US20060064784A1 - Nucleic acid sequences encoding proteins associated with abiotic stress response - Google Patents
Nucleic acid sequences encoding proteins associated with abiotic stress response Download PDFInfo
- Publication number
- US20060064784A1 US20060064784A1 US10/523,362 US52336205A US2006064784A1 US 20060064784 A1 US20060064784 A1 US 20060064784A1 US 52336205 A US52336205 A US 52336205A US 2006064784 A1 US2006064784 A1 US 2006064784A1
- Authority
- US
- United States
- Prior art keywords
- orsrp
- plant
- nucleic acid
- seq
- plants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000007523 nucleic acids Chemical group 0.000 title claims abstract description 164
- 108090000623 proteins and genes Proteins 0.000 title abstract description 152
- 102000004169 proteins and genes Human genes 0.000 title abstract description 43
- 230000036579 abiotic stress Effects 0.000 title description 10
- 230000004044 response Effects 0.000 title description 10
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 142
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 142
- 238000000034 method Methods 0.000 claims abstract description 108
- 230000009261 transgenic effect Effects 0.000 claims abstract description 106
- 230000035882 stress Effects 0.000 claims abstract description 61
- 230000006353 environmental stress Effects 0.000 claims abstract description 44
- 230000001965 increasing effect Effects 0.000 claims abstract description 44
- 102000004316 Oxidoreductases Human genes 0.000 claims abstract description 36
- 108090000854 Oxidoreductases Proteins 0.000 claims abstract description 36
- 241000196324 Embryophyta Species 0.000 claims description 438
- 108050005205 Glutaredoxin Proteins 0.000 claims description 183
- 102000017278 Glutaredoxin Human genes 0.000 claims description 180
- 108060008226 thioredoxin Proteins 0.000 claims description 159
- 102000002933 Thioredoxin Human genes 0.000 claims description 138
- 229940094937 thioredoxin Drugs 0.000 claims description 120
- 230000014509 gene expression Effects 0.000 claims description 97
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 73
- 230000000692 anti-sense effect Effects 0.000 claims description 49
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 48
- 108020004414 DNA Proteins 0.000 claims description 39
- 102000040650 (ribonucleotides)n+m Human genes 0.000 claims description 32
- 101710151717 Stress-related protein Proteins 0.000 claims description 32
- 230000001105 regulatory effect Effects 0.000 claims description 30
- 108700019146 Transgenes Proteins 0.000 claims description 26
- 241000219195 Arabidopsis thaliana Species 0.000 claims description 24
- 230000001939 inductive effect Effects 0.000 claims description 22
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 19
- 230000000295 complement effect Effects 0.000 claims description 19
- 239000013604 expression vector Substances 0.000 claims description 19
- 240000008042 Zea mays Species 0.000 claims description 18
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 17
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 14
- 230000002068 genetic effect Effects 0.000 claims description 14
- 235000009973 maize Nutrition 0.000 claims description 14
- 240000002791 Brassica napus Species 0.000 claims description 13
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 12
- 108091023040 Transcription factor Proteins 0.000 claims description 11
- 102000040945 Transcription factor Human genes 0.000 claims description 11
- 244000068988 Glycine max Species 0.000 claims description 10
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 claims description 10
- 241001301148 Brassica rapa subsp. oleifera Species 0.000 claims description 9
- 235000010469 Glycine max Nutrition 0.000 claims description 9
- 240000007594 Oryza sativa Species 0.000 claims description 9
- 235000007164 Oryza sativa Nutrition 0.000 claims description 9
- 235000021307 Triticum Nutrition 0.000 claims description 9
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 8
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 8
- 235000007340 Hordeum vulgare Nutrition 0.000 claims description 8
- 240000005979 Hordeum vulgare Species 0.000 claims description 8
- 235000009566 rice Nutrition 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 6
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 5
- 240000006240 Linum usitatissimum Species 0.000 claims description 5
- 240000004658 Medicago sativa Species 0.000 claims description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 5
- 244000061456 Solanum tuberosum Species 0.000 claims description 5
- 230000036542 oxidative stress Effects 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 235000017060 Arachis glabrata Nutrition 0.000 claims description 4
- 244000105624 Arachis hypogaea Species 0.000 claims description 4
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 4
- 235000018262 Arachis monticola Nutrition 0.000 claims description 4
- 235000007319 Avena orientalis Nutrition 0.000 claims description 4
- 235000007558 Avena sp Nutrition 0.000 claims description 4
- 235000007689 Borago officinalis Nutrition 0.000 claims description 4
- 240000004355 Borago officinalis Species 0.000 claims description 4
- 235000005637 Brassica campestris Nutrition 0.000 claims description 4
- 240000008100 Brassica rapa Species 0.000 claims description 4
- 235000002566 Capsicum Nutrition 0.000 claims description 4
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 4
- 244000060011 Cocos nucifera Species 0.000 claims description 4
- 240000007154 Coffea arabica Species 0.000 claims description 4
- 241000218631 Coniferophyta Species 0.000 claims description 4
- 229920000742 Cotton Polymers 0.000 claims description 4
- 241000380130 Ehrharta erecta Species 0.000 claims description 4
- 235000001950 Elaeis guineensis Nutrition 0.000 claims description 4
- 244000127993 Elaeis melanococca Species 0.000 claims description 4
- 244000020551 Helianthus annuus Species 0.000 claims description 4
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 4
- 235000007688 Lycopersicon esculentum Nutrition 0.000 claims description 4
- 240000003183 Manihot esculenta Species 0.000 claims description 4
- 239000006002 Pepper Substances 0.000 claims description 4
- 241000218657 Picea Species 0.000 claims description 4
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims description 4
- 241000018646 Pinus brutia Species 0.000 claims description 4
- 235000011613 Pinus brutia Nutrition 0.000 claims description 4
- 235000016761 Piper aduncum Nutrition 0.000 claims description 4
- 240000003889 Piper guineense Species 0.000 claims description 4
- 235000017804 Piper guineense Nutrition 0.000 claims description 4
- 235000008184 Piper nigrum Nutrition 0.000 claims description 4
- 240000004713 Pisum sativum Species 0.000 claims description 4
- 235000010582 Pisum sativum Nutrition 0.000 claims description 4
- 235000016311 Primula vulgaris Nutrition 0.000 claims description 4
- 244000028344 Primula vulgaris Species 0.000 claims description 4
- 241000124033 Salix Species 0.000 claims description 4
- 235000007238 Secale cereale Nutrition 0.000 claims description 4
- 240000003768 Solanum lycopersicum Species 0.000 claims description 4
- 235000002597 Solanum melongena Nutrition 0.000 claims description 4
- 244000061458 Solanum melongena Species 0.000 claims description 4
- 235000012308 Tagetes Nutrition 0.000 claims description 4
- 241000736851 Tagetes Species 0.000 claims description 4
- 244000269722 Thea sinensis Species 0.000 claims description 4
- 244000299461 Theobroma cacao Species 0.000 claims description 4
- 235000005764 Theobroma cacao ssp. cacao Nutrition 0.000 claims description 4
- 235000005767 Theobroma cacao ssp. sphaerocarpum Nutrition 0.000 claims description 4
- 235000019714 Triticale Nutrition 0.000 claims description 4
- 241000219873 Vicia Species 0.000 claims description 4
- 235000001046 cacaotero Nutrition 0.000 claims description 4
- 235000016213 coffee Nutrition 0.000 claims description 4
- 235000013353 coffee beverage Nutrition 0.000 claims description 4
- 235000004426 flaxseed Nutrition 0.000 claims description 4
- 239000004459 forage Substances 0.000 claims description 4
- 235000005739 manihot Nutrition 0.000 claims description 4
- 230000001717 pathogenic effect Effects 0.000 claims description 4
- 235000020232 peanut Nutrition 0.000 claims description 4
- 230000008685 targeting Effects 0.000 claims description 4
- 241000228158 x Triticosecale Species 0.000 claims description 4
- 241000209510 Liliopsida Species 0.000 claims description 3
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 claims description 3
- 101710185494 Zinc finger protein Proteins 0.000 claims description 3
- 102100023597 Zinc finger protein 816 Human genes 0.000 claims description 3
- 241001233957 eudicotyledons Species 0.000 claims description 3
- 230000009368 gene silencing by RNA Effects 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 3
- 241000209763 Avena sativa Species 0.000 claims 2
- 241000219146 Gossypium Species 0.000 claims 2
- 241000209056 Secale Species 0.000 claims 2
- 244000098338 Triticum aestivum Species 0.000 claims 2
- 235000013616 tea Nutrition 0.000 claims 2
- 210000004027 cell Anatomy 0.000 description 79
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 62
- 239000013598 vector Substances 0.000 description 52
- 235000018102 proteins Nutrition 0.000 description 39
- 108091028043 Nucleic acid sequence Proteins 0.000 description 36
- 230000009466 transformation Effects 0.000 description 34
- 230000000694 effects Effects 0.000 description 31
- 235000001014 amino acid Nutrition 0.000 description 29
- 239000002299 complementary DNA Substances 0.000 description 29
- 238000013518 transcription Methods 0.000 description 26
- 230000035897 transcription Effects 0.000 description 26
- 125000003729 nucleotide group Chemical group 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 230000008641 drought stress Effects 0.000 description 24
- 229940024606 amino acid Drugs 0.000 description 23
- 150000001413 amino acids Chemical class 0.000 description 23
- 239000002773 nucleotide Substances 0.000 description 23
- 125000003275 alpha amino acid group Chemical group 0.000 description 22
- 239000003550 marker Substances 0.000 description 22
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 21
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 21
- 238000002474 experimental method Methods 0.000 description 21
- 210000001519 tissue Anatomy 0.000 description 20
- 239000002609 medium Substances 0.000 description 19
- 102000004190 Enzymes Human genes 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 18
- 206010020649 Hyperkeratosis Diseases 0.000 description 18
- 108020004999 messenger RNA Proteins 0.000 description 18
- 241000589158 Agrobacterium Species 0.000 description 15
- 230000006378 damage Effects 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 230000006698 induction Effects 0.000 description 14
- 230000003204 osmotic effect Effects 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 108091026890 Coding region Proteins 0.000 description 13
- 208000027418 Wounds and injury Diseases 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 241000219194 Arabidopsis Species 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 108700001094 Plant Genes Proteins 0.000 description 12
- 125000000539 amino acid group Chemical group 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 208000014674 injury Diseases 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 11
- 239000012634 fragment Substances 0.000 description 11
- -1 oxygen radicals Chemical class 0.000 description 11
- 239000013615 primer Substances 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 101100283245 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GRX2 gene Proteins 0.000 description 10
- 230000024346 drought recovery Effects 0.000 description 10
- 230000007613 environmental effect Effects 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 10
- 208000024891 symptom Diseases 0.000 description 10
- 102100036424 Glutaredoxin-3 Human genes 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 9
- 238000013459 approach Methods 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 230000029553 photosynthesis Effects 0.000 description 9
- 238000010672 photosynthesis Methods 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 239000002689 soil Substances 0.000 description 9
- 101710171267 Glutaredoxin 4 Proteins 0.000 description 8
- 241000209082 Lolium Species 0.000 description 8
- 241000219823 Medicago Species 0.000 description 8
- 241000209140 Triticum Species 0.000 description 8
- 238000009395 breeding Methods 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 8
- 108090000994 Catalytic RNA Proteins 0.000 description 7
- 102000053642 Catalytic RNA Human genes 0.000 description 7
- 108050005433 Glutaredoxin-2 Proteins 0.000 description 7
- 101100229396 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GRX4 gene Proteins 0.000 description 7
- 229930006000 Sucrose Natural products 0.000 description 7
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000001488 breeding effect Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 210000002257 embryonic structure Anatomy 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 230000004060 metabolic process Effects 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 108091092562 ribozyme Proteins 0.000 description 7
- 239000005720 sucrose Substances 0.000 description 7
- 230000014616 translation Effects 0.000 description 7
- LWTDZKXXJRRKDG-KXBFYZLASA-N (-)-phaseollin Chemical compound C1OC2=CC(O)=CC=C2[C@H]2[C@@H]1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-KXBFYZLASA-N 0.000 description 6
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical compound O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 6
- 208000005156 Dehydration Diseases 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 230000000243 photosynthetic effect Effects 0.000 description 6
- 230000008488 polyadenylation Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 5
- 108010000700 Acetolactate synthase Proteins 0.000 description 5
- 108091033380 Coding strand Proteins 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- 101710171268 Glutaredoxin-3 Proteins 0.000 description 5
- 229920003266 Leaf® Polymers 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229930002875 chlorophyll Natural products 0.000 description 5
- 235000019804 chlorophyll Nutrition 0.000 description 5
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 5
- 239000003184 complementary RNA Substances 0.000 description 5
- 230000010485 coping Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 5
- 239000004009 herbicide Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000002018 overexpression Effects 0.000 description 5
- 210000002706 plastid Anatomy 0.000 description 5
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 108020005544 Antisense RNA Proteins 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 101710171252 Glutaredoxin-1 Proteins 0.000 description 4
- 102100025945 Glutaredoxin-1 Human genes 0.000 description 4
- 244000061176 Nicotiana tabacum Species 0.000 description 4
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 108091081021 Sense strand Proteins 0.000 description 4
- 238000002105 Southern blotting Methods 0.000 description 4
- 239000011543 agarose gel Substances 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000007844 bleaching agent Substances 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 244000038559 crop plants Species 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 229960003180 glutathione Drugs 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 230000000065 osmolyte Effects 0.000 description 4
- 150000002926 oxygen Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008635 plant growth Effects 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 239000012882 rooting medium Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- 239000003155 DNA primer Substances 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- 108090000038 Glutathione dehydrogenase (ascorbate) Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 102100034343 Integrase Human genes 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 108091092724 Noncoding DNA Proteins 0.000 description 3
- 101710163504 Phaseolin Proteins 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 108090000848 Ubiquitin Proteins 0.000 description 3
- 102000044159 Ubiquitin Human genes 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000000074 antisense oligonucleotide Substances 0.000 description 3
- 238000012230 antisense oligonucleotides Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 239000012154 double-distilled water Substances 0.000 description 3
- 230000000408 embryogenic effect Effects 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000002363 herbicidal effect Effects 0.000 description 3
- 230000015784 hyperosmotic salinity response Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 210000003470 mitochondria Anatomy 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 230000017074 necrotic cell death Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- LWTDZKXXJRRKDG-UHFFFAOYSA-N phaseollin Natural products C1OC2=CC(O)=CC=C2C2C1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-UHFFFAOYSA-N 0.000 description 3
- 238000003976 plant breeding Methods 0.000 description 3
- 230000037039 plant physiology Effects 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000003938 response to stress Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 229940027257 timentin Drugs 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 101100194010 Arabidopsis thaliana RD29A gene Proteins 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 244000075850 Avena orientalis Species 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 235000011331 Brassica Nutrition 0.000 description 2
- 241000219198 Brassica Species 0.000 description 2
- 235000011293 Brassica napus Nutrition 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 241001057636 Dracaena deremensis Species 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108091060211 Expressed sequence tag Proteins 0.000 description 2
- 241000234642 Festuca Species 0.000 description 2
- 102100023889 Glutaredoxin-related protein 5, mitochondrial Human genes 0.000 description 2
- 108010063907 Glutathione Reductase Proteins 0.000 description 2
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 2
- 101000905479 Homo sapiens Glutaredoxin-related protein 5, mitochondrial Proteins 0.000 description 2
- 101001045846 Homo sapiens Histone-lysine N-methyltransferase 2A Proteins 0.000 description 2
- 101001045848 Homo sapiens Histone-lysine N-methyltransferase 2B Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 101150000102 LEB4 gene Proteins 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 101710202365 Napin Proteins 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 101150101414 PRP1 gene Proteins 0.000 description 2
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 101100368710 Rattus norvegicus Tacstd2 gene Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 101100342406 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRS1 gene Proteins 0.000 description 2
- 244000082988 Secale cereale Species 0.000 description 2
- 102100036407 Thioredoxin Human genes 0.000 description 2
- 102100034795 Thioredoxin, mitochondrial Human genes 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 241000219793 Trifolium Species 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 229940072107 ascorbate Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 238000011325 biochemical measurement Methods 0.000 description 2
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 2
- 229960003669 carbenicillin Drugs 0.000 description 2
- 229960004261 cefotaxime Drugs 0.000 description 2
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 108091092328 cellular RNA Proteins 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 230000008645 cold stress Effects 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 235000020960 dehydroascorbic acid Nutrition 0.000 description 2
- 239000011615 dehydroascorbic acid Substances 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000012877 elongation medium Substances 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000008642 heat stress Effects 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001823 molecular biology technique Methods 0.000 description 2
- 239000006870 ms-medium Substances 0.000 description 2
- 230000001338 necrotic effect Effects 0.000 description 2
- 230000005305 organ development Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 230000008121 plant development Effects 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000028604 virus induced gene silencing Effects 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- ZFTFOHBYVDOAMH-XNOIKFDKSA-N (2r,3s,4s,5r)-5-[[(2r,3s,4s,5r)-5-[[(2r,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-2-(hydroxymethyl)oxolan-2-yl]oxymethyl]-2-(hydroxymethyl)oxolane-2,3,4-triol Chemical class O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(OC[C@@H]2[C@H]([C@H](O)[C@@](O)(CO)O2)O)O1 ZFTFOHBYVDOAMH-XNOIKFDKSA-N 0.000 description 1
- NWXMGUDVXFXRIG-WESIUVDSSA-N (4s,4as,5as,6s,12ar)-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]4(O)C(=O)C3=C(O)C2=C1O NWXMGUDVXFXRIG-WESIUVDSSA-N 0.000 description 1
- QHDHNVFIKWGRJR-UHFFFAOYSA-N 1-cyclohexenol Chemical compound OC1=CCCCC1 QHDHNVFIKWGRJR-UHFFFAOYSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- SGAKLDIYNFXTCK-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=O)NC1=O SGAKLDIYNFXTCK-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- DVGKRPYUFRZAQW-UHFFFAOYSA-N 3 prime Natural products CC(=O)NC1OC(CC(O)C1C(O)C(O)CO)(OC2C(O)C(CO)OC(OC3C(O)C(O)C(O)OC3CO)C2O)C(=O)O DVGKRPYUFRZAQW-UHFFFAOYSA-N 0.000 description 1
- 101710099475 3'-phosphoadenosine 5'-phosphate phosphatase Proteins 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 125000003143 4-hydroxybenzyl group Chemical group [H]C([*])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- WPYRHVXCOQLYLY-UHFFFAOYSA-N 5-[(methoxyamino)methyl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CONCC1=CNC(=S)NC1=O WPYRHVXCOQLYLY-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 102000055025 Adenosine deaminases Human genes 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 101100191161 Arabidopsis thaliana PPCS2 gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 229930192334 Auxin Natural products 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 108010007108 Chloroplast Thioredoxins Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241000287937 Colinus Species 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 241000252095 Congridae Species 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 239000005504 Dicamba Substances 0.000 description 1
- 206010052805 Drug tolerance decreased Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 229920002670 Fructan Polymers 0.000 description 1
- 101710196411 Fructose-1,6-bisphosphatase Proteins 0.000 description 1
- 101710186733 Fructose-1,6-bisphosphatase, chloroplastic Proteins 0.000 description 1
- 101710109119 Fructose-1,6-bisphosphatase, cytosolic Proteins 0.000 description 1
- 101710198902 Fructose-1,6-bisphosphate aldolase/phosphatase Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108050005434 Glutaredoxin domains Proteins 0.000 description 1
- 108010053070 Glutathione Disulfide Proteins 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102100021467 Histone acetyltransferase type B catalytic subunit Human genes 0.000 description 1
- 101000856983 Homo sapiens Glutaredoxin-1 Proteins 0.000 description 1
- 101000898976 Homo sapiens Histone acetyltransferase type B catalytic subunit Proteins 0.000 description 1
- 101000740215 Homo sapiens Sodium/myo-inositol cotransporter 2 Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- DZLNHFMRPBPULJ-VKHMYHEASA-N L-thioproline Chemical compound OC(=O)[C@@H]1CSCN1 DZLNHFMRPBPULJ-VKHMYHEASA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 101150021286 MAS1 gene Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 235000010624 Medicago sativa Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 description 1
- 108090000744 Mitogen-Activated Protein Kinase Kinases Proteins 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 1
- 229910019093 NaOCl Inorganic materials 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 240000008467 Oryza sativa Japonica Group Species 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 239000007990 PIPES buffer Substances 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 108090000213 Protein Disulfide Reductase (Glutathione) Proteins 0.000 description 1
- 102000003866 Protein Disulfide Reductase (Glutathione) Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108030003943 Protein-disulfide reductases Proteins 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 102000002278 Ribosomal Proteins Human genes 0.000 description 1
- 108010000605 Ribosomal Proteins Proteins 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 102100037202 Sodium/myo-inositol cotransporter 2 Human genes 0.000 description 1
- 241000251131 Sphyrna Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 241000223892 Tetrahymena Species 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 102100027224 Tumor protein p53-inducible nuclear protein 1 Human genes 0.000 description 1
- 108050003317 Tumor protein p53-inducible nuclear protein 1 Proteins 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 102000038627 Zinc finger transcription factors Human genes 0.000 description 1
- 108091007916 Zinc finger transcription factors Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000002363 auxin Substances 0.000 description 1
- 108010028263 bacteriophage T3 RNA polymerase Proteins 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Chemical group C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 238000010352 biotechnological method Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 108010079058 casein hydrolysate Proteins 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 230000029412 cell redox homeostasis Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000010154 cross-pollination Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- PQANGXXSEABURG-UHFFFAOYSA-N cyclohexenol Natural products OC1CCCC=C1 PQANGXXSEABURG-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000035613 defoliation Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- OESHPIGALOBJLM-REOHCLBHSA-N dehydroascorbate Chemical compound OC[C@H](O)[C-]1OC(=O)C(=O)C1=O OESHPIGALOBJLM-REOHCLBHSA-N 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- IWEDIXLBFLAXBO-UHFFFAOYSA-N dicamba Chemical compound COC1=C(Cl)C=CC(Cl)=C1C(O)=O IWEDIXLBFLAXBO-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 108010010962 ferredoxin-thioredoxin reductase Proteins 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229940045883 glutathione disulfide Drugs 0.000 description 1
- YPZRWBKMTBYPTK-BJDJZHNGSA-L glutathione disulfide(2-) Chemical compound [O-]C(=O)[C@@H]([NH3+])CCC(=O)N[C@H](C(=O)NCC([O-])=O)CSSC[C@@H](C(=O)NCC([O-])=O)NC(=O)CC[C@H]([NH3+])C([O-])=O YPZRWBKMTBYPTK-BJDJZHNGSA-L 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 208000021005 inheritance pattern Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 230000003859 lipid peroxidation Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000008723 osmotic stress Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- CMFNMSMUKZHDEY-UHFFFAOYSA-N peroxynitrous acid Chemical compound OON=O CMFNMSMUKZHDEY-UHFFFAOYSA-N 0.000 description 1
- ABOYDMHGKWRPFD-UHFFFAOYSA-N phenylmethanesulfonamide Chemical compound NS(=O)(=O)CC1=CC=CC=C1 ABOYDMHGKWRPFD-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000019935 photoinhibition Effects 0.000 description 1
- 238000013492 plasmid preparation Methods 0.000 description 1
- 230000010152 pollination Effects 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 102000016914 ras Proteins Human genes 0.000 description 1
- 108010014186 ras Proteins Proteins 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000006697 redox regulation Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000025469 response to water deprivation Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 230000002786 root growth Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000001324 spliceosome Anatomy 0.000 description 1
- 238000012409 standard PCR amplification Methods 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000034005 thiol-disulfide exchange Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- WCNMEQDMUYVWMJ-JPZHCBQBSA-N wybutoxosine Chemical compound C1=NC=2C(=O)N3C(CC([C@H](NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WCNMEQDMUYVWMJ-JPZHCBQBSA-N 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
- A01N65/40—Liliopsida [monocotyledons]
- A01N65/44—Poaceae or Gramineae [Grass family], e.g. bamboo, lemon grass or citronella grass
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
- A01N65/08—Magnoliopsida [dicotyledons]
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
- A01N65/08—Magnoliopsida [dicotyledons]
- A01N65/12—Asteraceae or Compositae [Aster or Sunflower family], e.g. daisy, pyrethrum, artichoke, lettuce, sunflower, wormwood or tarragon
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
- A01N65/08—Magnoliopsida [dicotyledons]
- A01N65/20—Fabaceae or Leguminosae [Pea or Legume family], e.g. pea, lentil, soybean, clover, acacia, honey locust, derris or millettia
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
- A01N65/08—Magnoliopsida [dicotyledons]
- A01N65/28—Myrtaceae [Myrtle family], e.g. teatree or clove
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
- A01N65/08—Magnoliopsida [dicotyledons]
- A01N65/38—Solanaceae [Potato family], e.g. nightshade, tomato, tobacco or chilli pepper
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
- A01N65/40—Liliopsida [monocotyledons]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Definitions
- This invention relates generally to nucleic acid sequences encoding proteins that are associated with abiotic stress responses and abiotic stress tolerance in plants.
- this invention relates to nucleic acid sequences encoding proteins that confer drought, heat, cold, and/or salt tolerance to plants.
- Plants are typically exposed during their life cycle to conditions of reduced environmental water content. Most plants have evolved strategies to protect themselves against these conditions of low water or desiccation (drought). However, if the severity and duration of the drought conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Continuous exposure to drought causes major alterations in the plant metabolism. These great changes in metabolism ultimately lead to cell death and consequently yield losses.
- Drought, heat, cold and salt stresses have a common theme important for plant growth and that is water availability. Plants are exposed during their entire life cycle to conditions of reduced environmental water content. Most plants have evolved strategies to protect themselves against these conditions. However, if the severity and duration of the drought conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Since high salt content in some soils result in less available water for cell intake, its effect is similar to those observed under drought conditions. Additionally, under freezing temperatures, plant cells loose water as a result of ice formation that starts in the apoplast and withdraws water from the symplast (McKersie and Leshem, 1994. Stress and Stress Coping in Cultivated Plants, Kluwer Academic Publishers). Commonly, a plant's molecular response mechanisms to each of these stress conditions are common.
- Transgenic plants that overproduce osmolytes such as mannitol, fructans, proline or glycine-betaine also show increased resistance to some forms of abiotic stress and it is proposed that the synthesized osmolytes act as ROS scavengers (Tarczynski. et al. 1993. Science 259, 508-510; Sheveleva,. et al. 1997. Plant Physiol.115, 1211-1219).
- Overexpression of glutathione reductase has increased antioxidant capacity and reduced photoinhibition in popular trees (Foyer et al., 1995. Plant Physiology 109: 1047-57).
- the glutaredoxin and thioredoxin proteins are small heat-stable oxidoreductases that have been conserved throughout evolution. They function in many cellular processes, including deoxyribonucleotide synthesis, protein folding, sulfur metabolism and most notably repair of oxidatively damaged proteins. They have also been implicated in the regulation of redox homeostasis in the cell and redox potential has been implicated in changes in gene expression.
- Thioredoxins have a dithiol/disulfide (CGPC) at their active site and are the major cellular protein disulfide reductases. Cytosolic isoforms are present in most organisms. Mitochondria have a separate thioredoxin system and plants have chloroplast thioredoxins, which regulate photosynthetic enzymes by light via ferredoxin-thioredoxin reductase. Thioredoxins are critical for redox regulation of protein function and signaling via thiol redox control. Several transcription factors require thioredoxin reduction for DNA binding (Amer and Holmgren, 2000. European Journal of Biochemistry 267: 6102-6109; Spyrou et al., 2001. Human Genetics 109: 429-439).
- Glutaredoxins are small heat-stable proteins that are active as glutathione-dependent oxidoreductases. They catalyze glutathione-disulfide oxidoreductions overlapping the functions of thioredoxins and using reducing equivalents from NADPH via glutathione reductase.
- Saccharomyces cerevisiae two genes, GRX1 and GRX2, whose expression is induced in response to various stress conditions including oxidative, osmotic, and heat stress, encode glutaredoxins. Furthermore, both genes are activated by the high-osmolarity glycerol pathway and negatively regulated by the Ras-protein kinase (Grant C M. 2001. Molecular Microbiology 39: 533-541; Grant C M et al.,. 2001. Biochimica et Biophysica Acta—Gene Structure & Expression 1490: 33-42).
- Rhx3, Grx4, and Grx5 Another subfamily of yeast glutaredoxins (Grx3, Grx4, and Grx5) differs from the first in containing a single cysteine residue at the putative active site (Rodriguez-Manzaneque et al., 1999. Molecular & Cellular Biology 19: 8180-8190). The role of these enzymes is not fully understood.
- Saccharomyces cerevisiae also contains two gene pairs for thioredoxins (TRX1, TRX2). Only a quadruple mutant is non-viable and either a single glutaredoxin or a single thioredoxin can sustain viability, indicating some cross function between the two systems (Draculic et al., 2000. Molecular Microbiology 36: 1167-1174).
- Plants also contain glutaredoxins genes.
- a glutaredoxin thioltransferase
- thioltransferase which catalyzes thiol/disulfide exchange reaction, was isolated from rice (Oryza saliva L.) (Sha et al., 1997. Journal of Biochemistry 121: 842-848; Sha et al., 1997. Gene. 188: 23-28; GenBank accession number D86744).
- Mulitple forms of glutaredoxin have also been predicted in the Arabiposis genome (GenBank).
- Dehydroascorbate reductase (DHAR; glutathione: dehydroascorbate oxidoreductase, EC 1.8.5.1) is an enzyme that is critical for maintenance of an appropriate level of ascorbate in plant cells by the cycling of dehydroascorbate to replenish ascorbate.
- DHAR was considered a specific enzyme of the ascorbate-glutathione cycle.
- at least four distinct proteins can catalyze in vitro both glutathione-dependent DHA reduction and other reactions mainly related to thiol-disulphide exchange.
- glutaredoxin enzymes thioltransferases
- glutaredoxins have both thiol-disulfide oxidoreductase and dehydroascorbate reductase activities (Kato et al., 1997. Plant & Cell Physiology 38: 173-178; Detullio et al., 1998. Plant Physiology & Biochemistry 36: 433-440). Therefore glutaredoxins may also function in vivo as DHAR.
- the present invention provides a transgenic plant cell transformed by Oxidoreductase Stress-Related Protein (ORSRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant cell results in increased tolerance and/or resistance to environmental stress as compared to a corresponding non-transformed wild type plant cell.
- ORSRP Oxidoreductase Stress-Related Protein
- One preferred wild type plant cell is a non-transformed Arabidopsis plant cell.
- An example here is the Arabidopsis wild type C24 (Nottingham Arabidopsis Stock Centre, UK; NASC Stock N906).
- the oxidoreductase stress related protein is heat-stable.
- the invention provides that the environmental stress can be salinity, drought, temperature, metal, chemical, pathogenic and oxidative stresses, or combinations thereof.
- the object of the invention is a transgenic plant cell, wherein the ORSRP is heat-stable.
- the ORSRP is selected from yeast or plant.
- the ORSRP is selected from the group comprising glutaredoxin and/or thioredoxin protein.
- the invention pertains to a transgenic plant cell, wherein the ORSRP coding nucleic acid is selected from the group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No.15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof.
- Object of the invention is also a transgenic plant cell, wherein the ORSRP coding nucleic acid is at least about 50% homologous to SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49.
- the invention further provides a seed produced by a transgenic plant transformed by a ORSRP coding nucleic acid, wherein the plant is true breeding for increased tolerance to environmental stress as compared to a wild type plant cell.
- the transgenic plant might be a monocot, a dicot or a gymnosperm plant.
- the invention further provides a seed produced by a transgenic plant expressing an ORSRP wherein the plant is true breeding for increased tolerance to environmental stress as compared to a wild type plant cell.
- the invention further provides an agricultural product produced by any of the below-described transgenic plants, plant parts such as leafs, roots, stems, buds, flowers or seeds.
- the invention further provides a isolated recombinant expression vector comprising a ORSRP encoding nucleic acid.
- the invention further provides a method of producing a transgenic plant with a ORSRP coding nucleic acid, wherein expression of the nucleic acid in the plant results in increased tolerance to environmental stress as compared to a wild type plant comprising: (a) transforming a plant cell with an expression vector comprising a ORSRP coding nucleic acid, and (b) generating from the plant cell a transgenic plant with an increased tolerance to environmental stress as compared to a wild type plant.
- transgenic or transgene means all those plants or parts thereof which have been brought about by genetic manipulation methods and in which either
- nucleic acid sequence as depicted in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 or a homologe thereof, or
- a genetic regulatory element for example a promoter, which is functionally linked to the nucleic acid sequence as depicted in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 or a homologe thereof, or
- “Natural genetic environment” means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp.
- the used ORSRP is heat-stable.
- the ORSRP used in the instant method described above is a glutaredoxin or thioredoxin protein.
- the ORSRP coding nucleic acid is selected from the group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof.
- the ORSRP coding nucleic acid used in the said method is at least about 50% homologous to SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49.
- a plant or plant cell is considered “true breeding” for a particular trait if it is genetically homozygous for that trait to the extent that, when the true-breeding plant is self-pollinated, a significant amount of independent segregation of the trait among the progeny is not observed.
- the trait arises from the transgenic expression of one or more DNA sequences introduced into a plant cell or plant.
- the present invention also provides methods of modifying stress tolerance of a plant comprising, modifying the expression of a ORSRP nucleic acid in the plant.
- the invention provides one method of producing a transgenic plant with a synthetic, novel or modified transcription factor that acts by increasing or decreasing the transcription of a ORSRP gene.
- the present invention also provides methods of modifying stress tolerance of a crop plant comprising utilizing a ORSRP coding nucleic acid sequence to identify individual plants in populations segregating for either increased or decreased environmental stress tolerance (DNA marker).
- a ORSRP coding nucleic acid sequence to identify individual plants in populations segregating for either increased or decreased environmental stress tolerance (DNA marker).
- the ORSRP encoding nucleic acid is selected from the group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof.
- the ORSRP coding nucleic acid used therein is at least about 50% homologous to SEQ ID No. SEQ ID No.
- an expression vector as described in the instant invention might be used in the said method.
- the plant is transformed with an inducible promoter that directs expression of the ORSRP.
- the promoter is tissue specific.
- the used promoter is developmentally regulated.
- the ORSRP expression is modified by administration of an antisense molecule and/or by double stranded RNA interference that inhibits expression of ORSPR.
- ORSRP expression is modified by administration of an targeting nucleic sequence complementary to the regulatory region of the ORSRP encoding nucleic acid and/or by a transcription factor and/or by a zinc finger protein.
- the present invention relates to a method for the identification of loci for stress tolerance phenotypes in individual plants. Genomic regions associated with environmental stress tolerance can be identified using Quantitative Trait Loci (QTL) mapping analysis. This approach may use either variation in the glutaredoxin or thioredoxin nucleic acid sequence, variation in the surrounding genomic sequences or variation in the expression level of glutaredoxin or thioredoxin nucleic acid sequence as the quantitative trait.
- QTL Quantitative Trait Loci
- the invention provides that the above methods can be performed such that the stress tolerance is either increased or decreased.
- the present invention describes that particularly glutaredoxin or thioredoxin genes are useful for increasing a plant's tolerance and/or resistance to environmental stress. Accordingly, the present invention provides glutaredoxin and thioredoxin gene sequences selected from the group consisting of SEQ ID No. 1, 3, 5, 7, 9, 11, 13 from Saccharomyces cerevisiae.
- This invention provides sequences of glutaredoxin and thioredoxin nucleic acids that are responsive to drought and environmental conditions in Brassica napus, Arabidopsis thaliana and Oryza saliva according to SEQ ID 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 and that exhibit homology at the nucleic acid and amino acid level to the yeast genes in SEQ ID 3 and 7, respectively.
- These plant homologs are functionally equivalent according to this invention to yeast genes of SEQ ID 3 and 7 and can be used to provide environmental stress tolerance in plants.
- the invention also pertain to an isolated Oxidoreductase Stress Related Protein (ORSRP) which is selected form the group comprising SEQ ID No. 16, 18, 20, 22, 24, 44 and 50. Further the isolated Oxidoreductase Stress Related Protein (ORSRP) as mentioned before is heat-stable.
- the isolated Oxidoreductase Stress Related Protein (ORSRP) selected form the group comprising SEQ ID No. 16, 18, 20, 22, 24, 44 and 50 is selected form plant.
- Preferred is an isolated Oxidoreductase Stress Related Protein (ORSRP) selected form the group comprising SEQ ID No. 16, 18, 20, 22, 24, 44 and 50 wherein the ORSRP is a glutaredoxin or thioredoxin protein.
- Another object of the instant invention is an isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid selected from the group comprising SEQ ID No. 15, 17, 19, 21, 23, 45 and 49.
- Said isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid encoding an ORSRP which is heat-stable.
- the isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid selected from the group comprising SEQ ID No. 15, 17, 19, 21, 23, 45 and 49 encoding an ORSRP which is selected from plants.
- Preferred is an isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid selected from the group comprising SEQ ID No. 15, 17, 19, 21, 23, 45 and 49 wherein the ORSRP is a glutaredoxin or thioredoxin.
- Homologs of the aforementioned sequences can be isolated advantageously from yeast, fungi or plants, preferably from yeasts such as from the genera Saccharomyces, Pichia, Candida, Hansenula, Torulopsis or Schizosaccharomyces, or plants such as Arabidopsis thaliana, maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, borage, sufflower, linseed, primrose, rapeseed, canola and turnip rape, manihot, pepper, sunflower, tagetes, solanaceous plant such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa, bushy plants such as coffee, cacao, tea, Salix species, trees such as oil palm, coconut, perennial grass, such as ryegrass and fescue, and forage crops, such as alfalfa and clover and from spruce, pine or fir for example, more preferably from Sacchar
- the glutaredoxin or thioredoxin of the present invention are preferably produced by recombinant DNA techniques.
- a nucleic acid molecule encoding the protein is cloned into an expression vector, for example in to a binary vector, the expression vector is introduced into a host cell, for example the Arabidopsis thaliana wild type NASC N906 or any other plant cell as described in the examples see below, and the glutaredoxin or thioredoxin is expressed in said host cell.
- binary vectors are pBIN19, pBI101, pBinAR, pGPTV or pPZP (Hajukiewicz, P. et al., 1994, plant Mol. Biol., 25: 989-994).
- the term “environmental stress” refers to any sub-optimal growing condition and includes, but is not limited to, sub-optimal conditions associated with salinity, drought, temperature, metal, chemical, pathogenic and oxidative stresses, or combinations thereof.
- the environmental stress can be salinity, drought, heat, or low temperature, or combinations thereof, and in particular, can be low water content or low temperature.
- drought stress means any environmental stress which leads to a lack of water in plants or reduction of water supply to plants
- low temperature stress means freezing of plants below +4° C. as well as chilling of plants below 15° C.
- high temperature stress means for example a temperature above 35° C.
- nucleic acid and “nucleic acid molecule” are intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3′ and 5′ ends of the coding region of the gene: at least about 1000 nucleotides of sequence upstream from the 5′ end of the coding region and at least about 200 nucleotides of sequence downstream from the 3′ end of the coding region of the gene.
- the nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
- an “isolated” nucleic acid molecule is one that is substantially separated from other nucleic acid molecules, which are present in the natural source of the nucleic acid.
- an “isolated” nucleic acid is free of some of the sequences that naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
- the isolated glutaredoxin or thioredoxin nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
- an “isolated” nucleic acid molecule such as a cDNA molecule, can be free from some of the other cellular material with which it is naturally associated, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.
- a nucleic acid molecule of the present invention e.g., a nucleic acid molecule encoding an ORSRP or a portion thereof which confers tolerance and/or resistance to environmental stress in plants, can be isolated using standard molecular biology techniques and the sequence information provided herein.
- a Arabidopsis thaliana glutaredoxin or thioredoxin cDNA can be isolated from a A. thaliana library using all or portion of one of the sequences of SEQ ID 1, 3, 5, 7, 9, 11, 13 of yeast.
- a nucleic acid molecule encompassing all or a portion of one of the sequences of SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence.
- mRNA can be isolated from plant cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al., 1979 Biochemistry 18:5294-5299) and cDNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md.; or AMV reverse transcriptase, available from Seikagaku America, Inc., St.
- reverse transcriptase e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md.; or AMV reverse transcriptase, available from Seikagaku America, Inc., St.
- Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown in SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast.
- a nucleic acid molecule of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques.
- the nucleic acid molecule so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
- oligonucleotides corresponding to a glutaredoxin or thioredoxin nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
- an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants encoding the glutaredoxin or thioredoxin (i.e., the “coding region”), as well as 5′ untranslated sequences and 3′ untranslated sequences.
- the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences in SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants, for example, a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a glutaredoxin or thioredoxin.
- Portions of proteins encoded by the glutaredoxin or thioredoxin nucleic acid molecules of the invention are preferably biologically active portions of one of the glutaredoxin or thioredoxin described herein.
- biologically active portion of a glutaredoxin or thioredoxin is intended to include a portion, e.g., a domain/motif, of a glutaredoxin or thioredoxin that participates in a stress tolerance and/or resistance response in a plant.
- a stress analysis of a plant comprising the glutaredoxin or thioredoxin may be performed. Such analysis methods are well known to those skilled in the art, as detailed in the Examples. More specifically, nucleic acid fragments encoding biologically active portions of a glutaredoxin or thioredoxin can be prepared by isolating a portion of one of the sequences in SEQ IDs 1, 3, 5, 7, 9, 11, 13 of and/or SEQ ID No.
- Biologically active portions of a glutaredoxin or thioredoxin are encompassed by the present invention and include peptides comprising amino acid sequences derived from the amino acid sequence of a glutaredoxin or thioredoxin gene, or the amino acid sequence of a protein homologous to a glutaredoxin or thioredoxin, which include fewer amino acids than a full length glutaredoxin or thioredoxin or the full length protein which is homologous to a glutaredoxin or thioredoxin, and exhibits at least some enzymatic activity of a glutaredoxin or thioredoxin.
- biologically active portions comprise a domain or motif with at least one activity of a glutaredoxin or thioredoxin enzyme.
- other biologically active portions in which other regions of the protein are deleted can be prepared by recombinant techniques and evaluated for one or more of the activities described herein.
- the biologically active portions of a glutaredoxin or thioredoxin include one or more selected domains/motifs or portions thereof having biological activity.
- the present invention includes homologs and analogs of naturally occurring glutaredoxin or thioredoxin and glutaredoxin or thioredoxin encoding nucleic acids in a plant.
- Homologs are defined herein as two nucleic acids or proteins that have similar, or “homologous”, nucleotide or amino acid sequences, respectively. Homologs include allelic variants, orthologs, paralogs, agonists and antagonists of glutaredoxin or thioredoxin as defined hereafter. The term “homolog” further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No.
- glutaredoxin or thioredoxin refers to a glutaredoxin or thioredoxin amino acid sequence that occurs in nature.
- nucleic acid molecules encoding glutaredoxin or thioredoxin from the same or other species such as glutaredoxin or thioredoxin analogs, orthologs and paralogs, are intended to be within the scope of the present invention.
- analogs refers to two nucleic acids that have the same or similar function, but that have evolved separately in unrelated organisms.
- the term “orthologs” refers to two nucleic acids from different species that have evolved from a common ancestral gene by speciation. Normally, orthologs encode proteins having the same or similar functions.
- paralogs refers to two nucleic acids that are related by duplication within a genome.
- Paralogs usually have different functions, but these functions may be related (Tatusov, R. L. et al. 1997 Science 278(5338):631-637).
- Analogs, orthologs and paralogs of a naturally occurring glutaredoxin or thioredoxin can differ from the naturally occurring glutaredoxin or thioredoxin by post-translational modifications, by amino acid sequence differences, or by both.
- Post-translational modifications include in vivo and in vitro chemical derivatization of polypeptides, e.g., acetylation, carboxylation, phosphorylation, or glycosylation, and such modifications may occur during polypeptide synthesis or processing or following treatment with isolated modifying enzymes.
- orthologs of the invention will generally exhibit at least 80-85%, more preferably 90%, and most preferably 95%, 96%, 97%, 98% or even 99% identity or homology with all or part of a naturally occurring glutaredoxin or thioredoxin amino acid sequence and will exhibit a function similar to a glutaredoxin or thioredoxin.
- Orthologs of the present invention are also preferably capable of participating in the stress response in plants.
- nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in a sequence of SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants.
- a “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence of one of the glutaredoxin or thioredoxin s without altering the activity of said glutaredoxin or thioredoxin, whereas an “essential” amino acid residue is required for glutaredoxin or thioredoxin activity.
- amino acid residues may not be essential for activity and thus are likely to be amenable to alteration without altering glutaredoxin or thioredoxin activity.
- nucleic acid molecules encoding glutaredoxin or thioredoxin that contain changes in amino acid residues that are not essential for glutaredoxin or thioredoxin activity.
- glutaredoxin or thioredoxin differ in amino acid sequence from a sequence comprising of SEQ IDs 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants, yet retain at least one of the glutaredoxin or thioredoxin activities described herein.
- the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of SEQ IDs 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50.
- the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to one of the sequences of SEQ ID No. 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No.
- the preferred glutaredoxin or thioredoxin homologs of the present invention are preferably capable of participating in the stress tolerance response in a plant.
- the program used was PileUp (J. Mol. Evolution., 25 (1987), 351-360, Higgins et al., CABIOS, 5 1989:151-153).
- Variants shall also be encompassed, in particular, functional variants which can be obtained from the sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants by means of deletion, insertion or substitution of nucleotides, the enzymatic activity of the derived synthetic proteins being retained.
- An isolated nucleic acid molecule encoding a glutaredoxin or thioredoxin homologous to a protein sequence of SEQ IDs 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.
- Mutations can be introduced into one of the sequences of SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis.
- conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues.
- a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
- Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g.
- a predicted nonessential amino acid residue in a glutaredoxin or thioredoxin is preferably replaced with another amino acid residue from the same side chain family.
- mutations can be introduced randomly along all or part of a glutaredoxin or thioredoxin coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for a glutaredoxin or thioredoxin activity described herein to identify mutants that retain glutaredoxin or thioredoxin activity. Following mutagenesis of one of the sequences of SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No.
- the encoded protein can be expressed recombinantly and the activity of the protein can be determined by analyzing the stress tolerance of a plant expressing the protein as described in Examples below.
- an antisense nucleic acid comprises a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA-molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid.
- the antisense nucleic acid can be complementary to an entire glutaredoxin or thioredoxin coding strand, or to only a portion thereof.
- an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence encoding a glutaredoxin or thioredoxin.
- the term “coding region” refers to the region of the nucleotide sequence comprising codons that are translated into amino acid residues.
- the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding a glutaredoxin or thioredoxin.
- noncoding region refers to 5′ and 3′ sequences that flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions).
- an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences shown in SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants, or a portion thereof.
- antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing.
- the antisense nucleic acid molecule can be complementary to the entire coding region of glutaredoxin or thioredoxin mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of glutaredoxin or thioredoxin mRNA.
- the antisense oligonucleotide can be complementary to the region surrounding the translation start site of glutaredoxin or thioredoxin mRNA.
- An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 or more nucleotides in length.
- inverted repeat technology combining an antisense fragment with a portion of the antisense fragment in sense orientation linked by either an adapter sequence or an excisable intron (Abstract Book of the 6th Intern. Congr. Of Plant Mol. Biol. ISPMB, Quebec Jun. 18-24, 2000, Abstract No. S20-9 by Green et al.).
- an antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.
- an antisense nucleic acid e.g., an antisense oligonucleotide
- an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.
- modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouradl, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl)uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycar
- the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
- the antisense nucleic acid molecules of the invention are typically administered to a cell or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a glutaredoxin or thioredoxin to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation.
- the hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix.
- the antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen.
- the antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic (including plant) promoter are preferred.
- the antisense nucleic acid molecule of the invention is an ⁇ -anomeric nucleic acid molecule.
- An a-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other (Gaultier et al., 1987 Nucleic Acids. Res. 15:6625-6641).
- the antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (Inoue et al., 1987 Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al., 1987 FEBS Lett. 215:327-330).
- an antisense nucleic acid of the invention is a ribozyme.
- Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
- ribozymes e.g., hammerhead ribozymes described in Haselhoff and Gerlach, 1988 Nature. 334:585-591
- a ribozyme having specificity for a glutaredoxin or thioredoxin-encoding nucleic add can be designed based upon the nucleotide sequence of a glutaredoxin or thioredoxin cDNA, as disclosed herein (i.e., SEQ IDs 1-76) or on the basis of a heterologous sequence to be isolated according to methods taught in this invention.
- a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a glutaredoxin or thioredoxin-encoding mRNA. See, e.g., Cech et al.
- glutaredoxin or thioredoxin mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J. W., 1993 Science 261:1411-1418.
- Another embodiment of the invention is the regulating of the glutaredoxin or thioredoxin genes by means of double-stranded RNA (“double-stranded RNA interference”; dsRNAi) which has been described repeatedly for animal and plant organisms (for example Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391:806-811; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035; WO 00/63364).
- dsRNA interference double-stranded RNA interference
- dsRNAi methods are based on the phenomenon that the simultaneous introduction of complementary strand and counterstrand of a gene transcript causes the expression of the gene in question to be suppressed in a highly efficient manner. The phenotype caused greatly resembles a corresponding knock-out mutant (Waterhouse P M et al. (1998) Proc Natl Acad Sci USA 95:13959-64).
- dsRNAi approaches are markedly superior to traditional antisense approaches.
- the invention therefore furthermore relates to double-stranded RNA molecules (dsRNA molecules) which, upon introduction into a plant (or a cell, tissue, organ or seed derived therefrom), bring about the reduction of an glutaredoxin or thioredoxin gene.
- dsRNA molecules double-stranded RNA molecules
- one of the two RNA strands is essentially identical to at least a portion of an glutaredoxin or thioredoxin nucleic acid sequence
- the corresponding other RNA strand is essentially identical to at least a portion of the complementary strand of an glutaredoxin or thioredoxin nucleic acid sequence.
- dsRNA sequence can also show insertions, deletions or individual point mutations compared with the glutaredoxin or thioredoxin target sequence while still bringing about an effective reduction of the expression.
- the homology in accordance with the above definition preferably amounts to at least 75%, preferably at least 80%, very especially preferably at least 90%, most preferably 100%, between the sense strand of an inhibitory dsRNA and a part-segment of an glutaredoxin or thioredoxin nucleic acid sequence (or between the antisense strand and the complementary strand of an glutaredoxin or thioredoxin nucleic acid sequence).
- the length of the part-segment amounts to at least 10 bases, preferably at least 25 bases, especially preferably at least 50 bases, very especially preferably at least 100 bases, most preferably at least 200 bases or at least 300 bases.
- an “essentially identical” dsRNA can also be defined as a nucleic acid sequence which is capable of hybridizing with part of an glutaredoxin or thioredoxin gene transcript (for example in 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA at 505C or 705C for 12 to 16 h).
- the dsRNA can be composed of one or more strands of polymerized ribonucleotides. Modifications both of the sugar-phosphate backbone and of the nucleosides may be present. For example, the phosphodiester bonds of the natural RNA can be modified in such a way that they comprise at least one nitrogen or sulfur hetero atom. Bases can be modified in such a way that the activity of, for example, adenosine deaminase is restricted.
- the dsRNA can be generated enzymatically or fully or partially synthesized chemically.
- the double-stranded structure can be formed starting from an individual self-complementary strand or starting from two complementary strands.
- sense and antisense sequence may be linked by a linking sequence (“linker”) and can form for example a hairpin structure.
- the linking sequence can preferably be an intron which is spliced out after the dsRNA has been synthesized.
- the nucleic acid sequence encoding a dsRNA can comprise further elements such as, for example, transcription termination signals or polyadenylation signals. If the two dsRNA strands are to be combined in a cell or plant, this can be effected in various ways:
- the formation of the RNA duplex can be initiated either outside or within the cell.
- the dsRNA can also encompass a hairpin structure by linking sense and antisense strand by means of a linker (for example an intron).
- a linker for example an intron.
- the self-complementary dsRNA structures are preferred since they only require the expression of one construct and always comprise the complementary strands in an equimolar ratio.
- the expression cassettes encoding the antisense or sense strand of a dsRNA or the self-complementary strand of the dsRNA are preferably inserted into a vector and, using the methods described herein, stably inserted into the genome of a plant in order to ensure permanent expression of the dsRNA, using selection markers for example.
- the dsRNA can be introduced using a quantity which allows at least one copy per cell. Greater quantities (for example at least 5, 10, 100, 500 or 1000 copies per cell) may bring about a more effective reduction.
- the high sequence homology between the glutaredoxin or thioredoxin sequences from different sources allows the conclusion that this protein is conserved to a high degree within plants, so that the expression of a dsRNA derived from one of the disclosed glutaredoxin or thioredoxin sequences as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants appears to have an advantageous effect in other plant species as well.
- the dsRNA can be synthesized either in vivo or in vitro.
- a DNA sequence encoding a dsRNA can be brought into an expression cassette under the control of at least one genetic control element (such as, for example, promoter, enhancer, silencer, splice donor or splice acceptor or polyadenylation signal).
- at least one genetic control element such as, for example, promoter, enhancer, silencer, splice donor or splice acceptor or polyadenylation signal.
- Suitable advantageous constructions are described herein. Polyadenylation is not necessarily required, nor do elements for initiating translation have to be present.
- a dsRNA can be synthesized chemically or enzymatically.
- Cellular RNA polymerases or bacteriophage RNA polymerases (such as, for example, T3, T7 or SP6 RNA polymerase) can be used for this purpose.
- Suitable methods for expression of RNA in vitro are described (WO 97/32016; U.S. Pat. No. 5,593,874; U.S. Pat. No. 5,698,425, U.S. Pat. No. 5,712,135, U.S. Pat. No. 5,789,214, U.S. Pat. No. 5,804,693).
- a dsRNA which has been synthesized in vitro chemically or enzymatically can be isolated completely or to some degree from the reaction mixture, for example by extraction, precipitation, electrophoresis, chromatography or combinations of these methods, before being introduced into a cell, tissue or organism.
- the dsRNA can be introduced directly into the cell or else be applied extracellularly (for example into the interstitial space).
- dsRNAi cosuppression by means of sense RNA and “VIGS” (“virus induced gene silencing”) are also termed “post-transcriptional gene silencing” (PTGS).
- PTGS methods like the reduction of the glutaredoxin or thioredoxin function or activity with dominant-negative glutaredoxin or thioredoxin variants, are especially advantageous because the demands regarding the homology between the endogenous gene to be suppressed and the sense or dsRNA nucleic acid sequence expressed recombinantly (or between the endogenous gene and its dominant-negative variant) are lower than, for example, in the case of a traditional antisense approach.
- Such criteria with regard to homology are mentioned in the description of the dsRNAi method and can generally be applied to PTGS methods or dominant-negative approaches.
- anti-glutaredoxin or thioredoxin compounds which directly or indirectly bring about a reduction in protein quantity, RNA quantity, gene activity or protein activity of an glutaredoxin or thioredoxin protein shall subsequently be combined in the term “anti-glutaredoxin or thioredoxin” compounds.
- anti-glutaredoxin or thioredoxin compound explicitly includes the nucleic acid sequences, peptides, proteins or other factors employed in the above-described methods.
- introduction comprises all of the methods which are capable of directly or indirectly introducing an “anti-glutaredoxin or thioredoxin” compound into a plant or a cell, compartment, tissue, organ or seed thereof, or of generating such a compound there.
- Direct and indirect methods are encompassed.
- the introduction can lead to a transient presence of an “anti-glutaredoxin or thioredoxin” compound (for example a dsRNA) or else to its stable presence.
- glutaredoxin or thioredoxin gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of a glutaredoxin or thioredoxin nucleotide sequence (e.g., a glutaredoxin or thioredoxin promoter and/or enhancer) to form triple helical structures that prevent transcription of a glutaredoxin or thioredoxin gene in target cells.
- a glutaredoxin or thioredoxin nucleotide sequence e.g., a glutaredoxin or thioredoxin promoter and/or enhancer
- a useful method to ascertain the level of transcription of the gene is to perform a Northern blot (for reference see, for example, Ausubel et al., 1988 Current Protocols in Molecular Biology, Wiley: New York).
- This information at least partially demonstrates the degree of transcription of the transformed gene.
- Total cellular RNA can be prepared from cells, tissues or organs by several methods, all well-known in the art, such as that described in Bormann, E. R. et al., 1992 Mol. Microbiol. 6:317-326.
- standard techniques such as a Western blot, may be employed. These techniques are well known to one of ordinary skill in the art. (See, for example, Ausubel et al., 1988 Current Protocols in Molecular Biology, Wiley: New York).
- the invention further provides an isolated recombinant expression vector comprising a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin nucleic acid as described above, wherein expression of the vector or glutaredoxin or thioredoxin nucleic acid, respectively in a host cell results in increased tolerance and/or resistance to environmental stress as compared to the wild type of the host cell.
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
- vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
- plasmid and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector.
- the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
- viral vectors e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses
- a plant expression cassette preferably contains regulatory sequences capable of driving gene expression in plant cells and operably linked so that each sequence can fulfill its function, for example, termination of transcription by polyadenylation signals.
- Preferred polyadenylation signals are those originating from Agrobacterium tumefaciens T-DNA such as the gene 3 known as octopine synthase of the Ti-plasmid pTiACH5 (Gielen et al., 1984 EMBO J. 3:835) or functional equivalents thereof but also all other terminators functionally active in plants are suitable.
- a plant expression cassette preferably contains other operably linked sequences like translational enhancers such as the overdrive-sequence containing the 5′-untranslated leader sequence from tobacco mosaic virus enhancing the protein per RNA ratio (Gallie et al., 1987 Nucl. Acids Research 15:8693-8711).
- Plant gene expression has to be operably linked to an appropriate promoter conferring gene expression in a timely, cell or tissue specific manner.
- promoters driving constitutive expression (Benfey et al., 1989 EMBO J. 8:2195-2202) like those derived from plant viruses like the 35S CaMV (Franck et al., 1980 Cell 21:285-294), the 19S CaMV (see also U.S. Pat. No. 5,352,605 and PCT Application No. WO 8402913) or plant promoters like those from Rubisco small subunit described in U.S. Pat. No. 4,962,028.
- Additional advantageous regulatory sequences are, for example, included in the plant promoters such as CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, LEB4, nos or in the ubiquitin, napin or phaseolin promoter.
- inducible promoters such as the promoters described in EP-A-0 388 186 (benzyl sulfonamide inducible), Plant J.
- Additional useful plant promoters are the cytosolic FBPase promotor or ST-LSI promoter of the potato (Stockhaus et al., EMBO J. 8, 1989, 2445), the phosphorybosyl phyrophoshate amido transferase promoter of Glycine max (gene bank accession No. U87999) or the noden specific promoter described in EP-A-0 249 676.
- promoters which can be used for monokotyledones or dikotyledones are described in U.S. Pat. No. 5,608,152 (napin promoter from rapeseed), WO 98/45461 (phaseolin promoter from Arobidopsis), U.S. Pat. No. 5,504,200 (phaseolin promoter from Phaseolus vulgaris), WO 91/13980 (Bce4 promoter from Brassica), Baeumlein et al., Plant J., 2, 2, 1992: 233-239 (LEB4 promoter from leguminosa) said promoters are useful in dikotyledones.
- promoters are useful for example in monokotyledones lpt-2- or lpt-1-promoter from barley (WO 95/15389 and WO 95/23230), hordein promoter from barley and other useful promoters described in WO 99/16890.
- the gene construct may also comprise further genes which are to be inserted into the organisms and which are for example involved in stress resistance. It is possible and advantageous to insert and express in host organisms regulatory genes such as genes for inducers, repressors or enzymes which intervene by their enzymatic activity in the regulation, or one or more or all genes of a biosynthetic pathway. These genes can be heterologous or homologous in origin.
- the inserted genes may have their own promoter or else be under the control of same promoter as the sequences SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants or their homologs.
- the gene construct advantageously comprises, for expression of the other genes present, additionally 3′ and/or 5′ terminal regulatory sequences to enhance expression, which are selected for optimal expression depending on the selected host organism and gene or genes.
- These regulatory sequences are intended to make specific expression of the genes and protein expression possible as mentioned above. This may mean, depending on the host organism, for example that the gene is expressed or overexpressed only after induction, or that it is immediately expressed and/or overexpressed.
- the regulatory sequences or factors may moreover preferably have a beneficial effect on expression of the introduced genes, and thus increase it. It is possible in this way for the regulatory elements to be enhanced advantageously at the transcription level by using strong transcription signals such as promoters and/or enhancers. However, in addition, it is also possible to enhance translation by, for example, improving the stability of the mRNA.
- targeting-sequences necessary to direct the gene product in its appropriate cell compartment such as the vacuole, the nucleus, all types of plastids like amyloplasts, chloroplasts, chromoplasts, the extracellular space, mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells.
- Plant gene expression can also be facilitated via an inducible promoter (for review see Gatz, 1997 Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:89-108). Chemically inducible promoters are especially suitable if gene expression is wanted to occur in a time specific manner.
- Table 1 lists several examples of promoters that may be used to regulate transcription of the glutaredoxin or thioredoxin nucleic acid coding sequences. TABLE 1 Examples of Tissue-specific and Stress inducible promoters in plants Expression Reference Cor78- Cold, drought, Ishitani, et al., Plant Cell 9: salt, ABA, wounding- 1935-1949 (1997). Yamaguchi-Shinozaki inducible and Shinozaki, Plant Cell 6: 251-264 (1994).
- selection marker systems like the AHAS marker or other promoters, e.g. superpromotor (Ni et al,., Plant Journal 7, 1995: 661-676), Ubiquitin promotor (Callis et al., J. Biol. Chem., 1990, 265: 12486-12493; U.S. Pat. No. 5,510,474; U.S. Pat. No. 6,020,190; Kawalleck et al., Plant. Molecular Biology, 1993, 21: 673-684) or 34S promotor (GenBank Accession numbers M59930 and X16673) were similar useful for the instant invention and are known to a person skilled in the art.
- the invention further provides a recombinant expression vector comprising a glutaredoxin or thioredoxin DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to a glutaredoxin or thioredoxin mRNA. Regulatory sequences operatively linked to a nucleic acid molecule cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types.
- viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA.
- the antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus wherein antisense nucleic acids are produced under the control of a high efficiency regulatory region.
- the activity of the regulatory region can be determined by the cell type into which the vector is introduced.
- ZF zinc finger
- Each ZF module is approximately 30 amino acids long folded around a zinc ion.
- the DNA recognition domain of a ZF protein is a ⁇ -helical structure that inserts into the major grove of the DNA double helix.
- the module contains three amino acids that bind to the DNA with each amino acid contacting a single base pair in the target DNA sequence.
- ZF motifs are arranged in a modular repeating fashion to form a set of fingers that recognize a contiguous DNA sequence. For example, a three-fingered ZF motif will recognize 9 bp of DNA.
- the regulatory region of a plant gene contains many short DNA sequences (cis-acting elements) that serve as recognition domains for transcription factors, including ZF proteins. Similar recognition domains in different genes allow the coordinate expression of several genes encoding enzymes in a metabolic pathway by common transcription factors. Variation in the recognition domains among members of a gene family facilitates differences in gene expression within the same gene family, for example, among tissues and stages of development and in response to environmental conditions.
- Typical ZF proteins contain not only a DNA recognition domain but also a functional domain that enables the ZF protein to activate or repress transcription of a specific gene.
- an activation domain has been used to activate transcription of the target gene (U.S. Pat. No. 5,789,538 and patent application WO9519431), but it is also possible to link a transcription repressor domain to the ZF and thereby inhibit transcription (patent applications WO00/47754 and WO2001002019).
- the invention provides a method that allows one skilled in the art to isolate the regulatory region of one or more Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin genes from the genome of a plant cell and to design zinc finger transcription factors linked to a functional domain that will interact with the regulatory region of the gene.
- the interaction of the zinc finger protein with the plant gene can be designed in such a manner as to alter expression of the gene and thereby confer increased or decreased tolerance of abiotic stress such as drought.
- the invention provides a method of producing a transgenic plant with a transgene encoding this designed transcription factor, or alternatively a natural transcription factor, that modifies transcription of the Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin gene to provide increased tolerance of environmental stress.
- the invention provides a method of producing a transgenic plant with a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin coding nucleic acid, wherein expression of the nucleic acid(s) in the plant results in increased tolerance to environmental stress as compared to a wild type plant comprising: (a) transforming a plant cell with an expression vector comprising a glutaredoxin or thioredoxin nucleic acid, and (b) generating from the plant cell a transgenic plant with an increased tolerance to environmental stress as compared to a wild type plant.
- binary vectors such as pBinAR can be used (Höfgen and Willmitzer, 1990 Plant Science 66:221-230).
- suitable binary vectors such as pBIN19, pBI101, pGPTV or pCambia are described in Hellens et al., Trends in Plant Science, 2000, 5: 446-451.
- Construction of the binary vectors can be performed by ligation of the cDNA in sense or antisense orientation into the T-DNA.
- 5-prime to the cDNA a plant promoter activates transcription of the cDNA.
- a polyadenylation sequence is located 3-prime to the cDNA.
- Tissue-specific expression can be achieved by using a tissue specific promoter as listed above. Also, any other promoter element can be used.
- the CaMV 35S promoter can be used for constitutive expression within the whole plant.
- the expressed protein can be targeted to a cellular compartment using a signal peptide, for example for plastids, mitochondria or endoplasmic reticulum (Kermode, 1996 Crit. Rev. Plant Sci. 4(15):285423).
- the signal peptide is cloned 5-prime in frame to the cDNA to archive subcellular localization of the fusion protein.
- promoters that are responsive to abiotic stresses can be used with, such as the Arabidopsis promoter RD29A.
- the promoter used should be operatively linked to the nucleic acid such that the promoter causes transcription of the nucleic acid which results in the synthesis of a mRNA which encodes a polypeptide.
- the RNA can be an antisense RNA for use in affecting subsequent expression of the same or another gene or genes.
- Alternate methods of transfection include the direct transfer of DNA into developing flowers via electroporation or Agrobacterium mediated gene transfer.
- Agrobacterium mediated plant transformation can be performed using for example the GV3101(pMP90) (Koncz and Schell, 1986 Mol. Gen. Genet. 204:383-396) or LBA4404 (Ooms et al., Plasmid, 1982, 7: 15-29; Hoekema et al., Nature, 1983, 303: 179-180) Agrobacterium tumefaciens strain. Transformation can be performed by standard transformation and regeneration techniques (Deblaere et al., 1994 Nucl. Acids. Res.
- rapeseed can be transformed via cotyledon or hypocotyl transformation (Moloney et al., 1989 Plant Cell Reports 8:238-242; De Block et al., 1989 Plant Physiol. 91:694-701).
- Agrobacterium and plant selection depend on the binary vector and the Agrobacterium strain used for transformation. Rapeseed selection is normally performed using kanamycin as selectable plant marker.
- Agrobacterium mediated gene transfer to flax can be performed using, for example, a technique described by Mlynarova et al., 1994 Plant Cell Report 13:282-285. Additionally, transformation of soybean can be performed using for example a technique described in European Patent No. 0424 047, U.S. Pat. No. 5,322,783, European Patent No. 0397 687, U.S. Pat. No. 5,376,543 or U.S. Pat. No. 5,169,770.
- Transformation of maize can be achieved by particle bombardment, polyethylene glycol mediated DNA uptake or via the silicon carbide fiber technique. (See, for example, Freeling and Walbot “The maize handbook” Springer Verlag: New York (1993) ISBN 3-540-97826-7).
- a specific example of maize transformation is found in U.S. Pat. No. 5,990,387 and a specific example of wheat transformation can be found in PCT Application No. WO 93/07256.
- the Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin nucleic acid molecules of the invention have a variety of uses. Most importantly, the nucleic acid and amino acid sequences of the present invention can be used to transform plant cells or plants, thereby inducing tolerance to stresses such as drought, high salinity and cold.
- the present invention therefore provides a transgenic plant transformed by a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin nucleic acid (coding or antisense), wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type plant.
- the transgenic plant can be a monocot or a dicot or a gymnosperm plant.
- the invention further provides that the transgenic plant can be selected from maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, borage, sufflower, linseed, primrose, rapeseed, canola and turnip rape, manihot, pepper, sunflower, tagetes, solanaceous plant such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa, bushy plants such as coffee, cacao, tea, Salix species, trees such as oil palm, coconut, perennial grass, such as ryegrass and fescue, and forage crops, such as alfalfa and clover and Arabidopsis thaliana. Further the transgenic plant can be selected from spruce, pine or fir for example.
- the present invention describes using the expression of Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin to engineer drought-tolerant, salt-tolerant and/or cold-tolerant plants.
- Oxidoreductase Stress-Related Protein particularly glutaredoxin or thioredoxin to engineer drought-tolerant, salt-tolerant and/or cold-tolerant plants.
- This strategy has herein been demonstrated for Arabidopsis thaliana , Ryegrass, Alfalfa, Rapeseed/Canola, Soybean, Corn and Wheat but its application is not restricted to these plants.
- the invention provides a transgenic plant containing a glutaredoxin or thioredoxin selected from SEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No.
- the environmental stress is drought, increased salt or decreased or increased temperature but its application is not restricted to these adverse environments. Protection against other adverse conditions such as heat, air pollution, heavy metals and chemical toxicants, for example, may be obtained.
- the environmental stress is drought.
- the present invention also provides methods of modifying stress tolerance of a plant comprising, modifying the expression of a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin in the plant
- This method can be performed such that the stress tolerance is either increased or decreased. This can for example be done by the use of transcription factor or some type of site specific mutagenesis agent.
- the present invention provides methods of producing a transgenic plant having an increased tolerance to environmental stress as compared to a wild type plant comprising increasing expression of a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin in a plant.
- the Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin encoding nucleic acids of the present invention have utility as (Quantitative Trait Locus) QTL markers for mapping genetic loci associated with environmental stress tolerance.
- the sequences have utility in the identification of plants that exhibit an environmental stress tolerance phenotype from those that do not within a segregating population of plants. For example, to identify the region of the genome to which a particular glutaredoxin or thioredoxin nucleic acid sequence binds, genomic DNA could be digested with one or more restriction enzymes, and the fragments incubated with the glutaredoxin or thioredoxin nucleic acid, preferably with readily detectable labels.
- nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map.
- the genetics of quantitative traits associated to DNA markers has been used extensively in plant breeding for more than a decade (Tansgley et al., 1989 Biotechnology 7:257-264).
- the principle consists of using segregating lines derived from two homozygous parents and mapping these progeny with markers to link each marker to at least another one (saturated map), after which a statistical relationship between the quantitative trait value and the genotype at each marker is determined.
- a significant link of a locus to the trait means that at least one gene that in the vicinity of the marker contributes part of the phenotype variability. By definition, this locus is called a quantitative trait locus (QTL).
- QTL quantitative trait locus
- the gene becomes a candidate gene for explaining part of the observed phenotype and methods to identify and clone these genes have been described (Yano M, 2001. Current Opinion in Plant Biology 4:130-135).
- An observed correlation between a QTL and a gene location is likely to be causal, and therefore much more informative than a physiological correlation.
- This approach was applied to biochemical traits related to carbohydrate metabolism in maize leaves (Causse M., et al., 1995. Molecular Breeding 1:259-272).
- This invention uses an alternative approach to the classical method.
- the approach of this invention is to use the QTL methodology linking a gene or locus known to be associated with the phenotype as a screening method.
- the marker may be associated with either the DNA sequences or the expression level of the gene, e.g. quantity of a specific mRNA molecule.
- the marker serves as a convenient genetic means to identify individuals with the stress tolerance phenotype within a population of individuals that lack the phenotype. This method has utility when the phenotype is often difficult or expensive to detect or quantitative.
- This invention provides markers of specific genetic loci that are associated with tolerance of abiotic environmental stress.
- the DNA sequences in SEQ IDs 1, 3, 5,7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants may be used in the identification and selection of stress tolerant plants. These plants, their seeds and varieties derived from them would not contain transgenes but would contain alleles or genetic loci representing natural genetic diversity and thereby exhibit increased tolerance of abiotic environmental stress.
- Oxidoreductase Stress-Related Protein particularly glutaredoxin or thioredoxin genes of the invention may also result in Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin proteins having altered activities which indirectly impact the stress response and/or stress tolerance of plants.
- the normal biochemical processes of metabolism result in the production of a variety of products (e.g., hydrogen peroxide and other reactive oxygen species) which may actively interfere with these same metabolic processes (for example, peroxynitrite is known to react with tyrosine side chains, thereby inactivating some enzymes having tyrosine in the active site (Groves, J. T., 1999 Curr. Opin.
- sequences disclosed herein, or fragments thereof can be used to generate knockout mutations in the genomes of various plant cells (Girke, T., 1998 The Plant Journal 15:39-48).
- the resultant knockout cells can then be evaluated for their ability or capacity to tolerate various stress conditions, their response to various stress conditions, and the effect on the phenotype and/or genotype of the mutation.
- For other methods of gene inactivation see U.S. Pat. No. 6,004,804 “Non-Chimeric Mutational Vectors” and Puttaraju et al., 1999 Spliceosome-mediated RNA trans-splicing as a tool for gene therapy Nature Biotechnology 17:246-252.
- the invention also pertains the use of ORSRP encoding nucleic acid selected form the group comprising SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof for preparing a plant cell with increased environmental stress tolerance.
- the said sequences can also be used for preparing a plant with increased environmental stress tolerance.
- Object of the invention is further the use of ORSRP encoding nucleic acid selected form the group comprising SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No.
- the said ORSRP encoding nucleic acid selected from the group comprising of SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof or parts thereof can also be used as Quantitative Trait Locus (QTL) markers for mapping genetic loci associated with environmental stress tolerance.
- QTL Quantitative Trait Locus
- Amplification The standard protocol of Pfu DNA polymerase or a Pfu/Taq DNA polymerase mix was used for the amplification procedure. Amplified ORF fragments were analysed by gel electrophoresis. Each primer consists of a universal 5′ end and ORF specific 3′ end whereby the universal sequences differ for the forward and reverse primers (forward primer sequence contains a EcoRI and the reverse primer sequence a SmaI restriction site) allowing a unidirectional cloning success.
- YDR513w primer forward GGAATTCCAGCTGACCACC ATGGAGACCAATTTTTCCTTCGACT YDR513w primer reverse: GATCCCCGGGAATTGCCATG CTATTGAAATACCGGCTTCAATATTT YERI74c primer forward: GGAATTCCAGCTGACCACC ATGACTGTGGTTGAAATAAAAAGCC YER174c primer reverse: GATCCCCGGGAATTGCCATG TTACTGTAGAGCATGTTGGAAATATTATT
- the preferred binary vector 1bxbigResgen which is based on the modified pPZP binary vector backbone (comprising the kanamycin-gene for bacterial selection; Hajukiewicz, P. et al., 1994, plant Mol. Biol., 25: 989-994) carried the selection marker bar-gene (De Block et al., 1987, EMBO J. 6, 2513-2518) driven by the mas1′ promotor (Velten et al., 1984, EMBO J. 3, 2723-2730; Mengiste, Amedeo and Paszkowski, 1997, Plant J., 12, 945-948) on its T-DNA.
- the selection marker bar-gene (De Block et al., 1987, EMBO J. 6, 2513-2518) driven by the mas1′ promotor (Velten et al., 1984, EMBO J. 3, 2723-2730; Mengiste, Amedeo and Paszkowski, 1997, Plant J.
- the T-DNA contained the strong double 35S promotor (Kay et al., 1987, Science 236, 1299-1302) in front of a cloning cassette followed by the nos-terminator (Depicker A. Stachel S. Dhaese P. Zambryski P. Goodman H M. Nopaline synthase: transcript mapping and DNA sequence. Journal of Molecular & Applied Genetics. 1(6):561-73, 1982.).
- the cloning cassette consists of the following sequence: 5′-GGAATTCCAGCTGACCACCATGGCAATTCCCGGGGATC-3′
- selection marker systems like the AHAS marker or other promoters, e.g. superpromotor (Ni-Min et al,., Plant Journal, 1995, 7(4): 661-676), Ubiquitin promotor (Callis et al., J. Biol. Chem., 1990, 265: 12486-12493; U.S. Pat. No. 5,510,474; U.S. Pat. No. 6,020,190; Kawalleck et al., Plant. Molecular Biology, 1993, 21: 673-684) or 34S promotor (GenBank Accession numbers M59930 and X16673) were similar useful for the instant invention and are known to a person skilled in the art.
- the vector was linearised with EcoRI and SmaI using the standard protocol provided by the supplier (MBI Fermentas, Germany) and purified using Qiagen columns (Qiagen, Hilden, Germany).
- ORF fragments ( ⁇ 100 ng) were digested by EcoRI and SmaI using the standard protocol provided by the supplier (MBI Fermentas, Germany), purified using Qiagen columns (Qiagen, Hilden, Germany) and were ligated into the cloning cassette of the binary vector systems ( ⁇ 30 ng) using standard procedures (Maniatis et al.).
- Ligation products were transformed into E. coli (DH5alpha) using a standard heat shock protocol (Maniatis et al.). Transformed colonies were grown on LB media and selected by respective antibiotica (Km) for 16h at 37° C. ÜN.
- Plasmidpreparation Plasmids were prepared using standard protocol (Qiagen Hilden, Germany).
- Agrobacteria Plasmids were transformed into Agrobacterium tumefaciens (GV3101pMP90; Koncz and Schell, 1986 Mol. Gen. Genet. 204:383-396) using heat shock or electroporation protocols. Transformed colonies were grown on YEP media and selected by respective antibiotika (Rif/Gent/Km) for 2d at 28° C. ÜN. These agrobacteria cultures were used for the plant transformation.
- Arabidopsis thaliana was grown and transformed according to standard conditions (Bechtold 1993 (Bechtold, N., Ellis, J., Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of Arabidopsis thaliana plants C.R. Acad. Sci. Paris. 316:1194-1199); Bent et al. 1994 (Bent, A., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J., and Staskawicz, B. J. 1994; PPCS2 of Arabidopsis thaliana: A leucin-rich repeat class of plant disease resistant genes; Science 265:1856-1860).
- Transgenic A. thaliana plants were grown individually in pots containing a 4:1 (v/v) mixture of soil and quartz sand in a York growth chamber. Standard growth conditions were: photoperiod of 16 h light and 8 h dark, 20° C., 60% relative humidity, and a photon flux density of 150 ⁇ E. To induce germination, sown seeds were kept at 4° C., in the dark, for 3 days. Plants were watered daily until they were approximately 3 weeks old at which time drought was imposed by withholding water. Coincidentally, the relative humidity was reduced in 10% increments every second day to 20%.
- Table 3 Drought tolerance of transgenic Arabidopsis thaliana expressing the YDR513W gene after imposition of drought stress on 3 week old plants. Control plants showed extensive visual symptoms of injury on day 12 and were considered dead. TABLE 3 Drought tolerance of transgenic Arabidopsis thaliana expressing the YDR513W gene after imposition of drought stress on 3 week old plants. Control plants showed extensive visual symptoms of injury on day 12 and were considered dead. Percent survival Experiment Plant Day 13 Day 14 Day 15 1 Control 0 0 0 Transgenic 809 50 33 33 2 Control 0 0 0 Transgenic 809-5 25 13 13 Transgenic 809-8 50 25 0
- Chlorophyll fluorescence measurements of photosynthetic yield confirmed that 12 days of drought stress completely inhibited photosynthesis in the control plants, but the transgenic line 809-8 maintained its photosynthetic function longer (Table 5).
- Table 4 Relative drought tolerance of Arabidopsis thaliana transgenic line 737-3 expressing the YER174C gene and line 809-8 expressing the YDR513W gene after imposition of drought stress on 3 week old plants in comparison to non-transgenic control plants. Control plants showed extensive visual symptoms of injury on day 12 and were considered dead. TABLE 4 Relative drought tolerance of Arabidopsis thaliana transgenic line 737-3 expressing the YER174C gene and line 809-8 expressing the YDR513W gene after imposition of drought stress on 3 week old plants in comparison to non-transgenic control plants. Control plants showed extensive visual symptoms of injury on day 12 and were considered dead. 737-3 809-8 Number of plants tested 22 7 Duration of survival after control (days) 1.1 3.1 Maximal duration of survival (number of plants) 3 (2) 6 (1)
- Table 5 Effect of drought stress on photosynthetic yield as determined by chlorophyll fluorescence ( ⁇ std deviation) of Arabidopsis thaliana control and transgenic line 809-8 expressing the YDR513W gene. TABLE 5 Effect of drought stress on photosynthetic yield as determined by chlorophyll fluorescence ( ⁇ std deviation) of Arabidopsis thaliana control and transgenic line 809-8 expressing the YDR513W gene. Days of drought Control Transgenic line 809-8 0 765 ⁇ 29 723 ⁇ 29 5 794 ⁇ 36 781 ⁇ 25 10 412 ⁇ 194 660 ⁇ 121 12 54 ⁇ 83 411 ⁇ 305
- ORF 737 and 809 correspond to yeast, Saccharomyces cerevisiae , genes for glutaredoxin4 (GRX4) and glutaredoxin2 (GRX2), respectively, that contain a pair of cysteine amino acids at the putative active site of the protein (Grant C M. 2000. Molecular Microbiology 39: 533-541; Grant C M et al., 2001. Biochimica et Biophysica Acta—Gene Structure & Expression 1490: 33-42).
- Grx3, Grx4, and Grx5 is a subfamily of yeast glutaredoxins that contain a single cysteine residue at the putative active site (Rodriguez-Manzaneque et al., 1999.
- Saccharomyces cerevisiae also contains two gene pairs for thioredoxins (TRX1, TRX2) (Draculic et al., 2000. Molecular Microbiology 36: 1167-1174). These gene sequences are listed in GenBank under the accession numbers listed in Table 6.
- the sequence of GRX2 and GRX4 was used to identify related gene sequences in Arabidopsis thaliana by Blast analysis (Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990 J Mol Biol 215(3):403-10). The results identified related sequences with E ⁇ 10 ⁇ 10 as shown in Table 6, where E is defined as the expectancy value, or the statistical probability that the sequence appears in the database at random.
- a similar analysis was done on a three libraries of expressed sequence tags (ESTs) from Brassica napus cv. “AC Excel”, “Quantum” and “Cresor” (canola) and Oryza sativa cv. Nippon-Barre (a japonica rice). The search identified several Brassica and rice glutaredoxin cDNA sequences with E ⁇ 10 ⁇ 10 (Table 6).
- the yeast and plant cDNA sequences were translated into a predicted amino acid sequences and the relationship among the amino acid sequences was determined by sequence alignment and block alignment using the ClustalW algorithm in Vector NTI ver7.
- the glutaredoxin and thioredoxin genes were separated into four subfamilies based on this alignment as shown in FIG. 1 .
- the glutaredoxin family is characterized by the standard glutaredoxin domain defined in the Prosite database as an amino acid motif with the consensus sequence [LIVMD]-[FYSA]-x(4)-Cz—[PV]—[FYWH]—C-x(2)-[TAV]-x(2,3)-[LIV]. Most sequences show the characteristic two cysteines that when reduced form either two thiol groups or when oxidized form a disulfide bond. Other proteins in this family have only a single C at this site.
- Subfamily 1 contains the yeast genes GRX1 and GRX2 ( FIGS. 2-4 ).
- Domain 1 has the core sequence [VI]—[VF]—[VI]—X—[SA]-K-[TS]—[WY]—C—[PGS]—[YF]—[CS].
- OZ1116C26232 and AtQ95K75 lack the C—X—X—C disulfide site and instead have a single C at this site.
- Domain 2 contains a motif defined as G-Q-X-T-V—P—N—[VI]—[FY]—[VI]—X-G-[KN]—H—I-G-G-[CN].
- Subfamily 2 contains both glutaredoxin GRX3 and GRX4 and thioredoxin THX1 and THX2 sequences ( FIGS. 5-7 ). This family has a region of homology comprising two domains. In most sequences the domains are continuous, except in GRX3 and GRX4 in which the two domains are separated by two amino acids.
- Domain 1 has a core sequence of [VI]—V—[VL]-X—F—X-[TA]-X—W—[CA]-X—[PA]-[CS]—K.
- the region [CA]-X(2)-[CS] contains C at position 1 or 4 or both.
- Domain 2 is a region of similarity that has a core sequence of F—X(2)-[VI]-[ED]-[AV]-[ED]-E-X(2)-[ED]-[IV].
- Subfamily 3 contains GRX5 and three plant sequences that have a single C amino acid at the putative active site ( FIGS. 8-11 ).
- the core sequence of domain 1 is V—[VM]-X(3)-K-G-X(4)-P—X—C-G-F—S.
- Domain 2 is defined by the sequence Q-[LI]—[FY]—[VI]—X-[GK]-E-[FL]-X-G-G-[CS]-D-[IV].
- Subfamily 4 does not have any members from yeast and is comprised of 5 plant sequences that have two domains of homology ( FIGS. 11-13 ).
- Domain 1 has a core sequence similar to subfamily 1 that is [VI]—V ⁇ I—F—S—K—S—Y—C—P—Y—C.
- Domain 2 has two regions with common sequences of V—V-E-L-D-X—R-E-D-G and V-G-R—R-T-V—P-Q-V—F—[VI]—[NH]-G-K—H-[LI]-G-G-S-D-D.
- a representative of each subfamily was selected and the full length coding sequence was ligated into a plant transformation vector using standard molecular biology techniques as described in Example 1.
- the coding sequence was inserted at the 3′ end of a constitutive promoter to control expression in plants.
- the vector was transferred to Agrobacterium tumefaciens and this strain was used to transform Arabidopsis thaliana as described in Example 1.
- Transgenic plants were grown and treated with drought stress as described in Example 1. Those plants that contained the glutaredoxin/thioredoxin transgene from subfamilies 1, 2 and 3 were more tolerant of the drought treatment than the control, non-transgenic plants.
- Query specifies the ORF sequence used for the Blast search Nucleo- Amino tide Acid Sub GenBank SEQ ID SEQ source Family query Gene ID Accession No. ID No. Yeast 1 GRX1 X59720 1 2 1 809 GRX2 U18922 3 4 2 GRX3 Z47746 5 6 2 737 GRX4 U33057 7 8 3 GRX5 U39205 9 10 2 THX1 M59168 11 12 2 THX2 M59169 13 14 Bras - 1 809 BN1106 NA 15 16 sica C12219 4 809 BN1106 NA 17 18 C21909 1 809 BN1106 NA 19 20 C2202 4 809 BN1106 NA 21 22 C2582 2 737 BN1106 NA 23 24 C23043 Arabi - 1 809 AtQ9FM49 AB009051 25 26 dopsis 1 809 AtQ9FNE2 AB006702 27 28 4 809 AtQ9FVX1 NM_106386 29 30 4 8
- Transgenic Arabidopsis plants were created as in example 1 to express the glutaredoxin and thioredoxin transgenes under the control of either a tissue-specific or stress-inducible promoter. Constitutive expression of a transgene may cause deleterious side effects. Stress inducible expression was achieved using promoters selected from those listed above in Table 1.
- T2 generation plants were produced and treated with drought stress in two experiments.
- the plants were deprived of water until the plant and soil were desiccated.
- a normal watering schedule was resumed and the plants were grown to maturity.
- Seed yield was determined as g seeds per plant.
- tolerant plants were able to resume normal growth and produced more seeds than non-transgenic control plants.
- Proline content of the leaves and stomatal aperture were also measured at various times during the drought stress. Tolerant plants maintained a lower proline content and a greater stomatal aperture than the non-transgenic control plants.
- An alternative method to impose water stress on the transgenic plants was by treatment with water containing an osmolyte such as polyethylene glycol (PEG) at specific water potential. Since PEG may be toxic, the plants were given only a short term exposure and then normal watering was resumed. As above, seed yields were measured from the mature plants. The response was measured during the stress period by physical measurements, such as stomatal aperture or osmotic potential, or biochemical measurements, such as accumulation of proline. Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels.
- PEG polyethylene glycol
- transgenic plants with a constitutive promoter controlling transcription of the transgene were compared to those plants with a drought-inducible promoter in the absence of stress.
- Transgenic Arabidopsis plants in the T2 generation were analyzed by PCR to confirm the presence of T-DNA. These results were confirmed by Southern hybridization in which DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics).
- the PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labelled probe by PCR, and used as recommended by the manufacturer. Homozygous lines with single insertions of T-DNA were selected for cross-pollination experiments.
- a homozygous line with the glutaredoxin transgene (GG) was cross-pollinated with a homozygous line with the thioredoxin transgene (TT). Since the transgenes are not at the same locus, the F1 progeny were heterozygous (G-T-). The F2 progeny segregated in a 9:3:3:1 ratio of double transformants containing both transgenes, to single transformants containing either G or T, and nulls containing neither transgene. The genotype of the progeny was determined by PCR analysis for each of the transgenes. Homozygous lines of each genotype GGTT, GG-, -TT, and - were identified by quantitative PCR and confirmed by inheritance patterns of the transgenes.
- Homozygous lines were subjected to drought stress, metabolite analysis and expression profiling as described in examples 1, 2, 3 and 4.
- the transgenic lines were more drought tolerant than the null line, had altered metabolite levels consistent with the observations in example 2 and altered gene expression patterns consistent with the observations in example 3.
- Plants that exhibit tolerance of one abiotic stress often exhibit tolerance of another environmental stress or an oxygen free radical generating herbicide. This phenomenon of cross-tolerance is not understood at a mechanistic level (McKersie and Leshem, 1994). Nonetheless, it is reasonable to expect that plants exhibiting enhanced drought tolerance due to the expression of a transgene might also exhibit tolerance of low temperatures, freezing, salt, air pollutants such as ozone, and other abiotic stresses.
- the expression of several genes are up or down-regulated by mulitple abiotic stress factors including cold, salt, osmoticum, ABA, etc (e.g. Hong et al. (1992) Developmental and organ-specific expression of an ABA- and stress-induced protein in barley.
- seeds of Arabidopsis thaliana were sterilized (100% bleach, 0.1% TritonX for five minutes two times and rinsed five times with ddH2O). Seeds were plated on non-selection media (1 ⁇ 2 MS, 0.6% phytagar, 0.5g/L MES, 1% sucrose, 2 ⁇ g/ml benamyl). Seeds are allowed to germinate for approximately ten days. At the 4-5 leaf stage, transgenic plants were potted into 5.5 cm diameter pots and allowed to grow (22° C., continuous light) for approximately seven days, watering as needed. To begin the assay, two liters of 100 mM NaCl and 1 ⁇ 8 MS was added to the tray under the pots.
- a regenerating clone of alfalfa ( Medicago sativa ) was transformed using the method of (McKersie et al., 1999 Plant Physiol 119: 839-847). Regeneration and transformation of alfalfa is genotype dependent and therefore a regenerating plant is required. Methods to obtain regenerating plants have been described. For example, these can be selected from the cultivar Rangelander (Agriculture Canada) or any other commercial alfalfa variety as described by Brown DCW and A Atanassov (1985. Plant Cell Tissue Organ Culture 4: 111-112). Alternatively, the RA3 variety (University of Wisconsin) has been selected for use in tissue culture (Walker et al., 1978 Am J Bot 65:654-659).
- Petiole explants were cocultivated with an overnight culture of Agrobacterium tumefaciens C58C1 pMP90 (McKersie et al., 1999 Plant Physiol 119: 839-847) or LBA4404 containing a binary vector.
- Agrobacterium tumefaciens C58C1 pMP90 McKersie et al., 1999 Plant Physiol 119: 839-847
- LBA4404 containing a binary vector.
- Many different binary vector systems have been described for plant transformation (e.g. An, G. in Agrobacterium Protocols. Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, Totowa, N.J.).
- Many are based on the vector pBIN19 described by Bevan (Nucleic Acid Research. 1984.
- a plant gene expression cassette consists of at least two genes—a selection marker gene and a plant promoter regulating the transcription of the cDNA or genomic DNA of the trait gene.
- selection marker genes can be used including the Arabidopsis gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. Nos. 57,673,666 and 6,225,105).
- AHAS mutated acetohydroxy acid synthase
- various promoters can be used to regulate the trait gene that provides constitutive, developmental, tissue or environmental regulation of gene transcription.
- the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- the explants were cocultivated for 3 d in the dark on SH induction medium containing 288 mg/L Pro, 53 mg/L thioproline, 4.35 g/L K 2 SO 4 , and 100 ⁇ m acetosyringinone.
- the explants were washed in half-strength Murashige-Skoog medium (Murashige and Skoog, 1962) and plated on the same SH induction medium without acetosyringinone but with a suitable selection agent and suitable antibiotic to inhibit Agrobacterium growth. After several weeks, somatic embryos were transferred to BOi2Y development medium containing no growth regulators, no antibiotics, and 50 g/L sucrose. Somatic embryos were subsequently germinated on half-strength Murashige-Skoog medium. Rooted seedlings were transplanted into pots and grown in a greenhouse.
- the T0 transgenic plants were propagated by node cuttings and rooted in Turface growth medium. The plants were defoliated and grown to a height of about 10 cm (approximately 2 weeks after defoliation). The plants were then subjected to drought stress in two experiments.
- the seedlings received no water for a period up to 3 weeks at which time the plant and soil were desiccated. At various times after withholding water, a normal watering schedule was resumed. At one week after resuming watering, the fresh and dry weights of the shoots was determined. At an equivalent degree of drought stress, tolerant plants were able to resume normal growth whereas susceptible plants had died or suffered significant injury resulting in less dry matter. Proline content of the leaves and stomatal aperture were also measured at various times during the drought stress. Tolerant plants maintained a lower proline content and a greater stomatal aperture than the non-transgenic control plants.
- An alternative method to impose water stress on the transgenic plants was by treatment with a solution at specific water potential, containing an osmolyte such as polyethylene glycol (PEG).
- PEG polyethylene glycol
- the PEG treatment was given to either detached leaves (e.g. Djilianov et al., 1997 Plant Science 129: 147-156) or to the roots (Wakabayashi et al., 1997 Plant Physiol 113: 967-973). Since PEG may be toxic, the plants were given only a short term exposure. The response was measured as physical measurements such as stomatal aperture or osmotic potential, or biochemical measurements such as accumulation of proline.
- Tolerant plants maintained their stomatal aperture and showed only slight changes in osmotic potential, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential. In addition the changes in proline and other metabolites were less in the tolerant transgenic plants than in the non-transgenic control plants.
- Seeds of several different ryegrass varieties may be used as explant sources for transformation, including the commercial variety Gunne available from Svalof Weibull seed company or the variety Affinity. Seeds were surface-sterilized sequentially with 1% Tween-20 for 1 minute, 100% bleach for 60 minutes, 3 rinses with 5 minutes each with de-ionized and distilled H 2 O, and then germinated for 3-4 days on moist, sterile filter paper in the dark. Seedlings were further sterilized for 1 minute with 1% Tween-20, 5 minutes with 75% bleach, and rinsed 3 times with ddH 2 O, 5 min each.
- Transformation can be accomplished with either Agrobacterium of with particle bombardment methods.
- An expression vector is created containing a constitutive plant promoter and the cDNA of the gene in a pUC vector.
- the plasmid DNA was prepared from E. Coli cells using with Qiagen kit according to manufacturer's instruction. Approximately 2 g of embryogenic callus was spread in the center of a sterile filter paper in a Petri dish. An aliquot of liquid MSO with 10 g/l sucrose was added to the filter paper.
- Gold particles (1.0 ⁇ m in size) were coated with plasmid DNA according to method of Sanford et al., 1993 and delivered to the embryogenic callus with the following parameters: 500 ⁇ g particles and 2 ⁇ g DNA per shot, 1300 psi and a target distance of 8.5 cm from stopping plate to plate of callus and 1 shot per plate of callus.
- Transgenic T0 ryegrass plants were propagated vegetatively by excising tillers.
- the transplanted tillers were maintained in the greenhouse for 2 months until well established.
- the shoots were defoliated and allowed to grow for 2 weeks.
- the first drought experiment was conducted in a manner similar to that described in example 5.
- the seedlings received no water for a period up to 3 weeks at which time the plant and soil were desiccated.
- a normal watering schedule was resumed.
- the lengths of leaf blades, and the fresh and dry weights of the shoots was determined.
- tolerant plants were able to resume normal growth whereas susceptible plants had died or suffered significant injury resulting in shorter leaves and less dry matter.
- Proline content of the leaves and stomatal aperture were also measured at various times during the drought stress. Tolerant plants maintained a lower proline content and a greater stomatal aperture than the non-transgenic control plants.
- Soybean was transformed according to the following modification of the method described in the Texas A&M patent U.S. Pat. No. 5,164,310.
- Several commercial soybean varieties are amenable to transformation by this method.
- the cultvar Jack (available from the Illinois Seed Foundation) is a commonly used for transformation. Seeds were sterilized by immersion in 70% (v/v) ethanol for 6 min and in 25% commercial bleach (NaOCl) supplemented with 0.1% (v/v) Tween for 20 min, followed by rinsing 4 times with sterile double distilled water. Seven-day seedlings were propagated by removing the radicle, hypocotyl and one cotyledon from each seedling.
- the epicotyl with one cotyledon was transferred to fresh germination media in petri dishes and incubated at 25° C. under a 16-hr photoperiod (approx. 100 ⁇ E-m ⁇ 2 s ⁇ 1 ) for three weeks.
- Axillary nodes (approx. 4 mm in length) were cut from. 3-4 week-old plants. Axillary nodes were excised and incubated in Agrobacterium LBA4404 culture.
- a plant gene expression cassette consists of at least two genes—a selection marker gene and a plant promoter regulating the transcription of the cDNA or genomic DNA of the trait gene.
- Various selection marker genes can be used including the Arabidopsis gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. Nos. 57,673,666 and 6,225,105).
- AHAS mutated acetohydroxy acid synthase
- various promoters can be used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription.
- the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- the explants were washed and transferred to selection media supplemented with 500 mg/L timentin.
- Shoots were excised and placed on a shoot elongation medium.
- Shoots longer than 1 cm were placed on rooting medium for two to four weeks prior to transplanting to soil.
- the primary transgenic plants were analyzed by PCR to confirm the presence of T-DNA. These results were confirmed by Southern hybridization in which DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics).
- the PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labelled probe by PCR, and used as recommended by the manufacturer.
- Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels.
- Cotyledonary petioles and hypocotyls of 5-6 day-old young seedlings were used as explants for tissue culture and transformed according to Babic et al. (1998, Plant Cell Rep 17: 183-188).
- the commercial cultivar Westar (Agriculture Canada) is the standard variety used for transformation, but other varieties can be used.
- Agrobacterium tumefaciens LBA4404 containing a binary vector was used for canola transformation. Many different binary vector systems have been described for plant transformation (e.g. An, G. in Agrobacterium Protocols. Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, Totowa, N.J.). Many are based on the vector pBIN19 described by Bevan (Nucleic Acid Research. 1984. 12:8711-8721) that includes a plant gene expression cassette flanked by the left and right border sequences from the Ti plasmid of Agrobacterium tumefaciens.
- a plant gene expression cassette consists of at least two genes—a selection marker gene and a plant promoter regulating the transcription of the cDNA or genomic DNA of the trait gene.
- selection marker genes can be used including the Arabidopsis gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. Nos. 57,673,666 and 6,225,105).
- AHAS mutated acetohydroxy acid synthase
- various promoters can be used to regulate the trait gene to provide constitutive, developmental, tissue or environmental - regulation of gene transcription.
- the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- Canola seeds were surface-sterilized in 70% ethanol for 2 min., and then in 30% Clorox with a drop of Tween-20 for 10 min, followed by three rinses with sterilized distilled water. Seeds were then germinated in vitro 5 days on half strength MS medium without hormones, 1% sucrose, 0.7% Phytagar at 23° C., 16 hr. light. The cotyledon petiole explants with the cotyledon attached were excised from the in vitro seedlings, and inoculated with Agrobacterium by dipping the cut end of the petiole explant into the bacterial suspension.
- the explants were then cultured for 2 days on MSBAP-3 medium containing 3 mg/l BAP, 3% sucrose, 0.7% Phytagar at 23C, 16 hr light. After two days of co-cultivation with Agrobacterium, the petiole explants were transferred to MSBAP-3 medium containing 3 mg/l BAP, cefotaxime, carbenicillin, or timentin (300 mg/l) for 7 days, and then cultured on MSBAP-3 medium with cefotaxime, carbenicillin, or timentin and selection agent until shoot regeneration. When the shoots were 5-10 mm in length, they were cut and transferred to shoot elongation medium (MSBAP-0.5, containing 0.5 mg/l BAP). Shoots of about 2 cm in length were transferred to the rooting medium (MSO) for root induction.
- MSO rooting medium
- T0 primary transgenic plants
- transgenic plants were then evaluated for their improved stress tolerance according to the method described in Example 5. Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels.
- Transformation of maize ( Zea Mays L.) is performed with a modification of the method described by Ishida et al. (1996. Nature Biotech 14745-50). Transfromation is genotype-dependent in corn and only specific genotypes are amenable to transformation and regeneration.
- the inbred line A188 (University of Minnesota) or hybrids with A188 as a parent are good sources of donor material for transformation (Fromm et al. 1990 Biotech 8:833-839), but other genotypes can be used successfully as well.
- Immature embryos are co-cultivated with Agrobacterium tumefaciens that carry “super binary” vectors and trahsgenic plants are recovered through organogenesis.
- the super binary vector system of Japan Tobacco is described in WO patents WO94/00977 and WO95/06722.
- Vectors were constructed as described.
- Various selection marker genes can be used including the maize gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. No. 6,025,541).
- AHAS mutated acetohydroxy acid synthase
- various promoters can be used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription.
- the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- Excised embryos are grown on callus induction medium, then maize regeneration medium, containing imidazolinone as a selection agent.
- the Petri plates are incubated in the light at 25° C. for 2-3 weeks, or until shoots develop.
- the green shoots are transferred from each embryo to maize rooting medium and incubated at 25° C. for 2-3 weeks, until roots develop.
- the rooted shoots are transplanted to soil in the greenhouse.
- T1 seeds are produced from plants that exhibit tolerance to the imidazolinone herbicides and which are PCR positive for the transgenes.
- the T1 transgenic plants were then evaluated for their improved stress tolerance according to the method described in Example 5.
- the T1 generation of sincle locus insertions of the the T-DNA will segregate for the transgene in a 3:1 ratio.
- Those progeny containing one or two copies of the transgene are tolerant of the imidazolinone herbicide, and exhibit greater tolerance of drought stress than those progeny lacking the transgenes.
- Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels.
- Homozygous T2 plants exhibited similar phenotypes.
- Transformation of wheat is performed with the method described by Ishida et al. (1996 Nature Biotech. 14745-50).
- the cultivar Bobwhite (available from CYMMIT, Mexico) is commonly used in transformation. Immature embryos are co-cultivated with Agrobacterium tumefaciens that carry “super binary” vectors, and transgenic plants are recovered through organogenesis.
- the super binary vector system of Japan Tobacco is described in WO patents WO94/00977 and WO95/06722. Vectors were constructed as described.
- Various selection marker genes can be used including the maize gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. No. 6,025,541).
- AHAS mutated acetohydroxy acid synthase
- various promoters can be used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription.
- the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- the embryos are grown on callus induction medium, then regeneration medium, containing imidazolinone as a selection agent.
- the Petri plates are incubated in the light at 25° C. for 2-3 weeks, or until shoots develop.
- the green shoots are transferred from each embryo to rooting medium and incubated at 25° C. for 2-3 weeks, until roots develop.
- the rooted shoots are transplanted to soil in the greenhouse.
- T1 seeds are produced from plants that exhibit tolerance to the imidazolinone herbicides and which are PCR positive for the transgenes.
- the T1 transgenic plants were then evaluated for their improved stress tolerance according to the method described in the previous example 5.
- the T1 generation of single locus insertions of the the T-DNA will segregate for the transgene in a 3:1 ratio.
- Those progeny containing one or two copies of the transgene are tolerant of the imidazolinone herbicide, and exhibit greater tolerance of drought stress than those progeny lacking the transgenes.
- Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels.
- Homozygous T2 plants exhibited similar phenotypes.
- FIG. 1 The glutaredoxin gene family showing the four subfamiles of glutaredoxin and thioredoxin coding sequences as determined by amino acid sequence homology.
- FIG. 2 Amino acid alignment of yeast and plant cDNA sequences of glutaredoxin subfamily 1 showing the presence of two conserved domains
- FIG. 3 Amino acid alignment of glutaredoxin subfamily 1 domain 1 across yeast and plant cDNA sequences. The amino acid position at the start of the alignment is shown in parenthesis.
- FIG. 4 Amino acid alignment of Glutaredoxin subfamily 1 domain 2 across yeast and plant cDNA sequences. The amino acid position at the start of the alignment is shown in parenthesis.
- FIG. 5 Amino acid alignments of yeast and plant cDNA sequences of glutaredoxin subfamily 2 showing the presence of two conserved domains.
- FIG. 6 Amino acid alignment of glutaredoxin subfamily 2 domain 1 across yeast and plant cDNA sequences.
- FIG. 7 Amino acid alignment of Glutaredoxin subfamily 2 domain 2 across yeast and plant cDNA sequences.
- FIG. 8 Amino add alignments of yeast and plant cDNA sequences of glutaredoxin subfamily 3 showing the presence of two conserved domains.
- FIG. 9 Amino acid alignment of glutaredoxin subfamily 3 domain 1 across yeast and plant cDNA sequences.
- FIG. 10 Amino acid alignment of Glutaredoxin subfamily 3 domain 2 across yeast and plant cDNA sequences.
- FIG. 11 Amino acid alignments of yeast and plant cDNA sequences of glutaredoxin subfamily 4 showing the presence of two conserved domains.
- FIG. 12 Amino acid alignment of glutaredoxin subfamily 4 domain 1 across yeast and plant cDNA sequences.
- FIG. 13 Amino acid alignment of glutaredoxin subfamily 4 domain 2 across yeast and plant cDNA sequences.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Agronomy & Crop Science (AREA)
- Mycology (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention pertains transgenic plant cells and mature plants comprising Oxidoreductase Stress Related Proteins (ORSRP) resulting in increased tolerance and/or resistance to environmental stress as compared to non-transformed wild type cells and methods of producing such plant cells or plants. Further object of the present invention are isolated ORSRPs or ORSRP encoding nucleic acids from plants.
Description
- This invention relates generally to nucleic acid sequences encoding proteins that are associated with abiotic stress responses and abiotic stress tolerance in plants. In particular, this invention relates to nucleic acid sequences encoding proteins that confer drought, heat, cold, and/or salt tolerance to plants.
- Abiotic environmental stresses, such as drought stress, salinity stress, heat stress, and cold stress, are major limiting factors of plant growth and productivity (Boyer. 1982. Science 218, 443-448). Crop losses and crop yield losses of major crops such as rice, maize (corn) and wheat caused by these stresses represent a significant economic and political factor and contribute to food shortages in many underdeveloped countries.
- Plants are typically exposed during their life cycle to conditions of reduced environmental water content. Most plants have evolved strategies to protect themselves against these conditions of low water or desiccation (drought). However, if the severity and duration of the drought conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Continuous exposure to drought causes major alterations in the plant metabolism. These great changes in metabolism ultimately lead to cell death and consequently yield losses.
- Developing stress-tolerant plants is a strategy that has the potential to solve or mediate at least some of these problems (McKersie and Leshem, 1994. Stress and Stress Coping in Cultivated Plants, Kluwer Academic Publishers). However, traditional plant breeding strategies to develop new lines of plants that exhibit resistance (tolerance) to these types of stresses are relatively slow and require specific resistant lines for crossing with the desired line. Limited germplasm resources for stress tolerance and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Additionally, the cellular processes leading to drought, cold and salt tolerance are complex in nature and involve multiple mechanisms of cellular adaptation and numerous metabolic pathways (McKersie and Leshem, 1994. Stress and Stress Coping in Cultivated Plants, Kluwer Academic Publishers). This multi-component nature of stress tolerance has not only made breeding for tolerance largely unsuccessful, but has also limited the ability to genetically engineer stress tolerance plants using biotechnological methods.
- Drought, heat, cold and salt stresses have a common theme important for plant growth and that is water availability. Plants are exposed during their entire life cycle to conditions of reduced environmental water content. Most plants have evolved strategies to protect themselves against these conditions. However, if the severity and duration of the drought conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Since high salt content in some soils result in less available water for cell intake, its effect is similar to those observed under drought conditions. Additionally, under freezing temperatures, plant cells loose water as a result of ice formation that starts in the apoplast and withdraws water from the symplast (McKersie and Leshem, 1994. Stress and Stress Coping in Cultivated Plants, Kluwer Academic Publishers). Commonly, a plant's molecular response mechanisms to each of these stress conditions are common.
- The results of current research indicate that drought tolerance is a complex quantitative trait and that no real diagnostic marker is available yet. High salt concentrations or dehydration may cause damage at the cellular level during drought stress but the precise injury is not entirely clear (Bray, 1997. Trends Plant Sci. 2, 48-54). This lack of a mechanistic understanding makes it difficult to design a transgenic approach to improve drought tolerance. However, an important consequence of damage may be the production of reactive oxygen radicals that cause cellular injury, such as lipid peroxidation or protein and nucleic acid modification. Details of oxygen free radical chemistry and their reaction with cellular components such as cell membranes have been described (McKersie and Leshem, 1994. Stress and Stress Coping in Cultivated Plants, Kluwer Academic Publishers).
- There are numerous sites of oxygen activation in the plant cell, which are highly controlled and tightly coupled to prevent release of intermediate products (McKersie and Leshem, 1994. Stress and Stress Coping in Cultivated Plants, Kluwer Academic Publishers). Under abiotic stress situations, it is likely that this control or coupling breaks down and the process “dysfunctions” leaking activated oxygen. These uncoupling events are not detrimental provided that they are short in duration and that the oxygen scavenging systems are able to detoxify the various forms of activated oxygen. If the production of activated oxygen exceeds the plant's capacity to detoxify it, deleterious degenerative reactions occur. At the subcellular level, disintegration of membranes and aggregation of proteins are typical symptoms. Therefore it is the balance between the production and the scavenging of activated oxygen that is critical to the maintenance of active growth and metabolism of the plant and overall environmental (abiotic) stress tolerance.
- Preventing or diminishing the accumulation of oxygen free radicals in response to drought is a potential way to engineer tolerance (Allen, 1995. Plant Physiol. 107, 1049-1054). Overexpression of antioxidant enzymes or ROS-scavenging enzymes is one possibility for the induction of functional detoxification systems. For example, transgenic alfalfa plants expressing Mn-superoxide dismutase tend to have reduced injury after water-deficit stress (McKersie et al., 1996. Plant Physiol. 111, 1177-1181). These same transgenic plants have increased biomass production in field trials (McKersie et al., 1999. Plant Physiology, 119: 839-847; McKersie et al., 1996. Plant Physiol. 111, 1177-1181). Transgenic plants that overproduce osmolytes such as mannitol, fructans, proline or glycine-betaine also show increased resistance to some forms of abiotic stress and it is proposed that the synthesized osmolytes act as ROS scavengers (Tarczynski. et al. 1993. Science 259, 508-510; Sheveleva,. et al. 1997. Plant Physiol.115, 1211-1219). Overexpression of glutathione reductase has increased antioxidant capacity and reduced photoinhibition in popular trees (Foyer et al., 1995. Plant Physiology 109: 1047-57).
- The glutaredoxin and thioredoxin proteins are small heat-stable oxidoreductases that have been conserved throughout evolution. They function in many cellular processes, including deoxyribonucleotide synthesis, protein folding, sulfur metabolism and most notably repair of oxidatively damaged proteins. They have also been implicated in the regulation of redox homeostasis in the cell and redox potential has been implicated in changes in gene expression.
- Thioredoxins have a dithiol/disulfide (CGPC) at their active site and are the major cellular protein disulfide reductases. Cytosolic isoforms are present in most organisms. Mitochondria have a separate thioredoxin system and plants have chloroplast thioredoxins, which regulate photosynthetic enzymes by light via ferredoxin-thioredoxin reductase. Thioredoxins are critical for redox regulation of protein function and signaling via thiol redox control. Several transcription factors require thioredoxin reduction for DNA binding (Amer and Holmgren, 2000. European Journal of Biochemistry 267: 6102-6109; Spyrou et al., 2001. Human Genetics 109: 429-439).
- Glutaredoxins are small heat-stable proteins that are active as glutathione-dependent oxidoreductases. They catalyze glutathione-disulfide oxidoreductions overlapping the functions of thioredoxins and using reducing equivalents from NADPH via glutathione reductase. In Saccharomyces cerevisiae, two genes, GRX1 and GRX2, whose expression is induced in response to various stress conditions including oxidative, osmotic, and heat stress, encode glutaredoxins. Furthermore, both genes are activated by the high-osmolarity glycerol pathway and negatively regulated by the Ras-protein kinase (Grant C M. 2001. Molecular Microbiology 39: 533-541; Grant C M et al.,. 2001. Biochimica et Biophysica Acta—Gene Structure & Expression 1490: 33-42).
- Another subfamily of yeast glutaredoxins (Grx3, Grx4, and Grx5) differs from the first in containing a single cysteine residue at the putative active site (Rodriguez-Manzaneque et al., 1999. Molecular & Cellular Biology 19: 8180-8190). The role of these enzymes is not fully understood.
- In addition to the two gene pairs encoding cytoplasmic glutaredoxins (GRX1, GRX2), Saccharomyces cerevisiae also contains two gene pairs for thioredoxins (TRX1, TRX2). Only a quadruple mutant is non-viable and either a single glutaredoxin or a single thioredoxin can sustain viability, indicating some cross function between the two systems (Draculic et al., 2000. Molecular Microbiology 36: 1167-1174).
- Plants also contain glutaredoxins genes. A glutaredoxin (thioltransferase), which catalyzes thiol/disulfide exchange reaction, was isolated from rice (Oryza saliva L.) (Sha et al., 1997. Journal of Biochemistry 121: 842-848; Sha et al., 1997. Gene. 188: 23-28; GenBank accession number D86744). Mulitple forms of glutaredoxin have also been predicted in the Arabiposis genome (GenBank).
- Dehydroascorbate reductase (DHAR; glutathione: dehydroascorbate oxidoreductase, EC 1.8.5.1) is an enzyme that is critical for maintenance of an appropriate level of ascorbate in plant cells by the cycling of dehydroascorbate to replenish ascorbate. DHAR was considered a specific enzyme of the ascorbate-glutathione cycle. However, at least four distinct proteins can catalyze in vitro both glutathione-dependent DHA reduction and other reactions mainly related to thiol-disulphide exchange. These glutaredoxin enzymes (thioltransferases) have both thiol-disulfide oxidoreductase and dehydroascorbate reductase activities (Kato et al., 1997. Plant & Cell Physiology 38: 173-178; Detullio et al., 1998. Plant Physiology & Biochemistry 36: 433-440). Therefore glutaredoxins may also function in vivo as DHAR.
- There have been no reports on the mutation or overexpression of either thioredoxin or glutaredoxin in plant cells to determine their function in terms of oxidative stress tolerance or drought tolerance.
- It is the object of this invention to identify new, unique genes capable of conferring stress tolerance to plants upon over-expression.
- The present invention provides a transgenic plant cell transformed by Oxidoreductase Stress-Related Protein (ORSRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant cell results in increased tolerance and/or resistance to environmental stress as compared to a corresponding non-transformed wild type plant cell. One preferred wild type plant cell is a non-transformed Arabidopsis plant cell. An example here is the Arabidopsis wild type C24 (Nottingham Arabidopsis Stock Centre, UK; NASC Stock N906).
- Preferably the oxidoreductase stress related protein is heat-stable. The invention provides that the environmental stress can be salinity, drought, temperature, metal, chemical, pathogenic and oxidative stresses, or combinations thereof.
- The object of the invention is a transgenic plant cell, wherein the ORSRP is heat-stable. Further, in said transgenic plant cell, the ORSRP is selected from yeast or plant. Preferably, in a transgenic plant of the instant invention, the ORSRP is selected from the group comprising glutaredoxin and/or thioredoxin protein. Further the invention pertains to a transgenic plant cell, wherein the ORSRP coding nucleic acid is selected from the group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No.15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof. Object of the invention is also a transgenic plant cell, wherein the ORSRP coding nucleic acid is at least about 50% homologous to SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49.
- The invention further provides a seed produced by a transgenic plant transformed by a ORSRP coding nucleic acid, wherein the plant is true breeding for increased tolerance to environmental stress as compared to a wild type plant cell. The transgenic plant might be a monocot, a dicot or a gymnosperm plant. The invention further provides a seed produced by a transgenic plant expressing an ORSRP wherein the plant is true breeding for increased tolerance to environmental stress as compared to a wild type plant cell.
- The invention further provides an agricultural product produced by any of the below-described transgenic plants, plant parts such as leafs, roots, stems, buds, flowers or seeds. The invention further provides a isolated recombinant expression vector comprising a ORSRP encoding nucleic acid.
- The invention further provides a method of producing a transgenic plant with a ORSRP coding nucleic acid, wherein expression of the nucleic acid in the plant results in increased tolerance to environmental stress as compared to a wild type plant comprising: (a) transforming a plant cell with an expression vector comprising a ORSRP coding nucleic acid, and (b) generating from the plant cell a transgenic plant with an increased tolerance to environmental stress as compared to a wild type plant.
- With regard to invention described here, “transgenic or transgene” means all those plants or parts thereof which have been brought about by genetic manipulation methods and in which either
- a) the nucleic acid sequence as depicted in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 or a homologe thereof, or
- b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as depicted in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 or a homologe thereof, or
- c) (a) and (b)
- is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide radicals. “Natural genetic environment” means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp.
- In said method, the used ORSRP is heat-stable. Further, the ORSRP used in the instant method described above is a glutaredoxin or thioredoxin protein. Herein the ORSRP coding nucleic acid is selected from the group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof. Further, the ORSRP coding nucleic acid used in the said method is at least about 50% homologous to SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49.
- A plant or plant cell is considered “true breeding” for a particular trait if it is genetically homozygous for that trait to the extent that, when the true-breeding plant is self-pollinated, a significant amount of independent segregation of the trait among the progeny is not observed. In the present invention, the trait arises from the transgenic expression of one or more DNA sequences introduced into a plant cell or plant.
- The present invention also provides methods of modifying stress tolerance of a plant comprising, modifying the expression of a ORSRP nucleic acid in the plant. The invention provides one method of producing a transgenic plant with a synthetic, novel or modified transcription factor that acts by increasing or decreasing the transcription of a ORSRP gene.
- The present invention also provides methods of modifying stress tolerance of a crop plant comprising utilizing a ORSRP coding nucleic acid sequence to identify individual plants in populations segregating for either increased or decreased environmental stress tolerance (DNA marker). In the said method of modifying stress tolerance of a plant the ORSRP encoding nucleic acid is selected from the group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof. Further the ORSRP coding nucleic acid used therein is at least about 50% homologous to SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49. Also an expression vector as described in the instant invention might be used in the said method. In an variant method of said method of modifying stress tolerance, the plant is transformed with an inducible promoter that directs expression of the ORSRP. For example, the promoter is tissue specific. In a variant method, the used promoter is developmentally regulated.
- In the instant method of modifying stress tolerance in plant the ORSRP expression is modified by administration of an antisense molecule and/or by double stranded RNA interference that inhibits expression of ORSPR. In another variant of the method, ORSRP expression is modified by administration of an targeting nucleic sequence complementary to the regulatory region of the ORSRP encoding nucleic acid and/or by a transcription factor and/or by a zinc finger protein.
- The present invention relates to a method for the identification of loci for stress tolerance phenotypes in individual plants. Genomic regions associated with environmental stress tolerance can be identified using Quantitative Trait Loci (QTL) mapping analysis. This approach may use either variation in the glutaredoxin or thioredoxin nucleic acid sequence, variation in the surrounding genomic sequences or variation in the expression level of glutaredoxin or thioredoxin nucleic acid sequence as the quantitative trait.
- The invention provides that the above methods can be performed such that the stress tolerance is either increased or decreased.
- This invention is not limited to specific nucleic acids, specific polypeptides, specific cell types, specific host cells, specific conditions, or specific methods, etc., as such may, of course, vary, and the numerous modifications and variations therein will be apparent to those skilled in the art. It is also to be understood that the terminology used herein is for the purpose of describing specific embodiments only and is not intended to be limiting.
- The present invention describes that particularly glutaredoxin or thioredoxin genes are useful for increasing a plant's tolerance and/or resistance to environmental stress. Accordingly, the present invention provides glutaredoxin and thioredoxin gene sequences selected from the group consisting of SEQ ID No. 1, 3, 5, 7, 9, 11, 13 from Saccharomyces cerevisiae.
- This invention provides sequences of glutaredoxin and thioredoxin nucleic acids that are responsive to drought and environmental conditions in Brassica napus, Arabidopsis thaliana and Oryza saliva according to
15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 and that exhibit homology at the nucleic acid and amino acid level to the yeast genes in SEQ ID 3 and 7, respectively. These plant homologs are functionally equivalent according to this invention to yeast genes of SEQ ID 3 and 7 and can be used to provide environmental stress tolerance in plants.SEQ ID - The invention also pertain to an isolated Oxidoreductase Stress Related Protein (ORSRP) which is selected form the group comprising SEQ ID No. 16, 18, 20, 22, 24, 44 and 50. Further the isolated Oxidoreductase Stress Related Protein (ORSRP) as mentioned before is heat-stable. The isolated Oxidoreductase Stress Related Protein (ORSRP) selected form the group comprising SEQ ID No. 16, 18, 20, 22, 24, 44 and 50 is selected form plant. Preferred is an isolated Oxidoreductase Stress Related Protein (ORSRP) selected form the group comprising SEQ ID No. 16, 18, 20, 22, 24, 44 and 50 wherein the ORSRP is a glutaredoxin or thioredoxin protein.
- Another object of the instant invention is an isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid selected from the group comprising SEQ ID No. 15, 17, 19, 21, 23, 45 and 49. Said isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid encoding an ORSRP which is heat-stable. Thereby the isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid selected from the group comprising SEQ ID No. 15, 17, 19, 21, 23, 45 and 49 encoding an ORSRP which is selected from plants. Preferred is an isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid selected from the group comprising SEQ ID No. 15, 17, 19, 21, 23, 45 and 49 wherein the ORSRP is a glutaredoxin or thioredoxin.
- Homologs of the aforementioned sequences can be isolated advantageously from yeast, fungi or plants, preferably from yeasts such as from the genera Saccharomyces, Pichia, Candida, Hansenula, Torulopsis or Schizosaccharomyces, or plants such as Arabidopsis thaliana, maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, borage, sufflower, linseed, primrose, rapeseed, canola and turnip rape, manihot, pepper, sunflower, tagetes, solanaceous plant such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa, bushy plants such as coffee, cacao, tea, Salix species, trees such as oil palm, coconut, perennial grass, such as ryegrass and fescue, and forage crops, such as alfalfa and clover and from spruce, pine or fir for example, more preferably from Saccharomyces cerevisiae or plants.
- The glutaredoxin or thioredoxin of the present invention are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector, for example in to a binary vector, the expression vector is introduced into a host cell, for example the Arabidopsis thaliana wild type NASC N906 or any other plant cell as described in the examples see below, and the glutaredoxin or thioredoxin is expressed in said host cell. Examples for binary vectors are pBIN19, pBI101, pBinAR, pGPTV or pPZP (Hajukiewicz, P. et al., 1994, plant Mol. Biol., 25: 989-994).
- As used herein, the term “environmental stress” refers to any sub-optimal growing condition and includes, but is not limited to, sub-optimal conditions associated with salinity, drought, temperature, metal, chemical, pathogenic and oxidative stresses, or combinations thereof. In preferred embodiments, the environmental stress can be salinity, drought, heat, or low temperature, or combinations thereof, and in particular, can be low water content or low temperature. Wherein drought stress means any environmental stress which leads to a lack of water in plants or reduction of water supply to plants, wherein low temperature stress means freezing of plants below +4° C. as well as chilling of plants below 15° C. and wherein high temperature stress means for example a temperature above 35° C. The range of stress and stress response depends on the different plants which are used for the invention, i.e. it differs for example between a plant such as wheat and a plant such as Arabidopsis. It is also to be understood that as used in the specification and in the claims, “a” or “an” can mean one or more, depending upon the context in which it is used. Thus, for example, reference to “a cell” can mean that at least one cell can be utlized.
- As also used herein, the terms “nucleic acid” and “nucleic acid molecule” are intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3′ and 5′ ends of the coding region of the gene: at least about 1000 nucleotides of sequence upstream from the 5′ end of the coding region and at least about 200 nucleotides of sequence downstream from the 3′ end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
- An “isolated” nucleic acid molecule is one that is substantially separated from other nucleic acid molecules, which are present in the natural source of the nucleic acid. Preferably, an “isolated” nucleic acid is free of some of the sequences that naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated glutaredoxin or thioredoxin nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be free from some of the other cellular material with which it is naturally associated, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.
- A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule encoding an ORSRP or a portion thereof which confers tolerance and/or resistance to environmental stress in plants, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, a Arabidopsis thaliana glutaredoxin or thioredoxin cDNA can be isolated from a A. thaliana library using all or portion of one of the sequences of
1, 3, 5, 7, 9, 11, 13 of yeast. Moreover, a nucleic acid molecule encompassing all or a portion of one of the sequences ofSEQ ID 1, 3, 5, 7, 9, 11, 13 of yeast can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence. For example, mRNA can be isolated from plant cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al., 1979 Biochemistry 18:5294-5299) and cDNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md.; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, Fla.). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown inSEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast. A nucleic acid molecule of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid molecule so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to a glutaredoxin or thioredoxin nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.SEQ IDs - In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in
1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants encoding the glutaredoxin or thioredoxin (i.e., the “coding region”), as well as 5′ untranslated sequences and 3′ untranslated sequences.SEQ IDs - Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences in
1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants, for example, a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a glutaredoxin or thioredoxin.SEQ IDs - Portions of proteins encoded by the glutaredoxin or thioredoxin nucleic acid molecules of the invention are preferably biologically active portions of one of the glutaredoxin or thioredoxin described herein. As used herein, the term “biologically active portion of” a glutaredoxin or thioredoxin is intended to include a portion, e.g., a domain/motif, of a glutaredoxin or thioredoxin that participates in a stress tolerance and/or resistance response in a plant. To determine whether a glutaredoxin or thioredoxin, or a biologically active portion thereof, results in increased stress tolerance in a plant, a stress analysis of a plant comprising the glutaredoxin or thioredoxin may be performed. Such analysis methods are well known to those skilled in the art, as detailed in the Examples. More specifically, nucleic acid fragments encoding biologically active portions of a glutaredoxin or thioredoxin can be prepared by isolating a portion of one of the sequences in
1, 3, 5, 7, 9, 11, 13 of and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants, expressing the encoded portion of the glutaredoxin or thioredoxin or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the glutaredoxin or thioredoxin or peptide.SEQ IDs - Biologically active portions of a glutaredoxin or thioredoxin are encompassed by the present invention and include peptides comprising amino acid sequences derived from the amino acid sequence of a glutaredoxin or thioredoxin gene, or the amino acid sequence of a protein homologous to a glutaredoxin or thioredoxin, which include fewer amino acids than a full length glutaredoxin or thioredoxin or the full length protein which is homologous to a glutaredoxin or thioredoxin, and exhibits at least some enzymatic activity of a glutaredoxin or thioredoxin. Typically, biologically active portions (e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of a glutaredoxin or thioredoxin enzyme. Moreover, other biologically active portions in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of a glutaredoxin or thioredoxin include one or more selected domains/motifs or portions thereof having biological activity.
- In addition to fragments of the glutaredoxin or thioredoxin described herein, the present invention includes homologs and analogs of naturally occurring glutaredoxin or thioredoxin and glutaredoxin or thioredoxin encoding nucleic acids in a plant.
- “Homologs” are defined herein as two nucleic acids or proteins that have similar, or “homologous”, nucleotide or amino acid sequences, respectively. Homologs include allelic variants, orthologs, paralogs, agonists and antagonists of glutaredoxin or thioredoxin as defined hereafter. The term “homolog” further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in
1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants (and portions thereof) due to degeneracy of the genetic code and thus encode the same glutaredoxin or thioredoxin as that encoded by the amino acid sequences shown in SEQ ID No. 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants. As used herein a “naturally occurring” glutaredoxin or thioredoxin refers to a glutaredoxin or thioredoxin amino acid sequence that occurs in nature.SEQ IDs - Moreover, nucleic acid molecules encoding glutaredoxin or thioredoxin from the same or other species such as glutaredoxin or thioredoxin analogs, orthologs and paralogs, are intended to be within the scope of the present invention. As used herein, the term “analogs” refers to two nucleic acids that have the same or similar function, but that have evolved separately in unrelated organisms. As used herein, the term “orthologs” refers to two nucleic acids from different species that have evolved from a common ancestral gene by speciation. Normally, orthologs encode proteins having the same or similar functions. As also used herein, the term “paralogs” refers to two nucleic acids that are related by duplication within a genome. Paralogs usually have different functions, but these functions may be related (Tatusov, R. L. et al. 1997 Science 278(5338):631-637). Analogs, orthologs and paralogs of a naturally occurring glutaredoxin or thioredoxin can differ from the naturally occurring glutaredoxin or thioredoxin by post-translational modifications, by amino acid sequence differences, or by both. Post-translational modifications include in vivo and in vitro chemical derivatization of polypeptides, e.g., acetylation, carboxylation, phosphorylation, or glycosylation, and such modifications may occur during polypeptide synthesis or processing or following treatment with isolated modifying enzymes. In particular, orthologs of the invention will generally exhibit at least 80-85%, more preferably 90%, and most preferably 95%, 96%, 97%, 98% or even 99% identity or homology with all or part of a naturally occurring glutaredoxin or thioredoxin amino acid sequence and will exhibit a function similar to a glutaredoxin or thioredoxin. Orthologs of the present invention are also preferably capable of participating in the stress response in plants.
- In addition to naturally-occurring variants of a glutaredoxin or thioredoxin sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into a nucleotide sequence of
1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants, thereby leading to changes in the amino acid sequence of the encoded glutaredoxin or thioredoxin, without altering the functional ability of the glutaredoxin or thioredoxin. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in a sequence ofSEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence of one of the glutaredoxin or thioredoxin s without altering the activity of said glutaredoxin or thioredoxin, whereas an “essential” amino acid residue is required for glutaredoxin or thioredoxin activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having glutaredoxin or thioredoxin activity) may not be essential for activity and thus are likely to be amenable to alteration without altering glutaredoxin or thioredoxin activity.SEQ IDs - Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding glutaredoxin or thioredoxin that contain changes in amino acid residues that are not essential for glutaredoxin or thioredoxin activity. Such glutaredoxin or thioredoxin differ in amino acid sequence from a sequence comprising of
2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants, yet retain at least one of the glutaredoxin or thioredoxin activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence ofSEQ IDs 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to one of the sequences of SEQ ID No. 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants, more preferably at least about 60-70% homologous to one of the sequences of SEQ ID No. 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of the sequences of SEQ ID No. 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences of SEQ IDs 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants. The preferred glutaredoxin or thioredoxin homologs of the present invention are preferably capable of participating in the stress tolerance response in a plant. The homology (=identity) was calculated over the entire amino acid range. The program used was PileUp (J. Mol. Evolution., 25 (1987), 351-360, Higgins et al., CABIOS, 5 1989:151-153).SEQ IDs - Variants shall also be encompassed, in particular, functional variants which can be obtained from the sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants by means of deletion, insertion or substitution of nucleotides, the enzymatic activity of the derived synthetic proteins being retained.
- An isolated nucleic acid molecule encoding a glutaredoxin or thioredoxin homologous to a protein sequence of
2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence ofSEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the sequences ofSEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.SEQ IDs - Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a glutaredoxin or thioredoxin is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a glutaredoxin or thioredoxin coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for a glutaredoxin or thioredoxin activity described herein to identify mutants that retain glutaredoxin or thioredoxin activity. Following mutagenesis of one of the sequences of
1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants, the encoded protein can be expressed recombinantly and the activity of the protein can be determined by analyzing the stress tolerance of a plant expressing the protein as described in Examples below.SEQ IDs - In addition to the nucleic acid molecules encoding the glutaredoxin or thioredoxin described above, another aspect of the invention pertains to isolated nucleic acid molecules that are antisense thereto. An “antisense” nucleic acid comprises a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA-molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire glutaredoxin or thioredoxin coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence encoding a glutaredoxin or thioredoxin. The term “coding region” refers to the region of the nucleotide sequence comprising codons that are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding a glutaredoxin or thioredoxin. The term “noncoding region” refers to 5′ and 3′ sequences that flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions).
- In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences shown in
1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants, or a portion thereof. A nucleic acid molecule that is complementary to one of the nucleotide sequences shown inSEQ IDs 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants is one which is sufficiently complementary to one of the nucleotide sequences shown in SEQ IDs 3 or 7 such that it can hybridize to one of these nucleotide sequences, thereby forming a stable duplex.SEQ IDs - Given the coding strand sequences encoding the glutaredoxin or thioredoxin disclosed herein (e.g., the sequences set forth in
1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of glutaredoxin or thioredoxin mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of glutaredoxin or thioredoxin mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of glutaredoxin or thioredoxin mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 or more nucleotides in length.SEQ IDs - It is also possible to use the inverted repeat technology combining an antisense fragment with a portion of the antisense fragment in sense orientation linked by either an adapter sequence or an excisable intron (Abstract Book of the 6th Intern. Congr. Of Plant Mol. Biol. ISPMB, Quebec Jun. 18-24, 2000, Abstract No. S20-9 by Green et al.).
- An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouradl, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl)uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
- The antisense nucleic acid molecules of the invention are typically administered to a cell or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a glutaredoxin or thioredoxin to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic (including plant) promoter are preferred.
- In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An a-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al., 1987 Nucleic Acids. Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (Inoue et al., 1987 Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al., 1987 FEBS Lett. 215:327-330).
- In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes described in Haselhoff and Gerlach, 1988 Nature. 334:585-591) can be used to catalytically cleave glutaredoxin or thioredoxin mRNA transcripts to thereby inhibit translation of glutaredoxin or thioredoxin mRNA. A ribozyme having specificity for a glutaredoxin or thioredoxin-encoding nucleic add can be designed based upon the nucleotide sequence of a glutaredoxin or thioredoxin cDNA, as disclosed herein (i.e., SEQ IDs 1-76) or on the basis of a heterologous sequence to be isolated according to methods taught in this invention. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a glutaredoxin or thioredoxin-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071 and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, glutaredoxin or thioredoxin mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J. W., 1993 Science 261:1411-1418.
- Another embodiment of the invention is the regulating of the glutaredoxin or thioredoxin genes by means of double-stranded RNA (“double-stranded RNA interference”; dsRNAi) which has been described repeatedly for animal and plant organisms (for example Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391:806-811; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035; WO 00/63364). Express reference is made to the processes and methods described in the above references. Such effective gene suppression can for example also be demonstrated upon transient expression or following transient transformation for example as the consequence of biolistic transformation (Schweizer P et al. (2000) Plant J 2000 24: 895-903). dsRNAi methods are based on the phenomenon that the simultaneous introduction of complementary strand and counterstrand of a gene transcript causes the expression of the gene in question to be suppressed in a highly efficient manner. The phenotype caused greatly resembles a corresponding knock-out mutant (Waterhouse P M et al. (1998) Proc Natl Acad Sci USA 95:13959-64).
- As described, inter alia, in WO 99/32619, dsRNAi approaches are markedly superior to traditional antisense approaches.
- The invention therefore furthermore relates to double-stranded RNA molecules (dsRNA molecules) which, upon introduction into a plant (or a cell, tissue, organ or seed derived therefrom), bring about the reduction of an glutaredoxin or thioredoxin gene. In the double-stranded RNA molecule for reducing the expression of an glutaredoxin or thioredoxin protein,
- a) one of the two RNA strands is essentially identical to at least a portion of an glutaredoxin or thioredoxin nucleic acid sequence, and
- b) the corresponding other RNA strand is essentially identical to at least a portion of the complementary strand of an glutaredoxin or thioredoxin nucleic acid sequence.
- “Essentially identical” means that the dsRNA sequence can also show insertions, deletions or individual point mutations compared with the glutaredoxin or thioredoxin target sequence while still bringing about an effective reduction of the expression. The homology in accordance with the above definition preferably amounts to at least 75%, preferably at least 80%, very especially preferably at least 90%, most preferably 100%, between the sense strand of an inhibitory dsRNA and a part-segment of an glutaredoxin or thioredoxin nucleic acid sequence (or between the antisense strand and the complementary strand of an glutaredoxin or thioredoxin nucleic acid sequence). The length of the part-segment amounts to at least 10 bases, preferably at least 25 bases, especially preferably at least 50 bases, very especially preferably at least 100 bases, most preferably at least 200 bases or at least 300 bases. As an alternative, an “essentially identical” dsRNA can also be defined as a nucleic acid sequence which is capable of hybridizing with part of an glutaredoxin or thioredoxin gene transcript (for example in 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA at 505C or 705C for 12 to 16 h).
- The dsRNA can be composed of one or more strands of polymerized ribonucleotides. Modifications both of the sugar-phosphate backbone and of the nucleosides may be present. For example, the phosphodiester bonds of the natural RNA can be modified in such a way that they comprise at least one nitrogen or sulfur hetero atom. Bases can be modified in such a way that the activity of, for example, adenosine deaminase is restricted.
- The dsRNA can be generated enzymatically or fully or partially synthesized chemically.
- The double-stranded structure can be formed starting from an individual self-complementary strand or starting from two complementary strands. In a single self-complementary strand, sense and antisense sequence may be linked by a linking sequence (“linker”) and can form for example a hairpin structure. The linking sequence can preferably be an intron which is spliced out after the dsRNA has been synthesized. The nucleic acid sequence encoding a dsRNA can comprise further elements such as, for example, transcription termination signals or polyadenylation signals. If the two dsRNA strands are to be combined in a cell or plant, this can be effected in various ways:
- a) transformation of the cell or plant with a vector comprising both expression cassettes,
- b) cotransformation of the cell or plant with two vectors, one of them comprising the expression cassettes with the sense strand and the other comprising the expression cassettes with the antisense strand,
- c) hybridizing two plants, each of which has been transformed with one vector, one of the vectors comprising the expression cassettes with the sense strand and the other comprising the expression cassettes with the antisense strand.
- The formation of the RNA duplex can be initiated either outside or within the cell. Like in WO 99/53050, the dsRNA can also encompass a hairpin structure by linking sense and antisense strand by means of a linker (for example an intron). The self-complementary dsRNA structures are preferred since they only require the expression of one construct and always comprise the complementary strands in an equimolar ratio.
- The expression cassettes encoding the antisense or sense strand of a dsRNA or the self-complementary strand of the dsRNA are preferably inserted into a vector and, using the methods described herein, stably inserted into the genome of a plant in order to ensure permanent expression of the dsRNA, using selection markers for example.
- The dsRNA can be introduced using a quantity which allows at least one copy per cell. Greater quantities (for example at least 5, 10, 100, 500 or 1000 copies per cell) may bring about a more effective reduction.
- As already described, 100% sequence identity between dsRNA and an glutaredoxin or thioredoxin gene transcript is not necessarily required in order to bring about an effective reduction of the glutaredoxin or thioredoxin expression. Accordingly, there is the advantage that the method is tolerant with regard to sequence deviations as may exist as the consequence of genetic mutations, polymorphisms or evolutionary divergence. Thus, for example, it is possible to use the dsRNA generated on the basis of the glutaredoxin or thioredoxin sequence of one organism to suppress the glutaredoxin or thioredoxin expression in another organism. The high sequence homology between the glutaredoxin or thioredoxin sequences from different sources allows the conclusion that this protein is conserved to a high degree within plants, so that the expression of a dsRNA derived from one of the disclosed glutaredoxin or thioredoxin sequences as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14 of yeast and/or SEQ ID No. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 of plants appears to have an advantageous effect in other plant species as well.
- The dsRNA can be synthesized either in vivo or in vitro. To this end, a DNA sequence encoding a dsRNA can be brought into an expression cassette under the control of at least one genetic control element (such as, for example, promoter, enhancer, silencer, splice donor or splice acceptor or polyadenylation signal). Suitable advantageous constructions are described herein. Polyadenylation is not necessarily required, nor do elements for initiating translation have to be present.
- A dsRNA can be synthesized chemically or enzymatically. Cellular RNA polymerases or bacteriophage RNA polymerases (such as, for example, T3, T7 or SP6 RNA polymerase) can be used for this purpose. Suitable methods for expression of RNA in vitro are described (WO 97/32016; U.S. Pat. No. 5,593,874; U.S. Pat. No. 5,698,425, U.S. Pat. No. 5,712,135, U.S. Pat. No. 5,789,214, U.S. Pat. No. 5,804,693). A dsRNA which has been synthesized in vitro chemically or enzymatically can be isolated completely or to some degree from the reaction mixture, for example by extraction, precipitation, electrophoresis, chromatography or combinations of these methods, before being introduced into a cell, tissue or organism. The dsRNA can be introduced directly into the cell or else be applied extracellularly (for example into the interstitial space).
- However, it is preferred to transform the plant stably with an expression construct which brings about the expression of the dsRNA. Suitable methods are described herein. The methods of dsRNAi, cosuppression by means of sense RNA and “VIGS” (“virus induced gene silencing”) are also termed “post-transcriptional gene silencing” (PTGS). PTGS methods, like the reduction of the glutaredoxin or thioredoxin function or activity with dominant-negative glutaredoxin or thioredoxin variants, are especially advantageous because the demands regarding the homology between the endogenous gene to be suppressed and the sense or dsRNA nucleic acid sequence expressed recombinantly (or between the endogenous gene and its dominant-negative variant) are lower than, for example, in the case of a traditional antisense approach. Such criteria with regard to homology are mentioned in the description of the dsRNAi method and can generally be applied to PTGS methods or dominant-negative approaches. Owing to the high degree of homology between the glutaredoxin or thioredoxin proteins from different sources, a high degree of conservation of this protein in plants can be assumed. Thus, using the glutaredoxin or thioredoxin nucleic acid sequences from yeast, it is presumably also possible efficiently to suppress the expression of homologous glutaredoxin or thioredoxin proteins in other species such as plants without the isolation and structure elucidation of the glutaredoxin or thioredoxin homologs occurring therein being required. Considerably less labor is therefore required.
- All of the substances and compounds which directly or indirectly bring about a reduction in protein quantity, RNA quantity, gene activity or protein activity of an glutaredoxin or thioredoxin protein shall subsequently be combined in the term “anti-glutaredoxin or thioredoxin” compounds. The term “anti-glutaredoxin or thioredoxin” compound explicitly includes the nucleic acid sequences, peptides, proteins or other factors employed in the above-described methods.
- For the purposes of the invention, “introduction” comprises all of the methods which are capable of directly or indirectly introducing an “anti-glutaredoxin or thioredoxin” compound into a plant or a cell, compartment, tissue, organ or seed thereof, or of generating such a compound there. Direct and indirect methods are encompassed. The introduction can lead to a transient presence of an “anti-glutaredoxin or thioredoxin” compound (for example a dsRNA) or else to its stable presence.
- Alternatively, glutaredoxin or thioredoxin gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of a glutaredoxin or thioredoxin nucleotide sequence (e.g., a glutaredoxin or thioredoxin promoter and/or enhancer) to form triple helical structures that prevent transcription of a glutaredoxin or thioredoxin gene in target cells. See generally, Helene, C., 1991 Anticancer Drug Des. 6(6):569-84; Helene, C. et al., 1992 Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L. J., 1992 Bioassays 14(12):807-15.
- In particular, a useful method to ascertain the level of transcription of the gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel et al., 1988 Current Protocols in Molecular Biology, Wiley: New York). This information at least partially demonstrates the degree of transcription of the transformed gene. Total cellular RNA can be prepared from cells, tissues or organs by several methods, all well-known in the art, such as that described in Bormann, E. R. et al., 1992 Mol. Microbiol. 6:317-326. To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed. These techniques are well known to one of ordinary skill in the art. (See, for example, Ausubel et al., 1988 Current Protocols in Molecular Biology, Wiley: New York).
- The invention further provides an isolated recombinant expression vector comprising a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin nucleic acid as described above, wherein expression of the vector or glutaredoxin or thioredoxin nucleic acid, respectively in a host cell results in increased tolerance and/or resistance to environmental stress as compared to the wild type of the host cell. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
- A plant expression cassette preferably contains regulatory sequences capable of driving gene expression in plant cells and operably linked so that each sequence can fulfill its function, for example, termination of transcription by polyadenylation signals. Preferred polyadenylation signals are those originating from Agrobacterium tumefaciens T-DNA such as the gene 3 known as octopine synthase of the Ti-plasmid pTiACH5 (Gielen et al., 1984 EMBO J. 3:835) or functional equivalents thereof but also all other terminators functionally active in plants are suitable.
- As plant gene expression is very often not limited on transcriptional levels, a plant expression cassette preferably contains other operably linked sequences like translational enhancers such as the overdrive-sequence containing the 5′-untranslated leader sequence from tobacco mosaic virus enhancing the protein per RNA ratio (Gallie et al., 1987 Nucl. Acids Research 15:8693-8711).
- Plant gene expression has to be operably linked to an appropriate promoter conferring gene expression in a timely, cell or tissue specific manner. Preferred are promoters driving constitutive expression (Benfey et al., 1989 EMBO J. 8:2195-2202) like those derived from plant viruses like the 35S CaMV (Franck et al., 1980 Cell 21:285-294), the 19S CaMV (see also U.S. Pat. No. 5,352,605 and PCT Application No. WO 8402913) or plant promoters like those from Rubisco small subunit described in U.S. Pat. No. 4,962,028.
- Additional advantageous regulatory sequences are, for example, included in the plant promoters such as CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, LEB4, nos or in the ubiquitin, napin or phaseolin promoter. Also advantageous in this connection are inducible promoters such as the promoters described in EP-A-0 388 186 (benzyl sulfonamide inducible), Plant J. 2, 1992: 397-404 (Gatz et al., Tetracyclin inducible), EP-A-0 335 528 (abscisic acid inducible) or WO 93/21334 (ethanol or cyclohexenol inducible). Additional useful plant promoters are the cytosolic FBPase promotor or ST-LSI promoter of the potato (Stockhaus et al., EMBO J. 8, 1989, 2445), the phosphorybosyl phyrophoshate amido transferase promoter of Glycine max (gene bank accession No. U87999) or the noden specific promoter described in EP-A-0 249 676. Additional particularly advantageous promoters are seed specific promoters which can be used for monokotyledones or dikotyledones are described in U.S. Pat. No. 5,608,152 (napin promoter from rapeseed), WO 98/45461 (phaseolin promoter from Arobidopsis), U.S. Pat. No. 5,504,200 (phaseolin promoter from Phaseolus vulgaris), WO 91/13980 (Bce4 promoter from Brassica), Baeumlein et al., Plant J., 2, 2, 1992: 233-239 (LEB4 promoter from leguminosa) said promoters are useful in dikotyledones. The following promoters are useful for example in monokotyledones lpt-2- or lpt-1-promoter from barley (WO 95/15389 and WO 95/23230), hordein promoter from barley and other useful promoters described in WO 99/16890.
- It is possible in principle to use all natural promoters with their regulatory sequences like those mentioned above for the novel process. It is also possible and advantageous in addition to use synthetic promoters.
- The gene construct may also comprise further genes which are to be inserted into the organisms and which are for example involved in stress resistance. It is possible and advantageous to insert and express in host organisms regulatory genes such as genes for inducers, repressors or enzymes which intervene by their enzymatic activity in the regulation, or one or more or all genes of a biosynthetic pathway. These genes can be heterologous or homologous in origin. The inserted genes may have their own promoter or else be under the control of same promoter as the sequences SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants or their homologs.
- The gene construct advantageously comprises, for expression of the other genes present, additionally 3′ and/or 5′ terminal regulatory sequences to enhance expression, which are selected for optimal expression depending on the selected host organism and gene or genes.
- These regulatory sequences are intended to make specific expression of the genes and protein expression possible as mentioned above. This may mean, depending on the host organism, for example that the gene is expressed or overexpressed only after induction, or that it is immediately expressed and/or overexpressed.
- The regulatory sequences or factors may moreover preferably have a beneficial effect on expression of the introduced genes, and thus increase it. It is possible in this way for the regulatory elements to be enhanced advantageously at the transcription level by using strong transcription signals such as promoters and/or enhancers. However, in addition, it is also possible to enhance translation by, for example, improving the stability of the mRNA.
- Other preferred sequences for use in plant gene expression cassettes are targeting-sequences necessary to direct the gene product in its appropriate cell compartment (for review see Kermode, 1996 Crit. Rev. Plant Sci. 15(4):285-423 and references cited therein) such as the vacuole, the nucleus, all types of plastids like amyloplasts, chloroplasts, chromoplasts, the extracellular space, mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells.
- Plant gene expression can also be facilitated via an inducible promoter (for review see Gatz, 1997 Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:89-108). Chemically inducible promoters are especially suitable if gene expression is wanted to occur in a time specific manner.
- Table 1 lists several examples of promoters that may be used to regulate transcription of the glutaredoxin or thioredoxin nucleic acid coding sequences.
TABLE 1 Examples of Tissue-specific and Stress inducible promoters in plants Expression Reference Cor78- Cold, drought, Ishitani, et al., Plant Cell 9: salt, ABA, wounding- 1935-1949 (1997). Yamaguchi-Shinozaki inducible and Shinozaki, Plant Cell 6: 251-264 (1994). Rci2A - Cold, Capel et al., Plant Physiol 115: dehydration-inducible 569-576 (1997) Rd22 - Drought, salt Yamaguchi-Shinozaki and Shinozaki, Mol Gen Genet 238: 17-25 (1993). Cor15A - Cold, Baker et al., Plant Mol. Biol. 24: dehydration, ABA 701-713 (1994). GH3- Auxin inducible Liu et al., Plant Cell 6: 645-657 (1994) ARSK1-Root, salt Hwang and Goodman, Plant J 8: 37-43 inducible (1995). PtxA - Root, salt GenBank accession X67427 inducible SbHRGP3 - Root Ahn et al., Plant Cell 8: 1477-1490 specific (1998). KST1 - Guard cell Plesch et al., unpublished manuscript; specific Müller-Röber et al, EMBO J. 14: 2409-2416 (1995). KAT1 - Guard cell Plesch et al., Gene 249: 83-89 (2000) specific Nakamura et al., Plant Physiol. 109: 371-374 (1995) salicylic acid inducible PCT Application No. WO 95/19443 tetracycline inducible Gatz et al: Plant J. 2: 397-404 (1992) Ethanol inducible PCT Application No. WO 93/21334 pathogen inducible Ward et al., 1993 Plant. Mol. Biol. PRP1 22: 361-366 heat inducible hsp80 U.S. Pat. No. 5187267 cold inducible alpha- PCT Application No. WO 96/12814 amylase Wound-inducible pinII European Patent No. 375091 RD29A - salt-inducible Yamaguchi-Shinozalei et al. (1993) Mol. Gen. Genet. 236: 331-340 plastid-specific viral PCT Application No. WO 95/16783 and. RNA-polymerase WO 97/06250 - Other selection marker systems, like the AHAS marker or other promoters, e.g. superpromotor (Ni et al,., Plant Journal 7, 1995: 661-676), Ubiquitin promotor (Callis et al., J. Biol. Chem., 1990, 265: 12486-12493; U.S. Pat. No. 5,510,474; U.S. Pat. No. 6,020,190; Kawalleck et al., Plant. Molecular Biology, 1993, 21: 673-684) or 34S promotor (GenBank Accession numbers M59930 and X16673) were similar useful for the instant invention and are known to a person skilled in the art.
- The invention further provides a recombinant expression vector comprising a glutaredoxin or thioredoxin DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to a glutaredoxin or thioredoxin mRNA. Regulatory sequences operatively linked to a nucleic acid molecule cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types. For instance, viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus wherein antisense nucleic acids are produced under the control of a high efficiency regulatory region. The activity of the regulatory region can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, Reviews—Trends in Genetics, Vol. 1(1) 1986 and Mol et al., 1990 FEBS Letters 268:427-430.
- Gene expression in plants is regulated by the interaction of protein transcription factors with specific nucleotide sequences within the regulatory region of a gene. A common type of transcription factor contains zinc finger (ZF) motifs. Each ZF module is approximately 30 amino acids long folded around a zinc ion. The DNA recognition domain of a ZF protein is a α-helical structure that inserts into the major grove of the DNA double helix. The module contains three amino acids that bind to the DNA with each amino acid contacting a single base pair in the target DNA sequence. ZF motifs are arranged in a modular repeating fashion to form a set of fingers that recognize a contiguous DNA sequence. For example, a three-fingered ZF motif will recognize 9 bp of DNA. Hundreds of proteins have been shown to contain ZF motifs with between 2 and 37 ZF modules in each protein (Isalan M, et al., 1998 Biochemistry 37(35):12026-33; Moore M, et al., 2001 Proc. Natl. Acad. Sci. USA 98(4):1432-1436 and 1437-1441; U.S. patents U.S. Pat. No. 6,007,988 and U.S. Pat. No. 6,013,453).
- The regulatory region of a plant gene contains many short DNA sequences (cis-acting elements) that serve as recognition domains for transcription factors, including ZF proteins. Similar recognition domains in different genes allow the coordinate expression of several genes encoding enzymes in a metabolic pathway by common transcription factors. Variation in the recognition domains among members of a gene family facilitates differences in gene expression within the same gene family, for example, among tissues and stages of development and in response to environmental conditions.
- Typical ZF proteins contain not only a DNA recognition domain but also a functional domain that enables the ZF protein to activate or repress transcription of a specific gene. Experimentally, an activation domain has been used to activate transcription of the target gene (U.S. Pat. No. 5,789,538 and patent application WO9519431), but it is also possible to link a transcription repressor domain to the ZF and thereby inhibit transcription (patent applications WO00/47754 and WO2001002019). It has been reported that an enzymatic function such as nucleic acid cleavage can be linked to the ZF (patent application WO00/20622) The invention provides a method that allows one skilled in the art to isolate the regulatory region of one or more Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin genes from the genome of a plant cell and to design zinc finger transcription factors linked to a functional domain that will interact with the regulatory region of the gene. The interaction of the zinc finger protein with the plant gene can be designed in such a manner as to alter expression of the gene and thereby confer increased or decreased tolerance of abiotic stress such as drought. The invention provides a method of producing a transgenic plant with a transgene encoding this designed transcription factor, or alternatively a natural transcription factor, that modifies transcription of the Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin gene to provide increased tolerance of environmental stress.
- In particular, the invention provides a method of producing a transgenic plant with a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin coding nucleic acid, wherein expression of the nucleic acid(s) in the plant results in increased tolerance to environmental stress as compared to a wild type plant comprising: (a) transforming a plant cell with an expression vector comprising a glutaredoxin or thioredoxin nucleic acid, and (b) generating from the plant cell a transgenic plant with an increased tolerance to environmental stress as compared to a wild type plant. For such plant transformation, binary vectors such as pBinAR can be used (Höfgen and Willmitzer, 1990 Plant Science 66:221-230). Moreover suitable binary vectors such as pBIN19, pBI101, pGPTV or pCambia are described in Hellens et al., Trends in Plant Science, 2000, 5: 446-451.
- Construction of the binary vectors can be performed by ligation of the cDNA in sense or antisense orientation into the T-DNA. 5-prime to the cDNA a plant promoter activates transcription of the cDNA. A polyadenylation sequence is located 3-prime to the cDNA. Tissue-specific expression can be achieved by using a tissue specific promoter as listed above. Also, any other promoter element can be used. For constitutive expression within the whole plant, the CaMV 35S promoter can be used. The expressed protein can be targeted to a cellular compartment using a signal peptide, for example for plastids, mitochondria or endoplasmic reticulum (Kermode, 1996 Crit. Rev. Plant Sci. 4(15):285423). The signal peptide is cloned 5-prime in frame to the cDNA to archive subcellular localization of the fusion protein. Additionally, promoters that are responsive to abiotic stresses can be used with, such as the Arabidopsis promoter RD29A. One skilled in the art will recognize that the promoter used should be operatively linked to the nucleic acid such that the promoter causes transcription of the nucleic acid which results in the synthesis of a mRNA which encodes a polypeptide. Alternatively, the RNA can be an antisense RNA for use in affecting subsequent expression of the same or another gene or genes.
- Alternate methods of transfection include the direct transfer of DNA into developing flowers via electroporation or Agrobacterium mediated gene transfer. Agrobacterium mediated plant transformation can be performed using for example the GV3101(pMP90) (Koncz and Schell, 1986 Mol. Gen. Genet. 204:383-396) or LBA4404 (Ooms et al., Plasmid, 1982, 7: 15-29; Hoekema et al., Nature, 1983, 303: 179-180) Agrobacterium tumefaciens strain. Transformation can be performed by standard transformation and regeneration techniques (Deblaere et al., 1994 Nucl. Acids. Res. 13:4777-4788; Gelvin and Schilperoort, Plant Molecular Biology Manual, 2nd Ed.—Dordrecht: Kluwer Academic Publ., 1995.—in Sect., Ringbuc Zentrale Signatur BT11-P ISBN 0-7923-2731-4; Glick, B R and Thompson, J E, Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993.-360 S., ISBN 0-8493-5164-2). For example, rapeseed can be transformed via cotyledon or hypocotyl transformation (Moloney et al., 1989 Plant Cell Reports 8:238-242; De Block et al., 1989 Plant Physiol. 91:694-701). Use of antibiotics for Agrobacterium and plant selection depends on the binary vector and the Agrobacterium strain used for transformation. Rapeseed selection is normally performed using kanamycin as selectable plant marker. Agrobacterium mediated gene transfer to flax can be performed using, for example, a technique described by Mlynarova et al., 1994 Plant Cell Report 13:282-285. Additionally, transformation of soybean can be performed using for example a technique described in European Patent No. 0424 047, U.S. Pat. No. 5,322,783, European Patent No. 0397 687, U.S. Pat. No. 5,376,543 or U.S. Pat. No. 5,169,770. Transformation of maize can be achieved by particle bombardment, polyethylene glycol mediated DNA uptake or via the silicon carbide fiber technique. (See, for example, Freeling and Walbot “The maize handbook” Springer Verlag: New York (1993) ISBN 3-540-97826-7). A specific example of maize transformation is found in U.S. Pat. No. 5,990,387 and a specific example of wheat transformation can be found in PCT Application No. WO 93/07256.
- The Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin nucleic acid molecules of the invention have a variety of uses. Most importantly, the nucleic acid and amino acid sequences of the present invention can be used to transform plant cells or plants, thereby inducing tolerance to stresses such as drought, high salinity and cold. The present invention therefore provides a transgenic plant transformed by a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin nucleic acid (coding or antisense), wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type plant. The transgenic plant can be a monocot or a dicot or a gymnosperm plant. The invention further provides that the transgenic plant can be selected from maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, borage, sufflower, linseed, primrose, rapeseed, canola and turnip rape, manihot, pepper, sunflower, tagetes, solanaceous plant such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa, bushy plants such as coffee, cacao, tea, Salix species, trees such as oil palm, coconut, perennial grass, such as ryegrass and fescue, and forage crops, such as alfalfa and clover and Arabidopsis thaliana. Further the transgenic plant can be selected from spruce, pine or fir for example.
- In particular, the present invention describes using the expression of Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin to engineer drought-tolerant, salt-tolerant and/or cold-tolerant plants. This strategy has herein been demonstrated for Arabidopsis thaliana, Ryegrass, Alfalfa, Rapeseed/Canola, Soybean, Corn and Wheat but its application is not restricted to these plants. Accordingly, the invention provides a transgenic plant containing a glutaredoxin or thioredoxin selected from
1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants, wherein the environmental stress is drought, increased salt or decreased or increased temperature but its application is not restricted to these adverse environments. Protection against other adverse conditions such as heat, air pollution, heavy metals and chemical toxicants, for example, may be obtained. In preferred embodiments, the environmental stress is drought.SEQ IDs - The present invention also provides methods of modifying stress tolerance of a plant comprising, modifying the expression of a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin in the plant The invention provides that this method can be performed such that the stress tolerance is either increased or decreased. This can for example be done by the use of transcription factor or some type of site specific mutagenesis agent. In particular, the present invention provides methods of producing a transgenic plant having an increased tolerance to environmental stress as compared to a wild type plant comprising increasing expression of a Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin in a plant.
- The Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin encoding nucleic acids of the present invention have utility as (Quantitative Trait Locus) QTL markers for mapping genetic loci associated with environmental stress tolerance. As such, the sequences have utility in the identification of plants that exhibit an environmental stress tolerance phenotype from those that do not within a segregating population of plants. For example, to identify the region of the genome to which a particular glutaredoxin or thioredoxin nucleic acid sequence binds, genomic DNA could be digested with one or more restriction enzymes, and the fragments incubated with the glutaredoxin or thioredoxin nucleic acid, preferably with readily detectable labels. Binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map and, when performed multiple times with different enzymes, facilitates a unique identifying pattern. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map.
- The genetics of quantitative traits associated to DNA markers has been used extensively in plant breeding for more than a decade (Tansgley et al., 1989 Biotechnology 7:257-264). The principle consists of using segregating lines derived from two homozygous parents and mapping these progeny with markers to link each marker to at least another one (saturated map), after which a statistical relationship between the quantitative trait value and the genotype at each marker is determined. A significant link of a locus to the trait means that at least one gene that in the vicinity of the marker contributes part of the phenotype variability. By definition, this locus is called a quantitative trait locus (QTL). In such a case, the gene becomes a candidate gene for explaining part of the observed phenotype and methods to identify and clone these genes have been described (Yano M, 2001. Current Opinion in Plant Biology 4:130-135). An observed correlation between a QTL and a gene location is likely to be causal, and therefore much more informative than a physiological correlation. This approach was applied to biochemical traits related to carbohydrate metabolism in maize leaves (Causse M., et al., 1995. Molecular Breeding 1:259-272).
- This invention uses an alternative approach to the classical method. The approach of this invention is to use the QTL methodology linking a gene or locus known to be associated with the phenotype as a screening method. The marker may be associated with either the DNA sequences or the expression level of the gene, e.g. quantity of a specific mRNA molecule. In this instance, the marker serves as a convenient genetic means to identify individuals with the stress tolerance phenotype within a population of individuals that lack the phenotype. This method has utility when the phenotype is often difficult or expensive to detect or quantitative.
- Many traits including tolerance of environmental stress and yield are associated with multiple genes and are therefore considered quantitative traits. This means that more than one marker or genetic locus is associated with the phenotype. In many instances, it is necessary to stack the various loci related to a phenotype. This is accomplished in standard plant breeding methods by cross-pollinating two parents with different loci (markers) contributing to the phenotype and selecting those progeny that have both markers. This process or breeding and selecting can be repeated multiple times to combine all loci into one progeny.
- This invention provides markers of specific genetic loci that are associated with tolerance of abiotic environmental stress. The DNA sequences in
1, 3, 5,7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants may be used in the identification and selection of stress tolerant plants. These plants, their seeds and varieties derived from them would not contain transgenes but would contain alleles or genetic loci representing natural genetic diversity and thereby exhibit increased tolerance of abiotic environmental stress.SEQ IDs - Growing the modified plant under less than suitable conditions and then analyzing the growth characteristics and/or metabolism can assess the effect of the genetic modification in plants on stress tolerance. Such analysis techniques are well known to one skilled in the art, and include dry weight, wet weight, protein synthesis, carbohydrate synthesis, lipid synthesis, evapotranspiration rates, general plant and/or crop yield, flowering, reproduction, seed setting, root growth, respiration rates, photosynthesis rates, etc. (Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al., 1993 Biotechnology, vol. 3, Chapter III: Product recovery and purification, page 469-714, VCH: Weinheim; Belter, P. A. et al., 1988 Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J. F. and Cabral, J. M. S., 1992 Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J. A. and Henry, J. D., 1988 Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3,
Chapter 11, page 1-27, VCH: Weinheim; and Dechow, F. J. (1989) Separation and purification techniques in biotechnology, Noyes Publications). - The engineering of one or more Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin genes of the invention may also result in Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin proteins having altered activities which indirectly impact the stress response and/or stress tolerance of plants. For example, the normal biochemical processes of metabolism result in the production of a variety of products (e.g., hydrogen peroxide and other reactive oxygen species) which may actively interfere with these same metabolic processes (for example, peroxynitrite is known to react with tyrosine side chains, thereby inactivating some enzymes having tyrosine in the active site (Groves, J. T., 1999 Curr. Opin. Chem. Biol. 3(2):226-235). By optimizing the activity -of one or more Oxidoreductase Stress-Related Protein, particularly glutaredoxin or thioredoxin enzymes of the invention, it may be possible to improve the stress tolerance of the cell.
- Additionally, the sequences disclosed herein, or fragments thereof, can be used to generate knockout mutations in the genomes of various plant cells (Girke, T., 1998 The Plant Journal 15:39-48). The resultant knockout cells can then be evaluated for their ability or capacity to tolerate various stress conditions, their response to various stress conditions, and the effect on the phenotype and/or genotype of the mutation. For other methods of gene inactivation see U.S. Pat. No. 6,004,804 “Non-Chimeric Mutational Vectors” and Puttaraju et al., 1999 Spliceosome-mediated RNA trans-splicing as a tool for gene therapy Nature Biotechnology 17:246-252.
- Throughout this application, various publications are referenced. The disclosures of all of these publications and those references cited within those publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
- It should also be understood that the foregoing relates to preferred embodiments of the present invention and that numerous changes may be made therein without departing from the scope of the invention. The invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be dearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof, which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention and/or the scope of the appended claims.
- The invention also pertains the use of ORSRP encoding nucleic acid selected form the group comprising SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof for preparing a plant cell with increased environmental stress tolerance. The said sequences can also be used for preparing a plant with increased environmental stress tolerance. Object of the invention is further the use of ORSRP encoding nucleic acid selected form the group comprising SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof or parts thereof as DNA markers for selection of plants with increased tolerance to environmental stress. The said ORSRP encoding nucleic acid selected from the group comprising of SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof or parts thereof can also be used as Quantitative Trait Locus (QTL) markers for mapping genetic loci associated with environmental stress tolerance.
- Engineering Stress-Tolerant Arabidopsis Plants by Over-Expressing Glutaredoxin or Thioredoxin Genes.
- Gene Cloning and Transformation of Arabidopsis Thaliana
- Amplification The standard protocol of Pfu DNA polymerase or a Pfu/Taq DNA polymerase mix was used for the amplification procedure. Amplified ORF fragments were analysed by gel electrophoresis. Each primer consists of a universal 5′ end and ORF specific 3′ end whereby the universal sequences differ for the forward and reverse primers (forward primer sequence contains a EcoRI and the reverse primer sequence a SmaI restriction site) allowing a unidirectional cloning success.
- Amplification using the protocol of Pfu or Herculase DNA polymerase (Stratagene). Conditions: 1× PCR buffer [20 mM Tris-HCl (pH 8.8), 2 mM MgSO4, 10 mM KCl, 10 mM (NH4)SO4, 0.1% Triton X-100, 0.1 mg/ml BSA], 100 ng genomic DNA Saccharomyces cerevisae (S288C), 50 pmol forward primer, 50 pmol reverse primer, 2.5 u Pfu or Herculase DNA polymerase. 1st cycle for 3′ at 94° C., followed by 25 cycles for 30″ at 94° C., 30″ 55° C. and 5-6′ 72° C., followed by 1 cycle for 6-10′ at 72° C., final for 4° C. at ∞.
YDR513w primer forward: GGAATTCCAGCTGACCACCATGGAGACCAATTTTTCCTTCGACT YDR513w primer reverse: GATCCCCGGGAATTGCCATGCTATTGAAATACCGGCTTCAATATTT YERI74c primer forward: GGAATTCCAGCTGACCACCATGACTGTGGTTGAAATAAAAAGCC YER174c primer reverse: GATCCCCGGGAATTGCCATGTTACTGTAGAGCATGTTGGAAATATT - Vector preparation. The preferred binary vector 1bxbigResgen, which is based on the modified pPZP binary vector backbone (comprising the kanamycin-gene for bacterial selection; Hajukiewicz, P. et al., 1994, plant Mol. Biol., 25: 989-994) carried the selection marker bar-gene (De Block et al., 1987, EMBO J. 6, 2513-2518) driven by the mas1′ promotor (Velten et al., 1984, EMBO J. 3, 2723-2730; Mengiste, Amedeo and Paszkowski, 1997, Plant J., 12, 945-948) on its T-DNA. In addition the T-DNA contained the strong double 35S promotor (Kay et al., 1987, Science 236, 1299-1302) in front of a cloning cassette followed by the nos-terminator (Depicker A. Stachel S. Dhaese P. Zambryski P. Goodman H M. Nopaline synthase: transcript mapping and DNA sequence. Journal of Molecular & Applied Genetics. 1(6):561-73, 1982.). The cloning cassette consists of the following sequence:
5′-GGAATTCCAGCTGACCACCATGGCAATTCCCGGGGATC-3′ - Other selection marker systems, like the AHAS marker or other promoters, e.g. superpromotor (Ni-Min et al,., Plant Journal, 1995, 7(4): 661-676), Ubiquitin promotor (Callis et al., J. Biol. Chem., 1990, 265: 12486-12493; U.S. Pat. No. 5,510,474; U.S. Pat. No. 6,020,190; Kawalleck et al., Plant. Molecular Biology, 1993, 21: 673-684) or 34S promotor (GenBank Accession numbers M59930 and X16673) were similar useful for the instant invention and are known to a person skilled in the art. The vector was linearised with EcoRI and SmaI using the standard protocol provided by the supplier (MBI Fermentas, Germany) and purified using Qiagen columns (Qiagen, Hilden, Germany).
- Ligation and transformation Present ORF fragments (˜100 ng) were digested by EcoRI and SmaI using the standard protocol provided by the supplier (MBI Fermentas, Germany), purified using Qiagen columns (Qiagen, Hilden, Germany) and were ligated into the cloning cassette of the binary vector systems (˜30 ng) using standard procedures (Maniatis et al.).
- Ligation products were transformed into E. coli (DH5alpha) using a standard heat shock protocol (Maniatis et al.). Transformed colonies were grown on LB media and selected by respective antibiotica (Km) for 16h at 37° C. ÜN.
- Plasmidpreparation Plasmids were prepared using standard protocol (Qiagen Hilden, Germany).
- Transformation of Agrobacteria Plasmids were transformed into Agrobacterium tumefaciens (GV3101pMP90; Koncz and Schell, 1986 Mol. Gen. Genet. 204:383-396) using heat shock or electroporation protocols. Transformed colonies were grown on YEP media and selected by respective antibiotika (Rif/Gent/Km) for 2d at 28° C. ÜN. These agrobacteria cultures were used for the plant transformation.
- Arabidopsis thaliana was grown and transformed according to standard conditions (Bechtold 1993 (Bechtold, N., Ellis, J., Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of Arabidopsis thaliana plants C.R. Acad. Sci. Paris. 316:1194-1199); Bent et al. 1994 (Bent, A., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J., and Staskawicz, B. J. 1994; PPCS2 of Arabidopsis thaliana: A leucin-rich repeat class of plant disease resistant genes; Science 265:1856-1860).
- Transgenic A. thaliana plants were grown individually in pots containing a 4:1 (v/v) mixture of soil and quartz sand in a York growth chamber. Standard growth conditions were: photoperiod of 16 h light and 8 h dark, 20° C., 60% relative humidity, and a photon flux density of 150 μE. To induce germination, sown seeds were kept at 4° C., in the dark, for 3 days. Plants were watered daily until they were approximately 3 weeks old at which time drought was imposed by withholding water. Coincidentally, the relative humidity was reduced in 10% increments every second day to 20%. After approximately 12 days of withholding water, most plants showed visual symptoms of injury, such as wilting and leaf browning, whereas tolerant plants were identified as being visually turgid and healthy green in color. Plants were scored for symptoms of drought injury in comparison to neighbouring plants for 3 days in succession.
- Three successive experiments were conducted. In the first experiment, 10 independent T2 lines were sown for each gene being tested. The percentage of plants not showing visual symptoms of injury was determined. In the second experiment, the lines that had been scored as tolerant in the first experiment were put through a confirmation screen according to the same experimental procedures. In this experiment, 10 plants of each tolerant line were grown and treated as before. In the third experiment, at least 5 replicates of the most tolerant line were grown and treated as before. The average and maximum number of days of drought survival after wild-type control had visually died and the percentage tolerant plants was determined. Additionally measurements of chlorophyll fluorescence were made in stressed and non-stressed plants using a Mini-PAM (Heinz Walz GmbH, Effeltrich, Germany).
- In the first experiment, after 12 days of drought, the control, non-transgenic Arabidopsis thaliana and most transgenic lines expressing other transgenes in the test showed extreme visual symptoms of stress including necrosis and cell death. Several plants expressing the YER174C (═ORF737; SEQ ID No. 7) gene and the YDR513W (═ORF809; SEQ ID No. 3) gene retained viability as shown by their turgid appearance and maintenance of green color. Several independent transgenic lines, in the case of both the YER174C and the YDR513W genes, did not become necrotic for at least 3 days after the control plants had died (Table 2 and 3).
- The second experiment compared a smaller number of independent transgenic lines for each gene but a greater number of progeny within each independent transformation event. This experiment confirmed the previous results. Those lines containing the YER174C gene (Table 2) did not become necrotic for 1-2 days after the controls and in the case of the YDR513W gene, 2-3 days after the controls (Table 3).
TABLE 2 Drought tolerance of transgenic Arabidopsis thaliana expressing the YER174C gene after imposition of drought stress on 3 week old plants. Control plants showed extensive visual symptoms of injury on day 12 and were considered dead. Percent survival Experiment Plant Day 13 Day 14Day 15 1 Control 0 0 0 Transgenic 737 60 40 20 2 Control 0 0 0 Transgenic 737-1 22 22 0 Transgenic 737-3 50 0 0 - Table 3: Drought tolerance of transgenic Arabidopsis thaliana expressing the YDR513W gene after imposition of drought stress on 3 week old plants. Control plants showed extensive visual symptoms of injury on day 12 and were considered dead.
TABLE 3 Drought tolerance of transgenic Arabidopsis thaliana expressing the YDR513W gene after imposition of drought stress on 3 week old plants. Control plants showed extensive visual symptoms of injury on day 12 and were considered dead. Percent survival Experiment Plant Day 13 Day 14Day 15 1 Control 0 0 0 Transgenic 809 50 33 33 2 Control 0 0 0 Transgenic 809-5 25 13 13 Transgenic 809-8 50 25 0 - In the third experiment, one transgenic line from each gene was tested using a even larger number of plants. In line 737-3 expressing the YER174C gene, necrosis did not occur on average until 1.1 days after the controls and 2 of the 22 plants tested did not show necrosis until 4 days later (Table 4). Similarly, line 809-8 expressing the YDR513W gene survived on average 3.1 days longer than the control and 1 plant survived for 6 days longer later (Table 4). Other independent transgenic lines for both genes showed greater survival than the non-transgenic plants in this experiment.
- Chlorophyll fluorescence measurements of photosynthetic yield confirmed that 12 days of drought stress completely inhibited photosynthesis in the control plants, but the transgenic line 809-8 maintained its photosynthetic function longer (Table 5).
- Table 4: Relative drought tolerance of Arabidopsis thaliana transgenic line 737-3 expressing the YER174C gene and line 809-8 expressing the YDR513W gene after imposition of drought stress on 3 week old plants in comparison to non-transgenic control plants. Control plants showed extensive visual symptoms of injury on day 12 and were considered dead.
TABLE 4 Relative drought tolerance of Arabidopsis thaliana transgenic line 737-3 expressing the YER174C gene and line 809-8 expressing the YDR513W gene after imposition of drought stress on 3 week old plants in comparison to non-transgenic control plants. Control plants showed extensive visual symptoms of injury on day 12 and were considered dead. 737-3 809-8 Number of plants tested 22 7 Duration of survival after control (days) 1.1 3.1 Maximal duration of survival (number of plants) 3 (2) 6 (1) - Table 5: Effect of drought stress on photosynthetic yield as determined by chlorophyll fluorescence (± std deviation) of Arabidopsis thaliana control and transgenic line 809-8 expressing the YDR513W gene.
TABLE 5 Effect of drought stress on photosynthetic yield as determined by chlorophyll fluorescence (± std deviation) of Arabidopsis thaliana control and transgenic line 809-8 expressing the YDR513W gene. Days of drought Control Transgenic line 809-8 0 765 ± 29 723 ± 29 5 794 ± 36 781 ± 25 10 412 ± 194 660 ± 121 12 54 ± 83 411 ± 305 - Isolation and Characterization of Plant Glutaredoxin Genes
- ORF 737 and 809 correspond to yeast, Saccharomyces cerevisiae, genes for glutaredoxin4 (GRX4) and glutaredoxin2 (GRX2), respectively, that contain a pair of cysteine amino acids at the putative active site of the protein (Grant C M. 2000. Molecular Microbiology 39: 533-541; Grant C M et al., 2001. Biochimica et Biophysica Acta—Gene Structure & Expression 1490: 33-42). Grx3, Grx4, and Grx5 is a subfamily of yeast glutaredoxins that contain a single cysteine residue at the putative active site (Rodriguez-Manzaneque et al., 1999. Molecular & Cellular Biology 19: 8180-8190). Saccharomyces cerevisiae also contains two gene pairs for thioredoxins (TRX1, TRX2) (Draculic et al., 2000. Molecular Microbiology 36: 1167-1174). These gene sequences are listed in GenBank under the accession numbers listed in Table 6.
- The sequence of GRX2 and GRX4 was used to identify related gene sequences in Arabidopsis thaliana by Blast analysis (Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990 J Mol Biol 215(3):403-10). The results identified related sequences with E<10−10 as shown in Table 6, where E is defined as the expectancy value, or the statistical probability that the sequence appears in the database at random. A similar analysis was done on a three libraries of expressed sequence tags (ESTs) from Brassica napus cv. “AC Excel”, “Quantum” and “Cresor” (canola) and Oryza sativa cv. Nippon-Barre (a japonica rice). The search identified several Brassica and rice glutaredoxin cDNA sequences with E<10−10 (Table 6).
- The yeast and plant cDNA sequences were translated into a predicted amino acid sequences and the relationship among the amino acid sequences was determined by sequence alignment and block alignment using the ClustalW algorithm in Vector NTI ver7. The glutaredoxin and thioredoxin genes were separated into four subfamilies based on this alignment as shown in
FIG. 1 . The glutaredoxin family is characterized by the standard glutaredoxin domain defined in the Prosite database as an amino acid motif with the consensus sequence [LIVMD]-[FYSA]-x(4)-Cz—[PV]—[FYWH]—C-x(2)-[TAV]-x(2,3)-[LIV]. Most sequences show the characteristic two cysteines that when reduced form either two thiol groups or when oxidized form a disulfide bond. Other proteins in this family have only a single C at this site. -
Subfamily 1 contains the yeast genes GRX1 and GRX2 (FIGS. 2-4 ).Domain 1 has the core sequence [VI]—[VF]—[VI]—X—[SA]-K-[TS]—[WY]—C—[PGS]—[YF]—[CS]. OZ1116C26232 and AtQ95K75 lack the C—X—X—C disulfide site and instead have a single C at this site. Domain 2 contains a motif defined as G-Q-X-T-V—P—N—[VI]—[FY]—[VI]—X-G-[KN]—H—I-G-G-[CN]. - Subfamily 2 contains both glutaredoxin GRX3 and GRX4 and thioredoxin THX1 and THX2 sequences (
FIGS. 5-7 ). This family has a region of homology comprising two domains. In most sequences the domains are continuous, except in GRX3 and GRX4 in which the two domains are separated by two amino acids.Domain 1 has a core sequence of [VI]—V—[VL]-X—F—X-[TA]-X—W—[CA]-X—[PA]-[CS]—K. The region [CA]-X(2)-[CS] contains C atposition 1 or 4 or both. Domain 2 is a region of similarity that has a core sequence of F—X(2)-[VI]-[ED]-[AV]-[ED]-E-X(2)-[ED]-[IV]. - Subfamily 3 contains GRX5 and three plant sequences that have a single C amino acid at the putative active site (
FIGS. 8-11 ). The core sequence ofdomain 1 is V—[VM]-X(3)-K-G-X(4)-P—X—C-G-F—S. Domain 2 is defined by the sequence Q-[LI]—[FY]—[VI]—X-[GK]-E-[FL]-X-G-G-[CS]-D-[IV]. - Subfamily 4 does not have any members from yeast and is comprised of 5 plant sequences that have two domains of homology (
FIGS. 11-13 ).Domain 1 has a core sequence similar tosubfamily 1 that is [VI]—V−I—F—S—K—S—Y—C—P—Y—C. Domain 2 has two regions with common sequences of V—V-E-L-D-X—R-E-D-G and V-G-R—R-T-V—P-Q-V—F—[VI]—[NH]-G-K—H-[LI]-G-G-S-D-D. - A representative of each subfamily was selected and the full length coding sequence was ligated into a plant transformation vector using standard molecular biology techniques as described in Example 1. The coding sequence was inserted at the 3′ end of a constitutive promoter to control expression in plants. The vector was transferred to Agrobacterium tumefaciens and this strain was used to transform Arabidopsis thaliana as described in Example 1. Transgenic plants were grown and treated with drought stress as described in Example 1. Those plants that contained the glutaredoxin/thioredoxin transgene from
subfamilies 1, 2 and 3 were more tolerant of the drought treatment than the control, non-transgenic plants.TABLE 6 Summary of yeast and plant glutaredoxin coding sequences. Query specifies the ORF sequence used for the Blast search Nucleo- Amino tide Acid Sub GenBank SEQ ID SEQ source Family query Gene ID Accession No. ID No. Yeast 1 GRX1 X59720 1 2 1 809 GRX2 U18922 3 4 2 GRX3 Z47746 5 6 2 737 GRX4 U33057 7 8 3 GRX5 U39205 9 10 2 THX1 M59168 11 12 2 THX2 M59169 13 14 Bras- 1 809 BN1106 NA 15 16 sica C12219 4 809 BN1106 NA 17 18 C21909 1 809 BN1106 NA 19 20 C2202 4 809 BN1106 NA 21 22 C2582 2 737 BN1106 NA 23 24 C23043 Arabi- 1 809 AtQ9FM49 AB009051 25 26 dopsis 1 809 AtQ9FNE2 AB006702 27 28 4 809 AtQ9FVX1 NM_106386 29 30 4 809 AtQ9M457 ATH271472 31 32 1 809 AtQ9SK75 AY094445 33 34 3 737 AtQ9LW13 AY087154 35 36 3 737 AtQ9SV38 AY078020 37 38 3 737 AtO80451 AY086273 39 40 2 737 AtO65541 NM_119410 41 42 2 737 AtQ9ZPH2 AY058202 43 44 Rice 4 809 OZ1116 NA 45 46 C12744 1 809 OZ1116 X77150 47 48 C2194 1 809 OZ1116 NA 49 50 C26232
NA—not available; sequence is not in a GenBank database
- Engineering Stress-Tolerant Arabidopsis Plants by Over-Expressing Glutaredoxin or Thioredoxin Genes Using Stress-Inducible and Tissue-Specific Promoters.
- Transgenic Arabidopsis plants were created as in example 1 to express the glutaredoxin and thioredoxin transgenes under the control of either a tissue-specific or stress-inducible promoter. Constitutive expression of a transgene may cause deleterious side effects. Stress inducible expression was achieved using promoters selected from those listed above in Table 1.
- T2 generation plants were produced and treated with drought stress in two experiments. For the first drought experiment, the plants were deprived of water until the plant and soil were desiccated. At various times after. withholding water, a normal watering schedule was resumed and the plants were grown to maturity. Seed yield was determined as g seeds per plant. At an equivalent degree of drought stress, tolerant plants were able to resume normal growth and produced more seeds than non-transgenic control plants. Proline content of the leaves and stomatal aperture were also measured at various times during the drought stress. Tolerant plants maintained a lower proline content and a greater stomatal aperture than the non-transgenic control plants.
- An alternative method to impose water stress on the transgenic plants was by treatment with water containing an osmolyte such as polyethylene glycol (PEG) at specific water potential. Since PEG may be toxic, the plants were given only a short term exposure and then normal watering was resumed. As above, seed yields were measured from the mature plants. The response was measured during the stress period by physical measurements, such as stomatal aperture or osmotic potential, or biochemical measurements, such as accumulation of proline. Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels.
- The transgenic plants with a constitutive promoter controlling transcription of the transgene were compared to those plants with a drought-inducible promoter in the absence of stress. The results indicated that the metabolite and gene expression changes noted in examples 2 and 3 did not occur when plants with the stress-inducible promoter were grown in the absence of stress. These plants also had higher seed yields than those with the constitutive promoter.
- Inheritance and Segregation of Drought Tolerance with the Glutaredoxin and Thioredoxin Transgenes.
- Transgenic Arabidopsis plants in the T2 generation were analyzed by PCR to confirm the presence of T-DNA. These results were confirmed by Southern hybridization in which DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labelled probe by PCR, and used as recommended by the manufacturer. Homozygous lines with single insertions of T-DNA were selected for cross-pollination experiments.
- A homozygous line with the glutaredoxin transgene (GG) was cross-pollinated with a homozygous line with the thioredoxin transgene (TT). Since the transgenes are not at the same locus, the F1 progeny were heterozygous (G-T-). The F2 progeny segregated in a 9:3:3:1 ratio of double transformants containing both transgenes, to single transformants containing either G or T, and nulls containing neither transgene. The genotype of the progeny was determined by PCR analysis for each of the transgenes. Homozygous lines of each genotype GGTT, GG-, -TT, and - were identified by quantitative PCR and confirmed by inheritance patterns of the transgenes.
- Homozygous lines were subjected to drought stress, metabolite analysis and expression profiling as described in examples 1, 2, 3 and 4. The transgenic lines were more drought tolerant than the null line, had altered metabolite levels consistent with the observations in example 2 and altered gene expression patterns consistent with the observations in example 3.
- Over-Expression of Glutaredoxin or Thioredoxin Genes Provides Tolerance of Multiple Ablotic Stresses.
- Plants that exhibit tolerance of one abiotic stress often exhibit tolerance of another environmental stress or an oxygen free radical generating herbicide. This phenomenon of cross-tolerance is not understood at a mechanistic level (McKersie and Leshem, 1994). Nonetheless, it is reasonable to expect that plants exhibiting enhanced drought tolerance due to the expression of a transgene might also exhibit tolerance of low temperatures, freezing, salt, air pollutants such as ozone, and other abiotic stresses. In support of this hypothesis, the expression of several genes are up or down-regulated by mulitple abiotic stress factors including cold, salt, osmoticum, ABA, etc (e.g. Hong et al. (1992) Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol 18: 663-674; Jagendorf and Takabe (2001) Inducers of glycinebetaine synthesis in barley. Plant Physiol 127: 1827-1835); Mizoguchi et al. (1996) A gene encoding a mitogen-activated protein kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A 93: 765-769; Zhu (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4: 401-406).
- To determine salt tolerance, seeds of Arabidopsis thaliana were sterilized (100% bleach, 0.1% TritonX for five minutes two times and rinsed five times with ddH2O). Seeds were plated on non-selection media (½ MS, 0.6% phytagar, 0.5g/L MES, 1% sucrose, 2 μg/ml benamyl). Seeds are allowed to germinate for approximately ten days. At the 4-5 leaf stage, transgenic plants were potted into 5.5 cm diameter pots and allowed to grow (22° C., continuous light) for approximately seven days, watering as needed. To begin the assay, two liters of 100 mM NaCl and ⅛ MS was added to the tray under the pots. To the tray containing the control plants, three liters of ⅛ MS was added. The concentrations of NaCl supplementation were increased stepwise by 50 mM every 4 days up to 200 mM. After the salt treatment with 200 mM, fresh and dry weights of the plants as well as seed yields were determined.
- To determine cold tolerance, seeds of the transgenic and cold lines were germinated and grown for approximately 10 days to the 4-5 leaf stage as above. The plants were then transferred to cold temperatures (5° C.) and grown through the flowering and seed set stages of development. Photosynthesis was measured using chlorophyll fluorescence as an indicator of photosynthetic fitness and integrity of the photosystems. Seed yield and plant dry weight were measured as an indictor of plant biomass production.
- Plants that had tolerance to salinity or cold had higher seed yields, photosynthesis and dry matter production than susceptible plants.
- Engineering Stress-Tolerant Alfalfa Plants by Over-Expressing Glutaredoxin or Thioredoxin Genes.
- A regenerating clone of alfalfa (Medicago sativa) was transformed using the method of (McKersie et al., 1999 Plant Physiol 119: 839-847). Regeneration and transformation of alfalfa is genotype dependent and therefore a regenerating plant is required. Methods to obtain regenerating plants have been described. For example, these can be selected from the cultivar Rangelander (Agriculture Canada) or any other commercial alfalfa variety as described by Brown DCW and A Atanassov (1985. Plant Cell Tissue Organ Culture 4: 111-112). Alternatively, the RA3 variety (University of Wisconsin) has been selected for use in tissue culture (Walker et al., 1978 Am J Bot 65:654-659).
- Petiole explants were cocultivated with an overnight culture of Agrobacterium tumefaciens C58C1 pMP90 (McKersie et al., 1999 Plant Physiol 119: 839-847) or LBA4404 containing a binary vector. Many different binary vector systems have been described for plant transformation (e.g. An, G. in Agrobacterium Protocols. Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, Totowa, N.J.). Many are based on the vector pBIN19 described by Bevan (Nucleic Acid Research. 1984. 12:8711-8721) that includes a plant gene expression cassette flanked by the left and right border sequences from the Ti plasmid of Agrobacterium tumefaciens. A plant gene expression cassette consists of at least two genes—a selection marker gene and a plant promoter regulating the transcription of the cDNA or genomic DNA of the trait gene. Various selection marker genes can be used including the Arabidopsis gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. Nos. 57,673,666 and 6,225,105). Similarly, various promoters can be used to regulate the trait gene that provides constitutive, developmental, tissue or environmental regulation of gene transcription. In this example, the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- The explants were cocultivated for 3 d in the dark on SH induction medium containing 288 mg/L Pro, 53 mg/L thioproline, 4.35 g/L K2SO4, and 100 μm acetosyringinone. The explants were washed in half-strength Murashige-Skoog medium (Murashige and Skoog, 1962) and plated on the same SH induction medium without acetosyringinone but with a suitable selection agent and suitable antibiotic to inhibit Agrobacterium growth. After several weeks, somatic embryos were transferred to BOi2Y development medium containing no growth regulators, no antibiotics, and 50 g/L sucrose. Somatic embryos were subsequently germinated on half-strength Murashige-Skoog medium. Rooted seedlings were transplanted into pots and grown in a greenhouse.
- The T0 transgenic plants were propagated by node cuttings and rooted in Turface growth medium. The plants were defoliated and grown to a height of about 10 cm (approximately 2 weeks after defoliation). The plants were then subjected to drought stress in two experiments.
- For the first drought experiment, the seedlings received no water for a period up to 3 weeks at which time the plant and soil were desiccated. At various times after withholding water, a normal watering schedule was resumed. At one week after resuming watering, the fresh and dry weights of the shoots was determined. At an equivalent degree of drought stress, tolerant plants were able to resume normal growth whereas susceptible plants had died or suffered significant injury resulting in less dry matter. Proline content of the leaves and stomatal aperture were also measured at various times during the drought stress. Tolerant plants maintained a lower proline content and a greater stomatal aperture than the non-transgenic control plants.
- An alternative method to impose water stress on the transgenic plants was by treatment with a solution at specific water potential, containing an osmolyte such as polyethylene glycol (PEG). The PEG treatment was given to either detached leaves (e.g. Djilianov et al., 1997 Plant Science 129: 147-156) or to the roots (Wakabayashi et al., 1997 Plant Physiol 113: 967-973). Since PEG may be toxic, the plants were given only a short term exposure. The response was measured as physical measurements such as stomatal aperture or osmotic potential, or biochemical measurements such as accumulation of proline. Tolerant plants maintained their stomatal aperture and showed only slight changes in osmotic potential, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential. In addition the changes in proline and other metabolites were less in the tolerant transgenic plants than in the non-transgenic control plants.
- Tolerance of salinity and cold were measured using methods as described in example 5. Plants that had tolerance to salinity or cold had higher seed yields, photosynthesis and dry matter production than susceptible plants.
- Engineering Stress-Tolerant Ryegrass Plants by Over-Expressing Glutaredoxin or Thioredoxin Genes.
- Seeds of several different ryegrass varieties may be used as explant sources for transformation, including the commercial variety Gunne available from Svalof Weibull seed company or the variety Affinity. Seeds were surface-sterilized sequentially with 1% Tween-20 for 1 minute, 100% bleach for 60 minutes, 3 rinses with 5 minutes each with de-ionized and distilled H2O, and then germinated for 3-4 days on moist, sterile filter paper in the dark. Seedlings were further sterilized for 1 minute with 1% Tween-20, 5 minutes with 75% bleach, and rinsed 3 times with ddH2O, 5 min each.
- Surface-sterilized seeds were placed on the callus induction medium containing Murashige and Skoog basal salts and vitamins, 20 g/l sucrose, 150 mg/l asparagine, 500 mg/l casein hydrolysate, 3 g/l Phytagel, 10 mg/l BAP, and 5 mg/l dicamba. Plates were incubated in the dark at 25C for 4 weeks for seed germination and embryogenic callus induction
- After 4 weeks on the callus induction medium, the shoots and roots of the seedlings were trimmed away, the callus was transferred to fresh media, maintained in culture for another 4 weeks, and then transferred to MSO medium in light for 2 weeks. Several pieces of callus (11-17 weeks old) were either strained through a 10 mesh sieve and put onto callus induction medium, or cultured in 100 ml of liquid ryegrass callus induction media (same medium as for callus induction with agar) in a 250 ml flask. The flask was wrapped in foil and shaken at 175 rpm in the dark at 23 C for 1 week. Sieving the liquid culture with a 40-mesh sieve collected the cells. The fraction collected on the sieve was plated and cultured on solid ryegrass callus induction medium for 1 week in the dark at 25C. The callus was then transferred to and cultured on MS medium containing 1% sucrose for 2 weeks.
- Transformation can be accomplished with either Agrobacterium of with particle bombardment methods. An expression vector is created containing a constitutive plant promoter and the cDNA of the gene in a pUC vector. The plasmid DNA was prepared from E. Coli cells using with Qiagen kit according to manufacturer's instruction. Approximately 2 g of embryogenic callus was spread in the center of a sterile filter paper in a Petri dish. An aliquot of liquid MSO with 10 g/l sucrose was added to the filter paper. Gold particles (1.0 μm in size) were coated with plasmid DNA according to method of Sanford et al., 1993 and delivered to the embryogenic callus with the following parameters: 500 μg particles and 2 μg DNA per shot, 1300 psi and a target distance of 8.5 cm from stopping plate to plate of callus and 1 shot per plate of callus.
- After the bombardment, calli were transferred back to the fresh callus development medium and maintained in the dark at room temperature for a 1-week period. The callus was then transferred to growth conditions in the light at 25C to initiate embryo differentiation with the appropriate selection agent, e.g. 250 nM Arsenal, 5 mg/l PPT or 50 mg/L kanamycin. Shoots resistant to the selection agent appeared and once rotted were transferred to soil. Samples of the primary transgenic plants (T0) are analyzed by PCR to confirm the presence of T-DNA. These results are confirmed by Southern hybridization in which DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labelled probe by PCR, and used as recommended by the manufacturer.
- Transgenic T0 ryegrass plants were propagated vegetatively by excising tillers. The transplanted tillers were maintained in the greenhouse for 2 months until well established. The shoots were defoliated and allowed to grow for 2 weeks.
- The first drought experiment was conducted in a manner similar to that described in example 5. The seedlings received no water for a period up to 3 weeks at which time the plant and soil were desiccated. At various times after withholding water, a normal watering schedule was resumed. At one week after resuming watering, the lengths of leaf blades, and the fresh and dry weights of the shoots was determined. At an equivalent degree of drought stress, tolerant plants were able to resume normal growth whereas susceptible plants had died or suffered significant injury resulting in shorter leaves and less dry matter. Proline content of the leaves and stomatal aperture were also measured at various times during the drought stress. Tolerant plants maintained a lower proline content and a greater stomatal aperture than the non-transgenic control plants.
- A second experiment imposing drought stress on the transgenic plants was by treatment with a solution of PEG as described in the previous examples. Tolerance of salinity and cold were measured using methods as described in example 5. Plants that had tolerance to salinity or cold had higher seed yields, photosynthesis and dry matter production than susceptible plants.
- Engineering Stress-Tolerant Soybean Plants by Over-Expressing Glutaredoxin or Thioredoxin Genes.
- Soybean was transformed according to the following modification of the method described in the Texas A&M patent U.S. Pat. No. 5,164,310. Several commercial soybean varieties are amenable to transformation by this method. The cultvar Jack (available from the Illinois Seed Foundation) is a commonly used for transformation. Seeds were sterilized by immersion in 70% (v/v) ethanol for 6 min and in 25% commercial bleach (NaOCl) supplemented with 0.1% (v/v) Tween for 20 min, followed by rinsing 4 times with sterile double distilled water. Seven-day seedlings were propagated by removing the radicle, hypocotyl and one cotyledon from each seedling. Then, the epicotyl with one cotyledon was transferred to fresh germination media in petri dishes and incubated at 25° C. under a 16-hr photoperiod (approx. 100 μE-m−2s−1) for three weeks. Axillary nodes (approx. 4 mm in length) were cut from. 3-4 week-old plants. Axillary nodes were excised and incubated in Agrobacterium LBA4404 culture.
- Many different binary vector systems have been described for plant transformation (e.g. An, G. in Agrobacterium Protocols. Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, Totowa, N.J.). Many are based on the vector pBIN19 described by Bevan (Nucleic Acid Research. 1984. 12:8711-8721) that includes a plant gene expression cassette flanked by the left and right border sequences from the Ti plasmid of Agrobacterium tumefaciens. A plant gene expression cassette consists of at least two genes—a selection marker gene and a plant promoter regulating the transcription of the cDNA or genomic DNA of the trait gene. Various selection marker genes can be used including the Arabidopsis gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. Nos. 57,673,666 and 6,225,105). Similarly, various promoters can be used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription. In this example, the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- After the co-cultivation treatment, the explants were washed and transferred to selection media supplemented with 500 mg/L timentin. Shoots were excised and placed on a shoot elongation medium. Shoots longer than 1 cm were placed on rooting medium for two to four weeks prior to transplanting to soil.
- The primary transgenic plants (T0) were analyzed by PCR to confirm the presence of T-DNA. These results were confirmed by Southern hybridization in which DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labelled probe by PCR, and used as recommended by the manufacturer.
- Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels.
- Tolerance of salinity and cold were measured using methods as described in example 5. Plants that had tolerance to salinity or cold had higher seed yields, photosynthesis and dry matter production than susceptible plants.
- Engineering Stress-Tolerant Rapeseed/Canola Plants by Over-Expressing Glutaredoxin or Thioredoxin Genes.
- Cotyledonary petioles and hypocotyls of 5-6 day-old young seedlings were used as explants for tissue culture and transformed according to Babic et al. (1998, Plant Cell Rep 17: 183-188). The commercial cultivar Westar (Agriculture Canada) is the standard variety used for transformation, but other varieties can be used.
- Agrobacterium tumefaciens LBA4404 containing a binary vector was used for canola transformation. Many different binary vector systems have been described for plant transformation (e.g. An, G. in Agrobacterium Protocols. Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, Totowa, N.J.). Many are based on the vector pBIN19 described by Bevan (Nucleic Acid Research. 1984. 12:8711-8721) that includes a plant gene expression cassette flanked by the left and right border sequences from the Ti plasmid of Agrobacterium tumefaciens. A plant gene expression cassette consists of at least two genes—a selection marker gene and a plant promoter regulating the transcription of the cDNA or genomic DNA of the trait gene. Various selection marker genes can be used including the Arabidopsis gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. Nos. 57,673,666 and 6,225,105). Similarly, various promoters can be used to regulate the trait gene to provide constitutive, developmental, tissue or environmental - regulation of gene transcription. In this example, the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- Canola seeds were surface-sterilized in 70% ethanol for 2 min., and then in 30% Clorox with a drop of Tween-20 for 10 min, followed by three rinses with sterilized distilled water. Seeds were then germinated in vitro 5 days on half strength MS medium without hormones, 1% sucrose, 0.7% Phytagar at 23° C., 16 hr. light. The cotyledon petiole explants with the cotyledon attached were excised from the in vitro seedlings, and inoculated with Agrobacterium by dipping the cut end of the petiole explant into the bacterial suspension. The explants were then cultured for 2 days on MSBAP-3 medium containing 3 mg/l BAP, 3% sucrose, 0.7% Phytagar at 23C, 16 hr light. After two days of co-cultivation with Agrobacterium, the petiole explants were transferred to MSBAP-3 medium containing 3 mg/l BAP, cefotaxime, carbenicillin, or timentin (300 mg/l) for 7 days, and then cultured on MSBAP-3 medium with cefotaxime, carbenicillin, or timentin and selection agent until shoot regeneration. When the shoots were 5-10 mm in length, they were cut and transferred to shoot elongation medium (MSBAP-0.5, containing 0.5 mg/l BAP). Shoots of about 2 cm in length were transferred to the rooting medium (MSO) for root induction.
- Samples of the primary transgenic plants (T0) were analyzed by PCR to confirm the presence of T-DNA. These results were confirmed by Southern hybridization in which DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labelled probe by PCR, and used as recommended by the manufacturer.
- The transgenic plants were then evaluated for their improved stress tolerance according to the method described in Example 5. Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels.
- Tolerance of salinity and cold were measured using methods as described in the previous example 5. Plants that had tolerance to salinity or cold had higher seed yields, photosynthesis and dry matter production than susceptible plants.
- Engineering Stress-Tolerant Corn Plants by Over-Expressing Glutaredoxin or Thioredoxin Genes.
- Transformation of maize (Zea Mays L.) is performed with a modification of the method described by Ishida et al. (1996. Nature Biotech 14745-50). Transfromation is genotype-dependent in corn and only specific genotypes are amenable to transformation and regeneration. The inbred line A188 (University of Minnesota) or hybrids with A188 as a parent are good sources of donor material for transformation (Fromm et al. 1990 Biotech 8:833-839), but other genotypes can be used successfully as well. Ears -are harvested from corn plants at approximately 11 days after pollination (DAP) when the length of immature embryos is about 1 to 1.2 mm. Immature embryos are co-cultivated with Agrobacterium tumefaciens that carry “super binary” vectors and trahsgenic plants are recovered through organogenesis. The super binary vector system of Japan Tobacco is described in WO patents WO94/00977 and WO95/06722. Vectors were constructed as described. Various selection marker genes can be used including the maize gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. No. 6,025,541). Similarly, various promoters can be used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription. In this example, the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- Excised embryos are grown on callus induction medium, then maize regeneration medium, containing imidazolinone as a selection agent. The Petri plates are incubated in the light at 25° C. for 2-3 weeks, or until shoots develop. The green shoots are transferred from each embryo to maize rooting medium and incubated at 25° C. for 2-3 weeks, until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the imidazolinone herbicides and which are PCR positive for the transgenes.
- The T1 transgenic plants were then evaluated for their improved stress tolerance according to the method described in Example 5. The T1 generation of sincle locus insertions of the the T-DNA will segregate for the transgene in a 3:1 ratio. Those progeny containing one or two copies of the transgene are tolerant of the imidazolinone herbicide, and exhibit greater tolerance of drought stress than those progeny lacking the transgenes. Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels. Homozygous T2 plants exhibited similar phenotypes.
- Tolerance of salinity and cold were measured using methods as described in the previous example 5. Plants that had tolerance to salinity or cold had higher seed yields, photosynthesis and dry matter production than susceptible plants.
- Engineering Stress-Tolerant Wheat Plants by Over-Expressing Glutaredoxin or Thioredoxin Genes.
- Transformation of wheat is performed with the method described by Ishida et al. (1996 Nature Biotech. 14745-50). The cultivar Bobwhite (available from CYMMIT, Mexico) is commonly used in transformation. Immature embryos are co-cultivated with Agrobacterium tumefaciens that carry “super binary” vectors, and transgenic plants are recovered through organogenesis. The super binary vector system of Japan Tobacco is described in WO patents WO94/00977 and WO95/06722. Vectors were constructed as described. Various selection marker genes can be used including the maize gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (U.S. Pat. No. 6,025,541). Similarly, various promoters can be used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription. In this example, the 34S promoter (GenBank Accession numbers M59930 and X16673) was used to provide constitutive expression of the trait gene.
- After incubation with Agrobacterium, the embryos are grown on callus induction medium, then regeneration medium, containing imidazolinone as a selection agent. The Petri plates are incubated in the light at 25° C. for 2-3 weeks, or until shoots develop. The green shoots are transferred from each embryo to rooting medium and incubated at 25° C. for 2-3 weeks, until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the imidazolinone herbicides and which are PCR positive for the transgenes.
- The T1 transgenic plants were then evaluated for their improved stress tolerance according to the method described in the previous example 5. The T1 generation of single locus insertions of the the T-DNA will segregate for the transgene in a 3:1 ratio. Those progeny containing one or two copies of the transgene are tolerant of the imidazolinone herbicide, and exhibit greater tolerance of drought stress than those progeny lacking the transgenes. Tolerant plants had higher seed yields, maintained their stomatal aperture and showed only slight changes in osmotic potential and proline levels, whereas the susceptible non-transgenic control plants closed their stomata and exhibited increased osmotic potential and proline levels. Homozygous T2 plants exhibited similar phenotypes.
-
FIG. 1 : The glutaredoxin gene family showing the four subfamiles of glutaredoxin and thioredoxin coding sequences as determined by amino acid sequence homology. -
FIG. 2 : Amino acid alignment of yeast and plant cDNA sequences ofglutaredoxin subfamily 1 showing the presence of two conserved domains -
FIG. 3 : Amino acid alignment ofglutaredoxin subfamily 1domain 1 across yeast and plant cDNA sequences. The amino acid position at the start of the alignment is shown in parenthesis. -
FIG. 4 : Amino acid alignment ofGlutaredoxin subfamily 1 domain 2 across yeast and plant cDNA sequences. The amino acid position at the start of the alignment is shown in parenthesis. -
FIG. 5 : Amino acid alignments of yeast and plant cDNA sequences of glutaredoxin subfamily 2 showing the presence of two conserved domains. -
FIG. 6 : Amino acid alignment of glutaredoxin subfamily 2domain 1 across yeast and plant cDNA sequences. -
FIG. 7 : Amino acid alignment of Glutaredoxin subfamily 2 domain 2 across yeast and plant cDNA sequences. -
FIG. 8 : Amino add alignments of yeast and plant cDNA sequences of glutaredoxin subfamily 3 showing the presence of two conserved domains. -
FIG. 9 : Amino acid alignment of glutaredoxin subfamily 3domain 1 across yeast and plant cDNA sequences. -
FIG. 10 : Amino acid alignment of Glutaredoxin subfamily 3 domain 2 across yeast and plant cDNA sequences. -
FIG. 11 : Amino acid alignments of yeast and plant cDNA sequences of glutaredoxin subfamily 4 showing the presence of two conserved domains. -
FIG. 12 : Amino acid alignment of glutaredoxin subfamily 4domain 1 across yeast and plant cDNA sequences. -
FIG. 13 : Amino acid alignment of glutaredoxin subfamily 4 domain 2 across yeast and plant cDNA sequences.
Claims (50)
1. A transgenic plant cell transformed by a Oxidoreductase Stress-Related protein (orsrp) coding nucleic acid, wherein expression of said nucleic acid in the plant cell results in increased tolerance to an environmental stress as compared to a corresponding non-transformed wild type plant cell:
2. The transgenic plant cell of claim 1 , wherein the ORSRP is heat-stable.
3. The transgenic plant cell of claim 1 or 2 , wherein the ORSRP is selected from yeast or plants.
4. The transgenic plant cell of claims 1-3, wherein the ORSRP is selected from the group comprising glutaredoxin and/or thioredoxin protein.
5. The transgenic plant cell of claims 1-4, wherein the ORSRP coding nucleic acid is selected from the group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof.
6. The transgenic plant cell of claims 1-5, wherein the ORSRP coding nucleic acid is at least about 50% homologous to SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49.
7. The transgenic plant cell of claims 1-6, wherein the environmental stress is selected from the group consisting of salinity, drought, temperature, metal, chemical, pathogenic and oxidative stresses, or combinations thereof.
8. The transgenic plant cell of claims 1-7 derived from a monocotyledonous plant
9. The transgenic plant cell of claims 1-7 derived from a dicotyledonous plant.
10. The transgenic plant cell of claims 1-9, wherein the plant is selected from the group consisting of maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, rapeseed, canola, manihot, pepper, sunflower, borage, sufflower, linseed, primrose, rapeseed, turnip rape, tagetes, solanaceous plants, potato, tabacco, eggplant, tomato, Vicia species, pea, alfalfa, coffee, cacao, tea, Salix species, oil palm, coconut, perennial grass, forage crops and Arabidopsis thaliana.
11. The transgenic plant cell of claims 1-7, derived from a gymnosperm plant.
12. The transgenic plant cell of claims 1-7 or 11, wherein the plant is selected from the group of spruce, pine and fir.
13. A transgenic plant generated from a plant cell according to claims 1-10 and which is a monocot or dicot plant.
14. A transgenic plant of claim 13 , which is selected from the group consisting of maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, rapeseed, canola, manihot, pepper, sunflower, borage, sufflower, linseed, primrose, rapeseed, turnip rape, tagetes, solanaceous plants, potato, tabacco, eggplant, tomato, Vicia species, pea, alfalfa, coffee, cacao, tea, Salix species, oil palm, coconut, perennial grass, forage crops and Arabidopsis thaliana.
15. A transgenic plant generated from a plant cell according to claims 1-7, 11 or 12 and which is a gymnosperm plant.
16. A transgenic plant of claim 15 , which is selected from the group consisting of spruce, pine and fir.
17. A seed produced by a transgenic plant of claim 13-16, wherein the seed is genetically homozygous for a transgene conferring an increased tolerance to environmental stress as compared to a wild type plant.
18. A plant expression cassette comprising a ORSRP coding nucleic acid selected of a group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 or parts thereof operatively linked to regulatory sequences and/or targeting sequences.
19. An expression vector comprising a ORSRP encoding nucleic acid selected of a group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 or parts thereof or a plant expression cassette of claim 18 , whereby expression of the ORSRP coding nucleic acid in a host cell results in increased tolerance to environmental stress as compared to a wild type host cell.
20. An expression vector comprising a ORSRP coding nucleic acid selected of a group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 or parts thereof in an antisense orientation.
21. An isolated Oxidoreductase Stress Related Protein (ORSRP) which is selected from the group comprising SEQ ID No. 16, 18, 20, 22, 24, 44 and 50.
22. An isolated Oxidoreductase Stress Related Protein (ORSRP) of claim 17 which is heat-stable.
23. An isolated Oxidoreductase Stress Related Protein (ORSRP) of claims 21 or 22 which is selected from plant.
24. An isolated Oxidoreductase Stress Related Protein (ORSRP) of claim 21-23 wherein the ORSRP is a glutaredoxin or thioredoxin protein.
25. An isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid selected from the group comprising SEQ ID No. 15, 17, 19, 21, 23, 45 and 49.
26. An isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid of claim 25 encoding an ORSRP which is heat-stable.
27. An isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic add of claims 25 or 26 encoding an ORSRP which is selected from plants.
28. An isolated Oxidoreductase Stress Related Protein (ORSRP) encoding nucleic acid of claims 25-27 wherein the ORSRP is a glutaredoxin or thioredoxin.
29. A method of producing a transgenic plant comprising an ORSRP coding nucleic acid, wherein expression of the nucleic acid in the transgenic plant results in increased tolerance to environmental stress as compared to a corresponding non-transformed wild type plant, comprising
a) transforming a plant cell with an expression vector comprising the nucleic acid,
b) generating from the plant cell a transgenic plant with an increased tolerance to environmental stress as compared to a corresponding wild type plant.
30. The method of claim 29 , wherein the used ORSRP is heat-stable.
31. The method of claims 29 or 30, wherein the ORSRP is a glutaredoxin or thioredoxin protein.
32. The method of claims 29-31, wherein the ORSRP coding nucleic acid is selected from the group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof.
33. The method of claims 29-32, wherein the ORSRP coding nucleic acid is at least about 50% homologous to SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49.
34. A method of modifying stress tolerance of a plant comprising, modifying the level of expression of an ORSRP in the plant.
35. The method of claim 34 , wherein the ORSRP is heat-stable.
36. The method of claims 34 or 35, wherein the ORSRP is a glutaredoxin or thioredoxin protein.
37. The method of claims 34-36, wherein the ORSRP encoding nucleic acid is selected from the group comprising SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof.
38. The method of claims 34-37, wherein the ORSRP coding nucleic acid is at least about 50% homologous to SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49.
39. The method of claims 34-38, wherein an expression vector is used according to claims 19 or 20.
40. The method of claims 34-39, wherein the stress tolerance is decreased.
41. The method of claims 34-40, wherein the plant is transgenic.
42. The method of claims 34-41, wherein the plant is transformed with an inducible promoter that directs expression of the ORSRP.
43. The method of claims 34-42, wherein the promoter is tissue specific.
44. The method of claims 34-43, wherein the promoter is developmentally regulated.
45. The method of claims 34-44, wherein ORSRP expression is modified by administration of an antisense molecule and/or by double stranded RNA interference that inhibits expression of ORSPR.
46. The method of claims 34-45, wherein ORSRP expression is modified by administration of an targeting nucleic sequence complementary to the regulatory region of the ORSRP encoding nucleic acid and/or by a transcription factor and/or by a zinc finger protein.
47. Use of ORSRP encoding nucleic acid selected from the group comprising SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof for preparing a plant cell with increased environmental stress tolerance.
48. Use of ORSRP encoding nucleic acid selected from the group comprising SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof for preparing a plant with increased environmental stress tolerance.
49. Use of ORSRP encoding nucleic acid selected from the group comprising SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof or parts thereof as DNA markers for selection of plants with increased tolerance to environmental stress.
50. Use of ORSRP encoding nucleic acid selected from the group comprising of SEQ ID No. SEQ ID No. 1, 3, 5, 7, 9, 11, 13 of yeast and/or SEQ ID No. 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 of plants and/or homologs thereof or parts thereof as Quantitative Trait Locus (QTL) markers for mapping genetic loci associated with environmental stress tolerance.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/097,265 US8552255B2 (en) | 2002-08-07 | 2011-04-29 | Nucleic acid sequences encoding proteins associated with abiotic stress response |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP02017671 | 2002-08-07 | ||
| EP02017671.5 | 2002-08-07 | ||
| PCT/EP2003/006994 WO2004018687A2 (en) | 2002-08-07 | 2003-07-01 | Nucleic acid sequences encoding proteins associated with abiotic stress response |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/097,265 Continuation US8552255B2 (en) | 2002-08-07 | 2011-04-29 | Nucleic acid sequences encoding proteins associated with abiotic stress response |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060064784A1 true US20060064784A1 (en) | 2006-03-23 |
Family
ID=31896823
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/523,362 Abandoned US20060064784A1 (en) | 2002-08-07 | 2003-07-01 | Nucleic acid sequences encoding proteins associated with abiotic stress response |
| US13/097,265 Expired - Fee Related US8552255B2 (en) | 2002-08-07 | 2011-04-29 | Nucleic acid sequences encoding proteins associated with abiotic stress response |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/097,265 Expired - Fee Related US8552255B2 (en) | 2002-08-07 | 2011-04-29 | Nucleic acid sequences encoding proteins associated with abiotic stress response |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US20060064784A1 (en) |
| EP (2) | EP2278018A3 (en) |
| AU (2) | AU2003246349B2 (en) |
| CA (1) | CA2494626A1 (en) |
| WO (1) | WO2004018687A2 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013033571A1 (en) * | 2011-08-31 | 2013-03-07 | Kansas State University Research Foundation | Plants with enhanced tolerance to multiple abiotic stresses |
| CN113088534A (en) * | 2021-04-21 | 2021-07-09 | 西北农林科技大学 | Cucumber glutaredoxin gene CsGRX4 and application thereof in salt stress sensitivity |
| CN116024226A (en) * | 2022-08-22 | 2023-04-28 | 中国热带农业科学院热带生物技术研究所 | A cassava MeGRXC3 gene with improved resistance and its application |
| CN120249375A (en) * | 2025-06-06 | 2025-07-04 | 青岛农业大学 | Application of TaGRX53 in improving plant salt tolerance |
| CN120441671A (en) * | 2025-05-26 | 2025-08-08 | 中国林业科学研究院华北林业实验中心 | Protein encoding SpsZFP6, an upstream regulatory factor of Salix psammophila SpsRLCK1, and its application |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1818404A3 (en) * | 2004-03-25 | 2008-01-02 | Monsanto Technology LLC | Genes and uses for plant improvement |
| EP1863352B1 (en) * | 2005-03-31 | 2014-03-19 | Improcrop U.S.A., Inc. | Resistance to abiotic stress in plants |
| EP3222729A3 (en) * | 2005-07-18 | 2017-11-08 | BASF Plant Science GmbH | Increase in root length in arabidopsis plants over-expressing the arabidopsis shmt4 (shm4) gene (at4g13930) |
| CN101668860B (en) | 2007-04-23 | 2014-02-12 | 巴斯夫欧洲公司 | Combining chemical agents and transgenic modifications to enhance plant productivity |
| DE112008001452T5 (en) | 2007-05-22 | 2010-12-16 | Basf Plant Science Gmbh | Plants with increased tolerance and / or resistance to environmental stress and increased biomass production |
| DE112009000148T5 (en) * | 2008-01-25 | 2011-04-14 | Basf Plant Science Gmbh | Plants with improved yield-related traits and methods for their production |
| CN103923892A (en) | 2008-08-19 | 2014-07-16 | 巴斯夫植物科学有限公司 | Plants with increased yield by increasing or generating one or more activities in a plant or a part thereof |
| CA3029126A1 (en) | 2016-06-29 | 2018-01-04 | Benson Hill Biosystems, Inc. | Increasing plant growth and yield by using a thioredoxin sequence |
| CN106632635B (en) * | 2016-12-21 | 2020-03-17 | 东北林业大学 | Thioredoxin-like gene for preventing and treating aphelenchoides besseyi, primer and application |
| EP3668987A1 (en) | 2017-08-17 | 2020-06-24 | Benson Hill, Inc. | Increasing plant growth and yield by using a glutaredoxin |
| CN114426975B (en) * | 2022-03-31 | 2022-07-01 | 河南大学三亚研究院 | Tomato glutaredoxin SlGRXC9 gene and its application |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1251208A (en) * | 1916-09-20 | 1917-12-25 | Thomas j peters | Alternating-current telegraph and telephone duplex. |
Family Cites Families (55)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5352605A (en) | 1983-01-17 | 1994-10-04 | Monsanto Company | Chimeric genes for transforming plant cells using viral promoters |
| EP0131623B2 (en) | 1983-01-17 | 1999-07-28 | Monsanto Company | Chimeric genes suitable for expression in plant cells |
| US5504200A (en) | 1983-04-15 | 1996-04-02 | Mycogen Plant Science, Inc. | Plant gene expression |
| US5420034A (en) | 1986-07-31 | 1995-05-30 | Calgene, Inc. | Seed-specific transcriptional regulation |
| DK162399C (en) | 1986-01-28 | 1992-03-23 | Danisco | PROCEDURE FOR EXPRESSION OF GENES IN BELGIUM PLANT CELLS, DNA FRAGMENT, RECOMBINED DNA FRAGMENT AND PLASMID FOR USE IN EXERCISING THE PROCEDURE |
| US4962028A (en) | 1986-07-09 | 1990-10-09 | Dna Plant Technology Corporation | Plant promotors |
| US4987071A (en) | 1986-12-03 | 1991-01-22 | University Patents, Inc. | RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods |
| US5116742A (en) | 1986-12-03 | 1992-05-26 | University Patents, Inc. | RNA ribozyme restriction endoribonucleases and methods |
| JPH04501201A (en) | 1987-12-21 | 1992-03-05 | ジ・アップジョン・カンパニー | Agrobacterium-mediated transformation of germinated plant seeds |
| US5789214A (en) | 1988-03-08 | 1998-08-04 | Novartis Finance Corporation | Method of inducing gene transcription in a plant |
| US5614395A (en) | 1988-03-08 | 1997-03-25 | Ciba-Geigy Corporation | Chemically regulatable and anti-pathogenic DNA sequences and uses thereof |
| NZ228320A (en) | 1988-03-29 | 1991-06-25 | Du Pont | Nucleic acid promoter fragments of the promoter region homologous to the em gene of wheat, dna constructs therefrom and plants thereof |
| DE68918494T2 (en) | 1988-05-17 | 1995-03-23 | Lubrizol Genetics Inc | Herbal ubiquitin promoter system. |
| EP0419533A1 (en) | 1988-06-01 | 1991-04-03 | THE TEXAS A&M UNIVERSITY SYSTEM | Method for transforming plants via the shoot apex |
| US5990387A (en) | 1988-06-10 | 1999-11-23 | Pioneer Hi-Bred International, Inc. | Stable transformation of plant cells |
| US5364780A (en) | 1989-03-17 | 1994-11-15 | E. I. Du Pont De Nemours And Company | External regulation of gene expression by inducible promoters |
| US5322783A (en) | 1989-10-17 | 1994-06-21 | Pioneer Hi-Bred International, Inc. | Soybean transformation by microparticle bombardment |
| CA2058756A1 (en) | 1990-03-16 | 1991-09-17 | Vic. C. Knauf | Sequences preferentially expressed in early seed development and methods related thereto |
| US5639949A (en) | 1990-08-20 | 1997-06-17 | Ciba-Geigy Corporation | Genes for the synthesis of antipathogenic substances |
| ES2147551T3 (en) | 1990-11-23 | 2000-09-16 | Aventis Cropscience Nv | PROCEDURE FOR TRANSFORMING MONOCOTILEDONE PLANTS. |
| US5767366A (en) | 1991-02-19 | 1998-06-16 | Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College | Mutant acetolactate synthase gene from Ararbidopsis thaliana for conferring imidazolinone resistance to crop plants |
| WO1993007256A1 (en) | 1991-10-07 | 1993-04-15 | Ciba-Geigy Ag | Particle gun for introducing dna into intact cells |
| US5593874A (en) | 1992-03-19 | 1997-01-14 | Monsanto Company | Enhanced expression in plants |
| DK0637339T3 (en) | 1992-04-13 | 2001-12-03 | Syngenta Ltd | DNA constructs and plants in which they are incorporated |
| ATE398679T1 (en) | 1992-07-07 | 2008-07-15 | Japan Tobacco Inc | METHOD FOR TRANSFORMING A MONOCOTYLEDON PLANT |
| US7939328B1 (en) | 1993-09-03 | 2011-05-10 | Japan Tobacco Inc. | Method of transforming monocotyledons using scutella of immature embryos |
| GB9324707D0 (en) | 1993-12-02 | 1994-01-19 | Olsen Odd Arne | Promoter |
| JP4012243B2 (en) | 1994-01-18 | 2007-11-21 | ザ スクリップス リサーチ インスティチュート | Zinc finger protein derivatives and methods therefor |
| GB9403512D0 (en) | 1994-02-24 | 1994-04-13 | Olsen Odd Arne | Promoter |
| WO1996006166A1 (en) | 1994-08-20 | 1996-02-29 | Medical Research Council | Improvements in or relating to binding proteins for recognition of dna |
| US5750866A (en) | 1994-09-08 | 1998-05-12 | American Cyanamid Company | AHAS promoter useful for expression of introduced genes in plants |
| US5789538A (en) | 1995-02-03 | 1998-08-04 | Massachusetts Institute Of Technology | Zinc finger proteins with high affinity new DNA binding specificities |
| US5693512A (en) | 1996-03-01 | 1997-12-02 | The Ohio State Research Foundation | Method for transforming plant tissue by sonication |
| US5977436A (en) | 1997-04-09 | 1999-11-02 | Rhone Poulenc Agrochimie | Oleosin 5' regulatory region for the modification of plant seed lipid composition |
| ZA986308B (en) * | 1997-07-18 | 1999-11-24 | Pioneer Hi Bred Int | The induction of stress-related factors in plants. |
| WO1999016890A2 (en) | 1997-09-30 | 1999-04-08 | The Regents Of The University Of California | Production of proteins in plant seeds |
| US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
| SI1068311T1 (en) | 1998-04-08 | 2011-07-29 | Commw Scient Ind Res Org | Methods and means for obtaining modified phenotypes |
| US6004804A (en) | 1998-05-12 | 1999-12-21 | Kimeragen, Inc. | Non-chimeric mutational vectors |
| AU6028099A (en) * | 1998-09-08 | 2000-03-27 | E.I. Du Pont De Nemours And Company | Thioredoxin h homologs |
| US6365379B1 (en) | 1998-10-06 | 2002-04-02 | Isis Pharmaceuticals, Inc. | Zinc finger peptide cleavage of nucleic acids |
| HK1041286A1 (en) * | 1998-12-17 | 2002-07-05 | Syngenta Participations Ag | Thioredoxin and grain processing |
| WO2000044914A1 (en) | 1999-01-28 | 2000-08-03 | Medical College Of Georgia Research Institute, Inc. | Composition and method for in vivo and in vitro attenuation of gene expression using double stranded rna |
| DE19956568A1 (en) | 1999-01-30 | 2000-08-17 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
| WO2000047754A1 (en) | 1999-02-09 | 2000-08-17 | Rhobio | A method for inhibiting the expression of target genes in plants |
| US6576819B1 (en) * | 1999-02-18 | 2003-06-10 | Pioneer Hi-Bred International, Inc. | Methods for modulating the levels of organic sulfur compounds in plants by transforming with (P)APS reductase DNA |
| WO2000049035A1 (en) | 1999-02-19 | 2000-08-24 | The General Hospital Corporation | Gene silencing |
| WO2000058453A2 (en) * | 1999-03-29 | 2000-10-05 | The Regents Of The University Of California | Plants transformed with thioredoxin |
| US6995306B1 (en) * | 1999-04-19 | 2006-02-07 | The Regents Of The University Of California | Nucleic acid encoding an NPR1 interactor from rice and method of use to produce pathogen-resistant plants |
| IL145778A0 (en) | 1999-04-21 | 2002-07-25 | American Home Prod | Methods and compositions for inhibiting the function of polynucleotide sequences |
| EA200101186A1 (en) | 1999-05-10 | 2002-04-25 | Зингента Партисипейшнс Аг | REGULATION OF VIRAL GENES EXPRESSION |
| GB9915126D0 (en) | 1999-06-30 | 1999-09-01 | Imp College Innovations Ltd | Control of gene expression |
| CA2432364A1 (en) | 2000-12-22 | 2002-08-22 | Janssen Pharmaceutica N.V. | Bax-responsive genes for drug target identification in yeast and fungi |
| WO2002053589A2 (en) * | 2001-01-05 | 2002-07-11 | Cropdesign N.V. | Nucleic acid molecules encoding dim interactors and uses therefor |
| EP2674496A3 (en) * | 2003-04-15 | 2014-04-02 | BASF Plant Science GmbH | Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with increased tolerance to environmental stress |
-
2003
- 2003-07-01 US US10/523,362 patent/US20060064784A1/en not_active Abandoned
- 2003-07-01 EP EP10183998A patent/EP2278018A3/en not_active Withdrawn
- 2003-07-01 WO PCT/EP2003/006994 patent/WO2004018687A2/en not_active Ceased
- 2003-07-01 CA CA002494626A patent/CA2494626A1/en not_active Abandoned
- 2003-07-01 EP EP03792166A patent/EP1529112A2/en not_active Withdrawn
- 2003-07-01 AU AU2003246349A patent/AU2003246349B2/en not_active Ceased
-
2011
- 2011-04-28 AU AU2011201906A patent/AU2011201906A1/en not_active Abandoned
- 2011-04-29 US US13/097,265 patent/US8552255B2/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1251208A (en) * | 1916-09-20 | 1917-12-25 | Thomas j peters | Alternating-current telegraph and telephone duplex. |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013033571A1 (en) * | 2011-08-31 | 2013-03-07 | Kansas State University Research Foundation | Plants with enhanced tolerance to multiple abiotic stresses |
| US20150040272A1 (en) * | 2011-08-31 | 2015-02-05 | Baylor College Of Medicine | Plants with enhanced tolerance to multiple abiotic stresses |
| US20170275644A1 (en) * | 2011-08-31 | 2017-09-28 | Kansas State University Research Foundation | Plants with enhanced tolerance to multiple abiotic stresses |
| US11066677B2 (en) * | 2011-08-31 | 2021-07-20 | Kansas State University Research Foundation | Plants with enhanced tolerance to multiple abiotic stresses |
| CN113088534A (en) * | 2021-04-21 | 2021-07-09 | 西北农林科技大学 | Cucumber glutaredoxin gene CsGRX4 and application thereof in salt stress sensitivity |
| CN116024226A (en) * | 2022-08-22 | 2023-04-28 | 中国热带农业科学院热带生物技术研究所 | A cassava MeGRXC3 gene with improved resistance and its application |
| CN120441671A (en) * | 2025-05-26 | 2025-08-08 | 中国林业科学研究院华北林业实验中心 | Protein encoding SpsZFP6, an upstream regulatory factor of Salix psammophila SpsRLCK1, and its application |
| CN120249375A (en) * | 2025-06-06 | 2025-07-04 | 青岛农业大学 | Application of TaGRX53 in improving plant salt tolerance |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110321196A1 (en) | 2011-12-29 |
| WO2004018687A2 (en) | 2004-03-04 |
| EP2278018A3 (en) | 2012-01-04 |
| EP1529112A2 (en) | 2005-05-11 |
| AU2003246349B2 (en) | 2011-02-03 |
| AU2003246349A1 (en) | 2004-03-11 |
| WO2004018687A3 (en) | 2004-04-22 |
| US8552255B2 (en) | 2013-10-08 |
| CA2494626A1 (en) | 2004-03-04 |
| EP2278018A2 (en) | 2011-01-26 |
| AU2011201906A1 (en) | 2011-05-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8552255B2 (en) | Nucleic acid sequences encoding proteins associated with abiotic stress response | |
| Huang et al. | NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana benthamiana | |
| CN102186974B (en) | Plants having increased yield by increasing or producing one or more activities in plants or parts thereof | |
| DE112008003318T5 (en) | Plants with increased yield and increased tolerance to environmental stress (IY-B) | |
| DE112008001452T5 (en) | Plants with increased tolerance and / or resistance to environmental stress and increased biomass production | |
| DE112010004469T5 (en) | Plants with increased yield | |
| DE112009002577T5 (en) | Increased Yield Plants (NUE) | |
| CN101939435A (en) | Plants with increased yield | |
| EP2013341A2 (en) | Disease-inducible promoters | |
| DE112009002342T5 (en) | Method for producing a transgenic cell with increased content of gamma-aminobutyric acid (GABA) | |
| DE112008003433T5 (en) | Plants with increased yield (KO NUE) | |
| MX2007003357A (en) | Plant cells and plants with increased tolerance to environmental stress | |
| CN102224246A (en) | Plants with increased yield (lt) | |
| DE112009000313T5 (en) | Plants with increased yield | |
| CN102575260A (en) | Plants with increased yield | |
| BRPI0615941A2 (en) | method for increasing plant yield relative to control plants, plant, construction, method for producing a transgenic plant, transgenic plant, harvestable parts of a plant, products, use of an oslea3a nucleic acid / gene or variant thereof or use of an oslea3a polypeptide or a counterpart thereof, and, plant seed | |
| US20090217406A1 (en) | Plant cells and plants with increased tolerance to environmental stress | |
| Momtaz et al. | Expression of S-adenosyl methionine decarboxylase gene for polyamine accumulation in Egyptian cotton Giza 88 and Giza 90 | |
| CA2798495A1 (en) | Plant cells and plants with increased tolerance to environmental stress | |
| WO2000000601A9 (en) | Production of low-temperature, salt-and drought-tolerant transgenic cereal plants | |
| BRPI0611879A2 (en) | uses of a nucleic acid, and a first isolated nucleic acid that hybridizes under stringent conditions to a second nucleic acid, methods for enhancing the tolerance of a transgenic plant containing nucleic acid encoding the lectin-type stress-related polypeptide of a protein kinase, transgenic plant cell, transgenic plant, seed, polypeptide, and nucleic acid sequence | |
| CN1863916B (en) | Nucleic acid sequences encoding proteins involved in abiotic stress responses, and plants and plant cells with increased tolerance to environmental stress | |
| BRPI0613395A2 (en) | nucleic acid, method of producing a transgenic crop plant, expression cassette, recombinant expression vector, host cell, method for enhancing root development of a plant, agricultural product, and uses of a polynucleotide, recombinant expression vector or the expression cassette or nucleic acid | |
| MX2007005915A (en) | Increase in yield by reducing gene expression. | |
| Mundree et al. | Prospects for using genetic modification to engineer drought tolerance in crops |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BASF PLANT SCIENCE GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHARDONNENS, AGNES;PUZIO, PIOTR;REEL/FRAME:017167/0123 Effective date: 20041210 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |