US20060162493A1 - Ni-coated ti powders - Google Patents
Ni-coated ti powders Download PDFInfo
- Publication number
- US20060162493A1 US20060162493A1 US10/527,441 US52744105A US2006162493A1 US 20060162493 A1 US20060162493 A1 US 20060162493A1 US 52744105 A US52744105 A US 52744105A US 2006162493 A1 US2006162493 A1 US 2006162493A1
- Authority
- US
- United States
- Prior art keywords
- powder
- bearing
- coated
- powders
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1143—Making porous workpieces or articles involving an oxidation, reduction or reaction step
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/06—Titanium or titanium alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/306—Other specific inorganic materials not covered by A61L27/303 - A61L27/32
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/23—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2002/30968—Sintering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00419—Other metals
- A61F2310/00461—Coating made of nickel or Ni-based alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12181—Composite powder [e.g., coated, etc.]
Definitions
- the present invention relates to coated powder, comprising a Ti-bearing core and a Ni-bearing coating, which can be used for the production of porous Ni—Ti alloys.
- Such a porous Ni—Ti alloy article is described in U.S. Pat. No. 5,986,169.
- the article has a porosity of 8 to 90% and is defined by a network of interconnected passageways extending throughout.
- the network exhibits an isotropic permeability permitting complete migration of fluids.
- the material is elastically deformable.
- U.S. Pat. No. 2,853,403 describes a method for producing composite metal powders. This method consists of dispersing, in solid form, particles of one or more metals of interest as nuclei in an ammoniated solution in which another metal of interest having different chemical and/or physical properties is present as a soluble salt, and precipitating the latter metal from the solution by gas reduction to form composite metal particles in which the dispersed metal particles are coated by the precipitated metal. This method was however never specifically applied for the manufacture of Ni-coated Ti powder.
- coated powder comprising a metallic Ti-bearing core and a metallic Ni-bearing coating, characterised by a Ni:Ti atomic ratio of more than 0.5, preferably between 0.9 and 1.1, and more preferably between 0.96 and 1.04. Atomic ratios of more than 0.5 to about 1 are preferred as this avoids the formation of secondary phases and yields an alloy with better mechanical properties.
- the Ti-bearing core may consist of pure Ti, while the Ni-bearing coating can consist of pure Ni.
- Ni:Ti atomic ratio of the mixture between 0.9 and 1.1, and preferably between 0.99 and 1.01. This procedure allows for easy adjustments to the Ni:Ti ratio.
- the particle size of the powders should preferably be finer than 150 mesh.
- Another object of the invention concerns a process of manufacturing a coated powder comprising the steps of:
- the Ni is preferably precipitated onto the Ti-bearing powder at a temperature of at least 100° C. and a hydrogen pressure in the autoclave of at least 1.4 MPa.
- Powders obtained by this coating process are, as such or after mixing with Ni-bearing or Ti-bearing powders, suitable for SHS sintering of objects.
- Ni-coated Ti powder By using coated powders, local fluctuations in composition are limited and well under control. Ni-coated Ti powder also decreases the diffusion distance between the Ni and Ti atoms, which may eliminate or reduce the formation of unwanted intermetallic compounds such as Ni 3 Ti and NiTi 2 . It has been found that the porosity of the porous titanium-nickel produced by SHS starting from Ni-coated Ti powder is more homogeneous throughout the sample compared to starting with elemental powders. It has also been found that the compactibility of Ni-coated Ti powder is significantly better than that of elemental powders. Because of this, next to the possibility for a decreased die wear, larger devices can be produced.
- the SHS process can produce Ni—Ti alloys with large pore volumes and a three-dimensional interconnected network of pores and channels. This porous network is particularly suitable for implants to achieve secure tissue-to-implant bonding.
- Pre-alloyed powder such as atomised Ni—Ti, does not work for the SHS process, since it is already an alloy and the exothermic reaction does not take place during sintering.
- ammonium salts such as (NH 4 ) 2 SO 4 or (NH 4 ) 2 CO 3 , may be added, to prevent the formation of unwanted Ni(OH) 2 and to ensures a smooth coating.
- FIG. 1 shows an SEM of coated product.
- FIG. 2 shows an EDS map of the cross section of Ni-coated Ti powder; the solid Ti cores (left) and the Ni-coating (right) are visible.
- FIG. 3 gives a longitudinal view of powder A after compaction and SHS; the arrow indicates the direction of the propagation front.
- FIG. 4 is a SEM-image of powder A (left) and powder B (right) after SHS.
- FIG. 5 shows an XRD spectrum of Ni-coated powder D after SHS.
- FIG. 6 shows macroscopic pictures of samples made by the SHS process using different raw materials: (a) using powder D, (b) powder E, (c) powder F, (d) powder G.
- FIG. 7 shows SEM pictures of samples made by SHS using various raw materials at low (top) and high (bottom) magnification: (a) and (d) for powder D, (b) and (e) for powder F, (c) and (f) for powder G.
- Ti powder along with a Ni bearing solution such as a sulphate or a carbonate, and, in particular when a sulphate is used, ammonium hydroxide (ammoniac), preferably in a NH 3 :Ni ratio of 2:1, are fed to an autoclave.
- a surface-active additive such as anthraquinone, is also added to the solution to an amount of 0.2 to 5 wt. % of the Ti powder. This ensures a smooth coating of the Ti particles.
- the Ni is then precipitated on the titanium surface using H 2 at a temperature of 100 to 200° C. and at an H 2 pressure of 1.4 to 3.4 MPa. After coating, the slurry is washed, filtered and dried.
- the result of coating a batch of Ti powder as described in preferred embodiment 1 is given in Table 1.
- the reduction temperature was 150° C. and the reduction pressure was maintained at 3.4 MPa.
- a SEM (Scanning Electron Microscope) picture of the coated product is shown in FIG. 1 .
- An EDS (Energy Dispersive Spectroscopy) map of the cross section of the powder is shown in FIG. 2 .
- SEM and EDS maps show a homogeneous and smooth coating.
- Ni-coated Ti powder was produced starting from 3 types of Ti powder having a different particle size distribution:
- powder A Ni coated ⁇ 400 mesh Ti powder
- powder B Ni coated ⁇ 250+325 mesh Ti powder
- composition of the coated powder is shown in Table 2. TABLE 2 Composition of the coated powder Powder Composition reference Ni wt. % Ti wt. % A 53.8 45.8 B 53.7 46.1 C 53.3 46.0
- the three different powders were die-compacted on an Instron-press to a density of respectively 48%, 59% and 51% of the theoretical density using a compaction load of 22 kN, 19 kN and 11 kN respectively.
- Two types of pores are present: small ones and large elongated ones perpendicular to the propagation front direction ( FIG. 4 ).
- the width of the elongated pores increases from roughly 200-300 ⁇ m to 400-600 ⁇ m and finally to 800-1000 ⁇ m.
- the porosity distribution in each sample is homogeneous, except in the regions where a large amount of liquid phase was present, resulting in lower porosity.
- the phases present in the SHS-product have been determined using XRD (X-Ray Diffraction) and EDX (Energy Dispersive X-ray) analysis.
- the XRD diagram in FIG. 5 clearly shows the presence of the desired Ni—Ti phase, both monoclinic and cubic, and possibly a limited amount of NiTi 2 .
- Ni coated ⁇ 400 mesh Ti powder blended with some additional Ni powder
- Ni-coated Ti powder Based on the composition analysis of the Ni-coated Ti powder, additional fine Ni powder was blended with the coated powder to balance the Ni:Ti atomic ratio to 1:1. The addition of Ni powder is shown in Table 3. TABLE 3 Amount of Ni added to 100 g of Ni-coated Ti powder Powder reference Ni:Ti (wt. %) Ni powder added (g) D 53.8:45.8 2.34 E 53.7:46.1 2.80 F 53.3:46.0 3.08
- Quartz tubes with a diameter of 20 to 25 mm and a length of 130 to 170 mm were used for containing the powder.
- Powder mixture G was ball milled for 2 hours before being loosely packed in a quartz tube.
- Green density of the mixed powder was about 50 to 60%.
- a load of 30 to 40 kN was needed to press the sample.
- the green densities for powders D, E and F were respectively about 45%, 50% and 65%, accomplished using loads of 10 kN, 15 kN and 18 kN respectively.
- FIG. 6 shows macroscopic pictures of the samples prepared by SHS.
- the surface morphology of the samples made by Ni-coated Ti powder was homogeneous.
- the surface morphology of the samples made by mixed Ni and Ti powders was rough and the porosity was inhomogeneous.
- FIGS. 7 ( c ) and 7 ( f ) show that the pore size and morphology of the sample made from mixed Ni and Ti powder are inhomogeneous.
- FIGS. 7 ( a ), 7 ( b ), 7 ( d ), and 7 ( e ) show that the pore size and morphology prepared from finer Ni-coated Ti powders are more homogeneous than those by coarser Ni-coated Ti powder. There are also more open pores in the samples using finer Ni-coated Ti powders. Overall, samples using Ni-coated Ti powder have a more homogeneous porosity than that using mixed Ni and Ti powders.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
The present invention relates to coated powder, comprising a Ti-bearing core and a Ni-bearing coating, which can be used for the production of porous Ni—Ti articles by the self-propagating high temperature synthesis (SHS) method. The obtained articles are ideally suited for use in biomedical applications. According to the invention, a coated powder is used comprising a metallic Ti-bearing core and a metallic Ni-bearing coating, characterised by a Ni:Ti atomic ratio of more than 0.5, preferably between 0.9 and 1.1, and more preferably between 0.96 and 1.04. By using coated powders, local fluctuations in composition are limited and well under control. Milling of powders and the ensuing contamination risks are avoided. The sintered objects obtained using coated powders have a more homogeneous porosity than that using mixed Ni and Ti powders.
Description
- The present invention relates to coated powder, comprising a Ti-bearing core and a Ni-bearing coating, which can be used for the production of porous Ni—Ti alloys.
- Such a porous Ni—Ti alloy article is described in U.S. Pat. No. 5,986,169. The article has a porosity of 8 to 90% and is defined by a network of interconnected passageways extending throughout. The network exhibits an isotropic permeability permitting complete migration of fluids. The material is elastically deformable. These characteristics render it useful in biomedical and other applications. For producing the porous article, the so-called self-propagating high-temperature synthesis (SHS) method is used in which the alloy is produced by means of a layered combustion which exploits exothermic heat emitted during interaction of elemental nickel and titanium powders.
- U.S. Pat. No. 2,853,403 describes a method for producing composite metal powders. This method consists of dispersing, in solid form, particles of one or more metals of interest as nuclei in an ammoniated solution in which another metal of interest having different chemical and/or physical properties is present as a soluble salt, and precipitating the latter metal from the solution by gas reduction to form composite metal particles in which the dispersed metal particles are coated by the precipitated metal. This method was however never specifically applied for the manufacture of Ni-coated Ti powder.
- The use of elemental Ni and Ti powders renders the production process sensitive to segregation problems, resulting in composition fluctuations and/or non-homogeneous porosity. Composition fluctuations can in turn lead to the formation of unwanted secondary phases.
- According to the invention, the above drawbacks can be overcome using coated powder, comprising a metallic Ti-bearing core and a metallic Ni-bearing coating, characterised by a Ni:Ti atomic ratio of more than 0.5, preferably between 0.9 and 1.1, and more preferably between 0.96 and 1.04. Atomic ratios of more than 0.5 to about 1 are preferred as this avoids the formation of secondary phases and yields an alloy with better mechanical properties.
- The Ti-bearing core may consist of pure Ti, while the Ni-bearing coating can consist of pure Ni.
- It may be useful to mix Ti-bearing powder or Ni-bearing powder with the coated powder so as to obtain a Ni:Ti atomic ratio of the mixture of between 0.9 and 1.1, and preferably between 0.99 and 1.01. This procedure allows for easy adjustments to the Ni:Ti ratio.
- The particle size of the powders should preferably be finer than 150 mesh.
- Above described powders can be used for the manufacture of sintered objects, possibly using the SHS technique.
- Another object of the invention concerns a process of manufacturing a coated powder comprising the steps of:
- providing for suitable quantities of a Ti-bearing powder and of a Ni salt bearing aqueous solution;
- feeding said powder and said solution in an autoclave together with a quantity of NH4OH, and, optionally, with a quantity of ammonium salts;
- precipitating the Ni onto the Ti-bearing powder by hydrogen reduction;
- washing, filtering and drying the slurry obtained, thereby obtaining a Ni-coated Ti powder.
- The Ni is preferably precipitated onto the Ti-bearing powder at a temperature of at least 100° C. and a hydrogen pressure in the autoclave of at least 1.4 MPa.
- Powders obtained by this coating process are, as such or after mixing with Ni-bearing or Ti-bearing powders, suitable for SHS sintering of objects.
- By using coated powders, local fluctuations in composition are limited and well under control. Ni-coated Ti powder also decreases the diffusion distance between the Ni and Ti atoms, which may eliminate or reduce the formation of unwanted intermetallic compounds such as Ni3Ti and NiTi2. It has been found that the porosity of the porous titanium-nickel produced by SHS starting from Ni-coated Ti powder is more homogeneous throughout the sample compared to starting with elemental powders. It has also been found that the compactibility of Ni-coated Ti powder is significantly better than that of elemental powders. Because of this, next to the possibility for a decreased die wear, larger devices can be produced. Additional advantages are that no milling is required, thus avoiding contamination such as oxidation of Ti during the preparation stage, and that the intimate contact between Ni and Ti makes it possible to perform SHS with no or less preheating compared to green compacts made of elemental Ti and Ni powders.
- The SHS process can produce Ni—Ti alloys with large pore volumes and a three-dimensional interconnected network of pores and channels. This porous network is particularly suitable for implants to achieve secure tissue-to-implant bonding. Pre-alloyed powder, such as atomised Ni—Ti, does not work for the SHS process, since it is already an alloy and the exothermic reaction does not take place during sintering.
- During the manufacturing the coated powder, 50 to 500 g/l ammonium salts, such as (NH4)2SO4 or (NH4)2CO3, may be added, to prevent the formation of unwanted Ni(OH)2 and to ensures a smooth coating.
- The following Figures illustrate the invention.
-
FIG. 1 shows an SEM of coated product. -
FIG. 2 shows an EDS map of the cross section of Ni-coated Ti powder; the solid Ti cores (left) and the Ni-coating (right) are visible. -
FIG. 3 gives a longitudinal view of powder A after compaction and SHS; the arrow indicates the direction of the propagation front. -
FIG. 4 is a SEM-image of powder A (left) and powder B (right) after SHS. -
FIG. 5 shows an XRD spectrum of Ni-coated powder D after SHS. -
FIG. 6 shows macroscopic pictures of samples made by the SHS process using different raw materials: (a) using powder D, (b) powder E, (c) powder F, (d) powder G. -
FIG. 7 shows SEM pictures of samples made by SHS using various raw materials at low (top) and high (bottom) magnification: (a) and (d) for powder D, (b) and (e) for powder F, (c) and (f) for powder G. - Ti powder along with a Ni bearing solution, such as a sulphate or a carbonate, and, in particular when a sulphate is used, ammonium hydroxide (ammoniac), preferably in a NH3:Ni ratio of 2:1, are fed to an autoclave. A surface-active additive, such as anthraquinone, is also added to the solution to an amount of 0.2 to 5 wt. % of the Ti powder. This ensures a smooth coating of the Ti particles. The Ni is then precipitated on the titanium surface using H2 at a temperature of 100 to 200° C. and at an H2 pressure of 1.4 to 3.4 MPa. After coating, the slurry is washed, filtered and dried.
- The result of coating a batch of Ti powder as described in
preferred embodiment 1 is given in Table 1. The reduction temperature was 150° C. and the reduction pressure was maintained at 3.4 MPa. A SEM (Scanning Electron Microscope) picture of the coated product is shown inFIG. 1 . An EDS (Energy Dispersive Spectroscopy) map of the cross section of the powder is shown inFIG. 2 . SEM and EDS maps show a homogeneous and smooth coating.TABLE 1 Results of coating Feed Coated powder Ni (g/L) Ti (g/L) Ni wt. % Ti wt. % 21.8 21.6 53.2 46.6 - Ni-coated Ti powder was produced starting from 3 types of Ti powder having a different particle size distribution:
- powder A: Ni coated −400 mesh Ti powder;
- powder B: Ni coated −250+325 mesh Ti powder;
- powder C: Ni coated −150+200 mesh Ti powder.
- The composition of the coated powder is shown in Table 2.
TABLE 2 Composition of the coated powder Powder Composition reference Ni wt. % Ti wt. % A 53.8 45.8 B 53.7 46.1 C 53.3 46.0 - The three different powders were die-compacted on an Instron-press to a density of respectively 48%, 59% and 51% of the theoretical density using a compaction load of 22 kN, 19 kN and 11 kN respectively.
- SHS performed on compacted powder A requires an ignition time of less than 10 seconds. The propagation front is parallel and stable and the resulting sample dimensions are also stable (
FIG. 3 ). Powders B and C showed a tendency to more intensive melting in the upper part of the sample. - Two types of pores are present: small ones and large elongated ones perpendicular to the propagation front direction (
FIG. 4 ). As the initial particle size increases from powder A to powder C, the width of the elongated pores increases from roughly 200-300 μm to 400-600 μm and finally to 800-1000 μm. The porosity distribution in each sample is homogeneous, except in the regions where a large amount of liquid phase was present, resulting in lower porosity. - The phases present in the SHS-product have been determined using XRD (X-Ray Diffraction) and EDX (Energy Dispersive X-ray) analysis. The XRD diagram in
FIG. 5 clearly shows the presence of the desired Ni—Ti phase, both monoclinic and cubic, and possibly a limited amount of NiTi2. - To be able to compare Ni-coated Ti powder with elemental Ni and Ti powders, the following batches were prepared:
- powder D: Ni coated −400 mesh Ti powder, blended with some additional Ni powder;
- powder E: Ni coated −250+325 mesh Ti powder, blended with some additional Ni powder;
- powder F: Ni coated −150+200 mesh Ti powder, blended with some additional Ni powder;
- powder G: Ni powder of 1.2 μm (d50), mixed with −250+325 mesh Ti powder in a 1:1 atomic ratio (55.07:44.93 Ni:Ti wt. % ratio).
- Based on the composition analysis of the Ni-coated Ti powder, additional fine Ni powder was blended with the coated powder to balance the Ni:Ti atomic ratio to 1:1. The addition of Ni powder is shown in Table 3.
TABLE 3 Amount of Ni added to 100 g of Ni-coated Ti powder Powder reference Ni:Ti (wt. %) Ni powder added (g) D 53.8:45.8 2.34 E 53.7:46.1 2.80 F 53.3:46.0 3.08 - Quartz tubes with a diameter of 20 to 25 mm and a length of 130 to 170 mm were used for containing the powder. Powder mixture G was ball milled for 2 hours before being loosely packed in a quartz tube. Green density of the mixed powder was about 50 to 60%. A load of 30 to 40 kN was needed to press the sample.
- The green densities for powders D, E and F were respectively about 45%, 50% and 65%, accomplished using loads of 10 kN, 15 kN and 18 kN respectively.
- All samples were placed in a vacuum chamber with a vacuum of about 0.01 Pa. After pre-heating the samples to 350° C. for 1 hour, the samples were ignited. SHS took place.
-
FIG. 6 shows macroscopic pictures of the samples prepared by SHS. The surface morphology of the samples made by Ni-coated Ti powder was homogeneous. The surface morphology of the samples made by mixed Ni and Ti powders was rough and the porosity was inhomogeneous. - SEM pictures in FIGS. 7(c) and 7(f) show that the pore size and morphology of the sample made from mixed Ni and Ti powder are inhomogeneous. FIGS. 7(a), 7(b), 7(d), and 7(e) show that the pore size and morphology prepared from finer Ni-coated Ti powders are more homogeneous than those by coarser Ni-coated Ti powder. There are also more open pores in the samples using finer Ni-coated Ti powders. Overall, samples using Ni-coated Ti powder have a more homogeneous porosity than that using mixed Ni and Ti powders.
Claims (12)
1. Coated powder, comprising a metallic Ti-bearing core and a metallic Ni-bearing coating, characterised by a Ni:Ti atomic ratio of more than 0.5, preferably between 0.9 and 1.1, and more preferably between 0.96 and 1.04.
2. Coated powder according to claim 1 , wherein the Ti-bearing core consists of metallic Ti and the Ni-bearing coating consists of metallic Ni.
3. Powder mixture comprising coated powder according to claim 1 , further comprising one or both of Ni-bearing powder and Ti-bearing powder, wherein the Ni:Ti atomic ratio of the mixture is between 0.9 and 1.1, preferably between 0.99 and 1.01.
4. Coated powder according to claim 1 , characterized by a particle size finer than 150 mesh.
5. Use of a coated powder according to claim 1 for the manufacture of a sintered body.
6. Use of a coated powder according to claim 5 , characterised in that the sintered body is obtained by a self-propagating high temperature process.
7. A sintered body obtainable by a self-propagating high temperature process using powders according to claim 1 .
8. Process of manufacturing a coated powder according to claim 1 , comprising the steps of:
providing for suitable quantities of a Ti-bearing powder and of a Ni salt bearing aqueous solution;
feeding said powder and said solution in an autoclave together with a quantity of NH4OH, and, optionally, with a quantity of ammonium salts;
precipitating the Ni onto the Ti-bearing powder by hydrogen reduction;
washing, filtering and drying the slurry obtained, thereby obtaining a Ni-coated Ti powder.
9. Process according to claim 8 , whereby the Ni is precipitated onto the Ti-bearing powder at a temperature of at least 100° C. and a hydrogen pressure in the autoclave of at least 1.4 MPa.
10. Process of manufacturing a coated powder according to claim 3 , comprising the steps of:
providing for suitable quantities of a Ti-bearing powder and of a Ni salt bearing aqueous solution;
feeding said powder and said solution in an autoclave together with a quantity of NH4OH, and, optionally, with a quantity of ammonium salts;
precipitating the Ni onto the Ti-bearing powder by hydrogen reduction: and washing, filtering and drying the slurry obtained, thereby obtaining a Ni-coated Ti powder; and
further comprising the step of intimately mixing the Ni-coated Ti powder with one or both of Ni-bearing and Ti-bearing powder.
11. Process of manufacturing a porous sintered body based on a Ni—Ti alloy, comprising the steps of claim 8 , and further comprising the step of subjecting the powder or powder mixture to a self-propagating high temperature synthesis operation.
12. A sintered body obtainable by a process according to claim 11.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/527,441 US20060162493A1 (en) | 2002-09-10 | 2003-08-20 | Ni-coated ti powders |
| US12/212,155 US20090029045A1 (en) | 2002-09-10 | 2008-09-17 | Ni-Coated Ti Powders |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP02078736 | 2002-09-10 | ||
| EP02078736.2 | 2002-09-10 | ||
| US40999002P | 2002-09-12 | 2002-09-12 | |
| PCT/EP2003/009552 WO2004024373A1 (en) | 2002-09-10 | 2003-08-20 | Ni-coated ti powders |
| US10/527,441 US20060162493A1 (en) | 2002-09-10 | 2003-08-20 | Ni-coated ti powders |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/212,155 Division US20090029045A1 (en) | 2002-09-10 | 2008-09-17 | Ni-Coated Ti Powders |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060162493A1 true US20060162493A1 (en) | 2006-07-27 |
Family
ID=31995528
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/527,441 Abandoned US20060162493A1 (en) | 2002-09-10 | 2003-08-20 | Ni-coated ti powders |
| US12/212,155 Abandoned US20090029045A1 (en) | 2002-09-10 | 2008-09-17 | Ni-Coated Ti Powders |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/212,155 Abandoned US20090029045A1 (en) | 2002-09-10 | 2008-09-17 | Ni-Coated Ti Powders |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US20060162493A1 (en) |
| EP (1) | EP1545815B1 (en) |
| AT (1) | ATE318669T1 (en) |
| AU (1) | AU2003264122A1 (en) |
| CA (1) | CA2508215A1 (en) |
| DE (1) | DE60303827T2 (en) |
| ES (1) | ES2263062T3 (en) |
| WO (1) | WO2004024373A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060228536A1 (en) * | 2003-08-08 | 2006-10-12 | Alexandr Chernyshov | Biocompatible porous ti-ni material |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2522257C2 (en) * | 2010-06-11 | 2014-07-10 | ООО Инновационно-стоматологический центр "НАНОДЕНТ" (ООО ИСЦ "НАНОДЕНТ") | Method of producing porous titanium nickelid oxide |
| RU2473519C1 (en) * | 2011-10-24 | 2013-01-27 | Юлия Алексеевна Щепочкина | Crude mixture for making heat-insulation articles |
| KR101718058B1 (en) | 2012-08-01 | 2017-03-20 | 삼성에스디아이 주식회사 | Negative active material, preparing method thereof, and lithium battery employing the same |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2853403A (en) * | 1956-04-11 | 1958-09-23 | Sherritt Gordon Mines Ltd | Method of producing composite metal powders |
| US3410714A (en) * | 1965-10-18 | 1968-11-12 | Gen Electric | Metallizing and bonding non-metallic bodies |
| US3428543A (en) * | 1964-05-09 | 1969-02-18 | Starck Hermann C Fa | Composite powders and apparatus for the production of the same |
| US4954235A (en) * | 1988-04-25 | 1990-09-04 | Nisshin Steel Co., Ltd. | Electroplating of fine particles with metal |
| US6048644A (en) * | 1997-03-24 | 2000-04-11 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storage alloy electrode |
| US6287445B1 (en) * | 1995-12-07 | 2001-09-11 | Materials Innovation, Inc. | Coating particles in a centrifugal bed |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06240381A (en) * | 1993-02-10 | 1994-08-30 | Kawasaki Steel Corp | Production of ti alloy sintered compact by injection-molding of metal powder |
| JPH08284622A (en) * | 1995-04-06 | 1996-10-29 | Mitsubishi Materials Corp | Engine valve made of ti alloy of excellent wear resistance and thermal shock resistance |
| RU2170645C2 (en) * | 1999-07-16 | 2001-07-20 | Гюнтер Виктор Эдуардович | Mixture for production of cellular structure carrier |
| CA2308898A1 (en) * | 2000-05-19 | 2001-11-19 | Georgiy Tsyrenovich Dambaev | Powder mixture for the production of a porous nickel-titanium structure as a carrier for living cells |
-
2003
- 2003-08-20 AU AU2003264122A patent/AU2003264122A1/en not_active Abandoned
- 2003-08-20 EP EP03794963A patent/EP1545815B1/en not_active Expired - Lifetime
- 2003-08-20 CA CA002508215A patent/CA2508215A1/en not_active Abandoned
- 2003-08-20 ES ES03794963T patent/ES2263062T3/en not_active Expired - Lifetime
- 2003-08-20 AT AT03794963T patent/ATE318669T1/en not_active IP Right Cessation
- 2003-08-20 US US10/527,441 patent/US20060162493A1/en not_active Abandoned
- 2003-08-20 DE DE60303827T patent/DE60303827T2/en not_active Expired - Lifetime
- 2003-08-20 WO PCT/EP2003/009552 patent/WO2004024373A1/en not_active Ceased
-
2008
- 2008-09-17 US US12/212,155 patent/US20090029045A1/en not_active Abandoned
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2853403A (en) * | 1956-04-11 | 1958-09-23 | Sherritt Gordon Mines Ltd | Method of producing composite metal powders |
| US3428543A (en) * | 1964-05-09 | 1969-02-18 | Starck Hermann C Fa | Composite powders and apparatus for the production of the same |
| US3410714A (en) * | 1965-10-18 | 1968-11-12 | Gen Electric | Metallizing and bonding non-metallic bodies |
| US4954235A (en) * | 1988-04-25 | 1990-09-04 | Nisshin Steel Co., Ltd. | Electroplating of fine particles with metal |
| US6287445B1 (en) * | 1995-12-07 | 2001-09-11 | Materials Innovation, Inc. | Coating particles in a centrifugal bed |
| US6048644A (en) * | 1997-03-24 | 2000-04-11 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storage alloy electrode |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060228536A1 (en) * | 2003-08-08 | 2006-10-12 | Alexandr Chernyshov | Biocompatible porous ti-ni material |
| US7604870B2 (en) * | 2003-08-08 | 2009-10-20 | Nitinol Devices And Components, Inc. | Biocompatible porous Ti-Ni material |
Also Published As
| Publication number | Publication date |
|---|---|
| ATE318669T1 (en) | 2006-03-15 |
| EP1545815B1 (en) | 2006-03-01 |
| AU2003264122A1 (en) | 2004-04-30 |
| DE60303827D1 (en) | 2006-04-27 |
| CA2508215A1 (en) | 2004-03-25 |
| EP1545815A1 (en) | 2005-06-29 |
| US20090029045A1 (en) | 2009-01-29 |
| WO2004024373A1 (en) | 2004-03-25 |
| ES2263062T3 (en) | 2006-12-01 |
| DE60303827T2 (en) | 2006-12-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7122069B2 (en) | Mo-Cu composite powder | |
| JPH05209247A (en) | Cermet alloy and its production | |
| JP2018508393A (en) | Reactive additive manufacturing | |
| EP2590766B1 (en) | Molybdenum / molybdenum disulfide metal articles and methods for producing same | |
| DE60301069T2 (en) | PRESERVED BINDEX POWDER | |
| KR20050021753A (en) | Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure | |
| WO2018134202A1 (en) | Method for producing hard metal bodies by means of 3d printing | |
| JP7758666B2 (en) | Spherical powder for three-dimensional object manufacturing | |
| US20090029045A1 (en) | Ni-Coated Ti Powders | |
| JP2000501786A (en) | Prealloyed powder and its use in the production of diamond tools | |
| SE511102C2 (en) | Process for producing diamond impregnated carbide via in-situ conversion of dispersed graphite | |
| IL132548A (en) | Pre-alloyed copper containing powder and its use in the manufacture of diamond tools | |
| EP3730231B1 (en) | Powder material, use of powder material for additive manufacturing, and method for producing powder material | |
| DE69434085T2 (en) | COMPOSITE MATERIAL AND METHOD FOR THE PRODUCTION THEREOF | |
| Golabgir et al. | Fabrication of open cell Fe-10% Al foam by space-holder technique | |
| RU2032496C1 (en) | Method of obtaining aluminides of transition metals | |
| SE510749C2 (en) | Methods of preparing a metal composite material containing hard particles and binder metal | |
| EP1666420A2 (en) | Method of making a CuMoO4-based composite oxide powder | |
| US11478848B2 (en) | Powder comprising coated hard material particles | |
| CN100431744C (en) | Preparation method of Mo-Cu composite powder | |
| Meilakh | Production, sintering, and application of nanocrystalline iron–copper additions in a powder steel | |
| JPH1121119A (en) | Production of compound carbide and cemented carbide using the same | |
| US7041151B2 (en) | Electrochemical displacement-deposition method for making composite metal powders | |
| Huang et al. | A novel technique for specimen preparation of metal or ceramic powders for TEM or HREM observations | |
| Burgos et al. | Manufacturing of a Magnetocaloric Component by Uniaxial Pressing and Sintering of La-Fe-Co-Si Alloy Powders Produced by Gas Atomization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UMICORE, BELGIUM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUAN, DING;AMINIAN, HOSSEIN;REEL/FRAME:016545/0158 Effective date: 20050429 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |