US20070031670A1 - Fire-resistant composition, in particular as material for a power and/or a telecommunications cable - Google Patents
Fire-resistant composition, in particular as material for a power and/or a telecommunications cable Download PDFInfo
- Publication number
- US20070031670A1 US20070031670A1 US11/481,406 US48140606A US2007031670A1 US 20070031670 A1 US20070031670 A1 US 20070031670A1 US 48140606 A US48140606 A US 48140606A US 2007031670 A1 US2007031670 A1 US 2007031670A1
- Authority
- US
- United States
- Prior art keywords
- fire
- ethylene
- composition according
- copolymer
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 40
- 230000009970 fire resistant effect Effects 0.000 title claims description 9
- 239000000463 material Substances 0.000 title abstract description 19
- 229920000642 polymer Polymers 0.000 claims abstract description 20
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims abstract description 9
- 239000000945 filler Substances 0.000 claims description 23
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 21
- 239000005977 Ethylene Substances 0.000 claims description 21
- 229920001577 copolymer Polymers 0.000 claims description 20
- 239000003063 flame retardant Substances 0.000 claims description 19
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 14
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000347 magnesium hydroxide Substances 0.000 claims description 10
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 10
- -1 polyethylene Polymers 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 8
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 4
- 229910052615 phyllosilicate Inorganic materials 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 229920002943 EPDM rubber Polymers 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 3
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 229920000877 Melamine resin Polymers 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000004113 Sepiolite Substances 0.000 claims description 2
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 2
- 239000003963 antioxidant agent Substances 0.000 claims description 2
- 229960000892 attapulgite Drugs 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical class O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 claims description 2
- 229910001919 chlorite Inorganic materials 0.000 claims description 2
- 229910052619 chlorite group Inorganic materials 0.000 claims description 2
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 claims description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 2
- 150000004679 hydroxides Chemical class 0.000 claims description 2
- 229910052900 illite Inorganic materials 0.000 claims description 2
- 150000003949 imides Chemical class 0.000 claims description 2
- 229910052816 inorganic phosphate Inorganic materials 0.000 claims description 2
- 229910052622 kaolinite Inorganic materials 0.000 claims description 2
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910052618 mica group Inorganic materials 0.000 claims description 2
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 claims description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052625 palygorskite Inorganic materials 0.000 claims description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 2
- XFZRQAZGUOTJCS-UHFFFAOYSA-N phosphoric acid;1,3,5-triazine-2,4,6-triamine Chemical class OP(O)(O)=O.NC1=NC(N)=NC(N)=N1 XFZRQAZGUOTJCS-UHFFFAOYSA-N 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- 239000004014 plasticizer Substances 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229910052624 sepiolite Inorganic materials 0.000 claims description 2
- 235000019355 sepiolite Nutrition 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 125000005402 stannate group Chemical group 0.000 claims description 2
- 235000012222 talc Nutrition 0.000 claims description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 2
- 239000000326 ultraviolet stabilizing agent Substances 0.000 claims description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims 1
- 235000006708 antioxidants Nutrition 0.000 claims 1
- 239000003017 thermal stabilizer Substances 0.000 claims 1
- 239000000523 sample Substances 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052901 montmorillonite Inorganic materials 0.000 description 4
- 239000013074 reference sample Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- FYYHWMGAXLPEAU-OUBTZVSYSA-N magnesium-25 atom Chemical compound [25Mg] FYYHWMGAXLPEAU-OUBTZVSYSA-N 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/02—Inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
Definitions
- the present invention relates to a composition for a material capable of withstanding extreme temperature conditions.
- a particularly advantageous but non-exclusive application of the invention lies in the field of power and/or telecommunications cables that are to remain operational for a defined length of time when subjected to high temperatures and/or directly to flames.
- a cable is electrical or optical, for transporting energy or for transmitting data, it can be said, in outline, to be constituted by at least one conductor element extending inside at least one insulator element. It should be observed that at least one of the insulator elements may also act as protection means and/or that the cable may also have at least one specific protection element constituting a sheath.
- the best insulating and/or protection materials used in cable making many are also materials that are highly flammable. This applies in particular to polyolefins and copolymers thereof, such as, for example: polyethylene, polypropylene, copolymers of ethylene and vinyl acetate, and copolymers of ethylene and propylene. In any event, in practice, this excessive flammability is completely incompatible with requirements to withstand fire as mentioned above.
- halogen compounds in the form of a halogenated by-product dispersed in a polymer matrix, or directly in the form of a halogenated polymer as with polyvinylchloride (PVC) for example.
- PVC polyvinylchloride
- present regulations are tending to ban future use of substances of that type, essentially because of their potential toxicity and corrosiveness, whether at the time the material is fabricated, or in the event of it being decomposed by fire. This is particularly true when the decomposition in question can occur accidentally during a fire, or also deliberately during incineration. In any event, the recycling of halogenated materials continues to be particularly problematic.
- the metal hydroxide content may typically reach 100 to 150 parts by weight per 100 parts by weight of polymer resin.
- Phyllosilicates are also known for being usable as non-halogenated fire-retardant fillers. Those inorganic compounds are remarkable in that they are capable of forming nanocomposites with the polymer matrices in which they are dispersed.
- the technical problem to be solved by the subject matter of the present invention is to propose a fire-resistant composition, in particular as a material for a power and/or a telecommunications cable, which composition makes it possible to avoid the problems of the prior art, while being inexpensive, and while providing significantly improved properties in terms of withstanding fire.
- the solution to the technical problem posed consists in that the composition comprises a polymer and aluminum oxide in the form of particles having a mean diameter that is less than one micrometer ( ⁇ m).
- aluminum oxide is used to mean non-hydrated alumina having the formula Al 2 O 3 .
- the composition of the invention comprises a polymer matrix in which sub-micron alumina is dispersed to act as a fire-retardant filler.
- fire-resistant composition is used herein very broadly to cover any composition that is for constituting a material capable of slowing down fire propagation and/or of resisting fire.
- the mean size of the aluminum oxide particles constitutes the essential parameter of the invention in that the ability of the polymer material to withstand fire is directly associated with the grain size of the fire-retardant filler.
- a particularly pronounced fire-retardant effect is observed once the alumina used presents grain size that is very fine, and in particular when the particles making it up present a mean diameter that is less than one micrometer. It should also be observed that the smaller the size of the alumina oxide particles, the more the fire-retardant effect is remarkable.
- the invention as defined in this way presents the advantage of being capable of providing a polymer material that benefits from improved ability to withstand fire and good mechanical properties, compared with corresponding prior art materials.
- a material is well suited for use in making sheaths for power and/or telecommunications cables. This applies equally well to an insulating covering and to a protective sheath or a layer of cable-filler or “padding” material.
- the aluminum oxide is constituted by particles presenting a mean diameter that is less than 20 nanometers (nm).
- the composition comprises 1% to 80% by weight aluminum oxide, and preferably 2% to 20%.
- the polymer is selected from a polyethylene, a polypropylene, a copolymer of ethylene and propylene (EPR), an ethylene-propylene-diene terpolymer (EPDM), a copolymer of ethylene and vinyl acetate (EVA), a copolymer of ethylene and methyl acrylate (EMA), a copolymer of ethylene and ethyl acrylate (EEA), a copolymer of ethylene and butyl acrylate (EBA), a copolymer of ethylene and octene, an ethylene-based polymer, a polypropylene-based polymer, an imide polyether, a thermoplastic polyurethane, a polyester, a polyamide, a halogenated polymer, or any mixture thereof.
- EPR ethylene-propylene-diene terpolymer
- EVA ethylene and vinyl acetate
- EMA copolymer of ethylene and methyl acrylate
- the composition is also provided with at least one associated fire-retardant filler.
- each associated fire-retardant filler is selected from compounds containing phosphorous such as organic or inorganic phosphates, compounds containing antimony such as antimony oxide, metallic hydroxides such as aluminum hydroxide and magnesium hydroxide, compounds based on boron such as borates, carbonates of alkaline metals in groups IA and IIA such as the carbonates of calcium, sodium, potassium, or magnesium, and the corresponding hydroxide carbonates, compounds based on tin such as stannates and hydrostannates, melamine and its derivatives such as melamine phosphates, formophenolic resins, phyllosilicates such as sepiolite, attapulgite, montmorilonite, illite, chlorite, kaolinite, micas, and talcs.
- compounds containing phosphorous such as organic or inorganic phosphates
- compounds containing antimony such as antimony oxide
- metallic hydroxides such as aluminum hydroxide and magnesium hydroxide
- the composition includes 1% to 80% by weight of associated fire-retardant filler.
- the composition is also provided with at least one additive selected from the group comprising lubricants, plasticizers, temperature stabilizers, pigments, antioxidants, and ultraviolet stabilizers.
- the invention also provides any power and/or telecommunications cable having at least one insulating sheath made from a fire-resistant composition as described above. It should naturally be understood that each insulating sheath in question may also perform a protection and/or padding function.
- the invention also provides any power and/or telecommunications cable provided with at least one protective sheath made from a fire-resistant composition as described above. It should be observed at this point that each protective sheath may also perform an insulating and/or padding function.
- the invention provides any power and/or telecommunications cable provided with at least one padding layer made from a fire-resistant composition as described above. It should be observed that each layer of padding material may also perform an insulating and/or protective function.
- cables are for conveying power and/or transmitting data, they could equally well be electrical and/or optical, depending on whether the conductor elements with which they are provided are of the electrical and/or optical type.
- compositions in question were all suitable for being used for making insulating and/or sheathing and/or padding materials for energy and/or telecommunications cables.
- compositions were prepared by mixing each fire-retardant filler with an identical quantity of polymer on each occasion, in order to avoid falsifying subsequent comparative analyses; the filler content of the resulting composite remained constant.
- Reference sample 1 was prepared specifically by mixing 100 grams (g) of ethylene and vinyl acetate (EVA) copolymer containing 28% vinyl acetate, a product sold under the trademark Evatane 28-03 by the supplier Arkema, with 150 g of magnesium hydroxide sold under the name Magnifin H10 by the supplier Albemarle. That operation was naturally performed in application of the above-described procedure.
- Sample 1 is illustrative of a conventional first system providing good ability to withstand fire.
- reference sample 2 which specifically comprised a mixture of 100 g of ethylene and vinyl acetate (EVA) copolymer containing 28% vinyl acetate, 125 g of Magnifin H10 magnesium hydroxide, and 25 g of montmorillonite treated with an ammonium alkyl as sold under the name Nanofil by the supplier Sud Chemie.
- EVA ethylene and vinyl acetate
- Sample 2 relates to a second system that is well known in the prior art, and that is described in particular in patent document EP 1 033 724.
- EVA ethylene and vinyl acetate
- Sample 3 served to evaluate the fire-withstanding performance of a material containing a conventional fire retardant, magnesium hydroxide, and aluminum oxide constituted by particles of very small size.
- EVA ethylene and vinyl acetate
- Table 2 summarizes fire performance as determined using the “theradiateur”. Each test had a duration of 5 min during which the time to flaming was evaluated, which time must be as long as possible, and the mean time to self-combustion was also evaluated, which time should be as short as possible. TABLE 2 Mean time to Sample number Flaming time (s) self-combustion (s) 1 110 8.9 2 120 7.7 3 131 8.2 4 161 6.2 5 136 7.3
- reference sample 2 provides better performance than reference sample 1.
- the flaming time is longer by 10 seconds and the self-combustion time is shorter by more than one second.
- Sample 3 may be compared to sample 2 since they both contain the same conventional fire-retardant filler at identical concentrations, associated with another filler for improving performance in terms of withstanding fire. It can be seen that the time to flaming for sample 3 is longer by more than 11 seconds compared with sample 2. The use of sub-micron aluminum oxide thus achieves a considerable improvement in time to flaming without significantly affecting the self-combustion time.
- Samples 4 and 5 show that the time of flaming can be lengthened by 5 seconds to by as many as 30 seconds, while also significantly shortening the self-combustion time, compared with samples 2 and 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
- Organic Insulating Materials (AREA)
- Inorganic Insulating Materials (AREA)
- Fireproofing Substances (AREA)
Abstract
The present invention relates to a fire-resistance composition in particular as a material for a power and/or telecommunications cable. The invention is remarkable in that the composition comprises a polymer together with aluminum oxide in the form of particles having a mean diameter of less than one micrometer.
Description
- This application is related to and claims the benefit of priority from French Patent Application No. 05 52461, filed on Aug. 8, 2005, the entirety of which is incorporated herein by reference.
- The present invention relates to a composition for a material capable of withstanding extreme temperature conditions.
- A particularly advantageous but non-exclusive application of the invention lies in the field of power and/or telecommunications cables that are to remain operational for a defined length of time when subjected to high temperatures and/or directly to flames.
- At present, one of the major concerns in the cable industry is improving the behavior and the performance of cables under extreme temperature conditions, particularly those encountered during a fire. Essentially for safety reasons it is necessary to maximize the ability of a cable both to retard flame propagation and also to resist fire. Any significant slowing down of flame propagation leads to a corresponding increase in time for evacuating premises and/or for using suitable fire-extinguisher means. Better resistance to fire makes it possible for a cable to operate for longer since it is damaged more slowly.
- Regardless of whether a cable is electrical or optical, for transporting energy or for transmitting data, it can be said, in outline, to be constituted by at least one conductor element extending inside at least one insulator element. It should be observed that at least one of the insulator elements may also act as protection means and/or that the cable may also have at least one specific protection element constituting a sheath. Unfortunately, it is known that amongst the best insulating and/or protection materials used in cable making, many are also materials that are highly flammable. This applies in particular to polyolefins and copolymers thereof, such as, for example: polyethylene, polypropylene, copolymers of ethylene and vinyl acetate, and copolymers of ethylene and propylene. In any event, in practice, this excessive flammability is completely incompatible with requirements to withstand fire as mentioned above.
- In the field of cable-making, there exist numerous methods of improving the fire behavior of polymers employed as insulating and/or sheathing materials.
- The solution that has been most widely used until now consists in employing halogen compounds in the form of a halogenated by-product dispersed in a polymer matrix, or directly in the form of a halogenated polymer as with polyvinylchloride (PVC) for example. However present regulations are tending to ban future use of substances of that type, essentially because of their potential toxicity and corrosiveness, whether at the time the material is fabricated, or in the event of it being decomposed by fire. This is particularly true when the decomposition in question can occur accidentally during a fire, or also deliberately during incineration. In any event, the recycling of halogenated materials continues to be particularly problematic.
- That is why recourse is being had more and more to fire-retardant fillers that are not halogenated, and in particular to metal hydroxides such as aluminum hydroxide or magnesium hydroxide. Nevertheless, that type of technical solution presents the drawback of requiring large quantities of filler in order to achieve a satisfactory level of effectiveness, whether in terms of ability to retard flame propagation or in terms of resistance to fire. By way of example, the metal hydroxide content may typically reach 100 to 150 parts by weight per 100 parts by weight of polymer resin.
- Any massive incorporation of filler leads to a considerable increase in the viscosity of the composite material. This leads inevitably to a significant reduction in extrusion speed, and consequently to a significant drop in productivity. In the end, that has a negative impact on the cost of the composite material, which is already badly encumbered by the cost price of the non-halogenated fire-retardant filler which is intrinsically high, particularly since the filler needs to be used in large quantity.
- However, independently of this purely economic aspect, the fire-withstanding performance of materials having non-halogenated fire-retardant fillers continue at present to be still insufficient for satisfying all of the conditions of fire tests.
- Phyllosilicates are also known for being usable as non-halogenated fire-retardant fillers. Those inorganic compounds are remarkable in that they are capable of forming nanocomposites with the polymer matrices in which they are dispersed.
- Nevertheless, that type of solution presents the drawback of being particularly expensive, essentially because of the cost of the unavoidable prior treatment that needs to be applied to each phyllosilicate in order to give it a characteristic that is sufficiently organophilic. Such composite materials also present mediocre electrical properties, viscosity that is penalizing for extrusion speeds, and an ability to withstand fire that is in any event always insufficient.
- Thus, the technical problem to be solved by the subject matter of the present invention is to propose a fire-resistant composition, in particular as a material for a power and/or a telecommunications cable, which composition makes it possible to avoid the problems of the prior art, while being inexpensive, and while providing significantly improved properties in terms of withstanding fire.
- According to the present invention, the solution to the technical problem posed consists in that the composition comprises a polymer and aluminum oxide in the form of particles having a mean diameter that is less than one micrometer (μm).
- The term aluminum oxide is used to mean non-hydrated alumina having the formula Al2O3.
- In other words, the composition of the invention comprises a polymer matrix in which sub-micron alumina is dispersed to act as a fire-retardant filler.
- It should be observed that the term “fire-resistant composition” is used herein very broadly to cover any composition that is for constituting a material capable of slowing down fire propagation and/or of resisting fire.
- In any event, the mean size of the aluminum oxide particles constitutes the essential parameter of the invention in that the ability of the polymer material to withstand fire is directly associated with the grain size of the fire-retardant filler. A particularly pronounced fire-retardant effect is observed once the alumina used presents grain size that is very fine, and in particular when the particles making it up present a mean diameter that is less than one micrometer. It should also be observed that the smaller the size of the alumina oxide particles, the more the fire-retardant effect is remarkable.
- The invention as defined in this way presents the advantage of being capable of providing a polymer material that benefits from improved ability to withstand fire and good mechanical properties, compared with corresponding prior art materials. Such a material is well suited for use in making sheaths for power and/or telecommunications cables. This applies equally well to an insulating covering and to a protective sheath or a layer of cable-filler or “padding” material.
- In a presently preferred embodiment of the invention, the aluminum oxide is constituted by particles presenting a mean diameter that is less than 20 nanometers (nm).
- In particularly advantageous manner, the composition comprises 1% to 80% by weight aluminum oxide, and preferably 2% to 20%.
- According to a feature of the invention, the polymer is selected from a polyethylene, a polypropylene, a copolymer of ethylene and propylene (EPR), an ethylene-propylene-diene terpolymer (EPDM), a copolymer of ethylene and vinyl acetate (EVA), a copolymer of ethylene and methyl acrylate (EMA), a copolymer of ethylene and ethyl acrylate (EEA), a copolymer of ethylene and butyl acrylate (EBA), a copolymer of ethylene and octene, an ethylene-based polymer, a polypropylene-based polymer, an imide polyether, a thermoplastic polyurethane, a polyester, a polyamide, a halogenated polymer, or any mixture thereof.
- According to another feature of the invention, the composition is also provided with at least one associated fire-retardant filler.
- In particularly advantageous manner, each associated fire-retardant filler is selected from compounds containing phosphorous such as organic or inorganic phosphates, compounds containing antimony such as antimony oxide, metallic hydroxides such as aluminum hydroxide and magnesium hydroxide, compounds based on boron such as borates, carbonates of alkaline metals in groups IA and IIA such as the carbonates of calcium, sodium, potassium, or magnesium, and the corresponding hydroxide carbonates, compounds based on tin such as stannates and hydrostannates, melamine and its derivatives such as melamine phosphates, formophenolic resins, phyllosilicates such as sepiolite, attapulgite, montmorilonite, illite, chlorite, kaolinite, micas, and talcs.
- Preferably, the composition includes 1% to 80% by weight of associated fire-retardant filler.
- According to another feature of the invention, the composition is also provided with at least one additive selected from the group comprising lubricants, plasticizers, temperature stabilizers, pigments, antioxidants, and ultraviolet stabilizers.
- The invention also provides any power and/or telecommunications cable having at least one insulating sheath made from a fire-resistant composition as described above. It should naturally be understood that each insulating sheath in question may also perform a protection and/or padding function.
- The invention also provides any power and/or telecommunications cable provided with at least one protective sheath made from a fire-resistant composition as described above. It should be observed at this point that each protective sheath may also perform an insulating and/or padding function.
- Finally, the invention provides any power and/or telecommunications cable provided with at least one padding layer made from a fire-resistant composition as described above. It should be observed that each layer of padding material may also perform an insulating and/or protective function.
- It is important to specify that although such cables are for conveying power and/or transmitting data, they could equally well be electrical and/or optical, depending on whether the conductor elements with which they are provided are of the electrical and/or optical type.
- Other characteristics and advantages of the present invention appear from the following comparative example, said example being given by way of non-limiting illustration.
- Five samples of material were prepared using five different compositions in order to compare their respective performances in terms of withstanding fire. It is specified that the compositions in question were all suitable for being used for making insulating and/or sheathing and/or padding materials for energy and/or telecommunications cables.
- In any event, the polymer was common to all five samples. Specifically it was a copolymer of ethylene and vinyl acetate (EVA). Only the nature and the composition of the mixture of fire-retardant fillers varied from one sample to another. Table 1 gives the differences.
TABLE 1 Sample number 1 2 3 4 5 EVA 28 40% 40% 40% 40% 40% Magnesium hydroxide 60% 50% 50% 50% 50% Treated montmorillonite — 10% — 5% 5% Aluminum oxide d50 = 13 nm — — 10% 5% — Aluminum oxide d50 = 0.5 μm — — — — 5%
Procedure - The compositions were prepared by mixing each fire-retardant filler with an identical quantity of polymer on each occasion, in order to avoid falsifying subsequent comparative analyses; the filler content of the resulting composite remained constant.
- Whatever the precise nature of the composition prepared, the steps of mixing the polymer matrix with the fire-retardant filler were always the same:
-
- temperature setpoint of 160° C. throughout the entire duration of mixing;
- introducing the polymer into the internal mixer set to rotate at 30 revolutions per minute (rpm);
- melting the synthetic polymer at 160° C. for 2 minutes (min) at 30 rpm;
- melting at 60 rpm for 2 min;
- introducing filler at 30 rpm; and
- mixing at 30 rpm for about 10 min.
Preparing Samples
- Reference sample 1 was prepared specifically by mixing 100 grams (g) of ethylene and vinyl acetate (EVA) copolymer containing 28% vinyl acetate, a product sold under the trademark Evatane 28-03 by the supplier Arkema, with 150 g of magnesium hydroxide sold under the name Magnifin H10 by the supplier Albemarle. That operation was naturally performed in application of the above-described procedure. Sample 1 is illustrative of a conventional first system providing good ability to withstand fire.
- The same applied for preparing reference sample 2, which specifically comprised a mixture of 100 g of ethylene and vinyl acetate (EVA) copolymer containing 28% vinyl acetate, 125 g of Magnifin H10 magnesium hydroxide, and 25 g of montmorillonite treated with an ammonium alkyl as sold under the name Nanofil by the supplier Sud Chemie. Sample 2 relates to a second system that is well known in the prior art, and that is described in particular in patent document EP 1 033 724.
- Sample 3 comprised a mixture of 100 g of ethylene and vinyl acetate (EVA) copolymer containing 28% vinyl acetate, 125 g of Magnifin H10 magnesium hydroxide, and 25 g of aluminum oxide having a mean diameter d50=13 nm, as sold under the name Aeroxide Alu C by the supplier Degussa. Sample 3 served to evaluate the fire-withstanding performance of a material containing a conventional fire retardant, magnesium hydroxide, and aluminum oxide constituted by particles of very small size.
- Samples 4 and 5 both comprised a mixture of 100 g of ethylene and vinyl acetate (EVA) copolymer containing 28% vinyl acetate, 125 g of Magnifin H10 magnesium hydroxide, and 12.5 g of montmorillonite treated with an ammonium alkyl, and respectively 12.5 g of aluminum oxide having a mean diameter of d50=13 nm, and 12.5 g of aluminum oxide having a mean diameter of d50=0.5 μm, sold under the name Nabalox NO713-10 by the supplier Nabaltec.
- Withstanding Fire
- Fire behavior was evaluated on each occasion using the “épiradiateur” test as specified in French standard NF-P-92-505. To do this the corresponding material needs to be shaped into square plates having a side of 7 centimeters (cm) and a thickness of 3 millimeters (mm). That operation was performed using a hot hydraulic press, in application of the following procedure:
-
- melting at 150° C. for 3 min;
- applying pressure of 150 bar for 2 min, still at 150° C.; and
- cooling in water at 150 bar for 5 min.
- Table 2 summarizes fire performance as determined using the “épiradiateur”. Each test had a duration of 5 min during which the time to flaming was evaluated, which time must be as long as possible, and the mean time to self-combustion was also evaluated, which time should be as short as possible.
TABLE 2 Mean time to Sample number Flaming time (s) self-combustion (s) 1 110 8.9 2 120 7.7 3 131 8.2 4 161 6.2 5 136 7.3 - It can be seen firstly that reference sample 2 provides better performance than reference sample 1. The flaming time is longer by 10 seconds and the self-combustion time is shorter by more than one second.
- Sample 3 may be compared to sample 2 since they both contain the same conventional fire-retardant filler at identical concentrations, associated with another filler for improving performance in terms of withstanding fire. It can be seen that the time to flaming for sample 3 is longer by more than 11 seconds compared with sample 2. The use of sub-micron aluminum oxide thus achieves a considerable improvement in time to flaming without significantly affecting the self-combustion time.
- The association of sub-micron aluminum oxide with treated montmorillonite and with magnesium hydroxide enables even better performance to be achieved. Samples 4 and 5 show that the time of flaming can be lengthened by 5 seconds to by as many as 30 seconds, while also significantly shortening the self-combustion time, compared with samples 2 and 3.
Claims (11)
1. A fire-resistance composition for a power and/or telecommunications cable, the composition comprising:
a polymer together with aluminum oxide in the form of particles having a mean diameter of less than one micrometer.
2. A composition according to claim 1 , wherein the aluminum oxide particles present a mean diameter of less than 20 nm.
3. A composition according to claim 1 , including 1% to 80% by weight aluminum oxide and preferably 2% to 20%.
4. A composition according to claim 1 , wherein the polymer is selected from a polyethylene, a polypropylene, a copolymer of ethylene and propylene, an ethylene-propylene-diene terpolymer, a copolymer of ethylene and vinyl acetate, a copolymer of ethylene and methyl acrylate, a copolymer of ethylene and ethyl acrylate, a copolymer of ethylene and butyl acrylate, a copolymer of ethylene and octene, an ethylene-based polymer, a polypropylene-based polymer, an imide polyether, a thermoplastic polyurethane, a polyester, a polyamide, a halogenated polymer, or any mixture thereof.
5. A composition according to claim 1 , including at least one associated fire-retardant filler.
6. A composition according to claim 5 , wherein each associated fire-retardant filler is selected from compounds containing phosphorous such as organic or inorganic phosphates, compounds containing antimony such as antimony oxide, metallic hydroxides such as aluminum hydroxide and magnesium hydroxide, compounds based on boron such as borates, carbonates of alkaline metals in groups IA and IIA such as the carbonates of calcium, sodium, potassium, or magnesium, and the corresponding hydroxide carbonates, compounds based on tin such as stannates and hydrostannates, melamine and its derivatives such as melamine phosphates, formophenolic resins, phyllosilicates such as sepiolite, attapulgite, montmorilonite, illite, chlorite, kaolinite, micas, and talcs.
7. A composition according to claim 5 , including 1% to 80% by weight of associated flame-retardant filler.
8. A composition according to claim 1 , including at least one additive selected from the group of lubricants, plasticizers, thermal stabilizers, pigments, anti-oxidants, and ultraviolet stabilizers.
9. A power and/or telecommunications cable, including at least one insulating sheath made from a fire-resistant composition according to claim 1 .
10. A power and/or telecommunications cable, including at least one protective sheath made from a fire-resistant composition according to claim 1 .
11. A power and/or telecommunications cable, including at least one padding layer made from a fire-resistant composition according to claim 1.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0552461 | 2005-08-08 | ||
| FR0552461A FR2889537B1 (en) | 2005-08-08 | 2005-08-08 | FIRE-RESISTANT COMPOSITION, IN PARTICULAR FOR CABLE MATERIAL OF ENERGY AND / OR TELECOMMUNICATION |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070031670A1 true US20070031670A1 (en) | 2007-02-08 |
Family
ID=36095709
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/481,406 Abandoned US20070031670A1 (en) | 2005-08-08 | 2006-07-05 | Fire-resistant composition, in particular as material for a power and/or a telecommunications cable |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20070031670A1 (en) |
| EP (1) | EP1752490B1 (en) |
| AT (1) | ATE398649T1 (en) |
| DE (1) | DE602006001490D1 (en) |
| DK (1) | DK1752490T3 (en) |
| ES (1) | ES2307274T3 (en) |
| FR (1) | FR2889537B1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080312065A1 (en) * | 2005-12-15 | 2008-12-18 | Evonik Degussa Gmbh | Highly Filled Dispersions Containing Aluminium Oxide |
| US20100181522A1 (en) * | 2009-01-22 | 2010-07-22 | Korea Institute Of Science And Technology | Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same |
| CN115477842A (en) * | 2021-06-15 | 2022-12-16 | 朗盛性能材料有限责任公司 | Polyamide composition |
Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3202947A (en) * | 1961-02-16 | 1965-08-24 | Jefferson Electric Co | Epoxy insulated transformer having tris-beta-chloroethylphosphate and hydrated alumina in the insulation |
| US3616173A (en) * | 1967-08-29 | 1971-10-26 | Georgia Pacific Corp | Fire resistant wallboard |
| US3802913A (en) * | 1970-10-28 | 1974-04-09 | Gen Electric | Pressureless curing system for chemically cross-linking ethylene containing polymers,and product formed thereby |
| US4251430A (en) * | 1977-12-22 | 1981-02-17 | Imperial Chemical Industries Limited | Fire resistant additive for hardenable resin compositions |
| US4331733A (en) * | 1980-12-10 | 1982-05-25 | General Electric Company | Flame-retardant polyolefin compositions, their method of preparation and insulated electrical conductors manufactured therewith |
| US4430470A (en) * | 1981-10-08 | 1984-02-07 | Nippon Unicar Company Ltd. | Flame retardant additives based on alumina trihydrate and ethylene polymer compositions, containing same, having improved flame retardant properties |
| US4493873A (en) * | 1982-05-05 | 1985-01-15 | General Electric Company | Corona-resistant wire enamel compositions and conductors insulated therewith |
| US4503124A (en) * | 1982-05-05 | 1985-03-05 | General Electric Company | Corona-resistant wire enamel compositions and conductors insulated therewith |
| US4522873A (en) * | 1983-02-28 | 1985-06-11 | Kuraray Co., Ltd. | Fibrous structure having roughened surface |
| US4731406A (en) * | 1985-12-18 | 1988-03-15 | Shin-Etsu Chemical Co., Ltd. | Flame-retardant low-smoking rubber composition |
| US4760296A (en) * | 1979-07-30 | 1988-07-26 | General Electric Company | Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors |
| US5026816A (en) * | 1989-01-19 | 1991-06-25 | Keehan Donald J | Metallic oxide-oxirane polymers and prepolymers |
| US5106667A (en) * | 1990-02-05 | 1992-04-21 | E. I. Du Pont De Nemours And Company | Coated, heat-sealable aromatic polyimide film having superior compressive strength |
| US5169912A (en) * | 1989-01-19 | 1992-12-08 | Keehan Donald J | Metallic oxide-oxirane polymers and prepolymers |
| US6503620B1 (en) * | 1999-10-29 | 2003-01-07 | Avery Dennison Corporation | Multilayer composite PSA constructions |
| US6723378B2 (en) * | 2001-10-25 | 2004-04-20 | The Regents Of The University Of California | Fibers and fabrics with insulating, water-proofing, and flame-resistant properties |
| US6887930B2 (en) * | 2001-05-21 | 2005-05-03 | Kuraray Co., Ltd. | Polyamide composition |
| US7405250B2 (en) * | 2005-08-31 | 2008-07-29 | General Electric Company | High flow polyester composition, method of manufacture, and uses thereof |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2231333B (en) * | 1989-05-11 | 1991-12-18 | Bowthorpe Hellermann Ltd | Flame retardant polymer compositions |
| AU733739B2 (en) * | 1997-10-01 | 2001-05-24 | Kyowa Chemical Industry Co., Ltd. | Flame retardant resin composition |
| DE10248174C1 (en) * | 2002-10-16 | 2003-11-13 | Nabaltec Gmbh | Flame-retardant thermoplastic, thermoset or thermosetting and/or elastomeric polymer composition, for producing coated electrical wire or cable by extrusion, contains aluminum hydroxide with specified properties as flame retardant |
| JP2006519895A (en) * | 2003-02-18 | 2006-08-31 | ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション | Flame retardant composition |
-
2005
- 2005-08-08 FR FR0552461A patent/FR2889537B1/en not_active Expired - Fee Related
-
2006
- 2006-07-04 DE DE602006001490T patent/DE602006001490D1/en active Active
- 2006-07-04 ES ES06300754T patent/ES2307274T3/en active Active
- 2006-07-04 EP EP06300754A patent/EP1752490B1/en not_active Not-in-force
- 2006-07-04 AT AT06300754T patent/ATE398649T1/en not_active IP Right Cessation
- 2006-07-04 DK DK06300754T patent/DK1752490T3/en active
- 2006-07-05 US US11/481,406 patent/US20070031670A1/en not_active Abandoned
Patent Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3202947A (en) * | 1961-02-16 | 1965-08-24 | Jefferson Electric Co | Epoxy insulated transformer having tris-beta-chloroethylphosphate and hydrated alumina in the insulation |
| US3616173A (en) * | 1967-08-29 | 1971-10-26 | Georgia Pacific Corp | Fire resistant wallboard |
| US3802913A (en) * | 1970-10-28 | 1974-04-09 | Gen Electric | Pressureless curing system for chemically cross-linking ethylene containing polymers,and product formed thereby |
| US4251430A (en) * | 1977-12-22 | 1981-02-17 | Imperial Chemical Industries Limited | Fire resistant additive for hardenable resin compositions |
| US4760296A (en) * | 1979-07-30 | 1988-07-26 | General Electric Company | Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors |
| US4331733A (en) * | 1980-12-10 | 1982-05-25 | General Electric Company | Flame-retardant polyolefin compositions, their method of preparation and insulated electrical conductors manufactured therewith |
| US4430470A (en) * | 1981-10-08 | 1984-02-07 | Nippon Unicar Company Ltd. | Flame retardant additives based on alumina trihydrate and ethylene polymer compositions, containing same, having improved flame retardant properties |
| US4493873A (en) * | 1982-05-05 | 1985-01-15 | General Electric Company | Corona-resistant wire enamel compositions and conductors insulated therewith |
| US4503124A (en) * | 1982-05-05 | 1985-03-05 | General Electric Company | Corona-resistant wire enamel compositions and conductors insulated therewith |
| US4522873A (en) * | 1983-02-28 | 1985-06-11 | Kuraray Co., Ltd. | Fibrous structure having roughened surface |
| US4731406A (en) * | 1985-12-18 | 1988-03-15 | Shin-Etsu Chemical Co., Ltd. | Flame-retardant low-smoking rubber composition |
| US5026816A (en) * | 1989-01-19 | 1991-06-25 | Keehan Donald J | Metallic oxide-oxirane polymers and prepolymers |
| US5169912A (en) * | 1989-01-19 | 1992-12-08 | Keehan Donald J | Metallic oxide-oxirane polymers and prepolymers |
| US5106667A (en) * | 1990-02-05 | 1992-04-21 | E. I. Du Pont De Nemours And Company | Coated, heat-sealable aromatic polyimide film having superior compressive strength |
| US6503620B1 (en) * | 1999-10-29 | 2003-01-07 | Avery Dennison Corporation | Multilayer composite PSA constructions |
| US6887930B2 (en) * | 2001-05-21 | 2005-05-03 | Kuraray Co., Ltd. | Polyamide composition |
| US6723378B2 (en) * | 2001-10-25 | 2004-04-20 | The Regents Of The University Of California | Fibers and fabrics with insulating, water-proofing, and flame-resistant properties |
| US7405250B2 (en) * | 2005-08-31 | 2008-07-29 | General Electric Company | High flow polyester composition, method of manufacture, and uses thereof |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080312065A1 (en) * | 2005-12-15 | 2008-12-18 | Evonik Degussa Gmbh | Highly Filled Dispersions Containing Aluminium Oxide |
| US20100181522A1 (en) * | 2009-01-22 | 2010-07-22 | Korea Institute Of Science And Technology | Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same |
| US10008311B2 (en) * | 2009-01-22 | 2018-06-26 | Korea Institute Of Science And Technology | Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same |
| CN115477842A (en) * | 2021-06-15 | 2022-12-16 | 朗盛性能材料有限责任公司 | Polyamide composition |
| US20220403140A1 (en) * | 2021-06-15 | 2022-12-22 | LANXESS Performance Materials GmbH | Polyamide compositions |
| US12479975B2 (en) * | 2021-06-15 | 2025-11-25 | Envalior Deutschland Gmbh | Polyamide compositions |
Also Published As
| Publication number | Publication date |
|---|---|
| ES2307274T3 (en) | 2008-11-16 |
| DK1752490T3 (en) | 2008-10-20 |
| DE602006001490D1 (en) | 2008-07-31 |
| FR2889537A1 (en) | 2007-02-09 |
| FR2889537B1 (en) | 2007-09-28 |
| EP1752490A1 (en) | 2007-02-14 |
| EP1752490B1 (en) | 2008-06-18 |
| ATE398649T1 (en) | 2008-07-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101375743B1 (en) | Fire resistant compositions | |
| US8129619B2 (en) | Flame-retardant resin composition, and insulated wire, insulated shielded wire, insulated cable and insulation tube using the same | |
| DE10124755B4 (en) | Use of a halogen-free polymer composition as insulating material for electrical conductors | |
| US20080093107A1 (en) | Fire Resistant Cable | |
| KR100691067B1 (en) | Flame retardant non-halogen wire coating material composition and electric wire for railway vehicle using same | |
| US7667139B2 (en) | Radiation-resistant non-halogen flame-retardant resin composition as well as electric wire and cable using same | |
| MX2010010227A (en) | Low-smoke, fire-resistant and water-resistant cable coating. | |
| EP3646351B1 (en) | Flame retardant electrical cable | |
| WO2016038427A1 (en) | Fire resistant cable with ceramifiable layer | |
| US20070155883A1 (en) | Crosslinked flame-retardant resin composition, and an insulated wire and a wiring harness using the same | |
| EP3731243B1 (en) | Flame- retardant electrical cable | |
| EP2797084B1 (en) | Power and/or telecommunications cables comprising a ceramifiable composition | |
| US7592380B2 (en) | Fire resistant composition in particular for energy or telecommunication cables | |
| WO2006057120A1 (en) | Nonhalogen electric wire, electric wire bundle, and automobile wire harness | |
| EP4002395B1 (en) | Flame-retardant cable with self-extinguishing coating layer | |
| US20070031670A1 (en) | Fire-resistant composition, in particular as material for a power and/or a telecommunications cable | |
| US20060148939A1 (en) | Fire-resistant power and/or telecommunications cable | |
| US20070276071A1 (en) | Heat-Resistant Electrically-Insulating Composition | |
| KR20130094062A (en) | Resin composition for cable sheath with excellent flame retardancy | |
| EP4207219B1 (en) | Flame-retardant cable with self-extinguishing layer | |
| KR20070017921A (en) | A fire-resistant composition, in particular as material for a power and/or a telecommunications cable | |
| JP2811970B2 (en) | Flame retardant electrical cable | |
| JP2000265011A (en) | Flame retardant resin composition | |
| JP2560679B2 (en) | Flame retardant electrical insulation composition | |
| EP4207218B1 (en) | Flame-retardant cable with self-extinguishing coating layer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NEXANS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOURNIER, JEROME;PIECHACZYK, ARNAUD;LOPEZ-CUESTA, JOSE MARIE;AND OTHERS;REEL/FRAME:021219/0357;SIGNING DATES FROM 20060816 TO 20060906 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |