US20060254683A1 - Polymer-gelled propellant and method for its production - Google Patents
Polymer-gelled propellant and method for its production Download PDFInfo
- Publication number
- US20060254683A1 US20060254683A1 US11/126,845 US12684505A US2006254683A1 US 20060254683 A1 US20060254683 A1 US 20060254683A1 US 12684505 A US12684505 A US 12684505A US 2006254683 A1 US2006254683 A1 US 2006254683A1
- Authority
- US
- United States
- Prior art keywords
- propellant
- gelled
- nanogellant
- monomer
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003380 propellant Substances 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000007788 liquid Substances 0.000 claims abstract description 38
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000002904 solvent Substances 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- NFPDOPYDOVONOM-UHFFFAOYSA-N trimethoxy(1-trimethoxysilylethyl)silane Chemical compound CO[Si](OC)(OC)C(C)[Si](OC)(OC)OC NFPDOPYDOVONOM-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000000178 monomer Substances 0.000 claims description 32
- 239000003349 gelling agent Substances 0.000 claims description 26
- 239000000446 fuel Substances 0.000 claims description 23
- 229920000642 polymer Polymers 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 238000006116 polymerization reaction Methods 0.000 claims description 12
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 10
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000011065 in-situ storage Methods 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 230000000379 polymerizing effect Effects 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 5
- 238000004108 freeze drying Methods 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 239000001294 propane Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000000352 supercritical drying Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 8
- 239000000499 gel Substances 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 238000011066 ex-situ storage Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- DHBZRQXIRAEMRO-UHFFFAOYSA-N 1,1,2,2-tetramethylhydrazine Chemical compound CN(C)N(C)C DHBZRQXIRAEMRO-UHFFFAOYSA-N 0.000 description 2
- NIIPNAJXERMYOG-UHFFFAOYSA-N 1,1,2-trimethylhydrazine Chemical compound CNN(C)C NIIPNAJXERMYOG-UHFFFAOYSA-N 0.000 description 2
- 230000018199 S phase Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- JCGDCINCKDQXDX-UHFFFAOYSA-N trimethoxy(2-trimethoxysilylethyl)silane Chemical compound CO[Si](OC)(OC)CC[Si](OC)(OC)OC JCGDCINCKDQXDX-UHFFFAOYSA-N 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- -1 amine compounds (derivatives of ammonia Chemical class 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000011234 nano-particulate material Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- NTSOKZYWAFFHMB-UHFFFAOYSA-N trimethoxy(2-trimethoxysilylpropan-2-yl)silane Chemical compound CO[Si](OC)(OC)C(C)(C)[Si](OC)(OC)OC NTSOKZYWAFFHMB-UHFFFAOYSA-N 0.000 description 1
- DJYGUVIGOGFJOF-UHFFFAOYSA-N trimethoxy(trimethoxysilylmethyl)silane Chemical compound CO[Si](OC)(OC)C[Si](OC)(OC)OC DJYGUVIGOGFJOF-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B47/00—Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B23/00—Compositions characterised by non-explosive or non-thermic constituents
- C06B23/001—Fillers, gelling and thickening agents (e.g. fibres), absorbents for nitroglycerine
Definitions
- This invention relates generally to rocket propellants and, more particularly, to gelled propellants. It is well known in the field of rocket propulsion that gelled propellants offer significant advantages over solid and liquid propellants. Solid propellants have inherently high energy but offer no mission flexibility because once ignited they must normally be burned to completion. Liquid propellants are less energetic than solids, as measured by specific impulse, but offer high mission flexibility because the flow of liquid fuels can be controlled as desired. Gels combine the advantages of solids and liquids and have additional advantages that are well known to designers of rocket engines for use both in space and within a planet's atmosphere.
- gelled propellants available prior to this invention have been produced by mixing essentially inert solids with liquids.
- a commonly used gellant is silicon dioxide.
- U.S. Pat. No. 6,165,293 entitled “Thixotropic IRFNA Gel,” discloses a gelled monomethyl hydrazine (MMH) fuel in which cellulose is the principal gallant and aluminum is added to increase energy density, and a gelled oxidizer in which the gellant is silicon dioxide and lithium niobate.
- MMH monomethyl hydrazine
- oxidizer gellant is either silicon dioxide, an unspecified metallic oxide, or an unspecified swellable polymer.
- Polymers that are typically considered as gellants for propellants are cellulose or cellulose derivatives.
- the present invention resides in the use of a polymeric gellant that satisfies the physical requirements for a gelled propellant, but also adds energy content to the propellant.
- the invention may be defined as a gelled propellant, comprising a polymeric nanogellant formed from a monomer having molecular properties that promote three-dimensional polymerization; and a propellant to which the polymeric nanogellant is added.
- the resulting gelled propellant has desirable Theological properties and the polymeric nanogellant adds energy content to the propellant.
- Monomers suitable for use in the invention may be generally characterized by the chemical formula: (R a O) 3 Si—C n H 2n-y (NH 2 ) y —Si(OR a ) 3 where:
- the polymeric nanogellant is added directly to the propellant as a monomer and is polymerized in situ to form a gel.
- the propellant is monomethyl hydrazine (MMH) and the monomeric form of the nanogellant is bis-trimethoxysilylethane (BTMSE), which is mixed with the propellant and water.
- MMH monomethyl hydrazine
- BTMSE bis-trimethoxysilylethane
- the propellant catalyzes polymerization of the nanogellant, resulting in the gelled form of the propellant.
- the relative proportions of propellant, monomeric gellant and water are approximately 94%, 5% and 1% by weight, respectively.
- the polymeric nanogellant is polymerized before being added to the propellant.
- the polymenc nanogellant is first polymerized in a solvent different from the propellant, then recovered from the solvent and dried before being added to the propellant as a gellant.
- the monomeric form of the nanogellant may also be bis-trimethoxysilylethane (BTMSE).
- BTMSE bis-trimethoxysilylethane
- the propellant may be monomethyl hydrazine (MMH), or some other liquid fuel, such as a cryogenic liquid fuel.
- the invention may be defined as a method for producing a gelled propellant, comprising the steps of placing a propellant in a reaction vessel; mixing a selected monomer with the propellant in the reaction vessel; and polymerizing the monomer in the reaction vessel, and thereby forming a gelled propellant containing a nanogellant that provides the propellant with desired rheological properties and adds energy content to the propellant.
- the selected monomer is characterized by a molecular structure that promotes formation of a three-dimensional polymer.
- the selected monomer is soluble in the propellant and the propellant catalyzes the polymerizing step.
- the selected monomer is bis-trimethoxysilylethane (BTMSE) and the propellant is monomethyl hydrazine (MMH).
- BTMSE bis-trimethoxysilylethane
- MMH monomethyl hydrazine
- the mixing step mixes the monomer in the amount of approximately 5% by weight of the total mixture, and further adds water in the amount of approximately 1% by weight.
- the invention comprises the steps of placing a selected monomer in a reaction vessel with a selected solvent; polymerizing the selected monomer in the reaction vessel, to produce a nanogellant polymer in solution with the selected solvent; recovering the nanogellant polymer from the solvent by a process that utilizes solvent processing or drying methods that effectively reduce or eliminate liquid surface tension during solvent removal and recovery of dry nanogellant materials. These methods include: use of surfactants, freeze drying or solvent sublimation, and super-critical or near critical point fluid processing; and dispersing the recovered nanogellant polymer in a selected propellant to form a gelled propellant.
- the selected monomer may be bis-trimethoxysilylethane (BTMSE) and the propellant may be monomethyl hydrazine (MMH).
- BTMSE bis-trimethoxysilylethane
- MMH monomethyl hydrazine
- the propellant may also be selected from other liquids, such as other forms of hydrazine and such as cryogenic liquid fuels, including liquid propane or liquid ethane.
- the invention provides a significant advance in the field of propellants for rocket engines and the like.
- the invention provides a technique for gelling liquid propellant fuels and oxidizers using a gellant of nanometer proportions, which provides desirable rheological and other physical properties not obtainable using conventional gallants.
- FIG. 1 is graph showing the rheological properties of monomethyl hydrazine (MMH) propellant that has been gelled in accordance with the invention, using bis-trimethoxysilylethane (BTMSE) as the gellant.
- MMH monomethyl hydrazine
- BTMSE bis-trimethoxysilylethane
- FIG. 2 is diagram showing the chemical structure of bis-trimethoxysilylethane (BTMSE) before and after polymerization.
- FIG. 3 is a temperature-pressure phase diagram showing recovery of nanoparticulate gellant by solvent sublimation/freeze dry and critical fluid processing techniques.
- FIG. 4 is a pair of graphs showing the rheological properties of cryogenic fuels, namely liquid propane and liquid ethane, which have been gelled in accordance with the invention using bis-trimethoxysilylethane (BTMSE) as a gellant.
- BTMSE bis-trimethoxysilylethane
- the present invention is concerned with gelled rocket fuels.
- gellants for rocket propellants have been formed by mixing practically inert solid particles in suspension with a liquid propellant. Although these mixtures or suspensions have provided the desired physical properties of a gelled propellant, they have not added energy content to the fuel, which therefore does not perform as efficiently as it might.
- a gelled propellant is produced using a polymeric gellant that also adds energy content to the fuel.
- the gellant is formed by a process of polymerization that takes place in the liquid fuel itself. This is referred as the in-situ method.
- the polymeric gellant is formed separately and later added to the fuel. This is referred to as the ex-situ method.
- the polymer gellant material is produced directly in the liquid propellant by carrying out a polymerization reaction involving a selected monomer species dissolved in the liquid rocket propellant.
- the liquid propellant is thereby converted to a semi-solid or gel, which consists of a meso-porous nano-fibril structure with entrapped liquid.
- the gel exhibits a low yield stress compared with regular solids but it is sufficient for stably dispersing micrometer-scale and larger-scale metal and other energetic solids in the liquid propellant.
- the monomer is converted to the nanofibril structure during the course of the polymerization reaction and typically no further processing is required, except perhaps for the addition and mixing of other energetic materials.
- the liquid rocket propellant may be a monopropellant such as hydrazine, either mono-, di-, tri-, or tetra-methyl hydrazine, or one of the fuel-oxidizer components for a bipropellant system, such as the fuels designated RJ-4, RJ-5, RJ-7, JP-4, JP-5, JP-9, JP-10.
- a monopropellant such as hydrazine
- RJ-7 fuels designated RJ-4, RJ-5, RJ-7, JP-4, JP-5, JP-9, JP-10.
- An efficacious gelling agent for mono-methyl hydrazine (MMH) is the in-situ polymer derived from the hydrolysis and condensation polymerization reaction of bis-trimethoxysilylethane (BTMSE) as shown in the following equation: n(CH 3 O) 3 Si—CH 2 —CH 2 —Si(OCH 3 ) 3 +3nH 2 O ⁇ Polymer (Si 2 C 2 H 4 O 3 ) n +6nCH 3 OH
- the in-situ grown polymer is able to produce a clear MMH gel at polymer concentrations as low as 5% by weight, and unlike silica gellants has a combustion enthalpy that adds energy content to the propellant.
- the polymerization reaction is carried out at ambient temperatures and requires a low moisture content for initiation and completion. Typical rheological properties for the MMH gel are presented in FIG. 1 .
- One of the four possible chains provides a link to a C 2 H 4 group and the other three provide links to oxygen atoms.
- the tetrafunctional property of the structure allows it to grow efficiently in three dimensions and provide the desired mechanical gelling properties.
- the initial concentration of water in the MMH is determined, preferably using a gas chromatographic method.
- An amount of water to add to the MMH is then calculated to make the final mix 1.0% percent by weight water.
- the gelling of the MMH is then carried out in a manner to exclude exposure to atmospheric moisture, carbon dioxide and oxygen. These gases can be absorbed by the MMH and detract from its value as an eventual fuel.
- the polymerization reaction is carried out in a different solvent from the liquid propellant itself and the nanometer particulate reaction product is subsequently recovered from this reaction medium or some exchange solvent in a manner that preserves its high specific surface area and morphological structure.
- the recovered dried nanoparticulate material may then be re-dispersed in the desired rocket propellant to produce a gelled propellant.
- Nanoparticulate recovery in the ex-situ method uses either a drying process or a solvent elimination process in which the liquid surface tension forces are minimized or near completely eliminated. This is accomplished by taking advantage of the solvent's phase diagram and operating in a cyclic manner around either the reaction medium's or exchange solvent's triple or critical points. In FIG.
- the paths ABCD and AB′C′ are possible temperature-pressure cycles around a triple point (TP) and a critical point (CP), respectively, in the solvent's phase diagram.
- TP triple point
- CP critical point
- These product recovery methods are commonly referred to as freeze drying and critical point drying.
- surfactants or solvents with inherently very low surface tensions under ordinary ambient conditions may be used, provided these materials are selected to be effective and compatible with the monomer and polymer products.
- FIG. 4 shows the rheological properties of ethane and propane fuels after gelling with BTMSE gellant in accordance with the ex-situ method described above.
- MMH monomethyl hydrazine
- other propellants such as hydrazine, di-methyl hydrazine, tri-methyl hydrazine and tetra-methyl hydrazine
- cryogenic propellants such as liquid methane, liquid ethane, liquid butane and liquid hydrogen may also be used.
- the present invention represents a significant advance in the field of gelled rocket propellants.
- the invention provides a gellant that can be produced either in situ to form a gel in certain categories of fuels, such as monomethyl hydrazine, or the gellant can be produced ex situ and added to various fuels. Regardless of which technique is used to produce the gelled fuel, it has desirable rheological properties that render it more useful than liquid fuels. It will also be appreciated that, although specific embodiments of the invention have been described in detail for purposes of illustration, various modifications may be made without departing from the spirit and scope of the invention. Accordingly, the invention should not be limited except as by the appended claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Silicon Polymers (AREA)
Abstract
A liquid propellant is converted to a gelled propellant by use of a nanogellant material having a three-dimensional polymeric structure that either is formed in the propellant itself, or is formed separately from the propellant and later dispersed in the propellant. In one form of the invention, the nanogellant material is bis-trimethoxysilylethane (BTMSE), which, when mixed with a suitable liquid propellant, such as monomethyl hydrazine (MMH), in the presence of water, polymerizes to form a gelled propellant with desirable properties. In the other form of the invention, the nanogellant is polymerized in a solvent separate from the propellant, and is then recovered from the solvent and redispersed in the propellant.
Description
- This invention relates generally to rocket propellants and, more particularly, to gelled propellants. It is well known in the field of rocket propulsion that gelled propellants offer significant advantages over solid and liquid propellants. Solid propellants have inherently high energy but offer no mission flexibility because once ignited they must normally be burned to completion. Liquid propellants are less energetic than solids, as measured by specific impulse, but offer high mission flexibility because the flow of liquid fuels can be controlled as desired. Gels combine the advantages of solids and liquids and have additional advantages that are well known to designers of rocket engines for use both in space and within a planet's atmosphere.
- Although the advantages of gelled propellants are widely appreciated, gelled propellants available prior to this invention have been produced by mixing essentially inert solids with liquids. A commonly used gellant is silicon dioxide. U.S. Pat. No. 6,165,293 entitled “Thixotropic IRFNA Gel,” discloses a gelled monomethyl hydrazine (MMH) fuel in which cellulose is the principal gallant and aluminum is added to increase energy density, and a gelled oxidizer in which the gellant is silicon dioxide and lithium niobate. U.S. Pat. No. 6,063,219 entitled “Higher Density Inhibited Red Fuming Nitric Acid (IRFNA) Oxidizer Gel,” discloses an oxidizer gellant is either silicon dioxide, an unspecified metallic oxide, or an unspecified swellable polymer. Polymers that are typically considered as gellants for propellants are cellulose or cellulose derivatives.
- Because the materials previously considered as gellants add little or nothing to the energy content of a gelled fuel, there is still a significant need for a gelled propellant that uses a gellant with a combustion enthalpy that adds energy content to the propellant, as well as serving to form a gel that supports the uniform suspension of other materials added to load the propellant with more dense particles. The present invention satisfies this need.
- The present invention resides in the use of a polymeric gellant that satisfies the physical requirements for a gelled propellant, but also adds energy content to the propellant. Briefly, and in general terms, the invention may be defined as a gelled propellant, comprising a polymeric nanogellant formed from a monomer having molecular properties that promote three-dimensional polymerization; and a propellant to which the polymeric nanogellant is added. The resulting gelled propellant has desirable Theological properties and the polymeric nanogellant adds energy content to the propellant.
- Monomers suitable for use in the invention may be generally characterized by the chemical formula:
(RaO)3Si—CnH2n-y(NH2)y—Si(ORa)3
where: -
- Ra═—CH3, —C2H5, or —C3H7,
- 2≦n≦6, and
- y≦2n.
- In one embodiment of the invention, the polymeric nanogellant is added directly to the propellant as a monomer and is polymerized in situ to form a gel. More specifically, in one disclosed example of the invention the propellant is monomethyl hydrazine (MMH) and the monomeric form of the nanogellant is bis-trimethoxysilylethane (BTMSE), which is mixed with the propellant and water. The propellant catalyzes polymerization of the nanogellant, resulting in the gelled form of the propellant. By way of example, the relative proportions of propellant, monomeric gellant and water are approximately 94%, 5% and 1% by weight, respectively.
- In another embodiment of the invention, the polymeric nanogellant is polymerized before being added to the propellant. The polymenc nanogellant is first polymerized in a solvent different from the propellant, then recovered from the solvent and dried before being added to the propellant as a gellant. In this embodiment of the invention, the monomeric form of the nanogellant may also be bis-trimethoxysilylethane (BTMSE). The propellant may be monomethyl hydrazine (MMH), or some other liquid fuel, such as a cryogenic liquid fuel.
- In terms of a novel method, the invention may be defined as a method for producing a gelled propellant, comprising the steps of placing a propellant in a reaction vessel; mixing a selected monomer with the propellant in the reaction vessel; and polymerizing the monomer in the reaction vessel, and thereby forming a gelled propellant containing a nanogellant that provides the propellant with desired rheological properties and adds energy content to the propellant.
- More specifically, the selected monomer is characterized by a molecular structure that promotes formation of a three-dimensional polymer. For this embodiment of the invention, the selected monomer is soluble in the propellant and the propellant catalyzes the polymerizing step. In a disclosed example of the method, the selected monomer is bis-trimethoxysilylethane (BTMSE) and the propellant is monomethyl hydrazine (MMH). More specifically, the mixing step mixes the monomer in the amount of approximately 5% by weight of the total mixture, and further adds water in the amount of approximately 1% by weight.
- In accordance with a second embodiment of the method, the invention comprises the steps of placing a selected monomer in a reaction vessel with a selected solvent; polymerizing the selected monomer in the reaction vessel, to produce a nanogellant polymer in solution with the selected solvent; recovering the nanogellant polymer from the solvent by a process that utilizes solvent processing or drying methods that effectively reduce or eliminate liquid surface tension during solvent removal and recovery of dry nanogellant materials. These methods include: use of surfactants, freeze drying or solvent sublimation, and super-critical or near critical point fluid processing; and dispersing the recovered nanogellant polymer in a selected propellant to form a gelled propellant. In this embodiment of the method, the selected monomer may be bis-trimethoxysilylethane (BTMSE) and the propellant may be monomethyl hydrazine (MMH). However, the propellant may also be selected from other liquids, such as other forms of hydrazine and such as cryogenic liquid fuels, including liquid propane or liquid ethane.
- It will be appreciated from this brief summary that the invention provides a significant advance in the field of propellants for rocket engines and the like. In particular, the invention provides a technique for gelling liquid propellant fuels and oxidizers using a gellant of nanometer proportions, which provides desirable rheological and other physical properties not obtainable using conventional gallants. Other aspects and advantages of the invention will become apparent from the following more detailed description, taken in conjunction with the drawings.
-
FIG. 1 is graph showing the rheological properties of monomethyl hydrazine (MMH) propellant that has been gelled in accordance with the invention, using bis-trimethoxysilylethane (BTMSE) as the gellant. -
FIG. 2 is diagram showing the chemical structure of bis-trimethoxysilylethane (BTMSE) before and after polymerization. -
FIG. 3 is a temperature-pressure phase diagram showing recovery of nanoparticulate gellant by solvent sublimation/freeze dry and critical fluid processing techniques. -
FIG. 4 is a pair of graphs showing the rheological properties of cryogenic fuels, namely liquid propane and liquid ethane, which have been gelled in accordance with the invention using bis-trimethoxysilylethane (BTMSE) as a gellant. - As shown in the drawings by way of illustration, the present invention is concerned with gelled rocket fuels. In the past, gellants for rocket propellants have been formed by mixing practically inert solid particles in suspension with a liquid propellant. Although these mixtures or suspensions have provided the desired physical properties of a gelled propellant, they have not added energy content to the fuel, which therefore does not perform as efficiently as it might.
- In accordance with the present invention, a gelled propellant is produced using a polymeric gellant that also adds energy content to the fuel. There are two basic embodiments of the invention. In one embodiment, the gellant is formed by a process of polymerization that takes place in the liquid fuel itself. This is referred as the in-situ method. In the other embodiment, the polymeric gellant is formed separately and later added to the fuel. This is referred to as the ex-situ method.
- In the in-situ method, the polymer gellant material is produced directly in the liquid propellant by carrying out a polymerization reaction involving a selected monomer species dissolved in the liquid rocket propellant. The liquid propellant is thereby converted to a semi-solid or gel, which consists of a meso-porous nano-fibril structure with entrapped liquid. The gel exhibits a low yield stress compared with regular solids but it is sufficient for stably dispersing micrometer-scale and larger-scale metal and other energetic solids in the liquid propellant. The monomer is converted to the nanofibril structure during the course of the polymerization reaction and typically no further processing is required, except perhaps for the addition and mixing of other energetic materials. With the in-situ approach, the liquid rocket propellant may be a monopropellant such as hydrazine, either mono-, di-, tri-, or tetra-methyl hydrazine, or one of the fuel-oxidizer components for a bipropellant system, such as the fuels designated RJ-4, RJ-5, RJ-7, JP-4, JP-5, JP-9, JP-10. These are fuels specified by the US military for various ram-jet (RJ) and other jet engine powered missiles.
- An efficacious gelling agent for mono-methyl hydrazine (MMH) is the in-situ polymer derived from the hydrolysis and condensation polymerization reaction of bis-trimethoxysilylethane (BTMSE) as shown in the following equation:
n(CH3O)3Si—CH2—CH2—Si(OCH3)3+3nH2O→Polymer (Si2C2H4O3)n+6nCH3OH - The in-situ grown polymer is able to produce a clear MMH gel at polymer concentrations as low as 5% by weight, and unlike silica gellants has a combustion enthalpy that adds energy content to the propellant. The polymerization reaction is carried out at ambient temperatures and requires a low moisture content for initiation and completion. Typical rheological properties for the MMH gel are presented in
FIG. 1 . - The preparation of gelled monomethyl hydrazine (MMH) using 1,2 Bis(trimethoxysilyl)ethane is based on the equation above, which has been rewritten in different form as follows: Si2C8O6H22+3H2O→6CH3OH+Si2C2H4O3 The three-dimensional polymerization of this reaction is depicted in
FIG. 2 . It should be noted that the high effective pH of MMH catalyzes the reaction. In addition, the polymerization requires water and produces methanol (CH3OH). It will be observed from the diagrammatic representation of the polymer structure that each of the silicon atoms in the structure provides tetrafunctional branch points from which four linear chains emanate. One of the four possible chains provides a link to a C2H4 group and the other three provide links to oxygen atoms. The tetrafunctional property of the structure allows it to grow efficiently in three dimensions and provide the desired mechanical gelling properties. Prior to gelling the MMH, the initial concentration of water in the MMH is determined, preferably using a gas chromatographic method. An amount of water to add to the MMH is then calculated to make the final mix 1.0% percent by weight water. The gelling of the MMH is then carried out in a manner to exclude exposure to atmospheric moisture, carbon dioxide and oxygen. These gases can be absorbed by the MMH and detract from its value as an eventual fuel. - Working in an inert atmosphere (void of moisture, carbon dioxide and oxygen) the weight percentages of the ingredients listed in Table 1 (below) are combined. The mixture is stirred and allowed to react for 24 hours at ambient temperature. The mixture must be stored in a container that is compatible with the ingredients and prevents exposure to atmospheric moisture, carbon dioxide and oxygen.
TABLE 1 Ingredients of Gelled MMW Monomethyl Hydrazine 94% wt/ wt 1,2 Bis(trimethoxysilyl)ethane 5.0% wt/wt Water (total) 1.0% wt/wt - In the ex-situ method, the polymerization reaction is carried out in a different solvent from the liquid propellant itself and the nanometer particulate reaction product is subsequently recovered from this reaction medium or some exchange solvent in a manner that preserves its high specific surface area and morphological structure. The recovered dried nanoparticulate material may then be re-dispersed in the desired rocket propellant to produce a gelled propellant. Nanoparticulate recovery in the ex-situ method uses either a drying process or a solvent elimination process in which the liquid surface tension forces are minimized or near completely eliminated. This is accomplished by taking advantage of the solvent's phase diagram and operating in a cyclic manner around either the reaction medium's or exchange solvent's triple or critical points. In
FIG. 3 , the paths ABCD and AB′C′ are possible temperature-pressure cycles around a triple point (TP) and a critical point (CP), respectively, in the solvent's phase diagram. These product recovery methods are commonly referred to as freeze drying and critical point drying. Alternatively, surfactants or solvents with inherently very low surface tensions under ordinary ambient conditions may be used, provided these materials are selected to be effective and compatible with the monomer and polymer products. - In the gellant synthesis procedure, a dilute solution of BTMSE in ethanol is prepared, a small quantity of water is added and the reaction mixture warmed to approximately 60° C. and allowed to react at this temperature for approximately 12 hours. A soft alcohol gel is formed. To recover the nanogellant via freeze drying, the alcogel is exchanged with water and then frozen and sublimated at −10° C. Recovery of nanogellant via critical fluid processing requires exchanging alcohol with liquid carbon dioxide (critical temperature 33° C.) or some other fluid with a conveniently low critical temperature in a pressure vessel. Upon exchange of alcohol, the temperature of the CO2-exchanged gel is raised to 40° C. and the elevated pressure allowed to vent slowly. Other exchange fluids with conveniently low critical temperatures may also be used in place of CO2.
-
FIG. 4 shows the rheological properties of ethane and propane fuels after gelling with BTMSE gellant in accordance with the ex-situ method described above. - It will be understood that the foregoing examples of the invention have focused for purposes of illustration on the use of BTMSE as a suitable monomer. Many other monomers also fall within the scope of the invention, including, for example, bis-trimethoxysilylmethane, bis-trimethoxysilylpropane, and so forth, and also including various amine compounds (derivatives of ammonia in which one or more hydrogen atoms are replaced by alkyl groups). Monomers suitable for use in the invention may be generally characterized by the chemical formula:
(RaO)3Si—CnH2n-y(NH2)y—Si(ORa)3
where: -
- Ra═—CH3, —C2H5, or —C3H7,
- 2≦n≦6, and
- y≦2n.
- Similarly, although the invention is described by way of example as gelling monomethyl hydrazine (MMH) propellant, it will be understood that other propellants, such as hydrazine, di-methyl hydrazine, tri-methyl hydrazine and tetra-methyl hydrazine, are also candidates for gelling in accordance with the invention. As also mentioned above, cryogenic propellants such as liquid methane, liquid ethane, liquid butane and liquid hydrogen may also be used.
- It will be appreciated from the foregoing that the present invention represents a significant advance in the field of gelled rocket propellants. In particular, the invention provides a gellant that can be produced either in situ to form a gel in certain categories of fuels, such as monomethyl hydrazine, or the gellant can be produced ex situ and added to various fuels. Regardless of which technique is used to produce the gelled fuel, it has desirable rheological properties that render it more useful than liquid fuels. It will also be appreciated that, although specific embodiments of the invention have been described in detail for purposes of illustration, various modifications may be made without departing from the spirit and scope of the invention. Accordingly, the invention should not be limited except as by the appended claims.
Claims (22)
1. A gelled propellant, comprising:
a polymeric nanogellant formed from a monomer having molecular properties that promote three-dimensional polymerization; and
a propellant to which the polymeric nanogellant is added;
wherein the gelled propellant has desirable Theological properties and the polymeric nanogellant adds energy content to the propellant.
2. A gelled propellant as defined in claim 1 , wherein the monomer is characterized by the chemical formula
(RaO)3Si—CnH2n-y(NH2)y—Si(ORa)3
where:
Ra═—CH3, —C2H5, or —C3H7,
2≦n≦6, and
y≦2n.
3. A gelled propellant as defined in claim 2 , wherein the polymeric nanogellant is added directly to the propellant as a monomer and is polymerized in situ to form a gel.
4. A gelled propellant as defined in claim 3 , wherein:
the propellant is monomethyl hydrazine (MMH);
the monomeric form of the nanogellant is bis-trimethoxysilylethane (BTMSE), which is mixed with the propellant and water; and
the propellant catalyzes polymerization of the nanogellant, resulting in the gelled form of the propellant.
5. A gelled propellant as defined in claim 4 , wherein the proportions of propellant, monomeric gellant and water are approximately 94:5:1 by weight, respectively.
6. A gelled propellant as defined in claim 2 , wherein the polymeric nanogellant is polymerized before being added to the propellant.
7. A gelled propellant as defined in claim 6 , wherein the polymenc nanogellant is polymerized in a solvent different from the propellant, then recovered from the solvent and dried before being added to the propellant as a gellant.
8. A gelled propellant as defined in claim 7 , wherein the monomeric form of the nanogellant is bis-trimethoxysilylethane (BTMSE).
9. A gelled propellant as defined in claim 8 , wherein the propellant is form of hydrazine.
10. A gelled propellant as defined in claim 8 , wherein the propellant is a cryogenic liquid fuel.
11. A method for producing a gelled propellant, comprising:
placing a propellant in a reaction vessel;
mixing a selected monomer with the propellant in the reaction vessel; and
polymerizing the monomer in the reaction vessel, and thereby forming a gelled propellant containing a nanogellant that provides the propellant with desired rheological properties and adds energy content to the propellant.
12. A method as defined in claim 11 , wherein:
the selected monomer is characterized by a molecular structure that promotes formation of a three-dimensional polymer;
the selected monomer is soluble in the propellant; and
the propellant catalyzes the polymerizing step.
13. A method as defined in claim 12 , wherein the monomer is characterized by the chemical formula
(RaO)3Si—CnH2n-y(NH2)y—Si(ORa)3
where:
Ra═—CH3, —C2H5, or —C3H7,
2≦n≦6, and
y≦2n.
14. A method as defined in claim 13 , wherein the selected monomer is bis-trimethoxysilylethane (BTMSE).
15. A method as defined in claim 13 , wherein the propellant is monomethyl hydrazine (MMH).
16. A method as defined in claim 13 , wherein the mixing step mixes the monomer in the amount of approximately 5% by weight of the total mixture, and further adds water in the amount of approximately 1% by weight.
17. A method for producing a gelled propellant, comprising:
placing a selected monomer in a reaction vessel with a selected solvent;
polymerizing the selected monomer in the reaction vessel, to produce a nanogellant polymer in solution with the selected solvent;
recovering the nanogellant polymer from the solvent by a process selected from freeze drying and critical point drying; and
dispersing the recovered nanogellant polymer in a selected propellant to form a gelled propellant.
18. A method as defined in claim 17 , wherein the monomer is characterized by the chemical formula
(RaO)3Si—CnH2n-y(NH2)y—Si(ORa)3
where:
Ra═—CH3, —C2H5, or —C3H7,
2≦n≦6, and
y≦2n.
19. A method as defined in claim 18 , wherein the selected monomer is bis-trimethoxysilylethane (BTMSE).
20. A method as defined in claim 18 , wherein the propellant is a form of hydrazine.
21. A method as defined in claim 18 , wherein the propellant is a cryogenic liquid fuel.
22. A method as defined in claim 21 , wherein the propellant is selected from the group consisting of liquid propane, liquid ethane and liquid methane.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/126,845 US20060254683A1 (en) | 2005-05-10 | 2005-05-10 | Polymer-gelled propellant and method for its production |
| EP06252111A EP1721881A1 (en) | 2005-05-10 | 2006-04-18 | Polymer-gelled propellant and method for its production |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/126,845 US20060254683A1 (en) | 2005-05-10 | 2005-05-10 | Polymer-gelled propellant and method for its production |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060254683A1 true US20060254683A1 (en) | 2006-11-16 |
Family
ID=36791792
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/126,845 Abandoned US20060254683A1 (en) | 2005-05-10 | 2005-05-10 | Polymer-gelled propellant and method for its production |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20060254683A1 (en) |
| EP (1) | EP1721881A1 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3359144A (en) * | 1964-07-23 | 1967-12-19 | Dow Chemical Co | Gelled hydrazine |
| US3652349A (en) * | 1969-08-25 | 1972-03-28 | Susquehanna Corp | Thixotropic gas producing gel |
| US20010041459A1 (en) * | 1995-11-16 | 2001-11-15 | Smith Douglas M. | Polyol-based method for forming thin film aerogels on semiconductor substrates |
| US6397580B1 (en) * | 1998-07-09 | 2002-06-04 | Bi-Propellant Rocket Research Corporation | High performance rocket engine having a stepped expansion combustion chamber and method of making the same |
| US20020104599A1 (en) * | 2000-06-02 | 2002-08-08 | Tillotson Thomas M. | Method for producing nanostructured metal-oxides |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6315971B1 (en) * | 1997-04-09 | 2001-11-13 | Cabot Corporation | Process for producing low density gel compositions |
| DE19810565A1 (en) * | 1998-03-11 | 1999-09-16 | Basf Ag | Economical drying of microporous particles containing fluid e.g. inorganic, organic or polymer gel |
| WO2005028603A1 (en) * | 2003-09-19 | 2005-03-31 | Genencor International, Inc. | Silicate derived sol-gels sensitive to water content change |
| WO2005028604A1 (en) * | 2003-09-19 | 2005-03-31 | Genencor International, Inc. | Silica derived sol-gels sensitive to water content change |
-
2005
- 2005-05-10 US US11/126,845 patent/US20060254683A1/en not_active Abandoned
-
2006
- 2006-04-18 EP EP06252111A patent/EP1721881A1/en not_active Withdrawn
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3359144A (en) * | 1964-07-23 | 1967-12-19 | Dow Chemical Co | Gelled hydrazine |
| US3652349A (en) * | 1969-08-25 | 1972-03-28 | Susquehanna Corp | Thixotropic gas producing gel |
| US20010041459A1 (en) * | 1995-11-16 | 2001-11-15 | Smith Douglas M. | Polyol-based method for forming thin film aerogels on semiconductor substrates |
| US6397580B1 (en) * | 1998-07-09 | 2002-06-04 | Bi-Propellant Rocket Research Corporation | High performance rocket engine having a stepped expansion combustion chamber and method of making the same |
| US20020104599A1 (en) * | 2000-06-02 | 2002-08-08 | Tillotson Thomas M. | Method for producing nanostructured metal-oxides |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1721881A1 (en) | 2006-11-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1321950C (en) | Dinitroamide-based liquid single-component propellant | |
| US6230491B1 (en) | Gas-generating liquid compositions (persol 1) | |
| Florczuk et al. | Performance evaluation of the hypergolic green propellants based on the HTP for a future next generation spacecrafts | |
| US6849247B1 (en) | Gas generating process for propulsion and hydrogen production | |
| KR960703826A (en) | Low Residual Azide-Glass Gas Generator Compositions | |
| WO2001009063A2 (en) | Premixed liquid monopropellant solutions and mixtures | |
| Castaneda et al. | Hypergolic ignition of hydrogen peroxide with various solid fuels | |
| Oyumi | Thermal decomposition of azide polymers | |
| EP0350136B2 (en) | High-performance propellant combinations for a rocket engine | |
| US5611824A (en) | Fullerene jet fuels | |
| US6136113A (en) | Gas generating composition | |
| WO1999032420A1 (en) | Hydrogen peroxide-non-toxic hypergolic miscible fuel bipropellant | |
| Natan et al. | Hypergolic ignition by fuel gellation and suspension of reactive or catalyst particles | |
| US20060254683A1 (en) | Polymer-gelled propellant and method for its production | |
| US6210504B1 (en) | Tertiary amine azides in liquid or gel fuels in gas generator systems | |
| Matsunaga et al. | Aging characteristics of the energetic oxidizer ammonium dinitramide | |
| WO1993001151A1 (en) | Ergols, particularly for propelling missiles such as rockets, and a method for preparing same | |
| US6299654B1 (en) | Amine azides used as monopropellants | |
| US6299711B1 (en) | Gas-generating liquid compositions (OXSOL 3) | |
| Bhosale et al. | Sodium iodide: A trigger for hypergolic ignition of non-toxic fuels with hydrogen peroxide | |
| US5972136A (en) | Liquid propellant | |
| US3613371A (en) | Hypergolic bipropellant propulsion process using boron components | |
| KR20170001638A (en) | Non-toxic hypergolic bipropellant | |
| Natan et al. | Hypergolic ignition of oxidizers and fuels by fuel gelation and suspension of reactive or catalyst particles | |
| US2993335A (en) | Reaction motor fuel |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NORTHROP GRUMMAN CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CROFOOT, THOMAS A.;STARKOVICH, JOHN A.;REEL/FRAME:016557/0112 Effective date: 20050506 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |