US20070031821A1 - Screening molecules with anti-prion activity: kits, methods and screened molecules - Google Patents
Screening molecules with anti-prion activity: kits, methods and screened molecules Download PDFInfo
- Publication number
- US20070031821A1 US20070031821A1 US11/483,822 US48382206A US2007031821A1 US 20070031821 A1 US20070031821 A1 US 20070031821A1 US 48382206 A US48382206 A US 48382206A US 2007031821 A1 US2007031821 A1 US 2007031821A1
- Authority
- US
- United States
- Prior art keywords
- prion
- cells
- disease
- yeast
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000694 effects Effects 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000000389 anti-prion effect Effects 0.000 title claims abstract description 29
- 238000012216 screening Methods 0.000 title claims description 35
- 102000029797 Prion Human genes 0.000 claims abstract description 68
- 108091000054 Prion Proteins 0.000 claims abstract description 68
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 50
- 150000001875 compounds Chemical class 0.000 claims abstract description 40
- 230000004770 neurodegeneration Effects 0.000 claims abstract description 16
- 208000015122 neurodegenerative disease Diseases 0.000 claims abstract description 16
- 208000023105 Huntington disease Diseases 0.000 claims abstract description 15
- 101150050623 erg-6 gene Proteins 0.000 claims abstract description 14
- 108700028369 Alleles Proteins 0.000 claims abstract description 10
- 101150052453 ADE1 gene Proteins 0.000 claims abstract description 9
- 201000010099 disease Diseases 0.000 claims abstract description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 9
- 229920000155 polyglutamine Polymers 0.000 claims abstract description 7
- 206010003694 Atrophy Diseases 0.000 claims abstract description 4
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 claims abstract description 4
- 230000037444 atrophy Effects 0.000 claims abstract description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 4
- 206010002027 Amyotrophy Diseases 0.000 claims abstract description 3
- 206010003591 Ataxia Diseases 0.000 claims abstract description 3
- 206010068597 Bulbospinal muscular atrophy congenital Diseases 0.000 claims abstract description 3
- 208000027747 Kennedy disease Diseases 0.000 claims abstract description 3
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims abstract description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 56
- 102000004169 proteins and genes Human genes 0.000 claims description 48
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 45
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 36
- 238000012360 testing method Methods 0.000 claims description 36
- 239000003795 chemical substances by application Substances 0.000 claims description 17
- 229910052801 chlorine Inorganic materials 0.000 claims description 15
- 238000010186 staining Methods 0.000 claims description 11
- 101150096273 ADE2 gene Proteins 0.000 claims description 9
- 101150023816 DAL5 gene Proteins 0.000 claims description 8
- 239000003814 drug Substances 0.000 claims description 8
- 208000024777 Prion disease Diseases 0.000 claims description 6
- 238000000338 in vitro Methods 0.000 claims description 5
- 208000024827 Alzheimer disease Diseases 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 125000000278 alkyl amino alkyl group Chemical group 0.000 claims description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 61
- FVCXJXKLDUJOFA-UHFFFAOYSA-N phenanthridin-6-amine Chemical compound C1=CC=C2C(N)=NC3=CC=CC=C3C2=C1 FVCXJXKLDUJOFA-UHFFFAOYSA-N 0.000 description 44
- 235000018102 proteins Nutrition 0.000 description 42
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 39
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 34
- 239000002609 medium Substances 0.000 description 28
- 241000124008 Mammalia Species 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 238000009825 accumulation Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 10
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 10
- 229960001076 chlorpromazine Drugs 0.000 description 10
- 108010040003 polyglutamine Proteins 0.000 description 10
- 229960000901 mepacrine Drugs 0.000 description 9
- GPKJTRJOBQGKQK-UHFFFAOYSA-N quinacrine Chemical compound C1=C(OC)C=C2C(NC(C)CCCN(CC)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 GPKJTRJOBQGKQK-UHFFFAOYSA-N 0.000 description 9
- 229930024421 Adenine Natural products 0.000 description 8
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 8
- NHIGSLUMBOQLMK-UHFFFAOYSA-N CC.CC.CC1=NC2=C(C=CC=C2)C2=C1C=CC=C2 Chemical compound CC.CC.CC1=NC2=C(C=CC=C2)C2=C1C=CC=C2 NHIGSLUMBOQLMK-UHFFFAOYSA-N 0.000 description 8
- 229960000643 adenine Drugs 0.000 description 8
- 239000000460 chlorine Substances 0.000 description 8
- 238000013519 translation Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- 230000001717 pathogenic effect Effects 0.000 description 7
- 238000003556 assay Methods 0.000 description 6
- 238000003119 immunoblot Methods 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 102100025818 Major prion protein Human genes 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 230000008030 elimination Effects 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000013537 high throughput screening Methods 0.000 description 5
- 230000002779 inactivation Effects 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 5
- PDACUKOKVHBVHJ-XVFCMESISA-N 5-amino-1-(5-phospho-beta-D-ribosyl)imidazole Chemical compound NC1=CN=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 PDACUKOKVHBVHJ-XVFCMESISA-N 0.000 description 4
- 108010067770 Endopeptidase K Proteins 0.000 description 4
- 206010029260 Neuroblastoma Diseases 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 108020005038 Terminator Codon Proteins 0.000 description 4
- 102100035071 Vimentin Human genes 0.000 description 4
- 108010065472 Vimentin Proteins 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 238000006384 oligomerization reaction Methods 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 3
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 3
- VBQYJKNVRUTAHL-UHFFFAOYSA-N 8-(trifluoromethyl)phenanthridin-6-amine Chemical compound C1=C(C(F)(F)F)C=C2C(N)=NC3=CC=CC=C3C2=C1 VBQYJKNVRUTAHL-UHFFFAOYSA-N 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 241000282994 Cervidae Species 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 102000052581 Cullin Human genes 0.000 description 3
- 108700020475 Cullin Proteins 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- 206010048723 Multiple-drug resistance Diseases 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 101150006914 TRP1 gene Proteins 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 235000004554 glutamine Nutrition 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000012678 infectious agent Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000004898 n-terminal fragment Anatomy 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 210000005048 vimentin Anatomy 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 2
- XFVULMDJZXYMSG-ZIYNGMLESA-N 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylic acid Chemical compound NC1=C(C(O)=O)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 XFVULMDJZXYMSG-ZIYNGMLESA-N 0.000 description 2
- 102100032187 Androgen receptor Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WISSHRCAEAPRIE-UHFFFAOYSA-N CC.CC.CC1=NC2=CC=CC=C2CC2=C1C=CC=C2 Chemical compound CC.CC.CC1=NC2=CC=CC=C2CC2=C1C=CC=C2 WISSHRCAEAPRIE-UHFFFAOYSA-N 0.000 description 2
- JDAVEJQRPRHJGY-UHFFFAOYSA-N CC.CC.CC1=NC2=CC=CC=C2SC2=C1C=CC=C2 Chemical compound CC.CC.CC1=NC2=CC=CC=C2SC2=C1C=CC=C2 JDAVEJQRPRHJGY-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 101150009006 HIS3 gene Proteins 0.000 description 2
- 102100022846 Histone acetyltransferase KAT2B Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101001046967 Homo sapiens Histone acetyltransferase KAT2A Proteins 0.000 description 2
- 101001047006 Homo sapiens Histone acetyltransferase KAT2B Proteins 0.000 description 2
- 102000016252 Huntingtin Human genes 0.000 description 2
- 108050004784 Huntingtin Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 2
- 101100442137 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) DAL5 gene Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 239000001166 ammonium sulphate Substances 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 230000001651 autotrophic effect Effects 0.000 description 2
- 238000000423 cell based assay Methods 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000010835 comparative analysis Methods 0.000 description 2
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000002309 glutamines Chemical class 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000009630 liquid culture Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- LWGJTAZLEJHCPA-UHFFFAOYSA-N n-(2-chloroethyl)-n-nitrosomorpholine-4-carboxamide Chemical compound ClCCN(N=O)C(=O)N1CCOCC1 LWGJTAZLEJHCPA-UHFFFAOYSA-N 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007320 rich medium Substances 0.000 description 2
- 208000008864 scrapie Diseases 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 150000004912 thiazepines Chemical class 0.000 description 2
- 229960004799 tryptophan Drugs 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 229960001722 verapamil Drugs 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- ZDSRFXVZVHSYMA-CMOCDZPBSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-carboxybutanoyl]amino]pentanedioic acid Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=C(O)C=C1 ZDSRFXVZVHSYMA-CMOCDZPBSA-N 0.000 description 1
- WSPOMRSOLSGNFJ-VGOFMYFVSA-N (E)-chlorprothixene Chemical compound C1=C(Cl)C=C2C(=C/CCN(C)C)/C3=CC=CC=C3SC2=C1 WSPOMRSOLSGNFJ-VGOFMYFVSA-N 0.000 description 1
- 0 *C1=Nc2ccccc2*c2c1cccc2 Chemical compound *C1=Nc2ccccc2*c2c1cccc2 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 1
- RLIYRDWQJYCUFL-UHFFFAOYSA-N 2-fluorophenanthridin-6-amine Chemical compound C1=CC=C2C(N)=NC3=CC=C(F)C=C3C2=C1 RLIYRDWQJYCUFL-UHFFFAOYSA-N 0.000 description 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- KMZUKDZCNRTXEO-UHFFFAOYSA-N 7-chlorophenanthridin-6-amine Chemical compound C1=CC(Cl)=C2C(N)=NC3=CC=CC=C3C2=C1 KMZUKDZCNRTXEO-UHFFFAOYSA-N 0.000 description 1
- DVDULFMLXARWAK-UHFFFAOYSA-N 8-chloro-2-fluorophenanthridin-6-amine Chemical compound C1=C(Cl)C=C2C(N)=NC3=CC=C(F)C=C3C2=C1 DVDULFMLXARWAK-UHFFFAOYSA-N 0.000 description 1
- ZBTYUWGDAQXGAP-UHFFFAOYSA-N 8-chlorophenanthridin-6-amine Chemical compound C1=C(Cl)C=C2C(N)=NC3=CC=CC=C3C2=C1 ZBTYUWGDAQXGAP-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102000007372 Ataxin-1 Human genes 0.000 description 1
- 108010032963 Ataxin-1 Proteins 0.000 description 1
- 102000004321 Atrophin-1 Human genes 0.000 description 1
- 108090000806 Atrophin-1 Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108090000312 Calcium Channels Proteins 0.000 description 1
- 102000003922 Calcium Channels Human genes 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 101000775732 Homo sapiens Androgen receptor Proteins 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 239000004395 L-leucine Substances 0.000 description 1
- 235000019454 L-leucine Nutrition 0.000 description 1
- 241000721701 Lynx Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 241001452677 Ogataea methanolica Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 102100027330 Phosphoribosylaminoimidazole carboxylase Human genes 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- NAQGHJTUZRHGAC-ZZZDFHIKSA-N SAICAR Chemical compound NC1=C(C(=O)N[C@@H](CC(O)=O)C(O)=O)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 NAQGHJTUZRHGAC-ZZZDFHIKSA-N 0.000 description 1
- 101150096801 SUP35 gene Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 244000253911 Saccharomyces fragilis Species 0.000 description 1
- 235000018368 Saccharomyces fragilis Nutrition 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 101150088700 URE2 gene Proteins 0.000 description 1
- 244000071378 Viburnum opulus Species 0.000 description 1
- 235000019013 Viburnum opulus Nutrition 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000235017 Zygosaccharomyces Species 0.000 description 1
- NOSIYYJFMPDDSA-UHFFFAOYSA-N acepromazine Chemical compound C1=C(C(C)=O)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 NOSIYYJFMPDDSA-UHFFFAOYSA-N 0.000 description 1
- 229960005054 acepromazine Drugs 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 102000003802 alpha-Synuclein Human genes 0.000 description 1
- 108090000185 alpha-Synuclein Proteins 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 108010080146 androgen receptors Proteins 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 1
- 229960000623 carbamazepine Drugs 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013000 chemical inhibitor Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000013578 denaturing buffer Substances 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000008686 ergosterol biosynthesis Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000008303 genetic mechanism Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 238000012203 high throughput assay Methods 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 229960004801 imipramine Drugs 0.000 description 1
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940031154 kluyveromyces marxianus Drugs 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 230000000050 nutritive effect Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000005053 phenanthridines Chemical class 0.000 description 1
- 108010035774 phosphoribosylaminoimidazole carboxylase Proteins 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004845 protein aggregation Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 108010068794 tyrosyl-tyrosyl-glutamyl-glutamic acid Proteins 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/025—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
Definitions
- FIG. 1 relates to the feasibility of the screen.
- FIG. 2 illustrates the screening protocol
- FIG. 3 relates to the isolation of the Kastellpaolitines, phenanthridine and to their structure/activity relationship.
- FIG. 4 relates to the determination of the activity of the phenanthridine derivatives.
- FIG. 5 shows the results of the liquid curing tests.
- FIG. 6 relates to the secondary screen based on the [URE3] prion.
- FIG. 7 demonstrates the validation of the test with chlorpromazine, quinacrine, and verapamil.
- FIG. 8 shows the results of the effect of KP1 on the mammal prion in an in vitro model.
- FIG. 9 relates to a structure/activity study carried out on the molecule of general formula (II).
- FIG. 10 concerns an immunoblot (a) and a filter retardation assay (b) showing a dose dependent decrease of the soluble (a) and aggregated (b) pathogenic fragment of Huntingtin, Htt48, in cells treated with 6-aminophenanthridine (6AP).
- FIG. 11 relates to an immunoblot (a) showing a reduced accumulation of the N-terminal fragment of Huntingtin, T73 in NG108-15 cells upon treatment with 6AP and a quantification of the signal (b) corresponding to T73 in 6AP treated cells.
- the present invention relates to screening of molecules with anti-prion activity. It relates more particularly to kits for screening molecules with anti-prion activity, methods of screening, and a family of molecules with anti-prion activity revealed using the screen according to the invention.
- Prions are infectious proteins responsible for certain neuro-degenerative diseases of spongiform encephalopathy type in mammals, such as Creutzfeldt-Jakob's disease in humans or also the so-called “mad cow disease” in bovines or “scrapie” in ovines. These different diseases are caused by unconventional infectious agents: unlike traditional infectious agents (bacteria, viruses for example), they contain no nucleic acids.
- Professor Stanley Prusiner formulated the “protein-only” hypothesis, according to which the infectious agent would be constituted only by a protein. This protein exists naturally in cells in a normal (or PrP c ) form, i.e. soluble, essentially in the form of an ⁇ helix and non-aggregated, therefore functional.
- this protein can be converted to a prion (or PrP sc ) form.
- PrP sc prion
- the protein forms insoluble aggregates, essentially in the form of ⁇ sheets.
- the infectious character of this PrP sc prion conformation would result from the fact that, apart from the characteristics indicated previously, the protein in prion form also gains the ability to catalyze the passage from the normal Prp c cell form to the PrP sc prion form in a “snowball”-type mechanism.
- Baker's yeast Saccharomyces cerevisiae contains several proteins that behave like prions (Fernandez-Bellot and Cullin, 2001). Since as long ago as the 1960s, two unconventional genetic mechanisms have been described. In 1994, the corresponding [PSI+] and [URE3] phenotypes were proposed as resulting from the autocatalytic inactivation of the Sup35p and URE2p proteins respectively. These prion proteins therefore have ⁇ priori a mechanistic analogy with mammal systems deleterious to public health. Like the PrP protein, the “normal” Sup35p protein passes from a soluble state to an insoluble and aggregated state as soon as the protein is in contact with another Sup35p protein in prion form.
- Yeast prions can be eliminated (“cured”) by a strong dose (1 to 5 mM) of guanidium chloride.
- a strong dose (1 to 5 mM) of guanidium chloride.
- the protein aggregates generated by the presence of the prions disappear and the protein in question (Sup35p, for example) is found in a normal, soluble, functional form but having retained the capability of being converted to a prion form should it again come into contact with another Sup35p protein in such a state.
- the Sup35p protein in a heterodimeric complex with the Sup45p protein, forms a translation termination factor. This factor recognizes the opal stop codons (UGA). In its normal cell form (soluble and active) in the [psi ⁇ ] strains, Sup35p, in combination with Sup45p effectively terminates translation at the level of these opal codons. In a [PSI+] strain where the Sup35p protein is in prion form, it is mostly present in the form of insoluble aggregates. Being unable to bind to Sup45p, it is thus non-functional in the translation termination.
- This enzyme catalyzes the formation of 4-(N-succinocarboxamide)-5-aminoimidazole ribonucleotide (SAICAR) from 4-carboxy-5-aminoimidazole ribonucleotide (CAIR).
- SAICAR 4-(N-succinocarboxamide)-5-aminoimidazole ribonucleotide
- CAIR 4-carboxy-5-aminoimidazole ribonucleotide
- the colonies formed by the [psi ⁇ ] cells will be red in colour. Moreover, these cells will be auxotrophic for adenine.
- the protein Sup35p is essentially present in the form of aggregates therefore incapable of being combined with Sup45p in order to stop translation at the level of the opal codon of the adel-14 allele of the ADE1 gene. As a result, the ribosomes will pause at the level of this stop codon before resuming their translation activity (readthrough).
- a certain quantity of functional Ade1p protein will therefore be synthesized, the cells will be autotrophic for adenine and will form white to pink-coloured colonies.
- the Application WO 98/30909 also describes a process for screening molecules with anti-prion activity carried out on rodents infected with an unconventional transmissible agent. This screening method has the same limits as the method described in P.N.A.S.
- the inventors' work has led them to produce a high-throughput screening system in order to detect molecules possessing an anti-prion activity, based on the colorimetric reporter system of the protein Sup35p, described above.
- the present invention therefore relates to a kit for screening molecules with an anti-prion activity, characterized in that it comprises in combination a yeast of phenotype [PSI+], an antibiogram and a prion curing agent in sub-effective doses, said yeast having the adel-14 allele of the ADE1 gene as well as an inactivated ERG6 gene.
- the kit according to the invention makes it possible to isolate molecules active against mammal prions.
- Example 7 below shows that the most active molecules isolated by Prof. Prusiner also have an activity in the screen according to the invention.
- yeast prions are compared to mammal prions by using the term “propagons”.
- progens mimal
- prions mimal
- prions mammal
- prions a protein anchored to the plasmic membrane
- pathological character of mammal prions as well as a certain number of biophysical differences (ternary and quaternary structure, reversibility of the curing etc.)
- the [PSI+] strain used in the kit according to the invention carries an inactivation of the ERG6 gene.
- yeasts are naturally fairly impermeable.
- Saccharomyces cerevisiae has an impermeability such that the carrying out of a screening process proves particularly ineffective without this inactivation.
- the screen analysis method according to the invention is visual thanks to the use of the adel-14 allele.
- the colonies of cells will have a red, pink or white staining.
- the choice of the strain of yeast can make it possible to improve the contrast between the colonies.
- certain so-called “Strong” strains facilitate visual analysis of the screen. Such strains possess a strong level of aggregation of the prion forms. In the opposite case, the strain is referred to as “Weak”.
- the strains preferred for implementation of the invention are therefore the “Strong”-type strains.
- yeasts can also be used.
- Kluyveromyces lactis Pichia methanolica, Saccharomyces ludwigii, Kluyveromyces marxianus, Pichia pastoris, Zygosaccharomyces rouxi, Schizosaccharomyces pombe.
- the ERG6 gene can be deleted using the TRP1 gene as deletion marker.
- the kit moreover comprises a prion curing agent at sub-effective doses.
- curing is meant an elimination of the prion forms from the yeast cells. This elimination can be temporary or permanent.
- a prion curing agent can be hydrogen peroxide or preferentially, guanidium chloride.
- sub-effective doses are meant doses which used alone would not suffice to eliminate the prions from the yeasts.
- the values of such doses are given, in the examples which follow, for guanidium chloride.
- the kit according to the invention can be used in a method for screening molecules with anti-prion activity.
- This screening method to which the invention also relates, is characterized in that it uses a [PSI+] phenotype yeast having the adel-14 allele of the ADE1 gene as well as an inactivated ERG6 gene and comprises the following stages:
- This method possesses advantages analogous to those of the kit according to the invention. It is a visual test, very easy to analyze. Its implementation is very simple and inexpensive. The precautions relative to safety are those of a standard molecular biology laboratory. It allows mass screening: a single person can manually screen more than 400 products per day. Very high-throughput screening would be possible by automation of the method. The screen result is developed after 7 days, without it being necessary to resort to a lot of handling between day D and day D+7 (optionally a change in temperature of the incubator). Finally, this method is particularly economical.
- yeasts preferred for the implementation of this method is Saccharomyces cerevisiae.
- the curing agent of stage a. is guanidium chloride.
- the method can also comprise the following stages:
- the secondary screening test can comprise the following stages:
- the invention also covers the molecules isolated by the screening method according to the invention.
- the screening method has made it possible to isolate anti-prion agents having the following formula (I): in which R is an H, NH 2 , NHR 2 group, where R 2 is an alkyl or alkylaminoalkyl chain with 1 to 10 carbon atoms, branched or unbranched,
- the invention relates in particular to the anti-prion agents of formula (III): in which R′ represents an H, NH 2 , NH—(CH 2 ) 3 —N(CH 3 ) 2 , NH—CH(CH 3 )—(CH 2 ) 3 —N(CH 2 —CH 3 ) 2 group,
- This family of molecules called “Kastellpaolitines” by the inventors, possesses the sought anti-prion activity to a greater or lesser degree.
- the chlorinated derivatives of this family are particularly effective. The best effectivenesses are obtained when chlorine is placed in position 2, 3 or 4, preferably in position 4 (see KP1 in the examples which follow).
- the invention relates more particularly to the compounds of formula (II): in which R′ represents an H, NH 2 , NH—(CH 2 ) 3 —N(CH 3 ) 2 , NH—CH(CH 3 )—(CH 2 ) 3 —N(CH 2 —CH 3 ) 2 group,
- compositions comprising a therapeutically effective quantity of at least one compound of formula (II) in which:
- Certain compounds of this family are particularly active. These are phenanthridine and 6-aminophenanthridine, as well as their chlorinated derivatives, in particular when the chlorine is placed in position 8, 9 or 10, preferably in position 10 (see in the examples which follow).
- R′ represents NH 2 .
- R′ represents NH 2 .
- the invention also proposes a method for treating neurodegenerative diseases involving protein aggregates, comprising a stage of administering to an animal or to a patient a therapeutically effective quantity of at least one of the compounds of formula (I), (II) or (III) according to the invention.
- the anti-prion agents according to the invention are particularly useful for obtaining a medicament intended to prevent and/or to treat neurodegenerative diseases, in particular of the protein-aggregation type, such as the spongiform encephalopathies, Alzheimer's (tau), Parkinson's ( ⁇ -synuclein) and Huntington's (huntingtin) disease etc.
- These medicaments can be intended for human or veterinary use, in particular for domestic (cows, sheep etc.) or wild animals (lynx, the Cervidae such as deer, moose etc.)
- Huntington's disease a proteolytic fragment of the huntingtin protein containing expanded polyglutamine (polyQ) forms inclusions in patients brains, transgenic mice and cellular models of Huntington's diseases.
- Huntington's disease is a devastating disease with no effective treatment.
- the molecular cascade linking aggregate formation and cellular dysfunction remains elusive.
- the pathogenic conformer may rather be an oligomeric intermediate than the mature insoluble fibril; a protective role of the final product of the aggregation process has even been suggested.
- oligomerization of expanded polyQ was reported to be crucial for their pathogenicity and interfering with oligomerization revealed beneficial. Therefore, polyQ oligomerization is a valid therapeutic target.
- Huntington's disease belongs to a group of disorders referred to as “polyglutamine expansion associated diseases,” characterized by expansion of CAG codons translated into glutamine in unrelated proteins. While Huntington's disease is caused by an expansion in the gene encoding Huntingtin, Spinal and bulbar muscular atrophy, Dentalorubral-pallidoluysian atrophy, and Spinocerebellar ataxias 1, 2, 3, 6, 7 and 17 are caused by expansion in genes encoding Androgen Receptor, Atrophin 1, Ataxin 1, 2, 3, ⁇ -voltage dependent calcium channel subunit and TBP respectively. CAG expansion is translated in polyglutamine and causes aggregation of the affected protein.
- Examples 10 and 11 demonstrate that a compound according to the invention is specifically active against unrelated aggregation-prone proteins in different cell based assay.
- neurodegenerative diseases involving protein aggregates by administering compounds of the present invention, including various compounds of formula (II) are provided.
- suitable neurodegenerative diseases include: polyglutamines expansion associated diseases; Huntington's disease; Kennedy disease; the amyotrophic lateral sclerosis; cerebellous autosomic ataxies; dentalorubral-pallidoluysian atrophy; and spino-bulbar amyotrophy.
- the present invention also encompasses methods of treatment involving the administration of a therapeutically effective amount of the compounds according to the invention to a patient in need thereof.
- Organisms Saccharomyces Cerevisiae ) and Culture Media
- the [PSI+] haploid yeast strain 74-D694 (Mat ⁇ , adel-14, trpl-289, his3- ⁇ 200, ura3-52, leu2-3, 112) was used in the development of the screening method.
- the strain used is called “Strong” as it has a well-marked phenotype when the translation termination factor Sup35p is in prion or aggregated form.
- the inventors genetically modified this strain by introducing into it a mutation of the ERG6 gene.
- This gene is involved in the biosynthesis of ergosterol, a component of the cell wall of the yeasts.
- the mutation was produced by insertion at the level of the chromosome site of the ERG6 gene of a “deletion cassette” corresponding to the TRP1 marker gene flanked by DNA sequences situated upstream and downstream of the coding frame of the ERG6 gene.
- This cassette was produced by PCR using the plasmid pFA6a-kanMX6 as matrix and the oligonucleotides oBM1060 (5′) et oBM1061 (3′) as primers.
- the “Strong” 74-D694 yeast cells having integrated the deletion cassette are those which develop on minimum media devoid of tryptophan.
- the mutation ⁇ erg6::TRP1 was then verified by PCR using the genomic DNA of the strain STRg6 as matrix and the oligonucleotides oBM1030 (5′) and oBM1063 (3′) as primers.
- PCR primers used have the following nucleotide sequences: oBM1060 5′ CGATTTAAGTTTTACATAATTTAAAAAAACAAG (SEQ ID No. 1) AATAAAATAATAATATAGTAGGCAGCATAAGCGGAT CCCCGGGTTAATTAA 3′ oBM1061 5′ CTGCATATATAGGAAAATAGGTATATATCGTGC (SEQ ID No. 2) GCTTTATTTGAATCTTATTGATCTAGTGAATGAATT CGAGCTCGTTTAAAC 3′ oBM1030 5′ GGTACCTCGTTCCCGTAC 3′ (SEQ ID No. 3) oBM1063 5′ CAGTCAGAAATCGAGTTCCA 3′ (SEQ ID No. 4)
- yeast strains are cultured at 30° C. in rich medium (YPD ⁇ ) or in minimum medium. Unless explicitly specified, the percentages correspond to a mass/volume ratio.
- the gelosed form is obtained by the addition of 2% agar.
- YPD ⁇ 1% yeast extract (FISHER®), 2% peptone (GiBCO®) and 2% glucose; Minimum medium: 0.175% yeast nitrogen base without amino acid and ammonium sulphate (DiFCO®), 0.75% ammonium sulphate and 2% glucose. This medium is adjusted to pH 6. In order to compensate for possible auxotrophies, this medium can be completed, after sterilization, by the addition of amino acids (0.002% L-histidine and/or 0.004% L-leucine and/or 0.003% L-tryptophan) or nitrogenous bases (0.0025% uracil and/or 0.008% adenine).
- amino acids 0.002% L-histidine and/or 0.004% L-leucine and/or 0.003% L-tryptophan
- nitrogenous bases 0.0025% uracil and/or 0.008% adenine
- the screening method developed is based on the antibiogram principle.
- the compounds to be tested are applied to a sterile filter-paper disc, itself applied to a dish of solid YPD ⁇ medium containing 0.2 mM of guanidium chloride previously seeded with approximately 5.10 6 cells of the STRg6 strain in order to produce a yeast lawn.
- This quantity of seeded cells (from 10 6 to 10 7 ) was optimized in order for each cell to be able to divide at least 6 times (number of generations necessary to have an effective curing effect with 3 mM of GuHCl).
- guanidium chloride a sub-effective dose for eliminating prions from yeast (the effective dose being of the order of 1 to 5 mM) makes it possible to increase the sensitivity of the test (see Results section).
- the 12 cm square dishes are then incubated for 3 days at 23.5° C. in order to allow the appearance and growth of the yeast colonies. These dishes are then stored for 3 days at 4° C. in order to accentuate the red staining present around the discs soaked with ingredients active on the prion form of the protein Sup35p.
- FIG. 2 illustrates the protocol of the screening method: (1) Culture of the STRg6strain; (2) Application and plating with sterile glass beads 3 & 4 mm in diameter, of approximately 10 6 cells in exponential growth phase on a dish of solid YPD ⁇ medium containing 0.2 mM of guanidium chloride: constitution of the cell “lawn”; (3) Application of the sterile filter-paper discs according to a grid allowing the analysis of 32 compounds (including controls) and deposit of 20 ⁇ l maximum of each of the products to be tested; (4) Incubation; (5) Scanning of the result obtained; (6) Example showing the isolation of a compound having a strong anti-prion activity.
- Kastellpaolitines II-aminodibenzo[b,f][1,4]thiazepines, also called Kastellpaolitines, can be prepared in a single stage. The synthesis of these products has already been described in the publication by Mettey et al., 1997.
- Guanidium chloride the only product known to effectively eliminate prions from the yeast Saccharomyces cerevisiae , served not only as a positive control throughout screening, but also for studying the feasibility of the method as well as developing it. Guanidium chloride effectively eliminates the different yeast prions at a dose comprised between 1 and 5 mM (Fernandez-Bellot and Cullin, 2001). Under these conditions, the curing requires a constant presence of this product for six to ten generations in exponential growth phase compromising the feasibility of the screen on a dish such as the inventors wished to achieve.
- FIG. 1 shows the feasibility of the screen.
- the guanidium chloride curing begins to have an effect after 24 hours of treatment, i.e. after approximately 6 generations (a pink staining begins to appear).
- the first stage therefore consisted of determining whether guanidium chloride could have an effect which can be visualized on a dish of [PSI+] cells with the antibiogram pellet system.
- the inventors developed the optimum temperature, medium and density conditions as well as cell type to use ( FIG. 2 ).
- the strain having the best sensitivity is the STRg6 strain cultured at 23.5° C. and in the presence of 200 ⁇ M of guanidium chloride.
- the introduction of a sub-effective dose of guanidium chloride into the medium makes it possible to increase the sensitivity of the test.
- FIG. 3B The chemical structures of the Kastellpaolitines and phenanthridine are shown in FIG. 3B .
- the panel 3A shows a comparative analysis of the size of the red halos obtained with all of these molecules respectively (all applied in an equivalent quantity: 15 ⁇ l of a 10 mM solution in DMSO). This experiment makes it possible to compare the relative activity of each of these products. The most active is Kastellpaolitine 1 (or KP 1) followed by phenanthridine.
- 6-aminophenanthridine can be prepared according to the procedure developed by Kessar et al., 1969.
- 6-aminophenanthridine was therefore passed through the screen according to the invention, in comparison with the Kastellpaolitines 1 (KP1) and 5 (KP5) as well as phenanthridine.
- KP1 and 5 Kastellpaolitines 1
- KP5 Kastellpaolitines 1
- KP5 Kastellpaolitines 5
- phenanthridine 6-aminophenanthridine is still more active than the Kastellpaolitines and phenanthridine.
- FIG. 4 illustrates the results of this comparison: the activity of 6-aminophenanthridine was determined on a dish and compared to that of phenanthridine. For all the molecules, the same quantity is applied (10 ⁇ l of a 10 mM solution). In the case of the positive control (guanidium chloride), the solution used was 300 mM.
- the inventors then wanted to determine whether the red halos observed in the yeast test corresponded to [PSI+] prion curing and not to an artefact (for example these red halos could be due to a direct inhibition of the biosynthesis chain of adenine by these molecules, which would lead to a accumulation of the AIR). If these molecules effectively eliminate the [PSI+] prion, a treatment of [PSI+] cells in liquid culture followed by washing of said cells must allow them to form red colonies on a gelosed medium no longer containing the molecules. These tests were carried out with 6-aminophenanthridine on the wild-type “strong” strain 74-D694.
- the liquid medium curing conditions are the following: a [PSI+] strain is cultured for 5 days in liquid medium in the presence of the indicated quantities of the different products (see FIG. 5 ). Every 24 hours, an aliquot fraction is washed in medium uncontaminated by any product and applied to a solid gelosed medium (itself also uncontaminated by any product) which is then treated as indicated in FIG. 2 .
- 6-aminophenanthridine is capable of partially curing the [PSI+] prion from a significant number of cells.
- the curing effectiveness can in particular be increased by adding a sub-effective dose (100 ⁇ M) of guanidium chloride to the culture medium. In such a liquid curing, the same synergic effect as that observed in the dish test is also found.
- Another rapid dish test was carried out, based on another yeast prion: [URE3].
- This test constituted a secondary screen which makes it possible to generalize the effect of the products isolated during the primary screen of another yeast prion. In this way, it is possible to remove the molecules active only against the [PSI+] prion and therefore less useful, having a non-general effect.
- the haploid strain used is CC34 (Mat ⁇ , trpl-1, ade2-1, leu2-3, 112, his3-11, 15, ura2::HIS3).
- the NT34 strain which served for the secondary screen was constructed from CC34, a strain in which the coding frame of the DAL5 gene has been replaced by that of the ADE2 gene using the same method as that used for the construction of the STRg6 strain.
- a deletion cassette corresponding to the ADE2 gene flanked by DNA sequences situated upstream and downstream of the coding frame of the DAL5 gene was produced by PCR using genomic DNA of the BY4742 haploid strain (Mat ⁇ , his3 ⁇ l, leu2 ⁇ O, lys2 ⁇ 0, ura3 ⁇ 0) as matrix and the oligonucleotides: ACAACAAAACAAGGATAATCAAATAGTGTAA (SEQ ID No.
- the mutation DAL5::ADE2 was then verified by PCR using the genomic DNA of the NT34 strain as matrix and the oligonucleotides: ATAGTCTCTGCTCATAG, (SEQ ID No. 7) (5′) and GCTTACAGAAATTCTAC (SEQ ID No. 8) (3′) as primers.
- the NT34 strain (Mat ⁇ , trpl-1, ade2-1, leu2-3, 112, his3-11, 15, ura2::HIS3, DAL5::ADE2) was deposited at the CNCM on 10th Oct. 2002 under number 1-2942.
- This screen is based on the same colorimetric system as the primary screen.
- the ADE2 gene is no longer under the control of its own promoter, but under that of the DAL5 gene.
- the protein Ure2p is in prion form ([URE3])
- the transcription from the promoter of the DAL5 gene is activated, therefore the ADE2 gene is expressed, therefore the strains are white and autotrophic for adenine.
- the URE2p protein is in the normal form ([URE3-0])
- the transcription from the promoter of the DAL5 gene is repressed, therefore the ADE2 gene is not expressed, therefore the strains are red and auxotrophic for adenine.
- the coding sequence of the ERG6 gene was also replaced by that of the TRP1 gene.
- the transcription of ADE2 therefore depends on the state of Ure2p: if Ure2p is inactivated by a prion mechanism ([ure3] cells), the ADE2 gene is actively transcribed whereas in the [ure 3-0] cells, it is not. Therefore, the [URE3] cells of the SB34 strain will form white colonies whereas the [ure3-0] cells will form red colonies. Because this strain always contains the ade2-1 allele, it was envisaged that this strain could be [PSI+], such that the red staining could be due to the curing of [PSI+] rather than of [URE3].
- the SB34 strain was constructed by replacing the ERG6 gene in CC34 by PCR amplification of the TRP1 marker and by replacing the coding region of the DAL5 gene by the ADE2 gene using a method based on PCR by deletion of the ERG6 gene with the primers (5′-ACAACAAAACAAGGATAATCAAATAG TGTAAAAAAAAAAATTCAAGATGGATTCTAGAACAGTTGG-3′) (SEQ ID No. 9) and 342 (5′-TATATTCTTCTCTGATAACAATAATGTCAGTGTATCTCACCA CTATTATTACTTGTTTCTAGATAAGC-3′) (SEQ ID No. 10).
- the NT35 strain was constructed by replacing the ade2-1 gene in the SB34 strain by the marker KanMX amplified by PCR and by verifying the successful replacement of the gene by analytic PCR on the genomic DNA.
- the inventors examined the ability of [URE3] cells treated with 200 ⁇ M of guanidium chloride (negative control), 5 ⁇ M of guanidium chloride (positive control) or with different doses of 6-aminophenanthridine (alone or in combination with 200 ⁇ M of guanidium chloride) to grow on a USA medium.
- 6-aminophenanthridine is capable of curing the [URE3] prion in a significant manner and, just as for the [PSI+] prion, this effect is accentuated by a low dose of guanidium chloride (200 ⁇ M).
- Certain molecules such as in particular quinacrine (used as an anti-malarial drug for a long time) or chlorpromazine (an antidepressant) have a particular activity in their system.
- the inventors therefore tested chlorpromazine and quinacrine in their yeast system. As shown in FIG. 7 , these two molecules have a certain activity against the [PSI+] prion. It must however be noted that their activities are clearly weaker than that of 6-aminophenanthridine. It can also be seen that chlorpromazine and quinacrine, like all of the molecules highlighted by the invention, exhibit a strong synergy of action with guanidium chloride (In FIG. 7 , the medium used contains 200 ⁇ M of guanidium chloride). The latter result suggests that these two molecules act on the same biochemical route as the isolated molecules according to the invention.
- quinacrine the activity of which is approximately ten times greater than that of chlopromazine in Prof. Prusiner's test, also exhibits an activity greater than the latter in the screen developed by the inventors.
- chlorpromazine and quinacrine require prolonged treatment (at least 6 days in the case of Prof. Prusiner's test, at least two to three days in the case of the screen according to the invention) before an activity is detected.
- the inventors determined the activity, in the test according to the invention, of other molecules isolated using the test based on mouse neuroblastomas, developed by Prof. Prusiner.
- a good correlation was found between the results obtained in the two systems: acepromazine which is shown to be slightly active in the mammal system also exhibits a weak activity in the test according to the invention and the molecules inactive in analysis on mammals such as carbamazepine, imipramine, haloperidol, chloroprothixene or methylene blue were also inactive in the test.
- Quinacrine has also been described as an inhibitor of multiple drug resistance (MDR).
- MDR multiple drug resistance
- the lysates were then centrifuged for 90 minutes at 20,000 ⁇ g and the pellet was resuspended in 25 ⁇ l of denaturing buffer (1 ⁇ Tris-Glycine; 4% of SDS, 2% of ⁇ -mercaptoethanol; 5% of sucrose and bromophenol blue) and heated for 5 minutes at 100° C. before Western blot analysis according to the standard protocol using the mouse monoclonal antibody anti-PrP SAF83 (supplied by SPI-BIO, Massy-Palaiseau, France).
- the percentages of inhibition of the formation de PrP sc resistant to proteinase K were calculated using NIH Image J: the inhibition of the accumulation of PrP sc was 96% for chlorpromazine (Chlor. ) and 70% +/ ⁇ 6% for KP1.
- KP1 and 6AP Two of the compounds selected (KP1 and 6AP) were tested in this mammal system. As shown by FIG. 8 , KP1 was capable of inducing a significant reduction in the accumulation of mammal prion at a dose similar to that used for chlorpromazine (5 ⁇ M). After 7 days of treatment, 70% of the PrP sc resistant to proteinase K have disappeared (wells 1 to 3) compared with untreated cells (wells 4 and 5). This significant effect was probably under-estimated since the cells treated with the solvent of the compounds alone (DMSO 0.01%) showed a significant and reproducible rise in PrP sc resistant to proteinase K (well 6). The same effect on the elimination of PrP sc was obtained with 6AP at 2 and 4 ⁇ M.
- the inventors carried out a structure/activity study on the 6-aminophenanthridine molecule.
- 2-fluoro-6-aminophenanthridine (2F-6AP), 2-fluoro-6-amino-8-chlorophenanthridine (2f-6A-8ClP) and 6-amino-7-chlorophenanthridine (6A-7ClP) molecules were thus obtained by chemical synthesis and their anti-prion activity was determined using the test according to the invention. The results obtained are shown in FIG. 9 .
- the diameters of the red halos obtained being proportional to the anti-prion activity of the molecules deposited, the results indicate that the presence of a halogen-type substituent at the level of positions 7 or 8 increases the anti-prion activity of the molecules of formulae (II) whereas the same type of substituent in position 2 tends to reduce it.
- a transiently transfected cellular model of Huntington's disease was used: 293T cells were transfected with a construct expressing a N-terminal fragment of Huntingtin derivative with 48 glutamines, Htt48.
- the plasmid encoding Htt48 is a mutant version of Htt73 described in and encodes the 163 first amino-acid of Huntingtin with 48 glutamines (Rousseau et al., 2004).
- 293T cells were transfected with Htt48 or GCN5 and treated with 6-aminophenanthridine (6AP) and 6[2-(1-hydroxybutyl)-amino]phzzénanthridine (Psi 132) in DMSO at the doses of 0.5, 1, 2, 4 and 8 ⁇ M or DMSO alone 4 h after the transfection ( FIG. 10 a ).
- SDS lysates collected 48 h after the transfection, were analyzed by SDS-PAGE, followed by immunoblot with Htt 2B4 antibody (Lunkes et al., 2002) to reveal Htt48 and Vimentin antibody (V6630, SIGMA).
- SDS extracts were filtered through a 0.2 ⁇ M pore size cellulose acetate membrane (Schleicher and Schuell) and revealed as an immunoblot with 2B4 antibody.
- the model used in this study is a very stringent one to test the activity of chemical compounds because the expression level of transiently expressed proteins is extremely high and due to the polyQ length of the Huntingtin derivative.
- Congo red has a barely detectable activity at a dose of 500 ⁇ M.
- SDS extracts were performed 48 h after the transfection and analyzed both by immunoblots and filter retardation assay. Measurement of the cellular proteins Vimentin was used as a toxicity assessment since cellular protein concentration varies with cell density.
- 6AP was active in two distinct cell based assays and reduces polyQ accumulation both in their soluble and insoluble form.
- NG 108-15 cells were induced for differentiation and expression of truncated huntingtin with 73 Q repeats (T73) as described in (Lunkes et al., 1998) and treated with 6AP and Psi132 in DMSO at the doses of 0.5, 1, 2, 4 and 8 ⁇ M or DMSO alone 12 h after the induction.
- SDS lysates collected 48 h after the transfection, were analyzed by SDS-PAGE followed by immunoblot with Htt 2B4 and vimentin antibodies. Images were acquired and quantified with the Chemi-Smart system (Vilber Lourmat). Quantification of T73 signals is presented as histograms. Signal from DMSO treated cells is used as a reference and set as 1.
- 6AP reduces accumulation of the pathogenic fragment of Huntingtin.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Other In-Based Heterocyclic Compounds (AREA)
- Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
Abstract
Description
- This application is a Continuation-In-Part of U.S. application Ser. No. 10/531,594, filed Nov. 28, 2005, which is the national phase of PCT/FR03/003101 filed Oct. 20, 2003, which claims priority of French Applications FR02/13022 filed Oct. 18, 2002 and FR03/08289 filed Jul. 7, 2003, which are hereby incorporated by reference in their entireties and are relied upon.
-
FIG. 1 relates to the feasibility of the screen. -
FIG. 2 illustrates the screening protocol. -
FIG. 3 relates to the isolation of the Kastellpaolitines, phenanthridine and to their structure/activity relationship. -
FIG. 4 relates to the determination of the activity of the phenanthridine derivatives. -
FIG. 5 shows the results of the liquid curing tests. -
FIG. 6 relates to the secondary screen based on the [URE3] prion. -
FIG. 7 demonstrates the validation of the test with chlorpromazine, quinacrine, and verapamil. -
FIG. 8 shows the results of the effect of KP1 on the mammal prion in an in vitro model. -
FIG. 9 relates to a structure/activity study carried out on the molecule of general formula (II). -
FIG. 10 concerns an immunoblot (a) and a filter retardation assay (b) showing a dose dependent decrease of the soluble (a) and aggregated (b) pathogenic fragment of Huntingtin, Htt48, in cells treated with 6-aminophenanthridine (6AP). -
FIG. 11 relates to an immunoblot (a) showing a reduced accumulation of the N-terminal fragment of Huntingtin, T73 in NG108-15 cells upon treatment with 6AP and a quantification of the signal (b) corresponding to T73 in 6AP treated cells. - The present invention relates to screening of molecules with anti-prion activity. It relates more particularly to kits for screening molecules with anti-prion activity, methods of screening, and a family of molecules with anti-prion activity revealed using the screen according to the invention.
- Prions are infectious proteins responsible for certain neuro-degenerative diseases of spongiform encephalopathy type in mammals, such as Creutzfeldt-Jakob's disease in humans or also the so-called “mad cow disease” in bovines or “scrapie” in ovines. These different diseases are caused by unconventional infectious agents: unlike traditional infectious agents (bacteria, viruses for example), they contain no nucleic acids. Professor Stanley Prusiner formulated the “protein-only” hypothesis, according to which the infectious agent would be constituted only by a protein. This protein exists naturally in cells in a normal (or PrPc) form, i.e. soluble, essentially in the form of an α helix and non-aggregated, therefore functional. Under certain still unknown conditions, this protein can be converted to a prion (or PrPsc) form. In this prion form, the protein forms insoluble aggregates, essentially in the form of β sheets. The infectious character of this PrPsc prion conformation would result from the fact that, apart from the characteristics indicated previously, the protein in prion form also gains the ability to catalyze the passage from the normal Prpc cell form to the PrPsc prion form in a “snowball”-type mechanism.
- Baker's yeast Saccharomyces cerevisiae contains several proteins that behave like prions (Fernandez-Bellot and Cullin, 2001). Since as long ago as the 1960s, two unconventional genetic mechanisms have been described. In 1994, the corresponding [PSI+] and [URE3] phenotypes were proposed as resulting from the autocatalytic inactivation of the Sup35p and URE2p proteins respectively. These prion proteins therefore have α priori a mechanistic analogy with mammal systems deleterious to public health. Like the PrP protein, the “normal” Sup35p protein passes from a soluble state to an insoluble and aggregated state as soon as the protein is in contact with another Sup35p protein in prion form. This aggregated state is verified both by centrifugation experiments and by intracellular localization experiments. Yeast prions can be eliminated (“cured”) by a strong dose (1 to 5 mM) of guanidium chloride. As a result of such a treatment (which must applied to at least six to ten generations), the protein aggregates generated by the presence of the prions disappear and the protein in question (Sup35p, for example) is found in a normal, soluble, functional form but having retained the capability of being converted to a prion form should it again come into contact with another Sup35p protein in such a state.
- The Sup35p protein, in a heterodimeric complex with the Sup45p protein, forms a translation termination factor. This factor recognizes the opal stop codons (UGA). In its normal cell form (soluble and active) in the [psi−] strains, Sup35p, in combination with Sup45p effectively terminates translation at the level of these opal codons. In a [PSI+] strain where the Sup35p protein is in prion form, it is mostly present in the form of insoluble aggregates. Being unable to bind to Sup45p, it is thus non-functional in the translation termination. A small fraction of all of the cellular Sup35p proteins however remains soluble in these [PSI+] cells where it makes it possible, in a complex with Sup45p, to ensure a “minimum translation termination service”, a service essential to the survival of the yeast. A colorimetric system making it possible to detect, in an indirect fashion, the form in which the Sup35p protein is present: normal or prion, has been produced from these findings. This system, which has been described for a long time (see the article on synthesis by Fernandez-Bellot and Cullin, 2001), is based on the use of the adel-14 allele of the ADE1 gene, coding for an enzyme of the adenine biosynthesis route: SAICAR synthetase. This enzyme catalyzes the formation of 4-(N-succinocarboxamide)-5-aminoimidazole ribonucleotide (SAICAR) from 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). The adel-14 allele contains an opal codon in the reading frame of the ADE1 gene. In a [psi−] strain, Sup35p in combination with Sup45p will therefore stop the translation of the ADE1 gene at the level of this stop codon. The protein adel-14p thus translated will be truncated and therefore non-functional. As a result the substrates upstream of the Ade1p enzyme will accumulate, in particular the 5-aminoimidazole ribonucleotide (AIR). The AIR being oxidized to a red-coloured compound, the colonies formed by the [psi−] cells will be red in colour. Moreover, these cells will be auxotrophic for adenine. Conversely, in a [PSI+] strain, the protein Sup35p is essentially present in the form of aggregates therefore incapable of being combined with Sup45p in order to stop translation at the level of the opal codon of the adel-14 allele of the ADE1 gene. As a result, the ribosomes will pause at the level of this stop codon before resuming their translation activity (readthrough). A certain quantity of functional Ade1p protein will therefore be synthesized, the cells will be autotrophic for adenine and will form white to pink-coloured colonies.
- In an article which appeared in P.N.A.S, Prof. Stanley Prusiner's team discloses a test for detecting molecules with anti-prion activity (Korth et al., 2001). This test is carried out on a mammal model (murine neuroblastomas infected with PrPsc). The safety conditions (P3 laboratory) and cell culture conditions (significant handling) do not allow high-throughput screening to be carried out.
- The Application WO 98/30909 also describes a process for screening molecules with anti-prion activity carried out on rodents infected with an unconventional transmissible agent. This screening method has the same limits as the method described in P.N.A.S.
- The inventors' work has led them to produce a high-throughput screening system in order to detect molecules possessing an anti-prion activity, based on the colorimetric reporter system of the protein Sup35p, described above.
- The present invention therefore relates to a kit for screening molecules with an anti-prion activity, characterized in that it comprises in combination a yeast of phenotype [PSI+], an antibiogram and a prion curing agent in sub-effective doses, said yeast having the adel-14 allele of the ADE1 gene as well as an inactivated ERG6 gene.
- Although based on yeast prions, the kit according to the invention makes it possible to isolate molecules active against mammal prions. Example 7 below shows that the most active molecules isolated by Prof. Prusiner also have an activity in the screen according to the invention.
- However, numerous differences are observed between yeast prions and mammal prions. In an article in the journal “Cellular and Molecular Life Sciences”, Professor C. Cullin proposes, even in view of these differences, distinguishing yeast prions from mammal prions by using the term “propagons”. As particular differences between “prions” (mammal) and “propagons” (yeast), there can be mentioned the cytoplasmic character of propagons whereas the mammal PrP prion is a protein anchored to the plasmic membrane, the pathological character of mammal prions, as well as a certain number of biophysical differences (ternary and quaternary structure, reversibility of the curing etc.)
- One of the main advantages of such a screen resides in its complete harmlessness which allows it to be carried out in a standard level L2 molecular biology laboratory, and not, as required in the previous techniques, in a level P3 laboratory.
- Moreover, the great ease of use and very low cost of this kit make it possible carry out high-throughput screening. The use of antibiogram pellets, which allow the diffusion of the product by creating a concentration gradient, moreover makes it possible to test a multiplicity of concentrations in a single experiment, unlike the standard tests, in which only one concentration is tested. For each molecule the anti-prion activity of which is tested, the use of the antibiogram also makes it possible to acquire information on the toxicity of the product as well as on the activity/concentration ratio, and thus to determine the best effective concentration.
- The [PSI+] strain used in the kit according to the invention carries an inactivation of the ERG6 gene. In fact, yeasts are naturally fairly impermeable. In particular, the preferred yeast for implementing the invention, Saccharomyces cerevisiae, has an impermeability such that the carrying out of a screening process proves particularly ineffective without this inactivation.
- The screen analysis method according to the invention is visual thanks to the use of the adel-14 allele. According to the anti-prion activity of the molecule tested, the colonies of cells will have a red, pink or white staining. The choice of the strain of yeast can make it possible to improve the contrast between the colonies. In fact, certain so-called “Strong” strains facilitate visual analysis of the screen. Such strains possess a strong level of aggregation of the prion forms. In the opposite case, the strain is referred to as “Weak”. The strains preferred for implementation of the invention are therefore the “Strong”-type strains.
- Other yeasts can also be used. As examples there can be mentioned: Kluyveromyces lactis, Pichia methanolica, Saccharomyces ludwigii, Kluyveromyces marxianus, Pichia pastoris, Zygosaccharomyces rouxi, Schizosaccharomyces pombe.
- Given the synthetic lethality observed between the inactivation of the ERG6 gene and the inactivation of the TRP1 gene, the ERG6 gene can be deleted using the TRP1 gene as deletion marker.
- Advantageously, the kit moreover comprises a prion curing agent at sub-effective doses.
- By curing, is meant an elimination of the prion forms from the yeast cells. This elimination can be temporary or permanent.
- By way of example, a prion curing agent can be hydrogen peroxide or preferentially, guanidium chloride.
- By sub-effective doses, is meant doses which used alone would not suffice to eliminate the prions from the yeasts. The values of such doses are given, in the examples which follow, for guanidium chloride.
- The benefits of the presence of a curing agent at sub-effective doses are to reinforce the sensitivity of the screen and obtain a better contrast.
- The kit according to the invention can be used in a method for screening molecules with anti-prion activity. This screening method, to which the invention also relates, is characterized in that it uses a [PSI+] phenotype yeast having the adel-14 allele of the ADE1 gene as well as an inactivated ERG6 gene and comprises the following stages:
- a. production of a lawn of cells in vitro on a medium complemented with a sub-effective dose of a prion curing agent,
- b. deposition of the compounds to be tested according to the antibiogram method,
- c. incubation for approximately 2-4 days at approximately 20-25° C., and,
- d. analysis of the staining of the cell colonies.
- This method possesses advantages analogous to those of the kit according to the invention. It is a visual test, very easy to analyze. Its implementation is very simple and inexpensive. The precautions relative to safety are those of a standard molecular biology laboratory. It allows mass screening: a single person can manually screen more than 400 products per day. Very high-throughput screening would be possible by automation of the method. The screen result is developed after 7 days, without it being necessary to resort to a lot of handling between day D and day D+7 (optionally a change in temperature of the incubator). Finally, this method is particularly economical.
- One of the yeasts preferred for the implementation of this method is Saccharomyces cerevisiae.
- Advantageously, the curing agent of stage a. is guanidium chloride.
- The method can also comprise the following stages:
- e. incubation for approximately 2-4 days at approximately 2-6° C., and/or,
- f. carrying out a secondary screening test.
- The incubation at 2-6° C. makes it possible to accentuate the contrast in staining of the colonies.
- Preferentially, the secondary screening test can comprise the following stages:
- construction of a strain of yeast in which the ADE2 gene is under the control of the DAL5 gene promoter
- carrying out stages a. to e. of the methods described above.
- Such a secondary screening makes it possible to test very rapidly whether the molecules isolated during the primary screening can have a general effect on the prions in the yeast. In fact, the SUP35 genes (responsible for the [PSI+] prion) and URE2 (responsible for the [URE3] prion) code for enzymes having totally different functions and the primary sequences of which are very remote.
- The invention also covers the molecules isolated by the screening method according to the invention.
-
-
- X represents F, Cl, Br, I, CF3, SR3, OR3, OH, NO2, COR3, CONH2, COOH, COOR3, where R3 is an alkyl group with 1 to 4 carbon atoms, preferably CH3.
- p and n, identical or different, are equal to 0, 1 or 2,
- q is equal to 0 or 1.
-
-
- X represents F, Cl, CF3,
- p and n, identical or different, are equal to 0, 1 or 2.
- This family of molecules, called “Kastellpaolitines” by the inventors, possesses the sought anti-prion activity to a greater or lesser degree. In particular, the chlorinated derivatives of this family are particularly effective. The best effectivenesses are obtained when chlorine is placed in
2, 3 or 4, preferably in position 4 (see KP1 in the examples which follow).position -
-
- X represents F, Cl, CF3,
- p and n, identical or different, are equal to 0, 1 or 2,
for use as a medicament, and in particular, as an anti-prion agent.
-
-
- R′ represents an H, NH2, NH—(CH2)3—N(CH3)2, NH—CH(CH3)—(CH2)3—N(CH2—CH3)2 group,
- X represents F, Cl, CF3,
- p and n, identical or different, are equal to 0, 1 or 2, in combination with at least one pharmaceutically acceptable vehicle.
- Certain compounds of this family are particularly active. These are phenanthridine and 6-aminophenanthridine, as well as their chlorinated derivatives, in particular when the chlorine is placed in
8, 9 or 10, preferably in position 10 (see in the examples which follow).position - Preferentially, in formulae (II) and (III), R′ represents NH2. In fact, a very good activity of the molecules has been noted when R′ represents NH2.
- The invention also proposes a method for treating neurodegenerative diseases involving protein aggregates, comprising a stage of administering to an animal or to a patient a therapeutically effective quantity of at least one of the compounds of formula (I), (II) or (III) according to the invention.
- The anti-prion agents according to the invention are particularly useful for obtaining a medicament intended to prevent and/or to treat neurodegenerative diseases, in particular of the protein-aggregation type, such as the spongiform encephalopathies, Alzheimer's (tau), Parkinson's (α-synuclein) and Huntington's (huntingtin) disease etc. These medicaments can be intended for human or veterinary use, in particular for domestic (cows, sheep etc.) or wild animals (lynx, the Cervidae such as deer, moose etc.)
- In Huntington's disease, a proteolytic fragment of the huntingtin protein containing expanded polyglutamine (polyQ) forms inclusions in patients brains, transgenic mice and cellular models of Huntington's diseases. Huntington's disease is a devastating disease with no effective treatment. The molecular cascade linking aggregate formation and cellular dysfunction remains elusive. The pathogenic conformer may rather be an oligomeric intermediate than the mature insoluble fibril; a protective role of the final product of the aggregation process has even been suggested. Yet, oligomerization of expanded polyQ was reported to be crucial for their pathogenicity and interfering with oligomerization revealed beneficial. Therefore, polyQ oligomerization is a valid therapeutic target. Considerable efforts have been devoted to develop high-throughput assays to identify compounds of therapeutic interest. Chemical inhibitors of amyloids such as Congo Red have been identified in vitro. However, chemical compounds identified for their potent ability to inhibit polyQ oligomerization in a cell-free assay often turn out to be toxic for cells. This caveat emphasis the requirement to couple different approaches to isolate chemical compounds with potential clinical applications.
- As above mentioned, Huntington's disease belongs to a group of disorders referred to as “polyglutamine expansion associated diseases,” characterized by expansion of CAG codons translated into glutamine in unrelated proteins. While Huntington's disease is caused by an expansion in the gene encoding Huntingtin, Spinal and bulbar muscular atrophy, Dentalorubral-pallidoluysian atrophy, and Spinocerebellar ataxias 1, 2, 3, 6, 7 and 17 are caused by expansion in genes encoding Androgen Receptor,
Atrophin 1, 1, 2, 3, α-voltage dependent calcium channel subunit and TBP respectively. CAG expansion is translated in polyglutamine and causes aggregation of the affected protein.Ataxin - Examples 10 and 11 demonstrate that a compound according to the invention is specifically active against unrelated aggregation-prone proteins in different cell based assay.
- In another embodiment, methods for treating neurodegenerative diseases involving protein aggregates by administering compounds of the present invention, including various compounds of formula (II) are provided. Examples of suitable neurodegenerative diseases include: polyglutamines expansion associated diseases; Huntington's disease; Kennedy disease; the amyotrophic lateral sclerosis; cerebellous autosomic ataxies; dentalorubral-pallidoluysian atrophy; and spino-bulbar amyotrophy.
- The present invention also encompasses methods of treatment involving the administration of a therapeutically effective amount of the compounds according to the invention to a patient in need thereof.
- Organisms (Saccharomyces Cerevisiae) and Culture Media The [PSI+] haploid yeast strain 74-D694 (Mat α, adel-14, trpl-289, his3-Δ200, ura3-52, leu2-3, 112) was used in the development of the screening method. The strain used is called “Strong” as it has a well-marked phenotype when the translation termination factor Sup35p is in prion or aggregated form.
- In order to increase the penetration of the inhibitors, the inventors genetically modified this strain by introducing into it a mutation of the ERG6 gene. This gene is involved in the biosynthesis of ergosterol, a component of the cell wall of the yeasts. The mutation was produced by insertion at the level of the chromosome site of the ERG6 gene of a “deletion cassette” corresponding to the TRP1 marker gene flanked by DNA sequences situated upstream and downstream of the coding frame of the ERG6 gene. This cassette was produced by PCR using the plasmid pFA6a-kanMX6 as matrix and the oligonucleotides oBM1060 (5′) et oBM1061 (3′) as primers. The “Strong” 74-D694 yeast cells having integrated the deletion cassette (strain called STRg6, deposited at the CNCM on 10th Oct. 2002 under number 1-2943) are those which develop on minimum media devoid of tryptophan. The mutation Δerg6::TRP1 was then verified by PCR using the genomic DNA of the strain STRg6 as matrix and the oligonucleotides oBM1030 (5′) and oBM1063 (3′) as primers.
- The PCR primers used have the following nucleotide sequences:
oBM1060 5′ CGATTTAAGTTTTACATAATTTAAAAAAACAAG (SEQ ID No. 1) AATAAAATAATAATATAGTAGGCAGCATAAGCGGAT CCCCGGGTTAATTAA 3′ oBM1061 5′ CTGCATATATAGGAAAATAGGTATATATCGTGC (SEQ ID No. 2) GCTTTATTTGAATCTTATTGATCTAGTGAATGAATT CGAGCTCGTTTAAAC 3′ oBM1030 5′ GGTACCTCGTTCCCGTAC 3′(SEQ ID No. 3) oBM1063 5′ CAGTCAGAAATCGAGTTCCA 3′(SEQ ID No. 4) - Unless otherwise indicated, the yeast strains are cultured at 30° C. in rich medium (YPDψ) or in minimum medium. Unless explicitly specified, the percentages correspond to a mass/volume ratio. The gelosed form is obtained by the addition of 2% agar.
- YPDψ: 1% yeast extract (FISHER®), 2% peptone (GiBCO®) and 2% glucose; Minimum medium: 0.175% yeast nitrogen base without amino acid and ammonium sulphate (DiFCO®), 0.75% ammonium sulphate and 2% glucose. This medium is adjusted to
pH 6. In order to compensate for possible auxotrophies, this medium can be completed, after sterilization, by the addition of amino acids (0.002% L-histidine and/or 0.004% L-leucine and/or 0.003% L-tryptophan) or nitrogenous bases (0.0025% uracil and/or 0.008% adenine). - Method for Screening Substances with Anti-Prion Activity (“Prion Halo Assay”)
- The screening method developed is based on the antibiogram principle. In fact, the compounds to be tested are applied to a sterile filter-paper disc, itself applied to a dish of solid YPDψ medium containing 0.2 mM of guanidium chloride previously seeded with approximately 5.106 cells of the STRg6 strain in order to produce a yeast lawn. This quantity of seeded cells (from 106 to 107) was optimized in order for each cell to be able to divide at least 6 times (number of generations necessary to have an effective curing effect with 3 mM of GuHCl). The addition of a small quantity of guanidium chloride (0.2 mM), a sub-effective dose for eliminating prions from yeast (the effective dose being of the order of 1 to 5 mM) makes it possible to increase the sensitivity of the test (see Results section). The 12 cm square dishes are then incubated for 3 days at 23.5° C. in order to allow the appearance and growth of the yeast colonies. These dishes are then stored for 3 days at 4° C. in order to accentuate the red staining present around the discs soaked with ingredients active on the prion form of the protein Sup35p. Comparison with the negative controls (application of the solvent of the inhibitors tested) and positive controls (application of a 300 mM guanidium chloride solution, causing effective elimination of the Sup35p proteins in prion form) makes it possible to judge the effectiveness of a compound.
FIG. 2 illustrates the protocol of the screening method: (1) Culture of the STRg6strain; (2) Application and plating withsterile glass beads 3 & 4 mm in diameter, of approximately 106 cells in exponential growth phase on a dish of solid YPDψmedium containing 0.2 mM of guanidium chloride: constitution of the cell “lawn”; (3) Application of the sterile filter-paper discs according to a grid allowing the analysis of 32 compounds (including controls) and deposit of 20 μl maximum of each of the products to be tested; (4) Incubation; (5) Scanning of the result obtained; (6) Example showing the isolation of a compound having a strong anti-prion activity. - Synthesis of II-aminodibenzo[b,f][1,4]thiazepines and 6-aminophenanthridine
- II-aminodibenzo[b,f][1,4]thiazepines, also called Kastellpaolitines, can be prepared in a single stage. The synthesis of these products has already been described in the publication by Mettey et al., 1997.
- Principle and Feasibility of the Screen
- Guanidium chloride, the only product known to effectively eliminate prions from the yeast Saccharomyces cerevisiae, served not only as a positive control throughout screening, but also for studying the feasibility of the method as well as developing it. Guanidium chloride effectively eliminates the different yeast prions at a dose comprised between 1 and 5 mM (Fernandez-Bellot and Cullin, 2001). Under these conditions, the curing requires a constant presence of this product for six to ten generations in exponential growth phase compromising the feasibility of the screen on a dish such as the inventors wished to achieve.
-
FIG. 1 shows the feasibility of the screen. - The three left-hand panels: a [PSI+] strain is cultured for 48 hours in the presence of 5 mM guanidium chloride (with 0.2% DMSO final) or, as a control, with only 0.2% DMSO final. At T=0, then every 24 hours, a 10 μl drop (approximately 104 cells) is applied to a dish of rich medium. The guanidium chloride curing begins to have an effect after 24 hours of treatment, i.e. after approximately 6 generations (a pink staining begins to appear). After 48 hours, i.e. after approximately 12 generations, the drop of cells has a clearly red staining, a sign of a complete curing of the [PSI+] cells. The middle panel: a few cells are taken at T=48 hours and scratched onto a fresh medium. Almost all of them form red colonies in the case of curing with guanidium chloride.
- The right-hand panel: these same cells are pelleted at the bottom of an Eppendorf tube after liquid culture. In the case of curing with guanidium chloride, they form a red pellet.
- The first stage therefore consisted of determining whether guanidium chloride could have an effect which can be visualized on a dish of [PSI+] cells with the antibiogram pellet system. Once this stage was carried out, the inventors developed the optimum temperature, medium and density conditions as well as cell type to use (
FIG. 2 ). The strain having the best sensitivity is the STRg6 strain cultured at 23.5° C. and in the presence of 200 μM of guanidium chloride. In fact, the introduction of a sub-effective dose of guanidium chloride into the medium makes it possible to increase the sensitivity of the test. - Screening of a Combinatorial Library
- Compounds (approximately 1000) were passed through the screen using the conditions optimized by the inventors (
FIG. 2 ). On each dish, 15 μl of DMSO are deposited on the filter at the top left (negative control) and 15 μl of a 300 mM solution of guanidium chloride in DMSO (positive control) were applied to the filter at the bottom right. The same volume (15 μl) of each of the products of the library (all in 10 mM solution in DMSO) was applied to the remaining filters (thirty for each large square Petri dish). A positive signal (visualization of a red halo around the sterile filter-paper disc to which the product is applied) was obtained for five products. These products correspond to four molecules of the same family, called “Kastellpaolitines” by the inventors, and to a well-known fifth molecule: phenanthridine. - The chemical structures of the Kastellpaolitines and phenanthridine are shown in
FIG. 3B . The panel 3A shows a comparative analysis of the size of the red halos obtained with all of these molecules respectively (all applied in an equivalent quantity: 15 μl of a 10 mM solution in DMSO). This experiment makes it possible to compare the relative activity of each of these products. The most active is Kastellpaolitine 1 (or KP 1) followed by phenanthridine. - 6-aminophenanthridine Synthesis and Test
- Comparative analysis of phenanthridine on the one hand, and of the Kastellpaolitines on the other hand show several common points between these two groups of molecules (
FIG. 3 ). The different molecules are classified there from the least active to the most active and their respective formulae indicated. All are tri-cyclic, the central ring containing in all cases a nitrogen atom with a double bond to an adjacent carbon atom. In contrast, in all the Kastellpaolitines, the carbon of the central ring which has a double bond to this nitrogen atom carries an amino group, which is not the case for phenanthridine. This observation led the inventors to want to test 6-aminophenanthridine. - 6-aminophenanthridine can be prepared according to the procedure developed by Kessar et al., 1969.
- 6-aminophenanthridine was therefore passed through the screen according to the invention, in comparison with the Kastellpaolitines 1 (KP1) and 5 (KP5) as well as phenanthridine. The result is very clear: 6-aminophenanthridine is still more active than the Kastellpaolitines and phenanthridine.
-
FIG. 4 illustrates the results of this comparison: the activity of 6-aminophenanthridine was determined on a dish and compared to that of phenanthridine. For all the molecules, the same quantity is applied (10 μl of a 10 mM solution). In the case of the positive control (guanidium chloride), the solution used was 300 mM. - As a result, by grafting this amino group, characteristic of the Kastellpaolitines onto phenanthridine, the inventors significantly increased the activity of the latter.
- By following the same approach, the inventors then added a chlorine in
position 8 in 6-aminophenanthridine (6AP) in order to produce 6-amino-8-chlorophenanthridine (6A-8CP). This modification again increased the activity of the compound. Finally, the chlorine inposition 8 was replaced by a trifluoromethyl group in order to produce 6-amino-8-trifluoromethylphenanthridine (6A-8tFP). As shown byFIG. 4 , the latter modification led to an additional increase in activity and 6A-8tFP in fact represents one of the most active compounds. - All the active molecules were isolated in a medium containing a weak dose of guanidium chloride (200 μM/effective dose=4 mM). Taking this course, established during the development of the screen corresponded to the wish to increase the sensitivity (and therefore the detection threshold of the method). The effect of the molecules in media containing more (500 μM) guanidium chloride or not containing any, was observed subsequently. Phenanthridine is always active on a medium without guanidium chloride, but its activity increases significantly as a function of the quantity of guanidium chloride (however in a clearly sub-effective dose) in the medium. This result indicates a synergy of action between guanidium chloride and phenanthridine. The same result was obtained for all the other molecules isolated by the inventors (the Kastellpaolitines, 6-aminophenanthridine and its derivatives).
- The inventors then wanted to determine whether the red halos observed in the yeast test corresponded to [PSI+] prion curing and not to an artefact (for example these red halos could be due to a direct inhibition of the biosynthesis chain of adenine by these molecules, which would lead to a accumulation of the AIR). If these molecules effectively eliminate the [PSI+] prion, a treatment of [PSI+] cells in liquid culture followed by washing of said cells must allow them to form red colonies on a gelosed medium no longer containing the molecules. These tests were carried out with 6-aminophenanthridine on the wild-type “strong” strain 74-D694.
- The liquid medium curing conditions are the following: a [PSI+] strain is cultured for 5 days in liquid medium in the presence of the indicated quantities of the different products (see
FIG. 5 ). Every 24 hours, an aliquot fraction is washed in medium uncontaminated by any product and applied to a solid gelosed medium (itself also uncontaminated by any product) which is then treated as indicated inFIG. 2 . - As shown in
FIG. 5 , 6-aminophenanthridine is capable of partially curing the [PSI+] prion from a significant number of cells. The curing effectiveness can in particular be increased by adding a sub-effective dose (100 μM) of guanidium chloride to the culture medium. In such a liquid curing, the same synergic effect as that observed in the dish test is also found. - Another rapid dish test was carried out, based on another yeast prion: [URE3]. This test constituted a secondary screen which makes it possible to generalize the effect of the products isolated during the primary screen of another yeast prion. In this way, it is possible to remove the molecules active only against the [PSI+] prion and therefore less useful, having a non-general effect.
- For the [URE3] prion the haploid strain used is CC34 (Mat α, trpl-1, ade2-1, leu2-3, 112, his3-11, 15, ura2::HIS3).
- The NT34 strain which served for the secondary screen was constructed from CC34, a strain in which the coding frame of the DAL5 gene has been replaced by that of the ADE2 gene using the same method as that used for the construction of the STRg6 strain. For this purpose a deletion cassette corresponding to the ADE2 gene flanked by DNA sequences situated upstream and downstream of the coding frame of the DAL5 gene was produced by PCR using genomic DNA of the BY4742 haploid strain (Mat α, his3Δl, leu2ΔO, lys2Δ0, ura3Δ0) as matrix and the oligonucleotides:
ACAACAAAACAAGGATAATCAAATAGTGTAA (SEQ ID No. 5) (5′) AAAAAAAAATTCAAGATGGATTCTAGAACAG TTGG, and TATATTCTTCTCTGATAACAATAATGTCAGT (SEQ ID No. 6) (3′) GTATCTCACCACTATTATTACTTGTTTTCTA GATAAGC as primers. - The mutation DAL5::ADE2 was then verified by PCR using the genomic DNA of the NT34 strain as matrix and the oligonucleotides:
ATAGTCTCTGCTCATAG, (SEQ ID No. 7) (5′) and GCTTACAGAAATTCTAC (SEQ ID No. 8) (3′) as primers. - The NT34 strain (Mat α, trpl-1, ade2-1, leu2-3, 112, his3-11, 15, ura2::HIS3, DAL5::ADE2) was deposited at the CNCM on 10th Oct. 2002 under number 1-2942.
- This screen is based on the same colorimetric system as the primary screen. In the NT34 yeast strain, the ADE2 gene is no longer under the control of its own promoter, but under that of the DAL5 gene. When the protein Ure2p is in prion form ([URE3]), the transcription from the promoter of the DAL5 gene is activated, therefore the ADE2 gene is expressed, therefore the strains are white and autotrophic for adenine. When the URE2p protein is in the normal form ([URE3-0]), the transcription from the promoter of the DAL5 gene is repressed, therefore the ADE2 gene is not expressed, therefore the strains are red and auxotrophic for adenine. When the NT34 strain is treated with 5 mM of guanidium chloride for approximately ten generations, it forms red colonies (as expected and as the [PSI+] strain used for the primary screening would do). As can be observed in
FIG. 6 , phenanthridine and 6-aminophenanthridine cause the appearance of a red halo when they are applied to the small filter itself applied to the lawn of cells previously plated on the gelosed nutritive medium (same process as for the primary screen, seeFIG. 2 ). This result suggests that these products are also active on the [URE3] prion. It is to be noted, however, that this secondary screen is clearly less sensitive than the primary screen. It is therefore very useful for rapidly observing whether the effect of the molecules isolated during the first screen can be generalized to other yeast prions but in no event could it be substituted for the primary screen. - In order to increase cell permeability, the coding sequence of the ERG6 gene was also replaced by that of the TRP1 gene. In this strain (SB34), the transcription of ADE2 therefore depends on the state of Ure2p: if Ure2p is inactivated by a prion mechanism ([ure3] cells), the ADE2 gene is actively transcribed whereas in the [ure 3-0] cells, it is not. Therefore, the [URE3] cells of the SB34 strain will form white colonies whereas the [ure3-0] cells will form red colonies. Because this strain always contains the ade2-1 allele, it was envisaged that this strain could be [PSI+], such that the red staining could be due to the curing of [PSI+] rather than of [URE3]. This possibility has been excluded by verifying using cytoduction and conjugation that the strain is [URE3]. Moreover, the entire coding sequence of the ade2-1 gene was deleted in order to produce the NT35 strain. This strain also formed white colonies, demonstrating again that it is [URE3].
- The SB34 strain was constructed by replacing the ERG6 gene in CC34 by PCR amplification of the TRP1 marker and by replacing the coding region of the DAL5 gene by the ADE2 gene using a method based on PCR by deletion of the ERG6 gene with the primers (5′-ACAACAAAACAAGGATAATCAAATAG TGTAAAAAAAAAAATTCAAGATGGATTCTAGAACAGTTGG-3′) (SEQ ID No. 9) and 342 (5′-TATATTCTTCTCTGATAACAATAATGTCAGTGTATCTCACCA CTATTATTACTTGTTTCTAGATAAGC-3′) (SEQ ID No. 10). This gene replacement was then confirmed by growth on the SD-Ade medium, in the absence of growth on the USA medium (as provided for a dal5Δ strain) and by analytic PCR on the genomic DNA. The [URE3] phenotype of this strain was verified by cytoduction: among 30 cytoduction agents, 26 were capable of growing on USA medium, showing that they were [URE3]. The NT35 strain was constructed by replacing the ade2-1 gene in the SB34 strain by the marker KanMX amplified by PCR and by verifying the successful replacement of the gene by analytic PCR on the genomic DNA.
- Two types of experiments were carried out in order to verify that the effect observed on dishes with the NT34 strain corresponds to curing. Firstly, cells in the zones surrounding the filter were recovered for the negative (DMSO), and positive (guanidium chloride) control for phenanthridine and for 6-aminophenanthridine.
- These cells were then scratched onto a fresh medium free of all these molecules. The cells recovered around the filters all form red colonies, with the exception of those collected around the negative control. This result shows that the red staining observed on dishes for the NT34 strain corresponds to curing and not to an artefact linked to inhibition of an enzyme of the biosynthesis route of adenine (in this case, the red staining would be lost on a medium without inhibitor). The curing effect of phenanthridine and 6-aminophenanthridine was also directly verified on the [URE3] prion. [URE3] cells of the CC34 strain grow on a medium called USA whereas cured ([ure3-0]) cells are incapable of growing on this medium. The inventors examined the ability of [URE3] cells treated with 200 μM of guanidium chloride (negative control), 5 μM of guanidium chloride (positive control) or with different doses of 6-aminophenanthridine (alone or in combination with 200 μM of guanidium chloride) to grow on a USA medium. 6-aminophenanthridine is capable of curing the [URE3] prion in a significant manner and, just as for the [PSI+] prion, this effect is accentuated by a low dose of guanidium chloride (200 μM). These results, apart from the fact that they validate the secondary screen with the NT34 strain, suggest that the effect of the inhibitors revealed by said screen should be general on all yeast prions.
- The laboratory of Stanley Prusiner, who first put forward the “protein-only” hypothesis and was awarded the Nobel prize in 1997, has isolated a certain number of molecules active on the mammal prion PrP using a system of murine cells (neuroblastomas) chronically infected with the prion PrPsc (Korth et al., 2001). This system, due to its labour-intensiveness and its complexity, does not allow mass screening like that developed by the inventors. Thus the approach of Stanley Prusiner's group was to test one-by-one, from the molecules already used as medicaments, those which pass the blood-brain barrier. Certain molecules, such as in particular quinacrine (used as an anti-malarial drug for a long time) or chlorpromazine (an antidepressant) have a particular activity in their system. In order to validate the screen, the inventors therefore tested chlorpromazine and quinacrine in their yeast system. As shown in
FIG. 7 , these two molecules have a certain activity against the [PSI+] prion. It must however be noted that their activities are clearly weaker than that of 6-aminophenanthridine. It can also be seen that chlorpromazine and quinacrine, like all of the molecules highlighted by the invention, exhibit a strong synergy of action with guanidium chloride (InFIG. 7 , the medium used contains 200 μM of guanidium chloride). The latter result suggests that these two molecules act on the same biochemical route as the isolated molecules according to the invention. - Moreover, it is interesting to note that quinacrine, the activity of which is approximately ten times greater than that of chlopromazine in Prof. Prusiner's test, also exhibits an activity greater than the latter in the screen developed by the inventors. Moreover, just as in Prof. Prusiner's test, chlorpromazine and quinacrine require prolonged treatment (at least 6 days in the case of Prof. Prusiner's test, at least two to three days in the case of the screen according to the invention) before an activity is detected.
- Moreover, the inventors determined the activity, in the test according to the invention, of other molecules isolated using the test based on mouse neuroblastomas, developed by Prof. Prusiner. A good correlation was found between the results obtained in the two systems: acepromazine which is shown to be slightly active in the mammal system also exhibits a weak activity in the test according to the invention and the molecules inactive in analysis on mammals such as carbamazepine, imipramine, haloperidol, chloroprothixene or methylene blue were also inactive in the test.
- Quinacrine has also been described as an inhibitor of multiple drug resistance (MDR). In order to test whether its anti-prion effect could involve this mechanism (which is compatible with the synergic effect of GuHCl), we evaluated the putative curative effect of an effective general inhibitor of MDR, verapamil. As shown by
FIG. 7 , although a strong concentration of this medicament was used, a concentration close to toxicity, no curative effect could be detected. - All these correlations between the activity of quinacrine and chlorpromazine according to the test or the screen used make it possible to validate the use of the method according to the invention in order to carry out high-throughput screenings with a view to isolating molecules capable of constituting effective medicaments (on mammals and in particular humans) against neurodegenerative diseases involving protein aggregates, of spongiform-encephalopathy type, Alzheimer's disease, Huntington's disease etc.
- Mouse neuroblastoma cells infected with the scrapie prion (ScN2a-22L) were used. The cells were cultured in 25 cm2 flasks in the presence or absence of the compounds for several days. Then, the proteins were extracted from the ScN2a-22L cells by cell lysis in 500 μl of lysis buffer (50 mM of Tris HCl pH 7.5; 150 mM of NaCl, 0.5% sodium deoxycholate; 0.5 % Triton X100). After normalization of the proteins with the Uptima Interchim kit, the adjusted quantities of cell lysates were digested by proteinase K at 20 μg/ml (Eurobio) for 40 minutes at 37° C. The lysates were then centrifuged for 90 minutes at 20,000×g and the pellet was resuspended in 25 μl of denaturing buffer (1×Tris-Glycine; 4% of SDS, 2% of β-mercaptoethanol; 5% of sucrose and bromophenol blue) and heated for 5 minutes at 100° C. before Western blot analysis according to the standard protocol using the mouse monoclonal antibody anti-PrP SAF83 (supplied by SPI-BIO, Massy-Palaiseau, France). The percentages of inhibition of the formation de PrPsc resistant to proteinase K were calculated using NIH Image J: the inhibition of the accumulation of PrPsc was 96% for chlorpromazine (Chlor. ) and 70% +/−6% for KP1.
- Two of the compounds selected (KP1 and 6AP) were tested in this mammal system. As shown by
FIG. 8 , KP1 was capable of inducing a significant reduction in the accumulation of mammal prion at a dose similar to that used for chlorpromazine (5 μM). After 7 days of treatment, 70% of the PrPsc resistant to proteinase K have disappeared (wells 1 to 3) compared with untreated cells (wells 4 and 5). This significant effect was probably under-estimated since the cells treated with the solvent of the compounds alone (DMSO 0.01%) showed a significant and reproducible rise in PrPsc resistant to proteinase K (well 6). The same effect on the elimination of PrPsc was obtained with 6AP at 2 and 4 μM. - These results therefore validate the use of the screening test according to the invention based on yeast in order to isolate anti-prion compounds since quinacrine and chlorpromazine were detected using this analysis and KP1 and 6AP were also effective in promoting the elimination of the mammal prion in vitro.
- For the purpose of studying the different substitution positions of the anti-prion molecules isolated, the inventors carried out a structure/activity study on the 6-aminophenanthridine molecule. 2-fluoro-6-aminophenanthridine (2F-6AP), 2-fluoro-6-amino-8-chlorophenanthridine (2f-6A-8ClP) and 6-amino-7-chlorophenanthridine (6A-7ClP) molecules were thus obtained by chemical synthesis and their anti-prion activity was determined using the test according to the invention. The results obtained are shown in
FIG. 9 . The diameters of the red halos obtained being proportional to the anti-prion activity of the molecules deposited, the results indicate that the presence of a halogen-type substituent at the level of 7 or 8 increases the anti-prion activity of the molecules of formulae (II) whereas the same type of substituent inpositions position 2 tends to reduce it. - A. Material and Method
- A transiently transfected cellular model of Huntington's disease was used: 293T cells were transfected with a construct expressing a N-terminal fragment of Huntingtin derivative with 48 glutamines, Htt48. The plasmid encoding Htt48 is a mutant version of Htt73 described in and encodes the 163 first amino-acid of Huntingtin with 48 glutamines (Rousseau et al., 2004).
- 293T cells were transfected with Htt48 or GCN5 and treated with 6-aminophenanthridine (6AP) and 6[2-(1-hydroxybutyl)-amino]phzzénanthridine (Psi 132) in DMSO at the doses of 0.5, 1, 2, 4 and 8 μM or DMSO alone 4 h after the transfection (
FIG. 10 a). SDS lysates, collected 48 h after the transfection, were analyzed by SDS-PAGE, followed by immunoblot with Htt 2B4 antibody (Lunkes et al., 2002) to reveal Htt48 and Vimentin antibody (V6630, SIGMA). Full length endogenous Huntingtin was revealed with an oligoclonal mixture of Huntingtin antibodies: 2B4, 4C8 and 2H8 (Lunkes et al., 2002). Filter retardation assay of similar lysates revealing aggregates were probed with huntingtin 2B4 antibody (FIG. 10 b.). - Briefly, SDS extracts were filtered through a 0.2 □M pore size cellulose acetate membrane (Schleicher and Schuell) and revealed as an immunoblot with 2B4 antibody.
- B. Results
- The model used in this study is a very stringent one to test the activity of chemical compounds because the expression level of transiently expressed proteins is extremely high and due to the polyQ length of the Huntingtin derivative. In this stringent system, Congo red has a barely detectable activity at a dose of 500 μM. SDS extracts were performed 48 h after the transfection and analyzed both by immunoblots and filter retardation assay. Measurement of the cellular proteins Vimentin was used as a toxicity assessment since cellular protein concentration varies with cell density. While the levels of soluble and aggregated Htt48 remain largely constant over a
treatment ranging form 0 to 8 μM of Psi132, a chemically modified inactive derivative of 6AP, the levels of both soluble Htt48 and aggregated Htt48 decrease in a dose dependent manner upon treatment with the compound 6AP. In contrast, 6AP has no effect on an irrelevant protein, GCN5 (FIG. 10 a). Therefore, one of the most active anti-prion compound, 6AP, specifically reduce accumulation of a pathogenic fragment of Huntingtin. - 6AP was active in two distinct cell based assays and reduces polyQ accumulation both in their soluble and insoluble form.
- In developing therapeutic approaches, targeting specifically the pathogenic fragment of Huntingtin is a fundamental concern because Huntingtin is an essential gene. The effect of 6AP was tested on endogenous full length Huntingtin in similar extracts as shown in
FIG. 10 . 6AP has no effect on full length endogenous Huntingtin in 293T cells while this compound effectively reduces accumulation of the N-terminal pathogenic fragment of Huntingtin (FIG. 10 a). 6AP has also no effect on the level of full length endogenous Huntingtin in Huntington's disease patients lymphoblastoid cell line. Together, these data indicate that 6AP specifically reduces accumulation of the disease linked N-terminal fragment of Huntingtin protein. - Because the threat for accumulation of misfolded proteins is exacerbated in neuronal, post-mitotic cells and neurons being the target of neurodegenerative diseases, the effect of 6AP and 6[2-(1-hydroxybutyl)-amino]phénanthridine (Psi132), in NG108-15 neuronal-like cell model of Huntington's disease was evaluated.
- NG 108-15 cells were induced for differentiation and expression of truncated huntingtin with 73 Q repeats (T73) as described in (Lunkes et al., 1998) and treated with 6AP and Psi132 in DMSO at the doses of 0.5, 1, 2, 4 and 8 μM or DMSO alone 12 h after the induction. SDS lysates, collected 48 h after the transfection, were analyzed by SDS-PAGE followed by immunoblot with Htt 2B4 and vimentin antibodies. Images were acquired and quantified with the Chemi-Smart system (Vilber Lourmat). Quantification of T73 signals is presented as histograms. Signal from DMSO treated cells is used as a reference and set as 1.
- In contrast to Psi132, 6AP induces reduction of T73 in a dose dependant manner while Vimentin level remains unaltered (
FIG. 11 ). The aggregates formed in these cells were below the detection level of the filter retardation assay precluding a robust quantitative analysis of the effects of the molecules on aggregate accumulation. However, because both aggregates and pathological symptoms are reversible with blockade of pathological protein expression, aggregates in NG108-15 cells diminish as a consequence of decreased accumulation of T73. - Thus, 6AP reduces accumulation of the pathogenic fragment of Huntingtin.
-
- Fernandez-Bellot et al., “The protein-only theory and the yeast Saccharomyces cerevisiae: the prions and the propagons”, CMLS, 2001, 58: 1857-1878.
- Korth C. et al., “Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease”, PNAS, 2001, 98(17): 9836-9841.
- Mettey Y. et al., “Synthesis of 11-Aminodibenzo[b,ƒ][1, 4]thiazepines and Fluoro derivatives”, J. Heterocyclic Chem., 1997, 34: 465-467.
- Kessar S. V. et al., Tetrahedron Letters, 1969, 1151.
- Rousseau E. et al., “Targeting expression of expanded polyglutamine proteins to the endoplasmic reticulum or mitochondria prevents their aggregation”, PNAS, 2004, 101(26): 9648-9653.
- Lunkes A. et al., “Proteases acting on mutant Huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions”, Molecular Cell, 2002, 10: 259-269.
- Lunkes A. et al., “A cellular model that recapitulates major pathogenic steps of Huntington's disease”, Human Molecular Genetics, 1998, 9: 1355-1361.
Claims (20)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/483,822 US20070031821A1 (en) | 2002-10-18 | 2006-07-11 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
| US12/858,235 US20110092483A1 (en) | 2002-10-18 | 2010-08-17 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0213022A FR2846008B1 (en) | 2002-10-18 | 2002-10-18 | SCREENING OF MOLECULES WITH ANTI-PRION ACTIVITY: KITS, METHODS AND CRIBLE MOLECULES |
| FR02/13022 | 2002-10-18 | ||
| FR0308289A FR2846009B1 (en) | 2002-10-18 | 2003-07-07 | SCREENING OF MOLECULES WITH ANTI-PRION ACTIVITY: KITS, METHODS AND CRIBLE MOLECULES |
| FR03/08289 | 2003-07-07 | ||
| US10/531,594 US8129402B2 (en) | 2002-10-18 | 2003-10-20 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
| PCT/FR2003/003101 WO2004035813A2 (en) | 2002-10-18 | 2003-10-20 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
| US11/483,822 US20070031821A1 (en) | 2002-10-18 | 2006-07-11 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/531,594 Continuation-In-Part US8129402B2 (en) | 2002-10-18 | 2003-10-20 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
| PCT/FR2003/003101 Continuation-In-Part WO2004035813A2 (en) | 2002-10-18 | 2003-10-20 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/858,235 Division US20110092483A1 (en) | 2002-10-18 | 2010-08-17 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070031821A1 true US20070031821A1 (en) | 2007-02-08 |
Family
ID=32071174
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/531,594 Expired - Fee Related US8129402B2 (en) | 2002-10-18 | 2003-10-20 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
| US11/483,822 Abandoned US20070031821A1 (en) | 2002-10-18 | 2006-07-11 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
| US12/858,235 Abandoned US20110092483A1 (en) | 2002-10-18 | 2010-08-17 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
| US13/328,611 Abandoned US20120122916A1 (en) | 2002-10-18 | 2011-12-16 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/531,594 Expired - Fee Related US8129402B2 (en) | 2002-10-18 | 2003-10-20 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/858,235 Abandoned US20110092483A1 (en) | 2002-10-18 | 2010-08-17 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
| US13/328,611 Abandoned US20120122916A1 (en) | 2002-10-18 | 2011-12-16 | Screening molecules with anti-prion activity: kits, methods and screened molecules |
Country Status (10)
| Country | Link |
|---|---|
| US (4) | US8129402B2 (en) |
| EP (1) | EP1551992B1 (en) |
| JP (1) | JP4529030B2 (en) |
| AT (1) | ATE349550T1 (en) |
| AU (1) | AU2003285413A1 (en) |
| CA (1) | CA2502544C (en) |
| DE (1) | DE60310744T2 (en) |
| ES (1) | ES2279975T3 (en) |
| FR (1) | FR2846009B1 (en) |
| WO (1) | WO2004035813A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11224586B2 (en) * | 2016-10-18 | 2022-01-18 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Natural product derivatives for inhibiting cellular necroptosis, ferroptosis and oxytosis |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1908465B1 (en) * | 2006-10-04 | 2009-04-29 | Centre National De La Recherche Scientifique (Cnrs) | Use of chlorine guanabenz derivatives for treating prion-based diseases |
| CN101481729B (en) * | 2009-01-21 | 2014-04-16 | 辽宁大学 | High-sensitivity method for screening anti-prion medicament by using gene mutation yeast cell |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3758479A (en) * | 1967-03-22 | 1973-09-11 | Sandoz Ag | Nitro and sulphamoyl substituted dibenzodiazepines |
| US4024242A (en) * | 1974-06-25 | 1977-05-17 | Hoechst Aktiengesellschaft | Substance having immunological activity and process for its manufacture |
| US5695782A (en) * | 1993-09-08 | 1997-12-09 | Ciba Geigy Corporation | Double-layered oxcarbazepine tablets |
| US6479504B1 (en) * | 1999-06-16 | 2002-11-12 | The University Of Iowa Research Foundation | Antagonism of immunostimulatory CpG-oligonucleotides by 4-aminoquinolines and other weak bases |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0262826A (en) * | 1988-08-30 | 1990-03-02 | Sawai Seiyaku Kk | Remedy for adult t-cell leukemia |
| EP0565491A1 (en) * | 1992-04-10 | 1993-10-13 | Dornag Ag | Coupling device, specially for coupling a toolholder to a driving spindle |
| US7799535B1 (en) * | 1997-12-09 | 2010-09-21 | Arch Development Corporation | Methods for identifying factors that control the folding of amyloid proteins of diverse origin |
| MXPA01003542A (en) * | 1998-10-08 | 2002-09-18 | New Ace Res Company | Novel compositions and methods for prevention and treatment of protozoal disease. |
| US6200771B1 (en) * | 1998-10-15 | 2001-03-13 | Cell Pathways, Inc. | Method of using a novel phosphodiesterase in pharmaceutical screeing to identify compounds for treatment of neoplasia |
| EP2319936A3 (en) * | 2001-02-15 | 2012-10-17 | The University of Chicago | Yeast screens for agents affecting protein folding |
-
2003
- 2003-07-07 FR FR0308289A patent/FR2846009B1/en not_active Expired - Fee Related
- 2003-10-20 DE DE60310744T patent/DE60310744T2/en not_active Expired - Lifetime
- 2003-10-20 ES ES03778411T patent/ES2279975T3/en not_active Expired - Lifetime
- 2003-10-20 CA CA2502544A patent/CA2502544C/en not_active Expired - Fee Related
- 2003-10-20 US US10/531,594 patent/US8129402B2/en not_active Expired - Fee Related
- 2003-10-20 AU AU2003285413A patent/AU2003285413A1/en not_active Abandoned
- 2003-10-20 JP JP2005501302A patent/JP4529030B2/en not_active Expired - Fee Related
- 2003-10-20 AT AT03778411T patent/ATE349550T1/en not_active IP Right Cessation
- 2003-10-20 WO PCT/FR2003/003101 patent/WO2004035813A2/en not_active Ceased
- 2003-10-20 EP EP03778411A patent/EP1551992B1/en not_active Expired - Lifetime
-
2006
- 2006-07-11 US US11/483,822 patent/US20070031821A1/en not_active Abandoned
-
2010
- 2010-08-17 US US12/858,235 patent/US20110092483A1/en not_active Abandoned
-
2011
- 2011-12-16 US US13/328,611 patent/US20120122916A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3758479A (en) * | 1967-03-22 | 1973-09-11 | Sandoz Ag | Nitro and sulphamoyl substituted dibenzodiazepines |
| US4024242A (en) * | 1974-06-25 | 1977-05-17 | Hoechst Aktiengesellschaft | Substance having immunological activity and process for its manufacture |
| US5695782A (en) * | 1993-09-08 | 1997-12-09 | Ciba Geigy Corporation | Double-layered oxcarbazepine tablets |
| US6479504B1 (en) * | 1999-06-16 | 2002-11-12 | The University Of Iowa Research Foundation | Antagonism of immunostimulatory CpG-oligonucleotides by 4-aminoquinolines and other weak bases |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11224586B2 (en) * | 2016-10-18 | 2022-01-18 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Natural product derivatives for inhibiting cellular necroptosis, ferroptosis and oxytosis |
| US11819492B2 (en) | 2016-10-18 | 2023-11-21 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Natural product derivatives for inhibiting cellular necroptosis, ferroptosis and oxytosis |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1551992B1 (en) | 2006-12-27 |
| CA2502544A1 (en) | 2004-04-29 |
| AU2003285413A1 (en) | 2004-05-04 |
| FR2846009B1 (en) | 2007-10-12 |
| JP2006502745A (en) | 2006-01-26 |
| AU2003285413A8 (en) | 2004-05-04 |
| DE60310744T2 (en) | 2007-10-11 |
| US20110092483A1 (en) | 2011-04-21 |
| WO2004035813A2 (en) | 2004-04-29 |
| EP1551992A2 (en) | 2005-07-13 |
| US20060172337A1 (en) | 2006-08-03 |
| ES2279975T3 (en) | 2007-09-01 |
| WO2004035813A3 (en) | 2004-07-15 |
| ATE349550T1 (en) | 2007-01-15 |
| FR2846009A1 (en) | 2004-04-23 |
| DE60310744D1 (en) | 2007-02-08 |
| US20120122916A1 (en) | 2012-05-17 |
| CA2502544C (en) | 2012-11-20 |
| JP4529030B2 (en) | 2010-08-25 |
| US8129402B2 (en) | 2012-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Silao et al. | Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans | |
| Jessop et al. | Mus81/Mms4 endonuclease and Sgs1 helicase collaborate to ensure proper recombination intermediate metabolism during meiosis | |
| Calvet et al. | Reversible fluconazole resistance in Candida albicans: a potential in vitro model | |
| Xu et al. | The Toll pathway mediates Drosophila resilience to Aspergillus mycotoxins through specific Bomanins | |
| US8101577B2 (en) | Oxidative DNA damage protection | |
| US8133679B2 (en) | Methods of identifying agents that diminish cellular toxicity associated with an α-synuclein polypeptide of Parkinson's disease in yeast | |
| Sircaik et al. | The protein kinase Ire1 impacts pathogenicity of Candida albicans by regulating homeostatic adaptation to endoplasmic reticulum stress | |
| US20050019892A1 (en) | Screening process for antibacterial agents | |
| JP2005504530A (en) | Membrane protein expression system and its use in drug screening | |
| Konecna et al. | ERG6 gene deletion modifies Kluyveromyces lactis susceptibility to various growth inhibitors | |
| WO2016151092A1 (en) | Selective culture medium for polymyxin-resistant, gram-negative bacteria | |
| US20110092483A1 (en) | Screening molecules with anti-prion activity: kits, methods and screened molecules | |
| US6127405A (en) | Method for the use of alpha arteether as an anti-bacterial and anti-fungal agent | |
| Alabi et al. | Small molecules restore azole activity against drug-tolerant and drug-resistant Candida isolates | |
| Yau et al. | The proteasome regulator Rpn4 controls antifungal drug tolerance by coupling protein homeostasis with metabolic responses to drug stress | |
| Durand et al. | Cross-feeding affects the target of resistance evolution to an antifungal drug | |
| Tribouillard et al. | Using budding yeast to screen for anti‐prion drugs | |
| Liu et al. | A new method for single spore isolation and fungicide resistance monitoring of Cercospora beticola, and the first report of QoI‐resistant isolates with G143A or F129L mutations of the CbCyt b gene in China | |
| Bhattacharya et al. | The integrated stress response mediates type I interferon driven necrosis in Mycobacterium tuberculosis granulomas | |
| CA2366069A1 (en) | Generation of conditional yeast mutants, methods and reagents related thereto | |
| Diaz et al. | Beneficial and detrimental consequences of AHR activation in intestinal infection | |
| FR2846008A1 (en) | SCREENING OF MOLECULES WITH ANTI-PRION ACTIVITY: KITS, METHODS AND SCREENED MOLECULES | |
| Liu | Identification and Characterization of Legionella pneumophila Effector Proteins Important for in vivo Pathogenesis and Persistence | |
| Ames | Functional characterisation of Candida glabrata open reading frames with no orthologue in Saccharomyces cerevisiae | |
| Santhanakrishnan | Mitochondria-Dependent Cellular Toxicity of α-synuclein Modeled in Yeast |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UNIVERSITE VICTOR SEGALEN BORDEAUX 2, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLONDEL, MARC;CULLIN, CHRISTOPHE;VIERFOND, JEAN MICHEL;AND OTHERS;REEL/FRAME:018412/0194;SIGNING DATES FROM 20060925 TO 20061004 Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLONDEL, MARC;CULLIN, CHRISTOPHE;VIERFOND, JEAN MICHEL;AND OTHERS;REEL/FRAME:018412/0194;SIGNING DATES FROM 20060925 TO 20061004 Owner name: UNIVERSITE DE POITIERS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLONDEL, MARC;CULLIN, CHRISTOPHE;VIERFOND, JEAN MICHEL;AND OTHERS;REEL/FRAME:018412/0194;SIGNING DATES FROM 20060925 TO 20061004 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |