US20070009939A1 - Preparation of nucleic acid samples - Google Patents
Preparation of nucleic acid samples Download PDFInfo
- Publication number
- US20070009939A1 US20070009939A1 US11/443,879 US44387906A US2007009939A1 US 20070009939 A1 US20070009939 A1 US 20070009939A1 US 44387906 A US44387906 A US 44387906A US 2007009939 A1 US2007009939 A1 US 2007009939A1
- Authority
- US
- United States
- Prior art keywords
- rna
- population
- bait
- sequences
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 78
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 64
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 64
- 238000002360 preparation method Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 105
- 239000012634 fragment Substances 0.000 claims description 31
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 230000000536 complexating effect Effects 0.000 claims description 6
- 229920002477 rna polymer Polymers 0.000 abstract description 114
- 238000002372 labelling Methods 0.000 abstract description 25
- 239000000203 mixture Substances 0.000 abstract description 14
- 230000003467 diminishing effect Effects 0.000 abstract description 2
- 108020004414 DNA Proteins 0.000 description 68
- 102000053602 DNA Human genes 0.000 description 63
- 108020004999 messenger RNA Proteins 0.000 description 63
- 239000000523 sample Substances 0.000 description 39
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 32
- 108020004418 ribosomal RNA Proteins 0.000 description 26
- 239000000499 gel Substances 0.000 description 21
- 238000002474 experimental method Methods 0.000 description 19
- 229960002685 biotin Drugs 0.000 description 18
- 239000011616 biotin Substances 0.000 description 18
- 230000001419 dependent effect Effects 0.000 description 18
- 108090001008 Avidin Proteins 0.000 description 16
- 235000020958 biotin Nutrition 0.000 description 16
- 102000004190 Enzymes Human genes 0.000 description 15
- 108090000790 Enzymes Proteins 0.000 description 15
- 102000040430 polynucleotide Human genes 0.000 description 14
- 108091033319 polynucleotide Proteins 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 238000009396 hybridization Methods 0.000 description 13
- 239000002157 polynucleotide Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000007787 solid Substances 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 238000003556 assay Methods 0.000 description 10
- 239000011324 bead Substances 0.000 description 10
- 229910001868 water Inorganic materials 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 9
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 9
- 108020004465 16S ribosomal RNA Proteins 0.000 description 8
- 102100034343 Integrase Human genes 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 108020001027 Ribosomal DNA Proteins 0.000 description 7
- 108020004566 Transfer RNA Proteins 0.000 description 7
- 230000001351 cycling effect Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000006062 fragmentation reaction Methods 0.000 description 7
- 238000002493 microarray Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 125000003396 thiol group Chemical group [H]S* 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000013467 fragmentation Methods 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 108091029865 Exogenous DNA Proteins 0.000 description 5
- 108091000080 Phosphotransferase Proteins 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 5
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 230000006287 biotinylation Effects 0.000 description 5
- 238000007413 biotinylation Methods 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- -1 nucleotides Nucleic acids Chemical class 0.000 description 5
- 102000020233 phosphotransferase Human genes 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- BYCLVUPPFSCPPQ-GSZUSEIOSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-2-(2-iodoacetyl)pentanoic acid Chemical compound N1C(=O)N[C@@H]2[C@H](CCCC(C(=O)O)C(=O)CI)SC[C@@H]21 BYCLVUPPFSCPPQ-GSZUSEIOSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000010804 cDNA synthesis Methods 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 238000010195 expression analysis Methods 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 150000003573 thiols Chemical class 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 229920002527 Glycogen Polymers 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 229940096919 glycogen Drugs 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000003161 ribonuclease inhibitor Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000007993 MOPS buffer Substances 0.000 description 2
- 241000713869 Moloney murine leukemia virus Species 0.000 description 2
- JCYDQHNMQJOJLO-DEUKRALOSA-N N-[7-[(3aS,4S,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-1,1-diamino-2-(2-ethoxyethoxy)-3-oxoheptyl]-2-iodoacetamide Chemical compound C(CCCC[C@@H]1SC[C@@H]2NC(=O)N[C@H]12)(=O)C(C(N)(N)NC(CI)=O)OCCOCC JCYDQHNMQJOJLO-DEUKRALOSA-N 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000003205 genotyping method Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 101150074251 lpp gene Proteins 0.000 description 2
- 239000000891 luminescent agent Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000006151 minimal media Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 108010087904 neutravidin Proteins 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 108700022487 rRNA Genes Proteins 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical class [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 108700031420 E coli Lpp Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 101710141795 Ribonuclease inhibitor Proteins 0.000 description 1
- 229940122208 Ribonuclease inhibitor Drugs 0.000 description 1
- 102100037968 Ribonuclease inhibitor Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- CGNLCCVKSWNSDG-UHFFFAOYSA-N SYBR Green I Chemical compound CN(C)CCCN(CCC)C1=CC(C=C2N(C3=CC=CC=C3S2)C)=C2C=CC=CC2=[N+]1C1=CC=CC=C1 CGNLCCVKSWNSDG-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000027832 depurination Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- ZVEZMVFBMOOHAT-UHFFFAOYSA-N nonane-1-thiol Chemical compound CCCCCCCCCS ZVEZMVFBMOOHAT-UHFFFAOYSA-N 0.000 description 1
- 238000003499 nucleic acid array Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical compound [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 238000006177 thiolation reaction Methods 0.000 description 1
- 238000006863 thiophosphorylation reaction Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
- C12N15/1006—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/953—Detector using nanostructure
- Y10S977/957—Of chemical property or presence
- Y10S977/958—Of biomolecule property
Definitions
- RNA messenger RNA
- poly-adenine 3′-terminus of mRNA from eukaryotic cells can be used as a handle to bind to poly(dT) oligonucleotides, and this method is widely used to identify, purify and or label eukaryotic mRNA
- prokaryotic mRNA generally lacks poly-A tails, there is a need for alternative methods for purifying and labeling mRNA samples which do not rely on the existence of a poly-A tail
- the presently claimed invention provides methods of preparing a nucleic acid sample for analysis
- the presently claimed invention provides a method of preparing a nucleic acid sample for analysis comprising enriching for a population of interest within a mixed population of nucleic acids by contacting the nucleic acid sample with a bait molecule
- the bait molecule is capable of complexing specifically to unwanted target sequences within the nucleic acid sample, but is incapable of complexing with sequences from the population of interest
- the bait molecule is contacted with the target sequences forming bait target complexes which are then specifically removed from the nucleic acid sample
- the remaining enriched population of interest is then fragmented and a signal moiety is attached to the fragments
- the presently claimed invention provides a method of enriching for a population of interest within a mixed population of nucleic acids by contacting the nucleic acid with a bait molecule
- the bait molecule is capable of complexing specifically to unwanted target sequences within the nucleic acid sample, but is incapable of complexing with sequences from the population of interest
- the bait molecule is contacted with the target sequences forming bait target complexes which are then specifically removed from the nucleic acid sample
- the presently claimed invention provides a compound having the formula n-S-acetyl-PEO-sig where n is a polynucleotide, S is a thiol group, acetyl is an acetyl functional group, PEO is polyethelene oxide, and sig is a signal moiety
- the presently claimed invention provides a method for labeling a polynucleotide comprising contacting the polynucleotide with a PEO-iodoacetyl conjugated to a signal moiety under conditions such that the PEO-iodoacetyl will attach to said nucleotide
- the presently claimed invention provides a method for labeling a polynucleotide comprising contacting the polynucleotide with a reactive thiol group to form a thiolated polynucleotide and contacting the thiolated polynucleotide with either a signal moiety capable of reacting with said thiolated polynucleotide under appropriate conditions such that said signal moiety is attached to said polynucleotide
- the presently claimed invention provides a method for labeling prokaryotic mRNA comprising obtaining a population of RNA from a prokaryotic organism, enriching the population for mRNA by exposing the population to a plurality of DNA bait molecules which are complementary to at least a portion of the stable RNA in said population under such conditions as to allow for the formation of DNA RNA hybrids, exposing the DNA RNA hybrids to RNAse H to remove the RNA from said DNA RNA hybrids, exposing the remaining DNA to DNase I to remove the DNA, thus producing an enriched population of mRNA, fragmenting the enriched mRNA to form mRNA fragments, exposing the mRNA fragments to (—S-ATP and T4 kinase to produce reactive thiol groups at the 5′ ends of the mRNA fragments, and exposing the thiolated mRNA fragments to PEO-Iodoacetyl-Biotin such that a stable thio-ether bond is formed between said
- FIG. 1 depicts a schematic illustration of one embodiment of the presently claimed invention in which target sequences are depleted from a mixed population of nucleic acids
- FIG. 2 depicts a schematic illustration of one embodiment of the presently claimed invention wherein target sequences are complexed to a bait molecule and then specifically digested
- FIG. 3 depicts a schematic illustration of one embodiment of the presently claimed invention wherein bait molecules are synthesized by reverse transcriptase using target molecules as templates
- FIG. 4 depicts a schematic illustration of one embodiment of the presently claimed invention in which bait molecules are recycled to initiate repeated rounds of target depletion
- FIG. 5 depicts a schematic illustration of one embodiment of the presently claimed invention in which sequences from an enriched population of interest are labeled
- FIG. 6 is an image of unenriched RNA hybridized to a microarray
- FIG. 7 is an image of enriched RNA hybridized to a microarray
- FIG. 8 is a gel image showing the depletion of 23S and 16S RNA using the methods of the presently claimed invention
- FIG. 9 is a gel image showing the depletion of 23S and 16S RNA using the methods of the presently claimed invention including bait cycling
- FIG. 10 is an image of a Northern transfer showing the amount of mRNA transcript present during each round of rRNA depletion during a bait cycling experiment
- FIG. 11 is a gel image of biotin labeled mRNA fragments
- FIG. 12 is a gel image of a gel shift assay
- FIG. 13 depicts hybridization patterns of E coli RNA labeled with the thiol-kinase dependent (panel A) and thiol-kinase independent (panel B) methods
- FIG. 14 shows the average difference correlation comparing the results of two different thiol-kinase dependent experiments to each other
- FIG. 15 shows the average difference correlation comparing the results of two different thiol-kinase independent experiments to each other
- FIG. 16 shows the average difference correlation comparing the thiol-kinase dependent experiments with the thiol-kinase independent experiments
- massively parallel screening refers to the simultaneous screening of at least about 100, preferably about 1000, more preferably about 10,000 and most preferably about 1,000,000 different nucleic acid hybridizations
- nucleic acid or “nucleic acid molecule” refer to a deoxyribonucleotide or ribonucleotide polymer in either single-or double-stranded form, and unless otherwise limited, would encompass analogs and mimetics of natural nucleotides that can function in a similar manner as naturally occurring nucleotides Nucleic acids may be derived from a variety of sources including, but not limited to natural or naturally occurring nucleic acids or mimetics thereof, clones, synthesis in solution or solid phase synthesis
- oligonucleotide or “polynucleotide” is a nucleic acid ranging from at least 2, preferable at least 8, and more preferably at least 20 nucleotides in length or a compound that specifically hybridizes to a polynucleotide
- Polynucleotides of the present invention include sequences of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) which may be isolated from natural sources, recombinantly produced or artificially synthesized and mimetics thereof
- a further example of a polynucleotide of the present invention may be peptide nucleic acid (PNA)
- PNA peptide nucleic acid
- the invention also encompasses situations in which there is a nontraditional base pairing such as Hoogsteen base pairing which has been identified in certain tRNA molecules and postulated to exist in a triple helix “Polynucleotide” and “oligonucleotide” are used interchangeably in
- Subsequence refers to a sequence of nucleic acids that comprise a part of a longer sequence of nucleic acids
- hybridizing specifically to refers to the binding, duplexing, or hybridizing of a molecule substantially to or only to a particular nucleotide sequence or sequences under stringent conditions when that sequence is present in a complex mixture (e g, total cellular) DNA or RNA Standard conditions are described in, for example, Sambrook, Fritsch, Maniatis “Molecular Cloning A Laboratory Manual” (1989) Cold Spring Harbor Press
- mRNA or “mRNA transcripts,” as used herein, include, but not limited to pre-mRNA transcript(s), transcript processing intermediates, mature mRNA(s) ready for translation and transcripts of the gene or genes, or nucleic acids derived from the mRNA transcript(s) Transcript processing may include splicing, editing and degradation
- a nucleic acid derived from an mRNA transcript refers to a nucleic acid for whose synthesis the mRNA transcript or a subsequence thereof has ultimately served as a template
- a cDNA reverse transcribed from an mRNA, an RNA transcribed from that cDNA, a DNA amplified from the cDNA, an RNA transcribed from the amplified DNA, etc are all derived from the mRNA transcript and detection of such derived products is indicative of the presence and/or abundance of the original transcript in a sample
- mRNA derived samples include, but are not limited to, mRNA transcripts of the gene or genes
- signal moiety refers in a general sense to a detectable moiety, such as a radioactive isotope or group containing the same, and non-isotopic moieties, such as enzymes, biotin, avidin, streptavidin, digoxygenin, luminescent agents, dyes, haptens and the like Luminescent agents, depending upon the source exciting the energy, can be classified as radioluminescent chemiluminescent, bioluminescent, and photoluminescent (fluorescent)
- a complex population of nucleic acids may be total genomic DNA, total cellular RNA or a combination thereof.
- a complex population of nucleic acids may have been enriched for a given population but include other undesirable populations
- a complex population of nucleic acids may be a sample which has been enriched for desired messenger RNA (mRNA) sequences but still includes some undesired ribosomal RNA sequences (rRNA)
- the presently claimed invention provides a method of preparing a nucleic acid sample for analysis It is often desirable to isolate, enrich, or increase the relative percentage of a particular population of sequences within a much larger population of sequences in order to limit analysis to those sequences of interest and to reduce interference and unnecessary work which may be caused by the presence of undesirable sequences
- the methods of the presently claimed invention provide a novel method wherein a complex sample is depleted of undesired sequences and is thus enriched for a population of interest
- One particularly preferred enrichment is to increase the relative percentage of prokaryotic mRNA in a given sample for further analysis
- the method enriches for a population of interest within a mixed population of nucleic acid sequences by targeting undesired sequences (target sequences) and removing them from the mixed population
- a mixed population of nucleic acid sequences is exposed to a bait molecule
- the bait molecule is capable of complexing specifically to a target sequence but not to the sequences in the population of interest
- the bait molecule is allowed to form a complex with the target sequence and this complex is then specifically recognized and removed
- the removal process may be conducted in a single step, or may involve removing first the target sequences and then the subsequent removal of the bait molecule
- the bait molecules are short DNA sequences which are complementary to the target sequences
- FIG. 1 illustrates a general embodiment of the presently claimed invention
- a mixed population 100 comprising a population of interest 102 and target sequences 101 is exposed to bait molecules 103
- the bait molecules complex with the target sequences to form bait target complexes 104
- the bait target complex is then removed from the mixed population thereby enriching for the population of interest
- the mixed population of nucleic acids may be any nucleic acid sample comprising both desired and undesired sequences
- the population may include different DNA or RNA molecules
- the mixed population is an RNA sample
- the nucleic acid sample is RNA derived from a prokaryotic organism
- the mixed population may be derived from a wide variety of sources including for example, tissue samples, blood, isolated cells or environmental samples such as water or soil
- the mixed population may be derived from any organism including both eukaryotes and prokaryotes such as human, rat, mouse, Escherichia coli ( E coli ), Bacillus subtilis ( B subtilis ), Pseudomonas aerugionosa , etc
- Methods of deriving nucleic acid samples from eukaryotic and prokaryotic organisms will be well known to those of skill in the art See for example.
- the population of interest may be any subset of the mixed population
- the population of interest may include RNA and/or DNA
- the population of interest may, for example, be a particular type of RNA
- the population of interest is mRNA
- the population of interest may comprise any sequence and the sequence need not be known
- the population of interest may be chosen on any basis, including by sequence, function (i e messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), etc) or a combination thereof
- the target sequences may be any undesired sequences in the mixed population
- the target sequences may comprise any sequence so long as they are distinguishable by sequence from the population of interest
- Target sequences may be chosen on any basis, including by sequence, function (i e mRNA, rRNA, tRNA, etc) or a combination thereof.
- the target sequences are stable RNAs including rRNA and tRNA
- it may not be necessary to remove all the undesired sequences from the mixed population it is acceptable to remove only enough of the undesired sequences such that the undesired sequences do not interfere with analysis of the population of interest
- it may be desirable to remove rRNA sequences which may interfere with hybridization of the mRNAs to the array by creating a significant background signal it may be acceptable to remove only the 23S and 16S RNAs, as removing these sequences reduces background signals to acceptable levels See, e g example 1, below
- any non-targeted undesirable sequences represent only a small proportion of the mixed population
- These non-targeted undesirable sequences may include a variety of other nucleic acids such as DNAs, rRNAs, mRNAs or tRNAs
- the presence of non-targeted RNAs will not be discussed throughout the remainder of the application, however, the possibility of their presence is contemplated by the scope of the presently claimed invention
- the bait molecules may be obtained and added in a variety of methods
- the bait molecules should be able to recognize and complex specifically with the target molecule, but should not complex with the sequences from the population of interest Moreover, the bait target complex should have a particular property which makes is vulnerable to a selection and removal mechanism
- the bait target complex is targeted by an enzyme or process which specifically removes any target sequences which are complexed to a bait molecule
- FIG. 2 depicts a schematic illustration of this embodiment
- a mixed population 100 comprises a population of interest 102 and target sequences 101
- Bait molecules 103 are introduced to complex specifically with the target sequences forming bait target complex 104
- An enzyme or process 105 is introduced to specifically remove the target sequences from the bait target complexes without interfering with the sequences from the population of interest After removal of the target sequences, the mixed population is comprised of the population of interest and the bait molecules If desired, the bait molecules may then be removed (Step not shown)
- the bait sequence may be DNA and the target sequence may be RNA
- the bait target complex would be a DNA RNA hybrid
- the DNA RNA hybrid is then removed from the mixed population
- an enzyme which specifically targets DNA RNA hybrids will be used to remove the DNA RNA hybrid
- RNAse H is used to specifically hydrolyze RNA which is part of a DNA RNA hybrid
- the remaining DNA is then available to hybridize with another RNA target sequence
- the DNA may then be removed by addition of enzymes which specifically target and digest DNA
- DNAse I is used Alternatively, physical or other methods of removal may likewise be employed such as straptavidin to remove biotinylated DNA
- a particular example of the presently claimed invention provides a method of isolating or enriching for mRNAs within a mixed population of RNAs by specifically removing targeted rRNAs
- a mixed population of RNAs includes mRNAs, tRNAs and rRNAs DNA bait molecules which are complementary to the rRNAs but not to the mRNAs are added to the mixed population under conditions suitable to allow for the formation of DNA RNA hybrids
- RNAse H specifically targets and removes any RNA which is part of a DNA RNA hybrid, yielding DNA bait molecules and an enriched population of mRNAs
- the DNA may be generated exogenously, chemically obtained, or synthesized from another biological source
- Exogenous DNA may be generated by chemical or non-biological synthesis
- exogenous DNA may be obtained through biological synthesis, for example, through the production by bacteria of double stranded plasmid DNA or single stranded phage DNA containing the bait sequence
- Chemical or non-biological methods of synthesizing DNA will be known to those of skill in the art and are described in, for example, Innis et al (eds) (1990) PCR Protocols A Guide to Methods and Applications, Academic Press, and Gait (1984) Oligonucleotide Synthesis A Practical Approach, IRL Press, Oxford
- DNA RNA hybrids are synthesized “in vivo” using the targeted RNA as a template for reverse transcription This embodiment is depicted in FIG. 3
- Primers 106 which are complementary to the targeted RNA 101 are added to the mixed population 100
- the primers are allowed to hybridize to the targeted RNAs forming primer-bound targeted RNAs 107
- the primers are extended by reverse transcriptase to form DNA RNA hybrids 104 which may then be removed using any known method including those methods described below producing an enriched population of interest 102
- a non-nucleic acid bait molecule may be used
- an antibody which specifically recognizes and binds the target sequences may be employed in some embodiments of the presently claimed invention
- an antibody may be modified to recognize DNA RNA hybrids or specific rRNA sequences
- the method of removal may exploit some inherent or modified element of the bait For example, if the bait is distinguishable by size from the sequences in the population of interest a method of size separation such as centrifugation. size separation column, or gel electrophoresis could be employed to remove the bait target complexes
- the bait molecule can be modified with a selectable element, the properties of which may then be exploited in order to remove the bait target complex from the mixed population
- selectable elements include nucleic acid sequences, ligands, receptors, antibodies, hapten groups, antigens, biotin, streptavidin, enzymes and enzyme inhibitors
- an antibody may be designed which specifically recognizes and binds rRNA sequences
- the antibody may be biotinylated before or after exposure to the rRNA sequences
- the biotinylated antibody rRNA complex is then exposed to streptavadin-coated beads
- the magnetic beads with the antibody rRNA complex attached may then be removed from the mixed population
- the bait molecules may be attached to a solid substrate such as beads, fibers, or an array
- the bait molecules may be attached to the solid substrate using any known method including chemical or physical attachment
- nucleic acid sequences may be synthesized directly on the solid support (see, e g, Merrifield, “Solid Phase Peptide Synthesis,” J Am Chem Soc, (1963) 85 2149-2154, Fodor et al, “Light Directed Spatially Addressable Parallel Chemical Synthesis” Science (1991) 251 767-773, PCT publication WO90/15070, and U.S. Pat. Nos.
- enzymatic removal of the bound target sequences may be employed if there is a desire to recycle the bait molecules
- the method of removing the solution from the solid supports may include any manual or mechanical means including pipetting, or draining in a fluidics station, so long as the solution is obtained in a manner so as to preserve the integrity of the sequences of interest Otherwise, as indicated above, one may simply remove the solid support containing the bound target sequences, thereby removing the target sequences (and the bait molecules) and enriching for the population of interest
- the method of removal will vary depending on the type of solid support used
- the unbound sequences may simply be washed off the support and the solution collected If the solid support is a bead, the beads may be removed from solution by centrifugation If the solid support is a magnetic bead, the beads may be removed from solution by exploiting the magnetic properties of the beads Regardless of the method used, the solution containing the unbound sequences is isolated from the solid support-bound bait target complexes
- FIG. 4 depicts another embodiment of the presently claimed invention in which the same bait molecule is used for repeated rounds of target depletion
- a mixed population of nucleic acids 100 includes the population of interest 102 and targeted sequences 101
- Bait molecules 103 which are complementary to the targeted sequences but not to the sequences in the population of interest are added to the mixed population under conditions suitable to allow formation of bait target complexes 104
- an enzyme or process 105 specifically targets and removes the target sequence from the bait target complexes leaving the population of interest 102 , DNA bait molecules 103 and any undigested target sequences 101
- the remaining DNA bait molecules are then free to hybridize with any undigested target sequences to form new bait target complexes, thereby repeating the first step
- the cycle can then be repeated as desired
- a preferred mechanism for carrying out repeated recycling of DNA bait molecules employs cycling of different conditions
- a mixed population of nucleic acids includes a population of interest and target sequences
- bait molecules are added to the mixed population under conditions suitable to allow formation of bait target complex This first step is performed under a first condition.
- an enzyme or process which specifically targets and removes target sequences which are part of a bait target complex is added yielding bait molecules and the population of interest
- This second step is performed under a second set of conditions which are different from the conditions required for the first step, i e if the first step is performed at temperature X, the second step is performed at temperature Y where Y ⁇ X Conditions are then returned to those in the first step (i e the temperature is returned to X) and the bait molecules are allowed to complex with any target sequences that were not removed in the previous step
- the conditions and steps are cycled in this manner until the desired amount of target sequence is removed
- the same bait molecules serve as bait for numerous rounds of target depletion
- the bait molecules may be removed by an enzyme or process which specifically targets and removes the bait
- the initial bait molecules may be introduced by reverse transcribing the target sequences as described above and depicted in FIG. 3
- a mixed population of RNAs includes mRNA, 23S rRNA and 16S rRNA Cloned ribosomal DNA (rDNA) bait molecules which are complementary to the 23s and 16s rRNAs are added to the mixed population under conditions suitable to allow for the formation of DNA RNA hybrids
- the rRNA and rDNA annealing reaction is performed at a temperature range of between 37° C. and 95° C., more preferably between 50° C. and 80° C. and more preferably at 70° C.
- a thermostable RNAse H is added to digest the bound rRNA sequences In a preferred embodiment this step is performed at a temperature range of between 37° C.
- the digestion yields rDNAs, mRNAs and undigested rRNAs Thereafter, the temperature is raised to a temperature suitable for reannealing, e g 70° C., and the annealing step is repeated Thereafter, the temperature is changed to a temperature suitable for digestion, e g 50° C.
- temperature cycling may promote higher specificity and is, therefor, a preferred embodiment for certain applications requiring high specificity
- the RNA of interest is further purified using methods known in the art, including, for example, commercially available purification kits such as the MasterPure complete DNA/RNA purification kit (Epicentre Technologies, WI) or the RNeasy Kit (Qiagen, Valencia, Calif.)
- the enriched population of interest is fragmented and labeled
- the label is a signal moiety
- the label is a biotin and in an even further preferred embodiment the label is a PEO-Iodoacetyl biotin
- the fragmented sequences of interest are chemically modified such that the 5′ ends comprise a reactive group
- the reactive group is then reacted with the signal moiety to produce labeled fragments
- the 5′ end modification step is skipped and the fragments are directly labeled with the signal moiety
- FIG. 5 depicts a specific example of one embodiment of the presently claimed invention in which enriched fragments are biotin labeled
- a mixed population of nucleic acids 100 includes a population of interest 102 and target sequences 101 Bait molecules 103 are added to the mixed population under conditions suitable to formation of bait target complexes 104
- the bait target complexes are removed leaving an enriched population of interest if desired, the sequences from the population of interest may be further purified by known purification means (not shown)
- the sequences from the population of interest are then fragmented producing fragments 108
- the fragments are then chemically altered to add a reactive group 109 to the 5′ end of each fragment producing reactive fragments 110
- a signal moiety 111 is reacted with the reactive groups to produce labeled fragments 112
- fragmentation may include partial degradation with a DNAse, RNAse, partial depurination with acid followed by heating, and restriction enzymes or other enzymes which cleave nucleic acid at known or unknown locations
- Physical fragmentation methods may involve subjecting the nucleic acid to a high shear rate High shear rates may be produced, for example, by moving nucleic acid through a chamber or channel with pits or spikes, or forcing the nucleic sample through a restricted size flow passage, e g an aperture having a cross sectional dimension in the micron or submicron scale Particular care must be taken when fragmenting RNA as it is easily degraded Those of skill in the art will be familiar with methods of fragmenting RNA In a preferred embodiment, the RNA is fragmented by heat and ion-mediated hydrolysis
- nucleic acid fragments are enzymatically modified by T4 polynucleotide kinase and ⁇ -S-ATP to add a 5′ thiol group suitable for biotinylation to the 5′ end of the nucleic acid fragments thus producing thiolated nucleic acid fragments
- T4 polynucleotide kinase and ⁇ -S-ATP to add a 5′ thiol group suitable for biotinylation to the 5′ end of the nucleic acid fragments thus producing thiolated nucleic acid fragments
- a detectable signal moiety is then reacted with the modified or unmodified 5′ end of the fragments to produced labeled fragments
- a biotin group such as PEO-Iodoacetyl Biotin
- the label is supplied to the nucleic acid by the addition of oxide biotinyl-iodacetamidyl-3,6-dioxaoctanediamine (Iodoacetyl Biotin) and more preferably by the addition of polyethylene oxide biotinyl-iodacetamidyl-3,6-dioxaoctanediamine (PEO-Iodoacetyl Biotin) PEO-Iodoacetyl Biotin (Pierce Chemical Co Product #
- detectable signal moieties suitable for use in the present invention include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means
- Useful labels in the present invention include biotin for staining with labeled streptavidin conjugate, magnetic beads (e g, DynabeadsTM), fluorescent dyes (e g, fluorescein, Texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e g, 3 H, 125 I, 35 S, 14 C, or 32 P), enzymes (e g, horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic (e g, polystyrene, polypropylene, latex, etc) beads
- Patents teaching the use of such labels include U.S. Pat. Nos. 3,817,837, 3,850,752, 3,939,350, 3,996,345,
- radiolabels may be detected using photographic film or scintillation counters
- fluorescent markers may be detected using a photodetector to detect emitted light
- Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and colorimetric labels are detected by simply visualizing the colored label Colloidal gold label can be detected by measuring scattered light
- the efficiency of the labeling procedure can be assessed using, for example, a gel-shift assay
- the addition of biotin residues is monitored by comparing fragments which are pre-incubated with avidin prior to electrophoresis with fragments where no avidin has been added Biotin-containing residues are retarded or shifted “upwards” on the gel during the electrophoresis due to avidin binding
- the nucleic acids are then detected by staining
- An absence of a shift pattern is an indication of no or poor biotin labeling
- the above disclosed labeling method may be employed for any nucleic acid molecule including both RNAs and DNAs Furthermore, the labeling method may be performed without the enrichment protocol
- nucleic acids isolated and or labeled by the methods described in this disclosure may be analyzed by hybridization to nucleic acid arrays Those of skill in the art will appreciate that an enormous number of array designs are suitable for the practice of this invention High density arrays may be used for a variety of applications, including, for example, gene expression analysis, genotyping and variant detection
- the high density array will typically include a number of probes that specifically hybridize to the nucleic acid(s) whose expression is to be detected
- Array based methods for monitoring gene expression are disclosed and discussed in detail in U.S. Pat. Nos. 5,800,992, 5,871,928, 5,925,525, 6,040,138 and PCT Application WO92/10588 (published on Jun.
- these methods of monitoring gene expression involve (1) providing a pool of target nucleic acids comprising RNA transcript(s) of one or more target gene(s) or nucleic acids derived from the RNA transcript(s), (2) hybridizing the nucleic acid sample to a high density array of probes and (3) detecting the hybridized nucleic acids and calculating a relative expression (transcription, RNA processing or degradation) level
- the high density array will typically include a number of probes which are designed to interrogate a particular position which is believed or known to be associated with sequence variation
- Array based methods for variant detection are disclosed and discussed in detail in U.S. Pat. Nos. 5,837,832, 5,856,104, 5,856,092, 5,858,659, 6,027,880 and 5,925,525 each of which is incorporated herein by reference for all purposes
- these methods of variant detection involve (1) providing a pool of target nucleic acids comprising DNA from the region(s) to be interrogated (2) hybridizing the nucleic acid sample to a high density array of probes and (3) detecting the hybridized nucleic acids and determining the presence or absence of a sequence variant
- the methods of the presently claimed invention can be used to create an mRNA library
- the present techniques are particularly useful in creating an mRNA library from prokaryotic cells since prokaryotic mRNA lacks the polyA tail that is traditionally used to isolate mRNA populations from complex nucleic acid samples
- a sample is obtained from an individual
- the sample is then enriched for mRNA using the techniques described by the presently claimed invention
- enriched mRNA can then be used as a template for cDNA synthesis
- the cDNA second strand is then synthesized Adaptors are ligated to the double stranded cDNA and the double stranded cDNA sequences are cloned into appropriate vectors
- CDNA synthesis typically involves the addition of short oligonucleotides which act as primers for reverse transcriptase These short oligonucleotides may be of a specific known sequence, or may be of random sequence The length and sequence of the short oligonucleotides will vary based upon the sequence to be reverse transcribed but preferably the short oligonucleotides are between 5 and 10 bases in length and most preferably are about 6 bases in length Methods of cDNA synthesis are described, for example, in Maniatis et al, see especially sections 8 11-8 13
- primers were used to target 16S and 23S RNA (each primer is 5 M in the RT primer mix) 16S1514 5′-CCTACGGTTACCTTGTT-3′ 16S889 5′-TTAACCTTGCGGCCGTACTC-3′ 16S541 5′-TCGATTAACGCTTCACCC-3′ 23S2878 5′-CCTCACGGTTCATTAGT-3′ 23SEco2064 5′-CTATAGTAAAGGTTCACGGG-3′ 23SEco1519 5′-TCGTCATCACGCCTCAGCCT-3′ 23S1012 5′-TCCCACATCGTTTCCCAC-3′ 23S539 5′-CCATTATACAAAAGGTAC-3′
- RNA/RT primer mix/DI H 2 O mixture was heated to 70° C. for 5 minutes and then transferred to 4° C.
- a reverse transcription mixture including 10 L of 10 ⁇ MMLV RT Buffer, 5 L of 100 mM DTT, 2 L of 25 mM dNTP Mix, 3 L of 24 5 U/L RNAse Inhibitor (RNAguard Ribonuclease Inhibitor (Porcine), Amersham Pharmacia Biotech, P/N 27-0816-01), 6 L 50 U/g MMLV Reverse Transcriptase (Epicentre Technologies, P/N MCR85101) and 44 L of DI H 2 O was added and the reaction was carried out at 42° C. for 25 minutes and transferred to 45° C. for an additional 20 minutes The mixture was then transferred to 4° C.
- RNAse Inhibitor RNAguard Ribonuclease Inhibitor (Porcine), Amersham Pharmacia Biotech, P/N 27-0816-01
- 6 L 50 U/g MMLV Reverse Transcriptase Epicentre Technologies, P/N MCR85101
- RNAse H (Epicentre Technologies, P/N R0601K)
- the enzyme was heat deactivated at 65° C. for 5 minutes and then transferred to 4° C.
- the DNA was then removed by adding 2 5 L of 5 U/ul DNAse I (Amersham-Pharmacia Biotech P/N 27-0514-01) and 1 L of 24 5 U/L RNAse inhibitor Digestion was carried out at 37° C. for 20 minutes and the enzyme was deactivated by adding EDTA to a final concentration of 10 mM
- the product was purified (RNeasy Total RNA Isolation Kit, QIAGEN P/N 74104)
- the sample and another sample of unmodified E coli total RNA were then labeled using the methods described below in Example 4 and separately hybridized to E coli Genome Array (Affymetrix Inc, Santa Clara, Calif. P/N 510051)
- the hybridized arrays were then washed, stained and scanned using standard methods as described in the E coli Genome Array User s Manual (Affymetrix, Inc, Santa Clara, Calif.)
- FIGS. 6 and 7 shows the results of hybridization of enriched and non-enriched RNA to microarrays
- FIG. 6 shows hybridization of labeled unenriched RNA to a microarray
- FIG. 7 shows hybridization of labeled enriched RNA to an identical microarray
- the hybridization in FIG. 7 shows a much cleaner hybridization with less signal produced by cross hybridization
- the tube was then transferred to 37° C. followed by the addition of 50 L of a prewarmed (at 37 C) solution containing 2 units of E coli RNAseH (Epicentre Technologies P/N R0601K), 50 mM Tris (pH 7 5), 100 mM NaCl, 20 mM MgCl 2 , and the reaction was incubated at 37° C. for 20 minutes to digest RNA from DNA RNA hybrids DNA was then digested by the addition of 2 units of DNAse I (Epicentre Technologies, P/N D9902K) and incubation at 37° C.
- DNAse I Epicentre Technologies, P/N D9902K
- FIG. 8 is a gel image of three samples Lane 1 is an untreated sample Lane 2 is an enriched sample where the RNAse A step was not performed Lane 3 is an enriched sample Comparison of lanes 1, 2, and 3 indicates that the loss of the 16S and 23S rRNA bands in the enrichment procedure resulted from the specificity of RNAse H for DNA RNA hybrids
- thermostable RNAse H (Epicentre Technologies, P/N H39100)
- the tube was incubated at 70° C. for 1 minute to permit annealing of the rRNAs to the corresponding complementary strand of rDNA (approximately 1 mole DNA per 10 moles RNA)
- the temperature was reduced to 50° C. for 5 minutes to complete one cycle of enrichment
- the temperature was then increased to 70° C. for 1 minute then again reduced to 50° C.
- the gel was transferred to a nylon membrane (Northern transfer) and the quantity of a particular mRNA transcript, from the E coli lpp gene, was deduced by hybridization to a digoxigenin-labeled lpp probe (Roche P/N 1636090), followed by detection with anti-DIG-alkaline phosphatase and NBT/BCIP (Roche P/N 1175041) (10) It is apparent that the bands corresponding to the 23S and 16S rRNAs are reduced much more with successive cycles than the band corresponding to the lpp transcript, an indication of specific reduction of rRNA and relative enrichment of mRNA The enrichment demonstrates that the input exogenous DNA bait is “recycled,” that is, each complementary rDNA molecule can direct the destruction of multiple rRNA molecules
- Fragmentation and labeling reactions were done in PCR tubes in a thermocycler A maximum of 20 ⁇ g of RNA was used for the fragmentation step To avoid incomplete fragmentation, multiple tubes were used if the yield of RNA from the enrichment step was greater than 20 ⁇ g
- the fragmentation reaction mixture comprised 10 ⁇ l of 10 ⁇ NEBuffer for T4 Polynucleotide Kinase (New England Biolabs, P/N 201 L), up to 20 ⁇ g of RNA and deionized water (DI H 2 O) up to 88 ⁇ l total volume The reaction was incubated at 95° C. for 30 minutes and then cooled to 4° C.
- the 5′-thiolation reaction mixture comprised, 88 ⁇ l fragmented RNA, 2 0 ⁇ l 5 mM ⁇ -S-ATP (Roche P/N 1162306) and 10 ⁇ l of 10 U/ ⁇ l T4 Polynucleotide Kinase Kinase (New England Biolabs, P/N 201L)
- the reaction was incubated at 37° C. for 50 minutes and then inactivated at 65° C. for 10 minutes and finally cooled to 4° C.
- RNA was then labeled with biotin 6 0 ⁇ l of 500 mM MOPS, pH 7 5 (Sigma Chemical P/N M3183) was added to 90 ⁇ l of fragmented thiolated RNA with 4 0 ⁇ l of 50 mM Polyethylene Oxide (PEO)-Iodoacetyl-Biotin (Pierce Chemical, P/N 21334ZZ) The reaction was incubated at 37° C. for one hour and then cooled to 4° C.
- PEO Polyethylene Oxide
- RNA/DNA Mini Column Kit QIAGEN P/N 14123
- one RNA/DNA column and 5 4 mL Buffer QRV2 per 10 0 ⁇ g RNA was used
- 50 ⁇ g of glycogen (Boehringer Mannheim, PIN 901393) per tube was optionally used to act as a carrier and aid in the visualization of the pellet
- the pellet was then dissolved in 20 to 30 ⁇ L of Molecular Biology Grade water
- RNA preparation was quantified by 260 nm absorbance Typical yields for the procedure were 2 to 4 ⁇ g of RNA The labeled RNA was stored at ⁇ 20° C. until ready for use
- the efficiency of the labeling was assessed using a gel shift assay
- the addition of biotin residues is monitored by comparing fragments which are pre-incubated with avidin prior to electrophoresis with fragments where no avidin has been added Biotin-containing residues are retarded or shifted “upwards” on the gel during the electrophoresis due to avidin binding
- the nucleic acids are then detected by staining
- An absence of a shift pattern is an indication of no or poor biotin labeling
- a NeutrAvidin solution of 2 mg/mL or higher was prepared (Pierce Chemical, P/N 31000ZZ) 50 mM Tris, pH 7 0 (Ambion, P/N 9850G) is used to dilute the NeutrAvidin solution
- a TBE gel (4%-20%) (Invitrogen, P/N EC62252) was placed into a gel holder and load system with 1 ⁇ TBE Buffer For each sample tested, two 150 to 200 ng aliquots of fragmented and biotinylated sample were removed 5 ⁇ L of 2 mg/mL NetrAvidin were added to each tube tested The mixture was allowed to sit at room temperature for 5 minutes Loading dye (Amresco, P/N E-274) was added to a IX dye concentration 10 bp and 100 bp DNA ladders (Gibco BRL P/N 10821-015 and 15628-019) were prepared and both samples and ladders were loaded on the gel The gel was run at 150 volts for approximately
- FIG. 11 is a gel image of the labeled E coli fragments
- Lane 1 is the 10 bp DNA ladder
- lane 2 is fragmented and labeled total E coli RNA
- lane 3 is fragmented and labeled total E coli RNA with avidin
- lane 4 is fragmented and labeled enriched E coli mRNA
- lane 5 is fragmented and labeled enriched E coli mRNA with avidin
- lane 6 is 100 bp DNA ladder
- Lanes 3 and 5 show a clear upward shift as compared to lanes 2 and 4 respectively, thus indicating successful biotin labeling of the RNA fragments
- RNA enrichment was performed as described Example 1 above
- tk thiol kinase-independent method
- the following were combined in a final volume of 100 ⁇ L 10 ⁇ g of RNA, 30 mM MOPS, pH 7 5, 20 mM iodoacetyl-PEO-biotin (Pierce Chemicals), 10 mM magnesium chloride
- the components were placed in a PCR tube, heated to 95° C. for 30 mm, then 25° C. for 30 nun and cooled to 4° C.
- RNA/DNA mini-columns Qiagen
- the labeled RNA solution was mixed with 5 4 mL of QRV2 buffer (Qiagen) before loading on a single column
- Labeled RNA fragments were precipitated after the addition of 25 ⁇ g of carrier glycogen
- FIG. 12 is the gel image Lane 1 contains a 10 bp DNA ladder, lane 2 contains RNA labeled by the tk-independent method without avidin, lane 3 contains RNA labeled by the tk-independent method with avidin, lane 4 contains RNA labeled by the tk-independent method without avidin, lane 5 contains RNA labeled by the tk-independent method with avidin, lane 6 contains avidin alone as a control, lane 7 contains RNA labeled by the tk-dependent method without avidin, and lanes 8-13 contain RNA labeled with the tk-dependent method with avidin Lanes 3, 5 and 8-13 all show a clear shift as compared to their respective controls clearly indicating that the RNA fragments have been labeled Comparison by eye demonstrates that the tk-independent method labels with less intensity than the tk-dependent method A lower labeling efficiency may be advantageous in samples for which
- E coli strain MG1655 was obtained from the E coli Genetic Stock Center located in Yale University Luna Broth (Teknova) was used for the enriched medium Cells were grown at 37° C. on a gyrotory shaker set at 270-280 rpm Cells were harvested at mid-log phase (OD 0 8-0 9 at 420 nm) Total RNA was isolated using the MasterPureTM RNA Purification Kit (Epicentre)
- RNA spike controls were prepared by in vitro transcription of linearized plasmid templates After purification, the RNA was quantified by its absorbance at 260 nm Control RNA spikes (2 femtomoles each) were added to the E coli RNA prior to labeling
- RNA was labeled using the tk-dependent and tk-independent methods described in Examples 4 and 5, respectively In both cases unreactive label was removed from the labeled RNA fragments on RNA/DNA mini-columns (Qiagen)
- the labeled RNA solution was mixed with 5 4 in L of QRV2 buffer (Qiagen) before loading on a single column Labeled RNA fragments are precipitated after the addition of 25 ⁇ g of carrier glycogen
- FIG. 13 is an array image from the experiment
- Panel A is the array image of the hybridized E coli RNA labeled with the tk-dependent method
- Panel B is an array image of the hybridized E coli RNA labeled with the tk-independent method
- Signal shows up as a bright spot against a dark background
- a comparison of the two images by eye shows that the tk-independent method showed a lower level of signal intensity
- row 1 (labeled “Total”) a total of 4,216 probe sets representing open reading frames were analyzed
- the probe set is called present Row 2 (labeled “#'s Present”) shows the number of probe sets representing open reading frames on the array that were called present
- the gene is called absent Row 3 (labeled “# s Absent”) shows the number of genes called absent
- “Average Median Intensity” (row 4) is used to quantitate signal Intensity readings across the entire array
- Correlation graphs were prepared using average difference values for all 4,216 probe sets representing open reading frames For the purposes of this application, average difference is used to demonstrate the signal intensity between probe pairs on the same array Both techniques create reproducible results as seen in the intra-assay correlation graphs ( FIGS. 14 and 15 )
- FIG. 14 shows the average difference correlation comparing the results of two different tk-independent experiments to each other
- the X axis indicates the average difference results from experiment A and the Y axis indicates the average difference results from experiment B
- a perfect correlation, i e perfect reproducibility between different experiments would be indicated by an r 2 value of 1
- the r 2 value in this case is 0 991 indicating a good correlation, or in other words, a high degree of reproducibility in signal intensity for the tk-dependent method
- FIG. 15 shows the average difference correlation comparing the results of two different tk-dependent experiments to each other
- the X axis indicates the average difference results from experiment 1 and the Y axis indicates the average difference results from experiment 2
- a perfect correlation would be indicated by an r 2 value of 1
- the r 2 value in this case is 0 9898 indicating a good correlation, or in other words, a high degree of reproducibility in signal intensity for the tk-independent method
- the two different methods are correlated as seen in FIG. 16
- the X axis represents the tk-dependent experiments (average of exp A+exp B) and the Y axis represents the tk-independent experiments (average of exp 1+exp 2)
- the slope is 5075, again indicating that the label in the tk-independent method is about half as intense as the tk-dependent method
- the correlation coefficient is 0 951 indicating a high degree of correlation between the two techniques The major discrepancies are seen at the high intensity levels where the tk-dependent method may have reached saturation
- the presently claimed invention provides greatly improved methods for enriching and labeling nucleic acids It is to be understood that the above description is intended to be illustrative and not restrictive Many variations of the invention will be apparent to those of skill in the art upon reviewing the above description By way of example, the invention has been described primarily with reference to the enrichment and labeling of mRNA, but it will be readily recognized by those of skill in the art that the invention may be employed to enrich and label all types of nucleic acids including other forms of naturally and non-naturally occurring polynucleotides such as RNAs and DNAs Furthermore, it will be understood by those of skill in the art that the enriched and/or labeled nucleotides of the presently claimed invention may be utilized in a wide variety of biological analyses in no way limited to those methods disclosed in the present invention Therefore, it is to be understood that the scope of the invention is not to be limited except as otherwise set forth in the claims
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The presently claimed invention provides methods, compositions, and apparatus for studying nucleic acids Specifically, the present invention provides a novel enrichment and labeling strategy for ribonucleic acids In one embodiment, the invention provides enriching for a population of interest in a complex population by diminishing the presence of a target sequence In a further embodiment the invention can be used to reproducibly label and detect extremely small amounts of nucleic acids
Description
- This application claims the benefit of U.S. Provisional Application No. 60/162,739, filed Oct. 30, 1999, and U.S. Provisional Application No. 60/191,345, filed Mar. 22, 2000, both of which are fully incorporated herein by reference for all purposes
- Novel methods for enriching and labeling nucleic acids are needed For example, gene expression analysis techniques often employ isolation and labeling of ribonucleic acid (RNA) Because of the interest in identifying protein-encoding genes and in examining gene expression levels, it is often desirable to purify or enrich the messenger RNA (mRNA) The poly-
adenine 3′-terminus (poly-A tail) of mRNA from eukaryotic cells can be used as a handle to bind to poly(dT) oligonucleotides, and this method is widely used to identify, purify and or label eukaryotic mRNA However, because prokaryotic mRNA generally lacks poly-A tails, there is a need for alternative methods for purifying and labeling mRNA samples which do not rely on the existence of a poly-A tail - The presently claimed invention provides methods of preparing a nucleic acid sample for analysis
- In a first embodiment, the presently claimed invention provides a method of preparing a nucleic acid sample for analysis comprising enriching for a population of interest within a mixed population of nucleic acids by contacting the nucleic acid sample with a bait molecule The bait molecule is capable of complexing specifically to unwanted target sequences within the nucleic acid sample, but is incapable of complexing with sequences from the population of interest The bait molecule is contacted with the target sequences forming bait target complexes which are then specifically removed from the nucleic acid sample The remaining enriched population of interest is then fragmented and a signal moiety is attached to the fragments
- In a second embodiment, the presently claimed invention provides a method of enriching for a population of interest within a mixed population of nucleic acids by contacting the nucleic acid with a bait molecule The bait molecule is capable of complexing specifically to unwanted target sequences within the nucleic acid sample, but is incapable of complexing with sequences from the population of interest The bait molecule is contacted with the target sequences forming bait target complexes which are then specifically removed from the nucleic acid sample Thus enriching for the population of interest
- In a third embodiment, the presently claimed invention provides a compound having the formula
n-S-acetyl-PEO-sig
where n is a polynucleotide, S is a thiol group, acetyl is an acetyl functional group, PEO is polyethelene oxide, and sig is a signal moiety - In a fourth embodiment, the presently claimed invention provides a method for labeling a polynucleotide comprising contacting the polynucleotide with a PEO-iodoacetyl conjugated to a signal moiety under conditions such that the PEO-iodoacetyl will attach to said nucleotide
- In a fifth embodiment, the presently claimed invention provides a method for labeling a polynucleotide comprising contacting the polynucleotide with a reactive thiol group to form a thiolated polynucleotide and contacting the thiolated polynucleotide with either a signal moiety capable of reacting with said thiolated polynucleotide under appropriate conditions such that said signal moiety is attached to said polynucleotide
- In a sixth embodiment, the presently claimed invention provides a method for labeling prokaryotic mRNA comprising obtaining a population of RNA from a prokaryotic organism, enriching the population for mRNA by exposing the population to a plurality of DNA bait molecules which are complementary to at least a portion of the stable RNA in said population under such conditions as to allow for the formation of DNA RNA hybrids, exposing the DNA RNA hybrids to RNAse H to remove the RNA from said DNA RNA hybrids, exposing the remaining DNA to DNase I to remove the DNA, thus producing an enriched population of mRNA, fragmenting the enriched mRNA to form mRNA fragments, exposing the mRNA fragments to (—S-ATP and T4 kinase to produce reactive thiol groups at the 5′ ends of the mRNA fragments, and exposing the thiolated mRNA fragments to PEO-Iodoacetyl-Biotin such that a stable thio-ether bond is formed between said thiolated mRNA fragments and said PEO-Iodoactyl-Biotin
-
FIG. 1 depicts a schematic illustration of one embodiment of the presently claimed invention in which target sequences are depleted from a mixed population of nucleic acids -
FIG. 2 depicts a schematic illustration of one embodiment of the presently claimed invention wherein target sequences are complexed to a bait molecule and then specifically digested -
FIG. 3 depicts a schematic illustration of one embodiment of the presently claimed invention wherein bait molecules are synthesized by reverse transcriptase using target molecules as templates -
FIG. 4 depicts a schematic illustration of one embodiment of the presently claimed invention in which bait molecules are recycled to initiate repeated rounds of target depletion -
FIG. 5 depicts a schematic illustration of one embodiment of the presently claimed invention in which sequences from an enriched population of interest are labeled -
FIG. 6 is an image of unenriched RNA hybridized to a microarray -
FIG. 7 is an image of enriched RNA hybridized to a microarray -
FIG. 8 is a gel image showing the depletion of 23S and 16S RNA using the methods of the presently claimed invention -
FIG. 9 is a gel image showing the depletion of 23S and 16S RNA using the methods of the presently claimed invention including bait cycling -
FIG. 10 is an image of a Northern transfer showing the amount of mRNA transcript present during each round of rRNA depletion during a bait cycling experiment -
FIG. 11 is a gel image of biotin labeled mRNA fragments -
FIG. 12 is a gel image of a gel shift assay -
FIG. 13 depicts hybridization patterns of E coli RNA labeled with the thiol-kinase dependent (panel A) and thiol-kinase independent (panel B) methods -
FIG. 14 shows the average difference correlation comparing the results of two different thiol-kinase dependent experiments to each other -
FIG. 15 shows the average difference correlation comparing the results of two different thiol-kinase independent experiments to each other -
FIG. 16 shows the average difference correlation comparing the thiol-kinase dependent experiments with the thiol-kinase independent experiments - 1. Definitions
- The phrase “massively parallel screening” refers to the simultaneous screening of at least about 100, preferably about 1000, more preferably about 10,000 and most preferably about 1,000,000 different nucleic acid hybridizations
- The terms “nucleic acid” or “nucleic acid molecule” refer to a deoxyribonucleotide or ribonucleotide polymer in either single-or double-stranded form, and unless otherwise limited, would encompass analogs and mimetics of natural nucleotides that can function in a similar manner as naturally occurring nucleotides Nucleic acids may be derived from a variety of sources including, but not limited to natural or naturally occurring nucleic acids or mimetics thereof, clones, synthesis in solution or solid phase synthesis
- An “oligonucleotide” or “polynucleotide” is a nucleic acid ranging from at least 2, preferable at least 8, and more preferably at least 20 nucleotides in length or a compound that specifically hybridizes to a polynucleotide Polynucleotides of the present invention include sequences of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) which may be isolated from natural sources, recombinantly produced or artificially synthesized and mimetics thereof A further example of a polynucleotide of the present invention may be peptide nucleic acid (PNA) The invention also encompasses situations in which there is a nontraditional base pairing such as Hoogsteen base pairing which has been identified in certain tRNA molecules and postulated to exist in a triple helix “Polynucleotide” and “oligonucleotide” are used interchangeably in this application
- “Subsequence” refers to a sequence of nucleic acids that comprise a part of a longer sequence of nucleic acids
- The phrase “hybridizing specifically to” refers to the binding, duplexing, or hybridizing of a molecule substantially to or only to a particular nucleotide sequence or sequences under stringent conditions when that sequence is present in a complex mixture (e g, total cellular) DNA or RNA Standard conditions are described in, for example, Sambrook, Fritsch, Maniatis “Molecular Cloning A Laboratory Manual” (1989) Cold Spring Harbor Press
- The term “mRNA” or “mRNA transcripts,” as used herein, include, but not limited to pre-mRNA transcript(s), transcript processing intermediates, mature mRNA(s) ready for translation and transcripts of the gene or genes, or nucleic acids derived from the mRNA transcript(s) Transcript processing may include splicing, editing and degradation As used herein, a nucleic acid derived from an mRNA transcript refers to a nucleic acid for whose synthesis the mRNA transcript or a subsequence thereof has ultimately served as a template Thus, a cDNA reverse transcribed from an mRNA, an RNA transcribed from that cDNA, a DNA amplified from the cDNA, an RNA transcribed from the amplified DNA, etc, are all derived from the mRNA transcript and detection of such derived products is indicative of the presence and/or abundance of the original transcript in a sample Thus, mRNA derived samples include, but are not limited to, mRNA transcripts of the gene or genes, cDNA reverse transcribed from the mRNA, cRNA transcribed from the cDNA, DNA amplified from the genes, RNA transcribed from amplified DNA, and the like
- The term “signal moiety” refers in a general sense to a detectable moiety, such as a radioactive isotope or group containing the same, and non-isotopic moieties, such as enzymes, biotin, avidin, streptavidin, digoxygenin, luminescent agents, dyes, haptens and the like Luminescent agents, depending upon the source exciting the energy, can be classified as radioluminescent chemiluminescent, bioluminescent, and photoluminescent (fluorescent)
- The phrase “mixed population” or “complex population” refers to any sample containing both desired and undesired nucleic acids As a non-limiting example, a complex population of nucleic acids may be total genomic DNA, total cellular RNA or a combination thereof. Moreover, a complex population of nucleic acids may have been enriched for a given population but include other undesirable populations For example, a complex population of nucleic acids may be a sample which has been enriched for desired messenger RNA (mRNA) sequences but still includes some undesired ribosomal RNA sequences (rRNA)
- Throughout the disclosure various Patents, Patent Applications and publications are referenced Unless otherwise indicated, each is incorporated by reference in its entirety for all purposes
- 2. General
- In a first embodiment, the presently claimed invention provides a method of preparing a nucleic acid sample for analysis It is often desirable to isolate, enrich, or increase the relative percentage of a particular population of sequences within a much larger population of sequences in order to limit analysis to those sequences of interest and to reduce interference and unnecessary work which may be caused by the presence of undesirable sequences The methods of the presently claimed invention provide a novel method wherein a complex sample is depleted of undesired sequences and is thus enriched for a population of interest One particularly preferred enrichment is to increase the relative percentage of prokaryotic mRNA in a given sample for further analysis
- Briefly, the method enriches for a population of interest within a mixed population of nucleic acid sequences by targeting undesired sequences (target sequences) and removing them from the mixed population First, a mixed population of nucleic acid sequences is exposed to a bait molecule The bait molecule is capable of complexing specifically to a target sequence but not to the sequences in the population of interest The bait molecule is allowed to form a complex with the target sequence and this complex is then specifically recognized and removed The removal process may be conducted in a single step, or may involve removing first the target sequences and then the subsequent removal of the bait molecule In one particular example the bait molecules are short DNA sequences which are complementary to the target sequences
-
FIG. 1 illustrates a general embodiment of the presently claimed invention A mixedpopulation 100 comprising a population ofinterest 102 andtarget sequences 101 is exposed tobait molecules 103 The bait molecules complex with the target sequences to formbait target complexes 104 The bait target complex is then removed from the mixed population thereby enriching for the population of interest - The mixed population of nucleic acids may be any nucleic acid sample comprising both desired and undesired sequences The population may include different DNA or RNA molecules In a preferred embodiment, the mixed population is an RNA sample, in a further preferred embodiment the nucleic acid sample is RNA derived from a prokaryotic organism The mixed population may be derived from a wide variety of sources including for example, tissue samples, blood, isolated cells or environmental samples such as water or soil The mixed population may be derived from any organism including both eukaryotes and prokaryotes such as human, rat, mouse, Escherichia coli (E coli), Bacillus subtilis (B subtilis), Pseudomonas aerugionosa, etc Methods of deriving nucleic acid samples from eukaryotic and prokaryotic organisms will be well known to those of skill in the art See for example.
Chapter 4, “Current Protocols in Molecular Biology,” Ausubel et al, eds (1997 supplement) Johan Wilen & Sons, Inc andChapter 7, Sambrook, Fritsch, Maniatis “Molecular Cloning A Laboratory Manual” (1989) Cold Spring Harbor Press, etc - The population of interest may be any subset of the mixed population The population of interest may include RNA and/or DNA The population of interest may, for example, be a particular type of RNA In a preferred embodiment the population of interest is mRNA The population of interest may comprise any sequence and the sequence need not be known The population of interest may be chosen on any basis, including by sequence, function (i e messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), etc) or a combination thereof
- The target sequences may be any undesired sequences in the mixed population The target sequences may comprise any sequence so long as they are distinguishable by sequence from the population of interest Target sequences may be chosen on any basis, including by sequence, function (i e mRNA, rRNA, tRNA, etc) or a combination thereof. In a preferred embodiment the target sequences are stable RNAs including rRNA and tRNA In some embodiments, it may not be necessary to remove all the undesired sequences from the mixed population In these embodiments it is acceptable to remove only enough of the undesired sequences such that the undesired sequences do not interfere with analysis of the population of interest For example, in a prokaryotic expression study utilizing array hybridization techniques, it may be desirable to remove rRNA sequences which may interfere with hybridization of the mRNAs to the array by creating a significant background signal In this example, it may be acceptable to remove only the 23S and 16S RNAs, as removing these sequences reduces background signals to acceptable levels See, e g example 1, below
- In a preferred embodiment any non-targeted undesirable sequences represent only a small proportion of the mixed population These non-targeted undesirable sequences may include a variety of other nucleic acids such as DNAs, rRNAs, mRNAs or tRNAs For the sake of simplicity, the presence of non-targeted RNAs will not be discussed throughout the remainder of the application, however, the possibility of their presence is contemplated by the scope of the presently claimed invention
- The bait molecules may be obtained and added in a variety of methods The bait molecules should be able to recognize and complex specifically with the target molecule, but should not complex with the sequences from the population of interest Moreover, the bait target complex should have a particular property which makes is vulnerable to a selection and removal mechanism
- In one embodiment, the bait target complex is targeted by an enzyme or process which specifically removes any target sequences which are complexed to a bait molecule
FIG. 2 depicts a schematic illustration of this embodiment A mixedpopulation 100 comprises a population ofinterest 102 andtarget sequences 101Bait molecules 103 are introduced to complex specifically with the target sequences formingbait target complex 104 An enzyme orprocess 105 is introduced to specifically remove the target sequences from the bait target complexes without interfering with the sequences from the population of interest After removal of the target sequences, the mixed population is comprised of the population of interest and the bait molecules If desired, the bait molecules may then be removed (Step not shown) - As one example, the bait sequence may be DNA and the target sequence may be RNA In this example the bait target complex would be a DNA RNA hybrid The DNA RNA hybrid is then removed from the mixed population For example, in some embodiments an enzyme which specifically targets DNA RNA hybrids will be used to remove the DNA RNA hybrid In a preferred embodiment, RNAse H is used to specifically hydrolyze RNA which is part of a DNA RNA hybrid The remaining DNA is then available to hybridize with another RNA target sequence If desired, the DNA may then be removed by addition of enzymes which specifically target and digest DNA In a preferred embodiment DNAse I is used Alternatively, physical or other methods of removal may likewise be employed such as straptavidin to remove biotinylated DNA
- A particular example of the presently claimed invention provides a method of isolating or enriching for mRNAs within a mixed population of RNAs by specifically removing targeted rRNAs A mixed population of RNAs includes mRNAs, tRNAs and rRNAs DNA bait molecules which are complementary to the rRNAs but not to the mRNAs are added to the mixed population under conditions suitable to allow for the formation of DNA RNA hybrids Then, RNAse H specifically targets and removes any RNA which is part of a DNA RNA hybrid, yielding DNA bait molecules and an enriched population of mRNAs
- If a DNA bait sequence is used, the DNA may be generated exogenously, chemically obtained, or synthesized from another biological source Exogenous DNA may be generated by chemical or non-biological synthesis Alternatively, exogenous DNA may be obtained through biological synthesis, for example, through the production by bacteria of double stranded plasmid DNA or single stranded phage DNA containing the bait sequence Chemical or non-biological methods of synthesizing DNA will be known to those of skill in the art and are described in, for example, Innis et al (eds) (1990) PCR Protocols A Guide to Methods and Applications, Academic Press, and Gait (1984) Oligonucleotide Synthesis A Practical Approach, IRL Press, Oxford
- In a preferred embodiment, rather than adding exogenous DNA as a bait, DNA RNA hybrids are synthesized “in vivo” using the targeted RNA as a template for reverse transcription This embodiment is depicted in
FIG. 3 Primers 106 which are complementary to the targetedRNA 101 are added to the mixedpopulation 100 The primers are allowed to hybridize to the targeted RNAs forming primer-bound targetedRNAs 107 The primers are extended by reverse transcriptase to formDNA RNA hybrids 104 which may then be removed using any known method including those methods described below producing an enriched population ofinterest 102 - Alternatively, a non-nucleic acid bait molecule may be used For example, an antibody which specifically recognizes and binds the target sequences may be employed in some embodiments of the presently claimed invention For example, an antibody may be modified to recognize DNA RNA hybrids or specific rRNA sequences
- The method of removal may exploit some inherent or modified element of the bait For example, if the bait is distinguishable by size from the sequences in the population of interest a method of size separation such as centrifugation. size separation column, or gel electrophoresis could be employed to remove the bait target complexes
- Alternatively, the bait molecule can be modified with a selectable element, the properties of which may then be exploited in order to remove the bait target complex from the mixed population Non-limiting examples of selectable elements include nucleic acid sequences, ligands, receptors, antibodies, hapten groups, antigens, biotin, streptavidin, enzymes and enzyme inhibitors Once a bait molecule containing a selectable element is complexed to the target sequence, the bait target complex is exposed to a reagent capable of binding said selectable element and the reagent bait target complex is removed from the mixed population
- For example, an antibody may be designed which specifically recognizes and binds rRNA sequences The antibody may be biotinylated before or after exposure to the rRNA sequences The biotinylated antibody rRNA complex is then exposed to streptavadin-coated beads The magnetic beads with the antibody rRNA complex attached may then be removed from the mixed population
- In some embodiments, the bait molecules may be attached to a solid substrate such as beads, fibers, or an array The bait molecules may be attached to the solid substrate using any known method including chemical or physical attachment For example, nucleic acid sequences may be synthesized directly on the solid support (see, e g, Merrifield, “Solid Phase Peptide Synthesis,” J Am Chem Soc, (1963) 85 2149-2154, Fodor et al, “Light Directed Spatially Addressable Parallel Chemical Synthesis” Science (1991) 251 767-773, PCT publication WO90/15070, and U.S. Pat. Nos. 5,800,992, 5,445,934, 5,837,832 and 5,744,305) or pre-synthesized and then attached to the solid support (see e g PCT publication No WO92/10092 and U.S. Pat. Nos. 5,677,195, 5,412,087, 6,022,963 and 6,040,193)
- For those embodiments employing bait molecules attached to solid supports, enzymatic removal of the bound target sequences may be employed if there is a desire to recycle the bait molecules The method of removing the solution from the solid supports may include any manual or mechanical means including pipetting, or draining in a fluidics station, so long as the solution is obtained in a manner so as to preserve the integrity of the sequences of interest Otherwise, as indicated above, one may simply remove the solid support containing the bound target sequences, thereby removing the target sequences (and the bait molecules) and enriching for the population of interest
- In practice, the method of removal will vary depending on the type of solid support used For example, if the solid support is an array, the unbound sequences may simply be washed off the support and the solution collected If the solid support is a bead, the beads may be removed from solution by centrifugation If the solid support is a magnetic bead, the beads may be removed from solution by exploiting the magnetic properties of the beads Regardless of the method used, the solution containing the unbound sequences is isolated from the solid support-bound bait target complexes
-
FIG. 4 depicts another embodiment of the presently claimed invention in which the same bait molecule is used for repeated rounds of target depletion InFIG. 4 , a mixed population ofnucleic acids 100 includes the population ofinterest 102 and targetedsequences 101Bait molecules 103 which are complementary to the targeted sequences but not to the sequences in the population of interest are added to the mixed population under conditions suitable to allow formation ofbait target complexes 104 Next, an enzyme orprocess 105 specifically targets and removes the target sequence from the bait target complexes leaving the population ofinterest 102,DNA bait molecules 103 and anyundigested target sequences 101 The remaining DNA bait molecules are then free to hybridize with any undigested target sequences to form new bait target complexes, thereby repeating the first step The cycle can then be repeated as desired - A preferred mechanism for carrying out repeated recycling of DNA bait molecules employs cycling of different conditions As above, a mixed population of nucleic acids includes a population of interest and target sequences First, bait molecules are added to the mixed population under conditions suitable to allow formation of bait target complex This first step is performed under a first condition. for example at a temperature X Second, an enzyme or process which specifically targets and removes target sequences which are part of a bait target complex is added yielding bait molecules and the population of interest This second step is performed under a second set of conditions which are different from the conditions required for the first step, i e if the first step is performed at temperature X, the second step is performed at temperature Y where Y≠X Conditions are then returned to those in the first step (i e the temperature is returned to X) and the bait molecules are allowed to complex with any target sequences that were not removed in the previous step The conditions and steps are cycled in this manner until the desired amount of target sequence is removed In this embodiment, the same bait molecules serve as bait for numerous rounds of target depletion At the end of the cycling process, the bait molecules may be removed by an enzyme or process which specifically targets and removes the bait Note, the initial bait molecules may be introduced by reverse transcribing the target sequences as described above and depicted in
FIG. 3 - In a particular example of the above embodiment, a mixed population of RNAs includes mRNA, 23S rRNA and 16S rRNA Cloned ribosomal DNA (rDNA) bait molecules which are complementary to the 23s and 16s rRNAs are added to the mixed population under conditions suitable to allow for the formation of DNA RNA hybrids In a preferred embodiment, the rRNA and rDNA annealing reaction is performed at a temperature range of between 37° C. and 95° C., more preferably between 50° C. and 80° C. and more preferably at 70° C. Next, a thermostable RNAse H is added to digest the bound rRNA sequences In a preferred embodiment this step is performed at a temperature range of between 37° C. and 70° C., more preferably at a temperature range of between 40° C. and 60° C. and more preferably at 50° C. The digestion yields rDNAs, mRNAs and undigested rRNAs Thereafter, the temperature is raised to a temperature suitable for reannealing, e g 70° C., and the annealing step is repeated Thereafter, the temperature is changed to a temperature suitable for digestion, e g 50° C. and the digestion step is repeated In this manner, the temperature can be cycled to allow for repeated targeting of rRNA molecules by the same DNA bait molecule It should be noted that it is not necessary to employ different temperatures or conditions to conduct bait cycling as the DNA bait will become available once the RNA target sequence is removed by RNAse H However, temperature cycling may promote higher specificity and is, therefor, a preferred embodiment for certain applications requiring high specificity
- In a preferred embodiment, once both the targeted RNA and DNA bait molecules have been digested, the RNA of interest is further purified using methods known in the art, including, for example, commercially available purification kits such as the MasterPure complete DNA/RNA purification kit (Epicentre Technologies, WI) or the RNeasy Kit (Qiagen, Valencia, Calif.)
- Once the population of interest is enriched, it is often desirable to label the sequences in preparation for a number of different analyses In one embodiment of the presently claimed invention, the enriched population of interest is fragmented and labeled In the methods of the presently claimed invention the label is a signal moiety In a preferred embodiment the label is a biotin and in an even further preferred embodiment the label is a PEO-Iodoacetyl biotin
- Generally under the methods of the presently claimed invention, the fragmented sequences of interest are chemically modified such that the 5′ ends comprise a reactive group The reactive group is then reacted with the signal moiety to produce labeled fragments In an alternate method, the 5′ end modification step is skipped and the fragments are directly labeled with the signal moiety
-
FIG. 5 depicts a specific example of one embodiment of the presently claimed invention in which enriched fragments are biotin labeled A mixed population ofnucleic acids 100 includes a population ofinterest 102 andtarget sequences 101Bait molecules 103 are added to the mixed population under conditions suitable to formation ofbait target complexes 104 The bait target complexes are removed leaving an enriched population of interest if desired, the sequences from the population of interest may be further purified by known purification means (not shown) The sequences from the population of interest are then fragmented producingfragments 108 The fragments are then chemically altered to add areactive group 109 to the 5′ end of each fragment producingreactive fragments 110 Finally, asignal moiety 111 is reacted with the reactive groups to produce labeledfragments 112 - Any known method of fragmentation may be employed Various methods of fragmenting nucleic acids will be known to those of skill in the art These methods may be, for example, either chemical or physical in nature Fragmentation may include partial degradation with a DNAse, RNAse, partial depurination with acid followed by heating, and restriction enzymes or other enzymes which cleave nucleic acid at known or unknown locations Physical fragmentation methods may involve subjecting the nucleic acid to a high shear rate High shear rates may be produced, for example, by moving nucleic acid through a chamber or channel with pits or spikes, or forcing the nucleic sample through a restricted size flow passage, e g an aperture having a cross sectional dimension in the micron or submicron scale Particular care must be taken when fragmenting RNA as it is easily degraded Those of skill in the art will be familiar with methods of fragmenting RNA In a preferred embodiment, the RNA is fragmented by heat and ion-mediated hydrolysis
- Reactive groups and methods of modifying nucleic acid sequences to contain reactive groups will be well known to those of skill in the art In a particularly preferred embodiment the nucleic acid fragments are enzymatically modified by T4 polynucleotide kinase and γ-S-ATP to add a 5′ thiol group suitable for biotinylation to the 5′ end of the nucleic acid fragments thus producing thiolated nucleic acid fragments See, for example, “Current Protocols in Molecular Biology,” Ausubel et al editors,
section 3 10 2-3 10 5 (1987) for a discussion of T4 Polynucleotide Kinases - In one embodiment of the presently claimed invention, a detectable signal moiety is then reacted with the modified or unmodified 5′ end of the fragments to produced labeled fragments In a preferred embodiment, a biotin group such as PEO-Iodoacetyl Biotin, is conjugated to 5′-ends of the fragments which have been modified by T4 polynucleotide kinase and γ-S-ATP In a particularly preferred embodiment, the label is supplied to the nucleic acid by the addition of oxide biotinyl-iodacetamidyl-3,6-dioxaoctanediamine (Iodoacetyl Biotin) and more preferably by the addition of polyethylene oxide biotinyl-iodacetamidyl-3,6-dioxaoctanediamine (PEO-Iodoacetyl Biotin) PEO-Iodoacetyl Biotin (Pierce Chemical Co Product # 21334ZZ) is a long-chain, water-soluble, sulfhydryl (—SH)-reactive biotinylation reagent The PEO spacer arm imparts high water solubility Iodoacetyl Biotin (Pierce Chemical Co Product #21333ZZ) is generally dissolved in DMSO or DMF before use The iodoacetyl functional group reacts predominantly with free —SH groups The reaction occurs by nucleophilic substitution of iodine with a thiol group resulting in a stable thio-ether bond The use of PEO-Iodoacetyl Biotin as a biotinylation reagent for proteins and antibodies has been described previously See, for example, Instructions for EZ-Link™ PEO-Iodoacetyl Biotin, Pierce Chemical Co We have found that PEO-Iodoacetyl Biotin is also a suitable label for nucleic acids The use of Iodoacetyl Biotin as a biotinylation reagent for antibodies is described in, for example, U.S. Pat. No. 5,137,804 The use of Iodoacetyl Biotin as a label for the enzyme kinase is described in, for example, Jeong et al Kinase “Assay Based on Thiophosphorylation and Biotinylation,” Biotechniques 27 1232-1238 (December 1999) We have also found that PEO-Iodoacetyl Biotin can be conjugated to a nucleic acid fragment without 5′ modification
- Other detectable signal moieties suitable for use in the present invention include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means Useful labels in the present invention include biotin for staining with labeled streptavidin conjugate, magnetic beads (e g, Dynabeads™), fluorescent dyes (e g, fluorescein, Texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e g, 3H, 125I, 35S, 14C, or 32P), enzymes (e g, horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic (e g, polystyrene, polypropylene, latex, etc) beads Patents teaching the use of such labels include U.S. Pat. Nos. 3,817,837, 3,850,752, 3,939,350, 3,996,345, 4,277,437, 4,275,149, and 4,366,241
- Means of detecting such labels are well known to those of skill in the art Thus, for example, radiolabels may be detected using photographic film or scintillation counters, fluorescent markers may be detected using a photodetector to detect emitted light Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and colorimetric labels are detected by simply visualizing the colored label Colloidal gold label can be detected by measuring scattered light
- After purification of the product, the efficiency of the labeling procedure can be assessed using, for example, a gel-shift assay In this assay, the addition of biotin residues is monitored by comparing fragments which are pre-incubated with avidin prior to electrophoresis with fragments where no avidin has been added Biotin-containing residues are retarded or shifted “upwards” on the gel during the electrophoresis due to avidin binding The nucleic acids are then detected by staining An absence of a shift pattern is an indication of no or poor biotin labeling
- The above disclosed labeling method may be employed for any nucleic acid molecule including both RNAs and DNAs Furthermore, the labeling method may be performed without the enrichment protocol
- Array-Based Assays
- The nucleic acids isolated and or labeled by the methods described in this disclosure may be analyzed by hybridization to nucleic acid arrays Those of skill in the art will appreciate that an enormous number of array designs are suitable for the practice of this invention High density arrays may be used for a variety of applications, including, for example, gene expression analysis, genotyping and variant detection
- Various techniques for large scale polymer synthesis and probe array manufacturing are known Some examples include the U.S. Pat. Nos. 5,143,854, 5,242,979, 5,252,743, 5,324,663, 5,384, 261, 5,405,783, 5,412,087, 5,424,186, 5,445,934, 5,451,683, 5,482,867, 5,489,678, 5,491,074, 5,510,270 5,527,681, 5,550,215, 5,571,639, 5,593,839, 5,599,695, 5,624,711, 5,631,734, 5,677,195, 5,744,101, 5,744,305, 5,753,788, 5,770,456, 5,831,070, 6,040,193 and 5,856,011, all of which are incorporated by reference in their entirety for all purposes
- For gene expression analysis, the high density array will typically include a number of probes that specifically hybridize to the nucleic acid(s) whose expression is to be detected Array based methods for monitoring gene expression are disclosed and discussed in detail in U.S. Pat. Nos. 5,800,992, 5,871,928, 5,925,525, 6,040,138 and PCT Application WO92/10588 (published on Jun. 25, 1992), all incorporated herein by reference for all purposes Generally these methods of monitoring gene expression involve (1) providing a pool of target nucleic acids comprising RNA transcript(s) of one or more target gene(s) or nucleic acids derived from the RNA transcript(s), (2) hybridizing the nucleic acid sample to a high density array of probes and (3) detecting the hybridized nucleic acids and calculating a relative expression (transcription, RNA processing or degradation) level
- For genotyping and variant detection, the high density array will typically include a number of probes which are designed to interrogate a particular position which is believed or known to be associated with sequence variation Array based methods for variant detection are disclosed and discussed in detail in U.S. Pat. Nos. 5,837,832, 5,856,104, 5,856,092, 5,858,659, 6,027,880 and 5,925,525 each of which is incorporated herein by reference for all purposes Generally these methods of variant detection involve (1) providing a pool of target nucleic acids comprising DNA from the region(s) to be interrogated (2) hybridizing the nucleic acid sample to a high density array of probes and (3) detecting the hybridized nucleic acids and determining the presence or absence of a sequence variant
- Creation of an mRNA Library
- The methods of the presently claimed invention can be used to create an mRNA library The present techniques are particularly useful in creating an mRNA library from prokaryotic cells since prokaryotic mRNA lacks the polyA tail that is traditionally used to isolate mRNA populations from complex nucleic acid samples Briefly, a sample is obtained from an individual The sample is then enriched for mRNA using the techniques described by the presently claimed invention Then, following standard protocols known in the art, enriched mRNA can then be used as a template for cDNA synthesis The cDNA second strand is then synthesized Adaptors are ligated to the double stranded cDNA and the double stranded cDNA sequences are cloned into appropriate vectors
- Those of skill in the art will be familiar with methods for creating mRNA libraries See, e g Maniatis et al, “Molecular Cloning A Laboratory Manual, 2nd Ed Cold Spring Harbor Laboratory Press, Cold Spring Harbor N.Y. (1989) (“Maniatis et al.,”) especially
Chapter 8 which is incorporated by reference in its entirety for all purposes - CDNA synthesis typically involves the addition of short oligonucleotides which act as primers for reverse transcriptase These short oligonucleotides may be of a specific known sequence, or may be of random sequence The length and sequence of the short oligonucleotides will vary based upon the sequence to be reverse transcribed but preferably the short oligonucleotides are between 5 and 10 bases in length and most preferably are about 6 bases in length Methods of cDNA synthesis are described, for example, in Maniatis et al, see especially
sections 8 11-8 13 - For a description of second strand synthesis see, e g Maniatis et al,
section 8 13-8 17 Methods of ligating adaptors to the double stranded sequences and cloning those sequences into suitable vectors will be known to those of skill in the art and are well described in Maniatis et al.,Chapter 8,sections 8 23-8 45 Analysis of cDNA libraries is described throughoutChapter 8 of Maniatis et al - 1. mRNA Enrichment by Removal of 16S and 23S rRNA Using In Vivo cDNA Synthesis
- The following procedure was performed in PCR tubes in a thermocycler An initial mixture was prepared by mixing 25 g of total E coli RNA to 13 75 L of 5 0 M rRNA Reverse Transcriptase (RT) Primer Mix, and adding deionized water (DI H2O) to a final volume of 30 L and a concentration of 83 g/L of RNA
- The following primers were used to target 16S and 23S RNA (each primer is 5 M in the RT primer mix)
16S1514 5′-CCTACGGTTACCTTGTT-3 ′ 16S889 5′-TTAACCTTGCGGCCGTACTC-3 ′ 16S541 5′-TCGATTAACGCTTCACCC-3 ′ 23S2878 5′-CCTCACGGTTCATTAGT-3 ′ 23SEco2064 5′-CTATAGTAAAGGTTCACGGG-3 ′ 23SEco1519 5′-TCGTCATCACGCCTCAGCCT-3 ′ 23S1012 5′-TCCCACATCGTTTCCCAC-3 ′ 23S539 5′-CCATTATACAAAAGGTAC-3′ - The RNA/RT primer mix/DI H2O mixture was heated to 70° C. for 5 minutes and then transferred to 4° C.
- To the above mixture, a reverse transcription mixture including 10 L of 10×MMLV RT Buffer, 5 L of 100 mM DTT, 2 L of 25 mM dNTP Mix, 3 L of 24 5 U/L RNAse Inhibitor (RNAguard Ribonuclease Inhibitor (Porcine), Amersham Pharmacia Biotech, P/N 27-0816-01), 6 L 50 U/g MMLV Reverse Transcriptase (Epicentre Technologies, P/N MCR85101) and 44 L of DI H2O was added and the reaction was carried out at 42° C. for 25 minutes and transferred to 45° C. for an additional 20 minutes The mixture was then transferred to 4° C.
- The rRNA in the DNA RNA hybrids was then digested by adding 5 L of 10 U/L RNAse H (Epicentre Technologies, P/N R0601K) at 37 C for 45 minutes The enzyme was heat deactivated at 65° C. for 5 minutes and then transferred to 4° C.
- The DNA was then removed by adding 2 5 L of 5 U/ul DNAse I (Amersham-Pharmacia Biotech P/N 27-0514-01) and 1 L of 24 5 U/L RNAse inhibitor Digestion was carried out at 37° C. for 20 minutes and the enzyme was deactivated by adding EDTA to a final concentration of 10 mM
- After the reaction was completed, the product was purified (RNeasy Total RNA Isolation Kit, QIAGEN P/N 74104) The sample and another sample of unmodified E coli total RNA were then labeled using the methods described below in Example 4 and separately hybridized to E coli Genome Array (Affymetrix Inc, Santa Clara, Calif. P/N 510051) The hybridized arrays were then washed, stained and scanned using standard methods as described in the E coli Genome Array User s Manual (Affymetrix, Inc, Santa Clara, Calif.)
- The removal efficiency for 16s and 23s rRNA is typically between 80-90%
FIGS. 6 and 7 shows the results of hybridization of enriched and non-enriched RNA to microarraysFIG. 6 shows hybridization of labeled unenriched RNA to a microarrayFIG. 7 shows hybridization of labeled enriched RNA to an identical microarray As can be seen by comparingFIGS. 6 and 7 , the hybridization inFIG. 7 shows a much cleaner hybridization with less signal produced by cross hybridization - 2. mRNA Enrichment by Removal of 16S and 23S rRNA Using Exogenous DNA
- Cloned DNAs encoding the E coli 16S and 23S rRNA genes were amplified separately by PCR and purified with the QIAquick PCR purification kit (QIAGEN P/N 28104) One g of 16S and 1 g of 23S rDNA were combined in a PCR tube and diluted to 25 L with DI H2O The DNA was denatured by heating at 99° C. for 5 minutes in a thermocycler The tube was transferred to 70° C. followed by the addition of 25 L of a prewarmed (at 70° C.) solution containing 1 g E coli total RNA, 200 mM NaCl, 100 mM Tris (pH 7 5) The tube was incubated at 70° C. for 30 minutes to permit annealing of the rRNAs to the corresponding complementary strand of rDNA (approximately 1 1 molar ratio) The tube was then transferred to 37° C. followed by the addition of 50 L of a prewarmed (at 37 C) solution containing 2 units of E coli RNAseH (Epicentre Technologies P/N R0601K), 50 mM Tris (pH 7 5), 100 mM NaCl, 20 mM MgCl2, and the reaction was incubated at 37° C. for 20 minutes to digest RNA from DNA RNA hybrids DNA was then digested by the addition of 2 units of DNAse I (Epicentre Technologies, P/N D9902K) and incubation at 37° C. for 15 minutes EDTA was then added to a final concentration of 20 mM to inhibit further nuclease activity RNA was purified with an RNeasy column (QIAGEN P/N 74104) and then analyzed in a denaturing agarose gel stained with ethidium bromide
-
FIG. 8 is a gel image of threesamples Lane 1 is anuntreated sample Lane 2 is an enriched sample where the RNAse A step was not performedLane 3 is an enriched sample Comparison of 1, 2, and 3 indicates that the loss of the 16S and 23S rRNA bands in the enrichment procedure resulted from the specificity of RNAse H for DNA RNA hybridslanes - 3. mRNA Enrichment by Removal of 16s and 23s rRNA Using DNA Bait Recycling
- Cloned DNAs encoding the E coli 16S and 23S rRNA genes were amplified separately by PCR and purified with the QIAquick PCR purification kit (QIAGEN P/N 28104) 0 6 g of 16S and 0 6 g of 23S rDNA were combined in a PCR tube and diluted to 48 L with DI H2O The DNA was denatured by heating at 99° C. for 5 minutes in a thermocycler The temperature was lowered to 70° C. followed by the addition of 48 L of a prewarmed (at 70° C.) solution containing 6 g E coli total RNA, 200 mM NaCl, 100 mM Tris (pH 7 5), and 12 units of thermostable RNAse H (Epicentre Technologies, P/N H39100) The tube was incubated at 70° C. for 1 minute to permit annealing of the rRNAs to the corresponding complementary strand of rDNA (approximately 1 mole DNA per 10 moles RNA) The temperature was reduced to 50° C. for 5 minutes to complete one cycle of enrichment The temperature was then increased to 70° C. for 1 minute then again reduced to 50° C. for 5 minutes to complete the second cycle This temperature cycling was repeated a total of 30 times After 1, 5, 10, 20, and 30 cycles 16 L (corresponding to 1 g RNA from the starting mixture) was removed from the tube and mixed with 1 unit DNAse I (Epicentre Technologies, P/N D9902K) and incubated at 37° C. for 15 minutes EDTA was then added to a final concentration of 20 mM to inhibit further nuclease activity RNA was purified from each sample with an RNeasy column (QIAGEN P/N 74104) and then analyzed in a denaturing agarose gel. along with 1 g of untreated E coli total RNA (
FIG. 9 ) The diminishing amounts of 23S and 16S RNA as cycles are repeated can be seen by comparing the lanes from left to right The first lane (labeled U) is untreated The next lanes are the amount of 23S and 16S RNA after 1, 5, 10, 20 and 30 cycles, respectively - The gel was transferred to a nylon membrane (Northern transfer) and the quantity of a particular mRNA transcript, from the E coli lpp gene, was deduced by hybridization to a digoxigenin-labeled lpp probe (Roche P/N 1636090), followed by detection with anti-DIG-alkaline phosphatase and NBT/BCIP (Roche P/N 1175041) (10) It is apparent that the bands corresponding to the 23S and 16S rRNAs are reduced much more with successive cycles than the band corresponding to the lpp transcript, an indication of specific reduction of rRNA and relative enrichment of mRNA The enrichment demonstrates that the input exogenous DNA bait is “recycled,” that is, each complementary rDNA molecule can direct the destruction of multiple rRNA molecules
- 4. mRNA Labeling (Thiol Kinase—Dependent Method)
- Fragmentation and labeling reactions were done in PCR tubes in a thermocycler A maximum of 20 μg of RNA was used for the fragmentation step To avoid incomplete fragmentation, multiple tubes were used if the yield of RNA from the enrichment step was greater than 20 μg The fragmentation reaction mixture comprised 10 μl of 10× NEBuffer for T4 Polynucleotide Kinase (New England Biolabs, P/N 201 L), up to 20 μg of RNA and deionized water (DI H2O) up to 88 μl total volume The reaction was incubated at 95° C. for 30 minutes and then cooled to 4° C.
- The 5′-thiolation reaction mixture comprised, 88 μl fragmented RNA, 2 0
μl 5 mM γ-S-ATP (Roche P/N 1162306) and 10 μl of 10 U/μl T4 Polynucleotide Kinase Kinase (New England Biolabs, P/N 201L) The reaction was incubated at 37° C. for 50 minutes and then inactivated at 65° C. for 10 minutes and finally cooled to 4° C. - Excess γ-S-ATP was removed by ethanol precipitation the samples were removed from the PCR tube(s) and combined in a
sterile microcentrifuge tube 1/10 volume of 3 M sodium acetate,pH 5 2 (Sigma Chemical, P/N S 7899) and 2 5 volumes of ethanol were added and left on ice for 15 minutes The tubes were then spun at 14,000 rpm at 4° C. for 30 minutes to pellet the RNA The pellet a as then resuspended in 90 μl of DI H2O - The RNA was then labeled with
biotin 6 0 μl of 500 mM MOPS,pH 7 5 (Sigma Chemical P/N M3183) was added to 90 μl of fragmented thiolated RNA with 4 0 μl of 50 mM Polyethylene Oxide (PEO)-Iodoacetyl-Biotin (Pierce Chemical, P/N 21334ZZ) The reaction was incubated at 37° C. for one hour and then cooled to 4° C. Unincorporated label was removed using the QIAGEN RNA/DNA Mini Column Kit (QIAGEN P/N 14123) Optionally, for increased RNA recovery, one RNA/DNA column and 5 4 mL Buffer QRV2 per 10 0 μg RNA was used Additionally, 50 μg of glycogen (Boehringer Mannheim, PIN 901393) per tube was optionally used to act as a carrier and aid in the visualization of the pellet - The pellet was then dissolved in 20 to 30 μL of Molecular Biology Grade water
- The enriched mRNA preparation was quantified by 260 nm absorbance Typical yields for the procedure were 2 to 4 μg of RNA The labeled RNA was stored at −20° C. until ready for use
- The efficiency of the labeling was assessed using a gel shift assay In this assay, the addition of biotin residues is monitored by comparing fragments which are pre-incubated with avidin prior to electrophoresis with fragments where no avidin has been added Biotin-containing residues are retarded or shifted “upwards” on the gel during the electrophoresis due to avidin binding The nucleic acids are then detected by staining An absence of a shift pattern is an indication of no or poor biotin labeling
- A NeutrAvidin solution of 2 mg/mL or higher was prepared (Pierce Chemical, P/N 31000ZZ) 50 mM Tris,
pH 7 0 (Ambion, P/N 9850G) is used to dilute the NeutrAvidin solution A TBE gel (4%-20%) (Invitrogen, P/N EC62252) was placed into a gel holder and load system with 1×TBE Buffer For each sample tested, two 150 to 200 ng aliquots of fragmented and biotinylated sample were removed 5 μL of 2 mg/mL NetrAvidin were added to each tube tested The mixture was allowed to sit at room temperature for 5 minutes Loading dye (Amresco, P/N E-274) was added to aIX dye concentration 10 bp and 100 bp DNA ladders (Gibco BRL P/N 10821-015 and 15628-019) were prepared and both samples and ladders were loaded on the gel The gel was run at 150 volts for approximately 1 hour While the gel was running, SYBR Green I or Gold (Molecular Probes P/N S-7563 or S-11494) was prepared for staining After completion of the gel run, the gel was stained for 10 minutes - After staining, the gel was placed in a UV light box to produce an image
FIG. 11 is a gel image of the labeled E coli fragmentsLane 1 is the 10 bp DNA ladder,lane 2 is fragmented and labeled total E coli RNA,lane 3 is fragmented and labeled total E coli RNA with avidin,lane 4 is fragmented and labeled enriched E coli mRNA,lane 5 is fragmented and labeled enriched E coli mRNA with avidin andlane 6 is 100 bp 3 and 5 show a clear upward shift as compared toDNA ladder Lanes 2 and 4 respectively, thus indicating successful biotin labeling of the RNA fragmentslanes - 5. mRNA Labeling (Thiol Kinase—Independent Method)
- mRNA enrichment was performed as described Example 1 above To label the enriched RNA directly with biotin with the thiol kinase (tk)-independent method, the following were combined in a final volume of 100 μL 10 μg of RNA, 30 mM MOPS,
pH 7 5, 20 mM iodoacetyl-PEO-biotin (Pierce Chemicals), 10 mM magnesium chloride The components were placed in a PCR tube, heated to 95° C. for 30 mm, then 25° C. for 30 nun and cooled to 4° C. in a PCR instrument as above Unreactive label was removed from the labeled RNA fragments on RNA/DNA mini-columns (Qiagen) The labeled RNA solution was mixed with 5 4 mL of QRV2 buffer (Qiagen) before loading on a single column Labeled RNA fragments were precipitated after the addition of 25 μg of carrier glycogen - To compare the efficiency of labeling, gel shift assays were performed as described in example 4 above
FIG. 12 is thegel image Lane 1 contains a 10 bp DNA ladder,lane 2 contains RNA labeled by the tk-independent method without avidin,lane 3 contains RNA labeled by the tk-independent method with avidin,lane 4 contains RNA labeled by the tk-independent method without avidin,lane 5 contains RNA labeled by the tk-independent method with avidin,lane 6 contains avidin alone as a control,lane 7 contains RNA labeled by the tk-dependent method without avidin, and lanes 8-13 contain RNA labeled with the tk-dependent method with 3, 5 and 8-13 all show a clear shift as compared to their respective controls clearly indicating that the RNA fragments have been labeled Comparison by eye demonstrates that the tk-independent method labels with less intensity than the tk-dependent method A lower labeling efficiency may be advantageous in samples for which the signal is very strong and data accuracy is inhibited by saturation of the signalavidin Lanes - 6. Comparison of E. coli Expression Using Both the TK-Dependent and TK-Independent Labeling Methods.
- To further compare the two labeling methods, the expression patterns of RNA from E coli strains grown in minimal media and enriched media were analyzed Cells were grown in either minimal media or enriched media conditions, RNA was isolated from each population, and the RNA was then labeled using either the tk-dependent or tk-independent method Expression data was analyzed by hybridizing the labeled RNA to microarrays designed to interrogate E colt The microarray data was then compared to traditional Northern blot and Slot blot data from similarly treated populations of cells
- E coli strain MG1655 was obtained from the E coli Genetic Stock Center located in Yale University Luna Broth (Teknova) was used for the enriched medium Cells were grown at 37° C. on a gyrotory shaker set at 270-280 rpm Cells were harvested at mid-log phase (OD 0 8-0 9 at 420 nm) Total RNA was isolated using the MasterPure™ RNA Purification Kit (Epicentre)
- RNA spike controls were prepared by in vitro transcription of linearized plasmid templates After purification, the RNA was quantified by its absorbance at 260 nm Control RNA spikes (2 femtomoles each) were added to the E coli RNA prior to labeling
- The RNA was labeled using the tk-dependent and tk-independent methods described in Examples 4 and 5, respectively In both cases unreactive label was removed from the labeled RNA fragments on RNA/DNA mini-columns (Qiagen) The labeled RNA solution was mixed with 5 4 in L of QRV2 buffer (Qiagen) before loading on a single column Labeled RNA fragments are precipitated after the addition of 25 μg of carrier glycogen
- Both samples were then hybridized to E coli Genome Array (Affymetrix, Inc, Santa Clara, Calif. P/N 510051) The hybridized arrays were then washed, stained and scanned using standard methods as described in the E coli Genome Array User's Manual (Affymetrix, Inc, Santa Clara, Calif.)
- Duplicate assays were run for each method
FIG. 13 is an array image from the experiment Panel A is the array image of the hybridized E coli RNA labeled with the tk-dependent method Panel B is an array image of the hybridized E coli RNA labeled with the tk-independent method Signal shows up as a bright spot against a dark background A comparison of the two images by eye shows that the tk-independent method showed a lower level of signal intensity - Data was analyzed using the GeneChip® Software from Affymetrix, Inc Calls, Average Difference values and Fold Changes were calculated with GeneChip® Software through the Expression Analysis Window Default settings were used for the analysis The number of sequences called present and the median average difference was calculated for each of the labeling techniques and the results are show in Table 1, below
TABLE 1 Calls in the RNA coding region non thiol thiol kinase kinase method method Exp A Exp B Exp 1 Exp 2Total 4216 4216 4216 4216 #'s Present 1938 2011 1928 1777 #'s Absent 2188 2130 2242 2378 % Absent 51 9 50 5 53 2 56 4 Avg Med 2111 1806 926 815 Int - As seen in Table 1, row 1 (labeled “Total”) a total of 4,216 probe sets representing open reading frames were analyzed In simplified terms, if a hybridization signal above a certain threshold is detected, the probe set is called present Row 2 (labeled “#'s Present”) shows the number of probe sets representing open reading frames on the array that were called present If the hybridization signal is below the threshold, the gene is called absent Row 3 (labeled “# s Absent”) shows the number of genes called absent For the purposes of this application, “Average Median Intensity” (row 4) is used to quantitate signal Intensity readings across the entire array
- Higher signal intensity is observed for the tk-dependent method (
row 4, experiments A and B) than with the tk-independent method (row 4,experiments 1 and 2) Comparison of the results inrow 4 shows that the tk-dependent method exhibits about half the intensity as the tk-dependent method Importantly, the decreased signal intensity does not translate into a significant loss in the number of genes called present in the two methods (comparerow 2, experiments A and B withrow 2,experiments 1 and 2) This result indicates that the tk-independent method labels at about half the intensity of the tk-dependent method Under some conditions, lower signal intensity may be desirable to prevent loss of accuracy due to signal saturation - Correlation graphs were prepared using average difference values for all 4,216 probe sets representing open reading frames For the purposes of this application, average difference is used to demonstrate the signal intensity between probe pairs on the same array Both techniques create reproducible results as seen in the intra-assay correlation graphs (
FIGS. 14 and 15 ) -
FIG. 14 shows the average difference correlation comparing the results of two different tk-independent experiments to each other The X axis indicates the average difference results from experiment A and the Y axis indicates the average difference results from experiment B A perfect correlation, i e perfect reproducibility between different experiments would be indicated by an r2 value of 1 The r2 value in this case is 0 991 indicating a good correlation, or in other words, a high degree of reproducibility in signal intensity for the tk-dependent method -
FIG. 15 shows the average difference correlation comparing the results of two different tk-dependent experiments to each other The X axis indicates the average difference results fromexperiment 1 and the Y axis indicates the average difference results fromexperiment 2 Again, a perfect correlation would be indicated by an r2 value of 1 The r2 value in this case is 0 9898 indicating a good correlation, or in other words, a high degree of reproducibility in signal intensity for the tk-independent method - The two different methods are correlated as seen in
FIG. 16 InFIG. 16 , the X axis represents the tk-dependent experiments (average of exp A+exp B) and the Y axis represents the tk-independent experiments (average ofexp 1+exp 2) The slope is 5075, again indicating that the label in the tk-independent method is about half as intense as the tk-dependent method Note that the correlation coefficient is 0 951 indicating a high degree of correlation between the two techniques The major discrepancies are seen at the high intensity levels where the tk-dependent method may have reached saturation - The presently claimed invention provides greatly improved methods for enriching and labeling nucleic acids It is to be understood that the above description is intended to be illustrative and not restrictive Many variations of the invention will be apparent to those of skill in the art upon reviewing the above description By way of example, the invention has been described primarily with reference to the enrichment and labeling of mRNA, but it will be readily recognized by those of skill in the art that the invention may be employed to enrich and label all types of nucleic acids including other forms of naturally and non-naturally occurring polynucleotides such as RNAs and DNAs Furthermore, it will be understood by those of skill in the art that the enriched and/or labeled nucleotides of the presently claimed invention may be utilized in a wide variety of biological analyses in no way limited to those methods disclosed in the present invention Therefore, it is to be understood that the scope of the invention is not to be limited except as otherwise set forth in the claims
Claims (2)
1. A method of preparing a nucleic acid comprising
increasing the relative percentage of a population of nucleic acids of interest within a mixed population of nucleic acids, wherein said population of interest comprises a plurality of nucleic acid sequences, comprising
(a) contacting a nucleic acid sample with a bait molecule, wherein said bait molecule is capable of complexing specifically to a target sequence, but not to said sequences in said population of interest, under such conditions as to allow for the formation of a bait target complex,
(b) removing said bait target complex from said mixed population thereby resulting in an increase in the relative percentage of said population of interest,
fragmenting the sequences from said population of interest to produce fragments, and
adding a signal moiety to the fragments
2-69. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/443,879 US20070009939A1 (en) | 1999-10-30 | 2006-05-30 | Preparation of nucleic acid samples |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16273999P | 1999-10-30 | 1999-10-30 | |
| US19134500P | 2000-03-22 | 2000-03-22 | |
| US09/689,937 US6613516B1 (en) | 1999-10-30 | 2000-10-11 | Preparation of nucleic acid samples |
| US10/613,365 US20050059009A1 (en) | 1999-10-30 | 2003-07-03 | Preparation of nucleic acid samples |
| US11/443,879 US20070009939A1 (en) | 1999-10-30 | 2006-05-30 | Preparation of nucleic acid samples |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/613,365 Continuation US20050059009A1 (en) | 1999-10-30 | 2003-07-03 | Preparation of nucleic acid samples |
| PCT/EP2006/009811 A-371-Of-International WO2008043380A1 (en) | 2006-10-11 | 2006-10-11 | Device and method for installing femoral prosthetic knee joint |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/509,724 Division US9492186B2 (en) | 2006-10-11 | 2014-10-08 | Device and method for installing femoral prosthetic knee joint |
| US15/296,408 Division US10517615B2 (en) | 2006-10-11 | 2016-10-18 | Device and method for installing femoral prosthetic knee joint |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070009939A1 true US20070009939A1 (en) | 2007-01-11 |
Family
ID=26859025
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/689,937 Expired - Lifetime US6613516B1 (en) | 1999-10-30 | 2000-10-11 | Preparation of nucleic acid samples |
| US10/613,365 Abandoned US20050059009A1 (en) | 1999-10-30 | 2003-07-03 | Preparation of nucleic acid samples |
| US11/443,879 Abandoned US20070009939A1 (en) | 1999-10-30 | 2006-05-30 | Preparation of nucleic acid samples |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/689,937 Expired - Lifetime US6613516B1 (en) | 1999-10-30 | 2000-10-11 | Preparation of nucleic acid samples |
| US10/613,365 Abandoned US20050059009A1 (en) | 1999-10-30 | 2003-07-03 | Preparation of nucleic acid samples |
Country Status (3)
| Country | Link |
|---|---|
| US (3) | US6613516B1 (en) |
| AU (1) | AU1444201A (en) |
| WO (1) | WO2001032672A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9428794B2 (en) * | 2012-09-13 | 2016-08-30 | Takara Bio Usa, Inc. | Methods of depleting a target nucleic acid in a sample and kits for practicing the same |
Families Citing this family (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1276900A2 (en) * | 2000-01-11 | 2003-01-22 | Maxygen, Inc. | Integrated systems and methods for diversity generation and screening |
| JP3479684B2 (en) | 2000-09-21 | 2003-12-15 | 独立行政法人食品総合研究所 | Simple and rapid method for sequencing the mitochondrial 21S ribosomal RNA gene of yeast belonging to Saccharomyces cerevisiae |
| US6391592B1 (en) * | 2000-12-14 | 2002-05-21 | Affymetrix, Inc. | Blocker-aided target amplification of nucleic acids |
| US20030077616A1 (en) * | 2001-04-19 | 2003-04-24 | Ciphergen Biosystems, Inc. | Biomolecule characterization using mass spectrometry and affinity tags |
| US6989235B2 (en) * | 2002-02-13 | 2006-01-24 | Motorola, Inc. | Single molecule detection of bio-agents using the F1-ATPase biomolecular motor |
| US20050003369A1 (en) * | 2002-10-10 | 2005-01-06 | Affymetrix, Inc. | Method for depleting specific nucleic acids from a mixture |
| US20060183132A1 (en) * | 2005-02-14 | 2006-08-17 | Perlegen Sciences, Inc. | Selection probe amplification |
| US20090124514A1 (en) * | 2003-02-26 | 2009-05-14 | Perlegen Sciences, Inc. | Selection probe amplification |
| CA2528109A1 (en) * | 2003-06-06 | 2005-01-13 | Gene Logic, Inc. | Methods for enhancing gene expression analysis |
| US20050221310A1 (en) * | 2003-06-06 | 2005-10-06 | Gene Ogic, Inc. | Methods for enhancing gene expression analysis |
| US20070122811A1 (en) * | 2003-09-30 | 2007-05-31 | Philip Buzby | Compositions and processes for genotyping single nucleotide polymorphisms |
| US20050227251A1 (en) | 2003-10-23 | 2005-10-13 | Robert Darnell | Method of purifying RNA binding protein-RNA complexes |
| US20090264635A1 (en) | 2005-03-25 | 2009-10-22 | Applera Corporation | Methods and compositions for depleting abundant rna transcripts |
| US20070020654A1 (en) * | 2005-05-19 | 2007-01-25 | Affymetrix, Inc. | Methods and kits for preparing nucleic acid samples |
| US8076064B2 (en) * | 2005-07-09 | 2011-12-13 | Agilent Technologies, Inc. | Method of treatment of RNA sample |
| US7718365B2 (en) * | 2005-07-09 | 2010-05-18 | Agilent Technologies, Inc. | Microarray analysis of RNA |
| WO2007019444A2 (en) * | 2005-08-05 | 2007-02-15 | Euclid Diagnostics Llc | Subtractive separation and amplification of non-ribosomal transcribed rna (nrrna) |
| DE602006018352D1 (en) | 2005-12-06 | 2010-12-30 | Ambion Inc | RETRANSFER PRIMER AND METHOD FOR THEIR DESIGN |
| US20080057499A1 (en) * | 2006-02-06 | 2008-03-06 | Affymetrix, Inc. | Methods for high specificity whole genome amplification and hybridization |
| US20080102454A1 (en) * | 2006-10-31 | 2008-05-01 | Hui Wang | Reducing size of analytes in RNA sample |
| US7645578B2 (en) * | 2006-10-31 | 2010-01-12 | Agilent Technologies, Inc. | Cleavage of RNA at redundant sites |
| US12129514B2 (en) | 2009-04-30 | 2024-10-29 | Molecular Loop Biosolutions, Llc | Methods and compositions for evaluating genetic markers |
| WO2010126614A2 (en) | 2009-04-30 | 2010-11-04 | Good Start Genetics, Inc. | Methods and compositions for evaluating genetic markers |
| DK2816111T3 (en) | 2009-08-14 | 2016-06-06 | Epicentre Tech Corp | Methods, compositions, and kits for the generation of rRNA-depleted samples or isolation of rRNA from samples |
| US9005891B2 (en) | 2009-11-10 | 2015-04-14 | Genomic Health, Inc. | Methods for depleting RNA from nucleic acid samples |
| ITRM20100293A1 (en) * | 2010-05-31 | 2011-12-01 | Consiglio Nazionale Ricerche | METHOD FOR THE PREPARATION AND AMPLIFICATION OF REPRESENTATIVE LIBRARIES OF CDNA FOR MAXIMUM SEQUENCING, THEIR USE, KITS AND CARTRIDGES FOR AUTOMATION KITS |
| US9163281B2 (en) | 2010-12-23 | 2015-10-20 | Good Start Genetics, Inc. | Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction |
| WO2013058907A1 (en) | 2011-10-17 | 2013-04-25 | Good Start Genetics, Inc. | Analysis methods |
| US8209130B1 (en) | 2012-04-04 | 2012-06-26 | Good Start Genetics, Inc. | Sequence assembly |
| US8812422B2 (en) | 2012-04-09 | 2014-08-19 | Good Start Genetics, Inc. | Variant database |
| US10227635B2 (en) | 2012-04-16 | 2019-03-12 | Molecular Loop Biosolutions, Llc | Capture reactions |
| JP6324962B2 (en) * | 2012-09-18 | 2018-05-23 | キアゲン ゲーエムベーハー | Methods and kits for preparing target RNA depleted compositions |
| EP2971159B1 (en) | 2013-03-14 | 2019-05-08 | Molecular Loop Biosolutions, LLC | Methods for analyzing nucleic acids |
| EP3058096A1 (en) | 2013-10-18 | 2016-08-24 | Good Start Genetics, Inc. | Methods for assessing a genomic region of a subject |
| US10851414B2 (en) | 2013-10-18 | 2020-12-01 | Good Start Genetics, Inc. | Methods for determining carrier status |
| WO2015175530A1 (en) | 2014-05-12 | 2015-11-19 | Gore Athurva | Methods for detecting aneuploidy |
| WO2016025818A1 (en) | 2014-08-15 | 2016-02-18 | Good Start Genetics, Inc. | Systems and methods for genetic analysis |
| WO2016040446A1 (en) | 2014-09-10 | 2016-03-17 | Good Start Genetics, Inc. | Methods for selectively suppressing non-target sequences |
| US10429399B2 (en) | 2014-09-24 | 2019-10-01 | Good Start Genetics, Inc. | Process control for increased robustness of genetic assays |
| EP4095261B1 (en) | 2015-01-06 | 2025-05-28 | Molecular Loop Biosciences, Inc. | Screening for structural variants |
| US10472666B2 (en) * | 2016-02-15 | 2019-11-12 | Roche Sequencing Solutions, Inc. | System and method for targeted depletion of nucleic acids |
| CN113122533A (en) * | 2020-01-16 | 2021-07-16 | 深圳华大基因股份有限公司 | Method for removing ribosome RNA in total RNA of animals |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6054266A (en) * | 1987-12-21 | 2000-04-25 | Applied Biosystems, Inc. | Nucleic acid detection with separation |
| US6268133B1 (en) * | 1997-06-25 | 2001-07-31 | Invitrogen Corporation | Method for isolating and recovering target DNA or RNA molecules having a desired nucleotide sequence |
| US6344316B1 (en) * | 1996-01-23 | 2002-02-05 | Affymetrix, Inc. | Nucleic acid analysis techniques |
Family Cites Families (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4711955A (en) | 1981-04-17 | 1987-12-08 | Yale University | Modified nucleotides and methods of preparing and using same |
| CA1219824A (en) | 1981-04-17 | 1987-03-31 | David C. Ward | Modified nucleotides and methods of preparing and using same |
| CA1223831A (en) | 1982-06-23 | 1987-07-07 | Dean Engelhardt | Modified nucleotides, methods of preparing and utilizing and compositions containing the same |
| US5241060A (en) | 1982-06-23 | 1993-08-31 | Enzo Diagnostics, Inc. | Base moiety-labeled detectable nucleatide |
| US5723597A (en) | 1983-01-10 | 1998-03-03 | Gen-Probe Incorporated | Ribosomal nucleic acid probes for detecting organisms or groups of organisms |
| US5641632A (en) | 1983-01-10 | 1997-06-24 | Gen-Probe Incorporated | Method for preparing rRNA for hybridization with a probe |
| IL70765A (en) | 1983-01-27 | 1988-07-31 | Enzo Biochem Inc | Substrates containing non-radioactive chemically-labeled polynucleotides and methods using them |
| US4994373A (en) | 1983-01-27 | 1991-02-19 | Enzo Biochem, Inc. | Method and structures employing chemically-labelled polynucleotide probes |
| CA1254525A (en) | 1983-04-13 | 1989-05-23 | Christine L. Brakel | Kit for terminally chemically labeling dna |
| CA1228811A (en) | 1983-05-05 | 1987-11-03 | Robert G. Pergolizzi | Assay method utilizing polynucleotide sequences |
| US4672040A (en) | 1983-05-12 | 1987-06-09 | Advanced Magnetics, Inc. | Magnetic particles for use in separations |
| US5013831A (en) | 1984-01-30 | 1991-05-07 | Enzo Biochem, Inc. | Detectable molecules, method of preparation and use |
| US4943523A (en) | 1984-01-30 | 1990-07-24 | Enzo Biochem, Inc. | Detectable molecules, method of preparation and use |
| US4952685A (en) | 1984-01-30 | 1990-08-28 | Enzo Biochem, Inc. | Detectable molecules, method of preparation and use |
| US5002885A (en) | 1984-01-30 | 1991-03-26 | Enzo Biochem, Inc. | Detectable molecules, method preparation and use |
| US5175269A (en) | 1984-01-30 | 1992-12-29 | Enzo Diagnostics, Inc. | Compound and detectable molecules having an oligo- or polynucleotide with modifiable reactive group |
| US4572040A (en) * | 1984-05-23 | 1986-02-25 | Metz Delano L | Brake adjustment tool |
| US5447848A (en) | 1986-01-22 | 1995-09-05 | Amoco Corporation | Detection of campylobacter with nucleic acid probes |
| US5082830A (en) | 1988-02-26 | 1992-01-21 | Enzo Biochem, Inc. | End labeled nucleotide probe |
| US5759820A (en) | 1988-11-21 | 1998-06-02 | Dynal As | Process for producing cDNA |
| US5789163A (en) * | 1990-06-11 | 1998-08-04 | Nexstar Pharmaceuticals, Inc. | Enzyme linked oligonucleotide assays (ELONAS) |
| ATE205542T1 (en) | 1992-03-04 | 2001-09-15 | Univ California | COMPARATIVE GENOME HYBRIDIZATION |
| US5500356A (en) * | 1993-08-10 | 1996-03-19 | Life Technologies, Inc. | Method of nucleic acid sequence selection |
| US5643761A (en) | 1993-10-27 | 1997-07-01 | The Trustees Of Columbia University In The City Of New York | Method for generating a subtracted cDNA library and uses of the generated library |
| US5851806A (en) * | 1994-06-10 | 1998-12-22 | Genvec, Inc. | Complementary adenoviral systems and cell lines |
| US5688670A (en) * | 1994-09-01 | 1997-11-18 | The General Hospital Corporation | Self-modifying RNA molecules and methods of making |
| US5807718A (en) * | 1994-12-02 | 1998-09-15 | The Scripps Research Institute | Enzymatic DNA molecules |
| US5830645A (en) | 1994-12-09 | 1998-11-03 | The Regents Of The University Of California | Comparative fluorescence hybridization to nucleic acid arrays |
| FR2742279B1 (en) * | 1995-12-06 | 1998-01-09 | Thomson Multimedia Sa | DEVICE FOR DECIMATING SEQUENCES OF DIGITAL DATA |
| US5804382A (en) | 1996-05-10 | 1998-09-08 | Beth Israel Deaconess Medical Center, Inc. | Methods for identifying differentially expressed genes and differences between genomic nucleic acid sequences |
| US5851805A (en) | 1997-01-16 | 1998-12-22 | Board Of Trustees Operating Michigan State University | Method for producing DNA from mRNA |
| US5758820A (en) * | 1997-01-17 | 1998-06-02 | Amtrol Inc. | Heat recovery system |
| US6458566B2 (en) * | 1998-10-23 | 2002-10-01 | Albert Einstein College Of Medicine Of Yeshiva University | Method of identification of differentially expressed MRNA |
| US6489114B2 (en) * | 1999-12-17 | 2002-12-03 | Bio Merieux | Process for labeling a ribonucleic acid, and labeled RNA fragments which are obtained thereby |
| US6723597B2 (en) * | 2002-07-09 | 2004-04-20 | Micron Technology, Inc. | Method of using high-k dielectric materials to reduce soft errors in SRAM memory cells, and a device comprising same |
-
2000
- 2000-10-11 US US09/689,937 patent/US6613516B1/en not_active Expired - Lifetime
- 2000-10-30 AU AU14442/01A patent/AU1444201A/en not_active Abandoned
- 2000-10-30 WO PCT/US2000/029865 patent/WO2001032672A1/en not_active Ceased
-
2003
- 2003-07-03 US US10/613,365 patent/US20050059009A1/en not_active Abandoned
-
2006
- 2006-05-30 US US11/443,879 patent/US20070009939A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6054266A (en) * | 1987-12-21 | 2000-04-25 | Applied Biosystems, Inc. | Nucleic acid detection with separation |
| US6344316B1 (en) * | 1996-01-23 | 2002-02-05 | Affymetrix, Inc. | Nucleic acid analysis techniques |
| US6268133B1 (en) * | 1997-06-25 | 2001-07-31 | Invitrogen Corporation | Method for isolating and recovering target DNA or RNA molecules having a desired nucleotide sequence |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9428794B2 (en) * | 2012-09-13 | 2016-08-30 | Takara Bio Usa, Inc. | Methods of depleting a target nucleic acid in a sample and kits for practicing the same |
| US10421992B2 (en) * | 2012-09-13 | 2019-09-24 | Takara Bio Usa, Inc. | Methods of depleting a target nucleic acid in a sample and kits for practicing the same |
| US11149303B2 (en) * | 2012-09-13 | 2021-10-19 | Takara Bio Usa, Inc. | Methods of depleting a target nucleic acid in a sample and kits for practicing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| AU1444201A (en) | 2001-05-14 |
| US20050059009A1 (en) | 2005-03-17 |
| US6613516B1 (en) | 2003-09-02 |
| WO2001032672A1 (en) | 2001-05-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6613516B1 (en) | Preparation of nucleic acid samples | |
| JP4551216B2 (en) | Methods for fragmenting, labeling and immobilizing nucleic acids | |
| US7407757B2 (en) | Genetic analysis by sequence-specific sorting | |
| US8143001B2 (en) | Methods for analysis of nucleic acid methylation status and methods for fragmentation, labeling and immobilization of nucleic acids | |
| EP2719775B1 (en) | Multiplexed genomic gain and loss assays | |
| US6072043A (en) | Optimally fluorescent oligonucleotides | |
| KR102592367B1 (en) | Systems and methods for clonal replication and amplification of nucleic acid molecules for genomic and therapeutic applications | |
| US20090275029A1 (en) | Systems and Methods to Quantify and Amplify Both Signaling and Probes for CDNA Chips and Gene Expression Microarrays | |
| JP2002518060A (en) | Nucleotide detection method | |
| GB2332516A (en) | Amplifying target nucleic acid sequences | |
| US20020127575A1 (en) | Partially double-stranded nucleic acids, methods of making, and use thereof | |
| JP2008259453A (en) | Nucleic acid detection method | |
| US6596489B2 (en) | Methods and compositions for analyzing nucleotide sequence mismatches using RNase H | |
| EP1134292B1 (en) | Oligonucleotides for detection of 'Vibrio parahaemolyticus' and detection method for 'Vibrio parahaemolyticus' using the same oligonucleotides | |
| US20170362641A1 (en) | Dual polarity analysis of nucleic acids | |
| WO2020193769A1 (en) | A high throughput sequencing method and kit | |
| WO2001066802A1 (en) | SYSTEMS AND METHODS TO QUANTIFY AND AMPLIFY BOTH SIGNALING AND PROBES FOR cDNA CHIPS AND GENES EXPRESSION MICROARRAYS | |
| US20080050728A1 (en) | MITIGATION OF Cot-1 DNA DISTORTION IN NUCLEIC ACID HYBRIDIZATION | |
| US8673570B2 (en) | System and methods to quantify and amplify both signaling and probes for cDNA chips and gene expression microarrays | |
| EP1411117B1 (en) | NASBA based method for detecting mycobacterium tuberculosis | |
| WO2006104761A2 (en) | Unique sequence hybridization probes (usp) | |
| CN112955552B (en) | Non-specific binding inhibitor for nucleic acid, reagent for hybridization, and method for hybridization of nucleic acid | |
| JP2001258569A (en) | Oligonucleotides for detection of Vibrio parahaemolyticus | |
| KR20180053679A (en) | A multi-valued probe with a single nucleotide resolution |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |