactor, the presence of the water in the recycling stream is instead encouraged in order to strengthen the radiating flows away from and towards the gas in every part of the reaction chamber to the extent of possibly providing for the injection of water into the recycling stream, for example, for predominantly carbon materials and materials with low moisture content, in order to bring the concentration of water in the recirculation stream at least to more than 10% by volume, preferably more than 20% by volume and even more preferably more than 30% by volume. The introduction of the water into the recirculation stream may go as far as total replacement of the fumes as recycling agent. However, it is not advisable to go so far as to cover the descending portion, from the optimum, which arises owing to the predominance of the negative effects of the reduction of the useful reaction volume due to the unfavourable differential of the molar specific heat of water in comparison with carbon dioxide.
- In a further preferred embodiment of the invention, a substantially continuous method is therefore configured and is implemented in a compact reactor of limited dimensions, preferably but in non-limiting manner with a ceramic lining, by means of the use of technical oxygen and of pressure, at high or very high temperatures (preferably above 1900° K), and therefore with high energy exchanges between the walls, between the gases and the walls, and vice versa, with rapid heating of the combustible material and of the combustion supporter by radiation, substantially very close to the isothermic profile which constitutes one of the principal characteristics of the present invention.
- Another advantageous characteristic of the invention results from the fact that it has surprisingly been found that the reaction pressure can be modulated (from atmospheric pressure preferably up to about 600 kpa) in dependence on the type of refuse, to ensure, for every part of the reactor, a large quantity of oxygen per unit reactor volume in a limited volume (known in the field as a hold-up) in spite of the reduction in density of the gas due to the high temperatures. Differences in the combustion phases (flash, tar, char) in fact arise with variations in the type of material to be treated and, in particular, as a result of variability in the characteristics even of the same waste material or refuse; these differences give rise to situations of sudden and local oxygen-consumption peaks which are not detectable and in any case cannot be corrected by normal conventional sensor and control systems. The hold-up of oxygen offers a passive protection against the formation of oxygen deficit zones within the reactor by virtue of the high partial pressure of oxygen that is applicable for a given concentration at the output of the reactor, that is, without the waste of oxygen which would result if large excesses thereof, relative to the stoichiometric quantity that is necessary for theoretical correct combustion, were to be used.
- Another advantageous characteristic of the invention results from the further surprising observation of the efficacy with which the reactor of the present invention can operate on incombustible slag. It has been observed that the high rate of heating of the combustible material (solid or of the solid fraction) by radiation, in contrast with the prior art (e.g. U.S. Pat. No. 5,309,850), leads to a considerable reduction in the fraction of dust that is entrained out of the reactor with the burnt gases, and a parallel increase in the fused liquid ash segregated in the reactor. It is assumed, but this interpretation is not limiting, that the compact reactor with low gas transit speeds and high heating rate renders fusion competitive with the removal of the dusty ashes by the gases. Moreover, the low formation of volatile ashes, even with the supply of combustible materials with a high dusty-fraction content, leads to the assumption, although this interpretation should not be considered limiting, that the high degree of radiation of the method also leads to the liquefaction of volatile ashes of whatever provenance in the gas, and that coalescence phenomena operate on the liquid particles; it is well known that these phenomena are not active on solid particles of volatile ashes owing to the electrical charges.
- To facilitate the extraction of the fused slag from the reactor, it is preferable but not essential to add scorifiers such as silica and/or alkali-metal oxides to the combustible material supplied, at percentages which depend on the ash content of the combustible material supplied.
- The fused slag is preferably cooled and solidified as beads so as to ensure that the toxic heavy metals contained in the incombustible slag are rendered completely inert so that the release of heavy metals is below the legal limits in accordance with the solubilization in acetic acid test.
- As a whole, the method of the present invention can ensure, over a wide range of types of materials in the physical form of solids, granular solids, liquids and sludges, the production, at the mouth of the reactor, of combustion fumes with a very low TOC (of the order of parts per million—ppm) and with a very low volatile ash content. This substantially simplifies the techniques for the after-treatment of the combustion fumes and renders the disposal of the liquid/solid phases used in the after-treatment much less problematical environmentally.
- With reference to a further advantageous characteristic of the present invention, it has been observed that, in general, the performance of a method also depends on an effective control and management system. In particular, it has been observed that it is a distinctive feature of waste materials and refuse to elude effective characterization which can represent precisely the characteristics of the material that is supplied to the reactor. Efforts in this direction, in particular extensive characterizations assisted by statistical sampling and evaluation methods cannot overcome this distinctive feature of waste material and refuse. As a result, particularly efficacious optimization and control procedures such as MIMO (multiple input/multiple output) do not provide satisfactory results for the performance of the processes and for the optimization of costs, in view of uncertainties with regard to the characteristics of the material that is provided little by little to the reactor. The idea has therefore been conceived of shifting attention from the input parameters to the output parameters of the reactor. It has surprisingly been found that, in contrast with the prior art, if control and optimization models are centred on the output parameters of the reactor, suitably adapted, for example, by speeding up the response times of the analytical sensors to render them comparable with the times that are characteristic of the phenomena involved in the reaction, the number of effective predictions for the control and for the optimization of operation can be substantially improved whilst effluent quality and safety performance are fully complied with.
- Basically, the plant and the method of the present invention have various advantageous characteristics which are innovative individually and taken as a whole, and conspicuous amongst which are: the provision of a reactor tending towards isothermy or quasi-isothermy at high temperature; the use of recirculation gases which are quantitatively minimized, minimizing temperature, but which, as such, under pressure enable a uniform high temperature to be reached in the reactor, in which a pressure greater than atmospheric pressure is, preferably but in non-limiting manner, maintained in use in order also to ensure the maximum hold-up of oxygen per unit volume, which can absorb uncontrolled fluctuations in combustion-supporter demand; immediate fusion in the reactor of the substances which cannot be gasified, saving them from dispersal as dust entrained in the combustion gases; and control of the output parameters of the reactor in order to control fluctuations due to the non-homogeneity of the materials supplied to the reactor.
- Further characteristics and advantages will become clear from the following detailed description of a preferred embodiment which is given by way of non-limiting example with reference to appended
FIG. 1 which shows an illustrative layout of the reactor and of the basic reaction circuit of a plant formed in accordance with the present invention. - With reference now to
FIG. 1 , a plant for the treatment of materials comprises an oxidation reactor orchamber 10 with at least one input opening 11 through which the material to be treated is supplied. In particular, the plant of the present invention can treat solid materials in coarse pieces, loaded by means of afeeder 12 by means of a propulsion chamber 13, as well as granular materials loaded by means of afeeder 14, and liquids comprising in general terms, both mixtures of water and suspended and sedimented solids and viscous pitches or sludges of various densities and compositions, which are loaded into the reactor by means of afeeder 15. Gaseous materials can also be loaded into thereactor 10 by means of a loader generally indicated 16. - The
reactor 10 also comprises aninput 17 to which oxygen coming from aduct 18 is supplied, mixed with a proportion of recirculated fumes coming from aduct 19 in accordance with procedures which will become clearer from the following portion of this description. A predetermined flow of steam may also be admitted to theduct 19 in a variable ratio according to the material treated. The flow-rate of oxygen is regulated automatically on the basis of the preset excess in thestream 25 output from thereactor 10, within predefined ranges, on the basis of the quantity and quality of material supplied to the reactor which, preferably but in non-limiting manner, is admitted to the reactor in small and frequent loads. - The
reactor 10 comprises a shell, preferably made of metal and lined with a ceramic coating, and cooled externally by cooling water coming from afeeder 20. The incombustible slag which is produced inside the reactor collects on itsbase 21 which is inclined towards anoutput duct 22 which, preferably but in non-limiting manner, comprises a tube made of a material with a high melting point (e.g. molybdenum, tantalum, or tungsten, treated to resist oxidation, or silicon carbide), which is heated to keep the slag liquid, and is disposed in the vicinity of aclosure end 23 of thereactor 10. The liquid slag is cooled rapidly (“quenched”) in a water bath with the formation of solid beads so as to form a very dilute sludge in water which is then sent continuously from a collectingtank 24 for subsequent filtration and disposal by known means, for example, by means of a filter (not shown). - A
output duct 25 is provided on the closure end 23 of thereactor 10 and supplies the gas that is generated inside thereactor 10 towards means for recovering energy by the exchange of heat of the gases output from the reactor by known systems, which means will be identified below for simplicity of description by the term “boiler” which should be understood in its broadest sense. Such aboiler 26, which is preferably but in non-limiting manner of the type with smoke tubes, generates and superheats steam from supply water coming from aduct 27. The superheated steam leaves theboiler 26 through aduct 35 and is sent for generally known uses, for example, for the supply of a turbine or the like. - Before entering the
boiler 26, the gas output from thereactor 10 through theduct 25 is mixed with the moderator recycling gas supplied through aduct 28. The moderator recycling gas represents a portion of the gas output from theboiler 26 through aduct 29, optionally further cooled by a conventional system (not shown) and repressurized by means of ablower 30. The portion of moderator recycling gas which is not sent to theduct 28 to be mixed with the gases output from thereactor 10 is sent towards aduct 31 on which aregulation system 32 acts, admitting a regulated quantity of gas into theduct 19 in order to mix it, as described above, with the oxygen supplied to the input of thereactor 10 through theduct 18. The function of the stream which passes through theduct 31 is also to ensure the thermal balance of the reactor by means of an appreciable input/output heat difference to prevent the skin temperature of the coating exceeding the limits permitted for special refractory materials (about 2130° K). Theregulator 32 is therefore modulated on the basis of the temperature sensor at the output from thereactor 10 in the stream passing through theduct 25. - The recirculation gases which ensure the thermal balance of plant operate continuously by removing excess reaction heat owing to the appreciable heat difference between the input and the output of the reactor and are recycled at the minimum temperature that is compatible with normal cooling means and preferably just above the dew point.
- The portion of gas output from the
boiler 26 which is not recycled towards theduct 29 is expanded by anexpansion valve 33 and subsequently sent to asmoke line 34 of generally known type. A portion of this output gas is preferably withdrawn through aduct 36 and used to pressurize the propulsion chamber 13 for the periodic admission of the solid material into thereactor 10. - The various components of the above-described plant are preferably mounted on one or more slides for easy transportation and mounting of the plant in the place of use.
- The method for the treatment of the materials which is implemented by the plant described above is controlled as a whole by an electronic processor which ensures that the combustion gases remain inside the
reactor 10 for a predetermined minimum period of time, preferably but in non-limiting manner of about 2 seconds, at a predetermined minimum guaranteed uniform temperature, preferably but in non-limiting manner of about 1500° C. - In particular, the combustion supporter which is supplied into the
reactor 10 and which comprises a proportionally predetermined mixture of oxygen (gas transparent to IR) and moderator recycling gas, is immediately irradiated because it is highly opaque to infra-red. This behaviour is ensured by the absence, or low concentration in the case of the use of enriched air, of nitrogen (a gas which is transparent to IR) in the combustion-supporter mixture and by the predominant presence, instead, of carbon dioxide and of water (markedly of the latter) of which the moderator recycling gas is constituted. At the high reactor-skin working temperatures, the water and the carbon dioxide which are admitted in the combustion-supporter mixture, together with the oxygen, preferably but in non-limiting manner when the process is running under pressure, themselves become optimal absorbers of infra-red energy. On the other hand, the recycled gas and the fumes that are generated behave as efficient emitters of infra-red energy which, also by virtue of the working pressures of thereactor 10 which are preferably but in non-limiting manner between 0.5 and 6 bar, thus enable a uniform temperature to be maintained inside thereactor 10. - The control system arranges for the implementation of a balancing regulation, which uses a determination that is not upset by the weight of the material supplied, by means of a measurement in the loading systems in a position upstream of the propulsion chambers. The control system intervenes instantaneously to keep the temperature and the time spent by the gases inside the
reactor 10 above predetermined minimum thresholds and, in the second place, on the flow-rate of the oxygen and on the flow-rate of the refuse, that is, on the loading frequency thereof, to ensure a good quality of the gases output from thereactor 10. A MIMO (multiple input/multiple output) code, on the other hand, uses a broader range of operating data and, in particular, measurements of the composition of the gases at the output of the reactor, which are performed with characteristic response times of about, but in non-limiting manner, 2 seconds, and calculates strategies for optimizing operation for a satisfactory productivity of the material-treatment method and for the reduction of unitary and running costs. - Naturally, the principle of the invention remaining the same, the forms of embodiment and details of construction may vary from those described and illustrated, without thereby departing form the scope of the present invention.
Claims (28)
1. Method for the treatment of materials, in particular waste materials and refuse, in which the material to be treated and a combustion supporter comprising oxygen are supplied to an oxidation chamber or combustion reactor, and gases produced during the oxidation or combustion of the above-mentioned material are discharged from the oxidation chamber or combustion reactor, characterized in that the material to be treated, which is introduced into the oxidation chamber or combustion reactor, and the products resulting from the oxidation or combustion are subjected to conditions of isothermy or quasi-isothermy at high or very high temperature, without substantial oxygen deficit, in any part of the chamber or reactor.
2. Method for the treatment of materials according to claim 1 , characterized in that it comprises the supply of a combustion supporter comprising oxygen mixed with gases resulting from the combustion, with water, or with a combination of gases and water, to bring about a high degree of opacification of the combustion supporter and to ensure almost instantaneous heating of the combustion supporter that is supplied into the reactor.
3. Method for the treatment of materials according to claim 2 , characterized in that the recirculation gases resulting from combustion are supplied at minimized flow-rate and/or temperature so as to minimize the overall volume of gas in the reactor for a given time spent in the reactor by the gases and to ensure the removal of the reaction heat from the reactor.
4. Method for the treatment of materials according to claim 2 , characterized in that the mixing of the oxygen with the combustion fumes takes place with a concentration of the latter of more than 10% by volume and preferably more than 60% by volume.
5. Method for the treatment of materials according to claim 1 , characterized in that the thermal exchange characteristic for IR (infra-red) radiation inside the reactor is strengthened by increasing the concentration of gases that are opaque to IR and the volume density of the gases inside the reactor, in particular by increasing the total pressure of the combustion chamber.
6. Method for the treatment of materials according to claim 2 , characterized in that the recirculation gases which ensure the thermal balance of a plant that is operated continuously by removing the excess reaction heat owing to an appreciable heat difference between the input and the output of the reactor are recycled at the minimum temperature that is compatible with normal cooling means and preferably just above the dew point.
7. Method for the treatment of materials according to claim 2 , characterized in that the recycling gases which ensure the thermal balance are constituted wholly or partially by steam.
8. Method for the treatment of materials according to claim 1 , characterized in that the reaction pressure is modulated in dependence on the type of material to be treated which is supplied into the reactor.
9. Method for the treatment of materials according to claim 8 , characterized in that the reaction pressure is modulated from atmospheric pressure to a greater pressure of about 600 kPa.
10. Method for the treatment of materials according to claim 1 , characterized in that the substances which cannot be gasified inside the reactor are immediately fused in the reactor by virtue of the high rate of heating of the combustible material, in particular of its solid fraction, so as to reduce considerably the fraction of dust that is entrained out of the reactor with the burnt gases.
11. Method for the treatment of materials according to claim 1 , characterized in that the fused slag is cooled and solidified into beads so as to ensure that toxic heavy metals contained in the incombustible slag are rendered completely inert.
12. Method for the treatment of materials according to claim 1 , characterized in that it comprises a MIMO (multiple input/multiple output) control and optimization procedure which is focused on the parameters at the output of the reactor and in particular on the measurement of data relating to the composition of the gases at the output of the reactor.
13. Method for the treatment of materials according to claim 12 , characterized in that the measurements of the gas-composition data are implemented with characteristic response times of about 2 seconds.
14. Plant for the treatment of materials, in particular waste materials and refuse, comprising an oxidation chamber or combustion reactor to which the material to be treated can be supplied and which includes an input for a combustion supporter comprising oxygen and an output for the gases produced during the oxidation or combustion of the above-mentioned material inside the chamber or reactor, characterized in that the oxidation chamber or combustion reactor is substantially isothermic or quasi-isothermic in use at high or very high temperature, and without substantial oxygen deficit, in all of its parts.
15. Plant for the treatment of materials according to claim 14 , characterized in that the walls of the reactor comprise a ceramic lining material which participates in the isothermy or quasi-isothermy of the reactor.
16. Plant for the treatment of materials according to claim 14 , characterized in that it comprises means for cooling the gases produced during combustion, means for withdrawing and recycling a portion of the said cooled gases being provided for mixing the oxygen at the input to the reactor and producing a combustion-supporting mixture which is opaque to infra-red.
17. Plant for the treatment of materials according to claim 16 , characterized in that the cooling means comprise means for recovering energy by the giving-up of heat by the gases output from the reactor.
18. Plant for the treatment of materials according to claim 16 , characterized in that it comprises means for mixing a portion of the recycled gases with the gases output from the reactor prior to their entry into the cooling means.
19. Plant for the treatment of materials according to claim 14 , characterized in that it comprises means for maintaining a pressure greater than atmospheric pressure inside the reactor in use.
20. Plant for the treatment of materials according to claim 19 , characterized in that it comprises means for selectively modulating the pressure inside the reactor substantially from atmospheric pressure to a pressure greater than atmospheric pressure, in dependence on the type of material supplied into the reactor, to ensure a hold-up of oxygen per unit volume of the reactor in every part of the reactor in use.
21. Plant for the treatment of materials according to claim 14 , characterized in that it comprises a plurality of feeders for supplying different materials to the reactor, in particular, solid materials in pieces, granular materials, liquid or sludgy materials, and/or gaseous materials.
22. Plant for the treatment of materials according to claim 21 , characterized in that it comprises at least one propulsion chamber for the pressurized and discontinuous supply of solid materials in pieces into the reactor.
23. Plant for the treatment of materials according to claim 22 , characterized in that the propulsion chamber comprises a duct for the supply of gas under pressure, withdrawn from the output line.
24. Plant for the treatment of materials according to claim 14 , characterized in that the reactor comprises a base portion communicating with and inclined towards a heated duct for collecting fluid slag.
25. Plant for the treatment of materials according to claim 24 , characterized in that the collecting duct communicates with a container for collecting the liquid slag which is cooled rapidly in a water bath with the formation of solid beads so as to form a very dilute sludge in water.
26. Plant for the treatment of materials according to claim 24 , characterized in that the collecting duct comprises heating means for keeping the slag fluid.
27. Plant for the treatment of materials according to claim 14 , characterized in that it comprises sensor means for measuring output parameters of the reactor, a control and management system receiving the signals of the sensor means in order substantially to improve the number of effective predictions for intervention in the operating conditions of the plant and to control fluctuations due to the non-homogeneity of the materials that are supplied into the reactor.
28. Plant for the treatment of materials operating in accordance with the method according to claim 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/080,490 US9557052B2 (en) | 2003-04-23 | 2013-11-14 | Method and plant for the treatment of materials, in particular waste materials and refuse |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT000242A ITBO20030242A1 (en) | 2003-04-23 | 2003-04-23 | PROCEDURE AND PLANT FOR THE TREATMENT OF MATERIALS |
| ITBO2003A000242 | 2003-04-23 | ||
| PCT/IB2004/001220 WO2004094904A1 (en) | 2003-04-23 | 2004-04-22 | Method and plant for the treatment of materials, in particular waste materials and refuse |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2004/001220 A-371-Of-International WO2004094904A1 (en) | 2003-04-23 | 2004-04-22 | Method and plant for the treatment of materials, in particular waste materials and refuse |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/080,490 Continuation US9557052B2 (en) | 2003-04-23 | 2013-11-14 | Method and plant for the treatment of materials, in particular waste materials and refuse |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070039527A1 true US20070039527A1 (en) | 2007-02-22 |
Family
ID=33307113
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/553,784 Abandoned US20070039527A1 (en) | 2003-04-23 | 2004-04-22 | Method and plant for the treatment of materials, in particular waste materials and refuse |
| US14/080,490 Expired - Lifetime US9557052B2 (en) | 2003-04-23 | 2013-11-14 | Method and plant for the treatment of materials, in particular waste materials and refuse |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/080,490 Expired - Lifetime US9557052B2 (en) | 2003-04-23 | 2013-11-14 | Method and plant for the treatment of materials, in particular waste materials and refuse |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US20070039527A1 (en) |
| EP (1) | EP1616129B1 (en) |
| JP (1) | JP4520459B2 (en) |
| CN (1) | CN1809714B (en) |
| AT (1) | ATE384229T1 (en) |
| AU (1) | AU2004233308B2 (en) |
| DE (1) | DE602004011326T2 (en) |
| ES (1) | ES2298746T3 (en) |
| IT (1) | ITBO20030242A1 (en) |
| WO (1) | WO2004094904A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100261126A1 (en) * | 2007-12-06 | 2010-10-14 | Massimo Malavasi | Combustion process |
| US20100261127A1 (en) * | 2007-12-06 | 2010-10-14 | Itea S.P.A. | Combustion process |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0642535Y2 (en) | 1988-03-31 | 1994-11-09 | トヨタ車体株式会社 | Linear motor type curtain opening and closing device |
| ITMI20072292A1 (en) * | 2007-12-06 | 2009-06-07 | Itea Spa | COMBUSTION PROCESS |
| DE102009036119A1 (en) * | 2009-08-05 | 2011-02-10 | Uhde Gmbh | Method and device for cooling a fine-grained solid with simultaneous replacement of the gap space gas contained therein |
| ITCH20110011A1 (en) * | 2011-08-19 | 2013-02-20 | Martina Gialluca | ELECTRIC ENERGY GENERATOR THROUGH WASTE DESTRUCTION WITH HYPERBARIC DEVICE |
| ITBA20120049A1 (en) | 2012-07-24 | 2014-01-25 | Itea Spa | COMBUSTION PROCESS |
| ITBA20120048A1 (en) | 2012-07-24 | 2014-01-25 | Itea Spa | COMBUSTION PROCESS |
| ITBA20130084A1 (en) * | 2013-12-27 | 2015-06-28 | Itea Spa | PRESSURIZED OXYCOMBUSTION PROCESS |
| US12129818B1 (en) * | 2023-11-13 | 2024-10-29 | Caterpillar Inc. | Semi-closed cycle fault tolerant control system and method in an exhaust system |
Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1703814A (en) * | 1924-03-07 | 1929-02-26 | Furnace Engineering Company In | Pulverized-fuel combustion |
| US4022591A (en) * | 1974-08-28 | 1977-05-10 | Shell Internationale Research Maatschappij B.V. | Coal gasification apparatus |
| US4850288A (en) * | 1984-06-29 | 1989-07-25 | Power Generating, Inc. | Pressurized cyclonic combustion method and burner for particulate solid fuels |
| US4925389A (en) * | 1986-05-29 | 1990-05-15 | International Technology Corporation | Method and apparatus for treating waste containing organic contaminants |
| US4993332A (en) * | 1987-11-17 | 1991-02-19 | Villamosenergiapari Kutato Intezet | Hybrid fluidized bed and pulverized coal combustion system and a process utilizing said system |
| US5000098A (en) * | 1989-02-16 | 1991-03-19 | Jgc Corporation | Combustion apparatus |
| US5052312A (en) * | 1989-09-12 | 1991-10-01 | The Babcock & Wilcox Company | Cyclone furnace for hazardous waste incineration and ash vitrification |
| US5199356A (en) * | 1991-12-17 | 1993-04-06 | Power Generating, Inc. | Efficient incinerator |
| US5309850A (en) * | 1992-11-18 | 1994-05-10 | The Babcock & Wilcox Company | Incineration of hazardous wastes using closed cycle combustion ash vitrification |
| US5320050A (en) * | 1992-06-24 | 1994-06-14 | Hitachi Zosen Corporation | Ash melting furnace |
| US5326254A (en) * | 1993-02-26 | 1994-07-05 | Michael Munk | Fog conditioned flue gas recirculation for burner-containing apparatus |
| US5353720A (en) * | 1993-02-12 | 1994-10-11 | Berg John E | Refuse incinerator |
| US5385104A (en) * | 1990-07-03 | 1995-01-31 | Volund Ecology Systems A/S | Method and apparatus for incinerating different kinds of solid and possibly liquid waste material |
| US5636977A (en) * | 1994-10-13 | 1997-06-10 | Gas Research Institute | Burner apparatus for reducing nitrogen oxides |
| US5925389A (en) * | 1996-02-05 | 1999-07-20 | Lipton | Extraction process of tea with enzymes |
| US6024029A (en) * | 1996-10-16 | 2000-02-15 | Clark Steve L | Reduced emission combustion system |
| US6029588A (en) * | 1998-04-06 | 2000-02-29 | Minergy Corp. | Closed cycle waste combustion |
| US6145452A (en) * | 1997-07-28 | 2000-11-14 | Abb Research Ltd. | Ceramic lining |
| US6485296B1 (en) * | 2001-10-03 | 2002-11-26 | Robert J. Bender | Variable moisture biomass gasification heating system and method |
| US6848375B2 (en) * | 2000-03-24 | 2005-02-01 | Organic Power Asa | Method and device for combustion of solid fuel |
| US6883443B2 (en) * | 2002-09-09 | 2005-04-26 | Aptech Engineering Services, Inc. | Method for reduction of slagging and fouling of the waterwalls and of the firebox and superheater and reheater of steam boilers with coal combustion |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4957050A (en) * | 1989-09-05 | 1990-09-18 | Union Carbide Corporation | Combustion process having improved temperature distribution |
| IT1253052B (en) | 1991-10-08 | 1995-07-10 | Itea | PROCEDURE AND PLANT FOR THE DISPOSAL OF WASTE THROUGH HYPERBARIC SUBLIMATION |
| JPH0942627A (en) * | 1995-08-03 | 1997-02-14 | Chiyoda Corp | Waste incineration method and apparatus |
| JP3377359B2 (en) * | 1996-03-14 | 2003-02-17 | 三井造船株式会社 | Waste treatment equipment |
| JP3713991B2 (en) * | 1998-01-31 | 2005-11-09 | Jfeエンジニアリング株式会社 | Waste treatment method and waste treatment facility |
| JP3071171B2 (en) * | 1998-03-20 | 2000-07-31 | 日本碍子株式会社 | Swirling type ash melting furnace |
| JP2002013715A (en) * | 2000-06-28 | 2002-01-18 | Nkk Corp | Waste incinerator |
| JP2002054811A (en) * | 2000-08-08 | 2002-02-20 | Yokogawa Electric Corp | A dioxin generation concentration estimation system and a dioxin generation reduction control system using the system. |
| ITBO20010207A1 (en) | 2001-04-06 | 2002-10-06 | Itea Spa | PROCESS PERFECTED FOR THE TREATMENT OF MATERIALS, AS WELL AS PLANT AND REACTOR FOR THE IMPLEMENTATION OF THE PROCEDURE |
-
2003
- 2003-04-23 IT IT000242A patent/ITBO20030242A1/en unknown
-
2004
- 2004-04-22 WO PCT/IB2004/001220 patent/WO2004094904A1/en not_active Ceased
- 2004-04-22 DE DE602004011326T patent/DE602004011326T2/en not_active Expired - Lifetime
- 2004-04-22 AU AU2004233308A patent/AU2004233308B2/en not_active Expired
- 2004-04-22 ES ES04728859T patent/ES2298746T3/en not_active Expired - Lifetime
- 2004-04-22 JP JP2006506504A patent/JP4520459B2/en not_active Expired - Lifetime
- 2004-04-22 EP EP04728859A patent/EP1616129B1/en not_active Expired - Lifetime
- 2004-04-22 CN CN2004800173490A patent/CN1809714B/en not_active Expired - Lifetime
- 2004-04-22 US US10/553,784 patent/US20070039527A1/en not_active Abandoned
- 2004-04-22 AT AT04728859T patent/ATE384229T1/en not_active IP Right Cessation
-
2013
- 2013-11-14 US US14/080,490 patent/US9557052B2/en not_active Expired - Lifetime
Patent Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1703814A (en) * | 1924-03-07 | 1929-02-26 | Furnace Engineering Company In | Pulverized-fuel combustion |
| US4022591A (en) * | 1974-08-28 | 1977-05-10 | Shell Internationale Research Maatschappij B.V. | Coal gasification apparatus |
| US4850288A (en) * | 1984-06-29 | 1989-07-25 | Power Generating, Inc. | Pressurized cyclonic combustion method and burner for particulate solid fuels |
| US4925389A (en) * | 1986-05-29 | 1990-05-15 | International Technology Corporation | Method and apparatus for treating waste containing organic contaminants |
| US4993332A (en) * | 1987-11-17 | 1991-02-19 | Villamosenergiapari Kutato Intezet | Hybrid fluidized bed and pulverized coal combustion system and a process utilizing said system |
| US5000098A (en) * | 1989-02-16 | 1991-03-19 | Jgc Corporation | Combustion apparatus |
| US5052312A (en) * | 1989-09-12 | 1991-10-01 | The Babcock & Wilcox Company | Cyclone furnace for hazardous waste incineration and ash vitrification |
| US5385104A (en) * | 1990-07-03 | 1995-01-31 | Volund Ecology Systems A/S | Method and apparatus for incinerating different kinds of solid and possibly liquid waste material |
| US5199356A (en) * | 1991-12-17 | 1993-04-06 | Power Generating, Inc. | Efficient incinerator |
| US5320050A (en) * | 1992-06-24 | 1994-06-14 | Hitachi Zosen Corporation | Ash melting furnace |
| US5309850A (en) * | 1992-11-18 | 1994-05-10 | The Babcock & Wilcox Company | Incineration of hazardous wastes using closed cycle combustion ash vitrification |
| US5353720A (en) * | 1993-02-12 | 1994-10-11 | Berg John E | Refuse incinerator |
| US5326254A (en) * | 1993-02-26 | 1994-07-05 | Michael Munk | Fog conditioned flue gas recirculation for burner-containing apparatus |
| US5636977A (en) * | 1994-10-13 | 1997-06-10 | Gas Research Institute | Burner apparatus for reducing nitrogen oxides |
| US5925389A (en) * | 1996-02-05 | 1999-07-20 | Lipton | Extraction process of tea with enzymes |
| US6024029A (en) * | 1996-10-16 | 2000-02-15 | Clark Steve L | Reduced emission combustion system |
| US6145452A (en) * | 1997-07-28 | 2000-11-14 | Abb Research Ltd. | Ceramic lining |
| US6029588A (en) * | 1998-04-06 | 2000-02-29 | Minergy Corp. | Closed cycle waste combustion |
| US6848375B2 (en) * | 2000-03-24 | 2005-02-01 | Organic Power Asa | Method and device for combustion of solid fuel |
| US6485296B1 (en) * | 2001-10-03 | 2002-11-26 | Robert J. Bender | Variable moisture biomass gasification heating system and method |
| US6883443B2 (en) * | 2002-09-09 | 2005-04-26 | Aptech Engineering Services, Inc. | Method for reduction of slagging and fouling of the waterwalls and of the firebox and superheater and reheater of steam boilers with coal combustion |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100261126A1 (en) * | 2007-12-06 | 2010-10-14 | Massimo Malavasi | Combustion process |
| US20100261127A1 (en) * | 2007-12-06 | 2010-10-14 | Itea S.P.A. | Combustion process |
| US9562205B2 (en) * | 2007-12-06 | 2017-02-07 | Itea S.P.A. | Combustion process for the reduction of particulates in combustion fumes |
| US10203111B2 (en) * | 2007-12-06 | 2019-02-12 | Itea S.P.A. | Combustion process |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2004233308A1 (en) | 2004-11-04 |
| DE602004011326D1 (en) | 2008-03-06 |
| AU2004233308B2 (en) | 2010-03-04 |
| ATE384229T1 (en) | 2008-02-15 |
| EP1616129B1 (en) | 2008-01-16 |
| JP4520459B2 (en) | 2010-08-04 |
| ITBO20030242A1 (en) | 2004-10-24 |
| US9557052B2 (en) | 2017-01-31 |
| EP1616129A1 (en) | 2006-01-18 |
| WO2004094904A1 (en) | 2004-11-04 |
| DE602004011326T2 (en) | 2008-11-27 |
| HK1092518A1 (en) | 2007-02-09 |
| CN1809714B (en) | 2012-01-11 |
| ES2298746T3 (en) | 2008-05-16 |
| JP2006524308A (en) | 2006-10-26 |
| US20140076214A1 (en) | 2014-03-20 |
| CN1809714A (en) | 2006-07-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9557052B2 (en) | Method and plant for the treatment of materials, in particular waste materials and refuse | |
| JPH02298717A (en) | Disposal method for excavated and reclaimed material in state to be contaminated by noxious and deleterious material and plasma combustion type cupola | |
| US6021723A (en) | Hazardous waste treatment method and apparatus | |
| US10208950B2 (en) | Waste sludge incinerator using pyrolysis and gasification, and relative process | |
| US5027722A (en) | Process and device for processing slag and other combustion residues from waste incineration plants | |
| JP2008542481A (en) | System for converting coal to gas of specific composition | |
| JPS62187000A (en) | Method of gassifying sewage sludge | |
| Ito | Vitrification of fly ash by swirling-flow furnace | |
| US4651656A (en) | Method for processing a heavy-metal-containing residue from the chemical industry | |
| EP1021496B1 (en) | Closed-loop continuous operating pyrolysis system for processing rubber waste | |
| CN208108108U (en) | Discarded metal catalyst and organic sludge coprocessing device | |
| GB2046415A (en) | Fluidised bed combustion method | |
| EP0453904A1 (en) | Method for disposing of run-down batteries and other waste products made toxic by the presence of heavy metals therein | |
| Celenza | Industrial waste treatment processes engineering: specialized treatment systems | |
| RU2208202C2 (en) | Method for processing of solid domestic and fine-disperse industrial garbage | |
| HK1092518B (en) | Method and plant for the treatment of materials, in particular waste materials and refuse | |
| CA1181287A (en) | Process for utilizing low calorific value off-gases and simultaneous deodorization thereof | |
| EP0731897B1 (en) | Method for burning of municipal wastes and the use of the ash produced in the burning | |
| JPH07280241A (en) | Waste liquid treating apparatus | |
| JP4266090B2 (en) | Waste gasification and melting method | |
| JP2005147532A (en) | Waste treatment equipment | |
| JPH09145031A (en) | Method for incinerating solid waste | |
| JPH0212324B2 (en) | ||
| AU727233B1 (en) | Process for the production of reduced ilmenite | |
| JP2005098585A (en) | Method of collecting incineration ash and incineration exhaust gas treatment system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ITEA S.P.A., ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MALAVASI, MASSIMO;ROSSETTI, EDOARDO;REEL/FRAME:018177/0934 Effective date: 20051031 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |