US20060003932A1 - Method for promoting neovascularization - Google Patents
Method for promoting neovascularization Download PDFInfo
- Publication number
- US20060003932A1 US20060003932A1 US11/145,340 US14534005A US2006003932A1 US 20060003932 A1 US20060003932 A1 US 20060003932A1 US 14534005 A US14534005 A US 14534005A US 2006003932 A1 US2006003932 A1 US 2006003932A1
- Authority
- US
- United States
- Prior art keywords
- tweak
- bfgf
- angiogenic factor
- cells
- formulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 206010029113 Neovascularisation Diseases 0.000 title claims abstract description 10
- 230000001737 promoting effect Effects 0.000 title description 3
- 239000000203 mixture Substances 0.000 claims abstract description 42
- 239000002870 angiogenesis inducing agent Substances 0.000 claims abstract description 38
- 238000009472 formulation Methods 0.000 claims abstract description 36
- 239000000556 agonist Substances 0.000 claims abstract description 35
- 230000002491 angiogenic effect Effects 0.000 claims abstract description 15
- 230000002708 enhancing effect Effects 0.000 claims abstract description 7
- 210000004027 cell Anatomy 0.000 claims description 60
- 210000002889 endothelial cell Anatomy 0.000 claims description 35
- 230000035755 proliferation Effects 0.000 claims description 21
- 230000033115 angiogenesis Effects 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 15
- 230000012010 growth Effects 0.000 claims description 11
- 238000004113 cell culture Methods 0.000 claims description 10
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 claims description 8
- 241000124008 Mammalia Species 0.000 claims description 8
- 238000000338 in vitro Methods 0.000 claims description 8
- 230000004663 cell proliferation Effects 0.000 claims description 5
- 230000002500 effect on skin Effects 0.000 claims description 5
- 208000014674 injury Diseases 0.000 claims description 5
- 102000009088 Angiopoietin-1 Human genes 0.000 claims description 4
- 108010048154 Angiopoietin-1 Proteins 0.000 claims description 4
- 108010048036 Angiopoietin-2 Proteins 0.000 claims description 4
- 210000000988 bone and bone Anatomy 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 208000028867 ischemia Diseases 0.000 claims description 4
- 230000001404 mediated effect Effects 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 4
- 210000005166 vasculature Anatomy 0.000 claims description 4
- 230000029663 wound healing Effects 0.000 claims description 4
- 208000025865 Ulcer Diseases 0.000 claims description 3
- 210000002950 fibroblast Anatomy 0.000 claims description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 3
- 210000003205 muscle Anatomy 0.000 claims description 3
- 230000002107 myocardial effect Effects 0.000 claims description 3
- 231100000397 ulcer Toxicity 0.000 claims description 3
- 210000004509 vascular smooth muscle cell Anatomy 0.000 claims description 3
- 208000034693 Laceration Diseases 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims description 2
- 230000009986 erectile function Effects 0.000 claims description 2
- 230000000302 ischemic effect Effects 0.000 claims description 2
- 230000008733 trauma Effects 0.000 claims description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 claims 16
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims 16
- 101710155857 C-C motif chemokine 2 Proteins 0.000 claims 6
- 102000000018 Chemokine CCL2 Human genes 0.000 claims 6
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 claims 6
- 210000004962 mammalian cell Anatomy 0.000 claims 4
- 102000009075 Angiopoietin-2 Human genes 0.000 claims 3
- 210000000845 cartilage Anatomy 0.000 claims 2
- 239000003112 inhibitor Substances 0.000 claims 2
- 239000006143 cell culture medium Substances 0.000 claims 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 claims 1
- 210000003556 vascular endothelial cell Anatomy 0.000 claims 1
- 101710097155 Tumor necrosis factor ligand superfamily member 12 Proteins 0.000 description 94
- 102100024584 Tumor necrosis factor ligand superfamily member 12 Human genes 0.000 description 94
- 108090000623 proteins and genes Proteins 0.000 description 61
- 235000018102 proteins Nutrition 0.000 description 54
- 102000004169 proteins and genes Human genes 0.000 description 54
- 108090000765 processed proteins & peptides Proteins 0.000 description 41
- 102000004196 processed proteins & peptides Human genes 0.000 description 31
- 230000001225 therapeutic effect Effects 0.000 description 27
- 229920001184 polypeptide Polymers 0.000 description 25
- 229940024606 amino acid Drugs 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 22
- 150000001413 amino acids Chemical class 0.000 description 21
- 108020004414 DNA Proteins 0.000 description 19
- 239000012634 fragment Substances 0.000 description 19
- 235000002639 sodium chloride Nutrition 0.000 description 18
- -1 retenoids Substances 0.000 description 17
- 150000007523 nucleic acids Chemical class 0.000 description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 15
- 239000013598 vector Substances 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 13
- 102000039446 nucleic acids Human genes 0.000 description 12
- 108020004707 nucleic acids Proteins 0.000 description 12
- 239000003814 drug Substances 0.000 description 11
- 239000002502 liposome Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000000499 gel Substances 0.000 description 10
- 230000008439 repair process Effects 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 9
- 108091033319 polynucleotide Proteins 0.000 description 9
- 102000040430 polynucleotide Human genes 0.000 description 9
- 239000002157 polynucleotide Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 125000000539 amino acid group Chemical group 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 230000005012 migration Effects 0.000 description 8
- 238000013508 migration Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 230000002792 vascular Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 7
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 238000002703 mutagenesis Methods 0.000 description 7
- 231100000350 mutagenesis Toxicity 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 239000013589 supplement Substances 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 6
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 229920002472 Starch Polymers 0.000 description 6
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 6
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000002950 deficient Effects 0.000 description 6
- 239000007884 disintegrant Substances 0.000 description 6
- 229940126864 fibroblast growth factor Drugs 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 230000008520 organization Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 229940032147 starch Drugs 0.000 description 6
- 210000002784 stomach Anatomy 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- 230000037314 wound repair Effects 0.000 description 6
- 102000009123 Fibrin Human genes 0.000 description 5
- 108010073385 Fibrin Proteins 0.000 description 5
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 5
- 101000830598 Homo sapiens Tumor necrosis factor ligand superfamily member 12 Proteins 0.000 description 5
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 5
- 102100040247 Tumor necrosis factor Human genes 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 230000001640 apoptogenic effect Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000013270 controlled release Methods 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 229950003499 fibrin Drugs 0.000 description 5
- 102000058177 human TNFSF12 Human genes 0.000 description 5
- 238000001802 infusion Methods 0.000 description 5
- 102000006495 integrins Human genes 0.000 description 5
- 108010044426 integrins Proteins 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 102000035195 Peptidases Human genes 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 229940014259 gelatin Drugs 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 4
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000006199 nebulizer Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- 229960001322 trypsin Drugs 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- 241000699800 Cricetinae Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 3
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 108010004729 Phycoerythrin Proteins 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 230000012292 cell migration Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 235000021313 oleic acid Nutrition 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000003380 propellant Substances 0.000 description 3
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 239000011257 shell material Substances 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 229960004793 sucrose Drugs 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108010029697 CD40 Ligand Proteins 0.000 description 2
- 102100032937 CD40 ligand Human genes 0.000 description 2
- 101100381481 Caenorhabditis elegans baz-2 gene Proteins 0.000 description 2
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 2
- 108090000317 Chymotrypsin Proteins 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 241000283074 Equus asinus Species 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010039471 Fas Ligand Protein Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000009465 Growth Factor Receptors Human genes 0.000 description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 102100021866 Hepatocyte growth factor Human genes 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 206010061216 Infarction Diseases 0.000 description 2
- 102000004890 Interleukin-8 Human genes 0.000 description 2
- 108090001007 Interleukin-8 Proteins 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 108091061960 Naked DNA Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 208000018262 Peripheral vascular disease Diseases 0.000 description 2
- 101100372762 Rattus norvegicus Flt1 gene Proteins 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- 102100031372 Thymidine phosphorylase Human genes 0.000 description 2
- 108700023160 Thymidine phosphorylases Proteins 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 239000007640 basal medium Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229960002376 chymotrypsin Drugs 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 229960000633 dextran sulfate Drugs 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 210000001198 duodenum Anatomy 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 229940060367 inert ingredients Drugs 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 2
- 229940096397 interleukin-8 Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000001638 lipofection Methods 0.000 description 2
- 239000007937 lozenge Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229940071648 metered dose inhaler Drugs 0.000 description 2
- 210000004925 microvascular endothelial cell Anatomy 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 2
- 210000001147 pulmonary artery Anatomy 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 230000000250 revascularization Effects 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 229960004072 thrombin Drugs 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 210000003606 umbilical vein Anatomy 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical compound CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- IZUAHLHTQJCCLJ-UHFFFAOYSA-N (2-chloro-1,1,2,2-tetrafluoroethyl) hypochlorite Chemical compound FC(F)(Cl)C(F)(F)OCl IZUAHLHTQJCCLJ-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- VUQPJRPDRDVQMN-UHFFFAOYSA-N 1-chlorooctadecane Chemical class CCCCCCCCCCCCCCCCCCCl VUQPJRPDRDVQMN-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940080296 2-naphthalenesulfonate Drugs 0.000 description 1
- WMPPDTMATNBGJN-UHFFFAOYSA-N 2-phenylethylbromide Chemical class BrCCC1=CC=CC=C1 WMPPDTMATNBGJN-UHFFFAOYSA-N 0.000 description 1
- CDOUZKKFHVEKRI-UHFFFAOYSA-N 3-bromo-n-[(prop-2-enoylamino)methyl]propanamide Chemical compound BrCCC(=O)NCNC(=O)C=C CDOUZKKFHVEKRI-UHFFFAOYSA-N 0.000 description 1
- ZRPLANDPDWYOMZ-UHFFFAOYSA-N 3-cyclopentylpropionic acid Chemical compound OC(=O)CCC1CCCC1 ZRPLANDPDWYOMZ-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-M 3-phenylpropionate Chemical compound [O-]C(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-M 0.000 description 1
- 238000010600 3H thymidine incorporation assay Methods 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 102100022987 Angiogenin Human genes 0.000 description 1
- 102100034608 Angiopoietin-2 Human genes 0.000 description 1
- 108090000672 Annexin A5 Proteins 0.000 description 1
- 102000004121 Annexin A5 Human genes 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 102400000432 CD40 ligand, soluble form Human genes 0.000 description 1
- 101800000267 CD40 ligand, soluble form Proteins 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 208000026005 Central nervous system vascular disease Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 206010069729 Collateral circulation Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000699679 Cricetulus migratorius Species 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010011985 Decubitus ulcer Diseases 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010056340 Diabetic ulcer Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical class C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102400000686 Endothelin-1 Human genes 0.000 description 1
- 101800004490 Endothelin-1 Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920003136 Eudragit® L polymer Polymers 0.000 description 1
- 229920003137 Eudragit® S polymer Polymers 0.000 description 1
- 108010040476 FITC-annexin A5 Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010088842 Fibrinolysin Proteins 0.000 description 1
- 108090000380 Fibroblast growth factor 5 Proteins 0.000 description 1
- 102100028073 Fibroblast growth factor 5 Human genes 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101001052035 Homo sapiens Fibroblast growth factor 2 Proteins 0.000 description 1
- 101000595923 Homo sapiens Placenta growth factor Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 102100035194 Placenta growth factor Human genes 0.000 description 1
- 102000013566 Plasminogen Human genes 0.000 description 1
- 108010051456 Plasminogen Proteins 0.000 description 1
- 229920001363 Polidocanol Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002701 Polyoxyl 40 Stearate Polymers 0.000 description 1
- 229920001219 Polysorbate 40 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 229920002642 Polysorbate 65 Polymers 0.000 description 1
- 208000004210 Pressure Ulcer Diseases 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 101710149951 Protein Tat Proteins 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 235000015125 Sterculia urens Nutrition 0.000 description 1
- 240000001058 Sterculia urens Species 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 208000007107 Stomach Ulcer Diseases 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 108091008605 VEGF receptors Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 208000000558 Varicose Ulcer Diseases 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 1
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 1
- 206010054880 Vascular insufficiency Diseases 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- VRGWBRLULZUWAJ-XFFXIZSCSA-N [(2s)-2-[(1r,3z,5s,8z,12z,15s)-5,17-dihydroxy-4,8,12,15-tetramethyl-16-oxo-18-bicyclo[13.3.0]octadeca-3,8,12,17-tetraenyl]propyl] acetate Chemical compound C1\C=C(C)/CC\C=C(C)/CC[C@H](O)\C(C)=C/C[C@@H]2C([C@@H](COC(C)=O)C)=C(O)C(=O)[C@]21C VRGWBRLULZUWAJ-XFFXIZSCSA-N 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 210000002945 adventitial reticular cell Anatomy 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000012387 aerosolization Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000006427 angiogenic response Effects 0.000 description 1
- 108010072788 angiogenin Proteins 0.000 description 1
- 229960004977 anhydrous lactose Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003831 antifriction material Substances 0.000 description 1
- 210000003433 aortic smooth muscle cell Anatomy 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N beta-phenylpropanoic acid Natural products OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229910000394 calcium triphosphate Inorganic materials 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000012219 cassette mutagenesis Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- WZNRVWBKYDHTKI-UHFFFAOYSA-N cellulose, acetate 1,2,4-benzenetricarboxylate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.OC(=O)C1=CC(C(=O)O)=CC=C1C(=O)OCC1C(OC2C(C(OC(=O)C=3C(=CC(=CC=3)C(O)=O)C(O)=O)C(OC(=O)C=3C(=CC(=CC=3)C(O)=O)C(O)=O)C(COC(=O)C=3C(=CC(=CC=3)C(O)=O)C(O)=O)O2)OC(=O)C=2C(=CC(=CC=2)C(O)=O)C(O)=O)C(OC(=O)C=2C(=CC(=CC=2)C(O)=O)C(O)=O)C(OC(=O)C=2C(=CC(=CC=2)C(O)=O)C(O)=O)C(OC(=O)C=2C(=CC(=CC=2)C(O)=O)C(O)=O)O1 WZNRVWBKYDHTKI-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 230000007748 combinatorial effect Effects 0.000 description 1
- 238000002742 combinatorial mutagenesis Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 229940000986 dextran 110 Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 150000008050 dialkyl sulfates Chemical class 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- GAFRWLVTHPVQGK-UHFFFAOYSA-N dipentyl sulfate Chemical class CCCCCOS(=O)(=O)OCCCCC GAFRWLVTHPVQGK-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 108010007093 dispase Proteins 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- GDCRSXZBSIRSFR-UHFFFAOYSA-N ethyl prop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CCOC(=O)C=C GDCRSXZBSIRSFR-UHFFFAOYSA-N 0.000 description 1
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 1
- 230000008622 extracellular signaling Effects 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- VRGWBRLULZUWAJ-UHFFFAOYSA-N fusaproliferin Natural products C1C=C(C)CCC=C(C)CCC(O)C(C)=CCC2C(C(COC(C)=O)C)=C(O)C(=O)C21C VRGWBRLULZUWAJ-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229940106780 human fibrinogen Drugs 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 230000021995 interleukin-8 production Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 229950006462 lauromacrogol 400 Drugs 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 210000004924 lung microvascular endothelial cell Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229940037627 magnesium lauryl sulfate Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- HBNDBUATLJAUQM-UHFFFAOYSA-L magnesium;dodecyl sulfate Chemical compound [Mg+2].CCCCCCCCCCCCOS([O-])(=O)=O.CCCCCCCCCCCCOS([O-])(=O)=O HBNDBUATLJAUQM-UHFFFAOYSA-L 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 208000037891 myocardial injury Diseases 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000008184 oral solid dosage form Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- RFWLACFDYFIVMC-UHFFFAOYSA-D pentacalcium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O RFWLACFDYFIVMC-UHFFFAOYSA-D 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229940075930 picrate Drugs 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-M picrate anion Chemical compound [O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-M 0.000 description 1
- 229950010765 pivalate Drugs 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229940012957 plasmin Drugs 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010483 polyoxyethylene sorbitan monopalmitate Nutrition 0.000 description 1
- 239000000249 polyoxyethylene sorbitan monopalmitate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 235000010988 polyoxyethylene sorbitan tristearate Nutrition 0.000 description 1
- 239000001816 polyoxyethylene sorbitan tristearate Substances 0.000 description 1
- 229940099429 polyoxyl 40 stearate Drugs 0.000 description 1
- 229940101027 polysorbate 40 Drugs 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 229940099511 polysorbate 65 Drugs 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002744 polyvinyl acetate phthalate Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 229930185346 proliferin Natural products 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 230000029983 protein stabilization Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- VGGUKFAVHPGNBF-UHFFFAOYSA-N s-ethyl 2,2,2-trifluoroethanethioate Chemical compound CCSC(=O)C(F)(F)F VGGUKFAVHPGNBF-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 235000021309 simple sugar Nutrition 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical group [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 238000009495 sugar coating Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 230000007755 survival signaling Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 150000003595 thromboxanes Chemical class 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- 208000023577 vascular insufficiency disease Diseases 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229940070384 ventolin Drugs 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000007279 water homeostasis Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229930195727 α-lactose Natural products 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/069—Vascular Endothelial cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/177—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1825—Fibroblast growth factor [FGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P41/00—Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/14—Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/165—Vascular endothelial growth factor [VEGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/25—Tumour necrosing factors [TNF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/998—Proteins not provided for elsewhere
Definitions
- the present invention relates to a method for enhancing angiogenic activity to promote neovascularization.
- EC endothelial cell
- Angiogenic regulators induce changes in endothelial cells (EC) at a variety of levels, including their proliferative, migratory, secretory, and adhesive properties, and may do so through their action on ECs or other cell types (Kumar et al, 1998, Int. J. Oncology 12:749-757; Bussolino et al., 1997, Trends in Biochem, 22:251-256).
- TNF family ligands previously have been implicated in the process of angiogenesis, namely TNF ⁇ , FasL and TWEAK.
- TWEAK a novel member of the TNF ligand family, may promote angiogenesis based on its ability to induce IL-8 production by several epithelial tumor cell lines, proliferation in various human EC and aortic smooth muscle cells under reduced growth factor conditions, and stimulation of an angiogenic response when implanted in rat corneas.
- TWEAK synergizes with Fibroblast Growth Factor (FGF) to induce proliferation and migration of EC's. While TWEAK weakly promotes EC survival, the synergistic effect of TWEAK and FGF on EC proliferation appears to be due to potentiation of cell division rather than decreased cell death.
- FGF Fibroblast Growth Factor
- TWEAK also did not detectably alter the expression of receptors for FGF or VEGF, or expression of the integrins ⁇ 1 , ⁇ 5 , ⁇ v , ⁇ 1 , or ⁇ 3 .
- the ability of TWEAK to induce ECs to form capillaries in the absence of other cell types was demonstrated in a 3D fibrin gel matrix where, strikingly, TWEAK induced the morphogenesis of lumens in invading, bFGF-dependent EC cords.
- Our findings further distinguish TWEAK from other TNF family ligands, demonstrating its ability to promote angiogenesis at multiple discrete stages.
- One aspect of the present invention is a method for enhancing endothelial cell proliferation in an in vitro culture comprising adding to said culture, a formulation consisting essentially of a synergistically effective amount of a TWEAK agonist and an angiogenic factor.
- a second aspect of the present invention is a method for enhancing angiogenic activity in a mammal to promote neovascularization comprising the step of administering to said mammal a formulation comprising a synergistically effective amount of a TWEAK agonist and an angiogenic factor sufficient to promote neovascularization.
- a preferred embodiment is the use of bFGF.
- FIG. 1 illustrates the effect of TWEAK on bFGF-dependent HUVEC proliferation.
- FIG. 2 illustrates the effect of TWEAK on HUVEC death.
- FIG. 3 illustrates the effect of TWEAK on bFGF-dependent HUVEC migration.
- FIG. 4 depicts the synergistic effect of TWEAK and bFGF on capillary tube formation.
- angiogenesis As used herein the terms, “angiogenesis,” “revascularization,” “increased collateral circulation,” and “regeneration of blood vessels” are considered as synonymous.
- Angiogenesis is defined as any alteration of an existing vascular bed or the formation of new vasculature which benefits tissue perfusion. This includes the formation of new vessels by sprouting of endothelial cells from existing blood vessels or the remodeling of existing vessels to alter size, maturity, direction or flow properties to improve blood perfusion of tissues.
- a therapeutic is said to have “therapeutic efficacy” in modulating angiogenesis and an amount of the therapeutic is said to be a “angiogenic modulatory amount”, if administration of that amount of the therapeutic is sufficient to cause a significant modulation (i.e., increase or decrease) in angiogenic activity when administered to a subject (e.g., an animal model or human patient) needing modulation of angiogenesis.
- angiogenic factor refers to factors which promote the angiogenic process, including but not limited to the following phases of the process, ie. the degradation of the extracellular matrix, cell proliferation, cell migration and structural organization (Kumar et al, 1998, Int. J. Oncology 12:749-757; Bussolino et al., 1997, Trends in Biochem, 22:251-256).
- Angiogenic factors include but are not limited to fibroblast growth factor (bFGF), acidic FGF (aFGF), FGF-5, vascular endothelial growth factor isoforms (VEGF), angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2), Platelet-derived endothelial cell growth factor (PD-ECGF), hepatocyte growth factor (HGF), interleukin-8 (IL-8), granulocyte-colony stimulating factor (G-CSF), placental growth factor, proliferin, B61, soluble vascular cell adhesion molecular-1, soluble E-selection, 12-hydrozyeicosatetraenoic acid, Tat protein of HIV-1, angiogenin, TNF ⁇ , FasL, Transforming growth factor- ⁇ .
- bFGF fibroblast growth factor
- aFGF acidic FGF
- FGF-5 vascular endothelial growth factor isoforms
- VEGF vascular endo
- the ability of TWEAK to act synergistically with another angiogenic factor means that the combination of TWEAK and the angiogenic factor induce a response that is greater than the sum of the responses to either agent alone, as measured in one or more in vitro assays which measure stages of the angiogenic process. These include but are not limited to endothelial cell survival, proliferation, migration, or capillary tube formation, as described herein.
- pharmaceutically acceptable when referring to a natural or synthetic substance means that the substance has an acceptable toxic effect in view of its much greater beneficial effect, while the related the term, “physiologically acceptable,” means the substance has relatively low toxicity.
- antibody homolog includes intact antibodies consisting of immunoglobulin light and heavy chains linked via disulfide bonds.
- antibody homolog is also intended to encompass a TWEAK therapeutic comprising one or more polypeptides selected from immunoglobulin light chains, immunoglobulin heavy chains and antigen-binding fragments thereof which are capable of binding to one or more antigens (i.e., TWEAK or patched).
- TWEAK TWEAK or patched.
- the component polypeptides of an antibody homolog composed of more than one polypeptide may optionally be disulfide-bound or otherwise covalently crosslinked.
- antibody homologs include intact immunoglobulins of types IgA, IgG, IgE, IgD, IgM (as well as subtypes thereof), wherein the light chains of the immunoglobulin may be of types kappa or lambda or portions of intact antibodies that retain antigen-binding specificity, for example, Fab fragments, Fab′ fragments, F(ab′)2 fragments, F(v) fragments, heavy chain monomers or dimers, light chain monomers or dimers, dimers consisting of one heavy and one light chain, and the like.
- a “humanized antibody homolog” is an antibody homolog, produced by recombinant DNA technology, in which some or all of the amino acids of a human immunoglobulin light or heavy chain that are not required for antigen binding have been substituted for the corresponding amino acids from a nonhuman mammalian immunoglobulin light or heavy chain.
- a “human antibody homolog” is an antibody homolog in which all the amino acids of an immunoglobulin light or heavy chain (regardless of whether or not they are required for antigen binding) are derived from a human source.
- amino acid is a monomeric unit of a peptide, polypeptide, or protein. There are twenty amino acids found in naturally occurring peptides, polypeptides and proteins, all of which are L-isomers. The term also includes analogs of the amino acids and D-isomers of the protein amino acids and their analogs.
- bioavailability refers to the ability of a compound to be absorbed by the body after administration. For instance, a first compound has greater bioavailability than a second compound if, when both are administered in equal amounts, the first compound is absorbed into the blood to a greater extent than the second compound.
- an “expression vector” is a polynucleotide, such as a DNA plasmid or phage (among other common examples) which allows expression of at least one gene when the expression vector is introduced into a host cell.
- the vector may, or may not, be able to replicate in a cell.
- extracellular signaling protein means any protein that is either secreted from a cell, or is associated with the cell membrane, and upon binding to the receptor for that protein on a target cell, triggers a response in the target cell.
- a “functional equivalent” of an amino acid residue is (i) an amino acid having similar reactive properties as the amino acid residue that was replaced by the functional equivalent; (ii) an amino acid of a ligand of a polypeptide of the invention, the amino acid having similar properties as the amino acid residue that was replaced by the functional equivalent; (iii) a non-amino acid molecule having similar properties as the amino acid residue that was replaced by the functional equivalent.
- Heterologous promoter as used herein is a promoter which is not naturally associated with a gene or a purified nucleic acid.
- Homology and “identity” each refer to sequence similarity between two polypeptide sequences, and both ‘homology and ‘identity’ are used interchangeably in this disclosure. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same amino acid residue, then the polypeptides can be referred to as identical at that position; when the equivalent site is occupied by the same amino acid (e.g., identical) or a similar amino acid (e.g., similar in steric and/or electronic nature), then the molecules can be refered to as homologous at that position. A percentage of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An “unrelated” or “non-homologous” sequence shares less than 40 percent identity, though preferably less than 25 percent identity, with a sequence of the present invention.
- the two sequences are 60% homologous.
- the DNA sequences CTGACT and CAGGTT share 50% homology (3 of the 6 total positions are matched).
- a comparison is made when two sequences are aligned to give maximum homology.
- Such alignment can be provided using, for instance, the method of Needleman et al., J. Mol Biol. 48: 443-453 (1970), implemented conveniently by computer programs described in more detail below.
- Homologous sequences share identical or similar amino acid residues, where similar residues are conservative substitutions for, or “allowed point mutations” of, corresponding amino acid residues in an aligned reference sequence.
- a “conservative substitution” of a residue in a reference sequence are those substitutions that are physically or functionally similar to the corresponding reference residues, e.g., that have a similar size, shape, electric charge, chemical properties, including the ability to form covalent or hydrogen bonds, or the like.
- Particularly preferred conservative substitutions are those fulfilling the criteria defined for an “accepted point mutation” in Dayhoff et al., 5: Atlas of Protein Sequence and Structure, 5: Suppl. 3, chapter 22: 354-352, Nat. Biomed. Res. Foundation, Washington, D.C. (1978).
- gapped BLAST is used as described in Altschul et al., Nucleic Acids Res., 25: 3389 (1997).
- BLAST and Gapped BLAST the default parameters of the respective programs (XBLAST and NBLAST) are used. See http://www/ncbi.nlm.nih.gov
- hydrophobic refers to the tendency of chemical moieties with nonpolar atoms to interact with each other rather than water or other polar atoms.
- Materials that are “hydrophobic” are, for the most part, insoluble in water.
- Natural products with hydrophobic properties include lipids, fatty acids, phospholipids, sphingolipids, acylglycerols, waxes, sterols, steroids, terpenes, prostaglandins, thromboxanes, leukotrienes, isoprenoids, retenoids, biotin, and hydrophobic amino acids such as tryptophan, phenylalanine, isoleucine, leucine, valine, methionine, alanine, proline, and tyrosine.
- a chemical moiety is also hydrophobic or has hydrophobic properties if its physical properties are determined by the presence of nonpolar atoms.
- internal amino acid means any amino acid in a peptide sequence that is neither the N-terminal amino acid nor the C-terminal amino acid.
- isolated when applied to nucleic acid i.e., polynucleotide sequences that encode polypeptides, means an RNA or DNA polynucleotide, portion of genomic polynucleotide, cDNA or synthetic polynucleotide which, by virtue of its origin or manipulation: (i) is not associated with all of a polynucleotide with which it is associated in nature (e.g., is present in a host cell as an expression vector, or a portion thereof); or (ii) is linked to a nucleic acid or other chemical moiety other than that to which it is linked in nature; or (iii) does not occur in nature.
- isolated it is further meant a polynucleotide sequence that is: (i) amplified in vitro by, for example, polymerase chain reaction (PCR); (ii) synthesized chemically; (iii) produced recombinantly by cloning; or (iv) purified, as by cleavage and gel separation.
- PCR polymerase chain reaction
- isolated when applied to polypeptides means a polypeptide or a portion thereof which, by virtue of its origin or manipulation: (i) is present in a host cell as the expression product of a portion of an expression vector; or (ii) is linked to a protein or other chemical moiety other than that to which it is linked in nature; or (iii) does not occur in nature, for example, a protein that is chemically manipulated by appending, or adding at least one hydrophobic moiety to the protein so that the protein is in a form not found in nature.
- isolated it is further meant a protein that is: (i) synthesized chemically; or (ii) expressed in a host cell and purified away from associated and contaminating proteins.
- the term generally means a polypeptide that has been separated from other proteins and nucleic acids with which it naturally occurs.
- the polypeptide is also separated from substances such as antibodies or gel matrices (polyacrylamide) which are used to purify it.
- a “protein” is any polymer consisting essentially of any of the 20 amino acids. Although “polypeptide” is often used in reference to relatively large polypeptides, and “peptide” is often used in reference to small polypeptides, usage of these terms in the art overlaps and is varied.
- the term “protein” as used herein refers to peptides, proteins and polypeptides, unless otherwise noted.
- peptide(s) proteins(s) and “polypeptide(s)” are used interchangeably herein.
- polynucleotide sequence and “nucleotide sequence” are also used interchangeably herein.
- Recombinant means that a protein is derived from recombinant, mammalian expression systems.
- substantially pure nucleic acid is a nucleic acid which is not immediately contiguous with one or both of the coding sequences with which it is normally contiguous in the naturally occurring genome of the organism from which the nucleic acid is derived.
- substantially pure DNA also includes a recombinant DNA which is part of a hybrid gene encoding additional TWEAK sequences.
- TWEAK agonist and angiogenic factor required to be effective in enhancing angiogenic activity for promoting neovascularization will, of course, vary with the individual being treated and is ultimately at the discretion of the physician.
- the factors to be considered include the condition of the patient being treated, the efficacy of the particular TWEAK agonist being used, the nature of the formulation, and the patient's body weight. While it possible to administer and a TWEAK agonist simultaneously, it is also contemplated that angiogenic factor can be given as a bolus before starting the infusion of the TWEAK agonist. It is also contemplated that angiogenic factor can be administered after the infusion of the TWEAK agonist.
- TWEAK agonists include those taught in WO98/05783, WO98/35061 and WO99/19490 all of which are incorporated herein by reference.
- TWEAK agonists include soluble recombinant TWEAK protein.
- Standard hybridization conditions refer to salt and temperature conditions substantially equivalent to 0.5 ⁇ SSC to about 5 ⁇ SSC and 65° C. for both hybridization and wash.
- standard hybridization conditions as used herein is therefore an operational definition and encompasses a range of hybridization conditions.
- high stringency conditions include hybridizing with plaque screen buffer (0.2% polyvinylpyrrolidone, 0.2% Ficoll 400; 0.2% bovine serum albumin, 50 mM Tris-HCl (pH 7.5); 1 M NaCl; 0.1% sodium pyrophosphate; 1% SDS); 10% dextran sulfate, and 100 ⁇ g/ml denatured, sonicated salmon sperm DNA at 65° C.
- Low stringency conditions include hybridizing with plaque screen buffer, 10% dextran sulfate and 110 ⁇ g/ml denatured, sonicated salmon sperm DNA at 55° C. for 12-20 hours, and washing with 300 mM NaCl/30 mM sodium citrate (2.0 ⁇ SSC)/1% SDS at 55° C. See also Current Protocols in Molecular Biology, John Wiley & Sons, Inc. New York, Sections 6.3.1-6.3.6, (1989).
- a “therapeutic composition” as used herein is defined as comprising the therapeutics of the invention and other biologically compatible ingredients.
- the therapeutic composition may contain excipients such as water, minerals and carriers such as protein.
- Wild type means the naturally-occurring polynucleotide sequence of an exon of a protein, or a portion thereof, or protein sequence, or portion thereof, respectively, as it normally exists in vivo.
- Fragments of an isolated protein can also be produced efficiently by recombinant methods, by proteolytic digestion, or by chemical synthesis using methods known to those of skill in the art.
- internal or terminal fragments of a polypeptide can be generated by removing one or more nucleotides from one end (for a terminal fragment) or both ends (for an internal fragment) of a DNA sequence which encodes for the isolated TWEAK polypeptide.
- Expression of the mutagenized DNA produces polypeptide fragments. Digestion with “end nibbling” endonucleases can also generate DNAs which encode an array of fragments.
- DNAs which encode fragments of a protein can also be generated by random shearing, restriction digestion, or a combination or both. Protein fragments can be generated directly from intact proteins. Peptides can be cleaved specifically by proteolytic enzymes, including, but not limited to plasmin, thrombin, trypsin, chymotrypsin, or pepsin. Each of these enzymes is specific for the type of peptide bond it attacks. Trypsin catalyzes the hydrolysis of peptide bonds in which the carbonyl group is from a basic amino acid, usually arginine or lysine.
- Pepsin and chymotrypsin catalyse the hydrolysis of peptide bonds from aromatic amino acids, such as tryptophan, tyrosine, and phenylalanine.
- Alternative sets of cleaved protein fragments are generated by preventing cleavage at a site which is suceptible to a proteolytic enzyme. For instance, reaction of the ⁇ -amino acid group of lysine with ethyltrifluorothioacetate in mildly basic solution yields blocked amino acid residues whose adjacent peptide bond is no longer susceptible to hydrolysis by trypsin. Proteins can be modified to create peptide linkages that are susceptible to proteolytic enzymes.
- Fragments can also be synthesized chemically using techniques known in the art such as the Merrifield solid phase F moc or t-Boc chemistry. Merrifield, Recent Progress in Hormone Research 23: 451 (1967).
- Amino acid sequence variants of a protein can be prepared by random mutagenesis of DNA which encodes the protein or a particular portion thereof. Useful methods include PCR mutagenesis and saturation mutagenesis. A library of random amino acid sequence variants can also be generated by the synthesis of a set of degenerate oligonucleotide sequences. Methods of generating amino acid sequence variants of a given protein using altered DNA and peptides are well-known in the art. The following examples of such methods are not intended to limit the scope of the present invention, but merely serve to illustrate representative techniques. Persons having ordinary skill in the art will recognize that other methods are also useful in this regard.
- Non-random, or directed, mutagenesis provides specific sequences or mutations in specific portions of a polynucleotide sequence that encodes an isolated polypeptide, to provide variants which include deletions, insertions, or substitutions of residues of the known amino acid sequence of the isolated polypeptide.
- the mutation sites may be modified individually or in series, for instance by: (1) substituting first with conserved amino acids and then with more radical choices depending on the results achieved; (2) deleting the target residue; or (3) inserting residues of the same or a different class adjacent to the located site, or combinations of options 1-3.
- N-terminal cysteine or a functional equivalent
- site-directed methods are one way in which an N-terminal cysteine (or a functional equivalent) can be introduced into a given polypeptide sequence to provide the attachment site for a hydrophobic moiety.
- Oligonucleotide-Mediated Mutagenesis See, for example, Adelman et al., (1983) DNA 2, 183.
- the method of the present invention are useful as a treatment in diseases where enhanced angiogenic activity is desirable to promote neovascularization.
- diseases and conditions include: myocardial ischemic conditions (e.g., myocardial infarction, improve blood flow in patients with coronary artery disease suffering from myocardial ischemia or inadequate blood flow to areas other than the heart such as in peripheral vascular disease, where decreased blood flow is a problem, revascularization of necrotic tissue, for example of the myocardium after an infarction or an angioplasty, angina, heart transplants, vascular grafts, and reopening vessels to improve vascularization, perfusion, collagenization and organization of said lesions), wound healing, and tissue and organ transplantations (e.g., enhancement of autologous or heterologous microvascular transplantation).
- myocardial ischemic conditions e.g., myocardial infarction, improve blood flow in patients with coronary artery disease suffering from myocardial ischemia or inadequate blood flow to
- Neovascularization of grafted or transplanted tissue is also contemplated, especially in subjects suffering from vascular insufficiency, such as diabetic patients.
- the methods of the present invention may be utilized for any mammalian subject needing modulation of angiogenesis.
- Mammalian subjects which may be treated according to the methods of the invention include, but are not limited to, human subjects or patients.
- the invention may be employed in the treatment of domesticated mammals which are maintained as human companions (e.g., dogs, cats, horses), which have significant commercial value (e.g., dairy cows, beef cattle, sporting animals), which have significant scientific value (e.g., captive or free specimens of endangered species), or which otherwise have value.
- the subjects for treatment with the methods of the present invention need not present indications for treatment with the agents of the invention other than those indications associated with need for modulation of angiogenesis. That is, the subjects for treatment are expected to be otherwise free of indications for treatment with the TWEAK therapeutic agents of the invention.
- the methods of this invention may employ TWEAK agonists or biologically active portions thereof, and angiogenic factors, to promote angiogenesis, such as, to repair damage of myocardial tissue as a result of myocardial infarction.
- Such methods may also include the repair of the cardiac vascular system after ischemia including the growth of collateral vasculature.
- Methods utilizing TWEAK agonists and angiogenic factors may be employed to stimulate the growth of transplanted tissue and collateral vasculature where coronary bypass surgery is performed. Methods may also treat damaged vascular tissue as a result of coronary artery disease and peripheral or central nervous system vascular disease or ischemia.
- Methods of the invention may also promote wound healing, particularly to re-vascularize damaged tissues or stimulate collateral blood flow during ischemia and where new capillary angiogenesis is desired.
- Other methods of the invention may be employed to treat full-thickness wounds such as dermal ulcers, including pressure sores, venous ulcers, and diabetic ulcers.
- methods employing TWEAK therapeutics may be employed to treat full-thickness burns and injuries where a skin graft or flap is used to repair such burns and injuries.
- TWEAK agonists and angiogenic factors may also be employed for use in plastic surgery, for example, for the repair of lacerations, burns, or other trauma.
- methods of the invention may assist in recovery of erectile function.
- TWEAK therapeutics described herein may be employed for the promotion of endothelialization in vascular graft surgery.
- TWEAK agonists and angiogenic factors can be applied to the surface of the graft or at the junction to promote the growth of vascular smooth muscle and adventitial cells in conjunction with endothelial cells.
- Methods of the invention may also be employed to coat artificial prostheses or natural organs which are to be transplanted in the body to minimize rejection of the transplanted material and to stimulate vascularization of the transplanted materials and may also be employed for vascular tissue repair, for example, that occurring during arteriosclerosis and required following balloon angioplasty where vascular tissues are damaged. Specifically, methods of the invention may be employed to promote recovery from arterial wall injury and thereby inhibit restenosis.
- Nucleic acid sequences encoding TWEAK agonists may also be employed for in vitro purposes related to scientific research, synthesis of DNA and manufacture of DNA vectors, and for the production of diagnostics and therapeutics to treat human disease.
- methods of the invention may involve in vitro culturing of vascular smooth muscle cells, fibroblasts, hematopoietic cells, muscle, myotendonous junction, bone or cartilage- derived cells and other mesenchymal cells, where a TWEAK therapeutic is added to the conditional medium in a concentration from 10 ng/ml to 20 ug/ml.
- therapeutic agents may be administered by any route which is compatible with the particular agent employed.
- the therapeutic agents of the invention may be provided to an individual by any suitable means, preferably directly (e.g., locally, as by injection or topical administration to a tissue locus) or systemically (e.g., parenterally or orally).
- the agent preferably comprises part of an aqueous solution.
- the solution is physiologically acceptable so that in addition to delivery of the desired agent to the subject, the solution does not otherwise adversely affect the subject's electrolyte and/or volume balance.
- the aqueous medium for the therapeutic may comprise normal physiologic saline (e.g., 9.85% NaCl, 0.15M, pH 7-7.4).
- the therapeutics are preferably administered as a sterile pharmaceutical composition containing a pharmaceutically acceptable carrier, which may be any of the numerous well known carriers, such as water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, and the like, or combinations thereof.
- a pharmaceutically acceptable carrier such as water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, and the like, or combinations thereof.
- the compounds of the present invention may be used in the form of pharmaceutically acceptable salts derived from inorganic or organic acids and bases.
- acid salts include the following: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, propionate, succinate, tartrate, thiocyan
- Base salts include ammonium salts, alkali metal salts, such as sodium and potassium salts, alkaline earth metal salts, such as calcium and magnesium salts, salts with organic bases, such as dicyclohexylamine salts, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine and salts with amino acids such as arginine, lysine, and so forth.
- the basic nitrogen-containing groups can be quatemized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates, such as dimethyl, diethyl, dibutyl and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides, such as benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.
- lower alkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides
- dialkyl sulfates such as dimethyl, diethyl, dibutyl and diamyl sulfates
- long chain halides such
- compositions of TWEAK agonists and angiogenic factors comprise any of the compounds of the present invention, or pharmaceutically acceptable derivatives thereof, together with any pharmaceutically acceptable carrier.
- carrier includes acceptable adjuvants and vehicles.
- Pharmaceutically acceptable carriers that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene
- the pharmaceutical compositions may be in the form of a sterile injectable preparation, for example a sterile injectable aqueous or oleaginous suspension.
- This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
- the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or di-glycerides.
- Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as do natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
- These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.
- Controlled release administration of a particular therapeutic may be useful.
- the therapeutic may be administered using intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration.
- a pump may be used [Langer et al., eds., Medical Applications of Controlled Release, CRC Pres., Boca Raton, Fla. (1974); Sefton, CRC Crit. Ref. Biomed. Eng., 14:201 (1987); Buchwald et al., Surgery, 88:507 (1980); Saudek et al., N. Engl. J. Med., 321:574 (1989)].
- polymeric materials can be used [see, Langer, 1974, supra; Sefton, 1987, supra; Smolen et al., eds., Controlled Drug Bioavailability, Drug Product Design and Performance, Wiley, N.Y. (1984); Ranger et al., J. Macromol. Sci. Rev. Macromol. Chem., 23:61 (1983); see also Levy et al., Science, 228:190 (1985); During et al., Ann. Neurol., 25:351 (1989); Howard et al., J. Neurosurg., 71:105 (1989)].
- a controlled release system can be placed in proximity of the therapeutic target, e.g., a tumor, thus requiring only a fraction of the systemic dose [see. e.g., Goodson, in Medical Applications of Controlled Release, vol. 2, pp. 115-138 (1984)].
- Other controlled release systems are discussed in the review by Langer, Science, 249:1527-1533 (1990).
- the therapeutic compound can be delivered in a vesicle, in particular a liposome (see Langer, 1990, supra); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, pp. 317-327; see generally id.).
- Solid dosage forms include tablets, capsules, pills, troches or lozenges, cachets or pellets.
- liposomal or proteinoid encapsulation may be used to formulate the present compositions (as, for example, proteinoid microspheres reported in U.S. Pat. No. 4,925,673).
- Liposomal encapsulation may be used and the liposomes may be derivatized with various polymers (e.g., U.S. Pat. No. 5,013,556).
- the formulation will include the therapeutic (or chemically modified form), and inert ingredients which allow for protection against the stomach environment, and release of the biologically active material in the intestine.
- the location of release may be the stomach, the small intestine (the duodenum, the jejunem, or the ileum), or the large intestine.
- the release will avoid the deleterious effects of the stomach environment, either by protection of the protein (or derivative) or by release of the biologically active material beyond the stomach environment, such as in the intestine.
- a coating impermeable to at least pH 5.0 is essential.
- cellulose acetate trimellitate hydroxypropylmethylcellulose phthalate
- HPMCP 50 HPMCP 55
- PVAP polyvinyl acetate phthalate
- Eudragit L30D Aquateric
- CAP cellulose acetate phthalate
- Shellac Shellac
- coatings may be used as mixed films.
- a coating or mixture of coatings can also be used on tablets, which are not intended for protection against the stomach. This can include sugar coatings, or coatings which make the tablet easier to swallow.
- Capsules may consist of a hard shell (such as gelatin) for delivery of dry therapeutic i.e. powder; for liquid forms, a soft gelatin shell may be used.
- the shell material of cachets could be thick starch or other edible paper.
- moist massing techniques can be used.
- the therapeutic can be included in the formulation as fine multiparticulates in the form of granules or pellets of particle size about 1 mm.
- the formulation of the material for capsule administration could also be as a powder, lightly compressed plugs or even as tablets.
- the therapeutic could be prepared by compression.
- Colorants and flavoring agents may all be included.
- the protein (or derivative) may be formulated (such as by liposome or microsphere encapsulation) and then further contained within an edible product, such as a refrigerated beverage containing colorants and flavoring agents. One may dilute or increase the volume of the therapeutic with an inert material.
- diluents could include carbohydrates, especially mannitol, alpha-lactose, anhydrous lactose, cellulose, sucrose, modified dextrans and starch. Certain inorganic salts may be also be used as fillers including calcium triphosphate, magnesium carbonate and sodium chloride. Some commercially available diluents are Fast-Flo, Emdex, STA-Rx 1500, Emcompress and Avicell. Disintegrants may be included in the formulation of the therapeutic into a solid dosage form. Materials used as disintegrants include but are not limited to starch including the commercial disintegrant based on starch, Explotab.
- Sodium starch glycolate, Amberlite, sodium carboxymethylcellulose, ultramylopectin, sodium alginate, gelatin, orange peel, acid carboxymethyl cellulose, natural sponge and bentonite may all be used.
- Another form of the disintegrants are the insoluble cationic exchange resins.
- Powdered gums may be used as disintegrants and as binders and these can include powdered gums such as agar, Karaya or tragacanth. Alginic acid and its sodium salt are also useful as disintegrants.
- Binders may be used to hold the therapeutic agent together to form a hard tablet and include materials from natural products such as acacia, tragacanth, starch and gelatin.
- MC methyl cellulose
- EC ethyl cellulose
- CMC carboxymethyl cellulose
- PVP polyvinyl pyrrolidone
- HPMC hydroxypropylmethyl cellulose
- An antifrictional agent may be included in the formulation of the therapeutic to prevent sticking during the formulation process.
- Lubricants may be used as a layer between the therapeutic and the die wall, and these can include but are not limited to: stearic acid including its magnesium and calcium salts, polytetrafluoroethylene (PTFE), liquid paraffin, vegetable oils and waxes.
- Soluble lubricants may also be used such as sodium lauryl sulfate, magnesium lauryl sulfate, polyethylene glycol of various molecular weights, and Carbowax 4000 and 6000. Glidants that might improve the flow properties of the drug during formulation and to aid rearrangement during compression might be added.
- the glidants may include starch, talc, pyrogenic silica and hydrated silicoaluminate.
- a surfactant might be added as a wetting agent.
- Surfactants may include anionic detergents such as sodium lauryl sulfate, dioctyl sodium sulfosuccinate and dioctyl sodium sulfonate.
- anionic detergents such as sodium lauryl sulfate, dioctyl sodium sulfosuccinate and dioctyl sodium sulfonate.
- Cationic detergents might be used and could include benzalkonium chloride or benzethomium chloride.
- nonionic detergents that could be included in the formulation as surfactants are lauromacrogol 400, polyoxyl 40 stearate, polyoxyethylene hydrogenated castor oil 10, 50 and 60, glycerol monostearate, polysorbate 40, 60, 65 and 80, sucrose fatty acid ester, methyl cellulose and carboxymethyl cellulose.
- surfactants could be present in the formulation of the protein or derivative either alone or as a mixture in different ratios.
- Additives which potentially enhance uptake of the protein (or derivative) are for instance the fatty acids oleic acid, linoleic acid and linolenic acid.
- pulmonary delivery of the present proteins is delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood-stream.
- the protein (or derivative) is delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood-stream.
- Other reports of this include Adjei et al., Pharmaceutical Research, 7(6):565-569 (1990); Adjei et al., International Journal of Pharmaceutics, 63:135-144 (1990) (leuprolide acetate); Braquet et al., Journal of Cardiovascular Pharmacology, 13(suppl.
- Pat. No. 5,284,656 granulocyte colony stimulating factor.
- Contemplated for use in the practice of this invention are a wide range of mechanical devices designed for pulmonary delivery of therapeutic products, including but not limited to nebulizers, metered-dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art.
- Ultravent nebulizer manufactured by Mallinckrodt, Inc., St. Louis, Mo.
- Acorn II nebulizer manufactured by Marquest Medical Products, Englewood, Colo.
- the Ventolin metered-dose inhaler manufactured by Glaxo Inc., Research Triangle Park, N.C.
- Spinhaler powder inhaler manufactured by Fisons Corp., Bedford, Mass. All such devices require the use of formulations suitable for the dispensing of protein (or derivative).
- each formulation is specific to the type of device employed and may involve the use of an appropriate propellant material, in addition to the usual diluents, adjuvants and/or carriers useful in therapy.
- liposomes, microcapsules or microspheres, inclusion complexes, or other types of carriers is contemplated.
- Chemically modified protein may also be prepared in different formulations depending on the type of chemical modification or the type of device employed.
- Formulations suitable for use with a nebulizer will typically comprise protein (or derivative) dissolved in water at a concentration of about 0.1 to 25 mg of biologically active protein per ml of solution.
- the formulation may also include a buffer and a simple sugar (e.g., for protein stabilization and regulation of osmotic pressure).
- the nebulizer formulation may also contain a surfactant, to reduce or prevent surface induced aggregation of the protein caused by atomization of the solution in forming the aerosol.
- Formulations for use with a metered-dose inhaler device will generally comprise a finely divided powder containing the protein (or derivative) suspended in a propellant with the aid of a surfactant.
- the propellant may be any conventional material employed for this purpose, such as a chlorofluorocarbon, a hydrochlorofluorocarbon, a hydrofluorocarbon, or a hydrocarbon, including trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol, and 1,1,1,2-tetrafluoroethane, or combinations thereof.
- Suitable surfactants include sorbitan trioleate and soya lecithin. Oleic acid may also be useful as a surfactant.
- Formulations for dispensing from a powder inhaler device will comprise a finely divided dry powder containing protein (or derivative) and may also include a bulking agent, such as lactose, sorbitol, sucrose, or mannitol in amounts which facilitate dispersal of the powder from the device, e.g., 50 to 90% by weight of the formulation.
- the protein (or derivative) should most advantageously be prepared in particulate form with an average particle size of less than 10 mu m (or microns), most preferably 0.5 to 5 mu m, for most effective delivery to the distal lung.
- dosage levels for injection or infusion will be between 0.01 mu g of biologically active protein/kg body weight, (calculating the mass of the protein alone, without chemical modification), and 10 mg/kg (based on the same).
- the dosing schedule may vary, depending on the circulation half-life of the protein or derivative used, whether the polypeptide is delivered by bolus dose or continuous infusion, and the formulation used.
- Administration may be simultaneous or may be in seriatim.
- Nucleic acid sequences encoding a TWEAK agonist could be introduced into human tumor or blood vessel cells to develop gene therapy.
- a nucleic acid sequence encoding a TWEAK agonist is introduced in vivo in a viral vector.
- viral vectors include an attenuated or defective DNA virus, such as but not limited to herpes simplex virus (HSV), papillomavirus, Epstein Barr virus (EBV), adenovirus, adeno-associated virus (AAV), and the like.
- HSV herpes simplex virus
- EBV Epstein Barr virus
- AAV adeno-associated virus
- Defective viruses which entirely or almost entirely lack viral genes, are preferred. Defective virus is not infective after introduction into a cell.
- Use of defective viral vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Thus, adipose tissue can be specifically targeted.
- HSV1 vector herpes virus 1
- attenuated adenovirus vector such as the vector described by Stratford-Perricaudet et al., J. Clin. Invest., 90:626-630 (1992)
- a defective adeno-associted virus vector such as the vector described by Stratford-Perricaudet et al., J. Clin. Invest., 90:626-630 (1992
- a defective adeno-associted virus vector [Samulski et al., J. Virol., 61:3096-3101 (1987); Samulski et al., J. Virol., 63:3822-3828 (1989)].
- the nucleic acid can be introduced in a retroviral vector, e.g., as described in Anderson et al., U.S. Pat. No. 5,399,346; Mann et al., Cell, 33:153 (1983); Temin et al., U.S. Pat. No. 4,650,764; Temin et al., U.S. Pat. No. 4,980,289; Markowitz et al., J. Virol., 62:1120 (1988); Temin et al., U.S. Pat. No. 5,124,263; International Patent Publication No. WO 95/07358, published Mar.
- the vector can be introduced in vivo by lipofection.
- liposomes for encapsulation and transfection of nucleic acids in vitro.
- Synthetic cationic lipids designed to limit the difficulties and dangers encountered with liposome mediated transfection can be used to prepare liposomes for in vivo transfection of a gene encoding a marker [Felgner et al., Proc. Natl. Acad. Sci. USA, 84:7413-7417 (1987); see Mackey et al., Proc. Natl. Acad. Sci.
- cationic lipids may promote encapsulation of negatively charged nucleic acids, and also promote fusion with negatively charged cell membranes [Felgner et al., Science, 337:387-388 (1989)].
- the use of lipofection to introduce exogenous genes into specific organs in vivo has certain practical advantages. Molecular targeting of liposomes to specific cells represents one area of benefit. It is clear that directing transfection to particular cell types would be particularly advantageous in a tissue with cellular heterogeneity, such as the pancreas, liver, kidney, and brain. Lipids may be chemically coupled to other molecules for the purpose of targeting (see Mackey et al., 1988, supra). Targeted peptides, e.g., hormones or neurotransmitters, and proteins such as antibodies, or non-peptide molecules could be coupled to liposomes chemically.
- naked DNA vectors for gene therapy can be introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fuision, DEAE dextran, calcium phosphate precipitation, use of a gene gun, or use of a DNA vector transporter (see, e.g., Wu et al., J. Biol. Chem., 267:963-967 (1992); Wu et al., J. Biol. Chem., 263:14621-14624 (1988); Hartmut et al., Canadian Patent Application No. 2,012,311, filed Mar. 15, 1990).
- HUVEC Human Umbilical Vein Endothelial Cells
- CS-C Cell System Corporation
- HPAEC Human Pulmonary Artery Endothelial Cells
- HMVEC-L Human Lung Microvascular Endothelial cells
- HMVEC-D Human Dermal Microvascular Endothelial cells
- EBM EC Basal Medium
- FBS fetal bovine serum
- supplier growth supplements defined as “complete media”
- Reagents and Antibodies Recombinant human bFGF was obtained as a growth supplier supplement (Clonetics), bFGF also was purchased from R&D Systems (Minneapolis, Minn.) and Sigma (St.Louis, Mo.). Annexin V-FITC was from Pharmingen (San Diego, Calif.), propidium iodide (PI) from Sigma (St.Louis, Mo.), rabbit anti-human Flk-1 and rabbit anti-Flt-1 antibodies from Research Diagnostics Inc.
- mice anti-Flg monoclonal antibody from Chemicon (Temecula, Calif.), mouse anti-human- ⁇ 3 , mouse anti-human- ⁇ 1 (clone LIA 1 ⁇ 2) and rat anti-human ⁇ v mAbs from Immunotech (Westbrook, Me.), mouse anti-human ⁇ 5 from Pharmingen (San Diego, Calif.), mouse anti-human ⁇ 1 (clone AJH10) from Biogen (Gotwals P. J, et al., 1999. Biochem.
- Soluble CD40L was prepared at Biogen as previously described (Karpusas, M., et al., 1995. Structure 3:1426-xxx).
- TWEAK-specific mAbs BE.B3 and AB.D3 were generated in Armenian hamsters by immunizing with soluble human TWEAK protein and standard hybridoma generation procedures.
- the ability of AB.D3 to bind to human and murine TWEAK and BE.B3 to bind to human TWEAK was demonstrated in an ELISA assay using recombinant soluble TWEAK proteins immobilized on 96 well microtiter plates.
- the blocking activity of AB.D3 was demonstrated by the ability of this mAb but not BE.B3 to inhibit soluble FLAG-tagged human TWEAK binding to HT29 cells in a FACS analysis.
- BE.B3 was biotinylated prepared using ImmunoPure Biotinylation kits following the manufacturer's protocol (Pierce, Rockford, Ill.).
- a hamster control Ig (clone Ha4/8-3.1) was obtained from the American Type Culture Collection and mAb purified from culture supernatant by Protein A Fast Flow column (Pharmacia, Piscataway, N.J.).
- Soluble Human TWEAK protein Soluble expression construct for myc-tagged human TWEAK was constructed as previously described (Chicheportiche, Y., et al. 1997. J. Biol. Chem. 272:32401-32410). Flag-tagged and nontagged forms also were made. These soluble forms of TWEAK were expressed in yeast, Pichia pastoris strain GS115, using standard conditions.
- Proliferation Assays HAVEC were plated in 96-well microtiter plates at subconfluence (4000 cells per well) and cultured overnight in CS-C Medium without addition of supplier growth supplements. Media was replaced with complete Media, or with basal media as defined above. Cells were cultured in basal media with or without TWEAK (100 ng/ml), bFGF using a 1/500- 1/1000 dilution of bFGF growth supplement (Clonetics) or 1 ng/ml (R&D Systems), VEGF (10 ng/ml) or combinations of these factors. Where indicated, 10 ⁇ g/ml anti-TWEAK mAbs AB.D3, BE.B3 or hamster control Ig Ha4/8 also were added.
- Endothelial Wound Repair Assay A standard wound repair assay was employed as previously described (Bussolino F., et al, 1991. J. Clin. Invest. 87:986-991).
- a confluent monolayer of HUVEC was grown in CS-C Medium in 35 ⁇ 10 mm cell culture dishes with 2 mm grids (Nalge Nunc International, Naperville, Ill.). The monolayer was wounded by two perpendicular strokes across the diameter of the dish with a 1 mm tip (Morales D. E., et al., 1995. Circulation 91:755-763). Dislodged cells were aspirated and plates were rinsed with PBS.
- Cells were cultured in complete media, or in fresh basal media with or without TWEAK (200 ng/ml), bFGF ( 1/1000 or 1 ng/ml), VEGF (10 ng/ml) or combinations of these and were incubated for 18 hours at 37° C. with 5% CO 2 at which time plates were fixed with 1% paraformaldehyde and stained with Harris Hematoxylin (Sigma, St. Louis, Mo.). Wound repair was quantified by visually counting the number of grids in which the gap was obscured by migrating cells. This number was divided by the total number of grids that aligned the wound and results were expressed as mean percentage wound repair +/ ⁇ SEM.
- Immunofluorescent staining were cultured in basal media with or without TWEAK (200 ng/ml), bFGF (1 ng/ml) or both factors for 24 hours. Cells were detached as described above and stained with 10 ⁇ g/ml primary antibody in 200 ⁇ l PBS containing 0.1% bovine serum albumin and 0.02% NaN 3 for 20 minutes at 4° C. Following washes with the same buffer, the PE-conjugated detection antibodies were added at concentrations as specified by the manufacturer for an additional 15 minutes at 4° C. Cells were analyzed for TWEAK binding by incubation with TWEAK tagged either with flag or with myc.
- Binding was detected with either biotinylated mouse anti-flag antibody or biotinylated BE.B3 and streptavidin-PE. Cold competition was performed with non-tagged TWEAK and blocking was performed with the AB.D3 mAb.
- Capillary tube formation assay Capillary tube formation by ECs was analyzed using a three-dimensional fibrin matrix gel assay based on a method previously described (Mach, F., et al., 1999. Am. J. Pathol. 154:229-239). Briefly, 4 mg/ml plasminogen free human fibrinogen (Calbiochem, San Diego, Calif.) was dissolved in serum free EBM-2 media with heparin and polymixin B both at 1 ⁇ g/ml (Sigma) as well as all of the supplier supplements except for VEGF and bFGF.
- the fibrin solution was filtered-sterilized and fibrin matrices were prepared by adding thrombin (20-50 milliunits/ml) (Sigma) and distributing 300 ul per well in 24-well plates.
- ECs at appropriate concentrations (4 ⁇ 10 4 cells/cm 2 for HUVEC and HPAEC and 8 ⁇ 10 4 /cm 2 for HMVEC-L and HMVEC-D) were then seeded onto the gel surfaces and overlayered with EBM-2 media as above and 5% FBS in the presence or absence of TWEAK, bFGF, sCD40L or combinations of these factors as specified.
- phase-contrast photomicrographs of the gel surface were taken. Gels were transferred from original wells to new wells and fixed with 10% ethanol for 10 minutes and then with 4% paraformaldehyde. Gels were cross sectioned for analysis and photographs taken.
- TWEAK Human Umbilical Vein EC
- FIG. 1 Human Umbilical Vein EC
- TWEAK induced no significant proliferation of ECs.
- cells cultured with TWEAK and an optimal concentration of bFGF displayed a significantly enhanced proliferative response compared to cells cultured in the presence of bFGF alone.
- the degree of proliferation achieved was comparable to or greater than that of ECs cultured in complete media. Similar results were obtained using bFGF at 1 ng/ml.
- HUVEC cultured in basal media with or without TWEAK, bFGF or both were analyzed to determine the frequency of apoptotic cells.
- Annexin V staining was employed to detect cells undergoing apoptosis and propidium iodide (PI) dye exclusion to detect viable cells.
- Cultures treated with the combination of TWEAK and bFGF exhibited percentages of viable, apoptotic and dead cells that were comparable to those of cultures treated with bFGF alone. These percentages are shown in FIG. 2 , in quadrants 3 , 4 and 2 respectively.
- FIG. 2 shows the percentage of viable, apoptotic and dead cells in quadrants 3 , 4 , and 2 , respectively.
- TWEAK TWEAK to effect EC migration was evaluated in the presence and absence of other angiogenic factors. Confluent HUVEC monolayers were wounded and EC migration was monitored within the first 18 hours by determining the degree of wound repair. Addition of TWEAK or bFGF to basal media induced a low level of wound repair, however, this was not significantly greater than that observed with basal media alone. By contrast, cultures treated with both TWEAK and bFGF were repaired to a significantly greater degree than cultures in basal media and with either agent alone, and were similar to those in complete media. HUVECs were recovered from the cultures and counted in order to determine whether or not any increase in cell number had occurred over the course of the experiment. In all treatment groups, cell recoveries were comparable (data not shown) supporting that the combinatorial effect of TWEAK and bFGF was at the level of cell migration.
- FIG. 3 shows the average of 4 experiments +/ ⁇ SEM, with repair induced by bFGF+TWEAK significantly different from that induced by either alone or basal media (P values ⁇ 0.05).
- Integrins especially ⁇ v ⁇ 3 , ⁇ 1 ⁇ 1 and ⁇ 2 ⁇ 1 facilitate cell migration through extracellular matrix and also regulate cell survival and intracellular signaling required for the response to angiogenic factors (Eliceiri, B. and Cheresh, D. A., 1999. J. Clin. Invest. 103:1227-1230; Senger, D. R., et al., 1997. Proc. Natl. Acad. Sci. 94:13612-13617). Therefore, we aimed to determine whether or not TWEAK modulated growth factor receptors or integrins expressed on ECs.
- VEGF receptors Flk-1 and Flt-1 and bFGF receptor Flg were expressed at very low levels on HUVECs cultured in basal media. As a positive control, these receptor-specific mAbs showed strong staining on human dermal microvascular EC (HMVEC-D). Consistent with the study by Lynch et al (11), we found no change in the expression of VEGF receptors Flk-1 and Flt-1 in TWEAK treated cultures, nor were there changes in VEGF receptor expression in cultures treated with bFGF or the TWEAK/bFGF combination. In addition, we found that TWEAK treatment did not alter the level of the bFGF receptor Flg or of integrins ⁇ v , ⁇ 1 , ⁇ 5 , ⁇ 1 , and ⁇ 3 .
- a key event in the angiogenic process is the organization of invading ECs into capillary tubes.
- the effect of TWEAK on this morphogenic step was measured with EC seeded onto the surface of three-dimensional fibrin gels in the presence or absence of bFGF.
- the addition of TWEAK to bFBF induced clear morphological changes in the EC monolayer. Similar results were obtained with several different EC types, including HUVECs, human pulmonary artery ECs (HPAEC), human lung microvascular EC (HMVEC-L) and HMVEC-D.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Vascular Medicine (AREA)
- Immunology (AREA)
- Heart & Thoracic Surgery (AREA)
- Diabetes (AREA)
- Cardiology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Emergency Medicine (AREA)
- Urology & Nephrology (AREA)
- Surgery (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Dermatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention relates to a method for enhancing angiogenic activity to promote neovascularization comprising administering to a subject a formulation comprising a synergistically effective amount of a TWEAK agonist and an angiogenic factor.
Description
- The present invention relates to a method for enhancing angiogenic activity to promote neovascularization.
- Growth of microvasculature, or angiogenesis, involves endothelial cell (EC) proliferation, migration, differentiation, and structural organization into new vessels.
- Angiogenic regulators induce changes in endothelial cells (EC) at a variety of levels, including their proliferative, migratory, secretory, and adhesive properties, and may do so through their action on ECs or other cell types (Kumar et al, 1998, Int. J. Oncology 12:749-757; Bussolino et al., 1997, Trends in Biochem, 22:251-256). Several TNF family ligands previously have been implicated in the process of angiogenesis, namely TNFα, FasL and TWEAK.
- TWEAK, a novel member of the TNF ligand family, may promote angiogenesis based on its ability to induce IL-8 production by several epithelial tumor cell lines, proliferation in various human EC and aortic smooth muscle cells under reduced growth factor conditions, and stimulation of an angiogenic response when implanted in rat corneas. Herein, we further characterize the angiogenic potential of TWEAK, demonstrating that TWEAK synergizes with Fibroblast Growth Factor (FGF) to induce proliferation and migration of EC's. While TWEAK weakly promotes EC survival, the synergistic effect of TWEAK and FGF on EC proliferation appears to be due to potentiation of cell division rather than decreased cell death. TWEAK also did not detectably alter the expression of receptors for FGF or VEGF, or expression of the integrins α1, α5, αv, β1, or β3. The ability of TWEAK to induce ECs to form capillaries in the absence of other cell types was demonstrated in a 3D fibrin gel matrix where, strikingly, TWEAK induced the morphogenesis of lumens in invading, bFGF-dependent EC cords. Our findings further distinguish TWEAK from other TNF family ligands, demonstrating its ability to promote angiogenesis at multiple discrete stages.
- One aspect of the present invention is a method for enhancing endothelial cell proliferation in an in vitro culture comprising adding to said culture, a formulation consisting essentially of a synergistically effective amount of a TWEAK agonist and an angiogenic factor.
- A second aspect of the present invention is a method for enhancing angiogenic activity in a mammal to promote neovascularization comprising the step of administering to said mammal a formulation comprising a synergistically effective amount of a TWEAK agonist and an angiogenic factor sufficient to promote neovascularization. A preferred embodiment is the use of bFGF.
-
FIG. 1 illustrates the effect of TWEAK on bFGF-dependent HUVEC proliferation. -
FIG. 2 illustrates the effect of TWEAK on HUVEC death. -
FIG. 3 illustrates the effect of TWEAK on bFGF-dependent HUVEC migration. -
FIG. 4 depicts the synergistic effect of TWEAK and bFGF on capillary tube formation. - As used herein the terms, “angiogenesis,” “revascularization,” “increased collateral circulation,” and “regeneration of blood vessels” are considered as synonymous.
- “Angiogenesis” is defined as any alteration of an existing vascular bed or the formation of new vasculature which benefits tissue perfusion. This includes the formation of new vessels by sprouting of endothelial cells from existing blood vessels or the remodeling of existing vessels to alter size, maturity, direction or flow properties to improve blood perfusion of tissues.
- A therapeutic is said to have “therapeutic efficacy” in modulating angiogenesis and an amount of the therapeutic is said to be a “angiogenic modulatory amount”, if administration of that amount of the therapeutic is sufficient to cause a significant modulation (i.e., increase or decrease) in angiogenic activity when administered to a subject (e.g., an animal model or human patient) needing modulation of angiogenesis.
- The term angiogenic factor refers to factors which promote the angiogenic process, including but not limited to the following phases of the process, ie. the degradation of the extracellular matrix, cell proliferation, cell migration and structural organization (Kumar et al, 1998, Int. J. Oncology 12:749-757; Bussolino et al., 1997, Trends in Biochem, 22:251-256). Angiogenic factors include but are not limited to fibroblast growth factor (bFGF), acidic FGF (aFGF), FGF-5, vascular endothelial growth factor isoforms (VEGF), angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2), Platelet-derived endothelial cell growth factor (PD-ECGF), hepatocyte growth factor (HGF), interleukin-8 (IL-8), granulocyte-colony stimulating factor (G-CSF), placental growth factor, proliferin, B61, soluble vascular cell adhesion molecular-1, soluble E-selection, 12-hydrozyeicosatetraenoic acid, Tat protein of HIV-1, angiogenin, TNFα, FasL, Transforming growth factor-β.
- As used herein, the ability of TWEAK to act synergistically with another angiogenic factor means that the combination of TWEAK and the angiogenic factor induce a response that is greater than the sum of the responses to either agent alone, as measured in one or more in vitro assays which measure stages of the angiogenic process. These include but are not limited to endothelial cell survival, proliferation, migration, or capillary tube formation, as described herein.
- The term “pharmaceutically acceptable” when referring to a natural or synthetic substance means that the substance has an acceptable toxic effect in view of its much greater beneficial effect, while the related the term, “physiologically acceptable,” means the substance has relatively low toxicity.
- As used herein, the term “antibody homolog” includes intact antibodies consisting of immunoglobulin light and heavy chains linked via disulfide bonds. The term “antibody homolog” is also intended to encompass a TWEAK therapeutic comprising one or more polypeptides selected from immunoglobulin light chains, immunoglobulin heavy chains and antigen-binding fragments thereof which are capable of binding to one or more antigens (i.e., TWEAK or patched). The component polypeptides of an antibody homolog composed of more than one polypeptide may optionally be disulfide-bound or otherwise covalently crosslinked. Accordingly, therefore, “antibody homologs” include intact immunoglobulins of types IgA, IgG, IgE, IgD, IgM (as well as subtypes thereof), wherein the light chains of the immunoglobulin may be of types kappa or lambda or portions of intact antibodies that retain antigen-binding specificity, for example, Fab fragments, Fab′ fragments, F(ab′)2 fragments, F(v) fragments, heavy chain monomers or dimers, light chain monomers or dimers, dimers consisting of one heavy and one light chain, and the like.
- As used herein, a “humanized antibody homolog” is an antibody homolog, produced by recombinant DNA technology, in which some or all of the amino acids of a human immunoglobulin light or heavy chain that are not required for antigen binding have been substituted for the corresponding amino acids from a nonhuman mammalian immunoglobulin light or heavy chain. A “human antibody homolog” is an antibody homolog in which all the amino acids of an immunoglobulin light or heavy chain (regardless of whether or not they are required for antigen binding) are derived from a human source.
- An “amino acid” is a monomeric unit of a peptide, polypeptide, or protein. There are twenty amino acids found in naturally occurring peptides, polypeptides and proteins, all of which are L-isomers. The term also includes analogs of the amino acids and D-isomers of the protein amino acids and their analogs.
- The term “bioavailability” refers to the ability of a compound to be absorbed by the body after administration. For instance, a first compound has greater bioavailability than a second compound if, when both are administered in equal amounts, the first compound is absorbed into the blood to a greater extent than the second compound.
- An “expression vector” is a polynucleotide, such as a DNA plasmid or phage (among other common examples) which allows expression of at least one gene when the expression vector is introduced into a host cell. The vector may, or may not, be able to replicate in a cell.
- The phrase “extracellular signaling protein” means any protein that is either secreted from a cell, or is associated with the cell membrane, and upon binding to the receptor for that protein on a target cell, triggers a response in the target cell.
- A “functional equivalent” of an amino acid residue is (i) an amino acid having similar reactive properties as the amino acid residue that was replaced by the functional equivalent; (ii) an amino acid of a ligand of a polypeptide of the invention, the amino acid having similar properties as the amino acid residue that was replaced by the functional equivalent; (iii) a non-amino acid molecule having similar properties as the amino acid residue that was replaced by the functional equivalent.
- “Heterologous promoter” as used herein is a promoter which is not naturally associated with a gene or a purified nucleic acid.
- “Homology” and “identity” each refer to sequence similarity between two polypeptide sequences, and both ‘homology and ‘identity’ are used interchangeably in this disclosure. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same amino acid residue, then the polypeptides can be referred to as identical at that position; when the equivalent site is occupied by the same amino acid (e.g., identical) or a similar amino acid (e.g., similar in steric and/or electronic nature), then the molecules can be refered to as homologous at that position. A percentage of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An “unrelated” or “non-homologous” sequence shares less than 40 percent identity, though preferably less than 25 percent identity, with a sequence of the present invention.
- For instance, if 6 of 10 of the positions in two sequences are matched or are homologous, then the two sequences are 60% homologous. By way of example, the DNA sequences CTGACT and CAGGTT share 50% homology (3 of the 6 total positions are matched). Generally, a comparison is made when two sequences are aligned to give maximum homology. Such alignment can be provided using, for instance, the method of Needleman et al., J. Mol Biol. 48: 443-453 (1970), implemented conveniently by computer programs described in more detail below. Homologous sequences share identical or similar amino acid residues, where similar residues are conservative substitutions for, or “allowed point mutations” of, corresponding amino acid residues in an aligned reference sequence. In this regard, a “conservative substitution” of a residue in a reference sequence are those substitutions that are physically or functionally similar to the corresponding reference residues, e.g., that have a similar size, shape, electric charge, chemical properties, including the ability to form covalent or hydrogen bonds, or the like. Particularly preferred conservative substitutions are those fulfilling the criteria defined for an “accepted point mutation” in Dayhoff et al., 5: Atlas of Protein Sequence and Structure, 5: Suppl. 3, chapter 22: 354-352, Nat. Biomed. Res. Foundation, Washington, D.C. (1978).
- “Percent homology/identity” of two amino acids sequences or two nucleic acid sequences is determined using the alignment algorithm of Karlin and Altschul (Proc. Nat. Acad. Sci., USA 87: 2264 (1990) as modified in Karlin and Altschul (Proc. Nat. Acad. Sci., USA 90: 5873 (1993). Such an algorithm is incorporated into the NBLAST or XBLAST programs of Altschul et al., J. Mol. Biol. 215: 403 (1990). BLAST searches are performed with the NBLAST program, score=100, wordlength=12, to obtain nucoetide sequences homologous to a nucleic acid of the invention. BLAST protein searches are performed with the XBLAST program, score=50, wordlength=3, to obtain amino acid sequences homologous to a reference polypeptide. To obtain gapped alignments for comparisons, gapped BLAST is used as described in Altschul et al., Nucleic Acids Res., 25: 3389 (1997). When using BLAST and Gapped BLAST, the default parameters of the respective programs (XBLAST and NBLAST) are used. See http://www/ncbi.nlm.nih.gov
- The term “hydrophobic” refers to the tendency of chemical moieties with nonpolar atoms to interact with each other rather than water or other polar atoms. Materials that are “hydrophobic” are, for the most part, insoluble in water. Natural products with hydrophobic properties include lipids, fatty acids, phospholipids, sphingolipids, acylglycerols, waxes, sterols, steroids, terpenes, prostaglandins, thromboxanes, leukotrienes, isoprenoids, retenoids, biotin, and hydrophobic amino acids such as tryptophan, phenylalanine, isoleucine, leucine, valine, methionine, alanine, proline, and tyrosine. A chemical moiety is also hydrophobic or has hydrophobic properties if its physical properties are determined by the presence of nonpolar atoms.
- The phrase “internal amino acid” means any amino acid in a peptide sequence that is neither the N-terminal amino acid nor the C-terminal amino acid.
- “Isolated” (used interchangeably with “substantially pure”) when applied to nucleic acid i.e., polynucleotide sequences that encode polypeptides, means an RNA or DNA polynucleotide, portion of genomic polynucleotide, cDNA or synthetic polynucleotide which, by virtue of its origin or manipulation: (i) is not associated with all of a polynucleotide with which it is associated in nature (e.g., is present in a host cell as an expression vector, or a portion thereof); or (ii) is linked to a nucleic acid or other chemical moiety other than that to which it is linked in nature; or (iii) does not occur in nature. By “isolated” it is further meant a polynucleotide sequence that is: (i) amplified in vitro by, for example, polymerase chain reaction (PCR); (ii) synthesized chemically; (iii) produced recombinantly by cloning; or (iv) purified, as by cleavage and gel separation.
- “Isolated” (used interchangeably with “substantially pure”) when applied to polypeptides means a polypeptide or a portion thereof which, by virtue of its origin or manipulation: (i) is present in a host cell as the expression product of a portion of an expression vector; or (ii) is linked to a protein or other chemical moiety other than that to which it is linked in nature; or (iii) does not occur in nature, for example, a protein that is chemically manipulated by appending, or adding at least one hydrophobic moiety to the protein so that the protein is in a form not found in nature. By “isolated” it is further meant a protein that is: (i) synthesized chemically; or (ii) expressed in a host cell and purified away from associated and contaminating proteins. The term generally means a polypeptide that has been separated from other proteins and nucleic acids with which it naturally occurs. Preferably, the polypeptide is also separated from substances such as antibodies or gel matrices (polyacrylamide) which are used to purify it.
- A “protein” is any polymer consisting essentially of any of the 20 amino acids. Although “polypeptide” is often used in reference to relatively large polypeptides, and “peptide” is often used in reference to small polypeptides, usage of these terms in the art overlaps and is varied. The term “protein” as used herein refers to peptides, proteins and polypeptides, unless otherwise noted.
- The terms “peptide(s)”, “protein(s)” and “polypeptide(s)” are used interchangeably herein. The terms “polynucleotide sequence” and “nucleotide sequence” are also used interchangeably herein.
- “Recombinant,” as used herein, means that a protein is derived from recombinant, mammalian expression systems.
- Thus, “substantially pure nucleic acid” is a nucleic acid which is not immediately contiguous with one or both of the coding sequences with which it is normally contiguous in the naturally occurring genome of the organism from which the nucleic acid is derived. Substantially pure DNA also includes a recombinant DNA which is part of a hybrid gene encoding additional TWEAK sequences.
- The amounts of a TWEAK agonist and angiogenic factor required to be effective in enhancing angiogenic activity for promoting neovascularization will, of course, vary with the individual being treated and is ultimately at the discretion of the physician. The factors to be considered include the condition of the patient being treated, the efficacy of the particular TWEAK agonist being used, the nature of the formulation, and the patient's body weight. While it possible to administer and a TWEAK agonist simultaneously, it is also contemplated that angiogenic factor can be given as a bolus before starting the infusion of the TWEAK agonist. It is also contemplated that angiogenic factor can be administered after the infusion of the TWEAK agonist.
- TWEAK agonists include those taught in WO98/05783, WO98/35061 and WO99/19490 all of which are incorporated herein by reference. Such TWEAK agonists include soluble recombinant TWEAK protein.
- “Standard hybridization conditions” refer to salt and temperature conditions substantially equivalent to 0.5×SSC to about 5×SSC and 65° C. for both hybridization and wash. The term “standard hybridization conditions” as used herein is therefore an operational definition and encompasses a range of hybridization conditions. Nevertheless, for the purposes of this present disclosure “high stringency” conditions include hybridizing with plaque screen buffer (0.2% polyvinylpyrrolidone, 0.2% Ficoll 400; 0.2% bovine serum albumin, 50 mM Tris-HCl (pH 7.5); 1 M NaCl; 0.1% sodium pyrophosphate; 1% SDS); 10% dextran sulfate, and 100 μg/ml denatured, sonicated salmon sperm DNA at 65° C. for 12-20 hours, and washing with 75 mM NaCl/7.5 mM sodium citrate (0.5×SSC)/1% SDS at 65° C. “Low stringency” conditions include hybridizing with plaque screen buffer, 10% dextran sulfate and 110 μg/ml denatured, sonicated salmon sperm DNA at 55° C. for 12-20 hours, and washing with 300 mM NaCl/30 mM sodium citrate (2.0×SSC)/1% SDS at 55° C. See also Current Protocols in Molecular Biology, John Wiley & Sons, Inc. New York, Sections 6.3.1-6.3.6, (1989).
- A “therapeutic composition” as used herein is defined as comprising the therapeutics of the invention and other biologically compatible ingredients. The therapeutic composition may contain excipients such as water, minerals and carriers such as protein.
- “Wild type” means the naturally-occurring polynucleotide sequence of an exon of a protein, or a portion thereof, or protein sequence, or portion thereof, respectively, as it normally exists in vivo.
- Practice of the present invention will employ, unless indicated otherwise, conventional techniques of cell biology, cell culture, molecular biology, microbiology, recombinant DNA, protein chemistry, and immunology, which are within the skill of the art. Such techniques are described in the literature. Unless stipulated otherwise, all references cited in the Detailed Description are incorporated herein by reference.
- A. Production of Fragments and Analogs
- Fragments of an isolated protein (e.g., fragments of TWEAK) can also be produced efficiently by recombinant methods, by proteolytic digestion, or by chemical synthesis using methods known to those of skill in the art. In recombinant methods, internal or terminal fragments of a polypeptide can be generated by removing one or more nucleotides from one end (for a terminal fragment) or both ends (for an internal fragment) of a DNA sequence which encodes for the isolated TWEAK polypeptide. Expression of the mutagenized DNA produces polypeptide fragments. Digestion with “end nibbling” endonucleases can also generate DNAs which encode an array of fragments. DNAs which encode fragments of a protein can also be generated by random shearing, restriction digestion, or a combination or both. Protein fragments can be generated directly from intact proteins. Peptides can be cleaved specifically by proteolytic enzymes, including, but not limited to plasmin, thrombin, trypsin, chymotrypsin, or pepsin. Each of these enzymes is specific for the type of peptide bond it attacks. Trypsin catalyzes the hydrolysis of peptide bonds in which the carbonyl group is from a basic amino acid, usually arginine or lysine. Pepsin and chymotrypsin catalyse the hydrolysis of peptide bonds from aromatic amino acids, such as tryptophan, tyrosine, and phenylalanine. Alternative sets of cleaved protein fragments are generated by preventing cleavage at a site which is suceptible to a proteolytic enzyme. For instance, reaction of the ε-amino acid group of lysine with ethyltrifluorothioacetate in mildly basic solution yields blocked amino acid residues whose adjacent peptide bond is no longer susceptible to hydrolysis by trypsin. Proteins can be modified to create peptide linkages that are susceptible to proteolytic enzymes. For instance, alkylation of cysteine residues with β-haloethylamines yields peptide linkages that are hydrolyzed by trypsin (Lindley, (1956) Nature 178, 647). In addition, chemical reagents that cleave peptide chains at specific residues can be used. For example, cyanogen bromide cleaves peptides at methionine residues (Gross and Witkip, (1961) J. Am. Chem. Soc. 83, 1510). Thus, by treating proteins with various combinations of modifiers, proteolytic enzymes and/or chemical reagents, the proteins may be divided into fragments of a desired length with no overlap of the fragments, or divided into overlapping fragments of a desired length.
- Fragments can also be synthesized chemically using techniques known in the art such as the Merrifield solid phase F moc or t-Boc chemistry. Merrifield, Recent Progress in Hormone Research 23: 451 (1967).
- B. Production of Altered DNA and Peptide Sequences: Random Methods
- Amino acid sequence variants of a protein can be prepared by random mutagenesis of DNA which encodes the protein or a particular portion thereof. Useful methods include PCR mutagenesis and saturation mutagenesis. A library of random amino acid sequence variants can also be generated by the synthesis of a set of degenerate oligonucleotide sequences. Methods of generating amino acid sequence variants of a given protein using altered DNA and peptides are well-known in the art. The following examples of such methods are not intended to limit the scope of the present invention, but merely serve to illustrate representative techniques. Persons having ordinary skill in the art will recognize that other methods are also useful in this regard.
- PCR Mutagenesis: See, for example Leung et al., (1989)
Technique 1, 11-15. - Saturation Mutagenesis: One method is described generally in Mayers et al., (1989) Science 229, 242.
- Degenerate Oligonucleotide Mutagenesis: See for example Harang, S. A., (1983)
Tetrahedron 39, 3; Itakura et al., (1984) Ann. Rev. Biochem. 53, 323 and Itakura et al., Recombinant DNA, Proc. 3rd Cleveland Symposium on Macromolecules, pp. 273-289 (A. G. Walton, ed.), Elsevier, Amsterdam, 1981. - C. Production of Altered DNA and Peptide Sequences: Directed Methods
- Non-random, or directed, mutagenesis provides specific sequences or mutations in specific portions of a polynucleotide sequence that encodes an isolated polypeptide, to provide variants which include deletions, insertions, or substitutions of residues of the known amino acid sequence of the isolated polypeptide. The mutation sites may be modified individually or in series, for instance by: (1) substituting first with conserved amino acids and then with more radical choices depending on the results achieved; (2) deleting the target residue; or (3) inserting residues of the same or a different class adjacent to the located site, or combinations of options 1-3.
- Clearly, such site-directed methods are one way in which an N-terminal cysteine (or a functional equivalent) can be introduced into a given polypeptide sequence to provide the attachment site for a hydrophobic moiety.
- Alanine scanning Mutagenesis: See Cunningham and Wells, (1989) Science 244, 1081-1085).
- Oligonucleotide-Mediated Mutagenesis: See, for example, Adelman et al., (1983) DNA 2, 183.
- Cassette Mutagenesis: See Wells et al., (1985) Gene 34, 315.
- Combinatorial Mutagenesis: See, for example, Ladner et al., W088/06630
- Methods of Treatment
- The method of the present invention are useful as a treatment in diseases where enhanced angiogenic activity is desirable to promote neovascularization. Such diseases and conditions include: myocardial ischemic conditions (e.g., myocardial infarction, improve blood flow in patients with coronary artery disease suffering from myocardial ischemia or inadequate blood flow to areas other than the heart such as in peripheral vascular disease, where decreased blood flow is a problem, revascularization of necrotic tissue, for example of the myocardium after an infarction or an angioplasty, angina, heart transplants, vascular grafts, and reopening vessels to improve vascularization, perfusion, collagenization and organization of said lesions), wound healing, and tissue and organ transplantations (e.g., enhancement of autologous or heterologous microvascular transplantation). Promotion of wound healing includes healing of incisions, bone repair, burn healing, post-infarction repair in myocardial injury, healing of gastric ulcers and other ulcers of the gastrointestinal tract and generally in promoting the formation, maintenance and repair of tissue. Neovascularization of grafted or transplanted tissue is also contemplated, especially in subjects suffering from vascular insufficiency, such as diabetic patients.
- As a general matter, the methods of the present invention may be utilized for any mammalian subject needing modulation of angiogenesis. Mammalian subjects which may be treated according to the methods of the invention include, but are not limited to, human subjects or patients. In addition, however, the invention may be employed in the treatment of domesticated mammals which are maintained as human companions (e.g., dogs, cats, horses), which have significant commercial value (e.g., dairy cows, beef cattle, sporting animals), which have significant scientific value (e.g., captive or free specimens of endangered species), or which otherwise have value. In addition, as a general matter, the subjects for treatment with the methods of the present invention need not present indications for treatment with the agents of the invention other than those indications associated with need for modulation of angiogenesis. That is, the subjects for treatment are expected to be otherwise free of indications for treatment with the TWEAK therapeutic agents of the invention.
- One of ordinary skill in the medical or veterinary arts is trained to recognize subjects which may need modulation of angiogenesis. In particular, clinical and non-clinical trials, as well as accumulated experience, relating to the presently disclosed and other methods of treatment, are expected to inform the skilled practitioner in deciding whether a given subject is in need of modulation and whether any particular treatment is best suited to the subject's needs, including treatment according to the present invention.
- Accordingly, the methods of this invention may employ TWEAK agonists or biologically active portions thereof, and angiogenic factors, to promote angiogenesis, such as, to repair damage of myocardial tissue as a result of myocardial infarction. Such methods may also include the repair of the cardiac vascular system after ischemia including the growth of collateral vasculature. Methods utilizing TWEAK agonists and angiogenic factors may be employed to stimulate the growth of transplanted tissue and collateral vasculature where coronary bypass surgery is performed. Methods may also treat damaged vascular tissue as a result of coronary artery disease and peripheral or central nervous system vascular disease or ischemia.
- Methods of the invention may also promote wound healing, particularly to re-vascularize damaged tissues or stimulate collateral blood flow during ischemia and where new capillary angiogenesis is desired. Other methods of the invention may be employed to treat full-thickness wounds such as dermal ulcers, including pressure sores, venous ulcers, and diabetic ulcers. In addition, methods employing TWEAK therapeutics may be employed to treat full-thickness burns and injuries where a skin graft or flap is used to repair such burns and injuries. Such TWEAK agonists and angiogenic factors may also be employed for use in plastic surgery, for example, for the repair of lacerations, burns, or other trauma. In urology, methods of the invention may assist in recovery of erectile function.
- Since angiogenesis is important in keeping wounds clean and non-infected, methods may be employed in association with surgery and following the repair of cuts. They may also be employed for the treatment of abdominal wounds where there is a high risk of infection. Methods using TWEAK therapeutics described herein may be employed for the promotion of endothelialization in vascular graft surgery. In the case of vascular grafts using either transplanted or synthetic material, TWEAK agonists and angiogenic factors can be applied to the surface of the graft or at the junction to promote the growth of vascular smooth muscle and adventitial cells in conjunction with endothelial cells.
- Methods of the invention may also be employed to coat artificial prostheses or natural organs which are to be transplanted in the body to minimize rejection of the transplanted material and to stimulate vascularization of the transplanted materials and may also be employed for vascular tissue repair, for example, that occurring during arteriosclerosis and required following balloon angioplasty where vascular tissues are damaged. Specifically, methods of the invention may be employed to promote recovery from arterial wall injury and thereby inhibit restenosis.
- Nucleic acid sequences encoding TWEAK agonists may also be employed for in vitro purposes related to scientific research, synthesis of DNA and manufacture of DNA vectors, and for the production of diagnostics and therapeutics to treat human disease. For example, methods of the invention may involve in vitro culturing of vascular smooth muscle cells, fibroblasts, hematopoietic cells, muscle, myotendonous junction, bone or cartilage- derived cells and other mesenchymal cells, where a TWEAK therapeutic is added to the conditional medium in a concentration from 10 ng/ml to 20 ug/ml.
- These therapeutic agents may be administered by any route which is compatible with the particular agent employed. The therapeutic agents of the invention may be provided to an individual by any suitable means, preferably directly (e.g., locally, as by injection or topical administration to a tissue locus) or systemically (e.g., parenterally or orally). Where the agent is to be provided parenterally, such as by intravenous, intraarterial, subcutaneous, or intramuscular, administration, the agent preferably comprises part of an aqueous solution. The solution is physiologically acceptable so that in addition to delivery of the desired agent to the subject, the solution does not otherwise adversely affect the subject's electrolyte and/or volume balance. The aqueous medium for the therapeutic may comprise normal physiologic saline (e.g., 9.85% NaCl, 0.15M, pH 7-7.4).
- The therapeutics are preferably administered as a sterile pharmaceutical composition containing a pharmaceutically acceptable carrier, which may be any of the numerous well known carriers, such as water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, and the like, or combinations thereof. The compounds of the present invention may be used in the form of pharmaceutically acceptable salts derived from inorganic or organic acids and bases. Included among such acid salts are the following: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate and undecanoate. Base salts include ammonium salts, alkali metal salts, such as sodium and potassium salts, alkaline earth metal salts, such as calcium and magnesium salts, salts with organic bases, such as dicyclohexylamine salts, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine and salts with amino acids such as arginine, lysine, and so forth. Also, the basic nitrogen-containing groups can be quatemized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates, such as dimethyl, diethyl, dibutyl and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides, such as benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.
- Pharmaceutical compositions of TWEAK agonists and angiogenic factors comprise any of the compounds of the present invention, or pharmaceutically acceptable derivatives thereof, together with any pharmaceutically acceptable carrier. The term “carrier” as used herein includes acceptable adjuvants and vehicles. Pharmaceutically acceptable carriers that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
- Injection Delivery
- According to this invention, the pharmaceutical compositions may be in the form of a sterile injectable preparation, for example a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as do natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.
- Controlled release administration of a particular therapeutic may be useful. For example, the therapeutic may be administered using intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration. In one embodiment, a pump may be used [Langer et al., eds., Medical Applications of Controlled Release, CRC Pres., Boca Raton, Fla. (1974); Sefton, CRC Crit. Ref. Biomed. Eng., 14:201 (1987); Buchwald et al., Surgery, 88:507 (1980); Saudek et al., N. Engl. J. Med., 321:574 (1989)]. In another embodiment, polymeric materials can be used [see, Langer, 1974, supra; Sefton, 1987, supra; Smolen et al., eds., Controlled Drug Bioavailability, Drug Product Design and Performance, Wiley, N.Y. (1984); Ranger et al., J. Macromol. Sci. Rev. Macromol. Chem., 23:61 (1983); see also Levy et al., Science, 228:190 (1985); During et al., Ann. Neurol., 25:351 (1989); Howard et al., J. Neurosurg., 71:105 (1989)]. In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, e.g., a tumor, thus requiring only a fraction of the systemic dose [see. e.g., Goodson, in Medical Applications of Controlled Release, vol. 2, pp. 115-138 (1984)]. Other controlled release systems are discussed in the review by Langer, Science, 249:1527-1533 (1990). In another embodiment, the therapeutic compound can be delivered in a vesicle, in particular a liposome (see Langer, 1990, supra); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, pp. 317-327; see generally id.).
- Oral Delivery
- Contemplated for use herein are oral solid dosage forms, which are described generally in Martin, Chapter 89, 1990, supra, which is herein incorporated by reference. Solid dosage forms include tablets, capsules, pills, troches or lozenges, cachets or pellets. Also, liposomal or proteinoid encapsulation may be used to formulate the present compositions (as, for example, proteinoid microspheres reported in U.S. Pat. No. 4,925,673). Liposomal encapsulation may be used and the liposomes may be derivatized with various polymers (e.g., U.S. Pat. No. 5,013,556). A description of possible solid dosage forms for the therapeutic is given by Marshall, in Modern Pharmaceutics,
Chapter 10, Banker and Rhodes ed., (1979), herein incorporated by reference. In general, the formulation will include the therapeutic (or chemically modified form), and inert ingredients which allow for protection against the stomach environment, and release of the biologically active material in the intestine. - For the protein (or derivative) the location of release may be the stomach, the small intestine (the duodenum, the jejunem, or the ileum), or the large intestine. One skilled in the art has available formulations which will not dissolve in the stomach, yet will release the material in the duodenum or elsewhere in the intestine. Preferably, the release will avoid the deleterious effects of the stomach environment, either by protection of the protein (or derivative) or by release of the biologically active material beyond the stomach environment, such as in the intestine. To ensure full gastric resistance, a coating impermeable to at least pH 5.0 is essential. Examples of the more common inert ingredients that are used as enteric coatings are cellulose acetate trimellitate (CAT), hydroxypropylmethylcellulose phthalate (HPMCP), HPMCP 50, HPMCP 55, polyvinyl acetate phthalate (PVAP), Eudragit L30D, Aquateric, cellulose acetate phthalate (CAP), Eudragit L, Eudragit S, and Shellac. These coatings may be used as mixed films. A coating or mixture of coatings can also be used on tablets, which are not intended for protection against the stomach. This can include sugar coatings, or coatings which make the tablet easier to swallow. Capsules may consist of a hard shell (such as gelatin) for delivery of dry therapeutic i.e. powder; for liquid forms, a soft gelatin shell may be used. The shell material of cachets could be thick starch or other edible paper. For pills, lozenges, molded tablets or tablet triturates, moist massing techniques can be used.
- The therapeutic can be included in the formulation as fine multiparticulates in the form of granules or pellets of particle size about 1 mm. The formulation of the material for capsule administration could also be as a powder, lightly compressed plugs or even as tablets. The therapeutic could be prepared by compression. Colorants and flavoring agents may all be included. For example, the protein (or derivative) may be formulated (such as by liposome or microsphere encapsulation) and then further contained within an edible product, such as a refrigerated beverage containing colorants and flavoring agents. One may dilute or increase the volume of the therapeutic with an inert material. These diluents could include carbohydrates, especially mannitol, alpha-lactose, anhydrous lactose, cellulose, sucrose, modified dextrans and starch. Certain inorganic salts may be also be used as fillers including calcium triphosphate, magnesium carbonate and sodium chloride. Some commercially available diluents are Fast-Flo, Emdex, STA-Rx 1500, Emcompress and Avicell. Disintegrants may be included in the formulation of the therapeutic into a solid dosage form. Materials used as disintegrants include but are not limited to starch including the commercial disintegrant based on starch, Explotab. Sodium starch glycolate, Amberlite, sodium carboxymethylcellulose, ultramylopectin, sodium alginate, gelatin, orange peel, acid carboxymethyl cellulose, natural sponge and bentonite may all be used. Another form of the disintegrants are the insoluble cationic exchange resins. Powdered gums may be used as disintegrants and as binders and these can include powdered gums such as agar, Karaya or tragacanth. Alginic acid and its sodium salt are also useful as disintegrants. Binders may be used to hold the therapeutic agent together to form a hard tablet and include materials from natural products such as acacia, tragacanth, starch and gelatin. Others include methyl cellulose (MC), ethyl cellulose (EC) and carboxymethyl cellulose (CMC). Polyvinyl pyrrolidone (PVP) and hydroxypropylmethyl cellulose (HPMC) could both be used in alcoholic solutions to granulate the therapeutic. An antifrictional agent may be included in the formulation of the therapeutic to prevent sticking during the formulation process. Lubricants may be used as a layer between the therapeutic and the die wall, and these can include but are not limited to: stearic acid including its magnesium and calcium salts, polytetrafluoroethylene (PTFE), liquid paraffin, vegetable oils and waxes. Soluble lubricants may also be used such as sodium lauryl sulfate, magnesium lauryl sulfate, polyethylene glycol of various molecular weights, and Carbowax 4000 and 6000. Glidants that might improve the flow properties of the drug during formulation and to aid rearrangement during compression might be added. The glidants may include starch, talc, pyrogenic silica and hydrated silicoaluminate.
- To aid dissolution of the therapeutic into the aqueous environment, a surfactant might be added as a wetting agent. Surfactants may include anionic detergents such as sodium lauryl sulfate, dioctyl sodium sulfosuccinate and dioctyl sodium sulfonate. Cationic detergents might be used and could include benzalkonium chloride or benzethomium chloride. The list of potential nonionic detergents that could be included in the formulation as surfactants are lauromacrogol 400, polyoxyl 40 stearate, polyoxyethylene hydrogenated
10, 50 and 60, glycerol monostearate,castor oil 40, 60, 65 and 80, sucrose fatty acid ester, methyl cellulose and carboxymethyl cellulose. These surfactants could be present in the formulation of the protein or derivative either alone or as a mixture in different ratios. Additives which potentially enhance uptake of the protein (or derivative) are for instance the fatty acids oleic acid, linoleic acid and linolenic acid.polysorbate - Pulmonary Delivery
- Also contemplated herein is pulmonary delivery of the present proteins (or derivatives thereof). The protein (or derivative) is delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood-stream. Other reports of this include Adjei et al., Pharmaceutical Research, 7(6):565-569 (1990); Adjei et al., International Journal of Pharmaceutics, 63:135-144 (1990) (leuprolide acetate); Braquet et al., Journal of Cardiovascular Pharmacology, 13(suppl. 5):143-146 (1989) (endothelin-1); Hubbard et al., Annals of Internal Medicine, 3(3):206-212 (1989) (alpha 1-antitrypsin); Smith et al., J. Clin. Invest., 84:1145-1146 (1989) (alpha 1-proteinase); Oswein et al., “Aerosolization of Proteins”, Proceedings of Symposium on Respiratory Drug Delivery II, Keystone, Colo., (March 1990) (recombinant human growth hormone); Debs et al., J. Immunol., 140:3482-3488 (1988) (interferon-gamma and tumor necrosis factor alpha) and Platz et al., U.S. Pat. No. 5,284,656 (granulocyte colony stimulating factor). Contemplated for use in the practice of this invention are a wide range of mechanical devices designed for pulmonary delivery of therapeutic products, including but not limited to nebulizers, metered-dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art.
- Some specific examples of commercially available devices suitable for the practice of this invention are the Ultravent nebulizer, manufactured by Mallinckrodt, Inc., St. Louis, Mo.; the Acorn II nebulizer, manufactured by Marquest Medical Products, Englewood, Colo.; the Ventolin metered-dose inhaler, manufactured by Glaxo Inc., Research Triangle Park, N.C.; and the Spinhaler powder inhaler, manufactured by Fisons Corp., Bedford, Mass. All such devices require the use of formulations suitable for the dispensing of protein (or derivative). Typically, each formulation is specific to the type of device employed and may involve the use of an appropriate propellant material, in addition to the usual diluents, adjuvants and/or carriers useful in therapy. Also, the use of liposomes, microcapsules or microspheres, inclusion complexes, or other types of carriers is contemplated. Chemically modified protein may also be prepared in different formulations depending on the type of chemical modification or the type of device employed.
- Formulations suitable for use with a nebulizer, either jet or ultrasonic, will typically comprise protein (or derivative) dissolved in water at a concentration of about 0.1 to 25 mg of biologically active protein per ml of solution. The formulation may also include a buffer and a simple sugar (e.g., for protein stabilization and regulation of osmotic pressure). The nebulizer formulation may also contain a surfactant, to reduce or prevent surface induced aggregation of the protein caused by atomization of the solution in forming the aerosol.
- Formulations for use with a metered-dose inhaler device will generally comprise a finely divided powder containing the protein (or derivative) suspended in a propellant with the aid of a surfactant. The propellant may be any conventional material employed for this purpose, such as a chlorofluorocarbon, a hydrochlorofluorocarbon, a hydrofluorocarbon, or a hydrocarbon, including trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol, and 1,1,1,2-tetrafluoroethane, or combinations thereof. Suitable surfactants include sorbitan trioleate and soya lecithin. Oleic acid may also be useful as a surfactant.
- Formulations for dispensing from a powder inhaler device will comprise a finely divided dry powder containing protein (or derivative) and may also include a bulking agent, such as lactose, sorbitol, sucrose, or mannitol in amounts which facilitate dispersal of the powder from the device, e.g., 50 to 90% by weight of the formulation. The protein (or derivative) should most advantageously be prepared in particulate form with an average particle size of less than 10 mu m (or microns), most preferably 0.5 to 5 mu m, for most effective delivery to the distal lung.
- Dosages
- For all of the above molecules, as further studies are conducted, information will emerge regarding appropriate dosage levels for treatment of various conditions in various patients, and the ordinary skilled worker, considering the therapeutic context, age and general health of the recipient, will be able to ascertain the proper dosage. Generally, for injection or infusion, dosage will be between 0.01 mu g of biologically active protein/kg body weight, (calculating the mass of the protein alone, without chemical modification), and 10 mg/kg (based on the same). The dosing schedule may vary, depending on the circulation half-life of the protein or derivative used, whether the polypeptide is delivered by bolus dose or continuous infusion, and the formulation used.
- Administration with Other Compounds
- For therapy associated with modulating angiogenesis, one may administer the present TWEAK agonists (or derivatives) and angiogenic factors in conjunction with one or more pharmaceutical compositions used for treating other clinical complications of the need for angiogenic modulation, such as those used for treatment of cancer (e.g., chemotherapeutics), cachexia, high blood pressure, high cholesterol, and other adverse conditions. Administration may be simultaneous or may be in seriatim.
- Nucleic Acid-Based Therapeutic Treatment
- Nucleic acid sequences encoding a TWEAK agonist could be introduced into human tumor or blood vessel cells to develop gene therapy.
- In one embodiment, a nucleic acid sequence encoding a TWEAK agonist is introduced in vivo in a viral vector. Such vectors include an attenuated or defective DNA virus, such as but not limited to herpes simplex virus (HSV), papillomavirus, Epstein Barr virus (EBV), adenovirus, adeno-associated virus (AAV), and the like. Defective viruses, which entirely or almost entirely lack viral genes, are preferred. Defective virus is not infective after introduction into a cell. Use of defective viral vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Thus, adipose tissue can be specifically targeted. Examples of particular vectors include, but are not limited to, a defective herpes virus 1 (HSV1) vector [Kaplitt et al., Molec. Cell. Neurosci., 2:320-330 (1991)], an attenuated adenovirus vector, such as the vector described by Stratford-Perricaudet et al., J. Clin. Invest., 90:626-630 (1992), and a defective adeno-associted virus vector [Samulski et al., J. Virol., 61:3096-3101 (1987); Samulski et al., J. Virol., 63:3822-3828 (1989)]. In another embodiment, the nucleic acid can be introduced in a retroviral vector, e.g., as described in Anderson et al., U.S. Pat. No. 5,399,346; Mann et al., Cell, 33:153 (1983); Temin et al., U.S. Pat. No. 4,650,764; Temin et al., U.S. Pat. No. 4,980,289; Markowitz et al., J. Virol., 62:1120 (1988); Temin et al., U.S. Pat. No. 5,124,263; International Patent Publication No. WO 95/07358, published Mar. 16, 1995, by Dougherty et al.; and Kuo et al., Blood, 82:845 (1993). Alternatively, the vector can be introduced in vivo by lipofection. For the past decade, there has been increasing use of liposomes for encapsulation and transfection of nucleic acids in vitro. Synthetic cationic lipids designed to limit the difficulties and dangers encountered with liposome mediated transfection can be used to prepare liposomes for in vivo transfection of a gene encoding a marker [Felgner et al., Proc. Natl. Acad. Sci. USA, 84:7413-7417 (1987); see Mackey et al., Proc. Natl. Acad. Sci. USA, 85:8027-8031 (1988)]. The use of cationic lipids may promote encapsulation of negatively charged nucleic acids, and also promote fusion with negatively charged cell membranes [Felgner et al., Science, 337:387-388 (1989)]. The use of lipofection to introduce exogenous genes into specific organs in vivo has certain practical advantages. Molecular targeting of liposomes to specific cells represents one area of benefit. It is clear that directing transfection to particular cell types would be particularly advantageous in a tissue with cellular heterogeneity, such as the pancreas, liver, kidney, and brain. Lipids may be chemically coupled to other molecules for the purpose of targeting (see Mackey et al., 1988, supra). Targeted peptides, e.g., hormones or neurotransmitters, and proteins such as antibodies, or non-peptide molecules could be coupled to liposomes chemically.
- It is also possible to introduce the vector in vivo as a naked DNA plasmid. Naked DNA vectors for gene therapy can be introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fuision, DEAE dextran, calcium phosphate precipitation, use of a gene gun, or use of a DNA vector transporter (see, e.g., Wu et al., J. Biol. Chem., 267:963-967 (1992); Wu et al., J. Biol. Chem., 263:14621-14624 (1988); Hartmut et al., Canadian Patent Application No. 2,012,311, filed Mar. 15, 1990).
- It is also possible to introduce the vector in vivo in conjunction with a catheter or other device. See Vale et al., 1999; Komowski et al., 2000.
- The following examples illustrate aspects of the present invention but should not be construed as limitations. The symbols and convention used in these examples are consistent with those used in contemporary medical and scientific literature
- Experimental Procedures:
- Cells—Human Umbilical Vein Endothelial Cells (HUVEC) were obtained from Cell System Corporation (CS-C) (Kirkland, Wash.) or Clonetics (San Diego, Calif.) and Human Pulmonary Artery Endothelial Cells (HPAEC), Human Lung Microvascular Endothelial cells (HMVEC-L) and Human Dermal Microvascular Endothelial cells (HMVEC-D) were purchased from Clonetics. HUVEC were routinely passaged in CS-C Medium and used in experiments until passage seven. The other primary cells were routinely passaged in Microvascular Endothelial Cell Growth Medium-2 (EGM2-MV) (Clonetics). EC Basal Medium (EBM) containing 2% fetal bovine serum (FBS), defined as “basal media”, and EBM containing 2% FBS and supplier growth supplements, defined as “complete media”, were used in proliferation, migration and immunofluorescent staining experiments. EC Basal Medium 2 EBM-2) and supplier growth supplements were used in the capillary tube formation assay as specified.
- Reagents and Antibodies—Recombinant human bFGF was obtained as a growth supplier supplement (Clonetics), bFGF also was purchased from R&D Systems (Minneapolis, Minn.) and Sigma (St.Louis, Mo.). Annexin V-FITC was from Pharmingen (San Diego, Calif.), propidium iodide (PI) from Sigma (St.Louis, Mo.), rabbit anti-human Flk-1 and rabbit anti-Flt-1 antibodies from Research Diagnostics Inc. (Flanders, N.J.), mouse anti-Flg monoclonal antibody (mAb) from Chemicon (Temecula, Calif.), mouse anti-human-β3, mouse anti-human-β1 (clone LIA ½) and rat anti-human αv mAbs from Immunotech (Westbrook, Me.), mouse anti-human α5 from Pharmingen (San Diego, Calif.), mouse anti-human α1 (clone AJH10) from Biogen (Gotwals P. J, et al., 1999. Biochem. 38:8280-8288), Phycoerythrin (PE)-conjugated donkey anti-rabbit IgG, goat anti-mouse IgG and donkey anti-rat IgG from Jackson Immunoresearch Labs Inc. (West Groove, Pa.), biotin-conjugated anti-FLAG from Eastman Kodak Company (New Haven, Conn.), and RPE-Streptavidin from Southern Biotechnology Associates, Inc. (Birmingham, Ala.). Soluble CD40L was prepared at Biogen as previously described (Karpusas, M., et al., 1995. Structure 3:1426-xxx).
- TWEAK-specific mAbs BE.B3 and AB.D3 were generated in Armenian hamsters by immunizing with soluble human TWEAK protein and standard hybridoma generation procedures. The ability of AB.D3 to bind to human and murine TWEAK and BE.B3 to bind to human TWEAK was demonstrated in an ELISA assay using recombinant soluble TWEAK proteins immobilized on 96 well microtiter plates. The blocking activity of AB.D3 was demonstrated by the ability of this mAb but not BE.B3 to inhibit soluble FLAG-tagged human TWEAK binding to HT29 cells in a FACS analysis. BE.B3 was biotinylated prepared using ImmunoPure Biotinylation kits following the manufacturer's protocol (Pierce, Rockford, Ill.). A hamster control Ig (clone Ha4/8-3.1) was obtained from the American Type Culture Collection and mAb purified from culture supernatant by Protein A Fast Flow column (Pharmacia, Piscataway, N.J.).
- Recombinant Soluble Human TWEAK protein—Soluble expression construct for myc-tagged human TWEAK was constructed as previously described (Chicheportiche, Y., et al. 1997. J. Biol. Chem. 272:32401-32410). Flag-tagged and nontagged forms also were made. These soluble forms of TWEAK were expressed in yeast, Pichia pastoris strain GS115, using standard conditions.
- Proliferation Assays—HUVEC were plated in 96-well microtiter plates at subconfluence (4000 cells per well) and cultured overnight in CS-C Medium without addition of supplier growth supplements. Media was replaced with complete Media, or with basal media as defined above. Cells were cultured in basal media with or without TWEAK (100 ng/ml), bFGF using a 1/500- 1/1000 dilution of bFGF growth supplement (Clonetics) or 1 ng/ml (R&D Systems), VEGF (10 ng/ml) or combinations of these factors. Where indicated, 10 μg/ml anti-TWEAK mAbs AB.D3, BE.B3 or hamster control Ig Ha4/8 also were added. Cells were incubated at 37° C. with 5% CO2 for three days and proliferation was measured by pulsing with 3H-Thymidine for the last 10 hours of culture. Cell-bound radioactivity was measured with a Betaplate™ (EG&G Wallac, Gaithersburg, Md.).
- Analysis of Apoptosis—HUVEC seeded in 6-well plates at a density of 1.2×105 cells per well were incubated over night in CS-C Medium without supplier growth supplements. Media was replaced with complete media, or with basal media with or without TWEAK (200 ng/ml), bFGF (1 ng/ml) or combinations of these factors and cells were cultured for 24 hours. Cells were washed with Phosphate buffered saline (PBS) and detached by incubation with dispase (CS-C) for 15 minutes at 37° C. followed by replacement with PBS containing 5 mM EDTA and 0.1% BSA for 15 minutes at 37° C. After an additional wash in PBS, cells were stained with FITC-Annexin-V and 5 μg/ml Propidium Iodide according to the supplier (Pharmingen). Fluorescence was analyzed within the hour using FACStarPLUS (Becton Dickinson, San Jose, Calif.).
- Endothelial Wound Repair Assay—A standard wound repair assay was employed as previously described (Bussolino F., et al, 1991. J. Clin. Invest. 87:986-991). In brief, a confluent monolayer of HUVEC was grown in CS-C Medium in 35×10 mm cell culture dishes with 2 mm grids (Nalge Nunc International, Naperville, Ill.). The monolayer was wounded by two perpendicular strokes across the diameter of the dish with a 1 mm tip (Morales D. E., et al., 1995. Circulation 91:755-763). Dislodged cells were aspirated and plates were rinsed with PBS. Cells were cultured in complete media, or in fresh basal media with or without TWEAK (200 ng/ml), bFGF ( 1/1000 or 1 ng/ml), VEGF (10 ng/ml) or combinations of these and were incubated for 18 hours at 37° C. with 5% CO2 at which time plates were fixed with 1% paraformaldehyde and stained with Harris Hematoxylin (Sigma, St. Louis, Mo.). Wound repair was quantified by visually counting the number of grids in which the gap was obscured by migrating cells. This number was divided by the total number of grids that aligned the wound and results were expressed as mean percentage wound repair +/−SEM.
- Immunofluorescent staining—HUVEC were cultured in basal media with or without TWEAK (200 ng/ml), bFGF (1 ng/ml) or both factors for 24 hours. Cells were detached as described above and stained with 10 μg/ml primary antibody in 200 μl PBS containing 0.1% bovine serum albumin and 0.02% NaN3 for 20 minutes at 4° C. Following washes with the same buffer, the PE-conjugated detection antibodies were added at concentrations as specified by the manufacturer for an additional 15 minutes at 4° C. Cells were analyzed for TWEAK binding by incubation with TWEAK tagged either with flag or with myc. Binding was detected with either biotinylated mouse anti-flag antibody or biotinylated BE.B3 and streptavidin-PE. Cold competition was performed with non-tagged TWEAK and blocking was performed with the AB.D3 mAb.
- Capillary tube formation assay—Capillary tube formation by ECs was analyzed using a three-dimensional fibrin matrix gel assay based on a method previously described (Mach, F., et al., 1999. Am. J. Pathol. 154:229-239). Briefly, 4 mg/ml plasminogen free human fibrinogen (Calbiochem, San Diego, Calif.) was dissolved in serum free EBM-2 media with heparin and polymixin B both at 1 μg/ml (Sigma) as well as all of the supplier supplements except for VEGF and bFGF. The fibrin solution was filtered-sterilized and fibrin matrices were prepared by adding thrombin (20-50 milliunits/ml) (Sigma) and distributing 300 ul per well in 24-well plates. ECs at appropriate concentrations (4×104 cells/cm2 for HUVEC and HPAEC and 8×104/cm2 for HMVEC-L and HMVEC-D) were then seeded onto the gel surfaces and overlayered with EBM-2 media as above and 5% FBS in the presence or absence of TWEAK, bFGF, sCD40L or combinations of these factors as specified. After 72 hours of culture, phase-contrast photomicrographs of the gel surface were taken. Gels were transferred from original wells to new wells and fixed with 10% ethanol for 10 minutes and then with 4% paraformaldehyde. Gels were cross sectioned for analysis and photographs taken.
- The effect of TWEAK on EC functions was investigated by examining EC proliferation in cultures treated with TWEAK alone and in combination with another angiogenic growth factors. Human Umbilical Vein EC (HUVEC) were cultured in basal media in the presence or absence of bFGF (
FIG. 1 ). Addition of TWEAK induced no significant proliferation of ECs. By contrast, cells cultured with TWEAK and an optimal concentration of bFGF displayed a significantly enhanced proliferative response compared to cells cultured in the presence of bFGF alone. The degree of proliferation achieved was comparable to or greater than that of ECs cultured in complete media. Similar results were obtained using bFGF at 1 ng/ml. The synergistic activity of TWEAK with bFGF was completely inhibited by anti-TWEAK mAb AB.D3 suggesting that the effect of TWEAK was specific, whereas there was no inhibition by a anti-TWEAK mAb BE.B3 or an irrelevant control Ig. In addition, no enhancement was seen with recombinant soluble APRIL, another TNF ligand (data not shown). The experimental conditions for the results shown inFIG. 1 are described here in detail. HUVEC were cultured in complete media or in basal media. TWEAK (100 ng/ml), bFGF ( 1/500 dilution) or combinations of these factors were added to basal media as indicated for 3 days and proliferation measured by 3H-thymidine incorporation. InFIG. 1 , data shown are the mean value +/−SD of triplicate wells. These results are representative of 4 independent experiments wherein proliferation in bFGF+TWEAK-treated cultures was significantly different from that of cultures with bFGF alone, TWEAK alone and basal media (P values<0.05), and the difference between cultures in basal media with and without TWEAK was not significant. In addition to growth factors, blocking anti-TWEAKmAb AB.D3, nonblocking anti-TWEAK mAb BE.B3, and an irrelevant hamster control Ig Ha4/8 (10 ug/ml) were added where indicated. Results are representative of one of two independent experiments. - The apparent enhancement of HUVEC proliferation by the TWEAK/bFGF combination could be due to increased cell division or decreased cell death. In order to address the mechanism, HUVEC cultured in basal media with or without TWEAK, bFGF or both were analyzed to determine the frequency of apoptotic cells. Annexin V staining was employed to detect cells undergoing apoptosis and propidium iodide (PI) dye exclusion to detect viable cells. Cultures treated with the combination of TWEAK and bFGF exhibited percentages of viable, apoptotic and dead cells that were comparable to those of cultures treated with bFGF alone. These percentages are shown in
FIG. 2 , inquadrants 3, 4 and 2 respectively. Similar results were obtained in two additional experiments wherein cells with subdiploid DNA content were quantified (11% in bFGF and 11% in bFGF/TWEAK treated cultures). Thus, the enhancement by TWEAK of bFGF-dependent proliferation is not due to decreased cell death. Nevertheless it is noteworthy that TWEAK alone decreased the frequency of apoptotic cells from 22% to 14%. This pattern also was observed in two independent experiments, wherein the percentage of cells with subdiploid DNA were on average 18+/−1% and 9+/−0% in the absence and presence of TWEAK, respectively. - The experimental conditions for the results in
FIG. 2 are described in detail here. HUVEC cultured for 24 hours in basal media with or without TWEAK (200 ng/ml), bFGF (1 ng/ml) or both cytokines were stained with FITC-Annexin-V (x-axis) for apoptotic cells and by PI dye exclusion for viability (y-axis).FIG. 2 shows the percentage of viable, apoptotic and dead cells inquadrants 3, 4, and 2, respectively. - The ability of TWEAK to effect EC migration was evaluated in the presence and absence of other angiogenic factors. Confluent HUVEC monolayers were wounded and EC migration was monitored within the first 18 hours by determining the degree of wound repair. Addition of TWEAK or bFGF to basal media induced a low level of wound repair, however, this was not significantly greater than that observed with basal media alone. By contrast, cultures treated with both TWEAK and bFGF were repaired to a significantly greater degree than cultures in basal media and with either agent alone, and were similar to those in complete media. HUVECs were recovered from the cultures and counted in order to determine whether or not any increase in cell number had occurred over the course of the experiment. In all treatment groups, cell recoveries were comparable (data not shown) supporting that the combinatorial effect of TWEAK and bFGF was at the level of cell migration.
- The experimental conditions for the results shown in
FIG. 3 are described here in detail. Confluent HUVEC monolayers treated with TWEAK (200 ng/ml), bFGF (1 ng/ml or 1/1000 dilution), and combinations of these factors, were wounded and repair measured after 18 hours of culture.FIG. 3 shows the average of 4 experiments +/−SEM, with repair induced by bFGF+TWEAK significantly different from that induced by either alone or basal media (P values<0.05). - Integrins, especially αvβ3, α1β1 and α2β1 facilitate cell migration through extracellular matrix and also regulate cell survival and intracellular signaling required for the response to angiogenic factors (Eliceiri, B. and Cheresh, D. A., 1999. J. Clin. Invest. 103:1227-1230; Senger, D. R., et al., 1997. Proc. Natl. Acad. Sci. 94:13612-13617). Therefore, we aimed to determine whether or not TWEAK modulated growth factor receptors or integrins expressed on ECs. VEGF receptors Flk-1 and Flt-1 and bFGF receptor Flg were expressed at very low levels on HUVECs cultured in basal media. As a positive control, these receptor-specific mAbs showed strong staining on human dermal microvascular EC (HMVEC-D). Consistent with the study by Lynch et al (11), we found no change in the expression of VEGF receptors Flk-1 and Flt-1 in TWEAK treated cultures, nor were there changes in VEGF receptor expression in cultures treated with bFGF or the TWEAK/bFGF combination. In addition, we found that TWEAK treatment did not alter the level of the bFGF receptor Flg or of integrins αv, α1, α5, β1, and β3.
- A key event in the angiogenic process is the organization of invading ECs into capillary tubes. The effect of TWEAK on this morphogenic step was measured with EC seeded onto the surface of three-dimensional fibrin gels in the presence or absence of bFGF. We found no effect of TWEAK on the EC monolayer, while an optimal concentration of bFGF promoted cell invasion and organization of EC into cords. The addition of TWEAK to bFBF induced clear morphological changes in the EC monolayer. Similar results were obtained with several different EC types, including HUVECs, human pulmonary artery ECs (HPAEC), human lung microvascular EC (HMVEC-L) and HMVEC-D. In addition, cross-sectional analysis of these gels revealed that the addition of TWEAK to bFBF induced the structural organization of invading ECs into tubes with lumens. CD40L, another TNF member, had no effect either alone or in combination with bFGF. Thus TWEAK synergizes with bFGF to induce the morphogenesis of capillary lumens. The results are shown in
FIG. 4 .
Claims (32)
1-6. (canceled)
7. A method for enhancing endothelial cell proliferation in an in vitro culture comprising adding to said culture, a formulation consisting essentially of a synergistically effective amount of a TWEAK agonist and an angiogenic factor.
8. A method for enhancing angiogenic activity in a mammal to promote neovascularization comprising the step of administering to said mammal a formulation consisting essentially of a synergistically effective amount of a TWEAK agonist and an angiogenic factor sufficient to promote neovascularization.
9. The methods according to claims 7 or 8, wherein the angiogenic factor is selected from the group consisting of hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), angiopoietin 1, angiopoietin 2, and monocyte chemotactic protein-1 (MCP-1).
10. The methods according to claims 7 or 8, wherein the angiogenic factor is bFGF.
11. The method of claim 8 , wherein said method is used in the treatment of a myocardial ischemic condition.
12. The method of claim 8 , wherein said method is used to promote wound healing.
13. The method of claim 8 , wherein said method is used in the treatment of dermal ulcers, lacerations, burns, or other dermal trauma in said mammal.
14. The method of claim 8 , wherein said method is used to promote growth of collateral vasculature after ischemia or recovery of erectile function in said mammal.
15. A method for in vitro culturing of mammalian cells in an in vitro culture comprising adding to said culture a formulation comprising a TWEAK agonist and an angiogenic factor.
16. The method of claim 15 , wherein the mammalian cells are selected from the group consisting of vascular smooth muscle cells, fibroblasts, hematopoietic cells, muscle, myotendonous junction, bone-derived cells, cartilage-derived cells, and other mesenchymal cells.
17. The method of claim 15 , wherein the TWEAK agonist and the angiogenic factor are present in a synergistically effective amount.
18. The method of claim 15 , wherein the formulation consists of a TWEAK agonist and an angiogenic factor.
19. The method of claim 15 , wherein the TWEAK agonist is TWEAK.
20. The method of claim 15 , wherein the angiogenic factor is selected from the group consisting of hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), angiopoietin 1, angiopoietin 2, and monocyte chemotactic protein-1 (MCP-1).
21. The method of claim 15 , wherein the angiogenic factor is bFGF.
22. The method of claim 15 , wherein the TWEAK agonist is TWEAK and the angiogenic factor is bFGF.
23. A formulation comprising a TWEAK agonist and an angiogenic factor.
24. The formulation of claim 23 , wherein the formulation consists of a TWEAK agonist and an angiogenic factor.
25. The formulation of claim 23 , wherein the TWEAK agonist and the angiogenic factor are present in a synergistically effective amount.
26. The formulation of claim 23 , wherein the TWEAK agonist is TWEAK.
27. The formulation of claim 23 , wherein the angiogenic factor is selected from the group consisting of hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), angiopoietin 1, angiopoietin 2, and monocyte chemotactic protein-1 (MCP-1).
28. The formulation of claim 23 , wherein the angiogenic factor is bFGF.
29. The formulation of claim 23 , wherein the TWEAK agonist is TWEAK and the angiogenic factor is bFGF.
30. A cell culture comprising: mammalian cells, a cell culture medium, and a combination of a TWEAK agonist and an angiogenic factor, wherein the combination is an amount sufficient to promote angiogenesis.
31. The cell culture of claim 30 , wherein the mammalian cells are endothelial cells, vascular smooth muscle cells, fibroblasts, hematopoietic cells, muscle, myotendonous junction, bone-derived cells, cartilage-derived cells, and other mesenchymal cells
32. The cell culture of claim 30 , wherein the TWEAK agonist and the angiogenic factor are present in a synergistically effective amount.
33. The cell culture of claim 30 , wherein the TWEAK agonist is TWEAK.
34. The cell culture of claim 30 , wherein the angiogenic factor is bFGF.
35. The cell culture of claim 30 , wherein the TWEAK agonist is TWEAK and the angiogenic factor is bFGF.
36. A method of identifying inhibitors of TWEAK and bFGF mediated cellular proliferation, the method comprising:
culturing endothelial cells in the presence of TWEAK and bFGF;
culturing endothelial cells in the presence of TWEAK, bFGF, and a test compound; and
comparing the amount of endothelial cell proliferation in the cell culture containing the test compound to the amount of proliferation in the cell culture not containing with the test compound, wherein a decrease in proliferation in the culture treated with the test compound indicates that the test compound is an inhibitor of proliferation.
37. The method of claim 36 , wherein the test compound is an antibody.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/145,340 US20060003932A1 (en) | 2000-05-08 | 2005-06-02 | Method for promoting neovascularization |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US20273800P | 2000-05-08 | 2000-05-08 | |
| US10/275,997 US6943146B2 (en) | 2000-05-08 | 2001-05-07 | Method for promoting neovascularization |
| PCT/US2001/014545 WO2001085193A2 (en) | 2000-05-08 | 2001-05-07 | Method for promoting neovascularization using a tweak agonist and an angiogenic factor |
| US11/145,340 US20060003932A1 (en) | 2000-05-08 | 2005-06-02 | Method for promoting neovascularization |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/275,997 Continuation US6943146B2 (en) | 2000-05-08 | 2001-05-07 | Method for promoting neovascularization |
| PCT/US2001/014545 Continuation WO2001085193A2 (en) | 2000-05-08 | 2001-05-07 | Method for promoting neovascularization using a tweak agonist and an angiogenic factor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060003932A1 true US20060003932A1 (en) | 2006-01-05 |
Family
ID=22751060
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/275,997 Expired - Lifetime US6943146B2 (en) | 2000-05-08 | 2001-05-07 | Method for promoting neovascularization |
| US11/145,340 Abandoned US20060003932A1 (en) | 2000-05-08 | 2005-06-02 | Method for promoting neovascularization |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/275,997 Expired - Lifetime US6943146B2 (en) | 2000-05-08 | 2001-05-07 | Method for promoting neovascularization |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US6943146B2 (en) |
| EP (1) | EP1363657A2 (en) |
| JP (1) | JP2004500844A (en) |
| AU (2) | AU2001259519C1 (en) |
| CA (1) | CA2408228A1 (en) |
| NZ (1) | NZ522741A (en) |
| WO (1) | WO2001085193A2 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080187544A1 (en) * | 2005-05-10 | 2008-08-07 | Burkly Linda C | Treating and evaluating inflammatory disorders |
| US20080241163A1 (en) * | 2005-05-27 | 2008-10-02 | Biogen Idec Ma Inc. | Tweak binding antibodies |
| US20080279853A1 (en) * | 2005-05-27 | 2008-11-13 | Biogen Idec Ma Inc. | Treatment of cancer |
| US20080292622A1 (en) * | 2005-06-13 | 2008-11-27 | Biogen Idec Ma Inc. | Methods of evaluating patients |
| US20090068102A1 (en) * | 2005-02-17 | 2009-03-12 | Biogen Idec Ma Inc. | Treating stroke |
| US20090124993A1 (en) * | 2005-02-17 | 2009-05-14 | Burkly Linda C | Treating neurological disorders |
| US20090311313A1 (en) * | 2002-04-09 | 2009-12-17 | Biogen Idec Ma Inc. | Methods for treating tweak-related conditions |
| US20100061985A1 (en) * | 1999-01-15 | 2010-03-11 | Biogen Idec Ma Inc. | Antagonists of tweak and of tweak receptor and their use to treat immunological disorders |
| US20100260761A1 (en) * | 1996-08-07 | 2010-10-14 | Biogen, Inc. | Antibodies specifically reactive with a tumor necrosis factor related ligand |
| US9068004B2 (en) | 2010-02-04 | 2015-06-30 | University Of Louisville Research Foundation, Inc. | TWEAK/Fn14 system regulates skeletal muscle atrophy and regeneration |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU782067B2 (en) | 1999-12-20 | 2005-06-30 | Immunex Corporation | TWEAK receptor |
| US6727225B2 (en) | 1999-12-20 | 2004-04-27 | Immunex Corporation | TWEAK receptor |
| US20020061587A1 (en) | 2000-07-31 | 2002-05-23 | Piero Anversa | Methods and compositions for the repair and/or regeneration of damaged myocardium |
| US7547674B2 (en) * | 2001-06-06 | 2009-06-16 | New York Medical College | Methods and compositions for the repair and/or regeneration of damaged myocardium |
| US7208151B2 (en) | 2001-09-12 | 2007-04-24 | Biogen Idec Ma Inc. | Tweak receptor agonists as anti-angiogenic agents |
| AU2004259355B2 (en) | 2003-07-24 | 2011-02-03 | Amgen Inc. | Compositions and methods relating to multimeric and oligomeric soluble fragments of the tweak receptor |
| US8093006B2 (en) | 2009-04-02 | 2012-01-10 | Hoffmann-La Roche Inc. | Antibodies against human tweak and uses thereof |
| WO2012065003A2 (en) * | 2010-11-11 | 2012-05-18 | Microstem, Inc. | Screening and culturing device and methods for the use thereof |
| EP2643028B1 (en) * | 2010-11-26 | 2017-12-06 | Stemlab SA | Composition and method to improve the therapeutic effect of stem cells |
| JP6522149B2 (en) * | 2015-04-02 | 2019-05-29 | ハートフロー, インコーポレイテッド | System and method for predicting perfusion injury from physiological characteristics, anatomical characteristics, and patient characteristics |
| CN107602682A (en) * | 2016-07-07 | 2018-01-19 | 胡国田 | A kind of polypeptide and its application |
| CN107328943B (en) * | 2017-07-28 | 2019-04-16 | 东曜药业有限公司 | A kind of detection method and application of vascular endothelial growth factor biological activity |
| CA3214688A1 (en) | 2021-04-08 | 2022-10-13 | Andrzej KROLEWSKI | Methods of diagnosing and predicting renal decline |
Citations (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5073492A (en) * | 1987-01-09 | 1991-12-17 | The Johns Hopkins University | Synergistic composition for endothelial cell growth |
| US5858991A (en) * | 1997-01-29 | 1999-01-12 | Vanderbilt University | Facilitation of wound healing with CM101/GBS toxin |
| US6207642B1 (en) * | 1997-02-12 | 2001-03-27 | Abbott Laboratories | Member of the TNF family useful for treatment and diagnosis of disease |
| US20020004041A1 (en) * | 1999-02-19 | 2002-01-10 | Albert Matthew L. | Methods for abrogating a cellular immune response |
| US20020041876A1 (en) * | 1999-12-20 | 2002-04-11 | Wiley Steven R. | TWEAK receptor |
| US20020042368A1 (en) * | 2000-02-25 | 2002-04-11 | Fanslow William C. | Integrin antagonists |
| US20020110853A1 (en) * | 1999-12-20 | 2002-08-15 | Wiley Steven R. | TWEAK receptor |
| US6448042B1 (en) * | 1994-12-13 | 2002-09-10 | Human Genome Sciences, Inc. | Human tissue inhibitor of metalloproteinase-4 |
| US6544761B2 (en) * | 1994-12-13 | 2003-04-08 | Human Genome Sciences, Inc. | Human tissue inhibitor of metalloproteinase-4 |
| US20030100074A1 (en) * | 2001-08-16 | 2003-05-29 | Guo-Liang Yu | Methods and compositions for treating metabolic bone diseases relating to human endokine alpha |
| US20030162712A1 (en) * | 1999-06-07 | 2003-08-28 | Immunex Corporation | Tek antagonists |
| US20030170228A1 (en) * | 1999-08-31 | 2003-09-11 | Genentech, Inc. | Compositions and methods for the treatment of tumor |
| US20030198640A1 (en) * | 1994-11-07 | 2003-10-23 | Human Genome Sciences, Inc. | Methods and compositions for treating inflammatory bowel diseases relating to human tumor necrosis factor-gamma-beta |
| US20030216546A1 (en) * | 2000-01-03 | 2003-11-20 | Tykocinski Mark L. | Novel chimeric proteins and methods for using the same |
| US20040014176A1 (en) * | 1997-09-18 | 2004-01-22 | Genentech, Inc. | DcR3 polypeptide, a TNFR homolog |
| US20040018170A1 (en) * | 2002-07-23 | 2004-01-29 | Haval Shirwan | Immune modulation with death receptor-induced apoptosis |
| US20040033225A1 (en) * | 2001-09-12 | 2004-02-19 | Jeffrey Browning | Tweak receptor agonists as anti-angiogenic agents background |
| US20040038349A1 (en) * | 2001-07-27 | 2004-02-26 | Hilbert David M. | Heteromultimeric TNF ligand family members |
| US20040047854A1 (en) * | 2001-07-27 | 2004-03-11 | Black Roy A. | Human disintegrin protein |
| US20040091473A1 (en) * | 2001-07-27 | 2004-05-13 | Dubose Robert F. | Metalloproteinase-disintegrin polypeptides and methods of making and use thereof |
| US20050008636A1 (en) * | 1999-01-15 | 2005-01-13 | Paul Rennert | Antagonists of tweak and of tweak receptor and their use to treat immunological disorders |
| US20050054568A1 (en) * | 2000-06-16 | 2005-03-10 | Ling Leona E. | Angiogenesis-modulating compositions and uses |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IL128407A (en) | 1996-08-07 | 2007-07-24 | Biogen Idec Inc | Tumor necrosis factor related ligand |
| JP2002512524A (en) | 1997-06-03 | 2002-04-23 | 財団法人相模中央化学研究所 | Human protein having transmembrane domain and DNA encoding the same |
| WO1999011791A2 (en) | 1997-09-05 | 1999-03-11 | University Of Washington | Tumor necrosis factor family receptors and ligands, encoding nucleic acids and related binding agents |
| AU749948B2 (en) | 1997-10-10 | 2002-07-04 | Genentech Inc. | APO-3 ligand |
| AU4672199A (en) | 1998-05-20 | 1999-12-06 | Yale University | Modulation of angiogenesis and wound healing |
| CA2329072A1 (en) | 1998-05-29 | 1999-12-02 | Incyte Pharmaceuticals, Inc. | Human transmembrane proteins |
| ES2281704T3 (en) | 1998-12-22 | 2007-10-01 | Genentech, Inc. | PROCEDURES AND COMPOUNDS TO INHIBIT THE GROWTH OF NEOPLASSIC CELLS. |
| CA2479511A1 (en) | 1999-03-08 | 2001-07-26 | Genentech, Inc. | Compositions and methods for the treatment of tumor |
| KR101000842B1 (en) | 2002-04-09 | 2010-12-14 | 바이오겐 아이덱 엠에이 인코포레이티드 | How to treat TVE-related conditions |
-
2001
- 2001-05-07 AU AU2001259519A patent/AU2001259519C1/en not_active Expired
- 2001-05-07 WO PCT/US2001/014545 patent/WO2001085193A2/en active IP Right Grant
- 2001-05-07 NZ NZ522741A patent/NZ522741A/en not_active IP Right Cessation
- 2001-05-07 US US10/275,997 patent/US6943146B2/en not_active Expired - Lifetime
- 2001-05-07 EP EP01933062A patent/EP1363657A2/en not_active Withdrawn
- 2001-05-07 JP JP2001581846A patent/JP2004500844A/en not_active Withdrawn
- 2001-05-07 AU AU5951901A patent/AU5951901A/en active Pending
- 2001-05-07 CA CA002408228A patent/CA2408228A1/en not_active Abandoned
-
2005
- 2005-06-02 US US11/145,340 patent/US20060003932A1/en not_active Abandoned
Patent Citations (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5073492A (en) * | 1987-01-09 | 1991-12-17 | The Johns Hopkins University | Synergistic composition for endothelial cell growth |
| US20030198640A1 (en) * | 1994-11-07 | 2003-10-23 | Human Genome Sciences, Inc. | Methods and compositions for treating inflammatory bowel diseases relating to human tumor necrosis factor-gamma-beta |
| US6448042B1 (en) * | 1994-12-13 | 2002-09-10 | Human Genome Sciences, Inc. | Human tissue inhibitor of metalloproteinase-4 |
| US6544761B2 (en) * | 1994-12-13 | 2003-04-08 | Human Genome Sciences, Inc. | Human tissue inhibitor of metalloproteinase-4 |
| US5858991A (en) * | 1997-01-29 | 1999-01-12 | Vanderbilt University | Facilitation of wound healing with CM101/GBS toxin |
| US6207642B1 (en) * | 1997-02-12 | 2001-03-27 | Abbott Laboratories | Member of the TNF family useful for treatment and diagnosis of disease |
| US20040014176A1 (en) * | 1997-09-18 | 2004-01-22 | Genentech, Inc. | DcR3 polypeptide, a TNFR homolog |
| US20050008636A1 (en) * | 1999-01-15 | 2005-01-13 | Paul Rennert | Antagonists of tweak and of tweak receptor and their use to treat immunological disorders |
| US20020004041A1 (en) * | 1999-02-19 | 2002-01-10 | Albert Matthew L. | Methods for abrogating a cellular immune response |
| US20030162712A1 (en) * | 1999-06-07 | 2003-08-28 | Immunex Corporation | Tek antagonists |
| US20030211096A1 (en) * | 1999-08-31 | 2003-11-13 | Genentech, Inc. | Compositions and methods for the treatment of tumor |
| US20030170228A1 (en) * | 1999-08-31 | 2003-09-11 | Genentech, Inc. | Compositions and methods for the treatment of tumor |
| US20020110853A1 (en) * | 1999-12-20 | 2002-08-15 | Wiley Steven R. | TWEAK receptor |
| US6727225B2 (en) * | 1999-12-20 | 2004-04-27 | Immunex Corporation | TWEAK receptor |
| US6824773B2 (en) * | 1999-12-20 | 2004-11-30 | Immunex Corporation | TWEAK receptor |
| US20020041876A1 (en) * | 1999-12-20 | 2002-04-11 | Wiley Steven R. | TWEAK receptor |
| US20030216546A1 (en) * | 2000-01-03 | 2003-11-20 | Tykocinski Mark L. | Novel chimeric proteins and methods for using the same |
| US20020042368A1 (en) * | 2000-02-25 | 2002-04-11 | Fanslow William C. | Integrin antagonists |
| US20050054568A1 (en) * | 2000-06-16 | 2005-03-10 | Ling Leona E. | Angiogenesis-modulating compositions and uses |
| US20040038349A1 (en) * | 2001-07-27 | 2004-02-26 | Hilbert David M. | Heteromultimeric TNF ligand family members |
| US20040047854A1 (en) * | 2001-07-27 | 2004-03-11 | Black Roy A. | Human disintegrin protein |
| US20040091473A1 (en) * | 2001-07-27 | 2004-05-13 | Dubose Robert F. | Metalloproteinase-disintegrin polypeptides and methods of making and use thereof |
| US20030100074A1 (en) * | 2001-08-16 | 2003-05-29 | Guo-Liang Yu | Methods and compositions for treating metabolic bone diseases relating to human endokine alpha |
| US20040033225A1 (en) * | 2001-09-12 | 2004-02-19 | Jeffrey Browning | Tweak receptor agonists as anti-angiogenic agents background |
| US20040018170A1 (en) * | 2002-07-23 | 2004-01-29 | Haval Shirwan | Immune modulation with death receptor-induced apoptosis |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100260761A1 (en) * | 1996-08-07 | 2010-10-14 | Biogen, Inc. | Antibodies specifically reactive with a tumor necrosis factor related ligand |
| US20100061985A1 (en) * | 1999-01-15 | 2010-03-11 | Biogen Idec Ma Inc. | Antagonists of tweak and of tweak receptor and their use to treat immunological disorders |
| US8440189B2 (en) | 1999-01-15 | 2013-05-14 | Biogen Idec Ma Inc. | Antagonists of TWEAK and of TWEAK receptor and their use to treat immunological disorders |
| US8506958B2 (en) | 2002-04-09 | 2013-08-13 | Biogen Idec Ma Inc. | Methods for treating TWEAK-related conditions |
| US20090311313A1 (en) * | 2002-04-09 | 2009-12-17 | Biogen Idec Ma Inc. | Methods for treating tweak-related conditions |
| US9011859B2 (en) | 2002-04-09 | 2015-04-21 | Biogen Idec Ma Inc. | Methods for treating TWEAK-related conditions |
| US20090124993A1 (en) * | 2005-02-17 | 2009-05-14 | Burkly Linda C | Treating neurological disorders |
| US9775899B2 (en) | 2005-02-17 | 2017-10-03 | Biogen Ma Inc. | Treating neurological disorders |
| US20090068102A1 (en) * | 2005-02-17 | 2009-03-12 | Biogen Idec Ma Inc. | Treating stroke |
| US20080187544A1 (en) * | 2005-05-10 | 2008-08-07 | Burkly Linda C | Treating and evaluating inflammatory disorders |
| US8728475B2 (en) | 2005-05-10 | 2014-05-20 | Biogen Idec Ma Inc. | Methods for treating inflammatory bowel disease |
| US8048422B2 (en) | 2005-05-27 | 2011-11-01 | Biogen Idec Ma Inc. | Tweak binding antibodies |
| US20080241163A1 (en) * | 2005-05-27 | 2008-10-02 | Biogen Idec Ma Inc. | Tweak binding antibodies |
| US20080279853A1 (en) * | 2005-05-27 | 2008-11-13 | Biogen Idec Ma Inc. | Treatment of cancer |
| US8048635B2 (en) | 2005-06-13 | 2011-11-01 | Biogen Idec Ma Inc. | Measurement of soluble Tweak levels for evaluation of lupus patients |
| US9730947B2 (en) | 2005-06-13 | 2017-08-15 | Biogen Ma Inc. | Method of treating lupus nephritis |
| US20080292622A1 (en) * | 2005-06-13 | 2008-11-27 | Biogen Idec Ma Inc. | Methods of evaluating patients |
| US9068004B2 (en) | 2010-02-04 | 2015-06-30 | University Of Louisville Research Foundation, Inc. | TWEAK/Fn14 system regulates skeletal muscle atrophy and regeneration |
| US9751950B2 (en) | 2010-02-04 | 2017-09-05 | University Of Louisville Research Foundation, Inc. | Methods of reducing skeletal muscle loss using an antibody against Fn14 |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2001085193A2 (en) | 2001-11-15 |
| AU2001259519C1 (en) | 2005-09-22 |
| CA2408228A1 (en) | 2001-11-15 |
| EP1363657A2 (en) | 2003-11-26 |
| AU2001259519B2 (en) | 2005-02-03 |
| US6943146B2 (en) | 2005-09-13 |
| WO2001085193A8 (en) | 2003-12-24 |
| NZ522741A (en) | 2005-06-24 |
| WO2001085193A3 (en) | 2003-09-04 |
| US20030211993A1 (en) | 2003-11-13 |
| AU5951901A (en) | 2001-11-20 |
| JP2004500844A (en) | 2004-01-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6943146B2 (en) | Method for promoting neovascularization | |
| AU2001259519A1 (en) | Method for promoting neovascularization | |
| JP3854307B2 (en) | Inhibition of transforming growth factor beta to prevent extracellular matrix accumulation | |
| US11357840B2 (en) | Methods and compositions for reducing growth, migration and invasiveness of brain cancer stem cells and improving survival of patients with brain tumors | |
| US20060287234A1 (en) | Wound healing | |
| JP2004501163A (en) | Angiogenesis regulating composition and use | |
| JP2002506008A (en) | Compositions and methods for modulating angiogenesis | |
| US20160067283A1 (en) | Compositions and methods for cardiac tissue repair | |
| JP5823691B2 (en) | Method for preparing cells for engraftment | |
| JP2005519986A (en) | Use of IL-19, IL-22 and IL-24 to treat hematopoietic disorders | |
| Zhang et al. | The effects of parathyroid hormone‐related peptide on cardiac angiogenesis, apoptosis, and function in mice with myocardial infarction | |
| JP7100854B2 (en) | Neutrophil activation regulator | |
| US20040228834A1 (en) | Compositions and methods for modulating vascularization | |
| JP2006517586A (en) | VEGF-B and PDGF regulation of stem cells | |
| US6930089B2 (en) | Use of vascular endothelial growth factor, placenta growth factor or both for preventing or treating ischemic disease or stroke | |
| EP1253935B1 (en) | Use of placenta growth factor for preventing or treating ischemic diseases or stroke | |
| EP1722811B1 (en) | Use of hepatocyte growth factor for promoting induction of vascular differentiation | |
| US20050209136A1 (en) | Method for stimulating connective tissue growth or wound healing | |
| HK1245152B (en) | Methods and compositions for reducing growth, migration and invasiveness of brain cancer stem cells and improving survival of patients with brian tumors |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BIOGEN IDEC MA INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAKUBOWSKI, ANIELA;BURKLY, LINDA C.;REEL/FRAME:016790/0255 Effective date: 20021104 |
|
| AS | Assignment |
Owner name: BIOGEN IDEC MA INC., MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:BIOGEN, INC.;REEL/FRAME:019161/0493 Effective date: 20031113 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |