US20060096674A1 - Method for coating the surface of a metallic material, device for carrying out said method - Google Patents
Method for coating the surface of a metallic material, device for carrying out said method Download PDFInfo
- Publication number
- US20060096674A1 US20060096674A1 US10/522,688 US52268805A US2006096674A1 US 20060096674 A1 US20060096674 A1 US 20060096674A1 US 52268805 A US52268805 A US 52268805A US 2006096674 A1 US2006096674 A1 US 2006096674A1
- Authority
- US
- United States
- Prior art keywords
- coating
- metal
- strip
- layer
- equal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 77
- 239000011248 coating agent Substances 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 71
- 239000007769 metal material Substances 0.000 title claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 18
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 15
- 230000008018 melting Effects 0.000 claims abstract description 10
- 238000002844 melting Methods 0.000 claims abstract description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 20
- 229910052718 tin Inorganic materials 0.000 claims description 20
- 239000011135 tin Substances 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 239000004411 aluminium Substances 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 11
- 239000011707 mineral Substances 0.000 claims description 11
- 230000000007 visual effect Effects 0.000 claims description 11
- 238000005240 physical vapour deposition Methods 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000004070 electrodeposition Methods 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 3
- 239000010962 carbon steel Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 3
- 238000010849 ion bombardment Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 7
- 238000001755 magnetron sputter deposition Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 239000004408 titanium dioxide Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 230000003670 easy-to-clean Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000005028 tinplate Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
Definitions
- the invention relates to the coating of metal surfaces. More precisely, it relates to processing operations for coating the surface of a metal material intended to confer a three-dimensional visual effect on the material.
- a visual effect of this type can be achieved using holograms which are produced by recording and reproducing an image by means of two laser beams on a photosensitive medium which is capable of recording highly contrasting luminous interferences.
- Media of this type are, for example, thermoplastic films, photopolymers, photosensitive films . . .
- the object of the invention is to provide a method which allows three-dimensional visual effects to be produced on the surface of a metal material without a photosensitive medium having to be applied to the surface.
- the subject-matter of the invention is a method for coating the surface of a metal material having a crystallographic structure, according to which the material is first coated with a layer of a metal or a metal alloy having a melting point equal to T f and a thickness less than or equal to 2.5 ⁇ m, characterised in that:
- the first coating is subjected to thermal processing using a rapid heating means in order to bring the surface of the first coating to a temperature of between 0.8 T f and T f ;
- a second coating is deposited from a metal or a metal alloy having a thickness less than or equal to 1 ⁇ m.
- the first and second coatings have melting points less than or equal to 700° C.
- the first and second coatings can be constituted by the same material.
- a transparent mineral film is then deposited on the second coating.
- the metal material to be coated can preferably be a carbon steel, a stainless steel, or aluminium or one of the alloys thereof.
- the first coating can preferably be produced by means of electrodeposition or a physical vapour deposition method.
- the rapid heating means can preferably be an infra-red heating device, an induction heating device, a device for discharge with plasma with a non-reactive gas or a device for ion bombardment with a non-reactive gas.
- the second coating can preferably be produced by means of electrodeposition or a physical vapour deposition method.
- the transparent mineral film can be deposited by means of a reactive plasma assisted chemical vapour deposition method.
- the first and second coatings can each be constituted by tin and/or aluminium.
- the mineral film can be constituted by a metal oxide or a mixture of metal oxides, preferably selected from the oxides of austenitic stainless steel, chromium, titanium, silicon, zinc, tin.
- the metal material can be in the form of a moving strip and the various method steps can be carried out continuously by means of installations which are arranged successively over the path of the moving strip.
- the invention also relates to a device for coating a metal material in the form of a strip, characterised in that it comprises means for moving the strip and, arranged successively over the path of the strip:
- the device can comprise, downstream of the second means for coating the strip with a layer of a metal or a metal alloy, means for coating the strip with a transparent mineral film.
- the invention also relates to a metal material, characterised in that it comprises, on at least one of the surfaces thereof, a metal coating which has a three-dimensional visual effect, the coating being formed directly on the surface of the material, and which is carried out in particular by the above method.
- the invention consists in producing the desired three-dimensional visual effect using a series of operations for processing the surface of the metal material itself.
- a multilayered coating is produced which cannot be separated from the metal material and which can be produced by the metal company which made the base material.
- This coating in addition to the aesthetic qualities thereof, has a number of technical advantages and allows the manufacturer of the metal material to maintain complete control over the decoration process.
- FIGS. 1 to 6 illustrate the appearances of various coatings produced by different variants of the method according to the invention.
- the starting material is a metal material, such as a carbon steel, a stainless steel, aluminium or one of the alloys thereof, etcetera. It is, for example, in the form of a plate or a wound strip. In this last case, it is possible to carry out the processing operation which will be described by unwinding the strip and moving it continuously in an installation where the equipment which allows the various steps of the processing operation to be carried out is arranged successively over the path of the strip. In order to achieve the desired aesthetic effect, it is necessary for the metal material used as a substrate to have a crystallographic structure.
- the surface of the material is conditioned in a manner known per se in order to remove any superficial contamination.
- the first method step is the depositing of a first coating, constituted by a metal element (tin or aluminium, for example) or a metal alloy, preferably having a low melting point T f in the order of 700° C. or less.
- This coating must have a thickness less than or equal to 2.5 ⁇ m.
- the physical vapour deposition methods which can be used include conventionally known methods involving vacuum evaporation, magnetron sputtering, ion plating, self-induced ion plating.
- the second method step is a thermal processing operation which is carried out on the first coating using a rapid heating means, such as infra-red lamps, an inductor, a plasma discharge operation, or ion bombardment with a non-reactive gas, such as an inert gas.
- a rapid heating means such as infra-red lamps, an inductor, a plasma discharge operation, or ion bombardment with a non-reactive gas, such as an inert gas.
- This thermal processing must bring the surface of the first coating to a temperature of between 0.8 T f and T f . So that it is effected with kinetics compatible with being carried out on a strip moving at a speed in the order of 100 m/mn, it is preferable for T f to be less than or equal to 700° C.
- the third method step is the depositing of a second coating, from a metal element or an alloy which may or may not be identical to the material of the first coating.
- This coating must have a thickness which does not exceed 1 ⁇ m. It can be produced using the same methods as the first coating.
- the method can comprise a fourth step which consists in depositing a transparent mineral film on the second metal coating.
- a transparent mineral film can be carried out by any known means for this purpose, the reactive plasma assisted chemical vapour deposition methods being particularly appropriate. If this film has a thickness less than or equal to 1 ⁇ m, a coloured coating can be produced by means of an interference effect of the mineral film. The colours green, yellow, blue, violet and red are accessible in this manner, in accordance with the refraction index of the material deposited.
- this transparent film gives an appearance of additional depth to patterns having a three-dimensional appearance which are produced following the first three method steps.
- the appearance of patterns on the surface of the substrate requires the substrate to have a crystallographic structure.
- the nucleation of the solidification patterns of the metal deposits is produced on the basis of preferential sites at the surface of the substrate which exist only if the substrate has a crystallographic structure.
- the size of the patterns produced depends on the quantity of energy used during the second method step and the thickness of the coating: the patterns will be larger as this quantity of energy and/or this thickness become(s) greater.
- the use of a metal or alloy having a low melting point (700° C. or less) as a coating material during the first method step allows the metallurgical conversion of the coating to be carried out in a very short space of time during the second step.
- the methods of heating which have been mentioned allow the necessary energy to be provided in the shortest possible time.
- the method according to the invention has a number of advantages. As mentioned, it allows the manufacturer of metal products to maintain complete control over the method. Since the coating which produces the three-dimensional visual effect is an integral part of the medium in this case, there is no risk of it becoming separated during subsequent processing and handling operations. Furthermore, most particularly if the method is used in its entirety with four steps, the coating produced in this manner increases the resistance of the substrate to cosmetic corrosion. The coating also has a higher resistance to ultra-violet radiation and temperature. It is less sensitive to fingermarks. It has a high degree of superficial hardness which makes it less sensitive to scratches. It is easy to clean and effectively withstands maintenance products and other mechanical influences. Finally, it is possible, if the coating metal used is appropriate (for example, tin), to make the coating compatible with use in the field of foodstuffs.
- the coating metal used is appropriate (for example, tin)
- the sheet is coated with a layer of tin of 0.8 ⁇ m by means of magnetron sputtering in an atmosphere of argon at a pressure of 10 ⁇ 3 mbar (0.1 Pa).
- the target current is 0.9 A and the target voltage is 450V.
- the rate at which the tin is deposited is 0.25 ⁇ m/min.
- the sheet is thermally processed using an argon plasma at a pressure of 10 ⁇ 3 mbar (0.1 Pa).
- the energy conferred on the ions of argon is 400 eV and the quantity of ions received by the sheet is 4.7 ⁇ 10 22 ions Ar + /m 2 .
- the sheet is placed as a cathode.
- the surface of the tin is brought to a temperature in the order of 210° C.
- a tin coating of 0.4 ⁇ m is deposited by means of magnetron sputtering, under the same experimental conditions as for the first coating.
- a transparent film of silicon having a thickness of 0.1 ⁇ m is deposited by means of plasma CVD.
- the depositing is carried out in an atmosphere composed of hexamethyldisiloxane (HMDSO) and oxygen at a pressure of 10 ⁇ 3 mbar (0.1 Pa), with a ratio of partial pressures of HMDSO and O 2 of 1/10.
- a current is used having a frequency of 50 kHz at a power of 100W.
- the depositing rate is 1.0 ⁇ m/min.
- a coating is produced whose external appearance is illustrated in FIG. 1 , which coating has anti-corrosion and anti-fingermarking properties, is easy to clean and has a high degree of superficial hardness. It is capable of withstanding significant mechanical, chemical and thermal influences.
- the sheet of steel is coated under conditions identical to those of example 1 for the first three steps.
- the fourth step consists in producing a coloured film of titanium dioxide by means of reactive magnetron sputtering of a titanium target.
- the thickness of the film is 0.05 ⁇ m.
- the sheet of soft steel is coated under the same conditions as for example 2, with the exception that the thickness of the first deposit of tin is increased to 1.2 ⁇ m, and the quantity of ions received by the first layer of tin during the second method step is increased. In this case, this quantity reaches 9.4 ⁇ 10 22 ions Ar + /m 2 .
- the surface of the tin is brought to a temperature in the order of 235° C. The result can be seen in FIG. 3 .
- the sheet of soft steel is coated under the same conditions as for example 2, with the exception that, as for example 3, the quantity of ions received by the first layer is increased to 9.4 ⁇ 10 22 ions Ar + /m 2 , and the thickness of the titanium dioxide film is increased to 0.08 ⁇ m. The result can be seen in FIG. 4 .
- the sheet is coated under identical conditions to those of example 1, with the exception that, for the second step, two infra-red lamps are used to heat the substrate and the first layer of tin thereof, and no oxide is deposited on the second layer of tin. Only the first three method steps are therefore carried out, those which are required to produce the desired three-dimensional visual effect.
- the heating of the layer of tin is static and lasts for 8 minutes in a lamp-type furnace controlled at a temperature of 200° C. The result can be seen in FIG. 5 .
- a very thin sheet of soft steel of 200 ⁇ 200 mm and 0.2 mm thick is coated with an electrodeposited layer of tin in such a manner as to produce a sheet of “tinplate” of the type conventionally used in the field of foodstuffs.
- the second and third method steps according to the invention are then carried out under conditions identical to those of example 2.
- the fourth optional processing step according to the invention is not carried out. The result can be seen in FIG. 6 .
- the sheet is coated with a layer of aluminium of 0.6 ⁇ m by means of magnetron sputtering in an atmosphere of argon at a pressure of 10 ⁇ 3 mbar (0.1 Pa).
- the target current is 1.8 A and the target voltage is 355V.
- the rate at which the aluminium is deposited is 0.33 ⁇ m/min.
- the sheet is thermally processed with an argon plasma at a pressure of 10 ⁇ 3 mbar (0.1 Pa).
- the energy conferred on the argon ions is 280 eV and the quantity of ions is 18.4 ⁇ 10 22 ions Ar + /m 2 .
- the sheet is placed as a cathode.
- the surface of the sheet coated in aluminium is brought to a temperature of 615° C. at the end of the processing operation.
- a coating of tin is deposited by means of magnetron sputtering under the same experimental conditions as those described in the third step of example 1.
- the sheet of soft steel is coated with tin under the same conditions as for example 3 for the first two steps.
- an aluminium coating is deposited by means of magnetron sputtering, under the same experimental conditions as those described in the first step of example 7, with the exception that the aluminium is deposited with a thickness of 0.4 ⁇ m.
- the three-dimensional visual appearance is desired on only one surface or portions of the surface of the metal material, it is possible to protect the material using one or more covers which mask the zones which are not to be coated during the various processing operations to which they are subjected.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
The invention relates to a method for coating the surface of a metallic material having a crystallographic structure. The inventive method consists in producing a first coating of said material with a metal layer or a metal alloy layer having a melting point of Tf and a thickness equal to or less than 2.5 μm, heating the first coating by a flash heating in such a way that it is heated to a temperature ranging from 0.8 Tf to Tf, producing a second metal or metal alloy coating with a thickness equal to or less than 1 μm. The device for carrying out said method and the thus coated metallic material are also disclosed.
Description
- The invention relates to the coating of metal surfaces. More precisely, it relates to processing operations for coating the surface of a metal material intended to confer a three-dimensional visual effect on the material.
- A visual effect of this type can be achieved using holograms which are produced by recording and reproducing an image by means of two laser beams on a photosensitive medium which is capable of recording highly contrasting luminous interferences. Media of this type are, for example, thermoplastic films, photopolymers, photosensitive films . . .
- Up to the present time, in order to produce a three-dimensional visual effect on a metal surface, no method has been known other than to apply to the surface, by means of adhesive-bonding or colamination, a photosensitive medium of the type described above. The decoration of metal packagings of steel or aluminium is a preferred use of this technique which has the disadvantage for the metal company of requiring the involvement of an external supplier to provide the photosensitive medium. Furthermore, there is the risk of the medium becoming separated from the packaging or damaged during processing and handling operations to which the packaging is subjected following the adhesive-bonding or colamination.
- The object of the invention is to provide a method which allows three-dimensional visual effects to be produced on the surface of a metal material without a photosensitive medium having to be applied to the surface.
- To this end, the subject-matter of the invention is a method for coating the surface of a metal material having a crystallographic structure, according to which the material is first coated with a layer of a metal or a metal alloy having a melting point equal to Tf and a thickness less than or equal to 2.5 μm, characterised in that:
- the first coating is subjected to thermal processing using a rapid heating means in order to bring the surface of the first coating to a temperature of between 0.8 Tf and Tf;
- a second coating is deposited from a metal or a metal alloy having a thickness less than or equal to 1 μm.
- According to a variant of the method, the first and second coatings have melting points less than or equal to 700° C.
- The first and second coatings can be constituted by the same material.
- According to a variant of the method, a transparent mineral film is then deposited on the second coating.
- The metal material to be coated can preferably be a carbon steel, a stainless steel, or aluminium or one of the alloys thereof.
- The first coating can preferably be produced by means of electrodeposition or a physical vapour deposition method.
- The rapid heating means can preferably be an infra-red heating device, an induction heating device, a device for discharge with plasma with a non-reactive gas or a device for ion bombardment with a non-reactive gas.
- The second coating can preferably be produced by means of electrodeposition or a physical vapour deposition method.
- The transparent mineral film can be deposited by means of a reactive plasma assisted chemical vapour deposition method.
- The first and second coatings can each be constituted by tin and/or aluminium.
- The mineral film can be constituted by a metal oxide or a mixture of metal oxides, preferably selected from the oxides of austenitic stainless steel, chromium, titanium, silicon, zinc, tin.
- The metal material can be in the form of a moving strip and the various method steps can be carried out continuously by means of installations which are arranged successively over the path of the moving strip.
- The invention also relates to a device for coating a metal material in the form of a strip, characterised in that it comprises means for moving the strip and, arranged successively over the path of the strip:
- first means for coating the strip with a layer of a metal or a metal alloy having a melting point equal to Tf;
- means for rapidly heating the strip which can bring the surface of the layer to a temperature of between 0.8 Tf and Tf; and
- second means for coating the strip with a layer of metal or metal alloy.
- The device can comprise, downstream of the second means for coating the strip with a layer of a metal or a metal alloy, means for coating the strip with a transparent mineral film.
- The invention also relates to a metal material, characterised in that it comprises, on at least one of the surfaces thereof, a metal coating which has a three-dimensional visual effect, the coating being formed directly on the surface of the material, and which is carried out in particular by the above method.
- As will be appreciated, the invention consists in producing the desired three-dimensional visual effect using a series of operations for processing the surface of the metal material itself. In this manner, a multilayered coating is produced which cannot be separated from the metal material and which can be produced by the metal company which made the base material. This coating, in addition to the aesthetic qualities thereof, has a number of technical advantages and allows the manufacturer of the metal material to maintain complete control over the decoration process.
- The invention will be better understood from a reading of the following description, given with reference to appended FIGS. 1 to 6 which illustrate the appearances of various coatings produced by different variants of the method according to the invention.
- The starting material is a metal material, such as a carbon steel, a stainless steel, aluminium or one of the alloys thereof, etcetera. It is, for example, in the form of a plate or a wound strip. In this last case, it is possible to carry out the processing operation which will be described by unwinding the strip and moving it continuously in an installation where the equipment which allows the various steps of the processing operation to be carried out is arranged successively over the path of the strip. In order to achieve the desired aesthetic effect, it is necessary for the metal material used as a substrate to have a crystallographic structure.
- Before carrying out the depositing, the surface of the material is conditioned in a manner known per se in order to remove any superficial contamination.
- The first method step is the depositing of a first coating, constituted by a metal element (tin or aluminium, for example) or a metal alloy, preferably having a low melting point Tf in the order of 700° C. or less. This coating must have a thickness less than or equal to 2.5 μm.
- Advantageously, it is produced by means of an electrodeposition method or a physical vapour deposition method. The physical vapour deposition methods which can be used include conventionally known methods involving vacuum evaporation, magnetron sputtering, ion plating, self-induced ion plating.
- The second method step is a thermal processing operation which is carried out on the first coating using a rapid heating means, such as infra-red lamps, an inductor, a plasma discharge operation, or ion bombardment with a non-reactive gas, such as an inert gas. This thermal processing must bring the surface of the first coating to a temperature of between 0.8 Tf and Tf. So that it is effected with kinetics compatible with being carried out on a strip moving at a speed in the order of 100 m/mn, it is preferable for Tf to be less than or equal to 700° C.
- The third method step is the depositing of a second coating, from a metal element or an alloy which may or may not be identical to the material of the first coating. This coating must have a thickness which does not exceed 1 μm. It can be produced using the same methods as the first coating.
- Preferably (but not necessarily), the method can comprise a fourth step which consists in depositing a transparent mineral film on the second metal coating. Materials such as oxides of austenitic stainless steel, chromium, titanium, silicon, zinc, tin (non-limiting list) and the mixtures thereof are particularly appropriate. This transparent mineral deposit can be carried out by any known means for this purpose, the reactive plasma assisted chemical vapour deposition methods being particularly appropriate. If this film has a thickness less than or equal to 1 μm, a coloured coating can be produced by means of an interference effect of the mineral film. The colours green, yellow, blue, violet and red are accessible in this manner, in accordance with the refraction index of the material deposited. Generally, this transparent film gives an appearance of additional depth to patterns having a three-dimensional appearance which are produced following the first three method steps.
- As mentioned, the appearance of patterns on the surface of the substrate requires the substrate to have a crystallographic structure. The nucleation of the solidification patterns of the metal deposits is produced on the basis of preferential sites at the surface of the substrate which exist only if the substrate has a crystallographic structure.
- The size of the patterns produced depends on the quantity of energy used during the second method step and the thickness of the coating: the patterns will be larger as this quantity of energy and/or this thickness become(s) greater. The use of a metal or alloy having a low melting point (700° C. or less) as a coating material during the first method step allows the metallurgical conversion of the coating to be carried out in a very short space of time during the second step. The methods of heating which have been mentioned allow the necessary energy to be provided in the shortest possible time.
- Compared with producing three-dimensional visual effects using photosensitive media applied to the metal product, the method according to the invention has a number of advantages. As mentioned, it allows the manufacturer of metal products to maintain complete control over the method. Since the coating which produces the three-dimensional visual effect is an integral part of the medium in this case, there is no risk of it becoming separated during subsequent processing and handling operations. Furthermore, most particularly if the method is used in its entirety with four steps, the coating produced in this manner increases the resistance of the substrate to cosmetic corrosion. The coating also has a higher resistance to ultra-violet radiation and temperature. It is less sensitive to fingermarks. It has a high degree of superficial hardness which makes it less sensitive to scratches. It is easy to clean and effectively withstands maintenance products and other mechanical influences. Finally, it is possible, if the coating metal used is appropriate (for example, tin), to make the coating compatible with use in the field of foodstuffs.
- Various examples for carrying out the method according to the invention will now be described. They are carried out on sheets of soft steel of 200×200 mm and a thickness of 0.7 mm. These sheets are degreased beforehand in conventional manner using damp means (solvent agitated by ultrasound). They are then subjected to an ion pickling operation starting from an argon plasma in a vacuum reactor which is then used during the various steps for carrying out the method according to the invention.
- In the first method step according to the invention, the sheet is coated with a layer of tin of 0.8 μm by means of magnetron sputtering in an atmosphere of argon at a pressure of 10−3 mbar (0.1 Pa). The target current is 0.9 A and the target voltage is 450V. The rate at which the tin is deposited is 0.25 μm/min.
- In the second method step according to the invention, the sheet is thermally processed using an argon plasma at a pressure of 10−3mbar (0.1 Pa). The energy conferred on the ions of argon is 400 eV and the quantity of ions received by the sheet is 4.7×1022 ions Ar+/m2. The sheet is placed as a cathode. The surface of the tin is brought to a temperature in the order of 210° C.
- In the third step, a tin coating of 0.4 μm is deposited by means of magnetron sputtering, under the same experimental conditions as for the first coating.
- In the fourth step, a transparent film of silicon having a thickness of 0.1 μm is deposited by means of plasma CVD. The depositing is carried out in an atmosphere composed of hexamethyldisiloxane (HMDSO) and oxygen at a pressure of 10−3 mbar (0.1 Pa), with a ratio of partial pressures of HMDSO and O2 of 1/10. A current is used having a frequency of 50 kHz at a power of 100W. The depositing rate is 1.0 μm/min.
- Using this method, a coating is produced whose external appearance is illustrated in
FIG. 1 , which coating has anti-corrosion and anti-fingermarking properties, is easy to clean and has a high degree of superficial hardness. It is capable of withstanding significant mechanical, chemical and thermal influences. - The sheet of steel is coated under conditions identical to those of example 1 for the first three steps. The fourth step consists in producing a coloured film of titanium dioxide by means of reactive magnetron sputtering of a titanium target. The thickness of the film is 0.05 μm. The conditions under which it is produced are an atmosphere O2/Ar with PO2/PAr=0.4, a total pressure of 5.10−3 mbar (10.5 Pa) and a power of 1.7 kW. In this manner, a coating is produced which is illustrated in
FIG. 2 , having properties similar to those of example 1, additionally with a blue appearance owing to the refraction index of the titanium dioxide (2.5) and the properties specific to titanium dioxide, that is to say, significant chemical inertia, a high degree of stability at high temperature, effective resistance to chemical influences and a self-cleaning action owing to the catalytic effect thereof of degradation of the materials containing carbon and oxygen in the presence of ultra-violet light. - The sheet of soft steel is coated under the same conditions as for example 2, with the exception that the thickness of the first deposit of tin is increased to 1.2 μm, and the quantity of ions received by the first layer of tin during the second method step is increased. In this case, this quantity reaches 9.4×1022 ions Ar+/m2. The surface of the tin is brought to a temperature in the order of 235° C. The result can be seen in
FIG. 3 . - The sheet of soft steel is coated under the same conditions as for example 2, with the exception that, as for example 3, the quantity of ions received by the first layer is increased to 9.4×1022 ions Ar+/m2, and the thickness of the titanium dioxide film is increased to 0.08 μm. The result can be seen in
FIG. 4 . - It should be noted that the increase in the energy used during the second processing step leads to a significant increase in the size of the patterns.
- The sheet is coated under identical conditions to those of example 1, with the exception that, for the second step, two infra-red lamps are used to heat the substrate and the first layer of tin thereof, and no oxide is deposited on the second layer of tin. Only the first three method steps are therefore carried out, those which are required to produce the desired three-dimensional visual effect. The heating of the layer of tin is static and lasts for 8 minutes in a lamp-type furnace controlled at a temperature of 200° C. The result can be seen in
FIG. 5 . - A very thin sheet of soft steel of 200×200 mm and 0.2 mm thick is coated with an electrodeposited layer of tin in such a manner as to produce a sheet of “tinplate” of the type conventionally used in the field of foodstuffs. The second and third method steps according to the invention are then carried out under conditions identical to those of example 2. The fourth optional processing step according to the invention is not carried out. The result can be seen in
FIG. 6 . - In a first method step according to the invention, the sheet is coated with a layer of aluminium of 0.6 μm by means of magnetron sputtering in an atmosphere of argon at a pressure of 10−3 mbar (0.1 Pa). The target current is 1.8 A and the target voltage is 355V. The rate at which the aluminium is deposited is 0.33 μm/min.
- In the second method step according to the invention, the sheet is thermally processed with an argon plasma at a pressure of 10−3 mbar (0.1 Pa). The energy conferred on the argon ions is 280 eV and the quantity of ions is 18.4×1022 ions Ar+/m2. The sheet is placed as a cathode. The surface of the sheet coated in aluminium is brought to a temperature of 615° C. at the end of the processing operation.
- In a third step, a coating of tin is deposited by means of magnetron sputtering under the same experimental conditions as those described in the third step of example 1.
- Under these production conditions, a coating is produced whose external appearance is identical to that of the example of
FIG. 1 . - The sheet of soft steel is coated with tin under the same conditions as for example 3 for the first two steps. In a third step, an aluminium coating is deposited by means of magnetron sputtering, under the same experimental conditions as those described in the first step of example 7, with the exception that the aluminium is deposited with a thickness of 0.4 μm.
- Under these production conditions, a coating is produced whose external appearance is identical to that of the example of
FIG. 3 . - The examples of materials which form the substrate and the various layers which coat it, and the conditions under which they are formed have been given in a non-limiting manner. The person skilled in the art will be able to envisage variants in accordance with the desired properties of the final product.
- If the three-dimensional visual appearance is desired on only one surface or portions of the surface of the metal material, it is possible to protect the material using one or more covers which mask the zones which are not to be coated during the various processing operations to which they are subjected.
Claims (25)
1. Method for coating the surface of a metal material having a crystallographic structure, according to which the material is first coated with a layer of a metal or a metal alloy having a melting point equal to Tf and a thickness less than or equal to 2.5 μm, characterised in that:
the first coating is subjected to thermal processing using a rapid heating means in order to bring the surface of the first coating to a temperature of between 0.8 Tf and Tf;
a second coating is deposited from a metal or a metal alloy having a thickness less than or equal to 1 μm.
2. Method according to claim 1 , characterised in that the first and second coatings have melting points less than or equal to 700° C.
3. Method according to claim 1 , characterised in that the first and second coatings are constituted by the same material.
4. Method according to claim 1 , characterised in that a transparent mineral film is then deposited on the second coating.
5. Method according to claim 1 , characterised in that the metal material to be coated is a carbon steel.
6. Method according to claim 1 , characterised in that the metal material to be coated is a stainless steel.
7. Method according to claim 1 , characterised in that the metal material to be coated is aluminium or one of the alloys thereof.
8. Method according to claim 1 , characterised in that the first coating is produced by means of electrodeposition.
9. Method according to claim 1 , characterised in that the first coating is produced by a physical vapour deposition method.
10. Method according to claim 1 , characterised in that the means for rapid heating is an infra-red heating device.
11. Method according to claim 1 , characterised in that the means for rapid heating is an induction heating device.
12. Method according to claim 1 , characterised in that the means for rapid heating is a device for discharge with plasma with a non-reactive gas.
13. Method according to claim 1 , characterised in that the means for rapid heating is a device for ion bombardment with a non-reactive gas.
14. Method according to claim 1 , characterised in that the second coating is produced by means of electrodeposition.
15. Method according to claim 1 , characterised in that the second coating is produced by means of a physical vapour deposition method.
16. Method according to claim 4 , characterised in that the transparent mineral film is deposited by means of a reactive plasma assisted chemical vapour deposition method.
17. Method according to claim 1 , characterised in that the first and/or second coating(s) is/are constituted by tin.
18. Method according to claim 1 , characterised in that the first and/or second coating(s) is/are constituted by aluminium.
19. Method according to claim 1 , characterised in that the mineral film is constituted by a metal oxide or a mixture of metal oxides.
20. Method according to claim 19 , characterised in that the metal oxide(s) is/are selected from the oxides of austenitic stainless steel, chromium, titanium, silicon, zinc, tin.
21. Method according to claim 1 , characterised in that the metal material is in the form of a moving strip, and in that the various method steps are carried out continuously by means of installations which are arranged successively over the path of the moving strip.
22. Device for coating a metal material in the form of a strip, characterised in that it comprises means for moving the strip and, arranged successively over the path of the strip:
first means for coating the strip with a layer of a metal or a metal alloy having a melting point equal to Tf;
means for rapidly heating the strip which can bring the surface of the layer to a temperature of between 0.8 Tf and Tf; and
second means for coating the strip with a layer of metal or metal alloy.
23. Device according to claim 22 , characterised in that it comprises, downstream of the second means for coating the strip with a layer of a metal or a metal alloy, means for coating the strip with a transparent mineral film.
24. Metal material, characterised in that it comprises, on at least one of the surfaces thereof, a metal coating having a three-dimensional visual effect, the coating being formed directly on the surface of the material.
25. Metal material according to claim 24 , characterised in that it is produced using a method according to which
the material is first coated with a layer of a metal or a metal alloy having a melting point equal to Tf and a thickness less than or equal to 2.5 μm,
the first coating is subjected to thermal processing using a rapid heating means in order to bring the surface of the first coating to a temperature of between 0.8 Tf and Tf and
a second coating is deposited from a metal or a metal alloy having a thickness less than or equal to 1 μm.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0209952A FR2843130B1 (en) | 2002-08-05 | 2002-08-05 | METHOD FOR COATING THE SURFACE OF A METAL MATERIAL, DEVICE FOR IMPLEMENTING SAME AND PRODUCT THUS OBTAINED |
| FR02/09952 | 2002-08-05 | ||
| PCT/FR2003/002457 WO2004015169A2 (en) | 2002-08-05 | 2003-08-04 | Method for coating the surface of metallic material, device for carrying out said method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060096674A1 true US20060096674A1 (en) | 2006-05-11 |
Family
ID=30129694
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/522,688 Abandoned US20060096674A1 (en) | 2002-08-05 | 2003-08-04 | Method for coating the surface of a metallic material, device for carrying out said method |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US20060096674A1 (en) |
| EP (1) | EP1527208A2 (en) |
| JP (1) | JP2005534812A (en) |
| CN (1) | CN1681966A (en) |
| AU (1) | AU2003274221A1 (en) |
| BR (1) | BR0313580A (en) |
| CA (1) | CA2495457A1 (en) |
| FR (1) | FR2843130B1 (en) |
| PL (1) | PL373077A1 (en) |
| RU (1) | RU2300579C2 (en) |
| WO (1) | WO2004015169A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10711339B2 (en) | 2008-12-18 | 2020-07-14 | Arcelormittal France | Industrial vapor generator for depositing an alloy coating on a metal strip |
| US11674209B2 (en) | 2017-12-19 | 2023-06-13 | Arcelormittal | Hot-dip coated steel substrate |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012045791A1 (en) * | 2010-10-06 | 2012-04-12 | Tata Steel Ijmuiden Bv | Process for producing an iron-tin layer on a packaging steel substrate |
| DE102012100509B4 (en) * | 2012-01-23 | 2015-10-08 | Thyssenkrupp Rasselstein Gmbh | Process for refining a metallic coating on a steel strip |
| PL2816139T3 (en) * | 2012-02-14 | 2020-04-30 | Nippon Steel Corporation | Plated steel plate for hot pressing and hot pressing method of plated steel plate |
| CA2869032C (en) * | 2012-03-30 | 2016-07-05 | Tata Steel Ijmuiden B.V. | Coated substrate for packaging applications and a method for producing said coated substrate |
| RU2515714C1 (en) * | 2012-11-19 | 2014-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ", Московский энергетический институт, МЭИ | Method of nanocomposite coating application onto steel article surface |
| DE102013105392A1 (en) * | 2013-05-27 | 2014-11-27 | Thyssenkrupp Rasselstein Gmbh | Process for coating a steel sheet with a metal layer |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2315740A (en) * | 1941-06-16 | 1943-04-06 | Standard Steel Spring Co | Protected metal article and process of producing the same |
| US4013488A (en) * | 1974-03-14 | 1977-03-22 | Rederiaktiebolaget Nordstjernan | Process for improving the anti-corrosion properties of steel coated with nickel or cobalt |
| US4940522A (en) * | 1987-12-29 | 1990-07-10 | Nkk Corporation | Method for manufacturing plated steel sheet for cans |
| US5073403A (en) * | 1987-12-10 | 1991-12-17 | Nkk Corporation | Aluminum-plated steel sheet for cans |
| US5270081A (en) * | 1990-02-02 | 1993-12-14 | Mtu Motoren-Und Turbinen-Union Muenchen Gmbh | Iron-base alloy structural component having a corrosion-inhibiting coating, and method of producing the coating |
| US5397652A (en) * | 1992-03-27 | 1995-03-14 | The Louis Berkman Company | Corrosion resistant, colored stainless steel and method of making same |
| US6322859B1 (en) * | 1998-11-06 | 2001-11-27 | Riverwind, Llc. | Aesthetic enhancement of substrates |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5420940B2 (en) * | 1973-04-03 | 1979-07-26 | ||
| JPS54110936A (en) * | 1978-02-21 | 1979-08-30 | Nippon Steel Corp | Highly anticorposive composite organic film-coated steel |
| JPS61119667A (en) * | 1984-11-14 | 1986-06-06 | Sumitomo Electric Ind Ltd | Method for vapor depositing aluminum thin layer |
| LU86738A1 (en) * | 1987-01-16 | 1988-08-23 | Centre Rech Metallurgique | PROCESS FOR IMPROVING THE PROPERTIES OF A SUBSTRATE PROVIDED WITH A ZINC COATING |
| DE3931565C1 (en) * | 1989-09-22 | 1991-01-24 | Dornier Luftfahrt Gmbh, 8000 Muenchen, De | |
| RU2019573C1 (en) * | 1992-04-10 | 1994-09-15 | Государственный научно-исследовательский, проектный и конструкторский институт сплавов и обработки цветных металлов | Method of continuous selective deposition of cover on belt-type base in vacuum |
| FR2708290B1 (en) * | 1993-07-27 | 1995-10-20 | Lorraine Laminage | Surface treatment of a hot-dip galvanized steel sheet before painting. |
| BE1007964A6 (en) * | 1994-01-25 | 1995-11-28 | Centre Rech Metallurgique | Process for coating a galvanised steel strip |
| JPH07243025A (en) * | 1994-03-03 | 1995-09-19 | Kobe Steel Ltd | Surface treated material excellent in design characteristic and its production |
| DE19523637C2 (en) * | 1994-12-27 | 1997-08-14 | Mtu Friedrichshafen Gmbh | Process for producing an anti-corrosion coating, substrate with an anti-corrosion coating and use of such a substrate |
| DE19527515C1 (en) * | 1995-07-27 | 1996-11-28 | Fraunhofer Ges Forschung | Corrosion-resistant steel sheet prodn., e.g. for the automobile industry |
| DE19852271A1 (en) * | 1998-11-13 | 2000-05-18 | Edelhoff Adolf Feindrahtwerk | Process for the production of tinned wires |
| JP4085502B2 (en) * | 1999-02-10 | 2008-05-14 | 三菱電機株式会社 | Coated steel sheet, refrigerator |
-
2002
- 2002-08-05 FR FR0209952A patent/FR2843130B1/en not_active Expired - Fee Related
-
2003
- 2003-08-04 EP EP03758204A patent/EP1527208A2/en not_active Withdrawn
- 2003-08-04 RU RU2005106284/02A patent/RU2300579C2/en not_active IP Right Cessation
- 2003-08-04 BR BR0313580-2A patent/BR0313580A/en not_active IP Right Cessation
- 2003-08-04 PL PL03373077A patent/PL373077A1/en unknown
- 2003-08-04 AU AU2003274221A patent/AU2003274221A1/en not_active Abandoned
- 2003-08-04 CN CN03821783.XA patent/CN1681966A/en active Pending
- 2003-08-04 CA CA002495457A patent/CA2495457A1/en not_active Abandoned
- 2003-08-04 JP JP2004526971A patent/JP2005534812A/en active Pending
- 2003-08-04 WO PCT/FR2003/002457 patent/WO2004015169A2/en not_active Ceased
- 2003-08-04 US US10/522,688 patent/US20060096674A1/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2315740A (en) * | 1941-06-16 | 1943-04-06 | Standard Steel Spring Co | Protected metal article and process of producing the same |
| US4013488A (en) * | 1974-03-14 | 1977-03-22 | Rederiaktiebolaget Nordstjernan | Process for improving the anti-corrosion properties of steel coated with nickel or cobalt |
| US5073403A (en) * | 1987-12-10 | 1991-12-17 | Nkk Corporation | Aluminum-plated steel sheet for cans |
| US4940522A (en) * | 1987-12-29 | 1990-07-10 | Nkk Corporation | Method for manufacturing plated steel sheet for cans |
| US5270081A (en) * | 1990-02-02 | 1993-12-14 | Mtu Motoren-Und Turbinen-Union Muenchen Gmbh | Iron-base alloy structural component having a corrosion-inhibiting coating, and method of producing the coating |
| US5397652A (en) * | 1992-03-27 | 1995-03-14 | The Louis Berkman Company | Corrosion resistant, colored stainless steel and method of making same |
| US6322859B1 (en) * | 1998-11-06 | 2001-11-27 | Riverwind, Llc. | Aesthetic enhancement of substrates |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10711339B2 (en) | 2008-12-18 | 2020-07-14 | Arcelormittal France | Industrial vapor generator for depositing an alloy coating on a metal strip |
| US11674209B2 (en) | 2017-12-19 | 2023-06-13 | Arcelormittal | Hot-dip coated steel substrate |
| US12227822B2 (en) | 2017-12-19 | 2025-02-18 | Arcelormittal | Hot-dip coated steel substrate |
Also Published As
| Publication number | Publication date |
|---|---|
| RU2005106284A (en) | 2005-07-27 |
| JP2005534812A (en) | 2005-11-17 |
| FR2843130B1 (en) | 2004-10-29 |
| RU2300579C2 (en) | 2007-06-10 |
| BR0313580A (en) | 2005-07-12 |
| WO2004015169A3 (en) | 2004-05-13 |
| WO2004015169A2 (en) | 2004-02-19 |
| CN1681966A (en) | 2005-10-12 |
| AU2003274221A1 (en) | 2004-02-25 |
| EP1527208A2 (en) | 2005-05-04 |
| CA2495457A1 (en) | 2004-02-19 |
| AU2003274221A8 (en) | 2004-02-25 |
| PL373077A1 (en) | 2005-08-08 |
| FR2843130A1 (en) | 2004-02-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4201649A (en) | Low resistance indium oxide coatings | |
| JP2006500624A (en) | Reducing the vulnerability of titanium nitride to cracking | |
| US20060096674A1 (en) | Method for coating the surface of a metallic material, device for carrying out said method | |
| EP3132068B1 (en) | Method for producing coated steel components | |
| JP4580636B2 (en) | Film forming apparatus and film forming method | |
| CN101368260A (en) | A method and apparatus for depositing a coating onto a substrate | |
| JP2005534812A5 (en) | ||
| JPS61113756A (en) | Manufacture of seawater-resistant al-coated steel material | |
| Schiller et al. | Vacuum coating of large areas | |
| JPS60138068A (en) | Formation of film containing low resistance metal oxide | |
| KR0158538B1 (en) | Multilayered coating material | |
| JP2007507618A5 (en) | ||
| JPH0617232A (en) | Si / Zn double-layer plated steel sheet having excellent corrosion resistance and beautiful appearance, and method for producing the same | |
| CN113366141A (en) | Method for metal coating | |
| RU2123540C1 (en) | Method of protective-decorative titanium nitride coating of ceramic ware | |
| JPH06330349A (en) | Colored ti plated material | |
| JPS63267540A (en) | Laminated polyester film for vapor deposition and manufacture thereof | |
| JPH058347A (en) | Heat-resistant precoated metal sheet | |
| JPH07243027A (en) | Material for reflecting parts | |
| JPS6122433A (en) | Method for manufacturing magnetic recording media | |
| WO2008152675A2 (en) | Method for depositing ag on glass supports or the like | |
| JPH06146013A (en) | Laminate type vapor-deposited al plated metal material with superior corrosion resistance and its manufacture | |
| JPS62205272A (en) | Installation for continuous composite coating of band plate | |
| JPH03188264A (en) | Metal oxide coated plastics | |
| JPS6277463A (en) | Vacuum roll coater for heat resistant resin film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: USINOR, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOQUET, PATRICK;CHALEIX, DANIEL;REEL/FRAME:017499/0016 Effective date: 20050215 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |