US20060292953A1 - Flame-resistant fiber blend, yarn, and fabric, and method for making same - Google Patents
Flame-resistant fiber blend, yarn, and fabric, and method for making same Download PDFInfo
- Publication number
- US20060292953A1 US20060292953A1 US11/159,379 US15937905A US2006292953A1 US 20060292953 A1 US20060292953 A1 US 20060292953A1 US 15937905 A US15937905 A US 15937905A US 2006292953 A1 US2006292953 A1 US 2006292953A1
- Authority
- US
- United States
- Prior art keywords
- fibers
- fabric
- blend
- yarn
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 139
- 239000000835 fiber Substances 0.000 title claims abstract description 109
- 239000000203 mixture Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims description 21
- -1 yarn Substances 0.000 title description 2
- 229920002821 Modacrylic Polymers 0.000 claims abstract description 39
- 229920000742 Cotton Polymers 0.000 claims abstract description 34
- 229920001778 nylon Polymers 0.000 claims abstract description 27
- 239000004760 aramid Substances 0.000 claims abstract description 23
- 229920003235 aromatic polyamide Polymers 0.000 claims abstract description 23
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 14
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229920002972 Acrylic fiber Polymers 0.000 claims abstract description 6
- 239000000975 dye Substances 0.000 claims description 22
- 238000004043 dyeing Methods 0.000 claims description 13
- 239000000981 basic dye Substances 0.000 claims description 7
- 239000000982 direct dye Substances 0.000 claims description 7
- 230000035699 permeability Effects 0.000 claims description 7
- 239000000985 reactive dye Substances 0.000 claims description 7
- 239000000980 acid dye Substances 0.000 claims description 6
- 239000000986 disperse dye Substances 0.000 claims description 6
- 238000003490 calendering Methods 0.000 claims description 4
- 239000000834 fixative Substances 0.000 claims description 3
- 238000010042 air jet spinning Methods 0.000 claims description 2
- 238000009940 knitting Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 238000007378 ring spinning Methods 0.000 claims description 2
- 238000009941 weaving Methods 0.000 claims description 2
- 238000009987 spinning Methods 0.000 claims 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 18
- 238000004900 laundering Methods 0.000 description 11
- 239000004677 Nylon Substances 0.000 description 7
- 238000007655 standard test method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004753 textile Substances 0.000 description 5
- 229920006231 aramid fiber Polymers 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000009970 fire resistant effect Effects 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010016 exhaust dyeing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical class C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 235000007575 Calluna vulgaris Nutrition 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007706 flame test Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- 238000007383 open-end spinning Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000000984 vat dye Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
- D02G3/047—Blended or other yarns or threads containing components made from different materials including aramid fibres
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D31/00—Materials specially adapted for outerwear
- A41D31/04—Materials specially adapted for outerwear characterised by special function or use
- A41D31/08—Heat resistant; Fire retardant
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/443—Heat-resistant, fireproof or flame-retardant yarns or threads
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/02—Cotton
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/10—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
- D10B2321/101—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide modacrylic
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
- D10B2331/021—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/30—Woven fabric [i.e., woven strand or strip material]
- Y10T442/3065—Including strand which is of specific structural definition
- Y10T442/313—Strand material formed of individual filaments having different chemical compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/30—Woven fabric [i.e., woven strand or strip material]
- Y10T442/3976—Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]
- Y10T442/3984—Strand is other than glass and is heat or fire resistant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/40—Knit fabric [i.e., knit strand or strip material]
- Y10T442/425—Including strand which is of specific structural definition
- Y10T442/438—Strand material formed of individual filaments having different chemical compositions
Definitions
- the present invention relates to flame-resistant fabrics woven or knitted from yarns that are made from fiber blends.
- Flame-resistant fabrics are fabrics that, once ignited, tend not to sustain a flame when the source of ignition is removed.
- a great deal of investigation and research has been directed toward the development and improvement of flame-resistant fabrics for use in various products such as bedding, clothing, and others. Flame-resistant clothing is often worn by workers involved in activities such as industrial manufacturing and processing, fire-fighting, electrical utility work, and other endeavors that entail a significant risk of being exposed to open flame and/or electrical arcs.
- Flame-resistant fabrics include both fabrics that are treated to be flame-resistant as well as flame-resistant fabrics made from inherently flame-resistant fibers.
- the former types of fabrics are not themselves flame-resistant, but are made flame-resistant by applying to the fabric a chemical composition that renders the fabric resistant to flame.
- These types of fabrics are susceptible to losing their flame-resistance when laundered repeatedly because the flame-resistant composition tends to wash out.
- inherently flame-resistant fabrics do not suffer from this drawback because they are made from fibers that are themselves flame-resistant.
- FR fibers inherently flame-resistant fibers
- modacrylic fibers e.g., PROTEX® modacrylic fibers from Kaneka Corporation of Osaka, Japan
- aramid fibers e.g., NOMEX® meta-aramid fibers and KEVLAR® para-aramid fibers, both from E. I. Du Pont de Nemours and Company of Wilmington, Del.
- FR rayon fibers oxidized polyacrylonitrile fibers, and others. It is common to blend one or more types of FR staple fibers with one or more other types of non-FR staple fibers to produce a fiber blend from which yarn is spun, the yarn then being knitted or woven into fabrics for various applications.
- the FR fibers render the blend flame-resistant even though some fibers in the blend may themselves be non-FR fibers, because when the FR fibers combust they release non-combustible gases that tend to displace oxygen and thereby extinguish any flame.
- United States Patent Application Publication US 2005/0025963 to Zhu discloses an intimate blend of staple fibers having 10 to 75 parts by weight of at least one aramid fiber, 15 to 85 parts by weight of at least one modacrylic fiber, and 5 to 30 parts by weight of at least one polyamide fiber.
- the blend includes at least about 60 percent FR fibers (modacrylic and/or aramid) and up to 40 percent synthetic or natural non-FR fibers such as cotton or wool.
- U.S. Pat. No. 6,787,228 to Campbell et al. discloses a yarn formed of a blend of fibers including at least about 70 percent modacrylic fibers combined with at least about 3 percent high-performance, high-energy-absorptive fibers such as aramid.
- the fabric should be durable under repeated industrial launderings and should have good abrasion-resistance. Furthermore, the fabric should be readily dyeable to dark, solid shades of color, and should be comfortable to wear.
- the present invention provides a fiber blend, a yarn made from the fiber blend, and a fabric made from the yarn, wherein the fiber blend comprises: (a) about 40 wt.% to about 65 wt.% modacrylic fibers containing antimony, or FR acrylic fibers; (b) about 10 wt.% to about 50 wt.% cotton fibers or FR cotton fibers; (c) up to about 25 wt.% nylon fibers; and (d) greater than about 3 wt.% and less than 10 wt.% para-aramid fibers.
- the modacrylic fibers contain at least about 7 wt.% antimony based on the weight of the modacrylic, and more preferably at least about 10 wt.% antimony.
- a yarn in accordance with one embodiment of the invention comprises the above-noted fiber blend spun into yarn.
- the yarn can be spun in various ways, including ring spinning, air jet spinning, and open-end spinning.
- a fabric in accordance with one embodiment of the invention has a weight of about 4 . 0 oz./yd. 2 to about 10.5 oz./yd. 2 , more preferably about 7 oz./yd. 2 to about 9.0 oz./yd. 2 .
- the fabric can be woven (e.g., a woven twill or plain weave) or knitted.
- the invention also provides clothing made from the fabric.
- the fabric in accordance with the invention is dyeable to dark or solid shades because the fiber blend is over 90 percent dyeable.
- the modacrylic fibers are dyeable with basic dyes
- the cotton fibers are dyeable with fiber-reactive or direct dyes
- the nylon fibers are dyeable with acid or disperse dyes.
- Only the para-aramid fibers are not dyeable, and they comprise less than 10 percent of the fiber blend such that they do not interfere with the attainment of solid shades.
- the fiber blend does not include any other fiber types that would require dye procedures and/or processing conditions that would be incompatible with the fiber constituents of the blend.
- the blend does not include meta-aramid fibers because they require dye bath temperatures greater than 230° F. and the use of a carrier that reacts negatively with modacrylic.
- the invention also provides a method for making a flame-resistant fabric, comprising the steps of forming an intimate blend of fibers comprising about 40 wt.% to about 65 wt.% modacrylic fibers containing antimony, about 10 wt.% to about 50 wt.% cotton fibers, up to about 25 wt.% nylon fibers, and greater than about 3 wt.% and less than 10 wt.% para-aramid fibers; forming the blend of fibers into yarn; and knitting or weaving the yarn to form fabric.
- the method further comprises the steps of dyeing the fabric with basic dye to dye the modacrylic fibers, and dyeing the fabric with fiber reactive or direct dye to dye the cotton fibers.
- the dyeing steps also comprise dyeing the fabric with acid or disperse dye to dye the nylon fibers.
- the dyeing steps preferably are carried out by exhaust dyeing at a dye bath temperature not exceeding about 230° F.
- the fabric is first dyed with the basic dye, then the fabric is dyed with the fiber reactive or direct dye, and finally the fabric is dyed with the acid or disperse dye.
- a dye fixative can be used to fix one or more of the dyes.
- the fabric made in accordance with the invention has an advantageous combination of properties.
- the fabric is able to pass the ASTM F1506 specification, and in fact can achieve a char length of less than 5 inches, well under the 6-inch maximum permissible value according to the specification. Additionally, the fabric can achieve NFPA 70E Level II certification for protection against electrical arc exposure. This is achievable with relatively low fabric weights such that clothing made of the fabric is perceived as being comfortable to wear; the inclusion of cotton provides softness and moisture wicking, which further aids the comfort.
- Cotton also forms a char that assists in the flame-resistance performance.
- the nylon is included for durability and strength, as well as the ability to be thermoset for shrinkage. It has also been found that inclusion of nylon aids in improving the electrical arc protection.
- the para-aramid is included for its inherent flame-resistant properties, strength, and very low shrinkage even with repeated industrial launderings.
- the cotton content also allows the optional application of a resin to the fabric for further shrinkage control, if desired or needed in a particular instance.
- the fabric is over 90 percent dyeable such that dark, solid shades can be achieved.
- Fabric samples were made from yarn spun from a blend of 50 wt.% modacrylic, 25 wt.% cotton, 20 wt.% nylon, and 5 wt.% para-aramid staple fibers.
- the modacrylic fibers used for these samples contained 10% antimony.
- the staple fibers had lengths ranging from about 1.5 inches to about 2.0 inches.
- the modacrylic fibers had a denier of 2.0, the nylon fibers had a denier of 1.8, and the para-aramid fibers had a denier of 0.84.
- Two separate batches of yarn were made from the fiber blend. One yarn was ring-spun 25/2 cotton count yarn and the other yarn was air jet-spun 25/2 cotton count yarn. Fabric was woven from each type of yarn.
- the fabric constructions in each case were 76 warp ends/inch and 56 picks/inch in a 2 ⁇ 1 right-hand twill pattern.
- the fabric made with the ring-spun yarn weighed 8.2 oz./yd. 2 and the fabric made with the jet-spun yarn weighed 8.6 oz./yd. 2 .
- the ASTM F1506 performance specification requires a fabric to meet the following criteria:
- Breaking strength 40 lbs. minimum
- the flammability test according to standard ASTM D6413 entails vertically suspending a fabric sample measuring 12 inches long by 3 inches wide (with the length direction vertical) and igniting the lower end of the fabric and then removing the source of ignition. The duration of the afterflame following removal of the ignition source is measured in seconds, and the char length of the charred portion of the fabric is measured. The fabric is tested in both warp and fill directions (i.e., samples having the length direction parallel to the warp direction are tested and other samples having the length direction parallel to the fill direction are tested).
- the dimensional change test entails subjecting fabric samples to repeated laundering and drying cycles. At various incremental numbers of cycles, the percent dimensional change of the fabric is measured in both warp and fill directions, based on benchmarks applied to the fabric prior to laundering.
- the laundering and drying procedure was designed to substantially duplicate a typical industrial laundering and drying process, and comprised a Light Soil Release procedure, as follows:
- the fabric sample is put into a machine that grips the fabric with two clamps. One clamp is stationary and the other moves away at a controlled slow rate, thus applying tension until the fabric breaks or ruptures.
- the test is performed in both the warp and fill directions. The highest tensile load in pounds just at the moment the fabric breaks or ruptures is recorded.
- the tear-resistance test according to standard ASTM D1424 measures the resistance of the fabric to tearing under a controlled force. The test indicates the material's resistance to tearing when there is an initial tear in the fabric. The fabric is tested in both warp and fill directions.
- the flex abrasion test according to standard ASTM D3885 measures the resistance of the fabric to abrasion under flexing. A narrow strip of fabric is folded through 180° around a wear-resistant folding bar and held between two flat clamps. Sufficient vertical loading is applied to prevent the fabric from rippling while reciprocation loading parallel to the long dimension of the tensioned fabric specimen is applied. The number of cycles of abrasion to cause the specimen to break is determined.
- Fabric made from each type of yarn was also tested for electrical arc protection according to ASTM 1959.
- the fabric made from ring-spun yarn was tested to have an ATPV of 8.2 cal/cm 2 .
- the fabric using jet-spun yarn was tested to have an ATPV of 8.7 cal/cm 2 .
- both fabrics met the performance required for NFPA 70E Level II certification.
- the fabrics made in accordance with the invention self-extinguished immediately and had char lengths well below the maximum permissible 6 inches established by performance standard ASTM F1506.
- the fabrics had less than 3 percent dimensional change in both warp and fill directions after 75 industrial launderings at 140° F. wash and dry temperatures. Breaking strength of both fabrics was far in excess of the minimum 40 pound level required, and tear-resistance was well in excess of the minimum 4.0 pound level required, even after 75 industrial launderings.
- fabrics made in accordance with the invention should also be capable of meeting the more-stringent standards required for NFPA 2112 certification (which includes the ASTM F1930 “Test Method for Evaluation of Flame-Resistant Clothing for Protection against Flash Fire Simulations Using an Instrumented Manikin”), and testing to verify this is currently in progress.
- the initial wicking performance was 4.25 inches in both the warp and fill directions. After 50 industrial washes, the wicking performance was 7.00+inches in the warp direction, and 6.25 inches in the fill direction.
- the dyeability properties of the fibers are also important.
- An advantage of the fiber blend of the invention is that the chemicals and temperatures required for dyeing the various types of fibers do not interact negatively with each other.
- the fabric contains less than 10 percent of the para-aramid fibers (which are not dyeable), and thus is over 90 percent dyeable. Therefore, dark, solid shades can be achieved by dyeing each of the dyeable fiber types in the fabric.
- the dyes are all applied in an exhaust dyeing procedure.
- the preferred dye procedure is to dye the fabric (or the yarn from which the fabric is made) first with basic dyes to dye the modacrylic fibers. Next the fabric or yarn is dyed with fiber reactive or direct dyes to dye the cotton fibers.
- the fabric or yarn is dyed with acid or disperse dyes to dye the nylon fibers.
- the maximum temperature reached in the dye bath is not greater than 230° F. in each dyeing procedure.
- the modacrylic fibers cannot withstand temperatures greater than 230° F.
- one or more dye fixatives can be used for fixing one or more of the dyes.
- a fiber blend comprising 50 wt.% modacrylic, 25 wt.% cotton, 20 wt.% nylon, and 5 wt % para-aramid can be spun into yarn and the yarn can be made into a 4.0 oz./yd. 2 plain weave for arc Level I certification.
- An 8.3 oz./yd. 2 plain weave rip-stop fabric can also be made.
- a 6.0 oz./yd. 2 plain weave rip-stop can also be made.
- air permeability of the fabric Another property of potential significance is the air permeability of the fabric. It is thought that air permeability has some effect on the performance of fabric in the electrical arc test. The lower the air permeability, the better the fabric may perform in that test. Samples of fabric in accordance with the invention have been calendered to reduce the air permeability of the fabric. A sample of fabric was tested for air permeability after it was finished, after it was finished and sanforized, and after it was finished, sanforized and calendered. The results were 17.0, 14.1, and 10.3 cfm, respectively. Thus, calendering can significantly reduce the air permeability, which may be effective in improving electrical arc protection provided by the fabric.
- the modacrylic fibers can be replaced, in whole or in part, by flame-resistant acrylic fibers and the cotton fibers can be replaced, in whole or in part, by flame-resistant cotton fibers treated in fiber or fabric form.
- the FR acrylic fibers can comprise Lufnen acrylic fibers available from Kanebo of Osaka, Japan. These fibers comprise a long-chain synthetic polymer containing acrylonitrile groups modified with a flame-retardant.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Woven Fabrics (AREA)
Abstract
A fiber blend, a yarn spun from the fiber blend, and a fabric made from the yarn, wherein the fiber blend comprises: (a) about 40 wt.% to about 65 wt.% modacrylic fibers containing antimony, or FR acrylic fibers; (b) about 10 wt.% to about 50 wt.% cotton fibers or FR cotton fibers; (c) up to about 25 wt.% nylon fibers; and (d) greater than about 3 wt.% and less than 10 wt.% para-aramid fibers. The fabric is over 90 percent dyeable and is capable of achieving ASTM F1506 certification with an Arc Thermal Performance Value greater than 8.0 cal/cm2. The fabric is woven or knitted, and has a weight of about 4.0 oz./yd.2 to about 10.5 oz./yd.2. The fabric is suitable for garments worn during activities in which there is potential for exposure to flame and/or electrical arc.
Description
- The present invention relates to flame-resistant fabrics woven or knitted from yarns that are made from fiber blends.
- Flame-resistant fabrics (also variously referred to as “fire-resistant”, “flame-retardant”, and “fire-retardant” fabrics) are fabrics that, once ignited, tend not to sustain a flame when the source of ignition is removed. A great deal of investigation and research has been directed toward the development and improvement of flame-resistant fabrics for use in various products such as bedding, clothing, and others. Flame-resistant clothing is often worn by workers involved in activities such as industrial manufacturing and processing, fire-fighting, electrical utility work, and other endeavors that entail a significant risk of being exposed to open flame and/or electrical arcs.
- Flame-resistant fabrics include both fabrics that are treated to be flame-resistant as well as flame-resistant fabrics made from inherently flame-resistant fibers. The former types of fabrics are not themselves flame-resistant, but are made flame-resistant by applying to the fabric a chemical composition that renders the fabric resistant to flame. These types of fabrics are susceptible to losing their flame-resistance when laundered repeatedly because the flame-resistant composition tends to wash out. In contrast, inherently flame-resistant fabrics do not suffer from this drawback because they are made from fibers that are themselves flame-resistant.
- Various types of inherently flame-resistant (FR) fibers have been developed, including modacrylic fibers (e.g., PROTEX® modacrylic fibers from Kaneka Corporation of Osaka, Japan), aramid fibers (e.g., NOMEX® meta-aramid fibers and KEVLAR® para-aramid fibers, both from E. I. Du Pont de Nemours and Company of Wilmington, Del.), FR rayon fibers, oxidized polyacrylonitrile fibers, and others. It is common to blend one or more types of FR staple fibers with one or more other types of non-FR staple fibers to produce a fiber blend from which yarn is spun, the yarn then being knitted or woven into fabrics for various applications. In such a fiber blend, the FR fibers render the blend flame-resistant even though some fibers in the blend may themselves be non-FR fibers, because when the FR fibers combust they release non-combustible gases that tend to displace oxygen and thereby extinguish any flame.
- As an example, United States Patent Application Publication US 2005/0025963 to Zhu discloses an intimate blend of staple fibers having 10 to 75 parts by weight of at least one aramid fiber, 15 to 85 parts by weight of at least one modacrylic fiber, and 5 to 30 parts by weight of at least one polyamide fiber.
- Another blend of staple fibers is disclosed in United States Patent Application Publication US 2004/0192134 to Gibson et al. The blend includes at least about 60 percent FR fibers (modacrylic and/or aramid) and up to 40 percent synthetic or natural non-FR fibers such as cotton or wool.
- U.S. Pat. No. 6,787,228 to Campbell et al. discloses a yarn formed of a blend of fibers including at least about 70 percent modacrylic fibers combined with at least about 3 percent high-performance, high-energy-absorptive fibers such as aramid.
- In the United States, it is desirable and often required for clothing worn by certain types of workers to pass standard performance specification F1506 of the American Society for Testing and Materials (ASTM). This standard, entitled “Standard Performance Specification for Flame Resistant Textiles Materials for Wearing Apparel for Use by Electrical Workers Exposed to Momentary Electrical Arc and Related Thermal Hazards”, sets various standard performance specifications for a fabric, among which are specifications for the ability of the fabric to self-extinguish after being ignited. When the ignition source is removed, the fabric must self-extinguish in less than 2 seconds and have less than a 6-inch char length according to ASTM Test Method D6413 (“Standard Test Method for Flame Resistance of Textiles”, also referred to as the Vertical Flame test). The F1506 performance standard also includes standard test ASTM 1959 (“Standard Test Method for Determining the Arc Thermal Performance Value of Materials for Clothing”), which measures the level of protection that the fabric provides against electrical arc exposure. The ASTM 1959 test establishes three levels of electrical arc protection as measured by the fabric's Arc Thermal Performance Value (ATPV), expressed in cal/cm2; at least Level II certification (ATPV greater than 8.0 cal/cm2) is required for clothing worn by many electrical utility workers. ASTM F1506 also has minimum performance specifications for tensile breaking strength (40 pounds) and tear-resistance (4.0 pounds) of the fabric under standard test conditions.
- In addition to the above-noted performance specifications of fabrics, other properties are also important if a fabric is to be practical and commercially viable, particularly for clothing. For instance, the fabric should be durable under repeated industrial launderings and should have good abrasion-resistance. Furthermore, the fabric should be readily dyeable to dark, solid shades of color, and should be comfortable to wear.
- As noted above, there are various fiber blends, yarns, and fabrics that purport to provide some degree of flame-resistance. However, the prior art known to the applicant does not disclose or suggest the specific fiber blend and fabric of the present invention, which has been found to possess distinct advantages and characteristics, including passage of ASTM F1506 and Level II certification for electrical arc protection. The fabric is also comfortable to wear, is abrasion-resistant, is durable under repeated industrial launderings, and is over 90 percent dyeable.
- More particularly, the present invention provides a fiber blend, a yarn made from the fiber blend, and a fabric made from the yarn, wherein the fiber blend comprises: (a) about 40 wt.% to about 65 wt.% modacrylic fibers containing antimony, or FR acrylic fibers; (b) about 10 wt.% to about 50 wt.% cotton fibers or FR cotton fibers; (c) up to about 25 wt.% nylon fibers; and (d) greater than about 3 wt.% and less than 10 wt.% para-aramid fibers.
- Advantageously, the modacrylic fibers contain at least about 7 wt.% antimony based on the weight of the modacrylic, and more preferably at least about 10 wt.% antimony.
- In one embodiment, the fiber blend comprises about 45 wt.% to about 55 wt.% modacrylic fibers, about 20 wt.% to about 30 wt.% cotton fibers, about 15 wt.% to about 20 wt.% nylon fibers, and about 5 wt.% to about 9 wt.% para-aramid fibers.
- A yarn in accordance with one embodiment of the invention comprises the above-noted fiber blend spun into yarn. The yarn can be spun in various ways, including ring spinning, air jet spinning, and open-end spinning.
- A fabric in accordance with one embodiment of the invention has a weight of about 4.0 oz./yd.2 to about 10.5 oz./yd.2, more preferably about 7 oz./yd.2 to about 9.0 oz./yd.2. The fabric can be woven (e.g., a woven twill or plain weave) or knitted. The invention also provides clothing made from the fabric.
- The fabric in accordance with the invention is dyeable to dark or solid shades because the fiber blend is over 90 percent dyeable. More specifically, the modacrylic fibers are dyeable with basic dyes, the cotton fibers are dyeable with fiber-reactive or direct dyes, and the nylon fibers (if present) are dyeable with acid or disperse dyes. Only the para-aramid fibers are not dyeable, and they comprise less than 10 percent of the fiber blend such that they do not interfere with the attainment of solid shades. Additionally, the fiber blend does not include any other fiber types that would require dye procedures and/or processing conditions that would be incompatible with the fiber constituents of the blend. For example, the blend does not include meta-aramid fibers because they require dye bath temperatures greater than 230° F. and the use of a carrier that reacts negatively with modacrylic.
- The invention also provides a method for making a flame-resistant fabric, comprising the steps of forming an intimate blend of fibers comprising about 40 wt.% to about 65 wt.% modacrylic fibers containing antimony, about 10 wt.% to about 50 wt.% cotton fibers, up to about 25 wt.% nylon fibers, and greater than about 3 wt.% and less than 10 wt.% para-aramid fibers; forming the blend of fibers into yarn; and knitting or weaving the yarn to form fabric.
- In another embodiment of the invention, the method further comprises the steps of dyeing the fabric with basic dye to dye the modacrylic fibers, and dyeing the fabric with fiber reactive or direct dye to dye the cotton fibers. When nylon fibers are included in the fiber blend, the dyeing steps also comprise dyeing the fabric with acid or disperse dye to dye the nylon fibers. The dyeing steps preferably are carried out by exhaust dyeing at a dye bath temperature not exceeding about 230° F. Preferably, the fabric is first dyed with the basic dye, then the fabric is dyed with the fiber reactive or direct dye, and finally the fabric is dyed with the acid or disperse dye. Optionally, a dye fixative can be used to fix one or more of the dyes.
- The fabric made in accordance with the invention has an advantageous combination of properties. The fabric is able to pass the ASTM F1506 specification, and in fact can achieve a char length of less than 5 inches, well under the 6-inch maximum permissible value according to the specification. Additionally, the fabric can achieve NFPA 70E Level II certification for protection against electrical arc exposure. This is achievable with relatively low fabric weights such that clothing made of the fabric is perceived as being comfortable to wear; the inclusion of cotton provides softness and moisture wicking, which further aids the comfort. Cotton also forms a char that assists in the flame-resistance performance. The nylon is included for durability and strength, as well as the ability to be thermoset for shrinkage. It has also been found that inclusion of nylon aids in improving the electrical arc protection. The para-aramid is included for its inherent flame-resistant properties, strength, and very low shrinkage even with repeated industrial launderings. The cotton content also allows the optional application of a resin to the fabric for further shrinkage control, if desired or needed in a particular instance. Furthermore, the fabric is over 90 percent dyeable such that dark, solid shades can be achieved.
- The present inventions now will be described more fully hereinafter with reference to particular embodiments and examples of the inventions. However, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.
- Fabric samples were made from yarn spun from a blend of 50 wt.% modacrylic, 25 wt.% cotton, 20 wt.% nylon, and 5 wt.% para-aramid staple fibers. The modacrylic fibers used for these samples contained 10% antimony. The staple fibers had lengths ranging from about 1.5 inches to about 2.0 inches. The modacrylic fibers had a denier of 2.0, the nylon fibers had a denier of 1.8, and the para-aramid fibers had a denier of 0.84. Two separate batches of yarn were made from the fiber blend. One yarn was ring-spun 25/2 cotton count yarn and the other yarn was air jet-spun 25/2 cotton count yarn. Fabric was woven from each type of yarn. The fabric constructions in each case were 76 warp ends/inch and 56 picks/inch in a 2×1 right-hand twill pattern. The fabric made with the ring-spun yarn weighed 8.2 oz./yd.2 and the fabric made with the jet-spun yarn weighed 8.6 oz./yd.2. The two types of fabric were tested according to ASTM F1506, and the results are included in Table I below:
TABLE I WEIGHT ATPV1 FABRIC WIDTH (oz/yd) (cal/cm2) RING-SPUN 58-59″ 8.2 8.2 JET-SPUN 59-60″ 8.6 8.7 FLAMMABILITY2 DIMENSIONAL CHANGE3 — AFTERFLAME DURATION CHAR LENGTH IL@140° F.* (secs.) (inches, warp/fill) (%, warp/fill) RING JET RING JET RING JET ORIGINAL 0.00/0.00 0.00/0.00 5.5/4.2 4.4/4.4 After 5 IL 0.00/0.00 0.00/0.00 4.1/3.6 4.2/3.9 2.9/1.1 2.4/2.4 After 10 IL 0.00/0.00 0.00/0.00 4.1/3.6 3.5/3.5 0.4/0.7 0.8/0.3 After 25 IL 0.00/0.00 0.00/0.00 4.5/4.3 4.2/4.6 0.7/1.0 1.1/0.7 After 50 IL 0.00/0.00 0.00/0.00 5.1/5.1 4.6/4.7 1.9/1.3 1.5/2.1 After 75 IL 0.00/0.00 0.00/0.00 3.9/4.1 4.4/4.5 2.9/1.8 2.7/1.9 BREAKING STRENGTH4 TEAR-RESISTANCE5 FLEX6 (lbs, warp/fill) (lbs, warp/fill) (cycles to failure, warp/fill) RING JET RING JET RING JET ORIGINAL 209/132 200/127 13/9 11/7 8400/6500 9500/6300 After 5 IL 215/139 203/134 12/8 10/7 3600/4600 5300/5300 After 10 IL 196/130 209/136 10/6 11/8 5800/6200 3600/4500 After 25 IL 181/122 197/128 10/7 9/6 3100/4000 2500/3400 After 50 IL 203/135 181/116 9/6 8/5 2300/2600 2300/3300 After 75 IL 194/128 190/126 8/6 8/6 1400/1900 1600/1900
*Shrinkage was not performed on the same sample at each interval
1ASTM 1959 Standard Test Method for Determining the Arc Thermal Performance Value of Materials for Clothing
2ASTM D6413 Standard Test Method for Flame Resistance of Textiles (Vertical Test)
3AATCC 96, Light Soil Release Wash and Dry Procedure, described below.
4ASTM D5034 Standard Test Method for Breaking Strength and Elongation of Textile Fabrics (Grab Test)
5ASTM D1424 Standard Test Method for Tearing Strength of Fabrics by Falling-Pendulum Type (Elmendorf) Apparatus
6ASTM D3885 Standard Test Method for Abrasion Resistance of Textile Fabrics (Flexing and Abrasion Method)
- The ASTM F1506 performance specification requires a fabric to meet the following criteria:
- Afterflame duration: 2 seconds maximum
- Char length: 6 inches maximum
- Breaking strength: 40 lbs. minimum
- Tear-resistance: 4.0 lbs. minimum
- Dimensional change: 3% maximum
- ATPV ≧8.0 cal/cm2 for Arc Level II rating
- The flammability test according to standard ASTM D6413 entails vertically suspending a fabric sample measuring 12 inches long by 3 inches wide (with the length direction vertical) and igniting the lower end of the fabric and then removing the source of ignition. The duration of the afterflame following removal of the ignition source is measured in seconds, and the char length of the charred portion of the fabric is measured. The fabric is tested in both warp and fill directions (i.e., samples having the length direction parallel to the warp direction are tested and other samples having the length direction parallel to the fill direction are tested).
- The dimensional change test entails subjecting fabric samples to repeated laundering and drying cycles. At various incremental numbers of cycles, the percent dimensional change of the fabric is measured in both warp and fill directions, based on benchmarks applied to the fabric prior to laundering. The laundering and drying procedure was designed to substantially duplicate a typical industrial laundering and drying process, and comprised a Light Soil Release procedure, as follows:
- Laundering Procedure—Light Soil Release (formulated for 15 lb. load)
-
- 1) Break, 12 gallon water level, 140° F., 5 min., ⅓ cup Paragon Plus*
- 2) Carryover, 12 gallon water level, 130-140° F., 3 min., no chemicals
- 3) Rinse, 24 gallon water level, 120-130° F., 1 min., no chemicals
- 4) Rinse, 24 gallon water level, 120-130° F., 1 min., no chemicals
- 5) Sour, 12 gallon water level, 90-100° F., 4 min., ¼ oz. sodium silicofluoride (Fluor-o-cide)**
- *Paragon Plus is a detergent available from Paragon Products, Inc.
- **Sodium silicofluoride (Fluor-o-cide) is a product of UNX, Inc.
- The procedure is to launder (in a Milnor washer), centrifugal extract, and then dry at a temperature of 140-160° F. for 20 minutes followed by 10 minute cool down.
- In the breaking strength test according to standard ASTM D5034, the fabric sample is put into a machine that grips the fabric with two clamps. One clamp is stationary and the other moves away at a controlled slow rate, thus applying tension until the fabric breaks or ruptures. The test is performed in both the warp and fill directions. The highest tensile load in pounds just at the moment the fabric breaks or ruptures is recorded.
- The tear-resistance test according to standard ASTM D1424 measures the resistance of the fabric to tearing under a controlled force. The test indicates the material's resistance to tearing when there is an initial tear in the fabric. The fabric is tested in both warp and fill directions.
- The flex abrasion test according to standard ASTM D3885 measures the resistance of the fabric to abrasion under flexing. A narrow strip of fabric is folded through 180° around a wear-resistant folding bar and held between two flat clamps. Sufficient vertical loading is applied to prevent the fabric from rippling while reciprocation loading parallel to the long dimension of the tensioned fabric specimen is applied. The number of cycles of abrasion to cause the specimen to break is determined.
- Fabric made from each type of yarn was also tested for electrical arc protection according to ASTM 1959. The fabric made from ring-spun yarn was tested to have an ATPV of 8.2 cal/cm2. The fabric using jet-spun yarn was tested to have an ATPV of 8.7 cal/cm2. Thus, both fabrics met the performance required for NFPA 70E Level II certification.
- As the results in Table I indicate, in the flame-resistance test, the fabrics made in accordance with the invention self-extinguished immediately and had char lengths well below the maximum permissible 6 inches established by performance standard ASTM F1506. The fabrics had less than 3 percent dimensional change in both warp and fill directions after 75 industrial launderings at 140° F. wash and dry temperatures. Breaking strength of both fabrics was far in excess of the minimum 40 pound level required, and tear-resistance was well in excess of the minimum 4.0 pound level required, even after 75 industrial launderings. It is also believed that fabrics made in accordance with the invention should also be capable of meeting the more-stringent standards required for NFPA 2112 certification (which includes the ASTM F1930 “Test Method for Evaluation of Flame-Resistant Clothing for Protection Against Flash Fire Simulations Using an Instrumented Manikin”), and testing to verify this is currently in progress.
- An additional fabric sample was made using the same fiber constituent percentages as for the first two examples given above, except that the 10% antimony modacrylic fibers were replaced by 15% antimony PROTEX® M modacrylic fibers from Kaneka Corporation of Osaka, Japan. The fiber blend was jet-spun into 25/2 cotton count yarn, which was then woven into fabric using a 2×1 right-hand twill pattern. The jet-spun yarn is more economical to produce than ring-spun yarn, and the abrasion-resistance of fabric made with jet-spun yarn is slightly better than that of fabric made with ring-spun yarn. The wicking performance of the fabric was evaluated using an industry-accepted test method, described below:
- Wicking Test Procedure
-
- 1. Condition fabric (4 hours at 65% relative humidity, 70° F.)
- 2. Cut samples, 7″×1″, 2 in warp direction and 2 in fill direction
- 3. Draw lines with non-soluble ink across width of samples spaced 1″ apart
- 4. Place 500 ml of distilled water in a 600 ml beaker
- 5. Hang the test specimen from a ring stand into the beaker so that the narrow end of the fabric is immersed to a depth of 1″.
- 6. Measure the distance the water has moved up the fabric after 15 minutes
- 7. Report the average of the two samples in each direction.
- For the fabric as produced and prior to laundering, the initial wicking performance was 4.25 inches in both the warp and fill directions. After 50 industrial washes, the wicking performance was 7.00+inches in the warp direction, and 6.25 inches in the fill direction.
- The dyeability properties of the fibers are also important. An advantage of the fiber blend of the invention is that the chemicals and temperatures required for dyeing the various types of fibers do not interact negatively with each other. Advantageously, the fabric contains less than 10 percent of the para-aramid fibers (which are not dyeable), and thus is over 90 percent dyeable. Therefore, dark, solid shades can be achieved by dyeing each of the dyeable fiber types in the fabric. The dyes are all applied in an exhaust dyeing procedure. The preferred dye procedure is to dye the fabric (or the yarn from which the fabric is made) first with basic dyes to dye the modacrylic fibers. Next the fabric or yarn is dyed with fiber reactive or direct dyes to dye the cotton fibers. Finally, the fabric or yarn is dyed with acid or disperse dyes to dye the nylon fibers. The maximum temperature reached in the dye bath is not greater than 230° F. in each dyeing procedure. The modacrylic fibers cannot withstand temperatures greater than 230° F. Optionally, one or more dye fixatives can be used for fixing one or more of the dyes.
- Alternatively, fabric with a heather appearance can be achieved by dyeing only some of the fiber types such as just the modacrylic fibers.
- The invention is susceptible to numerous variations within the scope of the appended claims. As one example, a fiber blend comprising 50 wt.% modacrylic, 25 wt.% cotton, 20 wt.% nylon, and 5 wt % para-aramid can be spun into yarn and the yarn can be made into a 4.0 oz./yd.2 plain weave for arc Level I certification. An 8.3 oz./yd.2 plain weave rip-stop fabric can also be made. A 6.0 oz./yd.2 plain weave rip-stop can also be made. These are only some of the many variations that can be made within the scope of the claims.
- Fabric made in accordance with the invention may also be vat dye printable. The military has a nylon/cotton product that it uses for camouflage garments. The current fabric is not fire-resistant. The fabric of the present invention may provide a fire-resistant fabric containing nylon and cotton that is printable with a camouflage pattern.
- Another property of potential significance is the air permeability of the fabric. It is thought that air permeability has some effect on the performance of fabric in the electrical arc test. The lower the air permeability, the better the fabric may perform in that test. Samples of fabric in accordance with the invention have been calendered to reduce the air permeability of the fabric. A sample of fabric was tested for air permeability after it was finished, after it was finished and sanforized, and after it was finished, sanforized and calendered. The results were 17.0, 14.1, and 10.3 cfm, respectively. Thus, calendering can significantly reduce the air permeability, which may be effective in improving electrical arc protection provided by the fabric.
- Fiber blends in accordance with the invention can be made from fibers having various staple fiber lengths and various deniers. Suitably, the fibers can range in length from about 0.5 inch to about 2.5 inches. The modacrylic, nylon, and para-aramid fibers can have a denier ranging from about 0.5 to about 3.0. Yarns can be made in accordance with the invention in various sizes, as single-ply or two-ply yarn, although two-ply yarns are preferred for strength and durability. With respect to two-ply yarns, the yarns can vary in cotton count sizes from 64/2 to 15/2, more preferably from about 38/2 to 15/2.
- Finally, in another embodiment of the invention, the modacrylic fibers can be replaced, in whole or in part, by flame-resistant acrylic fibers and the cotton fibers can be replaced, in whole or in part, by flame-resistant cotton fibers treated in fiber or fabric form. For instance, the FR acrylic fibers can comprise Lufnen acrylic fibers available from Kanebo of Osaka, Japan. These fibers comprise a long-chain synthetic polymer containing acrylonitrile groups modified with a flame-retardant.
- Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Claims (30)
1. A flame-resistant fabric, the fabric being formed with yarn comprising a blend of fibers, the blend comprising:
about 40 wt.% to about 65 wt.% modacrylic fibers containing antimony;
about 10 wt.% to about 50 wt.% cotton fibers;
up to about 25 wt.% nylon fibers; and
greater than about 3 wt.% and less than 10 wt.% para-aramid fibers.
2. The flame-resistant fabric of claim 1 , wherein the modacrylic fibers contain at least about 7 wt.% antimony based on the weight of the modacrylic.
3. The flame-resistant fabric of claim 1 , wherein the blend comprises:
about 45 wt.% to about 55 wt.% modacrylic fibers;
about 20 wt.% to about 30 wt.% cotton fibers;
about 15 wt.% to about 20 wt.% nylon fibers; and
about 5 wt.% to about 9 wt.% para-aramid fibers.
4. The flame-resistant fabric of claim 1 , wherein the blend comprises:
about 50 wt.% to about 55 wt.% modacrylic fibers;
about 20 wt.% to about 25 wt.% cotton fibers;
about 15 wt.% to about 20 wt % nylon fibers; and
about 5 wt.% to about 7 wt.% para-aramid fibers.
5. The flame-resistant fabric of claim 1 , having a weight of about 4.0 oz./yd.2 to about 10.5 oz./yd.2.
6. The flame-resistant fabric of claim 1 , having a weight of about 7.0 oz./yd.2 to about 9.0 oz./yd.2.
7. The flame-resistant fabric of claim 1 , wherein the fabric is woven.
8. The flame-resistant fabric of claim 1 , wherein the fabric is knit.
9. The flame-resistant fabric of claim 1 , wherein the fibers are dyed with basic dye to dye the modacrylic fibers and/or are dyed with fiber reactive or direct dye to dye the cotton fibers.
10. A garment constructed from the flame-resistant fabric of claim 1 .
11. A method of making a flame-resistant fabric, comprising the steps of:
forming an intimate blend of staple fibers comprising:
about 40 wt.% to about 65 wt.% modacrylic fibers containing antimony;
about 10 wt.% to about 50 wt.% cotton fibers;
up to about 25 wt.% nylon fibers; and
greater than about 3 wt.% and less than 10 wt.% para-aramid fibers;
spinning the blend of staple fibers into yarn; and
knitting or weaving the yarn to form fabric.
12. The method of claim 11 , further comprising the steps of:
dyeing the modacrylic fibers with basic dye; and
dyeing the cotton fibers with fiber reactive or direct dye.
13. The method of claim 12 , wherein the dyeing steps are carried out at a dye bath temperature not exceeding about 230° F.
14. The method of claim 12 , wherein the blend of staple fibers includes nylon fibers, and further comprising the step of dyeing the nylon fibers with acid or disperse dye.
15. The method of claim 14 , wherein the fibers are first dyed with the basic dye, then the fibers are dyed with the fiber reactive or direct dye, and finally the fibers are dyed with the acid or disperse dye.
16. The method of claim 12 , further comprising using a dye fixative to fix the dyes.
17. The method of claim 11 , further comprising the step of applying a resin to the fabric for shrinkage control.
18. The method of claim 11 , wherein the fabric is woven in a twill pattern.
19. The method of claim 11 , wherein the spinning step comprises ring spinning the blend of staple fibers into yarn.
20. The method of claim 11 , wherein the spinning step comprises air jet spinning the blend of staple fibers into yarn.
21. The method of claim 11 , further comprising the step of calendering the fabric to reduce air permeability of the fabric.
22. A blend of staple comprising:
about 40 wt.% to about 65 wt.% modacrylic fibers containing antimony;
about 10 wt.% to about 50 wt.% cotton fibers;
up to about 25 wt.% nylon fibers; and
greater than about 3 wt.% and less than 10 wt.% para-aramid fibers.
23. The blend of fibers of claim 22 , wherein the modacrylic fibers contain at least about 7 wt.% antimony based on the weight of the modacrylic.
24. The blend of fibers of claim 22 , wherein the blend comprises:
about 45 wt.% to about 55 wt.% modacrylic fibers;
about 20 wt.% to about 30 wt.% cotton fibers;
about 15 wt.% to about 20 wt.% nylon fibers; and
about 5 wt.% to about 9 wt.% para-aramid fibers.
25. The blend of fibers of claim 22 , wherein the blend comprises:
about 50 wt.% to about 55 wt.% modacrylic fibers;
about 20 wt.% to about 25 wt.% cotton fibers;
about 15 wt.% to about 20 wt % nylon fibers; and
about 5 wt.% to about 7 wt.% para-aramid fibers.
26. A yarn formed from a blend of fibers comprising:
about 40 wt.% to about 65 wt.% modacrylic fibers containing antimony;
about 10 wt.% to about 50 wt.% cotton fibers;
up to about 25 wt.% nylon fibers; and
greater than about 3 wt.% and less than 10 wt.% para-aramid fibers.
27. The yarn of claim 26 , wherein the yarn is ring-spun.
28. The yarn of claim 26 , wherein the yarn is air jet-spun.
29. The yarn of claim 26 , wherein the yarn is open-end spun.
30. A flame-resistant fabric, the fabric being formed with yarn comprising a blend of fibers, the blend comprising:
about 40 wt.% to about 65 wt.% FR acrylic fibers;
about 10 wt.% to about 50 wt.% FR cotton fibers;
up to about 25 wt.% nylon fibers; and
greater than about 3 wt.% and less than 10 wt.% para-aramid fibers.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/159,379 US20060292953A1 (en) | 2005-06-22 | 2005-06-22 | Flame-resistant fiber blend, yarn, and fabric, and method for making same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/159,379 US20060292953A1 (en) | 2005-06-22 | 2005-06-22 | Flame-resistant fiber blend, yarn, and fabric, and method for making same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060292953A1 true US20060292953A1 (en) | 2006-12-28 |
Family
ID=37568166
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/159,379 Abandoned US20060292953A1 (en) | 2005-06-22 | 2005-06-22 | Flame-resistant fiber blend, yarn, and fabric, and method for making same |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20060292953A1 (en) |
Cited By (49)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080057807A1 (en) * | 2006-08-31 | 2008-03-06 | Southern Mills, Inc. | Flame resistant fabrics and garments made from same |
| US20080152888A1 (en) * | 2006-09-08 | 2008-06-26 | Southern Mills, Inc. | Methods and Systems for Providing Dyed, Stretchable Flame Resistant Fabrics and Garments |
| US20080295232A1 (en) * | 2007-05-08 | 2008-12-04 | Southern Mills, Inc. | Systems and methods for dyeing inherently flame resistant fibers without using accelerants or carriers |
| US20090019624A1 (en) * | 2007-07-17 | 2009-01-22 | Invista North America S.A. R.L. | Knit fabrics and base layer garments made therefrom with improved thermal protective properties |
| US20090061717A1 (en) * | 2007-08-31 | 2009-03-05 | Hall Iii Walter Randall | Foam core article with flexible heat-resistant knitted fabric |
| US20090094754A1 (en) * | 2007-08-31 | 2009-04-16 | Hall Iii Walter Randall | Foam core article with flexible heat-resistant knitted fabric |
| US20090205101A1 (en) * | 2005-05-02 | 2009-08-20 | Vereen William C | Shirt with Reinforced Front |
| US20100024103A1 (en) * | 2004-08-18 | 2010-02-04 | Southern Mills, Inc. | Reflective Printing on Flame Resistant Fabrics |
| US7713891B1 (en) | 2007-06-19 | 2010-05-11 | Milliken & Company | Flame resistant fabrics and process for making |
| WO2010060943A1 (en) * | 2008-11-26 | 2010-06-03 | Dsm Ip Assets B.V. | Thermoregulating, cut-resistant yarn and fabric |
| WO2011008486A3 (en) * | 2009-06-29 | 2011-03-31 | Drifire, Llc | Protective fabrics and garments |
| US8012890B1 (en) | 2007-06-19 | 2011-09-06 | Milliken & Company | Flame resistant fabrics having a high synthetic content and process for making |
| WO2012068600A1 (en) * | 2010-11-24 | 2012-05-31 | Lenzing Ag | Flame resistant fabric for protective clothing |
| CN102505269A (en) * | 2011-11-01 | 2012-06-20 | 常熟新诚鑫织造有限公司 | Blending dustproof plus material |
| EP2563959A1 (en) * | 2010-04-30 | 2013-03-06 | Deutsche Institute für Textil- und Faserforschung Denkendorf | Hybrid yarn for producing molded parts |
| WO2013151753A1 (en) * | 2012-04-04 | 2013-10-10 | Drifire, Llc | Fiber blends for dual hazard and comfort properties |
| CN103541079A (en) * | 2013-10-06 | 2014-01-29 | 太原理工大学 | High-strength, flame-retardant and antistatic blended yarn and production method thereof |
| EP2650415A4 (en) * | 2010-12-09 | 2014-07-02 | Kaneka Corp | Arc protection work clothing containing acrylic fibers |
| US20140196201A1 (en) * | 2013-01-16 | 2014-07-17 | Guangdong Kingtide Development Co., Ltd. | Spinning, cheese dyeing, knitting and weaving process of a high performance flame-resistant modacrylic/cotton safety apparel fabric |
| US20140261852A1 (en) * | 2013-03-13 | 2014-09-18 | Springfield Llc | Flame-Resistant Fiber Blend, Yarn, and Fabric, and Method for Making Same |
| WO2015025948A1 (en) * | 2013-08-23 | 2015-02-26 | 株式会社カネカ | Flame-retardant fabric, method for producing same and fire protective clothes comprising same |
| US9034777B2 (en) | 2010-07-29 | 2015-05-19 | Drifire, Llc | Fire resistant woven fabrics and garments |
| US20150322598A1 (en) * | 2014-05-08 | 2015-11-12 | Southern Mills, Inc. | Flame resistant fabric having wool blends |
| US20160060809A1 (en) * | 2014-08-29 | 2016-03-03 | Drifire, Llc | Lightweight, arc-rated, dyeable fabrics |
| US20160059050A1 (en) * | 2014-09-02 | 2016-03-03 | Lapco Manufacturing, Inc. | Light-weight, flame-resistant coveralls with knitted, stretchable portion for upper torso |
| CN105495750A (en) * | 2014-09-22 | 2016-04-20 | 株式会社钟化 | Flame-retardant cloth and protective garment comprising same |
| WO2016114984A1 (en) * | 2015-01-12 | 2016-07-21 | Invista North America S.Ar.L. | Flame resistant fabric |
| US20160237594A1 (en) * | 2010-04-21 | 2016-08-18 | Mmi-Ipco, Llc | Flame Resistant Fiber Blends and Flame Resistant Yarns, Fabrics, and Garments Formed Thereof |
| CN106948073A (en) * | 2017-04-21 | 2017-07-14 | 江阴芗菲服饰有限公司 | Flame-retardant acrylic fibre cotton blended knitted fabric |
| WO2017150341A1 (en) | 2016-03-04 | 2017-09-08 | 株式会社カネカ | Fabric for electric-arc protective clothing, and electric-arc protective clothing |
| US10183465B1 (en) | 2010-11-22 | 2019-01-22 | Samtech, Llc | Fabric product having flame resistant properties |
| US10202720B2 (en) | 2009-10-21 | 2019-02-12 | Milliken & Company | Flame resistant textile |
| WO2019147164A1 (en) * | 2018-01-26 | 2019-08-01 | Общество с Ограниченной Ответственностью "Фабрика Нетканых Материалов "Весь Мир" | Non-woven insulating fire-resistant material for clothing |
| US10577724B2 (en) | 2015-01-06 | 2020-03-03 | Kaneka Corporation | Arc resistant acrylic fiber, fabric for arc-protective clothing, and arc protective clothing |
| CN111534909A (en) * | 2020-03-06 | 2020-08-14 | 钱俊瑜 | A high-visibility flame-retardant acrylic knitted blended fabric |
| US20210102315A1 (en) * | 2019-10-03 | 2021-04-08 | Milliken & Company | Flame Retardant Support Article |
| WO2021236872A1 (en) * | 2020-05-20 | 2021-11-25 | Glen Raven, Inc. | Fabrics including a single-ply yarn and/or having low picks per inch or low courses per inch |
| CN114026275A (en) * | 2019-03-28 | 2022-02-08 | 南磨房公司 | Flame-retardant fabric |
| AT17540U1 (en) * | 2018-01-26 | 2022-07-15 | Obshchestvo S Ogranichennoj Otvetstvennostyu Fabrika Netkanyh Mat Wes Mir | Non-woven heat-insulating fireproof material for clothing |
| US11598027B2 (en) | 2019-12-18 | 2023-03-07 | Patrick Yarn Mills, Inc. | Methods and systems for forming a composite yarn |
| US20230257917A1 (en) * | 2022-07-01 | 2023-08-17 | Xinxiang Xinke Protective Technology Co ., Ltd | High-efficiency flame-retardant, light, thin and soft multi-fiber blended fabric and preparation method thereof |
| US11761124B1 (en) * | 2021-09-09 | 2023-09-19 | Milliken & Company | Elastic flame-resistant fabric |
| WO2023192257A1 (en) * | 2022-03-30 | 2023-10-05 | Ptw Holdings, Llc | Flame resistant fabric comprising a ptw fiber blend |
| GB2620660A (en) * | 2022-07-14 | 2024-01-17 | Pbs Innovations Ltd | Fabric material suitable for intervention apparatus for inhibiting challenging behaviour |
| US11891731B2 (en) | 2021-08-10 | 2024-02-06 | Southern Mills, Inc. | Flame resistant fabrics |
| NO20220886A1 (en) * | 2022-08-17 | 2024-02-19 | Daletec As | Flame retardant fabric and apparel |
| US20240102212A1 (en) * | 2015-10-21 | 2024-03-28 | Southern Mills, Inc. | Lightweight, Printable Flame Resistant Fabrics Suitable for Protective Clothing Worn in Hot and/or Humid Environments |
| US11946173B2 (en) | 2020-05-20 | 2024-04-02 | Glen Raven, Inc. | Yarns and fabrics including modacrylic fibers |
| US12247329B2 (en) | 2019-09-04 | 2025-03-11 | Milliken & Company | Flame-resistant fabric |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4920000A (en) * | 1989-04-28 | 1990-04-24 | E. I. Du Pont De Nemours And Company | Blend of cotton, nylon and heat-resistant fibers |
| US4996099A (en) * | 1989-10-27 | 1991-02-26 | Springs Industries, Inc. | Fire-resistant fabric |
| US5208105A (en) * | 1984-10-05 | 1993-05-04 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Flame-retarded composite fiber |
| US5223334A (en) * | 1990-05-25 | 1993-06-29 | E. I. Du Pont De Nemours And Company | Electric arc resistant lightweight fabrics |
| US5236769A (en) * | 1991-02-25 | 1993-08-17 | Lainiere De Picardie | Fire-resistant composite lining for a garment |
| US6132476A (en) * | 1998-04-20 | 2000-10-17 | Southern Mills, Inc. | Flame and shrinkage resistant fabric blends and method for making same |
| US20010009832A1 (en) * | 1998-09-28 | 2001-07-26 | Shaffer Donald E. | Flame resistant fabrics |
| US6287686B1 (en) * | 2000-05-31 | 2001-09-11 | Chapman Thermal Products, Inc. | Fire retardant and heat resistant yarns and fabrics made therefrom |
| US6489256B1 (en) * | 1997-09-26 | 2002-12-03 | George M. Kent | Fire escape blanket and other melamine resin containing compositions and products with fire blocking properties |
| US6575025B1 (en) * | 1999-09-24 | 2003-06-10 | Schlumberger Technology Corporation | Method and apparatus for measuring forces in the presence of external pressure |
| US6626964B1 (en) * | 1998-04-20 | 2003-09-30 | Clyde C. Lunsford | Flame and shrinkage resistant fabric blends |
| US20040060119A1 (en) * | 2002-10-01 | 2004-04-01 | Spungold, Inc. | Composite fire barrier and thermal insulation fabric for mattresses and mattress foundations |
| US6787228B2 (en) * | 2001-05-09 | 2004-09-07 | Glen Raven, Inc. | Flame-resistant and high visibility fabric and apparel formed therefrom |
| US20040192134A1 (en) * | 2001-05-09 | 2004-09-30 | Gibson Richard M. | Flame-resistant and high visibility fabric and apparel formed therefrom |
| US20050025963A1 (en) * | 2003-07-28 | 2005-02-03 | Reiyao Zhu | Flame retardant fiber blends comprising modacrylic fibers and fabrics and garments made therefrom |
-
2005
- 2005-06-22 US US11/159,379 patent/US20060292953A1/en not_active Abandoned
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5208105A (en) * | 1984-10-05 | 1993-05-04 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Flame-retarded composite fiber |
| US4920000A (en) * | 1989-04-28 | 1990-04-24 | E. I. Du Pont De Nemours And Company | Blend of cotton, nylon and heat-resistant fibers |
| US4996099A (en) * | 1989-10-27 | 1991-02-26 | Springs Industries, Inc. | Fire-resistant fabric |
| US5223334A (en) * | 1990-05-25 | 1993-06-29 | E. I. Du Pont De Nemours And Company | Electric arc resistant lightweight fabrics |
| US5236769A (en) * | 1991-02-25 | 1993-08-17 | Lainiere De Picardie | Fire-resistant composite lining for a garment |
| US6489256B1 (en) * | 1997-09-26 | 2002-12-03 | George M. Kent | Fire escape blanket and other melamine resin containing compositions and products with fire blocking properties |
| US6132476A (en) * | 1998-04-20 | 2000-10-17 | Southern Mills, Inc. | Flame and shrinkage resistant fabric blends and method for making same |
| US6547835B1 (en) * | 1998-04-20 | 2003-04-15 | Southern Mills, Inc. | Flame and shrinkage resistant fabric blends and method for making same |
| US6626964B1 (en) * | 1998-04-20 | 2003-09-30 | Clyde C. Lunsford | Flame and shrinkage resistant fabric blends |
| US6818024B2 (en) * | 1998-04-20 | 2004-11-16 | Southern Mills, Inc. | Flame and shrinkage resistant fabric blends and method for making same |
| US20010009832A1 (en) * | 1998-09-28 | 2001-07-26 | Shaffer Donald E. | Flame resistant fabrics |
| US6575025B1 (en) * | 1999-09-24 | 2003-06-10 | Schlumberger Technology Corporation | Method and apparatus for measuring forces in the presence of external pressure |
| US6287686B1 (en) * | 2000-05-31 | 2001-09-11 | Chapman Thermal Products, Inc. | Fire retardant and heat resistant yarns and fabrics made therefrom |
| US6787228B2 (en) * | 2001-05-09 | 2004-09-07 | Glen Raven, Inc. | Flame-resistant and high visibility fabric and apparel formed therefrom |
| US20040192134A1 (en) * | 2001-05-09 | 2004-09-30 | Gibson Richard M. | Flame-resistant and high visibility fabric and apparel formed therefrom |
| US20040060119A1 (en) * | 2002-10-01 | 2004-04-01 | Spungold, Inc. | Composite fire barrier and thermal insulation fabric for mattresses and mattress foundations |
| US20050025963A1 (en) * | 2003-07-28 | 2005-02-03 | Reiyao Zhu | Flame retardant fiber blends comprising modacrylic fibers and fabrics and garments made therefrom |
Cited By (75)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100024103A1 (en) * | 2004-08-18 | 2010-02-04 | Southern Mills, Inc. | Reflective Printing on Flame Resistant Fabrics |
| US7987521B2 (en) * | 2005-05-02 | 2011-08-02 | Riverside Manufacturing Company | Shirt with reinforced front |
| US20090205101A1 (en) * | 2005-05-02 | 2009-08-20 | Vereen William C | Shirt with Reinforced Front |
| US20170167058A1 (en) * | 2006-08-31 | 2017-06-15 | Southern Mills, Inc. | Flame resistant fabrics and garments made from same |
| US9765454B2 (en) * | 2006-08-31 | 2017-09-19 | Southern Mills, Inc. | Flame resistant fabrics and garments made from same |
| US20080057807A1 (en) * | 2006-08-31 | 2008-03-06 | Southern Mills, Inc. | Flame resistant fabrics and garments made from same |
| US20150086758A1 (en) * | 2006-08-31 | 2015-03-26 | Southern Mills, Inc. | Flame Resistant Fabrics and Garments Made from Same |
| US20100112312A1 (en) * | 2006-08-31 | 2010-05-06 | Southern Mills, Inc. | Flame Resistant Fabrics and Garments Made From Same |
| US20080152888A1 (en) * | 2006-09-08 | 2008-06-26 | Southern Mills, Inc. | Methods and Systems for Providing Dyed, Stretchable Flame Resistant Fabrics and Garments |
| US20080295232A1 (en) * | 2007-05-08 | 2008-12-04 | Southern Mills, Inc. | Systems and methods for dyeing inherently flame resistant fibers without using accelerants or carriers |
| US9091020B2 (en) | 2007-06-19 | 2015-07-28 | Milliken & Company | Flame resistant fabrics and process for making |
| US8012891B2 (en) | 2007-06-19 | 2011-09-06 | Milliken & Company | Flame resistant fabrics and process for making |
| US20100210162A1 (en) * | 2007-06-19 | 2010-08-19 | Shulong Li | Flame resistant fabrics and process for making |
| US7713891B1 (en) | 2007-06-19 | 2010-05-11 | Milliken & Company | Flame resistant fabrics and process for making |
| US8012890B1 (en) | 2007-06-19 | 2011-09-06 | Milliken & Company | Flame resistant fabrics having a high synthetic content and process for making |
| CN102215977B (en) * | 2007-07-17 | 2017-04-05 | 因温斯特技术公司 | Knitted fabrics with improved thermal protection properties and base garments made therefrom |
| US20090019624A1 (en) * | 2007-07-17 | 2009-01-22 | Invista North America S.A. R.L. | Knit fabrics and base layer garments made therefrom with improved thermal protective properties |
| WO2009012266A3 (en) * | 2007-07-17 | 2009-04-23 | Invista Tech Sarl | Knit fabrics and base layer garments made therefrom with improved thermal protective properties |
| US10072365B2 (en) * | 2007-07-17 | 2018-09-11 | Invista North America S.A.R.L. | Knit fabrics and base layer garments made therefrom with improved thermal protective properties |
| RU2494179C2 (en) * | 2007-07-17 | 2013-09-27 | Инвиста Текнолоджиз С.А.Р.Л. | Jersey fabric and clothing of lower layer with improved thermal protective properties made from it |
| US20090094754A1 (en) * | 2007-08-31 | 2009-04-16 | Hall Iii Walter Randall | Foam core article with flexible heat-resistant knitted fabric |
| US20090061717A1 (en) * | 2007-08-31 | 2009-03-05 | Hall Iii Walter Randall | Foam core article with flexible heat-resistant knitted fabric |
| WO2010060943A1 (en) * | 2008-11-26 | 2010-06-03 | Dsm Ip Assets B.V. | Thermoregulating, cut-resistant yarn and fabric |
| WO2011008486A3 (en) * | 2009-06-29 | 2011-03-31 | Drifire, Llc | Protective fabrics and garments |
| US10202720B2 (en) | 2009-10-21 | 2019-02-12 | Milliken & Company | Flame resistant textile |
| US20160237594A1 (en) * | 2010-04-21 | 2016-08-18 | Mmi-Ipco, Llc | Flame Resistant Fiber Blends and Flame Resistant Yarns, Fabrics, and Garments Formed Thereof |
| EP2563959A1 (en) * | 2010-04-30 | 2013-03-06 | Deutsche Institute für Textil- und Faserforschung Denkendorf | Hybrid yarn for producing molded parts |
| EP2598679A4 (en) * | 2010-07-29 | 2018-03-21 | Drifire, LLC | Fire resistant woven fabrics and garments |
| US9034777B2 (en) | 2010-07-29 | 2015-05-19 | Drifire, Llc | Fire resistant woven fabrics and garments |
| US10183465B1 (en) | 2010-11-22 | 2019-01-22 | Samtech, Llc | Fabric product having flame resistant properties |
| WO2012068600A1 (en) * | 2010-11-24 | 2012-05-31 | Lenzing Ag | Flame resistant fabric for protective clothing |
| CN103221595A (en) * | 2010-11-24 | 2013-07-24 | 连津格股份公司 | Flame resistant fabric for protective clothing |
| EP2650415A4 (en) * | 2010-12-09 | 2014-07-02 | Kaneka Corp | Arc protection work clothing containing acrylic fibers |
| CN102505269A (en) * | 2011-11-01 | 2012-06-20 | 常熟新诚鑫织造有限公司 | Blending dustproof plus material |
| WO2013151753A1 (en) * | 2012-04-04 | 2013-10-10 | Drifire, Llc | Fiber blends for dual hazard and comfort properties |
| US20140196201A1 (en) * | 2013-01-16 | 2014-07-17 | Guangdong Kingtide Development Co., Ltd. | Spinning, cheese dyeing, knitting and weaving process of a high performance flame-resistant modacrylic/cotton safety apparel fabric |
| US9765453B2 (en) * | 2013-01-16 | 2017-09-19 | Guangdong Kingtide Development Co., Ltd. | Spinning, cheese dyeing, knitting and weaving process of a high performance flame-resistant modacrylic/cotton safety apparel fabric |
| US9920474B2 (en) * | 2013-03-13 | 2018-03-20 | Milliken & Company | Flame-resistant fiber blend, yarn, and fabric, and method for making same |
| US20140261852A1 (en) * | 2013-03-13 | 2014-09-18 | Springfield Llc | Flame-Resistant Fiber Blend, Yarn, and Fabric, and Method for Making Same |
| WO2015025948A1 (en) * | 2013-08-23 | 2015-02-26 | 株式会社カネカ | Flame-retardant fabric, method for producing same and fire protective clothes comprising same |
| US10450679B2 (en) | 2013-08-23 | 2019-10-22 | Kaneka Corporation | Flame-retardant fabric, method for producing same and fireprotective clothes comprising same |
| CN103541079A (en) * | 2013-10-06 | 2014-01-29 | 太原理工大学 | High-strength, flame-retardant and antistatic blended yarn and production method thereof |
| US10774451B2 (en) * | 2014-05-08 | 2020-09-15 | Southern Mills, Inc. | Flame resistant fabric having wool blends |
| US20150322598A1 (en) * | 2014-05-08 | 2015-11-12 | Southern Mills, Inc. | Flame resistant fabric having wool blends |
| US20180127917A1 (en) * | 2014-08-29 | 2018-05-10 | Drifire Llc | Lightweight, arc-rated, dyeable fabrics |
| US20160060809A1 (en) * | 2014-08-29 | 2016-03-03 | Drifire, Llc | Lightweight, arc-rated, dyeable fabrics |
| US20160059050A1 (en) * | 2014-09-02 | 2016-03-03 | Lapco Manufacturing, Inc. | Light-weight, flame-resistant coveralls with knitted, stretchable portion for upper torso |
| CN105495750A (en) * | 2014-09-22 | 2016-04-20 | 株式会社钟化 | Flame-retardant cloth and protective garment comprising same |
| US10577724B2 (en) | 2015-01-06 | 2020-03-03 | Kaneka Corporation | Arc resistant acrylic fiber, fabric for arc-protective clothing, and arc protective clothing |
| WO2016114984A1 (en) * | 2015-01-12 | 2016-07-21 | Invista North America S.Ar.L. | Flame resistant fabric |
| CN107567510A (en) * | 2015-01-12 | 2018-01-09 | 英威达纺织(英国)有限公司 | Flame-retardant textile |
| US20240102212A1 (en) * | 2015-10-21 | 2024-03-28 | Southern Mills, Inc. | Lightweight, Printable Flame Resistant Fabrics Suitable for Protective Clothing Worn in Hot and/or Humid Environments |
| WO2017150341A1 (en) | 2016-03-04 | 2017-09-08 | 株式会社カネカ | Fabric for electric-arc protective clothing, and electric-arc protective clothing |
| US11198957B2 (en) | 2016-03-04 | 2021-12-14 | Kaneka Corporation | Fabric for electric-arc protective clothing, and electric-arc protective clothing |
| CN108699737A (en) * | 2016-03-04 | 2018-10-23 | 株式会社钟化 | Arc protection takes cloth and silk and arc protection clothes |
| CN106948073A (en) * | 2017-04-21 | 2017-07-14 | 江阴芗菲服饰有限公司 | Flame-retardant acrylic fibre cotton blended knitted fabric |
| AT17540U1 (en) * | 2018-01-26 | 2022-07-15 | Obshchestvo S Ogranichennoj Otvetstvennostyu Fabrika Netkanyh Mat Wes Mir | Non-woven heat-insulating fireproof material for clothing |
| WO2019147164A1 (en) * | 2018-01-26 | 2019-08-01 | Общество с Ограниченной Ответственностью "Фабрика Нетканых Материалов "Весь Мир" | Non-woven insulating fire-resistant material for clothing |
| US11873587B2 (en) | 2019-03-28 | 2024-01-16 | Southern Mills, Inc. | Flame resistant fabrics |
| CN114026275A (en) * | 2019-03-28 | 2022-02-08 | 南磨房公司 | Flame-retardant fabric |
| US12320042B2 (en) | 2019-09-04 | 2025-06-03 | Milliken & Company | Flame-resistant fabric |
| US12247329B2 (en) | 2019-09-04 | 2025-03-11 | Milliken & Company | Flame-resistant fabric |
| US20210102315A1 (en) * | 2019-10-03 | 2021-04-08 | Milliken & Company | Flame Retardant Support Article |
| US11598027B2 (en) | 2019-12-18 | 2023-03-07 | Patrick Yarn Mills, Inc. | Methods and systems for forming a composite yarn |
| CN111534909A (en) * | 2020-03-06 | 2020-08-14 | 钱俊瑜 | A high-visibility flame-retardant acrylic knitted blended fabric |
| US11946173B2 (en) | 2020-05-20 | 2024-04-02 | Glen Raven, Inc. | Yarns and fabrics including modacrylic fibers |
| WO2021236872A1 (en) * | 2020-05-20 | 2021-11-25 | Glen Raven, Inc. | Fabrics including a single-ply yarn and/or having low picks per inch or low courses per inch |
| US11891731B2 (en) | 2021-08-10 | 2024-02-06 | Southern Mills, Inc. | Flame resistant fabrics |
| US12385171B2 (en) | 2021-08-10 | 2025-08-12 | Southern Mills, Inc. | Flame resistant fabrics |
| US11761124B1 (en) * | 2021-09-09 | 2023-09-19 | Milliken & Company | Elastic flame-resistant fabric |
| WO2023192257A1 (en) * | 2022-03-30 | 2023-10-05 | Ptw Holdings, Llc | Flame resistant fabric comprising a ptw fiber blend |
| US12215442B2 (en) | 2022-03-30 | 2025-02-04 | Ptw Holdings, Llc | Flame resistant fabric comprising a PTW fiber blend |
| US20230257917A1 (en) * | 2022-07-01 | 2023-08-17 | Xinxiang Xinke Protective Technology Co ., Ltd | High-efficiency flame-retardant, light, thin and soft multi-fiber blended fabric and preparation method thereof |
| GB2620660A (en) * | 2022-07-14 | 2024-01-17 | Pbs Innovations Ltd | Fabric material suitable for intervention apparatus for inhibiting challenging behaviour |
| NO20220886A1 (en) * | 2022-08-17 | 2024-02-19 | Daletec As | Flame retardant fabric and apparel |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20060292953A1 (en) | Flame-resistant fiber blend, yarn, and fabric, and method for making same | |
| US9920474B2 (en) | Flame-resistant fiber blend, yarn, and fabric, and method for making same | |
| JP5797269B2 (en) | Fireproof fabrics and clothing | |
| CN1665414B (en) | Molten metal resistant fabric | |
| US4920000A (en) | Blend of cotton, nylon and heat-resistant fibers | |
| KR102041835B1 (en) | Fiber blends, yarns, fabrics, and garments for arc and flame protection | |
| KR101722795B1 (en) | Crystallized meta-aramid blends for improved flash fire and superior arc protection | |
| US20050025962A1 (en) | Flame retardant fiber blends comprising flame retardant cellulosic fibers and fabrics and garments made therefrom | |
| US20050025963A1 (en) | Flame retardant fiber blends comprising modacrylic fibers and fabrics and garments made therefrom | |
| KR20110033851A (en) | Crystallized meta-aramid blends for improved sudden fire and arc protection | |
| JP2012528954A (en) | Modacrylic / aramid blends with limited antimony content and antimony-free modacrylic / aramid blends for improved flash fire and arc protection | |
| US20180245251A1 (en) | Wearable protective denim fabrics | |
| US12385171B2 (en) | Flame resistant fabrics | |
| US11293121B2 (en) | Wearable light weight protective apparel | |
| US20050079783A1 (en) | Flame resistant fabrics having high resistance to pilling, and methods of making same | |
| US11761124B1 (en) | Elastic flame-resistant fabric | |
| Ruppenicker et al. | Influence of Cotton Fiber Quality on the Strength Properties of Cotton Fabrics Treated with Flame-resistant and Easy-care Finishes. | |
| JP2023507374A (en) | Flame-retardant fabric with increased strength |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SPRINGFIELD LLC, SOUTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ASHLEY, JOHN E.;FULLER, OSCAR M.;REEL/FRAME:016726/0558 Effective date: 20050617 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |