US20060037290A1 - Wrap around carton packaging machine - Google Patents
Wrap around carton packaging machine Download PDFInfo
- Publication number
- US20060037290A1 US20060037290A1 US10/923,644 US92364404A US2006037290A1 US 20060037290 A1 US20060037290 A1 US 20060037290A1 US 92364404 A US92364404 A US 92364404A US 2006037290 A1 US2006037290 A1 US 2006037290A1
- Authority
- US
- United States
- Prior art keywords
- mandrel
- conveyor
- blank
- product
- flap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 20
- 230000006835 compression Effects 0.000 claims abstract description 33
- 238000007906 compression Methods 0.000 claims abstract description 33
- 230000003750 conditioning effect Effects 0.000 claims abstract description 18
- 230000033001 locomotion Effects 0.000 claims description 26
- 230000010006 flight Effects 0.000 claims description 18
- 239000003292 glue Substances 0.000 claims description 18
- 238000011144 upstream manufacturing Methods 0.000 claims description 15
- 238000007789 sealing Methods 0.000 claims description 9
- 238000009963 fulling Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 238000002788 crimping Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 235000013339 cereals Nutrition 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000004026 adhesive bonding Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B43/00—Forming, feeding, opening or setting-up containers or receptacles in association with packaging
- B65B43/08—Forming three-dimensional containers from sheet material
- B65B43/10—Forming three-dimensional containers from sheet material by folding the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B11/00—Wrapping, e.g. partially or wholly enclosing, articles or quantities of material, in strips, sheets or blanks, of flexible material
- B65B11/06—Wrapping articles, or quantities of material, by conveying wrapper and contents in common defined paths
- B65B11/08—Wrapping articles, or quantities of material, by conveying wrapper and contents in common defined paths in a single straight path
- B65B11/10—Wrapping articles, or quantities of material, by conveying wrapper and contents in common defined paths in a single straight path to fold the wrappers in tubular form about contents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B49/00—Devices for folding or bending wrappers around contents
- B65B49/12—Rotary folders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B5/00—Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
- B65B5/04—Packaging single articles
Definitions
- This invention relates to a packaging machine and more particularly to a packaging machine which wraps and forms a carton around a package.
- product is loaded into preformed cartons and the cartons are subsequently closed and sealed.
- Various kinds of products including dry product, bagged flexible products, rigid products, single and multiples of bagged and single products are loaded into preformed cartons by some packaging machines.
- the product is loaded (pushed) through an open end of the carton.
- a cereal package for example, does not maintain structural integrity when subjected to pressure (loading). Further, preformed cartons are more expensive to buy, more difficult to handle, and more difficult to open and load reliable.
- An object of this invention is to provide a novel and improved cartoning machine in which carton blanks are partially and precisely formed around product and thereafter the flaps are precisely closed and sealed.
- Another object of this invention is to provide a unique feed system for the cartoning machine wherein bagged flexible products are compressed for sizing and precisely dropped downwardly upon a mandrel or bucket conveyor for movement to the next station.
- the product is delivered to an infeed system which includes smart belts that constantly senses the presence of product and moves the product to known or predetermined positions.
- the product to be packaged may be flexible products, rigid products and single and multiple bagged and single products.
- the carton can be two dimensional or three dimensional in a three, four or six-sided container with open or closed ends.
- the wrap around carton may be formed of paper, paperboard corrugated paper, microflute corrugated paper or a polymer.
- the product to be cartoned is a flexible package containing cereal.
- the product is delivered from the infeed conveyor system to a fan feed device where product is timed delivered to a timing conveyor.
- Product is then delivered to a conditioning conveyor which drops the product into a mandrel or bucket.
- the conditioning conveyor is provided with flights which compress semirigid product (cereal packages) into a size slightly smaller than the bucket. Fingers on the flights support the product at the discharge end of the conditioning conveyor and prevent premature dropping of the product into the associated bucket.
- a magazine section is provided and contains blanks which are die cut.
- the blanks may be coated, uncoated or laminated stock.
- the blanks are delivered one at a time into the machine and during this movement a small flap (typically called the manufacturer's joint) is folded 180° back upon the body of the carton and crimped.
- a process glue is applied to the outside surface of this flap and thereafter the flap is allowed to spring back.
- This adjustable crimping force is set so that the flap spring back forms a angle of approximately 90° with the carton body.
- the manufacturer's flap is properly conditioned for sealing the mating flap downstream.
- the blanks are folded around the packages in the mandrels by large radius folding plows as the mandrels are moved downstream.
- Positioning guide elements engage the edge portions of the blank to assure proper positioning of the blank for folding around the mandrel.
- Self-aligning flights assures accurate gluing of the manufacturer's joint.
- FIG. 1 is a diagrammatic plan view of the novel packaging apparatus
- FIG. 2 is a diagrammatic side elevation view taken along line 2 - 2 of FIG. 1 and looking in the direction of the arrows;
- FIG. 3 is an elevational taken along line 3 - 3 of FIG. 2 and looking in the direction of the arrows;
- FIG. 4 diagrammatic cross-sectional view taken approximately along line 4 - 4 of FIG. 1 looking in the direction of the arrow and illustrating operation of the flap tucker device and the compression device;
- FIG. 4A is a cross-sectional view taken approximately along line A-A of FIG. 4 and looking in the direction of the arrows;
- FIG. 4B is a cross-sectional view taken approximately along line B-B of FIG. 4 and looking in the direction of the arrows;
- FIG. 4C is a cross-sectional view taken approximately along line C-C of FIG. 4 and looking in the direction of the arrows;
- FIG. 4D is a cross-sectional view taken approximately along line D-D of FIG. 4 and looking in the direction of the arrows;
- FIG. 5 is a cross-sectional view taken approximately along line 5 - 5 of FIG. 1 and looking in the direction of the arrows;
- FIG. 5A is an elevational view taken approximately along line A-A of FIG. 5 and looking in the direction of the arrows;
- FIG. 5B is a cross-sectional view taken approximately along line B-B of FIG. 5 and looking in the direction of the arrows;
- FIG. 5C is a cross-sectional view taken approximately along C-C of FIG. 5A and looking in the direction of the arrows;
- FIG. 6 is a fragmentary perspective view of a portion of the apparatus, exploded, to show details of construction
- FIG. 7 is a partial front elevational view showing a carton blank and showing adjacent portions of the apparatus in section;
- FIG. 8 is a side elevational view of the apparatus located immediately downstream of that portion of the apparatus shown in FIG. 1 ;
- FIG. 8A is a cross-sectional view taken approximately along line 8 A- 8 A of FIG. 8 and looking in the direction of the arrows;
- FIG. 8B , FIG. 8C , and FIG. 8D illustrates the sequential steps and mechanism for progressively folding the dust flaps
- FIG. 9 is a diagrammatic side elevational view illustrating the slightly unsymmetrical configuration of a carton prior to engaging the carton shaping means
- FIG. 10 is diagrammatic view similar to FIG. 9 and illustrating the symmetrical configuration of the carton after the carton is engaged by the carton shaping means.
- FIG. 11 is a partial diagrammatic perspective view of a portion of the magazine.
- the novel wrap around packaging apparatus or machine 10 wraps the carton blank around a product rather than inserting the product into a preformed carton.
- the product is cereal although the novel wrap around packaging apparatus may be used to carton other types of product.
- the term blank refers to a single piece of packaging material that has been shaped, sized and scored in preparation for use in a packaging process.
- Various components of the apparatus are driven by precision electrically controlled motion generating devices (PECMGD).
- PECMGD precision electrically controlled motion generating devices
- Three common types of PECMGD are servomotors, stepper motors, and variable frequency drive motors (VFD).
- VFD variable frequency drive motors
- There are also other types of PECMGD but servomotors and VFD motors are preferred in the embodiment shown.
- mandrel as used herein comprises a rigid structure that serves as a conveying element when attached to a conveyor for conveying a product.
- the mandrel also provides the necessary uniform structural integrity for wrapping a blank around the mandrel and for compressing the flaps of the blank against surfaces of the mandrel.
- the apparatus includes an infeed system 11 which receives the product P from a table top conveyor 12 . It is pointed out that table top conveyors 12 or other types of conveyors are provided by the packager and are not, per se, part of the packaging infeed system.
- the product P is discharged from the tabletop conveyor 12 upon a metering and phasing conveyor 13 which is driven by a servomotor 14 .
- all of the various components of the apparatus are driven by servomotors which are controlled by a computer.
- a suitable software program controls the sequencing (operational speeds and timing) of the various components.
- the metering and phasing conveyor 13 operates at approximately 100 ft./min. and discharges the packages P upon a launch conveyor 15 which is driven by a servomotor 16 .
- the metering and phasing conveyor is a “smart” conveyor and is provided with sensors (not shown) which monitors the product being conveyed.
- the launch conveyor operates at approximately 400 ft./min.
- the packages are impelled or launched from the launch conveyor 15 to a fan device 17 .
- the fan device 17 is comprised of two bladed fans 18 each including three blades 29 secured to a hub or axle 20 .
- the hub or axle 20 for each fan is secured to the output shaft of a servomotor 21 . In the embodiment shown each fan is driven by a separate servomotor 21 .
- each fan is angularly spaced apart 120° and the two servomotors 21 operate at the same speed which rotates the fans 18 at 120°/sec.
- a pair of circular impact plates 22 are each secured to one of the axles 20 and are located adjacent the associated servomotor 21 .
- the timing conveyor 23 includes a horizontal table 24 positioned below the fan feed device 17 for receiving the products P thereon.
- the products P are oriented longitudinally along the infeed conveyor system, i.e., the sealed ends are arranged in the direction travel. It will be noted that the products P are delivered by the fan feed device such that the products extend transversely of the direction of travel of the timing conveyor.
- the fan feed device 17 times the delivery (120 ft./sec.) of the product to the timing conveyor 23 .
- the timing conveyor 23 also includes a pair of endless conveyor chains 25 each trained about an upstream sprocket 26 and a downstream sprocket 27 .
- Conveyor flights 28 extend transversely between and are secured to the conveyor chains 25 . It will be seen in FIG. 3 that in their lower underpassing run, the flights engage the packages and move the packages downstream to a fingered launch conveyor 29 .
- the timing conveyor 23 moves the products P at approximately 200 ft./min. while the fingered launch conveyor runs at approximately 300 ft./min.
- the fingered launch conveyor 29 is comprised of a plurality of laterally spaced apart narrow conveyor belts trained about upstream pulleys 31 and downstream pulleys 32 . It will be noted that the fingered launch conveyor is horizontally disposed and is positioned just downstream of the discharge end of the table 24 . Products P are moved by the flights 28 downstream to the fingered launch conveyor.
- the timing conveyor 23 and the fingered launch conveyor 29 are both driven by a servomotor 33 .
- the output shaft 34 of the servomotor 33 has one end journaled in a suitable bearing and has a sprocket 35 keyed thereon.
- a chain 37 is trained about sprocket 35 and a smaller driven sprocket 36 keyed to the shaft 38 of downstream sprocket 27 of the timing conveyor 23 .
- the timing conveyor 23 in the embodiment shown, operates 200 ft./min. All of the conveyor speeds and speeds or velocities of other components are only for the specific packaging function disclosed and are not intended as a limiting requirement.
- a sprocket 39 is keyed to shaft 38 of the timing conveyor 23 and is drivingly connected to a sprocket 40 by a chain 41 . It will be noted that the sprocket 39 is larger than the drive sprocket 40 .
- the shaft 40 a mounting sprocket 40 also has a larger sprocket 42 keyed thereto.
- a chain 44 is trained about sprocket 42 and a smaller driven sprocket 43 which is keyed to the driven shaft 45 for the downstream sprocket 32 of the fingered launch conveyor 29 .
- the fingered launch conveyor 29 is operated at a velocity of 300 ft./min. in the embodiment shown. It will be noted that the relative operational speeds of the timing conveyor and fingered launch conveyor are not only determined by the servomotor 33 but also the particular construction and arrangement of the sprocket drive train.
- the fingered launch conveyor 29 consists of a plurality of spaced apart belts 30 trained about the sprockets 31 , 32 and the launch conveyor delivers the products P to the conditioning conveyor 46 .
- the conditioning conveyor 46 includes a flat slatted table 47 wherein the slats 49 correspond in number and width to the belts of the fingered launch conveyor 29 .
- Products P are delivered to the conditioning conveyor by the fingered launch conveyor and are supported on the slatted table 47 .
- the upstream ends of the slats 49 are down turned, as best seen in FIG. 3 , to facilitate the transfer.
- the conditioning conveyor 46 also includes means for moving, compressing and precisely dropping the compressed packages into the mandrels where the blanks are wrapped around, folded and glued to encase the packages.
- a pair of laterally spaced apart, endless chains 50 are each trained about one of a pair of drive sprockets 51 keyed to the output shaft 34 of the servomotor 33 .
- the chains 50 are also trained about a pair of idler sprockets 52 journaled on the output shaft 53 of a servomotor 54 .
- the chains 50 have a plurality of finger flights 55 pivotally secured thereto by pivots 55 a .
- Each flight 55 has a plurality of fingers 56 projecting therefrom. These fingers 56 are horizontally disposed during their lower run as shown in FIG. 3 and extend in an upstream direction. The fingers 56 pass between adjacent slats 49 of the slatted table 47 and underlie the leading edge portion of product P as best seen in FIG. 3 .
- Each finger flight includes a pair of mounting brackets 56 a having a plate 56 b interconnecting the brackets 56 .
- the fingers 56 are secured to a flange on the plate 56 b .
- the plate 56 b for each finger flight is engaged by the leading surface of a package P as clearly shown in FIG. 3 .
- the conditioning conveyor 46 also includes a pair of endless chains 57 which are laterally spaced apart and are trained about a pair of drive sprockets 58 keyed to the output shaft 53 of the servomotor 54 .
- the chains 57 are also trained about a pair of idler sprockets 59 journaled on the output shaft 34 of the servomotor 33 .
- the chains 57 have a plurality of compression flights 60 pivoted secured thereto by pivots 60 a .
- Each flight includes a pair of mounting brackets 62 each pivoted to an associated chain.
- a compression plate 61 extends between and is secured to the brackets.
- the conditioning conveyor 46 is operable to move products downstream to the bucket or mandrel conveyor 63 .
- each product will be compressed between a plate 56 b of a finger flight 55 and a compression plate 61 of a compression flight 60 .
- Products P are compressed to reduced the transverse dimension of each package sufficiently so that the transverse dimension of each package is slightly less than the corresponding dimension of a mandrel 64 .
- the mandrel conveyor 63 operates at approximately 150 ft./min., the same operational speed as the conditioning conveyor.
- the movement of products P by the conditioning conveyor 46 is synchronized with the mandrel conveyor such that when each product P is released from the conditioning conveyor the package will precisely drop into a mandrel 64 .
- each product will be held between a compression flight and a finger flight as the product moves downstream of the end of the slatted table.
- the fingers support the leading edge of each product against tilting, and the fingers of a flight move quickly away from the supported package as flight changes direction traveling around the downstream sprockets. This allows each product to be precisely dropped into a mandrel 64 .
- the slatted table 47 is longitudinally adjustable for accommodating product of different sizes. Thus the slatted table 47 can be adjusted longitudinally in an upstream or downstream direction.
- the mandrel conveyor 64 includes a pair of endless chains 65 trained about upstream sprockets 66 and downstream sprockets (not shown). A plurality of mandrel assemblies 67 are secured to the chains 65 and are moved thereby. A servomotor (not shown) drives the downstream sprockets and the mandrel conveyor at approximately 150 ft./min.
- Each mandrel assembly 67 includes a generally rectangular mandrel 64 comprised of a flat bottom wall 68 and upstanding opposed side walls 69 .
- a transverse strap or stop 70 is secured to the top edges of the side walls 69 adjacent the rear edge portion thereof. It is pointed out that the front portion of the box mandrel 64 is that end located to the left as viewed in FIG. 6 .
- each box mandrel 64 has a blank flap guide 71 secured to the downstream side wall.
- One end of an elongate quick change mounting arm 72 is secured to mounting plate 73 which is secured to the rear end portion of a box mandrel 64 .
- the other end of the mounting arm 72 projects into and is secured to mounting arm receptacle 73 which is a component of a slide block assembly 74 .
- a quick change spring urged lock pin 75 is releasably locked to the mounting arm 72 by engaging an aperture 76 in the arm.
- the mounting arm receptacle 73 is secured to a flat bed plate 77 which is secured to a pair of elongate, transversely extending slide bearings 78 .
- a pair of elongate, spaced apart slide rods 79 each extends through a slide bearing 78 and the rear end of each rod is secured to a drive chain 65 by a mounting link 80 .
- the front end of each rod 79 is secured in a bearing block 81 which is affixed to the other drive chain 65 . It will be seen that mandrels 64 can be readily changed for accommodating different size products.
- each mandrel 64 and associated slide block assembly 74 are moved as a unit downstream but that each mandrel 64 is moved transversely of the direction of travel between on advanced and retracted positions.
- an apertured spacer block 82 is secured to the lower surface of the bed plate 77 of the slide block assembly 74 .
- the axle of a roller or cam follower 83 is journaled in the opening or aperture of the spacer block 82 for rotation relative thereto.
- a pair of spaced apart cam guide tracks 84 are engaged by the cam roller 83 of slide block assembly 74 .
- the disposition of the tracks 84 and the co-action of the cam roller with the tracks produces the transverse movement of the mandrel and slide block assembly.
- the cam guide tracks 84 change direction from a straight run to a slightly inwardly angled run in a downstream direction. This change in direction produces the transverse movement of the each mandrel in a retracted direction.
- the cam guide tracks 84 also change direction in the upstream return direction (a shown in FIG. 1 ). This change in direction produces the transverse movement of each mandrel in an advanced direction.
- a stripper plate 85 is secured to bearing blocks 81 of the slide block assembly 74 .
- the stripper plate includes a vertical portion 85 a and a horizontal portion 85 b .
- the vertical portion has a shaped opening 85 c therein through which the associated mandrel is moved as shown in phantom line configuration in FIG. 6 .
- the enlarged downstream portion of the opening 85 a allows different size mandrels 64 to be used.
- each mandrel will be in the advanced position and will project transversely through the opening 85 c in the stripper plate 85 as best seen in FIG. 1 .
- Blanks 86 are fed sequentially into the mandrel conveyor from a magazine 87 as shown in FIGS. 1 and 11 .
- the blanks 86 are vertically arranged in the magazine and are fed towards the discharge end by toothed conveyor chains 87 b which are driven by a servomotor 87 a .
- a follower plate 87 c engages the rearmost blank 86 and moves with the conveyor chains 87 b.
- the discharge end of the magazine 87 as shown in FIGS. 1 and 11 has an outer side and an inner side (closest to the mandrel conveyor) where the blanks are picked or removed one at a time.
- the outer side of the magazine has a spring loaded plate 87 d pivotally mounted on the magazine housing by an elongate pivot 87 e .
- a spring 87 f urges the plate 87 d against the forward most blank.
- the plate vertically supports the blanks for proper picking by vacuum cups 88 which are moveable about a vertical axis to selectively remove the blanks from the magazine.
- the yieldable pivotal mounting of the plate 87 d prevents blanks from binding against the plate.
- the magazine also includes a plurality of fingers 87 g each pivotally mounted by a pivot 87 h which engage the forward most blank.
- the fingers are counterbalanced and provide light resistance to forward movement of each blank and thereby prevent the blanks from unduly flopping around as the blanks are removed from the magazine.
- the magazine 87 is also provided a rubber finger belt drive assembly 89 located at the top of the magazine.
- the belt 89 a is provided with a plurality of rubber fingers 89 b .
- the belt 89 a is trained about pulleys 89 c , one of which is secured to the output shaft of a servo motor 89 d .
- the belt 89 a moves at a speed slightly greater than the speed of the blanks 86 (conveyor chains 87 b ).
- the belt 89 a moves at a speed slightly greater than the speed of the blanks 86 (conveyor chains 87 b ).
- the fingers 89 b are arranged in groups and engage tops of the blanks as the fingers flex backward and slide across the top surfaces of the blanks. The resistive force applied by the rubber fingers insures that the tops of the blanks are properly positioned up against top clip 87 i.
- the magazine is provided with a pair of clips 87 i which are vertically spaced apart.
- the top and bottom clips 87 i provides resistive force to help separate blank being picked from the one behind it.
- the lower clip has a sensor assembly 87 j that signals the conveyor drive 89 d when to advance the stack of blanks.
- Each carton blank 86 is of conventional construction having preformed score lines and appropriate notches.
- Each blank 86 includes side panels 86 a and 86 b , end panels 86 c and 86 d , end panel flaps 86 e , side panel upper and lower flaps 86 g and 86 h , and a manufacturer's flap 86 i .
- the blank 86 also as preformed notches including notches 86 j.
- the carton blank infeed system includes a relatively short initial belt conveyor 90 comprised of a pair of vertically spaced apart belts 91 trained about pulleys 92 secured to a vertical shaft 93 .
- the conveyor 90 is driven by a servomotor (not shown).
- the conveyor 90 moves each carton blank inwardly where the carton blank is engaged by a belt conveyor 94 .
- a nip roller shaft 93 a is positioned adjacent the outer shaft 93 of the belt conveyor 90 and a pair of nip rollers 93 b are secured to the shaft 93 a .
- Each nip roller has a flat surface or spot 93 c .
- the flat surface of each roller 93 b is positioned so that the blank inserted by the vacuum cups 88 into the nip belt and roller assembly is positioned beyond the centerline of the nip roller shaft 93 a . This feature ensures that a blank is gripped at its top and bottom edges and pulled into the nip belt assembly so that the blank remains square.
- the nip belt and roller assembly also includes a short conveyor 90 a which cooperates with the nip rollers 93 b and conveyor belts 90 for moving a blank 86 inward to the mandrel conveyor.
- the conveyor 90 a also cooperates with the conveyor 94 for moving a blank towards the mandrel conveyor. It is pointed out that the shaft 93 a and nip rollers 93 b along with conveyor 90 a are shiftable as a unit away from the conveyor 90 if a jam occurs. The nip rollers and shaft along with conveyor 90 a may be returned to its normal operating position after the jam is cleared.
- the belt conveyor 94 includes a pair of vertically spaced apart conveyor belts 95 trained about pulleys 96 .
- the outboard pulleys are keyed to a vertical shaft 97 while the inboard pulleys 96 are each mounted on short vertically disposed shafts 98 .
- a servomotor (not shown) drives both conveyors at high speeds so that each carton is rapidly moved inwardly and are stopped by stop plates 99 located inwardly of the conveyor 94 as shown in FIG. 4 .
- Each carton blank 86 will then be in position for folding.
- the manufacturer's flap 86 i is folded and crimped as the carton blank is fed into position for folding.
- the carton blank 86 will be vertically disposed as it moves to the mandrel conveyor and the lower portion of the blank will be engaged by a driven conveyor belt 100 and a roller assembly 101 .
- the roller assembly includes a mounting bar 102 having plurality of roller axles 103 secured thereto and depending therefrom. Rollers 104 are journaled on the axles 103 .
- the rollers are transversely aligned and cooperate with the belt conveyor 100 in moving and holding the lower portion of the blank against angular movement during folding and crimping of the manufacturer's flap 86 i.
- a flap folding assembly 105 is positioned adjacent the manufacturer's flap as the blank is moved inwardly.
- the flap folding assembly 105 includes a plurality a flap folding blocks 106 which are arranged in side-by-side relation and each block has a folding surface 107 .
- Spacer elements 106 a are positioned between adjacent folding blocks 106 .
- the flap folding blocks are mounted on an elongate rod 105 a which is secured to a pair of brackets affixed to a mounting plate 105 b .
- the mounting plate 105 b is secured to a pair of mounting blocks 105 c which are slidable on a pair of rods 105 d .
- the flap folding surface 107 are arranged such that the manufacturer's flap 86 i will be progressively folded from its vertical position located in the general plane of the blank ( FIG. 4A ) upwardly 180° to lie against the blank ( FIG. 4B ) thereby crimping a manufacturer's 86 i by crimping roller 108 .
- the crimping roller 108 is located just inwardly of the innermost flap folding element 106 and is mounted on the flap folding assembly 105 . Glue is applied by a glue gun 109 to the outer surface of the folded manufacturer's flap 86 i ( FIG. 4C ) just before the flap is released by the crimping roller.
- the blank After the glue has been applied to the outer surface of the manufacturer's flap 86 i the blank will be moved against the stop plates 99 releasing the flap from the crimping roller 108 .
- the flap 86 i will spring back approximately 90° as shown in FIG. 4D .
- the crimping roller 108 is adjustable (adjustment of the flap folding assembly) such that the spring back of the flap is approximately 90° with respect to the carton body.
- the carton blank 86 begins the folding and sealing operation around each mandrel as the mandrels move downstream specifically an end panel 86 c of a carton blank 86 is engaged by the downstream side wall of mandrel as the latter moves downstream.
- the flap guide 71 on the mandrel 64 and the flap guide 71 a on the frame engage in the notches 86 j of the carton blank to properly position and maintain each carton blank for accurate folding of the carton blank as best seen in FIG. 7 .
- the flap guide 71 a is vertically adjustable for accommodating different size blanks.
- the carton blank engages a plow device including an inclined upper plow 110 and an inclined lower plow 111 which progressively fold the carton against the mandrel. Each plow converges towards the mandrel and terminates in horizontal portions 112 . It will be seen that carton will be folded, as shown in FIG. 5 , with the end panel 86 d lying in the plane of the side panel 86 a . It further be noted that the manufacturer's flap 86 i will remain in its 90° fold (spring back position) in position for sealing with end panel 86 d .
- Each folding plow 110 , 111 is a large radius plow for insuring gentle handling of the blank as it is folded around a mandrel.
- a flap tucker device 113 is located above the box mandrel conveyor and downstream of the plows 110 , 111 .
- the flap tucker device 113 includes a frame 114 which is comprises of spaced apart interconnected opposed plates of generally triangular configuration.
- endless chains 115 are trained about three sprockets 116 .
- One of the sprockets is driven to move the chains and sprockets in a general counterclockwise direction as viewed in FIG. 5 .
- the chains 115 have flap engaging plates 117 secured thereto and projecting therefrom.
- the flap engaging plates 117 sequentially engage each end panel 86 d to fold the end panel 86 d against the glue coated surface of the manufacturer's flap 86 i as the flap tucker device is operated.
- the flap tucker device 113 is operated by a servomotor (not shown).
- the flap engaging plates have a flat surface which engages each end panel 86 d .
- three flap engaging plates 117 are provided although this number may vary.
- An elongate rail 200 has an upwardly inclined front portion 201 which is pivoted to the frame or side plates of the apparatus by a pivot 202 .
- the major portion of the rail 200 engages the upper surface of product P as product is moved past the flap tucker device 113 .
- the rail 200 is not contacted by the plates 117 and extends beyond the flap tucker device 113 .
- the downstream end of the rail 200 has a sensor device 203 thereon which senses pivoting movement of the rail.
- a product P is oversized or bulging
- the product will cause the rail to pivot upwardly and the sensor 203 transmits a signal in response to this movement to inform an opoerator or other personnel that the oversized product is to be rejected.
- This sensing system prevents the occurrence of jams.
- the compression device 118 includes an endless chain 119 trained about sprockets 120 each provided with a shaft 121 .
- One of the sprocket is driven by a servomotor (not shown).
- a single servomotor may drive both the flap tucker device 113 and compression device 118 or both devices may be driven by separate servomotors.
- the operational velocity or speed of the flap tucker device 113 and compression device 118 are synchronized with each other and with the linear speed of the box mandrel conveyor.
- the compression device 118 includes a plurality of compression flights 122 each comprised of an elongate flat compression bar 123 .
- Each compression bar 123 is rigidly connected to an attachment element 124 extending at a right angle from the center portion thereof.
- the attachment element has an opening 125 there through for receiving a roll pin 126 therein.
- the chain 119 has a plurality of specialized chain links 119 a (one pair for each compression bar 123 ).
- Each link 119 a has an opening 119 b therein corresponding in size to the opening 125 .
- Each link 119 a is connected to the next adjacent conventional link by a pin 119 d having a conventional roll pin 119 c therein.
- the openings 119 b and 125 through the modified links 119 a and attachment elements 124 are larger than the roll pin 126 .
- the compression bar will therefore move into self alignment when compressing the flap 86 i and end panel 86 d against the upstream side wall of a mandrel 64 .
- This self alignment feature enables effective compression and sealing of end panel 86 d and manufacturer's flap 86 i even if the upstream vertical wall of the mandrel is misaligned with respect to the compression flights.
- the blank 86 after the compression and sealing operation, presents an open-ended sleeve around the mandrel containing the product.
- the small end flaps 86 e and the large lower 86 g and upper 86 h flaps must now be folded and sealed.
- the mandrels 64 will be sequentially retracted as shown in FIG. 1 after the mandrels have been moved past the compression device 118 . As the mandrels are retracted, the folded cartons will be prevented from moving with the mandrels by the stripper plates 85 .
- the folded cartons are transferred from the box mandrel conveyor to a transport chain conveyor 127 which is comprised of a pair of chains 128 which are laterally spaced apart and trained about sprockets (not shown) and driven by a servomotor (not shown). It is pointed out that each folded carton is dropped approximately 0.13′′ from the mandrel 64 upon the chains 128 of the transport chain conveyor.
- the transport chain conveyor 127 also includes flights 129 which includes a pair of flight elements 130 each secured to a chain. Each carton is engaged by a flight 129 as shown in FIG. 8 - FIG. 10 and the cartons are moved downstream. Unlike prior art devices, each carton is engaged by a rear flight only rather than captured between front and rear flights. This is possible since the wrapping of the blank around a mandrel containing a product results in only slight deformation of the carton.
- the carton will have a slightly unsymmetrical or non-squared configuration as it leaves the box mandrel conveyor 63 as best seen in FIG. 9 .
- This non-squared configuration occurs as a result of the wrap around method of applying the carton to the product. Only the manufacturer's flap 86 i is crimped or creased while the other score lines are not creased.
- the flights 129 are mechanically held square with respect to the transport chains 128 .
- Each carton will experience resistance from the folding plows, containment rails or brushes and spring clips. This resistance force slides the carton squarely against the flight as shown in FIG. 10 . Since the flight is square, the carton is square and the tucking, gluing an compressing can now take place.
- Spring clips 133 are positioned below the chains 128 .
- the spring clips may be formed of spring metal or may be pivoted. In the embodiment shown, the spring clips 133 exert an upward and rearward force on the carton.
- the cooperative action between the clips 133 , each brush 132 and other components cause carton to be moved against the flight plate to square the carton as shown in FIG. 10 .
- One spring clip 133 is pivoted to a bracket and urged to its upward position by a spring (not shown).
- the other spring clip 133 a is formed of spring metal.
- the brush 132 is adjustable and includes an elongate rod 135 having opposite ends there of pivotally connected to post or brackets 137 secured to the brush 132 .
- An adjustment mechanism 138 is operatively connected to the downstream bracket 137 .
- the lower ends of the brackets 137 are pivoted to the brush 132 to form a conventional parallelogram linkage. By operating the adjustment mechanism 138 the parallelogram linkage can be adjusted thereby slightly raising or lowing the brush 132 .
- This means includes a pair of lateral spaced apart identical rotary tucker wheels 139 positioned on opposite sides of the transport chain conveyor 12 .
- Each rotary tucker wheel 139 is comprised of a pair of vertically spaced apart discs 140 rigidly interconnected by a central spacer element 141 .
- An annular space is defined between each tucker disc and the peripheral edge portions are tapered outwardly.
- the rotary tucker wheels 139 are horizontal disposed for rotation about a vertical axis. Each tucker wheel 139 is driven by a servomotor 143 whose out put shaft 144 is connected to the associated tucker wheel. A pair of flap holding plows 145 are mounted on each side of the transport chain conveyor 127 just downstream of the rotary tucker wheels 139 . Each plow 145 has a reduced end portion 146 which projects into the annular recess of the associated rotary tucker wheel 139 as diagrammatically illustrated in FIG. 8A and FIG. 8B . It will be seen that the holding plows 145 are vertically disposed and that the reduced end portions 146 diverge outwardly.
- Each rotary tucker wheel 139 is provided with a lobe 147 on its outer periphery. Each wheel 139 is also provided with a notch in its periphery adjacent the lobe 147 .
- the rotary tucker wheels tuck the vertical end flaps 86 e (often called dust flaps). Referring now to FIG. 8A , it will be seen that the small end flaps 86 e are positioned to be engaged the rotary tucker wheels.
- the wheel speed angular velocity
- the lobes 147 will move inside the carton and pushes the product ( FIG. 8B ).
- the reduced end of the holding plow 145 will hold the leading end flap down and the trailing end flap will enter the notch 148 .
- the rotary wheel When the trailing end flap 86 e enters the notch 148 , the rotary wheel will accelerate to approximately twice the carton (chain conveyor) linear speed to properly tuck the end flap forwardly. Once the trailing end flap is tucked, the wheel is decelerated to its base speed. Since the rotary tucker wheels are servomotor driven, the servomotors can automatically adjust and thereby obviate the need for different size lobes.
- the end flaps 86 e are folded to the position as shown in FIG. 8D . At this point, the end flaps 86 e are tucked and the carton squared ( FIG. 10 ), the carton will continue downstream through plows that fold the top flaps 86 h and the bottom flaps 86 g , past glue guns, and through side rails that apply pressure to the folded top and bottom flaps.
- a pair of lower flap folding plows 149 are positioned downstream of the rotary tucker wheels 139 .
- the folding plows are positioned on opposite sides of the chain conveyors 128 and each plow 149 has an upwardly inclined edge 150 which engages a lower flap 86 g and progressively folds the flap upwardly.
- a glue gun 151 applies glue (preferably hot melt) to the outer surface of the folded lower flaps 86 g.
- a pair of upper flaps folding plows 152 are located downstream of the plows 149 .
- Each plow 152 has a downwardly declined edge 153 which engages an upper flap 86 h and progressively folds the flap downwardly against the glue coated outer surface of the lower flap 86 g .
- All of the flaps are now folded and glued, and the carton continues its downstream movement between side rails 154 .
- the side rails are arranged to apply pressure needed to adhere the flaps together.
- the sealed cartons are conveyed to a case packer system where the cartons are packed in cases.
- the present system uses low radius plows to wrap the carton blanks around mandrels to enable gentle handling of the blanks. This minimizes damage to the blanks and thereby decreases waste.
- the manufacturer's flap is folded and creased with glue applied as the blank is conveyed to the box mandrel conveyor. This properly positions the folded manufacturer's flap for downstream gluing to an end panel in forming the carton sleeve.
- a unique conveying system permits conditioning and precise feeding of the packages to the box mandrel conveyor.
- Rotary flap folding wheels not on assure efficient flap folding, but these folding wheels are constructed compress the package to provide for good carton end flap seals.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Making Paper Articles (AREA)
- Supplying Of Containers To The Packaging Station (AREA)
Abstract
A packaging apparatus for wrapping a carton around a packaged product comprises a box mandrel conveyor including a plurality of mandrels which support the packaged product thereon. Packages are precisely fed to the mandrels of the box mandrel conveyor by a conditioning conveyor. Carton blanks are delivered to a conveying system for a carton magazine and are conveyed in vertical confronting relation to a mandrel. Each mandrel moves the carton blank against a large radius plows device thereby causing the carton blank to be folded around a mandrel containing a package. Folding and compression devices are provided for folding and compressing an end panel against a manufacturer's flap. Suitable flap closing means close the end flaps and upper and lower flaps after the mandrel is withdrawn from the carton.
Description
- This invention relates to a packaging machine and more particularly to a packaging machine which wraps and forms a carton around a package.
- In some conventional packaging machines, product is loaded into preformed cartons and the cartons are subsequently closed and sealed. Various kinds of products including dry product, bagged flexible products, rigid products, single and multiples of bagged and single products are loaded into preformed cartons by some packaging machines. Typically the product is loaded (pushed) through an open end of the carton.
- When the product is a bagged flexible product such as cereal, it is difficult at best to push the bagged product into the carton. It will be appreciated that a cereal package, for example, does not maintain structural integrity when subjected to pressure (loading). Further, preformed cartons are more expensive to buy, more difficult to handle, and more difficult to open and load reliable.
- Certain prior art efforts have resulted in the formation of cartons wrapped around the product by packaging machines. For example, U.S. Pat. No. 4,308,020 discloses a wrap around packaging machine for forming a carton around a bottle such that the walls of the carton engage the circumferential surface of the bottle. However, few systems were manufactured. The novel devices incorporated into this patent address the weaknesses of prior art efforts and bring to bear processes, motions, and controls never before seen. Specifically the Langen patent does not address the problems of flexible packages, reliable manufactures flap closing and sealing, glue contamination, and precise machine performance needed for efficient packaging.
- An object of this invention is to provide a novel and improved cartoning machine in which carton blanks are partially and precisely formed around product and thereafter the flaps are precisely closed and sealed.
- Another object of this invention is to provide a unique feed system for the cartoning machine wherein bagged flexible products are compressed for sizing and precisely dropped downwardly upon a mandrel or bucket conveyor for movement to the next station.
- In carrying out the invention, the product is delivered to an infeed system which includes smart belts that constantly senses the presence of product and moves the product to known or predetermined positions. The product to be packaged may be flexible products, rigid products and single and multiple bagged and single products. The carton can be two dimensional or three dimensional in a three, four or six-sided container with open or closed ends. The wrap around carton may be formed of paper, paperboard corrugated paper, microflute corrugated paper or a polymer. In the embodiment shown, the product to be cartoned is a flexible package containing cereal.
- The product is delivered from the infeed conveyor system to a fan feed device where product is timed delivered to a timing conveyor. Product is then delivered to a conditioning conveyor which drops the product into a mandrel or bucket. The conditioning conveyor is provided with flights which compress semirigid product (cereal packages) into a size slightly smaller than the bucket. Fingers on the flights support the product at the discharge end of the conditioning conveyor and prevent premature dropping of the product into the associated bucket.
- A magazine section is provided and contains blanks which are die cut. The blanks may be coated, uncoated or laminated stock. The blanks are delivered one at a time into the machine and during this movement a small flap (typically called the manufacturer's joint) is folded 180° back upon the body of the carton and crimped. A process glue is applied to the outside surface of this flap and thereafter the flap is allowed to spring back. This adjustable crimping force is set so that the flap spring back forms a angle of approximately 90° with the carton body. The manufacturer's flap is properly conditioned for sealing the mating flap downstream.
- Prior art systems apply glue to the inside of the carton flap or panel. One of the drawbacks to this prior art practice is that it allows glue to get on the buckets if a blank feeding problem occurs or if a missed tuck is experienced. When glue is inadvertently applied to a bucket, then the bucket can not be pulled from the carton and the system jams.
- The blanks are folded around the packages in the mandrels by large radius folding plows as the mandrels are moved downstream. Positioning guide elements engage the edge portions of the blank to assure proper positioning of the blank for folding around the mandrel. Self-aligning flights assures accurate gluing of the manufacturer's joint.
- Uniquely designed tuckers assure proper folding of the end flaps. The loaded and sealed carton is discharged to a case packer.
-
FIG. 1 is a diagrammatic plan view of the novel packaging apparatus; -
FIG. 2 is a diagrammatic side elevation view taken along line 2-2 ofFIG. 1 and looking in the direction of the arrows; -
FIG. 3 is an elevational taken along line 3-3 ofFIG. 2 and looking in the direction of the arrows; -
FIG. 4 diagrammatic cross-sectional view taken approximately along line 4-4 ofFIG. 1 looking in the direction of the arrow and illustrating operation of the flap tucker device and the compression device; -
FIG. 4A is a cross-sectional view taken approximately along line A-A ofFIG. 4 and looking in the direction of the arrows; -
FIG. 4B is a cross-sectional view taken approximately along line B-B ofFIG. 4 and looking in the direction of the arrows; -
FIG. 4C is a cross-sectional view taken approximately along line C-C ofFIG. 4 and looking in the direction of the arrows; -
FIG. 4D is a cross-sectional view taken approximately along line D-D ofFIG. 4 and looking in the direction of the arrows; -
FIG. 5 is a cross-sectional view taken approximately along line 5-5 ofFIG. 1 and looking in the direction of the arrows; -
FIG. 5A is an elevational view taken approximately along line A-A ofFIG. 5 and looking in the direction of the arrows; -
FIG. 5B is a cross-sectional view taken approximately along line B-B ofFIG. 5 and looking in the direction of the arrows; -
FIG. 5C is a cross-sectional view taken approximately along C-C ofFIG. 5A and looking in the direction of the arrows; -
FIG. 6 is a fragmentary perspective view of a portion of the apparatus, exploded, to show details of construction; -
FIG. 7 is a partial front elevational view showing a carton blank and showing adjacent portions of the apparatus in section; -
FIG. 8 is a side elevational view of the apparatus located immediately downstream of that portion of the apparatus shown inFIG. 1 ; -
FIG. 8A is a cross-sectional view taken approximately alongline 8A-8A ofFIG. 8 and looking in the direction of the arrows; -
FIG. 8B ,FIG. 8C , andFIG. 8D illustrates the sequential steps and mechanism for progressively folding the dust flaps; -
FIG. 9 is a diagrammatic side elevational view illustrating the slightly unsymmetrical configuration of a carton prior to engaging the carton shaping means; -
FIG. 10 is diagrammatic view similar toFIG. 9 and illustrating the symmetrical configuration of the carton after the carton is engaged by the carton shaping means; and -
FIG. 11 is a partial diagrammatic perspective view of a portion of the magazine. - Referring now to the drawings, and more particularly to
FIG. 1 , it will be seen that the novel wrap around packaging apparatus or machine 10 is thereshown. The wrap around apparatus wraps the carton blank around a product rather than inserting the product into a preformed carton. In the embodiment shown, the product is cereal although the novel wrap around packaging apparatus may be used to carton other types of product. - As used herein, the term blank refers to a single piece of packaging material that has been shaped, sized and scored in preparation for use in a packaging process. Various components of the apparatus are driven by precision electrically controlled motion generating devices (PECMGD). Three common types of PECMGD are servomotors, stepper motors, and variable frequency drive motors (VFD). There are also other types of PECMGD but servomotors and VFD motors are preferred in the embodiment shown.
- The term mandrel as used herein comprises a rigid structure that serves as a conveying element when attached to a conveyor for conveying a product. The mandrel also provides the necessary uniform structural integrity for wrapping a blank around the mandrel and for compressing the flaps of the blank against surfaces of the mandrel.
- The apparatus includes an infeed system 11 which receives the product P from a
table top conveyor 12. It is pointed out thattable top conveyors 12 or other types of conveyors are provided by the packager and are not, per se, part of the packaging infeed system. The product P is discharged from thetabletop conveyor 12 upon a metering and phasingconveyor 13 which is driven by aservomotor 14. In the embodiment shown, all of the various components of the apparatus are driven by servomotors which are controlled by a computer. A suitable software program controls the sequencing (operational speeds and timing) of the various components. - The metering and phasing
conveyor 13 operates at approximately 100 ft./min. and discharges the packages P upon alaunch conveyor 15 which is driven by aservomotor 16. The metering and phasing conveyor is a “smart” conveyor and is provided with sensors (not shown) which monitors the product being conveyed. The launch conveyor operates at approximately 400 ft./min. The packages are impelled or launched from thelaunch conveyor 15 to afan device 17. Thefan device 17 is comprised of twobladed fans 18 each including three blades 29 secured to a hub oraxle 20. The hub oraxle 20 for each fan is secured to the output shaft of aservomotor 21. In the embodiment shown each fan is driven by aseparate servomotor 21. - The
blades 19 for each fan are angularly spaced apart 120° and the twoservomotors 21 operate at the same speed which rotates thefans 18 at 120°/sec. A pair of circular impact plates 22 are each secured to one of theaxles 20 and are located adjacent the associatedservomotor 21. With this arrangement, each package P will be launched or impelled from the discharge end of thelaunch conveyor 15 against the impact plates 22 and fall upon a pair of rotatingfan blades 19. When the packaged product P strikes the impact plates 22 at the launch velocity (400 ft./min.), this collision serves to compress the product. It will be seen inFIGS. 2 and 3 that each product is delivered to thefan device 17 from thelaunch conveyor 15 and is then deposited by the fan device on atiming conveyor 23. - The
timing conveyor 23 includes a horizontal table 24 positioned below thefan feed device 17 for receiving the products P thereon. The products P are oriented longitudinally along the infeed conveyor system, i.e., the sealed ends are arranged in the direction travel. It will be noted that the products P are delivered by the fan feed device such that the products extend transversely of the direction of travel of the timing conveyor. Thefan feed device 17 times the delivery (120 ft./sec.) of the product to thetiming conveyor 23. - The
timing conveyor 23 also includes a pair of endless conveyor chains 25 each trained about an upstream sprocket 26 and a downstream sprocket 27.Conveyor flights 28 extend transversely between and are secured to the conveyor chains 25. It will be seen inFIG. 3 that in their lower underpassing run, the flights engage the packages and move the packages downstream to a fingered launch conveyor 29. - The
timing conveyor 23 moves the products P at approximately 200 ft./min. while the fingered launch conveyor runs at approximately 300 ft./min. The fingered launch conveyor 29 is comprised of a plurality of laterally spaced apart narrow conveyor belts trained about upstream pulleys 31 anddownstream pulleys 32. It will be noted that the fingered launch conveyor is horizontally disposed and is positioned just downstream of the discharge end of the table 24. Products P are moved by theflights 28 downstream to the fingered launch conveyor. - The
timing conveyor 23 and the fingered launch conveyor 29 are both driven by a servomotor 33. Theoutput shaft 34 of the servomotor 33 has one end journaled in a suitable bearing and has a sprocket 35 keyed thereon. Achain 37 is trained about sprocket 35 and a smaller drivensprocket 36 keyed to theshaft 38 of downstream sprocket 27 of thetiming conveyor 23. Thetiming conveyor 23, in the embodiment shown, operates 200 ft./min. All of the conveyor speeds and speeds or velocities of other components are only for the specific packaging function disclosed and are not intended as a limiting requirement. - A
sprocket 39 is keyed toshaft 38 of thetiming conveyor 23 and is drivingly connected to asprocket 40 by a chain 41. It will be noted that thesprocket 39 is larger than thedrive sprocket 40. The shaft 40 a mountingsprocket 40 also has alarger sprocket 42 keyed thereto. Achain 44 is trained aboutsprocket 42 and a smaller driven sprocket 43 which is keyed to the driven shaft 45 for thedownstream sprocket 32 of the fingered launch conveyor 29. The fingered launch conveyor 29 is operated at a velocity of 300 ft./min. in the embodiment shown. It will be noted that the relative operational speeds of the timing conveyor and fingered launch conveyor are not only determined by the servomotor 33 but also the particular construction and arrangement of the sprocket drive train. - The fingered launch conveyor 29 consists of a plurality of spaced apart
belts 30 trained about thesprockets 31, 32 and the launch conveyor delivers the products P to the conditioning conveyor 46. The conditioning conveyor 46 includes a flat slatted table 47 wherein theslats 49 correspond in number and width to the belts of the fingered launch conveyor 29. Products P are delivered to the conditioning conveyor by the fingered launch conveyor and are supported on the slatted table 47. The upstream ends of theslats 49 are down turned, as best seen inFIG. 3 , to facilitate the transfer. - The conditioning conveyor 46 also includes means for moving, compressing and precisely dropping the compressed packages into the mandrels where the blanks are wrapped around, folded and glued to encase the packages. A pair of laterally spaced apart, endless chains 50 are each trained about one of a pair of
drive sprockets 51 keyed to theoutput shaft 34 of the servomotor 33. The chains 50 are also trained about a pair ofidler sprockets 52 journaled on theoutput shaft 53 of aservomotor 54. - The chains 50 have a plurality of
finger flights 55 pivotally secured thereto by pivots 55 a. Eachflight 55 has a plurality of fingers 56 projecting therefrom. These fingers 56 are horizontally disposed during their lower run as shown inFIG. 3 and extend in an upstream direction. The fingers 56 pass betweenadjacent slats 49 of the slatted table 47 and underlie the leading edge portion of product P as best seen inFIG. 3 . - Each finger flight includes a pair of mounting brackets 56 a having a plate 56 b interconnecting the brackets 56. The fingers 56 are secured to a flange on the plate 56 b. The plate 56 b for each finger flight is engaged by the leading surface of a package P as clearly shown in
FIG. 3 . - The conditioning conveyor 46 also includes a pair of
endless chains 57 which are laterally spaced apart and are trained about a pair of drive sprockets 58 keyed to theoutput shaft 53 of theservomotor 54. Thechains 57 are also trained about a pair ofidler sprockets 59 journaled on theoutput shaft 34 of the servomotor 33. Thechains 57 have a plurality ofcompression flights 60 pivoted secured thereto by pivots 60 a. Each flight includes a pair of mountingbrackets 62 each pivoted to an associated chain. Acompression plate 61 extends between and is secured to the brackets. - It will be seen that the conditioning conveyor 46 is operable to move products downstream to the bucket or
mandrel conveyor 63. As products P are moved downstream (FIG. 3 ), each product will be compressed between a plate 56 b of afinger flight 55 and acompression plate 61 of acompression flight 60. Products P are compressed to reduced the transverse dimension of each package sufficiently so that the transverse dimension of each package is slightly less than the corresponding dimension of a mandrel 64. - As products reach the end of the slatted table, the fingers of a
finger flight 55 will support each package as the package moves beyond the table. Themandrel conveyor 63 operates at approximately 150 ft./min., the same operational speed as the conditioning conveyor. The movement of products P by the conditioning conveyor 46 is synchronized with the mandrel conveyor such that when each product P is released from the conditioning conveyor the package will precisely drop into a mandrel 64. Specifically, each product will be held between a compression flight and a finger flight as the product moves downstream of the end of the slatted table. The fingers support the leading edge of each product against tilting, and the fingers of a flight move quickly away from the supported package as flight changes direction traveling around the downstream sprockets. This allows each product to be precisely dropped into a mandrel 64. The slatted table 47 is longitudinally adjustable for accommodating product of different sizes. Thus the slatted table 47 can be adjusted longitudinally in an upstream or downstream direction. - The mandrel conveyor 64 includes a pair of
endless chains 65 trained aboutupstream sprockets 66 and downstream sprockets (not shown). A plurality ofmandrel assemblies 67 are secured to thechains 65 and are moved thereby. A servomotor (not shown) drives the downstream sprockets and the mandrel conveyor at approximately 150 ft./min. Eachmandrel assembly 67 includes a generally rectangular mandrel 64 comprised of a flat bottom wall 68 and upstanding opposed side walls 69. A transverse strap or stop 70 is secured to the top edges of the side walls 69 adjacent the rear edge portion thereof. It is pointed out that the front portion of the box mandrel 64 is that end located to the left as viewed inFIG. 6 . - Referring again to
FIG. 6 , it will be seen that each box mandrel 64 has a blank flap guide 71 secured to the downstream side wall. One end of an elongate quick change mounting arm 72 is secured to mountingplate 73 which is secured to the rear end portion of a box mandrel 64. The other end of the mounting arm 72 projects into and is secured to mountingarm receptacle 73 which is a component of aslide block assembly 74. A quick change spring urged lock pin 75 is releasably locked to the mounting arm 72 by engaging an aperture 76 in the arm. - The mounting
arm receptacle 73 is secured to aflat bed plate 77 which is secured to a pair of elongate, transversely extendingslide bearings 78. A pair of elongate, spaced apart sliderods 79 each extends through aslide bearing 78 and the rear end of each rod is secured to adrive chain 65 by a mountinglink 80. The front end of eachrod 79 is secured in abearing block 81 which is affixed to theother drive chain 65. It will be seen that mandrels 64 can be readily changed for accommodating different size products. - It will be seen that each mandrel 64 and associated
slide block assembly 74 are moved as a unit downstream but that each mandrel 64 is moved transversely of the direction of travel between on advanced and retracted positions. Referring again toFIG. 6 , it will be seen that anapertured spacer block 82 is secured to the lower surface of thebed plate 77 of theslide block assembly 74. The axle of a roller or cam follower 83 is journaled in the opening or aperture of thespacer block 82 for rotation relative thereto. - A pair of spaced apart cam guide tracks 84 are engaged by the cam roller 83 of
slide block assembly 74. The disposition of thetracks 84 and the co-action of the cam roller with the tracks produces the transverse movement of the mandrel and slide block assembly. It will be seen that the cam guide tracks 84 change direction from a straight run to a slightly inwardly angled run in a downstream direction. This change in direction produces the transverse movement of the each mandrel in a retracted direction. The cam guide tracks 84 also change direction in the upstream return direction (a shown inFIG. 1 ). This change in direction produces the transverse movement of each mandrel in an advanced direction. - A
stripper plate 85 is secured to bearingblocks 81 of theslide block assembly 74. The stripper plate includes a vertical portion 85 a and a horizontal portion 85 b. The vertical portion has a shaped opening 85 c therein through which the associated mandrel is moved as shown in phantom line configuration inFIG. 6 . The enlarged downstream portion of the opening 85 a allows different size mandrels 64 to be used. During the loading and carton folding steps, each mandrel will be in the advanced position and will project transversely through the opening 85 c in thestripper plate 85 as best seen inFIG. 1 . -
Blanks 86 are fed sequentially into the mandrel conveyor from a magazine 87 as shown inFIGS. 1 and 11 . Theblanks 86 are vertically arranged in the magazine and are fed towards the discharge end by toothed conveyor chains 87 b which are driven by aservomotor 87 a. A follower plate 87 c engages the rearmost blank 86 and moves with the conveyor chains 87 b. - The discharge end of the magazine 87 as shown in
FIGS. 1 and 11 has an outer side and an inner side (closest to the mandrel conveyor) where the blanks are picked or removed one at a time. The outer side of the magazine has a spring loadedplate 87 d pivotally mounted on the magazine housing by anelongate pivot 87 e. A spring 87 f urges theplate 87 d against the forward most blank. The plate vertically supports the blanks for proper picking byvacuum cups 88 which are moveable about a vertical axis to selectively remove the blanks from the magazine. The yieldable pivotal mounting of theplate 87 d prevents blanks from binding against the plate. - The magazine also includes a plurality of fingers 87 g each pivotally mounted by a pivot 87 h which engage the forward most blank. The fingers are counterbalanced and provide light resistance to forward movement of each blank and thereby prevent the blanks from unduly flopping around as the blanks are removed from the magazine.
- The magazine 87 is also provided a rubber finger
belt drive assembly 89 located at the top of the magazine. Thebelt 89 a is provided with a plurality of rubber fingers 89 b. Thebelt 89 a is trained about pulleys 89 c, one of which is secured to the output shaft of aservo motor 89 d. Thebelt 89 a moves at a speed slightly greater than the speed of the blanks 86 (conveyor chains 87 b). Thebelt 89 a moves at a speed slightly greater than the speed of the blanks 86 (conveyor chains 87 b). The fingers 89 b are arranged in groups and engage tops of the blanks as the fingers flex backward and slide across the top surfaces of the blanks. The resistive force applied by the rubber fingers insures that the tops of the blanks are properly positioned up against top clip 87 i. - The magazine is provided with a pair of clips 87 i which are vertically spaced apart. The top and bottom clips 87 i provides resistive force to help separate blank being picked from the one behind it. The lower clip has a sensor assembly 87 j that signals the
conveyor drive 89 d when to advance the stack of blanks. - Each carton blank 86 is of conventional construction having preformed score lines and appropriate notches. Each blank 86 includes side panels 86 a and 86 b, end panels 86 c and 86 d, end panel flaps 86 e, side panel upper and lower flaps 86 g and 86 h, and a manufacturer's
flap 86 i. The blank 86 also as preformed notches including notches 86 j. - Referring now to FIGS. 4, 4A-4D and
FIG. 7 , it will be seen that the carton blank infeed system includes a relatively shortinitial belt conveyor 90 comprised of a pair of vertically spaced apartbelts 91 trained about pulleys 92 secured to avertical shaft 93. Theconveyor 90 is driven by a servomotor (not shown). Theconveyor 90 moves each carton blank inwardly where the carton blank is engaged by a belt conveyor 94. - A nip roller shaft 93 a is positioned adjacent the
outer shaft 93 of thebelt conveyor 90 and a pair of niprollers 93 b are secured to the shaft 93 a. Each nip roller has a flat surface orspot 93 c. The flat surface of eachroller 93 b is positioned so that the blank inserted by the vacuum cups 88 into the nip belt and roller assembly is positioned beyond the centerline of the nip roller shaft 93 a. This feature ensures that a blank is gripped at its top and bottom edges and pulled into the nip belt assembly so that the blank remains square. - The nip belt and roller assembly also includes a short conveyor 90 a which cooperates with the nip
rollers 93 b andconveyor belts 90 for moving a blank 86 inward to the mandrel conveyor. The conveyor 90 a also cooperates with the conveyor 94 for moving a blank towards the mandrel conveyor. It is pointed out that the shaft 93 a and niprollers 93 b along with conveyor 90 a are shiftable as a unit away from theconveyor 90 if a jam occurs. The nip rollers and shaft along with conveyor 90 a may be returned to its normal operating position after the jam is cleared. - The belt conveyor 94 includes a pair of vertically spaced apart conveyor belts 95 trained about
pulleys 96. The outboard pulleys are keyed to a vertical shaft 97 while the inboard pulleys 96 are each mounted on short vertically disposedshafts 98. A servomotor (not shown) drives both conveyors at high speeds so that each carton is rapidly moved inwardly and are stopped by stop plates 99 located inwardly of the conveyor 94 as shown inFIG. 4 . Each carton blank 86 will then be in position for folding. - It will be noted that the manufacturer's
flap 86 i is folded and crimped as the carton blank is fed into position for folding. The carton blank 86 will be vertically disposed as it moves to the mandrel conveyor and the lower portion of the blank will be engaged by a drivenconveyor belt 100 and a roller assembly 101. The roller assembly includes a mountingbar 102 having plurality ofroller axles 103 secured thereto and depending therefrom.Rollers 104 are journaled on theaxles 103. The rollers are transversely aligned and cooperate with thebelt conveyor 100 in moving and holding the lower portion of the blank against angular movement during folding and crimping of the manufacturer'sflap 86 i. - A
flap folding assembly 105 is positioned adjacent the manufacturer's flap as the blank is moved inwardly. Theflap folding assembly 105 includes a plurality a flap folding blocks 106 which are arranged in side-by-side relation and each block has afolding surface 107. Spacer elements 106 a are positioned between adjacent folding blocks 106. The flap folding blocks are mounted on an elongate rod 105 a which is secured to a pair of brackets affixed to a mounting plate 105 b. The mounting plate 105 b is secured to a pair of mounting blocks 105 c which are slidable on a pair of rods 105 d. Theflap folding surface 107 are arranged such that the manufacturer'sflap 86 i will be progressively folded from its vertical position located in the general plane of the blank (FIG. 4A ) upwardly 180° to lie against the blank (FIG. 4B ) thereby crimping a manufacturer's 86 i by crimpingroller 108. The crimpingroller 108 is located just inwardly of the innermostflap folding element 106 and is mounted on theflap folding assembly 105. Glue is applied by aglue gun 109 to the outer surface of the folded manufacturer'sflap 86 i (FIG. 4C ) just before the flap is released by the crimping roller. - After the glue has been applied to the outer surface of the manufacturer's
flap 86 i the blank will be moved against the stop plates 99 releasing the flap from the crimpingroller 108. Theflap 86 i will spring back approximately 90° as shown inFIG. 4D . The crimpingroller 108 is adjustable (adjustment of the flap folding assembly) such that the spring back of the flap is approximately 90° with respect to the carton body. By placing the glue on the outside and by enabling the flap to spring back to the 90° position, the flap is now in position for proper sealing downstream. Further, by applying the glue to the outer surface of the manufacturer's flap, the likelihood of the glue contaminating the buckets and producing jams in the system is substantially reduced if not precluded. - Referring now to
FIG. 5 andFIG. 5A -FIG. 5C , it will be seen that the carton blank 86 begins the folding and sealing operation around each mandrel as the mandrels move downstream specifically an end panel 86 c of a carton blank 86 is engaged by the downstream side wall of mandrel as the latter moves downstream. The flap guide 71 on the mandrel 64 and the flap guide 71 a on the frame engage in the notches 86 j of the carton blank to properly position and maintain each carton blank for accurate folding of the carton blank as best seen inFIG. 7 . The flap guide 71 a is vertically adjustable for accommodating different size blanks. - The carton blank engages a plow device including an inclined
upper plow 110 and an inclined lower plow 111 which progressively fold the carton against the mandrel. Each plow converges towards the mandrel and terminates inhorizontal portions 112. It will be seen that carton will be folded, as shown inFIG. 5 , with the end panel 86 d lying in the plane of the side panel 86 a. It further be noted that the manufacturer'sflap 86 i will remain in its 90° fold (spring back position) in position for sealing with end panel 86 d. Eachfolding plow 110, 111 is a large radius plow for insuring gentle handling of the blank as it is folded around a mandrel. - A flap tucker device 113 is located above the box mandrel conveyor and downstream of the
plows 110, 111. The flap tucker device 113 includes aframe 114 which is comprises of spaced apart interconnected opposed plates of generally triangular configuration. In the embodiment shown,endless chains 115 are trained about threesprockets 116. One of the sprockets is driven to move the chains and sprockets in a general counterclockwise direction as viewed inFIG. 5 . Thechains 115 haveflap engaging plates 117 secured thereto and projecting therefrom. It will be seen that theflap engaging plates 117 sequentially engage each end panel 86 d to fold the end panel 86 d against the glue coated surface of the manufacturer'sflap 86 i as the flap tucker device is operated. In this regard the flap tucker device 113 is operated by a servomotor (not shown). It will be noted that the flap engaging plates have a flat surface which engages each end panel 86 d. It will also be seen that threeflap engaging plates 117 are provided although this number may vary. - An
elongate rail 200 has an upwardly inclinedfront portion 201 which is pivoted to the frame or side plates of the apparatus by a pivot 202. The major portion of therail 200 engages the upper surface of product P as product is moved past the flap tucker device 113. Therail 200 is not contacted by theplates 117 and extends beyond the flap tucker device 113. The downstream end of therail 200 has asensor device 203 thereon which senses pivoting movement of the rail. - If a product P is oversized or bulging, the product will cause the rail to pivot upwardly and the
sensor 203 transmits a signal in response to this movement to inform an opoerator or other personnel that the oversized product is to be rejected. This sensing system prevents the occurrence of jams. - Positioned slightly downstream and in partially overlapping relation with the flap tucker device 113 is a
compression device 118 as shown inFIG. 5 . Thecompression device 118 includes anendless chain 119 trained aboutsprockets 120 each provided with ashaft 121. One of the sprocket is driven by a servomotor (not shown). A single servomotor may drive both the flap tucker device 113 andcompression device 118 or both devices may be driven by separate servomotors. In any event, the operational velocity or speed of the flap tucker device 113 andcompression device 118 are synchronized with each other and with the linear speed of the box mandrel conveyor. - Referring now to
FIG. 5 andFIGS. 5A-5C it will be seen that thecompression device 118 includes a plurality ofcompression flights 122 each comprised of an elongateflat compression bar 123. Eachcompression bar 123 is rigidly connected to an attachment element 124 extending at a right angle from the center portion thereof. The attachment element has anopening 125 there through for receiving a roll pin 126 therein. Thechain 119 has a plurality ofspecialized chain links 119 a (one pair for each compression bar 123). Each link 119 a has an opening 119 b therein corresponding in size to theopening 125. Each link 119 a is connected to the next adjacent conventional link by a pin 119 d having aconventional roll pin 119 c therein. - It will be noted that the
openings 119 b and 125 through the modifiedlinks 119 a and attachment elements 124 are larger than the roll pin 126. The compression bar will therefore move into self alignment when compressing theflap 86 i and end panel 86 d against the upstream side wall of a mandrel 64. This self alignment feature enables effective compression and sealing of end panel 86 d and manufacturer'sflap 86 i even if the upstream vertical wall of the mandrel is misaligned with respect to the compression flights. - The blank 86, after the compression and sealing operation, presents an open-ended sleeve around the mandrel containing the product. The small end flaps 86 e and the large lower 86 g and upper 86 h flaps must now be folded and sealed. The mandrels 64 will be sequentially retracted as shown in
FIG. 1 after the mandrels have been moved past thecompression device 118. As the mandrels are retracted, the folded cartons will be prevented from moving with the mandrels by thestripper plates 85. - The folded cartons are transferred from the box mandrel conveyor to a
transport chain conveyor 127 which is comprised of a pair ofchains 128 which are laterally spaced apart and trained about sprockets (not shown) and driven by a servomotor (not shown). It is pointed out that each folded carton is dropped approximately 0.13″ from the mandrel 64 upon thechains 128 of the transport chain conveyor. - The
transport chain conveyor 127 also includesflights 129 which includes a pair offlight elements 130 each secured to a chain. Each carton is engaged by aflight 129 as shown inFIG. 8 -FIG. 10 and the cartons are moved downstream. Unlike prior art devices, each carton is engaged by a rear flight only rather than captured between front and rear flights. This is possible since the wrapping of the blank around a mandrel containing a product results in only slight deformation of the carton. - The carton will have a slightly unsymmetrical or non-squared configuration as it leaves the
box mandrel conveyor 63 as best seen inFIG. 9 . This non-squared configuration occurs as a result of the wrap around method of applying the carton to the product. Only the manufacturer'sflap 86 i is crimped or creased while the other score lines are not creased. Theflights 129 are mechanically held square with respect to thetransport chains 128. Each carton will experience resistance from the folding plows, containment rails or brushes and spring clips. This resistance force slides the carton squarely against the flight as shown inFIG. 10 . Since the flight is square, the carton is square and the tucking, gluing an compressing can now take place. - Referring again to
FIG. 8 , it will be seen that a hold downbrush 132 will engage an upper panel of the carton and exert a downward force. Spring clips 133 are positioned below thechains 128. The spring clips may be formed of spring metal or may be pivoted. In the embodiment shown, the spring clips 133 exert an upward and rearward force on the carton. The cooperative action between theclips 133, eachbrush 132 and other components cause carton to be moved against the flight plate to square the carton as shown inFIG. 10 . Onespring clip 133 is pivoted to a bracket and urged to its upward position by a spring (not shown). The other spring clip 133 a is formed of spring metal. - The
brush 132 is adjustable and includes anelongate rod 135 having opposite ends there of pivotally connected to post orbrackets 137 secured to thebrush 132. Anadjustment mechanism 138 is operatively connected to thedownstream bracket 137. Although not shown, the lower ends of thebrackets 137 are pivoted to thebrush 132 to form a conventional parallelogram linkage. By operating theadjustment mechanism 138 the parallelogram linkage can be adjusted thereby slightly raising or lowing thebrush 132. - Referring now to
FIG. 8 andFIGS. 8A-8D , it will be seen that means are provided for plowing and tucking the vertical end flaps 86 e. This means includes a pair of lateral spaced apart identicalrotary tucker wheels 139 positioned on opposite sides of thetransport chain conveyor 12. Eachrotary tucker wheel 139 is comprised of a pair of vertically spaced apartdiscs 140 rigidly interconnected by acentral spacer element 141. An annular space is defined between each tucker disc and the peripheral edge portions are tapered outwardly. - The
rotary tucker wheels 139 are horizontal disposed for rotation about a vertical axis. Each tucker wheel 139 is driven by aservomotor 143 whose out put shaft 144 is connected to the associated tucker wheel. A pair offlap holding plows 145 are mounted on each side of thetransport chain conveyor 127 just downstream of therotary tucker wheels 139. Eachplow 145 has a reducedend portion 146 which projects into the annular recess of the associated rotary tucker wheel 139 as diagrammatically illustrated inFIG. 8A andFIG. 8B . It will be seen that the holding plows 145 are vertically disposed and that thereduced end portions 146 diverge outwardly. - Each
rotary tucker wheel 139 is provided with alobe 147 on its outer periphery. Eachwheel 139 is also provided with a notch in its periphery adjacent thelobe 147. The rotary tucker wheels tuck the vertical end flaps 86 e (often called dust flaps). Referring now toFIG. 8A , it will be seen that the small end flaps 86 e are positioned to be engaged the rotary tucker wheels. When the leading end flap 86 e contacts the associated rotary tucker wheel, the wheel speed (angular velocity) is approximately equal to the linear speed of the carton (chain conveyor). Thelobes 147 will move inside the carton and pushes the product (FIG. 8B ). The reduced end of the holdingplow 145 will hold the leading end flap down and the trailing end flap will enter thenotch 148. - When the trailing end flap 86 e enters the
notch 148, the rotary wheel will accelerate to approximately twice the carton (chain conveyor) linear speed to properly tuck the end flap forwardly. Once the trailing end flap is tucked, the wheel is decelerated to its base speed. Since the rotary tucker wheels are servomotor driven, the servomotors can automatically adjust and thereby obviate the need for different size lobes. The end flaps 86 e are folded to the position as shown inFIG. 8D . At this point, the end flaps 86 e are tucked and the carton squared (FIG. 10 ), the carton will continue downstream through plows that fold the top flaps 86 h and the bottom flaps 86 g, past glue guns, and through side rails that apply pressure to the folded top and bottom flaps. - Referring again to
FIG. 8 , it will be seen that a pair of lower flap folding plows 149 are positioned downstream of therotary tucker wheels 139. The folding plows are positioned on opposite sides of thechain conveyors 128 and eachplow 149 has an upwardlyinclined edge 150 which engages a lower flap 86 g and progressively folds the flap upwardly. Aglue gun 151 applies glue (preferably hot melt) to the outer surface of the folded lower flaps 86 g. - A pair of upper
flaps folding plows 152 are located downstream of theplows 149. Eachplow 152 has a downwardly declined edge 153 which engages an upper flap 86 h and progressively folds the flap downwardly against the glue coated outer surface of the lower flap 86 g. All of the flaps are now folded and glued, and the carton continues its downstream movement between side rails 154. The side rails are arranged to apply pressure needed to adhere the flaps together. The sealed cartons are conveyed to a case packer system where the cartons are packed in cases. - From the foregoing description it will be seen that the novel packaging utilizes several unique features enabling an efficient wrap around packaging system. All of the machine motions in this system are controlled by (PECMGT). The use of servomotors allows a wide range of operational conditions without requiring much human intervention.
- The present system uses low radius plows to wrap the carton blanks around mandrels to enable gentle handling of the blanks. This minimizes damage to the blanks and thereby decreases waste. The manufacturer's flap is folded and creased with glue applied as the blank is conveyed to the box mandrel conveyor. This properly positions the folded manufacturer's flap for downstream gluing to an end panel in forming the carton sleeve.
- A unique conveying system permits conditioning and precise feeding of the packages to the box mandrel conveyor. Rotary flap folding wheels not on assure efficient flap folding, but these folding wheels are constructed compress the package to provide for good carton end flap seals.
- Thus it will be seen, that a novel wrap around carton packaging apparatus has been provided which provides advantages not present in prior art packaging systems.
Claims (18)
1. Apparatus for continuously folding, forming and sealing carton blanks around product comprising
an elongate box mandrel conveyor including a plurality of spaced apart horizontally disposed mandrels for containing product, power means connected to the box mandrel conveyor for moving the mandrels in a predetermined path of travel from an upstream end to a downstream end, said mandrels being movable transversely of the path of travel between an advanced package supporting position and a retracted position, means for causing movement between advanced and retracted positions,
power means connected to the mandrel conveyor for moving the mandrel conveyor,
means continuously conveying vertically disposed carton blanks one at a time to the box mandrel conveyor in confronting relation with a mandrel during movement of the mandrel, each carton blank including side panels, end panels, end flaps, upper and lower flaps, and a manufacturer's flap, the manufacturer's flap defining the lower edge portion of a carton blank, and notches between certain flaps and panels,
means engaging and folding the manufacturer's flap against the mandrel during movement of the blank to the mandrel conveyor,
a folding plow device positioned downstream of the carton blank magazine for folding a carton blank moved by a mandrel around a mandrel containing product as the mandrel is moved in the path of travel,
a rotary flap tucker device folding a panel against the manufacturer's flap including plates for engaging and folding the flap and panel,
and an elongate hold down rail positioned adjacent the plow device and having a front end mounted for vertical pivotal movement, said rail engaging and holding the blank in position for tucking, and pivoting upwardly in response to a blank or product projecting upwardly beyond the associated mandrel, and a sensor mounted downstream end producing a signal in response to upward pivoting movement at the rail to indicate an unacceptable product.
2. The apparatus as defined in claim 1 wherein the mandrel conveyor includes a plurality of conveyor elements, means mounting the mandrels on the conveyor elements to permit ready placement of one size mandrel for another size mandrel.
3. The apparatus as defined in claim 1 wherein said power means comprises a precision electrically controlled motion generating device (PECMGD).
4. The apparatus as defined in claim 3 wherein the PECMGD is a servomotor.
5. The apparatus as defined in claim 1 wherein each mandrel has a blank positioning and containment guide plate secured thereto, said guide plate engaging a notch in the blank for maintaining proper position of the blank as it folded around the mandrel by the folding plow device.
6. The apparatus as defined in claim 1 and an adjustable blank guide element mounted adjacent the mandrel conveyor and engaging a notch in the blank during movement of each mandrel and blank in downstream direction for maintaining the blank in proper position for folding by the folding plow device.
7. The apparatus as defined in claim 1 and a rotary compression device including compression plates and rotary driven member, each compression plate being pivotally mounted on the driven member, each compression plate engaging an compressing two blank flaps against each and against a mandrel as the latter moves downstream, the pivotal connection of each compression plate permitting precise alignment of each plate with the associated mandrel, and a precision electrically controlled motion generating device connected to the rotary compression device and designed and programmed to monitor and vary the compression force, and to automatically adjust position so that a uniform and consistent force is applied regardless of angle or position of mandrel engaged by a compression plate.
8. An apparatus for continuously folding, forming and compressing a blank around a product, comprising
a mandrel conveyor including a plurality of similar mandrels, for containing a product, power means for moving the mandrel from an upstream end to a downstream end,
a magazine containing a supply of vertically disposed blanks and having a discharge end, toothed conveyor means engaging bottom edges of the blanks for moving the blanks to the discharge end,
means receiving blanks from the magazine and continuously conveying vertically disposed blanks one at a time to the mandrel conveyor in confronting relation with a mandrel during movement of the mandrel,
each blank being scored and cut to define a plurality of panels and flaps, the lower most flap comprising a manufacturer's flap, means engaging and folding the manufacturer's flap 180° against a mandrel as the blank is conveyed to the mandrel conveyor, means for applying glue to the exterior surface of the manufacturer's flap of a blank as the blank is conveyed to mandrel conveyor, the manufacturer's flap upon release from the folding means forming an angle of approximately 90° with respect to the blank.
9. The apparatus as defined in claim 8 wherein the means for conveying the blanks to the mandrel conveyor includes a conveyor and nip roller assembly including a belt conveyor, a driven nip roller having a flat surface portion disposed in opposed relation with the belt conveyor and cooperating therewith to convey each blank in a vertically square position with respect to the mandrel conveyor.
10. The apparatus as defined in claim 8 and a finger drive belt assembly positioned above the blanks and including a driven belt having a plurality of flexible fingers secured thereto, means for driving the belt assembly at speed slightly faster than the speed at which the blanks are conveyed to the discharge end, said flexible fingers engaging the top edges of the blanks and flexing in response to the engagement to impart a resistive force to the blanks to insure proper positioning of the blanks as each blank is removed form the magazine.
11. The apparatus as defined in claim 8 wherein the nip roller is shiftable between a blank engaging position and an open position, said nip roller being shiftable away from the belt conveyer when in the open position to enable clearing of jammed blanks therefrom.
12. The apparatus as defined in claim 8 wherein the discharge end of the magazine has a picking side where blanks are picked and moved laterally from the magazine, and an opposed side, a plate pivotally mounted on the opposed side engaging the forward most blank to properly position each blank for proper picking and removal from the magazine, means engaging and yieldable urging the plate against a blank.
13. The apparatus as defined in claim 8 and upper and lower air jets positioned above and below the magazine and connected to a source of air under pressure and discharged compressed air into the blanks adjacent the discharge end of the magazine.
14. A packaging apparatus for forming a blank into a carton around a product,
an elongate mandrel conveyor including a plurality of mandrels for containing and conveying product,
power means for moving the mandrel conveyor in a predetermined path of travel from an upstream end to a downstream end,
a conditioning conveyor system positioned upstream of the mandrel conveyor for receiving product delivered to the conditioning conveyor system, and positioning, compressing and precisely dropping product sequentially into mandrels, said conditioning conveyor including an elongate table having elongate longitudinally extending slots therein and receiving product delivered thereto,
said conditioning conveyor including horizontally disposed endless conveyor members having a plurality of fingered flights secured thereto, the lower run of the conveyor members moving in a downstream direction, each flight having fingers secured thereto and underlying and supporting product as the product is moved by the flights,
second horizontally disposed endless conveyor members each having a plurality of compression flights secured thereto, each compression flight cooperating with a fingered flight to first compress a product and thereafter precisely drop a product into mandrel as the product is moved downstream.
15. The apparatus as defined in claim 14 and a pair of precision electrically controlled motion generating devices each being operatively connected to one of the finger flight conveyor members or the compression flight conveyor members to programmatically vary the distance between fingered and compression flight, and to precisely and quickly control the force for driving the flights
16. A packaging apparatus for forming a blank into a carton around a product,
an elongate mandrel conveyor including a plurality of mandrels for containing and conveying product, means for moving the mandrel conveyor from an upstream end to a downstream end,
means for folding and sealing a blank into a sleeve around a mandrel containing product, the blank sleeve having a pair of upper and lower flaps, and a pair of end flaps at each end,
a transfer conveyor receiving sleeve shaped blanks containing product from the mandrel conveyor and continuing movement thereof in a downstream direction, the transfer conveyor including spaced apart trailing flights engaging only the upstream end of the sleeve shaped blank,
a pair of rotary end flap tucker wheels positioned on opposite sides of the transfer conveyor engaging and folding the end flaps during movement of the transfer flight,
plow means positioned on opposite sides of the transfer conveyor downstream of the end flap tucker wheels engaging and folding the upper and flaps against the associated end flaps at each end of the sleeve to close and form the sleeve into a carton containing a product.
17. The apparatus as defined in claim 16 wherein each tucker wheel has a lobe projecting therefrom for engaging and tucking the product into a sleeve shaped blank.
18. The apparatus as defined in claim 16 and means engaging the downstream end of the carton to cause the carton to be positioned squarely against a tracking flight.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/923,644 US20060037290A1 (en) | 2004-08-23 | 2004-08-23 | Wrap around carton packaging machine |
| PCT/US2005/029606 WO2006023758A2 (en) | 2004-08-23 | 2005-08-19 | Wrap around carton packaging machine |
| US11/362,480 US7559186B2 (en) | 2004-08-23 | 2006-02-27 | Wrap around carton packaging machine |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/923,644 US20060037290A1 (en) | 2004-08-23 | 2004-08-23 | Wrap around carton packaging machine |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/362,480 Continuation-In-Part US7559186B2 (en) | 2004-08-23 | 2006-02-27 | Wrap around carton packaging machine |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060037290A1 true US20060037290A1 (en) | 2006-02-23 |
Family
ID=35908352
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/923,644 Abandoned US20060037290A1 (en) | 2004-08-23 | 2004-08-23 | Wrap around carton packaging machine |
| US11/362,480 Expired - Lifetime US7559186B2 (en) | 2004-08-23 | 2006-02-27 | Wrap around carton packaging machine |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/362,480 Expired - Lifetime US7559186B2 (en) | 2004-08-23 | 2006-02-27 | Wrap around carton packaging machine |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US20060037290A1 (en) |
| WO (1) | WO2006023758A2 (en) |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130064636A1 (en) * | 2011-09-13 | 2013-03-14 | Pete Karst | Carton feeding system |
| WO2014029494A1 (en) * | 2012-08-24 | 2014-02-27 | Khs Gmbh | Device for packaging objects |
| US20150027086A1 (en) * | 2013-07-23 | 2015-01-29 | Ashley John Beck Adams | Automatic, T-Fold Carton Erector and Sealer |
| US9409664B1 (en) * | 2011-06-29 | 2016-08-09 | Amazon Technologies, Inc. | Flexible processing module for use in order fulfillment centers |
| CN109733681A (en) * | 2019-03-18 | 2019-05-10 | 天津旭腾达自动化设备有限公司 | A kind of case unpacker |
| US10562675B2 (en) | 2015-04-29 | 2020-02-18 | Graphic Packaging International, Llc | Method and system for forming packages |
| US10640271B2 (en) | 2015-04-29 | 2020-05-05 | Graphic Packaging International, Llc | Method and system for forming packages |
| CN111605801A (en) * | 2019-02-22 | 2020-09-01 | 青岛萨沃特机器人有限公司 | Box opening device, packaging machine, and computer-readable medium |
| US11040798B2 (en) | 2017-08-09 | 2021-06-22 | Graphie Packaging International, LLC | Method and system for forming packages |
| CN113044305A (en) * | 2021-04-22 | 2021-06-29 | 歌尔股份有限公司 | Carton cover folding device |
| US11059255B2 (en) | 2015-07-14 | 2021-07-13 | Graphic Packaging International, Llc | Method and system for forming packages |
| US11198534B2 (en) | 2019-01-28 | 2021-12-14 | Graphic Packaging International, Llc | Reinforced package |
| US20220281625A1 (en) * | 2019-08-01 | 2022-09-08 | Khs Gmbh | Device and Method for Forming Bundles of Individual Packages |
| US11491755B2 (en) | 2018-07-09 | 2022-11-08 | Graphic Packaging International, Llc | Method and system for forming packages |
| CN116062243A (en) * | 2022-12-19 | 2023-05-05 | 东富龙包装技术(上海)有限公司 | Multi-station packing and palletizing machine |
| US11667097B2 (en) | 2018-11-06 | 2023-06-06 | Graphic Packaging International, Llc | Method and system for processing blanks for forming constructs |
| WO2023126804A1 (en) * | 2021-12-29 | 2023-07-06 | R.A Jones & Co. | Packaging unit for packaging articles in boxes and method for packaging articles in boxes |
| US11981103B2 (en) | 2020-12-22 | 2024-05-14 | Graphic Packaging International, Llc | End flap engagement assembly for erecting cartons and related systems and methods |
| USD1042113S1 (en) | 2020-01-24 | 2024-09-17 | Graphic Packaging International, Llc | Reinforcing carton |
| US12172405B2 (en) | 2021-12-01 | 2024-12-24 | Graphic Packaging International, Llc | Methods and systems for forming trays |
| US20250066052A1 (en) * | 2021-12-29 | 2025-02-27 | R.A Jones & Co. | Packaging unit for packaging articles in boxes and method for packaging articles in boxes |
| CN119975976A (en) * | 2025-03-15 | 2025-05-13 | 兴化意优机器人科技有限公司 | Automated unpacking robot |
| US12304677B2 (en) | 2021-12-21 | 2025-05-20 | Graphic Packaging International, Llc | Reconfigurable tray engaging assembly |
| US12459224B2 (en) | 2021-12-01 | 2025-11-04 | Graphic Packaging International, Llc | Methods and systems for forming trays |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0812201D0 (en) * | 2008-07-04 | 2008-08-13 | Meadwestvaco Packaging Systems | Packaging machine and method therefor |
| US8511048B2 (en) | 2009-06-26 | 2013-08-20 | Brenton L. Smith | Packaging forming and loading apparatus |
| WO2010151820A1 (en) * | 2009-06-26 | 2010-12-29 | Deering Curtis J | Densified particulate packaged products |
| US20140155238A1 (en) * | 2012-12-05 | 2014-06-05 | Delkor Systems, Inc. | Multiple Blank Carton Former and Carton Production Method |
| WO2018236697A1 (en) | 2017-06-23 | 2018-12-27 | Sealed Air Corporation (Us) | QUITTED CURVED ENVELOPES AND METHOD FOR FORMING SUCH CURVED CURVED ENVELOPES |
| MX2024008139A (en) * | 2021-12-29 | 2024-09-23 | Jones & Co Inc R A | UNIT AND PROCEDURE FOR PACKAGING ITEMS IN BOXES. |
| IT202200011687A1 (en) * | 2022-06-01 | 2023-12-01 | Jones & Co Inc R A | Packaging unit of articles in boxes and related packaging method |
| IT202200011699A1 (en) * | 2022-06-01 | 2023-12-01 | Jones & Co Inc R A | Device for packing items into boxes |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3521427A (en) * | 1967-08-30 | 1970-07-21 | Fibreboard Corp | Apparatus and method for erecting a carrier |
| US3875724A (en) * | 1973-07-05 | 1975-04-08 | Marinus J M Langen | Method of forming wrap-around shipper package |
| US3894380A (en) * | 1973-04-06 | 1975-07-15 | Erland Gunnar Lorantz Poulsen | Box sealer & closer |
| US4015403A (en) * | 1975-02-26 | 1977-04-05 | H. J. Langen & Sons Ltd. | Wrap-around carton forming machine |
| US4101020A (en) * | 1977-03-01 | 1978-07-18 | H. J. Langen & Sons Ltd. | Packaging machine transfer mechanism |
| US4221107A (en) * | 1978-10-27 | 1980-09-09 | H. J. Langen & Sons Ltd. | Machine for forming wrap-around shipper packages |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3986319A (en) * | 1973-02-20 | 1976-10-19 | Emhart Industries, Inc. | Wrap-around packer |
| US3879920A (en) * | 1974-01-17 | 1975-04-29 | Langen H J & Sons Ltd | Machine for forming wrap-around shipper packages |
| SE403901B (en) * | 1976-12-07 | 1978-09-11 | Sundpacma Ab | METHOD AND DEVICE FOR PACKAGING GOODS UNITS IN SO-CALL WRAP-AROUND PACKAGING DURING CONTINUOUS MOVEMENT |
| US4308020A (en) * | 1978-04-27 | 1981-12-29 | H. J. Langen & Sons Limited | Mandrel of wrap-around carton forming machine to provide tight fit about enclosed item |
| US4571236A (en) * | 1983-12-05 | 1986-02-18 | R. A. Jones & Co. Inc. | Carton squaring mechanism |
-
2004
- 2004-08-23 US US10/923,644 patent/US20060037290A1/en not_active Abandoned
-
2005
- 2005-08-19 WO PCT/US2005/029606 patent/WO2006023758A2/en not_active Ceased
-
2006
- 2006-02-27 US US11/362,480 patent/US7559186B2/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3521427A (en) * | 1967-08-30 | 1970-07-21 | Fibreboard Corp | Apparatus and method for erecting a carrier |
| US3894380A (en) * | 1973-04-06 | 1975-07-15 | Erland Gunnar Lorantz Poulsen | Box sealer & closer |
| US3875724A (en) * | 1973-07-05 | 1975-04-08 | Marinus J M Langen | Method of forming wrap-around shipper package |
| US4015403A (en) * | 1975-02-26 | 1977-04-05 | H. J. Langen & Sons Ltd. | Wrap-around carton forming machine |
| US4101020A (en) * | 1977-03-01 | 1978-07-18 | H. J. Langen & Sons Ltd. | Packaging machine transfer mechanism |
| US4221107A (en) * | 1978-10-27 | 1980-09-09 | H. J. Langen & Sons Ltd. | Machine for forming wrap-around shipper packages |
Cited By (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9409664B1 (en) * | 2011-06-29 | 2016-08-09 | Amazon Technologies, Inc. | Flexible processing module for use in order fulfillment centers |
| US20130064636A1 (en) * | 2011-09-13 | 2013-03-14 | Pete Karst | Carton feeding system |
| US8870519B2 (en) * | 2011-09-13 | 2014-10-28 | Graphic Packaging International, Inc. | Carton feeding system |
| WO2014029494A1 (en) * | 2012-08-24 | 2014-02-27 | Khs Gmbh | Device for packaging objects |
| US20150027086A1 (en) * | 2013-07-23 | 2015-01-29 | Ashley John Beck Adams | Automatic, T-Fold Carton Erector and Sealer |
| US9422071B2 (en) * | 2013-07-23 | 2016-08-23 | Ashley John Beck Adams | Automatic, T-fold carton erector and sealer |
| US11518133B2 (en) | 2015-04-29 | 2022-12-06 | Graphic Packaging International, Llc | Method and system for forming packages |
| US10562675B2 (en) | 2015-04-29 | 2020-02-18 | Graphic Packaging International, Llc | Method and system for forming packages |
| US10640271B2 (en) | 2015-04-29 | 2020-05-05 | Graphic Packaging International, Llc | Method and system for forming packages |
| US11325336B2 (en) | 2015-04-29 | 2022-05-10 | Graphic Packaging International, Llc | Method and system for forming packages |
| US11059255B2 (en) | 2015-07-14 | 2021-07-13 | Graphic Packaging International, Llc | Method and system for forming packages |
| US11040798B2 (en) | 2017-08-09 | 2021-06-22 | Graphie Packaging International, LLC | Method and system for forming packages |
| US11760534B2 (en) | 2017-08-09 | 2023-09-19 | Graphic Packaging International, Llc | Method and system for forming packages |
| US11491755B2 (en) | 2018-07-09 | 2022-11-08 | Graphic Packaging International, Llc | Method and system for forming packages |
| US11667097B2 (en) | 2018-11-06 | 2023-06-06 | Graphic Packaging International, Llc | Method and system for processing blanks for forming constructs |
| US11198534B2 (en) | 2019-01-28 | 2021-12-14 | Graphic Packaging International, Llc | Reinforced package |
| CN111605801A (en) * | 2019-02-22 | 2020-09-01 | 青岛萨沃特机器人有限公司 | Box opening device, packaging machine, and computer-readable medium |
| CN109733681A (en) * | 2019-03-18 | 2019-05-10 | 天津旭腾达自动化设备有限公司 | A kind of case unpacker |
| US20220281625A1 (en) * | 2019-08-01 | 2022-09-08 | Khs Gmbh | Device and Method for Forming Bundles of Individual Packages |
| US11905047B2 (en) * | 2019-08-01 | 2024-02-20 | Khs Gmbh | Device and method for forming bundles of individual packages |
| USD1042113S1 (en) | 2020-01-24 | 2024-09-17 | Graphic Packaging International, Llc | Reinforcing carton |
| US11981103B2 (en) | 2020-12-22 | 2024-05-14 | Graphic Packaging International, Llc | End flap engagement assembly for erecting cartons and related systems and methods |
| CN113044305A (en) * | 2021-04-22 | 2021-06-29 | 歌尔股份有限公司 | Carton cover folding device |
| US12459224B2 (en) | 2021-12-01 | 2025-11-04 | Graphic Packaging International, Llc | Methods and systems for forming trays |
| US12472716B2 (en) | 2021-12-01 | 2025-11-18 | Graphic Packaging International, Llc | Methods and systems for forming trays |
| US12172405B2 (en) | 2021-12-01 | 2024-12-24 | Graphic Packaging International, Llc | Methods and systems for forming trays |
| US12304677B2 (en) | 2021-12-21 | 2025-05-20 | Graphic Packaging International, Llc | Reconfigurable tray engaging assembly |
| US20250066056A1 (en) * | 2021-12-29 | 2025-02-27 | R.A Jones & Co. | Packaging unit for packaging articles in boxes and method for packaging articles in boxes |
| US20250066052A1 (en) * | 2021-12-29 | 2025-02-27 | R.A Jones & Co. | Packaging unit for packaging articles in boxes and method for packaging articles in boxes |
| WO2023126804A1 (en) * | 2021-12-29 | 2023-07-06 | R.A Jones & Co. | Packaging unit for packaging articles in boxes and method for packaging articles in boxes |
| CN116062243A (en) * | 2022-12-19 | 2023-05-05 | 东富龙包装技术(上海)有限公司 | Multi-station packing and palletizing machine |
| CN119975976A (en) * | 2025-03-15 | 2025-05-13 | 兴化意优机器人科技有限公司 | Automated unpacking robot |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2006023758A3 (en) | 2007-04-05 |
| US7559186B2 (en) | 2009-07-14 |
| US20060162295A1 (en) | 2006-07-27 |
| WO2006023758A2 (en) | 2006-03-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20060037290A1 (en) | Wrap around carton packaging machine | |
| EP3746365B1 (en) | Continuous motion packaging machine with carton turning station | |
| US6571539B2 (en) | Packaging machine and method of carton set up | |
| US7695421B2 (en) | Rotary carton feeder | |
| US4160406A (en) | Method and apparatus for erecting a carton | |
| US3504478A (en) | Auxiliary end flap sealer for cartoning machine | |
| GB2141093A (en) | Erecting trays about their contents | |
| CN111936390B (en) | Packaging machine with carton feeding system | |
| JP2002308220A (en) | High speed wrap-around multipacker | |
| US4012999A (en) | Apparatus for forming trays | |
| US20050079966A1 (en) | Positioning apparatus for container forming machine | |
| US5775064A (en) | Cartoning machine | |
| US6557321B1 (en) | Apparatus for forming a pack | |
| EP1334910B1 (en) | Packaging machine | |
| US20250066051A1 (en) | Unit and method for packaging articles in boxes | |
| CA1151990A (en) | Packing and capping machine | |
| JPH0398810A (en) | Assembly packaging apparatus | |
| KR100536306B1 (en) | Guide mechanism for a packaging machine | |
| JP2002011808A (en) | Box manufacturing apparatus | |
| EP1757521A1 (en) | A machine for packing products in cases | |
| CA1167754A (en) | Packing and capping machine | |
| EP1240082B1 (en) | Packaging machine and apparatus for tightening wraparound cartons | |
| WO2005044700A1 (en) | Positioning apparatus for container forming machine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |