US20060199868A1 - Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina - Google Patents
Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina Download PDFInfo
- Publication number
- US20060199868A1 US20060199868A1 US11/415,824 US41582406A US2006199868A1 US 20060199868 A1 US20060199868 A1 US 20060199868A1 US 41582406 A US41582406 A US 41582406A US 2006199868 A1 US2006199868 A1 US 2006199868A1
- Authority
- US
- United States
- Prior art keywords
- retinal
- betaxolol
- vol
- rats
- levobetaxolol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000001525 retina Anatomy 0.000 title claims abstract description 37
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims description 11
- 239000005557 antagonist Substances 0.000 title abstract description 15
- 102000015005 beta-adrenergic receptor activity proteins Human genes 0.000 title abstract description 14
- 108040006818 beta-adrenergic receptor activity proteins Proteins 0.000 title abstract description 14
- 208000035475 disorder Diseases 0.000 title description 7
- 239000003814 drug Substances 0.000 title description 5
- 238000004519 manufacturing process Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 9
- NWIUTZDMDHAVTP-UHFFFAOYSA-N betaxolol Chemical compound C1=CC(OCC(O)CNC(C)C)=CC=C1CCOCC1CC1 NWIUTZDMDHAVTP-UHFFFAOYSA-N 0.000 claims description 44
- 229960004324 betaxolol Drugs 0.000 claims description 41
- 208000017442 Retinal disease Diseases 0.000 claims description 30
- 206010038923 Retinopathy Diseases 0.000 claims description 25
- 239000002876 beta blocker Substances 0.000 claims description 24
- 230000002207 retinal effect Effects 0.000 claims description 24
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 claims description 9
- 206010064930 age-related macular degeneration Diseases 0.000 claims description 9
- 229960004605 timolol Drugs 0.000 claims description 9
- 230000006378 damage Effects 0.000 claims description 8
- 208000014674 injury Diseases 0.000 claims description 7
- 208000028867 ischemia Diseases 0.000 claims description 6
- 238000004321 preservation Methods 0.000 claims description 6
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 claims description 6
- 206010038848 Retinal detachment Diseases 0.000 claims description 5
- 230000004264 retinal detachment Effects 0.000 claims description 5
- 230000000642 iatrogenic effect Effects 0.000 claims description 4
- 238000001356 surgical procedure Methods 0.000 claims description 4
- 230000008733 trauma Effects 0.000 claims description 4
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 claims description 3
- 208000001351 Epiretinal Membrane Diseases 0.000 claims description 3
- 208000002367 Retinal Perforations Diseases 0.000 claims description 3
- 229960002274 atenolol Drugs 0.000 claims description 3
- 229960004374 befunolol Drugs 0.000 claims description 3
- ZPQPDBIHYCBNIG-UHFFFAOYSA-N befunolol Chemical compound CC(C)NCC(O)COC1=CC=CC2=C1OC(C(C)=O)=C2 ZPQPDBIHYCBNIG-UHFFFAOYSA-N 0.000 claims description 3
- 229960001222 carteolol Drugs 0.000 claims description 3
- LWAFSWPYPHEXKX-UHFFFAOYSA-N carteolol Chemical compound N1C(=O)CCC2=C1C=CC=C2OCC(O)CNC(C)(C)C LWAFSWPYPHEXKX-UHFFFAOYSA-N 0.000 claims description 3
- 238000002647 laser therapy Methods 0.000 claims description 3
- 229960000831 levobunolol Drugs 0.000 claims description 3
- IXHBTMCLRNMKHZ-LBPRGKRZSA-N levobunolol Chemical compound O=C1CCCC2=C1C=CC=C2OC[C@@H](O)CNC(C)(C)C IXHBTMCLRNMKHZ-LBPRGKRZSA-N 0.000 claims description 3
- 229960002704 metipranolol Drugs 0.000 claims description 3
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 claims description 3
- 229960002237 metoprolol Drugs 0.000 claims description 3
- -1 pendolol Chemical compound 0.000 claims description 3
- 238000002428 photodynamic therapy Methods 0.000 claims description 3
- 229960003712 propranolol Drugs 0.000 claims description 3
- 230000005945 translocation Effects 0.000 claims description 3
- 238000000315 cryotherapy Methods 0.000 claims description 2
- BQIPXWYNLPYNHW-UHFFFAOYSA-N metipranolol Chemical compound CC(C)NCC(O)COC1=CC(C)=C(OC(C)=O)C(C)=C1C BQIPXWYNLPYNHW-UHFFFAOYSA-N 0.000 claims 2
- 229960002035 penbutolol Drugs 0.000 claims 1
- KQXKVJAGOJTNJS-HNNXBMFYSA-N penbutolol Chemical compound CC(C)(C)NC[C@H](O)COC1=CC=CC=C1C1CCCC1 KQXKVJAGOJTNJS-HNNXBMFYSA-N 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 10
- 241000700159 Rattus Species 0.000 description 48
- NWIUTZDMDHAVTP-KRWDZBQOSA-N (S)-betaxolol Chemical compound C1=CC(OC[C@@H](O)CNC(C)C)=CC=C1CCOCC1CC1 NWIUTZDMDHAVTP-KRWDZBQOSA-N 0.000 description 27
- 229960004771 levobetaxolol Drugs 0.000 description 27
- 239000003981 vehicle Substances 0.000 description 19
- 230000004224 protection Effects 0.000 description 16
- 230000000007 visual effect Effects 0.000 description 15
- 108010005939 Ciliary Neurotrophic Factor Proteins 0.000 description 13
- 102100031614 Ciliary neurotrophic factor Human genes 0.000 description 13
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 13
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 13
- 229940097320 beta blocking agent Drugs 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- 230000004243 retinal function Effects 0.000 description 12
- 238000011160 research Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 108020004999 messenger RNA Proteins 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 208000002780 macular degeneration Diseases 0.000 description 9
- 108091008695 photoreceptors Proteins 0.000 description 9
- 230000000699 topical effect Effects 0.000 description 9
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 8
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 108010025020 Nerve Growth Factor Proteins 0.000 description 6
- 102000007072 Nerve Growth Factors Human genes 0.000 description 6
- 201000007737 Retinal degeneration Diseases 0.000 description 6
- 208000015122 neurodegenerative disease Diseases 0.000 description 6
- 239000003900 neurotrophic factor Substances 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 230000004258 retinal degeneration Effects 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 230000006907 apoptotic process Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000002571 electroretinography Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000008832 photodamage Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 238000007910 systemic administration Methods 0.000 description 5
- 230000003827 upregulation Effects 0.000 description 5
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 229940127291 Calcium channel antagonist Drugs 0.000 description 4
- 208000010412 Glaucoma Diseases 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 102000004330 Rhodopsin Human genes 0.000 description 4
- 108090000820 Rhodopsin Proteins 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000001684 chronic effect Effects 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 230000000324 neuroprotective effect Effects 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 102200141512 rs104893768 Human genes 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 238000011824 transgenic rat model Methods 0.000 description 4
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 229940072329 betoptic Drugs 0.000 description 3
- 230000003412 degenerative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000012458 free base Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 230000004112 neuroprotection Effects 0.000 description 3
- 239000002997 ophthalmic solution Substances 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CHDPSNLJFOQTRK-LMOVPXPDSA-N (S)-betaxolol hydrochloride Chemical compound [Cl-].C1=CC(OC[C@@H](O)C[NH2+]C(C)C)=CC=C1CCOCC1CC1 CHDPSNLJFOQTRK-LMOVPXPDSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical class OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 108020004463 18S ribosomal RNA Proteins 0.000 description 2
- XYLJNLCSTIOKRM-UHFFFAOYSA-N Alphagan Chemical compound C1=CC2=NC=CN=C2C(Br)=C1NC1=NCCN1 XYLJNLCSTIOKRM-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- BACYUWVYYTXETD-UHFFFAOYSA-N N-Lauroylsarcosine Chemical compound CCCCCCCCCCCC(=O)N(C)CC(O)=O BACYUWVYYTXETD-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 239000000332 adrenergic beta-1 receptor antagonist Substances 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 229940087168 alpha tocopherol Drugs 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 229940072107 ascorbate Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 229960003679 brimonidine Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000000480 calcium channel blocker Substances 0.000 description 2
- 229940031663 carbomer-974p Drugs 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 230000004438 eyesight Effects 0.000 description 2
- SMANXXCATUTDDT-QPJJXVBHSA-N flunarizine Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)N1CCN(C\C=C\C=2C=CC=CC=2)CC1 SMANXXCATUTDDT-QPJJXVBHSA-N 0.000 description 2
- 229960000326 flunarizine Drugs 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 229960000236 levobetaxolol hydrochloride Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000004090 neuroprotective agent Substances 0.000 description 2
- 229940054534 ophthalmic solution Drugs 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 208000007578 phototoxic dermatitis Diseases 0.000 description 2
- 231100000018 phototoxicity Toxicity 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 108700004121 sarkosyl Proteins 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000013222 sprague-dawley male rat Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 229960000984 tocofersolan Drugs 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 229960000281 trometamol Drugs 0.000 description 2
- 239000002076 α-tocopherol Substances 0.000 description 2
- 235000004835 α-tocopherol Nutrition 0.000 description 2
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- GGUSQTSTQSHJAH-UHFFFAOYSA-N 1-(4-chlorophenyl)-2-[4-(4-fluorobenzyl)piperidin-1-yl]ethanol Chemical compound C=1C=C(Cl)C=CC=1C(O)CN(CC1)CCC1CC1=CC=C(F)C=C1 GGUSQTSTQSHJAH-UHFFFAOYSA-N 0.000 description 1
- QWFMDSOYEQHWMF-UHFFFAOYSA-N 2,3-bis(ethenyl)benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC(C=C)=C1C=C QWFMDSOYEQHWMF-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- UIAGMCDKSXEBJQ-IBGZPJMESA-N 3-o-(2-methoxyethyl) 5-o-propan-2-yl (4s)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)[C@H]1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-IBGZPJMESA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 102000016843 Calbindin 2 Human genes 0.000 description 1
- 108010028326 Calbindin 2 Proteins 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 108010058699 Choline O-acetyltransferase Proteins 0.000 description 1
- 102100023460 Choline O-acetyltransferase Human genes 0.000 description 1
- 102000000634 Cytochrome c oxidase subunit IV Human genes 0.000 description 1
- 108050008072 Cytochrome c oxidase subunit IV Proteins 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 208000003098 Ganglion Cysts Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000003777 Interleukin-1 beta Human genes 0.000 description 1
- 108090000193 Interleukin-1 beta Proteins 0.000 description 1
- VLSMHEGGTFMBBZ-OOZYFLPDSA-M Kainate Chemical compound CC(=C)[C@H]1C[NH2+][C@H](C([O-])=O)[C@H]1CC([O-])=O VLSMHEGGTFMBBZ-OOZYFLPDSA-M 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- VLCDUOXHFNUCKK-UHFFFAOYSA-N N,N'-Dimethylthiourea Chemical compound CNC(=S)NC VLCDUOXHFNUCKK-UHFFFAOYSA-N 0.000 description 1
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 1
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 208000007135 Retinal Neovascularization Diseases 0.000 description 1
- 206010057430 Retinal injury Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000555745 Sciuridae Species 0.000 description 1
- 208000005400 Synovial Cyst Diseases 0.000 description 1
- 229930003427 Vitamin E Chemical class 0.000 description 1
- XLIJUKVKOIMPKW-BTVCFUMJSA-N [O].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O Chemical compound [O].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O XLIJUKVKOIMPKW-BTVCFUMJSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000384 adrenergic alpha-2 receptor agonist Substances 0.000 description 1
- 239000000971 adrenergic beta-2 receptor antagonist Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- 102000015007 alpha-adrenergic receptor activity proteins Human genes 0.000 description 1
- 108040006816 alpha-adrenergic receptor activity proteins Proteins 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229940082649 blood substitutes and perfusion irrigating solutions Drugs 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000004155 blood-retinal barrier Anatomy 0.000 description 1
- 230000004378 blood-retinal barrier Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 210000003986 cell retinal photoreceptor Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 210000003287 ciliary artery Anatomy 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 201000006754 cone-rod dystrophy Diseases 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229960000958 deferoxamine Drugs 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- QLTXKCWMEZIHBJ-PJGJYSAQSA-N dizocilpine maleate Chemical compound OC(=O)\C=C/C(O)=O.C12=CC=CC=C2[C@]2(C)C3=CC=CC=C3C[C@H]1N2 QLTXKCWMEZIHBJ-PJGJYSAQSA-N 0.000 description 1
- 238000011833 dog model Methods 0.000 description 1
- 229940124274 edetate disodium Drugs 0.000 description 1
- 229950005455 eliprodil Drugs 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Chemical class CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000013010 irrigating solution Substances 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- VCMGMSHEPQENPE-UHFFFAOYSA-N ketamine hydrochloride Chemical compound [Cl-].C=1C=CC=C(Cl)C=1C1([NH2+]C)CCCCC1=O VCMGMSHEPQENPE-UHFFFAOYSA-N 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- BLWNYSZZZWQCKO-UHFFFAOYSA-N metipranolol hydrochloride Chemical compound [Cl-].CC(C)[NH2+]CC(O)COC1=CC(C)=C(OC(C)=O)C(C)=C1C BLWNYSZZZWQCKO-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000000508 neurotrophic effect Effects 0.000 description 1
- 229960001783 nicardipine Drugs 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960000715 nimodipine Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000008397 ocular pathology Effects 0.000 description 1
- 210000001743 on-bipolar cell Anatomy 0.000 description 1
- 229940100655 ophthalmic gel Drugs 0.000 description 1
- 229940069265 ophthalmic ointment Drugs 0.000 description 1
- 238000003305 oral gavage Methods 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 230000004254 retinal expression Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 1
- 230000001196 vasorelaxation Effects 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 230000004382 visual function Effects 0.000 description 1
- 239000011709 vitamin E Chemical class 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000003871 white petrolatum Substances 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/138—Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/222—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/343—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4704—2-Quinolinones, e.g. carbostyril
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- This invention is directed to the use of ⁇ -adrenoceptor antagonists, such as, betaxolol, for treating disorders of the outer retina.
- ⁇ -adrenoceptor antagonists such as, betaxolol
- retinal degenerative diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP)
- ARMD age-related macular degeneration
- RP retinitis pigmentosa
- One such environmental factor, light exposure, has been identified as a contributing factor to the progression of retinal degenerative disorders such as ARMD (Young, Survey of Ophthalmology, 1988, Vol. 32:252-269).
- Photo-oxidative stress leading to light damage to retinal cells has been shown to be a useful model for studying retinal degenerative diseases for the following reasons: damage is primarily to the photoreceptors and retinal pigment epithelium (RPE) of the outer retina (Noell, et al., Investigative Ophthalmology & Visual Science, 1966, Vol. 5:450-472; Bressler, et al., Survey of Ophthalmology, 1988, Vol. 32:375-413; Curcio, et al., Investigative Ophthalmology & Visual Science, 1996, Vol.
- RPE retinal pigment epithelium
- antioxidants such as, ascorbate (Organisciak, et al., Investigative Ophthalmology & Visual Science, 1985, Vol. 26:1580-1588), dimethylthiourea (Organisciak, et al., Investigative Ophthalmology & Visual Science, 1992, Vol. 33:1599-1609; Lam, et al., Archives of Ophthalmology, 1990, Vol. 108:1751-1757), ⁇ -tocopherol (Kozaki, et al., Nippon Ganka Gakkai Zasshi, 1994, Vol.
- ⁇ -carotene ⁇ -carotene
- calcium antagonists such as, flunarizine, (Li, et al., Experimental Eye Research, 1993, Vol. 56:71-78; Edward, et al., Archives of Ophthalmology, 1992, Vol. 109:554-622); growth factors, such as, basic-fibroblast growth factor (bFGF), brain-derived nerve factor (BDNF), ciliary neurotrophic factor (CNTF), and interleukin-1- ⁇ (LaVail, et al., Proceedings of the National Academy of Science, 1992, Vol.
- bFGF basic-fibroblast growth factor
- BDNF brain-derived nerve factor
- CNTF ciliary neurotrophic factor
- interleukin-1- ⁇ interleukin-1- ⁇
- glucocorticoids such as, methylprednisolone (Lam, et al., Graefes Archives of Clinical & Experimental Ophthalmology, 1993, Vol. 231:729-736), dexamethasone (Fu, J., et al., Experimental Eye Research, 1992, Vol. 54:583-594); NMDA-antagonists, such as, eliprodil and MK-801 (Collier, et al., Investigative Ophthalmology & Visual Science, 1999, Vol. 40, pg. S159) and iron chelators, such as, desferrioxamine (Li, et al., Current Eye Research, 1991, Vol. 2:133-144).
- glucocorticoids such as, methylprednisolone (Lam, et al., Graefes Archives of Clinical & Experimental Ophthalmology, 1993, Vol. 231:729-736), dexamethasone (Fu, J.,
- Ophthalmic ⁇ -adrenergic antagonists also referred to as ⁇ -adrenoceptor antagonists or ⁇ -blockers are well documented IOP-lowering agents for therapy of glaucoma.
- ⁇ -adrenoceptor antagonists also referred to as ⁇ -adrenoceptor antagonists or ⁇ -blockers
- IOP-lowering agents for therapy of glaucoma.
- ophthalmic ⁇ -blockers are approved for use worldwide. The majority of these are nonselective ⁇ -blockers; betaxolol is a cardioselective ⁇ -blocker marketed as Betoptic® or Betoptic®S (Alcon Laboratories, Inc., Fort Worth, Tex.).
- ⁇ -adrenoceptor antagonists have also been shown to relax KCl-induced contraction of porcine ciliary artery (Hester, et al., Survey of Ophthalmology, Vol. 38:S125-S134, 1994).
- certain P-blockers have been shown to produce vasorelaxation unrelated to their ⁇ -adrenergic blocking action (Yu, et al., Vascular Risk Factors and Neuroprotection in Glaucoma, pp. 123-134, (Drance, S. ed.) Update, 1996; Hoste, et al., Current Eye Research, Vol. 13:483-487, 1994; and Bessho, et al., Japanese Journal of Pharmacology, Vol.
- FIG. 1 shows the prevention of photic retinopathy by the systemic administration of the selective ⁇ 1 -blockers, betaxolol and its isomers.
- FIG. 2 shows the prevention of photic retinopathy by the systemic administration of the non-selective ⁇ -blocker, timolol.
- FIG. 3 compares the protection of the retina from photic retinopathy by betaxolol and levobetaxolol following topical ocular administration.
- FIG. 4 shows preservation of retinal function in P23H mutant rhodopsin transgenic rats.
- FIG. 5 shows upregulation of endogenous retinal neurotrophic factor mRNA levels following a single administration of levobetaxolol compared to other agents.
- the present invention is directed to ⁇ -adrenoceptor antagonists which have been discovered to be useful in treating disorders of the outer retina, particularly: ARMD; RP and other forms of heredodegenerative retinal disease; retinal detachment and tears; macular pucker; ischemia affecting the outer retina; damage associated with laser therapy (grid, focal, and panretinal) including photodynamic therapy (PDT); trauma; surgical (retinal translocation, subretinal surgery, or vitrectomy) or light induced iatrogenic retinopathy; and preservation of retinal transplants.
- the outer retina includes the RPE, photoreceptors, Muller cells (to the extent that their processes extend into the outer retina), and the outer plexiform layer.
- the compounds are formulated for systemic or local ocular delivery.
- Neurotrophic factors can be potent neuroprotective agents, but as peptides, are difficult to deliver to the retina or central nervous system.
- betaxolol upregulates CNTF and bFGF mRNA retinal expression and this can prevent light-induced apoptotic cell death to the outer retina.
- treatment with betaxolol can completely prevent photo-oxidative induced retinopathy and significantly reduce loss of retinal function.
- the safety advantages of the compound make it particularly desirable for both acute and chronic therapies. Such an agent would have utility in the treatment of various outer retinal degenerative diseases.
- antioxidants were either ineffective (alpha-tocopherol) or marginally effective at high doses (ascorbate, vitamin E analogs).
- some calcium antagonists flunarizine, nicardipine
- others nifedipine, nimodipine, verapamil
- ⁇ -adrenoceptor antagonists are effective in these light damage paradigms and therefore are useful for treating disorders of the outer retina.
- disorders of the outer retina encompass acute and chronic environmentally induced (trauma, ischemia, photo-oxidative stress) degenerative conditions of the photoreceptors and RPE cells in normal or genetically predisposed individuals.
- PDT photodynamic therapy
- thermal or cryotherapy trauma, surgical (retinal translocation, subretinal surgery or vitrectomy) or light induced iatrogenic retinopathy and preservation of retinal transplants.
- the invention contemplates the use of any ⁇ -adrenoceptor antagonist, including their isomers and pharmaceutically acceptable salts, for treating disorders of the outer retina.
- Preferred ⁇ -adrenoceptor antagonists also exhibit neurotrophic activity and may have calcium antagonist activity.
- ⁇ -adrenoceptor antagonists useful according to the present invention include, but are not limited to: betaxolol (R or S or racemic), timolol, carteolol, levobunolol, metipranolol, befunolol, propranolol, metoprolol, atenolol, pendolol, and pinbutolol.
- the preferred ⁇ -adrenoceptor antagonist is betaxolol, and/or its R or S isomer.
- the S-isomer is also referred to as levobetaxolol.
- the ⁇ -blockers of this invention are administered orally with daily dosage of these compounds ranging between 0.001 and 500 milligrams.
- the preferred total daily dose ranges between 1 and 100 milligrams.
- Non-oral, administration such as, intravitreal, topical ocular, transdermal patch, subdermal, parenteral, intraocular, subconjunctival, or retrobulbar injection, iontophoresis or slow release biodegradable polymers or liposomes may require an adjustment of the total daily dose necessary to provide a therapeutically effective amount of the compound.
- the ⁇ -blockers can also be delivered in ocular irrigating solutions used during surgery, see, for example, U.S. Pat. No. 4,443,432. This patent is herein incorporated by reference. Concentrations should range from 0.001 ⁇ M to 100 ⁇ M, preferably 0.01 [ ⁇ M to 5 ⁇ M.
- the ⁇ -blockers can be incorporated into various types of ophthalmic formulations for topical delivery to the eye. They may be combined with ophthalmologically acceptable preservatives, surfactants, viscosity enhancers, gelling agents, penetration enhancers, buffers, sodium chloride, and water to form aqueous, sterile ophthalmic suspensions or solutions or preformed gels or gels formed in situ.
- Ophthalmic solution formulations may be prepared by dissolving the compound in a physiologically acceptable isotonic aqueous buffer. Further, the ophthalmic solution may include an ophthalmologically acceptable surfactant to assist in dissolving the compound.
- the ophthalmic solutions may contain a viscosity enhancer, such as, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polyvinyl-pyrrolidone, or the like, to improve the retention of the formulation in the conjunctival sac.
- a viscosity enhancer such as, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polyvinyl-pyrrolidone, or the like.
- the active ingredient is combined with a preservative in an appropriate vehicle, such as, mineral oil, liquid lanolin, or white petrolatum.
- Sterile ophthalmic gel formulations may be prepared by suspending the active ingredient in a hydrophilic base prepared from the combination of, for example, carbopol-940, or the like, according to the published formulations for analogous ophthalmic preparations; preservatives and tonicity agents can be incorporated.
- the ⁇ -blockers are preferably formulated as topical ophthalmic suspensions or solutions, with a pH of about 4 to 8.
- the ⁇ -blockers will normally be contained in these formulations in an amount 0.001% to 5% by weight, but preferably in an amount of 0.01% to 2% by weight.
- 1 to 2 drops of these formulations would be delivered to the surface of the eye 1 to 4 times per day according to the discretion of a skilled clinician.
- Betaxolol is described in U.S. Pat. Nos. 4,252,984 and 4,311,708, the contents of which are incorporated herein by reference.
- ⁇ -adrenoceptor antagonists were evaluated in our photo-oxidative induced retinopathy paradigm, a model of retinal degenerative diseases that may have utility for identifying agents for treatment of RP and ARMD.
- unexpectedly betaxolol and its enantiomers demonstrated marked potency and efficacy as a neuroprotective agent.
- Both photoreceptor and RPE cells were completely protected from light-induced functional changes and morphologic lesions.
- Timolol was also neuroprotective, but was signifiantly less potent. Additional evaluation of levobetaxolol in a transgenic rat model that has a rhodopsin mutation, which is similar to a defect observed in some human patients with heredodegenerative disease, provided significant protection of retinal function.
- Photic retinopathy results from excessive excitation of the RPE and neuroretina by absorption of visible or near ultraviolet radiation. Lesion severity is dependent upon wavelength, irradiance, exposure duration, species, ocular pigmentation, and age. Damage may result from peroxidation of cellular membranes, inactivation of mitochondrial enzymes such as cytochrome oxidase, and/or increased intracellular calcium. Cellular damage resulting from photo-oxidative stress leads to cell death by apoptosis (Shahinfar, et al., 1991, Current Eye Research, Vol. 10:47-59; Abler, et al., 1994, Investigative Ophthalmology & Visual Science, Vol. 35(Suppl):1517).
- Oxidative stress induced apoptosis has been implicated as a cause of many ocular pathologies, including, iatrogenic retinopathy, macular degeneration, RP and other forms of heredodegenerative disease, ischemic retinopathy, retinal tears, retinal detachment, glaucoma and retinal neovascularization (Chang, et al., 1995, Archives of Ophthalmology, Vol. 113:880-886; Portera-Cailliau, et al., 1994, Proceedings of National Academy of Science ( U.S.A. ), Vol. 91:974-978; Buchi, E. R., 1992, Experimental Eye Research, Vol.
- mice Zigman, et al., 1975, Investigative Ophthalmology & Visual Science, Vol. 14:710-713
- rats Noell, et al., 1966, Investigative Ophthalmology and Visual Science, Vol. 5:450-473; Kuwabara, et al., 1968, Archives of Ophthalmology, Vol. 79:69-78; LaVail, M. M., 1976, Investigative Qphthalmology & Visual Science, Vol.
- Experiment 1 was to determine if selective ⁇ -adrenoceptor antagonists, in particular betaxolol (racemic), levobetaxolol (S-isomer), and betaxolol (R-isomer) are neuroprotective and can rescue retinal cells from a photo-oxidative induced retinopathy.
- the purpose of Experiment 2 was to determine the dose-dependent efficacy of timolol, a potent non-selective ⁇ 1 - and ⁇ 2 -blocker, in this photo-oxidative stress model. Male Sprague Dawley rats were randomly assigned to drug or vehicle experimental groups.
- the ERG is a non-invasive clinical measurement of the electrical response of the eye to a flash of light.
- the a-wave and b-wave are two components of the ERG that are diagnostic of retinal function.
- the a-wave reflects outer retina function and is generated by interactions between photoreceptor and RPE while the b-wave reflects inner retina function, particularly on-bipolar cells.
- the ERG was recorded after a five day recovery period from dark-adapted anesthetized rats (ketamine-HCl, 75 mg/Kg; xylazine, 6 mg/Kg). The eye's electrical response to a flash of light was elicited by viewing a ganzfeld. ERGs to a series of light flashes increasing in intensity were digitized to analyze temporal characteristics of the waveform and response voltage-log intensity relationship.
- Betaxolol (racemic).
- IP Systemic
- betaxolol (racemic)
- FIG. 1 Maximum a-wave response amplitudes in betaxolol dosed rats with 20 and 40 mg/kg were 1.9 and 2.1 fold higher, respectively, than vehicle dosed rats.
- Levobetaxolol (S-isomer). Systemic administration of levobetaxolol provided dose-dependent protection of outer retina function when the ERGs were measured 5 days after induction of this severe photo-oxidative induced retinopathy. Systemic dosing with 20 mg/kg and 40 mg/kg levobetaxolol afforded significant protection of retinal function to this oxidative insult ( FIG. 1 ). ERG amplitudes in rats dosed with 20 mg/kg were 69% of normal and twice the amplitude of vehicle-dosed rats. Complete protection of the retinal response to a flash of light was measured after a 5-day recovery period in rats dosed with levobetaxolol (40 mg/kg). This protection persisted after a 4-week recovery period.
- Betaxolol (R-isomer). Partial but significant protection of outer and inner retina function against light-induced retinal degeneration was measured in rats dosed with 20 and 40 mg/kg ( FIG. 1 ). ERGs were approximately 64% of normal in rats dosed (20 or 40 mg/kg) with the R-isomer of betaxolol. This protection persisted after a 4-week recovery period.
- ⁇ -adrenoceptor antagonists ⁇ -adrenoceptor antagonists
- betaxolol and its enantiomers ⁇ -adrenoceptor antagonists
- Significant retinal protection was measured in rats dosed with these ⁇ -adrenoceptor antagonists at 20 and 40 mg/kg.
- This photic-induced retinopathy was prevented in rats dosed with levobetaxolol.
- Timolol a non-selective ⁇ -blocker, was also effective in reducing the severity of oxidative damage to the retina as a result of this light exposure.
- Topical ocular dosing with levobetaxolol provided significant protection when compared to vehicle dosed rats ( FIG. 3 ). Further, levobetaxolol completely ameliorated this photic induced retinopathy as no significant difference in retinal function was detected between control and levobetaxolol dosed rats.
- the P23H rhodopsin mutated transgenic rat has a specific rhodopsin mutation that has been identified in subsets of patients with RP. This degeneration is characterized by a slow degeneration of retinal photoreceptors and marked reduction in the electroretinogram. As in light damage, photoreceptor loss is primarily through an apoptotic process.
- Rats are randomly assigned to either a drug or vehicle group. Rats were dosed (oral gavage) with vehicle or levobetaxolol (40 mg/kg,) every other day. This dose was evaluated based on its ability to completely ameliorate a photic induced retinopathy. ERGs were recorded as described in Example 1.
- ⁇ 2 -adrenoceptor agonist brimonidine
- levobetaxolol ⁇ -adrenergic antagonist
- RNA samples were run on a 1.2% agarose gel, transferred to nylon membranes, prehybridized, hybridized with labeled cDNA probes for 16 hours, washed, and exposed to X-ray film. The blots were then stripped and reprobed with an oligo specific for the 18S RNA. The bands specific for bFGF, CNTF and 18S RNA were scanned in a gel image scanner and analyzed.
- levobetaxolol a ⁇ -adrenergic antagonist
- bFGF mRNA expression was upregulated by a factor of 2.3 compared to background expression.
- Treatment with recombinant-CNTF has been shown to be efficacious in prevention of photic retinopathy and retinal heredodegenerative change.
- levobetaxolol was a potent inducer of endogenous bFGF mRNA. Unlike ⁇ -adrenoceptor agonists, levobetaxolol also resulted in a marked elevation of CNTF mRNA expression. Further, we have demonstrated that dosing with levobetaxolol, betaxolol (racemic) or its R-isomer provided significant protection to the retina when stressed with a severe photo-oxidative insult. The upregulation of CNTF mRNA is particularly important in treatment of retinopathy.
- CNTF or its analogue in preventing outer retinal degeneration has been demonstrated in the rat and mouse phototoxicity model, RCS dystrophic rat, Rdy cat suffering a rod-cone dystrophy, retinal degeneration canine model, transgenic rat (P23H and Q344ter), transgenic mouse (Q344ter), rd mouse and rds mouse.
- bFGF has only demonstrated efficacy in the rat and mouse phototoxicity model and RCS dystrophic rat.
- ⁇ -adrenoceptor antagonists in particular levobetaxolol and betaxolol, are neuroprotective in transgenic rat and photo-oxidative stress models ( FIGS. 1, 2 , 3 , and 4 ) and would be effective in the treatment of various ophthalmic degenerative diseases of the outer retina.
- Neuroprotection may be afforded by upregulation of endogenous neurotrophic factors, including, CNTF and bFGF ( FIG. 5 ).
- Betaxolol Ophthalmic Ingredient Suspension, 0.25% Suspension Racemic Betaxolol 0.28 + 5% xs 0.28 Poly(styrene 0.25 0.25 divinylbenzene Sulfonic Acid) Carbomer 974P 0.2 0.45 Mannitol 4.5 4.5 Boric Acid — 0.4 Edetate Disodium 0.01 0.01 Benzalkonium Chloride 0.01 + 10% excess 0.01 + 5% excess N-Lauroylsarcosine — 0.03 Tromethamine and, Adjust pH 7.6 ⁇ 0.2 Adjust pH 7.0 ⁇ 0.2 if needed, Hydrochloric Acid Purified Water qs 100 qs 100 qs 100 qs 100 qs 100
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Emergency Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
Compositions and methods for treating disorders of the outer retina with β-adrenoceptor antagonists are disclosed.
Description
- This application claims continuation from U.S. Ser. No. 10/130,408 filed May 15, 2002: which is a 371 application of PCT/US00/32575 filed Nov. 29, 2000; which claims benefit of U.S. Ser. No. 60/167,993 filed Nov. 30, 1999.
- This invention is directed to the use of β-adrenoceptor antagonists, such as, betaxolol, for treating disorders of the outer retina.
- To date, more than 100 genes have been mapped or cloned that may be associated with retinal degeneration. The pathogenesis of retinal degenerative diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) is multifaceted and can be triggered by environmental factors in those who are genetically predisposed. One such environmental factor, light exposure, has been identified as a contributing factor to the progression of retinal degenerative disorders such as ARMD (Young, Survey of Ophthalmology, 1988, Vol. 32:252-269). Photo-oxidative stress leading to light damage to retinal cells has been shown to be a useful model for studying retinal degenerative diseases for the following reasons: damage is primarily to the photoreceptors and retinal pigment epithelium (RPE) of the outer retina (Noell, et al., Investigative Ophthalmology & Visual Science, 1966, Vol. 5:450-472; Bressler, et al., Survey of Ophthalmology, 1988, Vol. 32:375-413; Curcio, et al., Investigative Ophthalmology & Visual Science, 1996, Vol. 37:1236-1249); they share a common mechanism of cell death, apoptosis (Ge-Zhi, et al., Transactions of the American Ophthalmology Society, 1996, Vol. 94:411-430; Abler, et al., Research Communications in Molecular Pathology and Pharmacology, 1996, Vol. 92:177-189); light has been implicated as an environmental risk factor for progression of ARMD and RP (Taylor, et al., Archives of Ophthalmology, 1992, Vol. 110:99-104; Naash, et al., Investigative Ophthalmology & Visual Science, 1996, Vol. 37:775-782); and therapeutic interventions which inhibit photo-oxidative injury have also been shown to be effective in animal models of heredodegenerative retinal disease (LaVail, et al., Proceedings of the National Academy of Science, 1992, Vol. 89:11249-11253; Fakforovich, et al., Nature, 1990, Vol. 347:83-86).
- A number of different classes of compounds have been reported to minimize retinal photic injury in various animal models, including: antioxidants, such as, ascorbate (Organisciak, et al., Investigative Ophthalmology & Visual Science, 1985, Vol. 26:1580-1588), dimethylthiourea (Organisciak, et al., Investigative Ophthalmology & Visual Science, 1992, Vol. 33:1599-1609; Lam, et al., Archives of Ophthalmology, 1990, Vol. 108:1751-1757), α-tocopherol (Kozaki, et al., Nippon Ganka Gakkai Zasshi, 1994, Vol. 98:948-954), and β-carotene (Rapp, et al., Current Eye Research, 1996, Vol. 15:219-223); calcium antagonists, such as, flunarizine, (Li, et al., Experimental Eye Research, 1993, Vol. 56:71-78; Edward, et al., Archives of Ophthalmology, 1992, Vol. 109:554-622); growth factors, such as, basic-fibroblast growth factor (bFGF), brain-derived nerve factor (BDNF), ciliary neurotrophic factor (CNTF), and interleukin-1-β (LaVail, et al., Proceedings of the National Academy of Science, 1992, Vol. 89: 11249-11253); glucocorticoids, such as, methylprednisolone (Lam, et al., Graefes Archives of Clinical & Experimental Ophthalmology, 1993, Vol. 231:729-736), dexamethasone (Fu, J., et al., Experimental Eye Research, 1992, Vol. 54:583-594); NMDA-antagonists, such as, eliprodil and MK-801 (Collier, et al., Investigative Ophthalmology & Visual Science, 1999, Vol. 40, pg. S159) and iron chelators, such as, desferrioxamine (Li, et al., Current Eye Research, 1991, Vol. 2:133-144).
- Ophthalmic β-adrenergic antagonists, also referred to as β-adrenoceptor antagonists or β-blockers are well documented IOP-lowering agents for therapy of glaucoma. Currently, several ophthalmic β-blockers are approved for use worldwide. The majority of these are nonselective β-blockers; betaxolol is a cardioselective β-blocker marketed as Betoptic® or Betoptic®S (Alcon Laboratories, Inc., Fort Worth, Tex.).
- As a potential treatment for glaucoma and other inner retina pathologies, Osborne, et al. (Brain Research, 1997, Vol. 751:113-123) have shown that betaxolol is neuroprotective in a rat ischemia/reperfusion injury model. Ischemia/reperfusion results in a reduction of the electroretinogram (ERG) b-wave amplitude, a measure of inner retina function, not photoreceptor or RPE function. This ERG b-wave deficit was protected by treatment with betaxolol. Consistent with the inner retinal protection was preservation of choline acetyltransferase and calretinin immunoreactivity in the inner plexiform layer and cell bodies in the ganglion cell layer and inner nuclear layer by treatment with betaxolol. In vitro studies by Osborne, et al. have also shown that betaxolol can prevent the kainate induced elevation of intracellular calcium in chick retinal cells, partially inhibited changes in GABA immunoreactivity in the rabbit inner retina following glucose-oxygen deprivation, and partially prevented the glutamate-induced release of lactate dehydrogenase in cortical cultures. β-adrenoceptor antagonists have also been shown to relax KCl-induced contraction of porcine ciliary artery (Hester, et al., Survey of Ophthalmology, Vol. 38:S125-S134, 1994). Moreover, certain P-blockers have been shown to produce vasorelaxation unrelated to their β-adrenergic blocking action (Yu, et al., Vascular Risk Factors and Neuroprotection in Glaucoma, pp. 123-134, (Drance, S. ed.) Update, 1996; Hoste, et al., Current Eye Research, Vol. 13:483-487, 1994; and Bessho, et al., Japanese Journal of Pharmacology, Vol. 55:351-358, 1991.) There is experimental evidence that this is due to the ability of certain β-blockers to act as calcium channel blockers and to reduce the entry of calcium ion into vascular smooth muscle cells where it participates in the contraction response and reduces the diameter of the lumen of the blood vessel and decreases blood flow.
-
FIG. 1 shows the prevention of photic retinopathy by the systemic administration of the selective β1-blockers, betaxolol and its isomers. -
FIG. 2 shows the prevention of photic retinopathy by the systemic administration of the non-selective β-blocker, timolol. -
FIG. 3 compares the protection of the retina from photic retinopathy by betaxolol and levobetaxolol following topical ocular administration. -
FIG. 4 shows preservation of retinal function in P23H mutant rhodopsin transgenic rats. -
FIG. 5 shows upregulation of endogenous retinal neurotrophic factor mRNA levels following a single administration of levobetaxolol compared to other agents. - The present invention is directed to β-adrenoceptor antagonists which have been discovered to be useful in treating disorders of the outer retina, particularly: ARMD; RP and other forms of heredodegenerative retinal disease; retinal detachment and tears; macular pucker; ischemia affecting the outer retina; damage associated with laser therapy (grid, focal, and panretinal) including photodynamic therapy (PDT); trauma; surgical (retinal translocation, subretinal surgery, or vitrectomy) or light induced iatrogenic retinopathy; and preservation of retinal transplants. As used herein, the outer retina includes the RPE, photoreceptors, Muller cells (to the extent that their processes extend into the outer retina), and the outer plexiform layer. The compounds are formulated for systemic or local ocular delivery.
- Neurotrophic factors can be potent neuroprotective agents, but as peptides, are difficult to deliver to the retina or central nervous system. We have demonstrated that betaxolol upregulates CNTF and bFGF mRNA retinal expression and this can prevent light-induced apoptotic cell death to the outer retina. We have found that treatment with betaxolol can completely prevent photo-oxidative induced retinopathy and significantly reduce loss of retinal function. The safety advantages of the compound make it particularly desirable for both acute and chronic therapies. Such an agent would have utility in the treatment of various outer retinal degenerative diseases.
- In our light damage paradigms, antioxidants were either ineffective (alpha-tocopherol) or marginally effective at high doses (ascorbate, vitamin E analogs). Similarly, some calcium antagonists (flunarizine, nicardipine) were moderately effective while others (nifedipine, nimodipine, verapamil) had no effect in preventing light-induced functional or morphological changes. However, it has been discovered that β-adrenoceptor antagonists are effective in these light damage paradigms and therefore are useful for treating disorders of the outer retina.
- Disorders of the outer retina encompass acute and chronic environmentally induced (trauma, ischemia, photo-oxidative stress) degenerative conditions of the photoreceptors and RPE cells in normal or genetically predisposed individuals. This would include, but not be limited to, ARMD, RP and other forms of heredodegenerative retinal disease, retinal detachment, tears, macular pucker, ischemia affecting the outer retina, damage associated with laser therapy (grid, focal and panretinal) including photodynamic therapy (PDT), thermal or cryotherapy, trauma, surgical (retinal translocation, subretinal surgery or vitrectomy) or light induced iatrogenic retinopathy and preservation of retinal transplants.
- The invention contemplates the use of any β-adrenoceptor antagonist, including their isomers and pharmaceutically acceptable salts, for treating disorders of the outer retina. Preferred β-adrenoceptor antagonists also exhibit neurotrophic activity and may have calcium antagonist activity.
- Representative β-adrenoceptor antagonists useful according to the present invention include, but are not limited to: betaxolol (R or S or racemic), timolol, carteolol, levobunolol, metipranolol, befunolol, propranolol, metoprolol, atenolol, pendolol, and pinbutolol.
- The preferred β-adrenoceptor antagonist is betaxolol, and/or its R or S isomer. The S-isomer is also referred to as levobetaxolol.
- In general, for degenerative diseases, the β-blockers of this invention are administered orally with daily dosage of these compounds ranging between 0.001 and 500 milligrams. The preferred total daily dose ranges between 1 and 100 milligrams. Non-oral, administration, such as, intravitreal, topical ocular, transdermal patch, subdermal, parenteral, intraocular, subconjunctival, or retrobulbar injection, iontophoresis or slow release biodegradable polymers or liposomes may require an adjustment of the total daily dose necessary to provide a therapeutically effective amount of the compound. The β-blockers can also be delivered in ocular irrigating solutions used during surgery, see, for example, U.S. Pat. No. 4,443,432. This patent is herein incorporated by reference. Concentrations should range from 0.001 μM to 100 μM, preferably 0.01 [μM to 5 μM.
- The β-blockers can be incorporated into various types of ophthalmic formulations for topical delivery to the eye. They may be combined with ophthalmologically acceptable preservatives, surfactants, viscosity enhancers, gelling agents, penetration enhancers, buffers, sodium chloride, and water to form aqueous, sterile ophthalmic suspensions or solutions or preformed gels or gels formed in situ. Ophthalmic solution formulations may be prepared by dissolving the compound in a physiologically acceptable isotonic aqueous buffer. Further, the ophthalmic solution may include an ophthalmologically acceptable surfactant to assist in dissolving the compound. The ophthalmic solutions may contain a viscosity enhancer, such as, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polyvinyl-pyrrolidone, or the like, to improve the retention of the formulation in the conjunctival sac. In order to prepare sterile ophthalmic ointment formulations, the active ingredient is combined with a preservative in an appropriate vehicle, such as, mineral oil, liquid lanolin, or white petrolatum. Sterile ophthalmic gel formulations may be prepared by suspending the active ingredient in a hydrophilic base prepared from the combination of, for example, carbopol-940, or the like, according to the published formulations for analogous ophthalmic preparations; preservatives and tonicity agents can be incorporated.
- If dosed topically, the β-blockers are preferably formulated as topical ophthalmic suspensions or solutions, with a pH of about 4 to 8. The β-blockers will normally be contained in these formulations in an amount 0.001% to 5% by weight, but preferably in an amount of 0.01% to 2% by weight. Thus, for topical presentation, 1 to 2 drops of these formulations would be delivered to the surface of the eye 1 to 4 times per day according to the discretion of a skilled clinician.
- The preferred β-blocker, betaxolol (or its R or S isomer), is orally bioavailable, demonstrates a low incidence of adverse effects upon administration, and effectively crosses the blood-brain barrier indicating that effective concentrations are expected in the target tissue, the retina. Betaxolol is described in U.S. Pat. Nos. 4,252,984 and 4,311,708, the contents of which are incorporated herein by reference.
- β-adrenoceptor antagonists were evaluated in our photo-oxidative induced retinopathy paradigm, a model of retinal degenerative diseases that may have utility for identifying agents for treatment of RP and ARMD. Unexpectedly betaxolol and its enantiomers, demonstrated marked potency and efficacy as a neuroprotective agent. Both photoreceptor and RPE cells were completely protected from light-induced functional changes and morphologic lesions. Timolol was also neuroprotective, but was signifiantly less potent. Additional evaluation of levobetaxolol in a transgenic rat model that has a rhodopsin mutation, which is similar to a defect observed in some human patients with heredodegenerative disease, provided significant protection of retinal function.
- Photic retinopathy results from excessive excitation of the RPE and neuroretina by absorption of visible or near ultraviolet radiation. Lesion severity is dependent upon wavelength, irradiance, exposure duration, species, ocular pigmentation, and age. Damage may result from peroxidation of cellular membranes, inactivation of mitochondrial enzymes such as cytochrome oxidase, and/or increased intracellular calcium. Cellular damage resulting from photo-oxidative stress leads to cell death by apoptosis (Shahinfar, et al., 1991, Current Eye Research, Vol. 10:47-59; Abler, et al., 1994, Investigative Ophthalmology & Visual Science, Vol. 35(Suppl):1517). Oxidative stress induced apoptosis has been implicated as a cause of many ocular pathologies, including, iatrogenic retinopathy, macular degeneration, RP and other forms of heredodegenerative disease, ischemic retinopathy, retinal tears, retinal detachment, glaucoma and retinal neovascularization (Chang, et al., 1995, Archives of Ophthalmology, Vol. 113:880-886; Portera-Cailliau, et al., 1994, Proceedings of National Academy of Science (U.S.A.), Vol. 91:974-978; Buchi, E. R., 1992, Experimental Eye Research, Vol. 55:605-613; Quigley, et al., 1995, Investigative Ophthalmology & Visual Science, Vol. 36:774-786). Photic induced retinal damage has been observed in mice (Zigman, et al., 1975, Investigative Ophthalmology & Visual Science, Vol. 14:710-713), rats (Noell, et al., 1966, Investigative Ophthalmology and Visual Science, Vol. 5:450-473; Kuwabara, et al., 1968, Archives of Ophthalmology, Vol. 79:69-78; LaVail, M. M., 1976, Investigative Qphthalmology & Visual Science, Vol. 15:64-70), rabbit (Lawwill, T., 1973, Investigative Ophthalmology & Visual Science, Vol. 12:45-51), and squirrel (Collier, et al., 1989; In LaVail et al., Inherited and Environmentally Induced Retinal Degenerations. Alan R. Liss, Inc., New York; Collier, et al., 1989, Investigative Ophthalmology & Visual Science, Vol. 30:631-637), non-human primates (Tso, M. O. M., 1973, Investigative Ophthalmology & Visual Science, Vol. 12:17-34; Ham, et al., 1980, Vision Research, Vol. 20:1105-1111; Sperling, et al., 1980, Vision Research, Vol. 20:1117-1125; Sykes, et al., 1981, Investigative Ophthalmology & Visual Science, Vol. 20:425-434; Lawwill, T., 1982, Transactions of the American Ophthalmology Society, Vol. 80:517-577), and man (Marshall, et al., 1975, British Journal of Ophthalmology, Vol. 59:610-630; Green, et al., 1991, American Journal of Ophthalmology, Vol. 112:520-27). In man, chronic exposure to environmental radiation has also been implicated as a risk factor for ARMD (Young, R. W., 1988, Survey of Ophthalmology, Vol. 32:252-269; Taylor, et al., 1992, Archives of Ophthalmology, Vol. 110:99-104; Cruickshank, et al., 1993, Archives of Ophthalmology, Vol. 111:514-518).
- Systemic Dosing
- The purpose of Experiment 1 was to determine if selective β-adrenoceptor antagonists, in particular betaxolol (racemic), levobetaxolol (S-isomer), and betaxolol (R-isomer) are neuroprotective and can rescue retinal cells from a photo-oxidative induced retinopathy. The purpose of
Experiment 2 was to determine the dose-dependent efficacy of timolol, a potent non-selective β1- and β2-blocker, in this photo-oxidative stress model. Male Sprague Dawley rats were randomly assigned to drug or vehicle experimental groups. Rats received three intraperitoneal (IP) injections of either vehicle or drug at 48, 24, and 0 hours prior to a 6-hour light exposure to spectrally filtered blue light (˜220 fc). Control rats were housed in their home cage under normal cyclic light exposure. Control rats were not dosed with either vehicle or drug. The ERG is a non-invasive clinical measurement of the electrical response of the eye to a flash of light. The a-wave and b-wave are two components of the ERG that are diagnostic of retinal function. The a-wave reflects outer retina function and is generated by interactions between photoreceptor and RPE while the b-wave reflects inner retina function, particularly on-bipolar cells. Although the inner retina is not significantly damaged by this light exposure, the b-wave is depressed due to the lack of photoreceptor input. Changes in the a-wave amplitude or latency are diagnostic of outer retina pathology. The ERG was recorded after a five day recovery period from dark-adapted anesthetized rats (ketamine-HCl, 75 mg/Kg; xylazine, 6 mg/Kg). The eye's electrical response to a flash of light was elicited by viewing a ganzfeld. ERGs to a series of light flashes increasing in intensity were digitized to analyze temporal characteristics of the waveform and response voltage-log intensity relationship. - Results:
- Experiment 1: Comparison of Betaxolol with its R and S Isomer:
- Vehicle Dosed Rats. Blue-light exposure for 6 hours resulted in a significant diminution of the ERG response amplitude (ANOVA, p<0.001) compared to controls when measured after a 5-day recovery period (
FIG. 1 ). Maximum a-wave and b-wave amplitudes were reduced approximately 66% in vehicle-dosed rats compared to controls. In addition, threshold responses were lower and evoked at brighter flash intensities. - Betaxolol (racemic). Systemic (IP) dosing with betaxolol (racemic) provided dose-dependent protection of outer and inner retina function against this light-induced retinal degeneration in rats after a 5-day recovery period (
FIG. 1 ). Maximum a-wave response amplitudes in betaxolol dosed rats with 20 and 40 mg/kg were 1.9 and 2.1 fold higher, respectively, than vehicle dosed rats. - Levobetaxolol (S-isomer). Systemic administration of levobetaxolol provided dose-dependent protection of outer retina function when the ERGs were measured 5 days after induction of this severe photo-oxidative induced retinopathy. Systemic dosing with 20 mg/kg and 40 mg/kg levobetaxolol afforded significant protection of retinal function to this oxidative insult (
FIG. 1 ). ERG amplitudes in rats dosed with 20 mg/kg were 69% of normal and twice the amplitude of vehicle-dosed rats. Complete protection of the retinal response to a flash of light was measured after a 5-day recovery period in rats dosed with levobetaxolol (40 mg/kg). This protection persisted after a 4-week recovery period. - Betaxolol (R-isomer). Partial but significant protection of outer and inner retina function against light-induced retinal degeneration was measured in rats dosed with 20 and 40 mg/kg (
FIG. 1 ). ERGs were approximately 64% of normal in rats dosed (20 or 40 mg/kg) with the R-isomer of betaxolol. This protection persisted after a 4-week recovery period. - Experiment 2: Prevention of Photic Retinopathy by Timolol
- Five days after blue-light exposure, outer retinal function in vehicle dosed rats was reduced by 54% and inner retina function was reduced 52% (
FIG. 2 ). Systemic administration (IP) of timolol at 10, 20, and 40 mg/kg afforded no significant protection of retinal function to this photo-oxidative insult (FIG. 2 ). ERGs recorded from rats dosed with 80 mg/kg were significantly better than responses measured in vehicle dosed rats. - Conclusion
- Systemic administration of the β-adrenoceptor antagonists, betaxolol and its enantiomers, provided dose-dependent neuroprotection of outer and inner retina function when measured 5-days or 4-weeks after induction of a severe photo-oxidative induced retinopathy. Significant retinal protection was measured in rats dosed with these β-adrenoceptor antagonists at 20 and 40 mg/kg. This photic-induced retinopathy was prevented in rats dosed with levobetaxolol. Timolol, a non-selective β-blocker, was also effective in reducing the severity of oxidative damage to the retina as a result of this light exposure.
- The purpose of this experiment was to determine the degree of retinal protection that could be measured in rats following topical ocular dosing. Levobetaxolol (0.5%), (racemic) betaxolol (0.5%), and vehicle were evaluated in the photic retinopathy model. Induction of photochemical lesions and evaluation of retinal function with the ERG were performed as described in the photo-oxidative induced retinopathy paradigm used in Example 1.
- Subjects and Dosing
- Male Sprague Dawley rats were randomly assigned to either a vehicle dosed group (N=10), (racemic) betaxolol (0.5%) dosed group (N=10) or levobetaxolol (0.5%) dosed group (N=10). Rats were dosed topical ocular (b.i.d.) with two drops per eye. Rats were pre-dosed for 17 days prior to light exposure and dosed an additional two days after the light exposure. Control rats (N=4) were housed in their home cage under normal cyclic light exposure.
- Results
- Blue-light exposure to vehicle dosed rats resulted in a significant reduction in retinal function (ANOVA, p<0.004), as measured by the electroretinogram (ERG), when measured five days after light exposure (
FIG. 3 ). Maximum a-wave response amplitudes were reduced by 58% and inner retina function was reduced 56%. - Topical ocular dosing with levobetaxolol (b.i.d.) provided significant protection when compared to vehicle dosed rats (
FIG. 3 ). Further, levobetaxolol completely ameliorated this photic induced retinopathy as no significant difference in retinal function was detected between control and levobetaxolol dosed rats. - No significant protection was measured in betaxolol (racemic) dosed rats. In betaxolol dosed rats, ERG response amplitudes were higher but not significantly different than responses measured from vehicle dosed rats.
- The P23H rhodopsin mutated transgenic rat has a specific rhodopsin mutation that has been identified in subsets of patients with RP. This degeneration is characterized by a slow degeneration of retinal photoreceptors and marked reduction in the electroretinogram. As in light damage, photoreceptor loss is primarily through an apoptotic process.
- Methods:
- Subjects and Dosing
- At the time of weaning, rats are randomly assigned to either a drug or vehicle group. Rats were dosed (oral gavage) with vehicle or levobetaxolol (40 mg/kg,) every other day. This dose was evaluated based on its ability to completely ameliorate a photic induced retinopathy. ERGs were recorded as described in Example 1.
- Results
- Oral dosing with levobetaxolol (40 mg/kg) every other day significantly attenuated the loss of retinal function measured in 3- and 6-month old P23H mutant rhodopsin transgenic rats compared to vehicle dosed rats (
FIG. 4 ). Outer retinal function in 6-month old rats was 32% better than responses measured in vehicle dosed rats. - LaVail and others (Faktorovich, et al, Nature, Vol. 347:83-86, 1990; LeVail, et al., Proceedings of the Naional Academy of Science, 1992, Vol. 89:11249-11253), have shown that intravitreal injection of a number of growth factors can prevent light damage to the retina. These neurotrophic factors are large peptides and don't easily cross the blood-retinal barrier. In terms of a therapeutic strategy for treatment of chronic degenerative retinal disease, repeated intravitreal injections potentially present complications, including hemorrhage, retinal detachment, and inflammation. An alternative strategy is the use of adenovirus-mediated gene transfer (bFGF in the RCS rat, Cayouette, et al, Journal of Neuroscience, Vol. 18(22):9282-93, 1998, and CNTF in the rd mouse, Cayouette, et al., Human Gene Therapy, Vol. 8(4):423-30, 1997), which has had limited success in preventing photoreceptor loss due to loss of expression over time and non-homogeneous infection of cells. We have shown that placement of genetically engineered cells into the vitreous that secrete CNTF are also effective in preventing an oxidative induced retinopathy. A recent strategy has been to identify pharmacologic agents that upregulate endogenous growth factors. Wen et al, (WO 98/10758, 19 Mar. 1998), have shown that α2-adrenoceptor agonists can upregulate bFGF and prevent photic injury. To determine if a β-adrenergic antagonist can induce endogenous production of neurotrophic factors, levobetaxolol was evaluated.
- Evaluation of Levobetaxolol:
- Male albino Sprague Dawley rats were given a single IP injection of either an α2-adrenoceptor agonist (brimonidine) (20 mg/kg), a β-adrenergic antagonist (levobetaxolol) (20mg/kg), or vehicle and maintained in the dark for 12 hours prior to harvesting of retinal tissue. Dark-adapted normal control rats were also evaluated. Endogenous retinal growth factor mRNA upregulation was determined by Northern blot analysis. Retinas were flash frozen in liquid nitrogen and stored until isolation of total RNA. RNA samples were run on a 1.2% agarose gel, transferred to nylon membranes, prehybridized, hybridized with labeled cDNA probes for 16 hours, washed, and exposed to X-ray film. The blots were then stripped and reprobed with an oligo specific for the 18S RNA. The bands specific for bFGF, CNTF and 18S RNA were scanned in a gel image scanner and analyzed.
- Results
- No difference was observed in the bFGF/18S or CNTF/18S ratio between vehicle dosed and control rats (
FIG. 5 ). - A single dose of brimonidine (20 mg/kg) resulted in a 14 fold increase in bFGF mRNA expression (
FIG. 5 ). However, CNTF mRNA expression was not upregulated in these rats. - Similarly, levobetaxolol, a β-adrenergic antagonist, induced a 13-fold increase in bFGF mRNA expression in rats receiving a single IP injection (20 mg/kg) (
FIG. 5 ). In addition to upregulating bFGF in these rodent retinas, endogenous CNTF mRNA expression was upregulated by a factor of 2.3 compared to background expression. Treatment with recombinant-CNTF has been shown to be efficacious in prevention of photic retinopathy and retinal heredodegenerative change. - Conclusion
- We unexpectedly found that levobetaxolol was a potent inducer of endogenous bFGF mRNA. Unlike α-adrenoceptor agonists, levobetaxolol also resulted in a marked elevation of CNTF mRNA expression. Further, we have demonstrated that dosing with levobetaxolol, betaxolol (racemic) or its R-isomer provided significant protection to the retina when stressed with a severe photo-oxidative insult. The upregulation of CNTF mRNA is particularly important in treatment of retinopathy. The efficacy of CNTF or its analogue in preventing outer retinal degeneration has been demonstrated in the rat and mouse phototoxicity model, RCS dystrophic rat, Rdy cat suffering a rod-cone dystrophy, retinal degeneration canine model, transgenic rat (P23H and Q344ter), transgenic mouse (Q344ter), rd mouse and rds mouse. On the other hand, bFGF has only demonstrated efficacy in the rat and mouse phototoxicity model and RCS dystrophic rat.
- Based on these novel findings we conclude that β-adrenoceptor antagonists, in particular levobetaxolol and betaxolol, are neuroprotective in transgenic rat and photo-oxidative stress models (
FIGS. 1, 2 , 3, and 4) and would be effective in the treatment of various ophthalmic degenerative diseases of the outer retina. Neuroprotection may be afforded by upregulation of endogenous neurotrophic factors, including, CNTF and bFGF (FIG. 5 ). -
Concentration 0.25% 0.5% 0.75% Ingredient Percent w/v Percent w/v Percent w/v Levobetaxolol hydrochloride 0.28a 0.56b 0.84c Poly(styrene 0.375 0.75 1.125 divinylbenzene) Sulfonic Acid Carbomer 974 P 0.35 0.35 0.35 Mannitol 4.5 4.0 3.67 Boric Acid 0.3 0.3 0.3 Disodium Edetate 0.01 0.01 0.01 Benzalkonium Chloride 0.01 + 5% excessd 0.01 + 5% excessd 0.01 + 5% excessd N-Lauroylsarcosine 0.03 0.03 0.03 Tromethamine pH adjust to 6.5 pH adjust to 6.5 pH adjust to 6.5 Hydrochloric Acid 6.5 ± 0.2 6.5 ± 0.2 6.5 ± 0.2 (if needed) Purified Water qs 100% qs 100% qs 100%
aEquivalent to 0.25% betaxolol free base
bEquivalent to 0.5% betaxolol free base
cEquivalent to 0.75% betaxolol free base
dThe 5% excess is added as an overage
-
Betoptic ® S Ophthalmic Betaxolol Ophthalmic Ingredient Suspension, 0.25% Suspension Racemic Betaxolol 0.28 + 5% xs 0.28 Poly(styrene 0.25 0.25 divinylbenzene Sulfonic Acid) Carbomer 974P 0.2 0.45 Mannitol 4.5 4.5 Boric Acid — 0.4 Edetate Disodium 0.01 0.01 Benzalkonium Chloride 0.01 + 10% excess 0.01 + 5% excess N-Lauroylsarcosine — 0.03 Tromethamine and, Adjust pH 7.6 ± 0.2 Adjust pH 7.0 ± 0.2 if needed, Hydrochloric Acid Purified Water qs 100 qs 100
Claims (6)
1. A method for treating disorders of the outer retina, which comprises administering a pharmaceutically effective amount of a β-adrenoceptor antagonist.
2. The method of claim 1 wherein the disorder is selected from the group consisting of ARMD; RP and other forms of heredodegenerative retinal disease; retinal detachment and tears; macular pucker; ischemia affecting the outer retina; damage associated with laser therapy (grid, focal, and panretinal) including photodynamic therapy; thermal or cryotherapy; trauma; surgical (retinal translocation, subretinal surgery, or vitrectomy) or light-induced iatrogenic retinopathy; and preservation of retinal transplants.
3. The method of claim 1 wherein the β-adrenoceptor antagonist is selected from the group consisting of: betaxolol (R or S or racemic), timolol, carteolol, levobunolol, metipranolol, befunolol, propranolol, metoprolol, atenolol, pendolol, and pinbutolol.
4. The method of claim 3 wherein the β-adrenoceptor antagonist is betaxolol or its R or S isomer.
5. The method of claim 2 where the β-adrenoceptor antagonist is selected from the group consisting of: betaxolol (R or S or racemic), timolol, carteolol, levobunolol, metipranolol, befunolol, propranolol, metoprolol, atenolol, pendolol, and penbutolol.
6. The method of claim 5 wherein the β-adrenoceptor antagonist is betaxolol or its R or S isomer.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/415,824 US20060199868A1 (en) | 1999-11-30 | 2006-05-02 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US11/969,346 US20080103211A1 (en) | 1999-11-30 | 2008-01-04 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US12/796,942 US8710102B2 (en) | 1999-11-30 | 2010-06-09 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament of the treatment of disorders of the outer retina |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16799399P | 1999-11-30 | 1999-11-30 | |
| US10/130,408 US7081482B2 (en) | 1999-11-30 | 2000-11-29 | Use of β-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| PCT/US2000/032575 WO2001043737A1 (en) | 1999-11-30 | 2000-11-29 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US11/415,824 US20060199868A1 (en) | 1999-11-30 | 2006-05-02 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
Related Parent Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/130,408 Continuation US7081482B2 (en) | 1999-11-30 | 2000-11-29 | Use of β-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| PCT/US2000/032575 Continuation WO2001043737A1 (en) | 1999-11-30 | 2000-11-29 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US10130408 Continuation | 2000-11-29 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/969,346 Continuation US20080103211A1 (en) | 1999-11-30 | 2008-01-04 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060199868A1 true US20060199868A1 (en) | 2006-09-07 |
Family
ID=22609644
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/130,408 Expired - Fee Related US7081482B2 (en) | 1999-11-30 | 2000-11-29 | Use of β-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US11/415,824 Abandoned US20060199868A1 (en) | 1999-11-30 | 2006-05-02 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US11/969,346 Abandoned US20080103211A1 (en) | 1999-11-30 | 2008-01-04 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US12/796,942 Expired - Fee Related US8710102B2 (en) | 1999-11-30 | 2010-06-09 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament of the treatment of disorders of the outer retina |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/130,408 Expired - Fee Related US7081482B2 (en) | 1999-11-30 | 2000-11-29 | Use of β-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/969,346 Abandoned US20080103211A1 (en) | 1999-11-30 | 2008-01-04 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US12/796,942 Expired - Fee Related US8710102B2 (en) | 1999-11-30 | 2010-06-09 | Use of beta-adrenoceptor antagonists for the manufacture of a medicament of the treatment of disorders of the outer retina |
Country Status (18)
| Country | Link |
|---|---|
| US (4) | US7081482B2 (en) |
| EP (1) | EP1244438B1 (en) |
| JP (2) | JP4758581B2 (en) |
| CN (1) | CN1245966C (en) |
| AT (1) | ATE253905T1 (en) |
| AU (1) | AU782524B2 (en) |
| BR (1) | BR0015938A (en) |
| CA (1) | CA2388728C (en) |
| DE (1) | DE60006584T2 (en) |
| DK (1) | DK1244438T3 (en) |
| ES (1) | ES2210023T3 (en) |
| HK (1) | HK1047695B (en) |
| MX (1) | MXPA02005378A (en) |
| PL (1) | PL214875B1 (en) |
| PT (1) | PT1244438E (en) |
| TR (1) | TR200302008T4 (en) |
| WO (1) | WO2001043737A1 (en) |
| ZA (1) | ZA200203133B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080103211A1 (en) * | 1999-11-30 | 2008-05-01 | Collier Jr Robert J | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US20110003816A1 (en) * | 2008-03-07 | 2011-01-06 | Sun Pharma Advanced Research Company Limited | Ophthalmic composition |
| US20190336466A1 (en) * | 2018-05-03 | 2019-11-07 | Alimera Sciences, Inc. | Methods of treating retinal diseases |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100413503C (en) * | 2005-01-07 | 2008-08-27 | 冷文 | Compound ocular medicinal composition |
| WO2008080110A1 (en) * | 2006-12-21 | 2008-07-03 | Alcon, Inc. | Methods for treating macular edema and pathologic ocular angiogenesis using a neuroprotective agent and a receptor tyrosine kinase inhibitor |
| US10267796B2 (en) * | 2010-10-25 | 2019-04-23 | The Procter & Gamble Company | Screening methods of modulating adrenergic receptor gene expressions implicated in melanogenesis |
| CN110769855A (en) * | 2017-04-21 | 2020-02-07 | 史蒂文·霍夫曼 | Compositions and methods for treating retinopathy |
| JP7392219B2 (en) * | 2020-01-20 | 2023-12-06 | 株式会社萌芽プランツ | Flavonoid composition |
| TWI776584B (en) * | 2020-07-10 | 2022-09-01 | 長庚醫療財團法人林口長庚紀念醫院 | USE OF β-1 ADRENERGIC RECEPTOR ANTAGONIST FOR PREPARING COMPOSITIONS FOR REDUCING EPITHELIAL CELL DAMAGE INDUCED BY EPIDERMAL GROWTH FACTOR RECEPTOR INHIBITORS AND INHIBITING CANCER CELLS |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4252984A (en) * | 1975-11-06 | 1981-02-24 | Synthelabo | Phenol ethers |
| US4443432A (en) * | 1981-10-05 | 1984-04-17 | Alcon Laboratories, Inc. | Ophthmalic irrigating solution |
| US7081482B2 (en) * | 1999-11-30 | 2006-07-25 | Alcon, Inc. | Use of β-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5554367A (en) * | 1984-10-31 | 1996-09-10 | Alcon Laboratories, Inc. | Compositions for treatment of glaucoma |
| WO1998010758A1 (en) | 1996-09-13 | 1998-03-19 | The Regents Of The University Of California | Methods for treatment of retinal diseases |
| AU761785B2 (en) * | 1998-09-25 | 2003-06-12 | Alcon Laboratories, Inc. | Sustained release, and comfortable ophthalmic composition and method for ocular therapy |
-
2000
- 2000-11-29 CA CA002388728A patent/CA2388728C/en not_active Expired - Fee Related
- 2000-11-29 AU AU20527/01A patent/AU782524B2/en not_active Ceased
- 2000-11-29 PL PL356001A patent/PL214875B1/en unknown
- 2000-11-29 EP EP00983818A patent/EP1244438B1/en not_active Expired - Lifetime
- 2000-11-29 DK DK00983818T patent/DK1244438T3/en active
- 2000-11-29 AT AT00983818T patent/ATE253905T1/en active
- 2000-11-29 ES ES00983818T patent/ES2210023T3/en not_active Expired - Lifetime
- 2000-11-29 HK HK02108325.7A patent/HK1047695B/en not_active IP Right Cessation
- 2000-11-29 WO PCT/US2000/032575 patent/WO2001043737A1/en not_active Ceased
- 2000-11-29 BR BR0015938-7A patent/BR0015938A/en not_active Application Discontinuation
- 2000-11-29 DE DE60006584T patent/DE60006584T2/en not_active Expired - Lifetime
- 2000-11-29 CN CNB008163510A patent/CN1245966C/en not_active Expired - Fee Related
- 2000-11-29 PT PT00983818T patent/PT1244438E/en unknown
- 2000-11-29 TR TR2003/02008T patent/TR200302008T4/en unknown
- 2000-11-29 JP JP2001544676A patent/JP4758581B2/en not_active Expired - Fee Related
- 2000-11-29 US US10/130,408 patent/US7081482B2/en not_active Expired - Fee Related
- 2000-11-29 MX MXPA02005378A patent/MXPA02005378A/en active IP Right Grant
-
2002
- 2002-04-19 ZA ZA200203133A patent/ZA200203133B/en unknown
-
2006
- 2006-05-02 US US11/415,824 patent/US20060199868A1/en not_active Abandoned
-
2008
- 2008-01-04 US US11/969,346 patent/US20080103211A1/en not_active Abandoned
-
2010
- 2010-06-09 US US12/796,942 patent/US8710102B2/en not_active Expired - Fee Related
- 2010-07-06 JP JP2010154379A patent/JP2010215667A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4252984A (en) * | 1975-11-06 | 1981-02-24 | Synthelabo | Phenol ethers |
| US4311708A (en) * | 1975-11-06 | 1982-01-19 | Synthelabo | Phenol ethers |
| US4443432A (en) * | 1981-10-05 | 1984-04-17 | Alcon Laboratories, Inc. | Ophthmalic irrigating solution |
| US7081482B2 (en) * | 1999-11-30 | 2006-07-25 | Alcon, Inc. | Use of β-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080103211A1 (en) * | 1999-11-30 | 2008-05-01 | Collier Jr Robert J | Use of beta-adrenoceptor antagonists for the manufacture of a medicament for the treatment of disorders of the outer retina |
| US20100249134A1 (en) * | 1999-11-30 | 2010-09-30 | Alcon, Inc. | Use of Beta-Adrenoceptor Antagonists for the Manufacture of a Medicament for the Treatment of Disorders of the Outer Retina |
| US8710102B2 (en) | 1999-11-30 | 2014-04-29 | Novartis Ag | Use of beta-adrenoceptor antagonists for the manufacture of a medicament of the treatment of disorders of the outer retina |
| US20110003816A1 (en) * | 2008-03-07 | 2011-01-06 | Sun Pharma Advanced Research Company Limited | Ophthalmic composition |
| US20190336466A1 (en) * | 2018-05-03 | 2019-11-07 | Alimera Sciences, Inc. | Methods of treating retinal diseases |
| EP3787749A4 (en) * | 2018-05-03 | 2022-01-26 | Alimera Sciences, Inc. | METHODS OF TREATMENT OF RETINAL DISEASES |
| US11400070B2 (en) * | 2018-05-03 | 2022-08-02 | Alimera Sciences, Inc. | Methods of treating retinal diseases |
Also Published As
| Publication number | Publication date |
|---|---|
| PL356001A1 (en) | 2004-05-31 |
| DE60006584D1 (en) | 2003-12-18 |
| AU782524B2 (en) | 2005-08-04 |
| JP4758581B2 (en) | 2011-08-31 |
| HK1047695B (en) | 2004-08-20 |
| AU2052701A (en) | 2001-06-25 |
| EP1244438B1 (en) | 2003-11-12 |
| ZA200203133B (en) | 2003-04-22 |
| US7081482B2 (en) | 2006-07-25 |
| WO2001043737A1 (en) | 2001-06-21 |
| CN1402634A (en) | 2003-03-12 |
| PT1244438E (en) | 2004-02-27 |
| PL214875B1 (en) | 2013-09-30 |
| DE60006584T2 (en) | 2004-09-30 |
| JP2003516963A (en) | 2003-05-20 |
| ES2210023T3 (en) | 2004-07-01 |
| EP1244438A1 (en) | 2002-10-02 |
| US20080103211A1 (en) | 2008-05-01 |
| BR0015938A (en) | 2002-08-27 |
| MXPA02005378A (en) | 2005-02-25 |
| US20100249134A1 (en) | 2010-09-30 |
| DK1244438T3 (en) | 2004-02-23 |
| ATE253905T1 (en) | 2003-11-15 |
| CN1245966C (en) | 2006-03-22 |
| CA2388728C (en) | 2009-05-19 |
| CA2388728A1 (en) | 2001-06-21 |
| US20020193373A1 (en) | 2002-12-19 |
| JP2010215667A (en) | 2010-09-30 |
| TR200302008T4 (en) | 2004-01-21 |
| HK1047695A1 (en) | 2003-03-07 |
| US8710102B2 (en) | 2014-04-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8710102B2 (en) | Use of beta-adrenoceptor antagonists for the manufacture of a medicament of the treatment of disorders of the outer retina | |
| EP1263504B1 (en) | Use of compounds with 5-ht1a activity useful for treating disorders of the outer retina | |
| US20100168121A1 (en) | Compounds with 5-ht1a activity useful for treating disorders of the outer retina | |
| US6509355B1 (en) | Treatment of disorders of the outer retina | |
| MXPA05004738A (en) | Histone deacetylase inhibitors for treating degenerative diseases of the eye. | |
| US20110160308A1 (en) | Use of Monoamine Oxidase Inhibitors to Treat Outer Retina Disorders | |
| MXPA01004175A (en) | Treatment of disorders of the outer retina | |
| HK1051504B (en) | Use of compounds with 5-ht1a activity useful for treating disorders of the outer retina |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |