US20060130509A1 - HVAC lateral condensate drain channel - Google Patents
HVAC lateral condensate drain channel Download PDFInfo
- Publication number
- US20060130509A1 US20060130509A1 US11/021,972 US2197204A US2006130509A1 US 20060130509 A1 US20060130509 A1 US 20060130509A1 US 2197204 A US2197204 A US 2197204A US 2006130509 A1 US2006130509 A1 US 2006130509A1
- Authority
- US
- United States
- Prior art keywords
- drain
- channel
- condensate
- hvac unit
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 36
- 230000009977 dual effect Effects 0.000 claims abstract description 11
- 230000033001 locomotion Effects 0.000 claims description 4
- 238000009826 distribution Methods 0.000 abstract description 4
- 230000001143 conditioned effect Effects 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 210000003414 extremity Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- -1 rain Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3233—Cooling devices characterised by condensed liquid drainage means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
- F24F13/222—Means for preventing condensation or evacuating condensate for evacuating condensate
Definitions
- the present invention relates to the field of HVAC units that form condensate during normal operations, and, particularly, HVAC units with condensate drainage systems, for use in motorized vehicles.
- HVAC units heat exchangers, due to changing temperature and other conditions within an essentially closed environment, end up forming condensate from the air inputted into the HVAC unit. It is undesirable for excess humidity or condensate to remain in the HVAC unit, or to be distributed downstream of the heat exchangers after the air is conditioned in the unit to the outside areas, such as the passenger and other motor vehicle compartments.
- this undesirable condensate has often been drained from the area of the heat exchanger, such as an evaporator, by exhausting and/or evacuating the condensate from areas beneath the evaporator via a separate or ‘segregated’ channel which is found away from the main airflow path through the HVAC unit, and, particularly, the airflow path coming from the air propulsion device or blower.
- the air in this airflow path therefore, flows, after blower, into an expansion zone and possible turning housing downstream of the blower expansion zone.
- the condensate channel or drain is found underneath the blower or blower expansion region in a separate or segregated fashion or downstream of the evaporator. The drain is separate from the main air flow function of the HVAC.
- Prior art HVAC's allow the water to drain unhindered by the main airflow in the HVAC and, the drain air path is never exposed to the blown airflow upstream of the evaporator. Because of this HVAC architecture, prior art HVAC units are often designed so that condensate in the drain or channel does not interact with the blown air of the HVAC itself in any appreciable way. Hence the condensate drains away freely, unhindered or disturbed by the airflow from the blower in the HVAC.
- the present architectures mean that if a drain were open up to an area at or just downstream of the blower, a negative impact would result due to the fact that there would be a direct open air path allowing drainage wall to be entrained into the airflow path to HVAC unit from the blower expansion zone through the drain to the exterior of the HVAC unit.
- An open drain anywhere between the area of the blower expansion zone up to the evaporator intake region, (possibly a turning area), would normally be thought of as a detriment to the airflow quantity requirement of the unit if, an excessive quantity of air escaped.
- the present invention allows for drainage of condensate (such as water or other fluids in the incoming airstream, that normally enter the HVAC outside of the HVAC unit itself, to be exhausted.
- the present invention provides for at least two condensate drain paths with no extra parts required pre distribution of the treated air from the HVAC unit.
- the drainage means or channel is situated to allow condensate to ‘fall back’ or, to run upstream back from the evaporator in the opposite direction to the air in the main airflow or stream which continues to run downstream from the drainage area to be conditioned by the heat exchanger, and, more preferably, from the evaporator.
- the present invention allows for both the air propulsion means (e.g. blower) and the heat exchanger, and, preferable, the evaporator, to be positioned at approximately the same level vertically in space, i.e.
- tooling is simplified due to its dual path drainage.
- Condensate since it does not stagnate or collect in unwanted areas, does not create unwanted odor formation or other related undesirable effects related to condensate retention.
- condensate for the airstream drains not only from directly under the evaporator, but also before evaporator, through the same mechanism.
- condensation that forms or collects at all locations prior to reaching the heat exchanger, and, in particular, the evaporator region flows to the same area and, preferably, through the same drainage channel, even more preferably, a U shaped drainage channel. The impact on noise is minimal to non-existent in preferred embodiments of the present invention.
- the present invention allows for the maximum of condensate free air to reach the distribution area for delivery outside of the HVAC unit.
- FIG. 1 is a perspective internal view of an HVAC unit, in according with an aspect of the present invention
- FIG. 2 is a schematic view of an HVAC unit in accordance with an aspect of the present invention, showing airflow and condensate pathways and an area of low pressure or suction region of at the drainage region and condensate ingress from an area outside of the normal HVAC airflow and drainage area, in accordance with an aspect of the present invention;
- FIG. 3 is a perspective view of an HVAC unit showing the drain channel with upstream and downstream faces or sides, in accordance with an aspect of the present invention
- FIG. 4 is a schematic view of an HVAC unit with condensate flow from upstream and downstream of the drainage area with step, in accordance with an aspect of the present invention.
- the present invention solves a number of the prior art problems, while providing for increased simplicity and lower production costs related to the method of removing condensate from HVAC units.
- the present invention relates to an HVAC unit, and, preferably, an HVAC unit for an automotive vehicle, wherein a condensate drain or ‘dual path’ system is provided.
- the present invention leads to much simpler tooling and tooling design due to the multi path system over previous one-path systems.
- Such improved tooling of the HVAC drainage area provides the heretofore unachievable advantage of simpler maintenance and quality improvements due to the decreased complexity of the HVAC water removal components as a whole. Since condensate leaves the air inflow and air outflow faces of the evaporator and passes to the same. Drainage area and channel, a much simpler and more effective design can be made.
- the one or open path system provides for an HVAC unit without additional covers, such as plastic covers.
- the channel or drain preferably drains condensate from the air flow upstream up to the area of the channel or drain means and upstream from the heat exchanger in two separate or dual paths.
- the drain means is a U shaped channel or drain.
- the U shaped channel or drain has a step.
- a step is provided.
- the side of the step downstream of the air propulsion means that contacts the air flow upstream up to the area of the channel or drain is higher than the side of the step downstream of the channel or drain.
- the drainage means is a channel or drain and wherein side of the step downstream of the air propulsion means that contacts the air flow upstream up to the area of the channel or drain is higher than the side of the step downstream of the channel or drain.
- HVAC units in accordance with the present invention are lateral HVAC units. Also preferred are HVAC units that have a second or secondary drain with or without drain pan, through which condensate drains from the air outflow side of the heat exchanger prior to exiting the drain, and, preferably, a U shaped drain, and leaving the HVAC unit.
- the HVAC unit has a heat exchanger and/or an evaporator.
- the heat exchanger has an evaporator.
- the U shaped channel or drain has a gap at its center, and the air from the air flow jumps, clears or misses the gap such that a slightly lower pressure exists in the area of the drain due to the movement of the air.
- the condensate is drawn down into a slope of the U shaped drain or channel due partly to the lower pressure at the area of the U shaped drain or channel.
- HVAC units wherein the lower edge of the blower and the lower edge of the evaporator are at approximately the same height.
- the dual path nature allows for more efficient molding, particular for plastic and plastic like parts of the HVAC unit including parts such as the evaporator housing, and condensate drain.
- the plastic parts of the present invention can be molded, and, preferably injection molded.
- the present invention therefore, provides, in even more preferred embodiments, for HVAC units to be essentially composed of a resin, or resin like or resin based HVAC unit, with only a one piece molding of the drain area.
- the resin, resin like or resin based HVAC unit, and, particularly, the drainage means comprised of drainage members or apparatuses, provides for dual path for water condensate to flow through a drain, while further ensuring that no condensate flows back or backs up upstream of the drain area due to the lateral or semi-lateral position of the HVAC unit. Therefore, the airflow in the HVAC unit is airflow that is of reduced water content downstream of the drain area, with no increase or re-entrainment of water upstream of the drain area.
- the condensate drain is formed in a U shape.
- the U shaped drain is shaped such that it forms a step down from downstream of the blower to the upstream of the evaporator.
- the drain is constructed by shaping the upstream (blower side) side of the main U drain such that the flow in the expansion area after the blower causes a ‘suction’ or lower pressure region as the airflow passes the ‘backward facing step’ or step, cliff, precipice, wall, and continues onward towards the downstream end of the drainage area.
- the condensate drainage channel or, more preferably, the U shaped drain passes as an open type channel (i.e. a hole or opening from the interior of the U shaped drain to the interior of the HVAC unit where the main flow is).
- the condensate drainage channel preferred in the present invention is of typically of a U like shape or any shape that allows no air flow spitting, no condensate return upstream, provides for water drainage from both water paths, water check valve to prevent incoming airstream water to be drained from the blower.
- the step has two faces, (the upstream one) is typically taller than the other limb (the downstream one). This creates the ‘backward facing step’ geometry allowing the two streams to pass over (the air) and under (the condensate water) one another.
- step in the present application it is meant an abrupt or marked change in height of a surface allowing easy motion from the higher to lower, but not from the lower to higher, side of surface.
- water in the form of condensate drains towards the drainage area.
- Water still present in the airflow downstream of the drainage area can still eventually drain as condensate when precipitated after passage of the air downstream of the drain area, due to the negative pressure condition present in the drainage area.
- air after arriving to and passing by the dual path drain from downstream of the blower and drainage area, allows water in the air to precipitate as condensate and to ‘drain back’ towards the drainage area from the air inflow face/region of the evaporator downstream of the drainage area, thereby allowing better evaporator cooling performance to be attained.
- the lower edge of the HVAC blower can be located at the same level vertically in normal vehicle operating position at the lower edge of the HVAC heat exchanger, and, especially, the evaporator of the HVAC.
- problems in this positioning can occur, particularly during periods of normal operation of the vehicle, when acceleration needs are most required (heavy acceleration) e.g. cornering.
- acceleration needs are most required (heavy acceleration) e.g. cornering.
- water in the airflow can form condensate that may flow back towards or into the blower, causing warranty issues.
- This present invention by providing for a drainage system, and, in particular a drainage system with a negative pressure drop feature, provides for a high resistance to condensate backflow and /or drainage prior to reaching the area upstream of the drainage area near or at the blower level and provides for a step, facing the returning water or condensate stream, the step stopping the water or condensate.
- FIGS. 1 and 2 is shown a general layout of the one of the embodiments of the present invention, with Axis V, W and X denoting the section cuts provided in FIGS. 2, 3 , and 4 respectively having a blower 10 within a scroll 11 , an expansion area 37 , a turning area 24 , the evaporator having an air inflow (upstream) 15 , 24 and air outflow (downstream) 18 face or area.
- U channel or drain 13 crosses perpendicularly under the expansion area 37 with air-flow 12 provided over the upstream or taller limb and the downstream lower limb of the U shaped channel.
- This main U channel 13 is connected to the evaporator drain/pan channel preferably via a channel 16 generally parallel to but offset from the main airflow 15 , 12 .
- FIG. 2 an HVAC unit with ingressed condensate 39 is shown. Once the ingressed water has passed over the drain region, the aforementioned process happens.
- drainage channel 13 , 14 , 16 is constructed to have a backward facing step 25 , 26 in the drain region 13 , 14 where the airflow 12 jumps or crosses over the drain 13 .
- the airflow 12 crosses over the drainage area 13 , 14 , 25 , 26 without jetting down into the drain 13 , 14 , and hence, not causing noise or losing inordinate amounts of airflow through the drain 14 .
- the drainage pan 29 from the evaporator underside allows water or condensate to drain back down to the said U shaped drainage channel 14 , 13 .
- condensate 30 from the evaporator 19 falls into a pan or collection area 29 , which leads via a channel 16 , cut through, but preferably integral with, the air-flow expansion region 37 of the HVAC 10 .
- the condensate 30 is drawn back towards the drain 13 , from the pan or collection area 29 of the underside of the evaporator 19 due to the suction or dynamic pressure 14 of the flow in the expansion region 12 via the drainage channel. 13 .
- Condensate 30 movement upstream of the evaporator (flow) vis a vis the evaporator 19 and upstream flow 38 towards the evaporator does not occur, because of the shape of the limbs 25 , 26 of the upstream (taller) 25 and downstream (lower) 26 sides of the U drainage channel 13 , 14 cut in the air-flow expansion region 37 to ensure that adequate drainage of condensate to outside of the HVAC unit 1 occurs.
- the backward facing step or difference in height variation of 25 relative to 26 allows an area of relatively negative or suction pressure 14 to form in the drain 13 rather than allowing relatively positive pressure to form. From this pressure stand point the drain functions as normal, assisting the drainage of condensate from both sides 17 , 36 , 12 , 29 of the evaporator, rather than stagnate or collect in unwanted areas 10 of the HVAC unit.
- the present invention can also very easily handle the evacuation of liquid such as rain, water moisture, windshield wiper and other automotive and cleaning fluids, etc., ingression into the HVAC unit from/via other means.
- liquid such as rain, water moisture, windshield wiper and other automotive and cleaning fluids, etc.
- ingression into the HVAC unit from/via other means.
- liquid such as rain, water moisture, windshield wiper and other automotive and cleaning fluids, etc.
- water from the blower region of the HVAC will be cast or thrown or projected along through, preferably, the expansion part of the HVAC.
- a part or some of the liquid or condensate can fall directly into the drainage channel 13 or drain area 14 , while a second part of the liquid or condensate passes through/underneath the evaporator to the drainage means described.
- the drainage means or structure, and, in particular, the channel's U shape causes the black flow of the condensation to be impeded, therefore, stopping any ingressed liquid or condensate to find its way back to the blower area or blow
- the present invention also allows for the lower edge of the blower to be located at a level approximately level with the evaporator. This positioning of blower and evaporator allows to an overall advantage with respect to HVAC packaging environment, allowing for large recirculation fresh air inlet possible, containing an air filter.
- the U shaped drain allows for a larger space for filter.
- the drain means or structure is a preferred sloping U shaped channel from the underside of the evaporator preferably traveling firstly parallel and then counter to the airflow. Then secondly the U shaped channel then turns to be generally/preferably perpendicular to the airflow, but stepped in such a way as to allow the airflow to jump over the U or water drainage channel.
- the jumping action causes an aerodynamic lower pressure in the U channel, indicating that the airflow has no intention of directly entering the said channel, or having any intention to return airflow back up into the underside of the evaporator area. Hence the drain drains correctly.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
The present invention relates to HVAC units with condensate drainage systems, for use in motorized vehicles. The present invention provides for at least two or dual condensate drain paths with no extra parts required pre-distribution of the treated air from the HVAC unit, the drainage means or channel situated to allow condensate to ‘fall back’ or, to run upstream back from the evaporator in the opposite direction to the air in the main airflow or stream which continues to run downstream from the drainage area to be conditioned by the heat exchanger.
Description
- The present invention relates to the field of HVAC units that form condensate during normal operations, and, particularly, HVAC units with condensate drainage systems, for use in motorized vehicles.
- In HVAC units, heat exchangers, due to changing temperature and other conditions within an essentially closed environment, end up forming condensate from the air inputted into the HVAC unit. It is undesirable for excess humidity or condensate to remain in the HVAC unit, or to be distributed downstream of the heat exchangers after the air is conditioned in the unit to the outside areas, such as the passenger and other motor vehicle compartments.
- In prior art HVAC unit, this undesirable condensate has often been drained from the area of the heat exchanger, such as an evaporator, by exhausting and/or evacuating the condensate from areas beneath the evaporator via a separate or ‘segregated’ channel which is found away from the main airflow path through the HVAC unit, and, particularly, the airflow path coming from the air propulsion device or blower. The air in this airflow path, therefore, flows, after blower, into an expansion zone and possible turning housing downstream of the blower expansion zone. In most cases, the condensate channel or drain is found underneath the blower or blower expansion region in a separate or segregated fashion or downstream of the evaporator. The drain is separate from the main air flow function of the HVAC. Prior art HVAC's, therfore allow the water to drain unhindered by the main airflow in the HVAC and, the drain air path is never exposed to the blown airflow upstream of the evaporator. Because of this HVAC architecture, prior art HVAC units are often designed so that condensate in the drain or channel does not interact with the blown air of the HVAC itself in any appreciable way. Hence the condensate drains away freely, unhindered or disturbed by the airflow from the blower in the HVAC.
- The present architectures mean that if a drain were open up to an area at or just downstream of the blower, a negative impact would result due to the fact that there would be a direct open air path allowing drainage wall to be entrained into the airflow path to HVAC unit from the blower expansion zone through the drain to the exterior of the HVAC unit. An open drain anywhere between the area of the blower expansion zone up to the evaporator intake region, (possibly a turning area), would normally be thought of as a detriment to the airflow quantity requirement of the unit if, an excessive quantity of air escaped.
- The present invention, therefore, allows for drainage of condensate (such as water or other fluids in the incoming airstream, that normally enter the HVAC outside of the HVAC unit itself, to be exhausted. The present invention provides for at least two condensate drain paths with no extra parts required pre distribution of the treated air from the HVAC unit. In preferred embodiments of the present invention, the drainage means or channel is situated to allow condensate to ‘fall back’ or, to run upstream back from the evaporator in the opposite direction to the air in the main airflow or stream which continues to run downstream from the drainage area to be conditioned by the heat exchanger, and, more preferably, from the evaporator. This provides for air in the outflow region directly downstream from the evaporator to be shedded of its condensate should the need arise, and still allow drainage of the condensate, without entrainment of the condensate back into the airflow so that it would eventually get to the distribution system downstream of the HVAC unit itself. Advantageously, the present invention allows for both the air propulsion means (e.g. blower) and the heat exchanger, and, preferable, the evaporator, to be positioned at approximately the same level vertically in space, i.e. at approximately the same height at the base of each, so that, if one is slightly higher, (for example, a 10% difference in level or on the same plane horizontal to the ground in normal operating position of the vehicle), it will still operate, while preventing any backflow of condensate or water, under nearly all vehicle parking orientations, in the air that might otherwise be in or downstream of the drainage area, to reach upstream areas like the blower or the area immediately downstream from the blower.
- In prior art HVAC units, water is often blown back under the evaporator pan or drainage area during normal operations. Separate or segregated paths or ‘dual paths’, one for the condensate drain and one for the air flow, has meant increased tooling complexity and other manufacturing difficulties. In addition to cost issues, problems with quality and tool maintenance are intensified due to this dual path system. The dual path systems have also led to addition problems, particularly since in areas at or near the base of the evaporator, where the airflow means that moving air directly contacts that portion of the evaporator, either slots or slopes are required to allow water to pass through with the drain airstream into a drain pan under the evaporator itself. Such an architecture has been required to prevent water from ‘pooling’ or otherwise being formed and remaining upstream of the evaporator, allowing such pooled water to stagnate or remain and cause additional problems such as development of odor or microbial growth in the unit. An additional problem from the commercial standpoint rests in the fact that ‘pooled’ or ‘stagnant’ condensate upstream of the evaporator can later flow backward into the area of the blower at blower speeds and/or during vehicle maneuveuring or parking below a certain level, causing eventual electro-mechanical warranty problems for such units.
- In particularly preferred embodiments of the present invention, tooling is simplified due to its dual path drainage. Condensate, since it does not stagnate or collect in unwanted areas, does not create unwanted odor formation or other related undesirable effects related to condensate retention. In more preferred embodiments, condensate for the airstream drains not only from directly under the evaporator, but also before evaporator, through the same mechanism. In even more particularly preferred embodiments, condensation that forms or collects at all locations prior to reaching the heat exchanger, and, in particular, the evaporator region, flows to the same area and, preferably, through the same drainage channel, even more preferably, a U shaped drainage channel. The impact on noise is minimal to non-existent in preferred embodiments of the present invention. By preventing condensate from ‘flowing back’ into the blower area once it has passed the region of the upstream edge of the U drain, even during heavy accelerations, the present invention allows for the maximum of condensate free air to reach the distribution area for delivery outside of the HVAC unit.
-
FIG. 1 is a perspective internal view of an HVAC unit, in according with an aspect of the present invention; -
FIG. 2 is a schematic view of an HVAC unit in accordance with an aspect of the present invention, showing airflow and condensate pathways and an area of low pressure or suction region of at the drainage region and condensate ingress from an area outside of the normal HVAC airflow and drainage area, in accordance with an aspect of the present invention; -
FIG. 3 is a perspective view of an HVAC unit showing the drain channel with upstream and downstream faces or sides, in accordance with an aspect of the present invention; -
FIG. 4 is a schematic view of an HVAC unit with condensate flow from upstream and downstream of the drainage area with step, in accordance with an aspect of the present invention. - As seen above, the current architecture of many prior art HVAC units, particularly those units in a semi-lateral orientation, have lead to a number of problems for which no adequate solution has been found. The present invention solves a number of the prior art problems, while providing for increased simplicity and lower production costs related to the method of removing condensate from HVAC units. In preferred embodiments of the present invention, the present invention relates to an HVAC unit, and, preferably, an HVAC unit for an automotive vehicle, wherein a condensate drain or ‘dual path’ system is provided. In addition, the present invention leads to much simpler tooling and tooling design due to the multi path system over previous one-path systems. Such improved tooling of the HVAC drainage area provides the heretofore unachievable advantage of simpler maintenance and quality improvements due to the decreased complexity of the HVAC water removal components as a whole. Since condensate leaves the air inflow and air outflow faces of the evaporator and passes to the same. Drainage area and channel, a much simpler and more effective design can be made.
- In prior art HVAC units, it is often necessary to have ‘covers’ or ‘cap or plate’, such as plastic covers, over one or more of the drain channel(s) In more preferred embodiments of the present invention, the one or open path system provides for an HVAC unit without additional covers, such as plastic covers.
- In preferred embodiments of the present invention, an HVAC unit, and, more preferably a laterally oriented or lateral HVAC unit with a condensate draining system comprises: a housing; a air propulsion means or blower; an air flow provided by the propulsion means; a heat exchanger downstream of the air propulsion means; and a channel or drain means downstream of the air propulsion means and upstream of the heat exchanger. The channel or drain preferably drains condensate from the air flow upstream up to the area of the channel or drain means and upstream from the heat exchanger in two separate or dual paths. More preferably, the drain means is a U shaped channel or drain. Also more preferably, the U shaped channel or drain has a step.
- In preferred embodiments of the present invention, a step is provided. In more preferred embodiments, the side of the step downstream of the air propulsion means that contacts the air flow upstream up to the area of the channel or drain is higher than the side of the step downstream of the channel or drain. Also in more preferred embodiments, comprising a step, wherein the drainage means is a channel or drain and wherein side of the step downstream of the air propulsion means that contacts the air flow upstream up to the area of the channel or drain is higher than the side of the step downstream of the channel or drain.
- As described above, preferred HVAC units in accordance with the present invention are lateral HVAC units. Also preferred are HVAC units that have a second or secondary drain with or without drain pan, through which condensate drains from the air outflow side of the heat exchanger prior to exiting the drain, and, preferably, a U shaped drain, and leaving the HVAC unit.
- In preferred embodiments of the present invention, the HVAC unit has a heat exchanger and/or an evaporator. In most preferred embodiments, the heat exchanger has an evaporator. In preferred embodiments, and especially where the heat exchanger is an evaporator, the U shaped channel or drain has a gap at its center, and the air from the air flow jumps, clears or misses the gap such that a slightly lower pressure exists in the area of the drain due to the movement of the air. In such embodiments, the condensate is drawn down into a slope of the U shaped drain or channel due partly to the lower pressure at the area of the U shaped drain or channel. Also preferred are HVAC units wherein the lower edge of the blower and the lower edge of the evaporator are at approximately the same height.
- Also, in more preferred embodiments of the present invention, the dual path nature allows for more efficient molding, particular for plastic and plastic like parts of the HVAC unit including parts such as the evaporator housing, and condensate drain. The plastic parts of the present invention can be molded, and, preferably injection molded. The present invention, therefore, provides, in even more preferred embodiments, for HVAC units to be essentially composed of a resin, or resin like or resin based HVAC unit, with only a one piece molding of the drain area. The resin, resin like or resin based HVAC unit, and, particularly, the drainage means comprised of drainage members or apparatuses, provides for dual path for water condensate to flow through a drain, while further ensuring that no condensate flows back or backs up upstream of the drain area due to the lateral or semi-lateral position of the HVAC unit. Therefore, the airflow in the HVAC unit is airflow that is of reduced water content downstream of the drain area, with no increase or re-entrainment of water upstream of the drain area.
- In preferred embodiments of the present invention, unlike the prior art molding to segregate the water condensate flow to the drain, from, the air-flow in the HVAC, the condensate drain is formed in a U shape. In preferred methods of the present invention, the U shaped drain is shaped such that it forms a step down from downstream of the blower to the upstream of the evaporator. In other words, the drain is constructed by shaping the upstream (blower side) side of the main U drain such that the flow in the expansion area after the blower causes a ‘suction’ or lower pressure region as the airflow passes the ‘backward facing step’ or step, cliff, precipice, wall, and continues onward towards the downstream end of the drainage area.
- In more preferred embodiments of the present invention, the condensate drainage channel or, more preferably, the U shaped drain, passes as an open type channel (i.e. a hole or opening from the interior of the U shaped drain to the interior of the HVAC unit where the main flow is). As described above, the condensate drainage channel preferred in the present invention is of typically of a U like shape or any shape that allows no air flow spitting, no condensate return upstream, provides for water drainage from both water paths, water check valve to prevent incoming airstream water to be drained from the blower. The step has two faces, (the upstream one) is typically taller than the other limb (the downstream one). This creates the ‘backward facing step’ geometry allowing the two streams to pass over (the air) and under (the condensate water) one another.
- By step in the present application, it is meant an abrupt or marked change in height of a surface allowing easy motion from the higher to lower, but not from the lower to higher, side of surface.
- In the preferred embodiments of the present invention, water in the form of condensate, drains towards the drainage area. Water still present in the airflow downstream of the drainage area can still eventually drain as condensate when precipitated after passage of the air downstream of the drain area, due to the negative pressure condition present in the drainage area. In preferred embodiments, therefore, air, after arriving to and passing by the dual path drain from downstream of the blower and drainage area, allows water in the air to precipitate as condensate and to ‘drain back’ towards the drainage area from the air inflow face/region of the evaporator downstream of the drainage area, thereby allowing better evaporator cooling performance to be attained. By providing for a drain that is upstream of the evaporator, such improved evaporator cooling performance is obtained to a large extent due to the fact that condensate that forms from the air immediately upstream of the evaporator can drain without the need for a bypass under the lower front edge of the evaporator or other mechanism pre-evaporator. In the preferred embodiments of the present invention, condensate drains back from the air inflow face at a opposing current to the airflow leading to the evaporator in spite of the fact that the vehicle may be experiences heavy G forces from cornering, breaking or accelerating. In prior art HVAC units, when vehicles face such heavy G forces from cornering, braking and/or accelerating, the fact that there is no mechanism for condensate removal for condensate ‘back flow’ means that water, in the form of condensate, would normally run back upstream towards and/or into the blower or blower area.
- As described hereinabove, in prior art designs the lower edge of the HVAC blower can be located at the same level vertically in normal vehicle operating position at the lower edge of the HVAC heat exchanger, and, especially, the evaporator of the HVAC. In these prior art designs, problems in this positioning can occur, particularly during periods of normal operation of the vehicle, when acceleration needs are most required (heavy acceleration) e.g. cornering. As described above, when as heavy acceleration occurs in such units, water in the airflow can form condensate that may flow back towards or into the blower, causing warranty issues. This present invention, by providing for a drainage system, and, in particular a drainage system with a negative pressure drop feature, provides for a high resistance to condensate backflow and /or drainage prior to reaching the area upstream of the drainage area near or at the blower level and provides for a step, facing the returning water or condensate stream, the step stopping the water or condensate.
- Referring to
FIGS. 1 and 2 , is shown a general layout of the one of the embodiments of the present invention, with Axis V, W and X denoting the section cuts provided inFIGS. 2, 3 , and 4 respectively having ablower 10 within ascroll 11, anexpansion area 37, a turningarea 24, the evaporator having an air inflow (upstream) 15, 24 and air outflow (downstream) 18 face or area. U channel or drain 13 crosses perpendicularly under theexpansion area 37 with air-flow 12 provided over the upstream or taller limb and the downstream lower limb of the U shaped channel. Thismain U channel 13 is connected to the evaporator drain/pan channel preferably via achannel 16 generally parallel to but offset from the 15, 12.main airflow - Referring to
FIG. 2 , an HVAC unit withingressed condensate 39 is shown. Once the ingressed water has passed over the drain region, the aforementioned process happens. - In more preferred embodiments of the present invention,
13, 14, 16 is constructed to have a backward facingdrainage channel 25, 26 in thestep 13, 14 where thedrain region airflow 12 jumps or crosses over thedrain 13. Theairflow 12 crosses over the 13, 14, 25, 26 without jetting down into thedrainage area 13, 14, and hence, not causing noise or losing inordinate amounts of airflow through thedrain drain 14. Furthermore thedrainage pan 29 from the evaporator underside, allows water or condensate to drain back down to the said U shaped 14, 13.drainage channel - In preferred embodiments of the present invention, as shown in
FIGS. 1, 2 and 3, condensate from both the air inflow upstream 17 plus air outflow downstream 18 side of theevaporator 19 exits easily to the 29, 16, 14, 13. Thedrain lower edge 35 on the inlet side (upstream side) 17 of theevaporator 19 can be better sealed without worry of trapping stagnant water that cannot be drained. The water (condensate 30) from the evaporatorair flow region 36 cannot drain back towards the 11, 12 or theblower area blower 10 due to the 25, 26 in thestep expansion 37 or area after the blower connecting to the corner housing. Theblower 10 toevaporator 19 relative positioning is efficient and more favorable with the use of this invention. Wall orrib 35 holds or maintains the bottom of the evaporator, as well as prevents condensate from passing directly under the evaporator from the air inflow side. - Referring to
FIG. 4 ,condensate 30 from theevaporator 19 falls into a pan orcollection area 29, which leads via achannel 16, cut through, but preferably integral with, the air-flow expansion region 37 of theHVAC 10. Thecondensate 30 is drawn back towards thedrain 13, from the pan orcollection area 29 of the underside of theevaporator 19 due to the suction ordynamic pressure 14 of the flow in theexpansion region 12 via the drainage channel. 13.Condensate 30 movement upstream of the evaporator (flow) vis a vis theevaporator 19 andupstream flow 38 towards the evaporator does not occur, because of the shape of the 25, 26 of the upstream (taller) 25 and downstream (lower) 26 sides of thelimbs 13, 14 cut in the air-U drainage channel flow expansion region 37 to ensure that adequate drainage of condensate to outside of the HVAC unit 1 occurs. The backward facing step or difference in height variation of 25 relative to 26 allows an area of relatively negative orsuction pressure 14 to form in thedrain 13 rather than allowing relatively positive pressure to form. From this pressure stand point the drain functions as normal, assisting the drainage of condensate from both 17, 36, 12, 29 of the evaporator, rather than stagnate or collect insides unwanted areas 10 of the HVAC unit. - The present invention can also very easily handle the evacuation of liquid such as rain, water moisture, windshield wiper and other automotive and cleaning fluids, etc., ingression into the HVAC unit from/via other means. Such as ingress from the dry or wet plenums of the car water separation apparatus during rain, car washing, windshield washing means water from the blower region of the HVAC will be cast or thrown or projected along through, preferably, the expansion part of the HVAC. A part or some of the liquid or condensate can fall directly into the
drainage channel 13 ordrain area 14, while a second part of the liquid or condensate passes through/underneath the evaporator to the drainage means described. The drainage means or structure, and, in particular, the channel's U shape causes the black flow of the condensation to be impeded, therefore, stopping any ingressed liquid or condensate to find its way back to the blower area or blower. - The present invention also allows for the lower edge of the blower to be located at a level approximately level with the evaporator. This positioning of blower and evaporator allows to an overall advantage with respect to HVAC packaging environment, allowing for large recirculation fresh air inlet possible, containing an air filter. The U shaped drain allows for a larger space for filter.
- In preferred embodiment of the present invention, the drain means or structure is a preferred sloping U shaped channel from the underside of the evaporator preferably traveling firstly parallel and then counter to the airflow. Then secondly the U shaped channel then turns to be generally/preferably perpendicular to the airflow, but stepped in such a way as to allow the airflow to jump over the U or water drainage channel. The jumping action causes an aerodynamic lower pressure in the U channel, indicating that the airflow has no intention of directly entering the said channel, or having any intention to return airflow back up into the underside of the evaporator area. Hence the drain drains correctly.
- The preferred embodiment of the present invention has been disclosed. A person of ordinary skill in the art would realize, however, that certain modifications would come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.
Claims (10)
1. An HVAC unit with a condensate draining system comprising:
a housing;
a air propulsion means;
an air flow provided by the propulsion means;
a heat exchanger downstream of the air propulsion means;
a channel or drain means downstream of the air propulsion means and upstream of the heat exchanger;
wherein the channel or drain drains condensate from the air flow upstream up to the area of the channel or drain means and upstream from the heat exchanger in two separate or dual paths.
2. An HVAC unit as in claim 1 , wherein the drain means is a U shaped channel or drain.
3. An HVAC unit as in claim 2 , wherein the U shaped channel or drain has a step.
4. An HVAC unit as in claim 3 , wherein of the side of the step downstream of the air propulsion means that contacts the air flow upstream up to the area of the channel or drain is higher than the side of the step downstream of the channel or drain.
5. An HVAC unit as in claim 1 , further comprising a step, wherein the drainage means is a channel or drain and wherein side of the step downstream of the air propulsion means that contacts the air flow upstream up to the area of the channel or drain is higher than the side of the step downstream of the channel or drain.
6. An HVAC unit, as in claim 3 , wherein the HVAC unit is a lateral HVAC unit, and the HVAC unit has a second drain with or without drain pan, through which condensate drains from the air outflow side of the heat exchanger prior to exiting the U shaped drain and leaving the HVAC unit.
7. An HVAC unit as in claim 4 , wherein the heat exchanger is an evaporator.
8. An HVAC unit, as in claim 4 , wherein the U shaped channel or drain has a gap at its center, and the air from the air flow jumps, clears or misses the gap such that a slightly lower pressure exists in the area of the drain due to the movement of the air.
9. An HVAC unit, as in claim 4 , wherein the condensate is drawn down into a slope of the U shaped drain or channel due partly to the lower pressure at the area of the U shaped drain or channel.
10. An HVAC unit, as in claim 7 , wherein the lower edge of the blower and the lower edge of the evaporator are at approximately the same height.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/021,972 US20060130509A1 (en) | 2004-12-22 | 2004-12-22 | HVAC lateral condensate drain channel |
| US11/788,333 US7721565B2 (en) | 2004-12-22 | 2007-04-19 | HVAC lateral condensate drain channel |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/021,972 US20060130509A1 (en) | 2004-12-22 | 2004-12-22 | HVAC lateral condensate drain channel |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/788,333 Continuation US7721565B2 (en) | 2004-12-22 | 2007-04-19 | HVAC lateral condensate drain channel |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060130509A1 true US20060130509A1 (en) | 2006-06-22 |
Family
ID=36593996
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/021,972 Abandoned US20060130509A1 (en) | 2004-12-22 | 2004-12-22 | HVAC lateral condensate drain channel |
| US11/788,333 Active 2028-03-17 US7721565B2 (en) | 2004-12-22 | 2007-04-19 | HVAC lateral condensate drain channel |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/788,333 Active 2028-03-17 US7721565B2 (en) | 2004-12-22 | 2007-04-19 | HVAC lateral condensate drain channel |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20060130509A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100273411A1 (en) * | 2009-04-28 | 2010-10-28 | Honda Motor Co., Ltd. | Seal and drain structure for a front and rear integrated hvac system |
| US20190376723A1 (en) * | 2018-06-07 | 2019-12-12 | Johnson Controls Technology Company | Condensate management systems and methods |
| US10761190B1 (en) | 2019-04-12 | 2020-09-01 | Ford Global Technologies, Llc | Moisture control for sensor assembly |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102010062406B4 (en) | 2010-12-03 | 2023-08-10 | Halla Visteon Climate Control Corporation | Air conditioner for a vehicle |
| USD774633S1 (en) | 2014-08-25 | 2016-12-20 | Rheem Manufacturing Company | Air conditioning system drain pan |
| DE102014221955B4 (en) * | 2014-10-28 | 2017-10-19 | Mahle International Gmbh | air conditioning |
| US10723204B2 (en) * | 2018-01-26 | 2020-07-28 | Denso International America, Inc. | Vehicular air conditioning system |
| CN111319642B (en) * | 2018-12-13 | 2021-05-04 | 中车唐山机车车辆有限公司 | Rail train |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2956416A (en) * | 1955-05-02 | 1960-10-18 | Taylor Burch Refrigeration Pro | Cooling apparatus with humidity means |
| US3038772A (en) * | 1960-04-28 | 1962-06-12 | Linde Eismasch Ag | Arrangement for draining off the defrosting water in refrigerating containers, particularly refrigerator cabinets |
| US3561230A (en) * | 1969-03-17 | 1971-02-09 | Streater Ind Inc | Floor pan arrangement for refrigerated display case |
| US3585814A (en) * | 1967-09-29 | 1971-06-22 | Int Standard Electric Corp | Refrigerated unit |
| US6044656A (en) * | 1994-09-22 | 2000-04-04 | Denso Corporation | Automotive air conditioner |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3999357B2 (en) * | 1998-06-12 | 2007-10-31 | 三菱重工業株式会社 | Air conditioner for vehicles |
-
2004
- 2004-12-22 US US11/021,972 patent/US20060130509A1/en not_active Abandoned
-
2007
- 2007-04-19 US US11/788,333 patent/US7721565B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2956416A (en) * | 1955-05-02 | 1960-10-18 | Taylor Burch Refrigeration Pro | Cooling apparatus with humidity means |
| US3038772A (en) * | 1960-04-28 | 1962-06-12 | Linde Eismasch Ag | Arrangement for draining off the defrosting water in refrigerating containers, particularly refrigerator cabinets |
| US3585814A (en) * | 1967-09-29 | 1971-06-22 | Int Standard Electric Corp | Refrigerated unit |
| US3561230A (en) * | 1969-03-17 | 1971-02-09 | Streater Ind Inc | Floor pan arrangement for refrigerated display case |
| US6044656A (en) * | 1994-09-22 | 2000-04-04 | Denso Corporation | Automotive air conditioner |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100273411A1 (en) * | 2009-04-28 | 2010-10-28 | Honda Motor Co., Ltd. | Seal and drain structure for a front and rear integrated hvac system |
| US8997837B2 (en) | 2009-04-28 | 2015-04-07 | Honda Motor Co., Ltd. | Seal and drain structure for a front and rear integrated HVAC system |
| US20190376723A1 (en) * | 2018-06-07 | 2019-12-12 | Johnson Controls Technology Company | Condensate management systems and methods |
| US10761190B1 (en) | 2019-04-12 | 2020-09-01 | Ford Global Technologies, Llc | Moisture control for sensor assembly |
Also Published As
| Publication number | Publication date |
|---|---|
| US20070227692A1 (en) | 2007-10-04 |
| US7721565B2 (en) | 2010-05-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7721565B2 (en) | HVAC lateral condensate drain channel | |
| JP4098495B2 (en) | Air conditioner for vehicles | |
| US9108490B2 (en) | Air supply duct | |
| EP2212135B1 (en) | A vehicle-cabin air-conditioning system and a module containing the system | |
| US9475362B2 (en) | Heating ventilating and air conditioning device for a vehicle | |
| US20060006011A1 (en) | Secondary path automobile air intake system | |
| US20140017987A1 (en) | Air supply arrangement | |
| JPS6317646B2 (en) | ||
| US6632133B2 (en) | Air filter for vehicle ventilation | |
| US5162019A (en) | Fresh-air intake duct for a motor vehicle | |
| KR101345314B1 (en) | An assembly for ventilating and air-conditioning of a driving compartment of a motor vehicle | |
| JP3800772B2 (en) | Vehicle-mounted ceiling cooler unit | |
| EP2168796B1 (en) | Air conditioning system for a car | |
| US5221231A (en) | Motor vehicle heating/air conditioning system | |
| KR20040076652A (en) | Air-conditioning case | |
| US6604992B1 (en) | HVAC air inlet drain | |
| JP2714177B2 (en) | Drain discharge device for vehicle air conditioner | |
| JP4034049B2 (en) | Air conditioner for vehicles | |
| JPH09290625A (en) | Ceiling setup cooler unit for vehicle | |
| KR20010077923A (en) | An Air conditioner | |
| US20250296517A1 (en) | Motor vehicle with a water tank and an intake opening formed on both sides of a longitudinal center axis in a cover element of the water tank | |
| JPS623290Y2 (en) | ||
| JP3879221B2 (en) | Vehicle roof mounted air conditioner | |
| JPH0231295Y2 (en) | ||
| JPS6139617Y2 (en) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: VALEO CLIMATE CONTROL CORP., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILLIAMS, BRIAN R.;MARSHALL, STEVEN B.;REEL/FRAME:016126/0910 Effective date: 20041216 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |