US20050244371A1 - Method and system to remove cytokine inhibitor in patients - Google Patents
Method and system to remove cytokine inhibitor in patients Download PDFInfo
- Publication number
- US20050244371A1 US20050244371A1 US11/153,524 US15352405A US2005244371A1 US 20050244371 A1 US20050244371 A1 US 20050244371A1 US 15352405 A US15352405 A US 15352405A US 2005244371 A1 US2005244371 A1 US 2005244371A1
- Authority
- US
- United States
- Prior art keywords
- patient
- treatment
- antibodies
- soluble
- tnf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 102000004127 Cytokines Human genes 0.000 title claims abstract description 21
- 108090000695 Cytokines Proteins 0.000 title claims abstract description 21
- 239000003112 inhibitor Substances 0.000 title description 17
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 61
- 150000001875 compounds Chemical class 0.000 claims abstract description 16
- 210000004369 blood Anatomy 0.000 claims abstract description 11
- 239000008280 blood Substances 0.000 claims abstract description 11
- 230000005855 radiation Effects 0.000 claims abstract description 11
- 230000001772 anti-angiogenic effect Effects 0.000 claims abstract description 8
- -1 cisplatinum Chemical compound 0.000 claims abstract description 7
- 239000003805 procoagulant Substances 0.000 claims abstract description 6
- 102000005962 receptors Human genes 0.000 claims description 24
- 108020003175 receptors Proteins 0.000 claims description 24
- 238000009739 binding Methods 0.000 claims description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 12
- 102000003675 cytokine receptors Human genes 0.000 claims description 10
- 108010057085 cytokine receptors Proteins 0.000 claims description 10
- 201000010099 disease Diseases 0.000 claims description 8
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 5
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 5
- 239000002246 antineoplastic agent Substances 0.000 claims description 5
- 229940127089 cytotoxic agent Drugs 0.000 claims description 5
- 230000028993 immune response Effects 0.000 claims description 5
- 230000003612 virological effect Effects 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 230000017074 necrotic cell death Effects 0.000 claims description 4
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 claims description 3
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 3
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 claims description 3
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 3
- 239000002158 endotoxin Substances 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 102000003951 Erythropoietin Human genes 0.000 claims description 2
- 108090000394 Erythropoietin Proteins 0.000 claims description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 claims description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 claims description 2
- 229940105423 erythropoietin Drugs 0.000 claims description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 claims description 2
- 206010062016 Immunosuppression Diseases 0.000 claims 1
- 102100020880 Kit ligand Human genes 0.000 claims 1
- 101710177504 Kit ligand Proteins 0.000 claims 1
- 208000030852 Parasitic disease Diseases 0.000 claims 1
- 102000002262 Thromboplastin Human genes 0.000 claims 1
- 108010000499 Thromboplastin Proteins 0.000 claims 1
- 230000001506 immunosuppresive effect Effects 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 47
- 201000011510 cancer Diseases 0.000 abstract description 22
- 230000000694 effects Effects 0.000 abstract description 10
- 102000008070 Interferon-gamma Human genes 0.000 abstract description 6
- 108010074328 Interferon-gamma Proteins 0.000 abstract description 6
- 108010002350 Interleukin-2 Proteins 0.000 abstract description 6
- 238000002560 therapeutic procedure Methods 0.000 abstract description 6
- 238000002512 chemotherapy Methods 0.000 abstract description 5
- 238000002405 diagnostic procedure Methods 0.000 abstract description 4
- 239000012530 fluid Substances 0.000 abstract description 4
- 229940044627 gamma-interferon Drugs 0.000 abstract description 4
- 210000000987 immune system Anatomy 0.000 abstract description 4
- 229930012538 Paclitaxel Natural products 0.000 abstract description 3
- 229940100198 alkylating agent Drugs 0.000 abstract description 3
- 239000002168 alkylating agent Substances 0.000 abstract description 3
- DVQHYTBCTGYNNN-UHFFFAOYSA-N azane;cyclobutane-1,1-dicarboxylic acid;platinum Chemical compound N.N.[Pt].OC(=O)C1(C(O)=O)CCC1 DVQHYTBCTGYNNN-UHFFFAOYSA-N 0.000 abstract description 3
- 230000001976 improved effect Effects 0.000 abstract description 3
- 229960001592 paclitaxel Drugs 0.000 abstract description 3
- 239000011148 porous material Substances 0.000 abstract description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 abstract description 3
- 238000011521 systemic chemotherapy Methods 0.000 abstract description 2
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 abstract 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 35
- 102000003390 tumor necrosis factor Human genes 0.000 description 35
- 241000282414 Homo sapiens Species 0.000 description 25
- 210000004027 cell Anatomy 0.000 description 18
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 14
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 13
- 201000001441 melanoma Diseases 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 10
- 229960000856 protein c Drugs 0.000 description 9
- 206010027476 Metastases Diseases 0.000 description 8
- 101800004937 Protein C Proteins 0.000 description 8
- 102000017975 Protein C Human genes 0.000 description 8
- 101800001700 Saposin-D Proteins 0.000 description 8
- 210000004881 tumor cell Anatomy 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 210000001616 monocyte Anatomy 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 239000000427 antigen Substances 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 5
- 102000000588 Interleukin-2 Human genes 0.000 description 5
- 239000002671 adjuvant Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 238000002595 magnetic resonance imaging Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 4
- 208000008035 Back Pain Diseases 0.000 description 4
- 210000001015 abdomen Anatomy 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000002617 apheresis Methods 0.000 description 4
- 230000022534 cell killing Effects 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000001959 radiotherapy Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229960003433 thalidomide Drugs 0.000 description 4
- 210000000115 thoracic cavity Anatomy 0.000 description 4
- 241000282412 Homo Species 0.000 description 3
- 102000000589 Interleukin-1 Human genes 0.000 description 3
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 3
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 3
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 3
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 description 3
- 206010028851 Necrosis Diseases 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000000038 chest Anatomy 0.000 description 3
- 230000001066 destructive effect Effects 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 239000012465 retentate Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 108010002352 Interleukin-1 Proteins 0.000 description 2
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 2
- 108010038501 Interleukin-6 Receptors Proteins 0.000 description 2
- 208000008771 Lymphadenopathy Diseases 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 229940096437 Protein S Drugs 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 101710187743 Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 2
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 2
- 229930003448 Vitamin K Natural products 0.000 description 2
- 108091005605 Vitamin K-dependent proteins Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 208000013228 adenopathy Diseases 0.000 description 2
- 238000009098 adjuvant therapy Methods 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 210000001099 axilla Anatomy 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 229940084388 gammar Drugs 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 239000002955 immunomodulating agent Substances 0.000 description 2
- 229940121354 immunomodulator Drugs 0.000 description 2
- 230000002584 immunomodulator Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 108010085650 interferon gamma receptor Proteins 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 239000013586 microbial product Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000003739 neck Anatomy 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 230000037390 scarring Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229960004072 thrombin Drugs 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 229940046728 tumor necrosis factor alpha inhibitor Drugs 0.000 description 2
- 239000002451 tumor necrosis factor inhibitor Substances 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 235000019168 vitamin K Nutrition 0.000 description 2
- 239000011712 vitamin K Substances 0.000 description 2
- 150000003721 vitamin K derivatives Chemical class 0.000 description 2
- 229940046010 vitamin k Drugs 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 206010001889 Alveolitis Diseases 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 210000001239 CD8-positive, alpha-beta cytotoxic T lymphocyte Anatomy 0.000 description 1
- 206010008025 Cerebellar ataxia Diseases 0.000 description 1
- 206010008072 Cerebellar syndrome Diseases 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 206010009691 Clubbing Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010011703 Cyanosis Diseases 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010013887 Dysarthria Diseases 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 241000611421 Elia Species 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 102000010911 Enzyme Precursors Human genes 0.000 description 1
- 108010062466 Enzyme Precursors Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010061932 Factor VIIIa Proteins 0.000 description 1
- 108010074105 Factor Va Proteins 0.000 description 1
- CEVCTNCUIVEQOY-UHFFFAOYSA-N Fumagillol Natural products O1C(CC=C(C)C)C1(C)C1C(OC)C(O)CCC21CO2 CEVCTNCUIVEQOY-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 101100005713 Homo sapiens CD4 gene Proteins 0.000 description 1
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 1
- 201000003838 Idiopathic interstitial pneumonia Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108091036060 Linker DNA Proteins 0.000 description 1
- 208000008930 Low Back Pain Diseases 0.000 description 1
- 206010025282 Lymphoedema Diseases 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 206010027145 Melanocytic naevus Diseases 0.000 description 1
- 206010027457 Metastases to liver Diseases 0.000 description 1
- 206010027459 Metastases to lymph nodes Diseases 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 101100425758 Mus musculus Tnfrsf1b gene Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- MSHZHSPISPJWHW-UHFFFAOYSA-N O-(chloroacetylcarbamoyl)fumagillol Chemical compound O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)NC(=O)CCl)CCC21CO2 MSHZHSPISPJWHW-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 102000029301 Protein S Human genes 0.000 description 1
- 108010066124 Protein S Proteins 0.000 description 1
- 206010061924 Pulmonary toxicity Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 241000700564 Rabbit fibroma virus Species 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 206010039587 Scarlet Fever Diseases 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 108010079274 Thrombomodulin Proteins 0.000 description 1
- 101150009046 Tnfrsf1a gene Proteins 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 101710187830 Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 1
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 1
- 206010049750 Tumour haemorrhage Diseases 0.000 description 1
- 108091008605 VEGF receptors Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000003092 anti-cytokine Effects 0.000 description 1
- 230000001740 anti-invasion Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 235000021152 breakfast Nutrition 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000003792 cranial nerve Anatomy 0.000 description 1
- 238000000315 cryotherapy Methods 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 229940034087 dacarbazine 100 mg Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000000613 ear canal Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 description 1
- 108700004203 eye-derived growth factor Proteins 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 150000002284 fumagillol derivatives Chemical class 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 208000022098 hypersensitivity pneumonitis Diseases 0.000 description 1
- 230000008004 immune attack Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000006058 immune tolerance Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 108040006732 interleukin-1 receptor activity proteins Proteins 0.000 description 1
- 102000014909 interleukin-1 receptor activity proteins Human genes 0.000 description 1
- 108040006849 interleukin-2 receptor activity proteins Proteins 0.000 description 1
- 108040006858 interleukin-6 receptor activity proteins Proteins 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 208000002502 lymphedema Diseases 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 238000009115 maintenance therapy Methods 0.000 description 1
- 201000010893 malignant breast melanoma Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000003475 metalloproteinase inhibitor Substances 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 229940096443 methylprednisolone 4 mg Drugs 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 230000000771 oncological effect Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 229940047091 other immunostimulants in atc Drugs 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000024241 parasitism Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 231100000374 pneumotoxicity Toxicity 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000002947 procoagulating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000007047 pulmonary toxicity Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- 210000003752 saphenous vein Anatomy 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 229940124676 vascular endothelial growth factor receptor Drugs 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/337—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/555—Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/10—Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person
- A61K41/17—Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person by ultraviolet [UV] or infrared [IR] light, X-rays or gamma rays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/342—Adding solutions to the blood, e.g. substitution solutions
- A61M1/3455—Substitution fluids
- A61M1/3468—Substitution fluids using treated filtrate as substitution fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/3472—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/3472—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
- A61M1/3482—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate by filtrating the filtrate using another cross-flow filter, e.g. a membrane filter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/3496—Plasmapheresis; Leucopheresis; Lymphopheresis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/342—Adding solutions to the blood, e.g. substitution solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/342—Adding solutions to the blood, e.g. substitution solutions
- A61M1/3441—Substitution rate control as a function of the ultrafiltration rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/3472—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
- A61M1/3486—Biological, chemical treatment, e.g. chemical precipitation; treatment by absorbents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/04—Liquids
- A61M2202/0413—Blood
- A61M2202/0415—Plasma
- A61M2202/0417—Immunoglobulin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
Definitions
- the present invention is generally in the field of enhancing an immune response, and particularly relates to the removal of TNF inhibitors in a patient, such as a cancer patient, to promote inflammation and thereby induce remission of the cancer.
- GM-CSF granulocyte macrophage colony stimulating factor
- G-CSF erythropoietin
- M-CSF macrophage colony stimulating factor
- SCF stem cell factor
- Vaccines to stimulate the patient's immune system have been attempted, but not with great success.
- Various cytokines, alone or in combination, such as tumor necrosis factor, interferon gamma, and interleukin-2 (“IL-2”) have been used to kill cancers, but have not produced cures.
- anti-angiogenic compounds such as thalidomide have been tried in compassionate use cases and shown to cause tumor remission.
- compounds inducing a procoagulant state such as an inhibitor of protein C, have been used to cause tumor remission.
- TNF-Rs tumor necrosis factor receptors
- U.S. Pat. No. 4,708,713 to Lentz describes an alternative method for treating cancer, involving ultrapheresis to remove compounds based on molecular weight, which promotes an immune attack on the tumors by the patient's own white cells.
- a method to treat disorders characterized by production of soluble TNF receptors, such as many types of cancer, and certain diseases such as HIV, where the disease immunosuppresses the patient, has been developed.
- Antibodies which bind to TNF receptor, including the soluble TNF receptor, are administered to the patient in an amount effective to neutralize the molecules which block binding of TNF to the receptor, thereby inducing inflammation.
- the patient's blood is passed through a column having antibodies immobilized thereon, which bind to and remove the soluble TNF receptor molecules.
- the process can be performed alone or in combination with other therapies, including radiation, chemotherapy (local or systemic, for example, treatments using alkylating agents, doxyrubicin, carboplatinum, cisplatinum, and taxol, and other drugs which may be synergistic in effect with “unblocked” cytokines: or anti-angiogenic factors.
- Antibodies may be utilized which are immunoreactive with one or more of the following:
- tissue necrosis factor receptor-1 (“TNFR-1”), tissue necrosis factor receptor-2 (“TNFR-2”), interleukin-2 receptor (“IL-2R”), interleukin-1 receptor (“IL-1R”), interleukin-6 receptor (“IL-6R”), or interferon-gamma receptor (“sIFN-gammaR”).
- TNFR-1 tissue necrosis factor receptor-1
- TNFR-2 tissue necrosis factor receptor-2
- IL-2R interleukin-2 receptor
- IL-1R interleukin-1 receptor
- IL-6R interleukin-6 receptor
- IFN-gammaR interferon-gamma receptor
- TNF- tumor necrosis factor
- a related cytokine produced and secreted by killer T-lymphocytes with highly selective antigen specific receptors Old L. J., Antitumor activity of microbial products and tumor necrosis factor, and Bonavida B, et al., (eds): Tumor Necrosis Factor/Cachecin and Related Cytokines, Basell, Karger, 1988.
- TNF tumor necrosis factor
- Haranaka K., et al Cytotoxic activity of tumor necrosis factor (TNF) on human cancer cells in vitro, Jpn J Exp Med 1981; 51:191; Urban J. L. II, et al., Tumor necrosis factor: A potent effector molecule for tumor cell killing by activated macrophages, Proc Natl Acad Sce USA 1986; 83-5233; Philip R., et al., Tumor necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, Gamma-interferon and Interleukin-1 , Nature 1986; 323:86; Ziegler-Heitbrock H.
- Tumor necrosis factor as effector molecule in monocyte-mediated cytotoxicity, Cancer Res 1986; 46:5947; and Feinman R., et al., Tumor necrosis factor is a important mediator of tumor cell killing by human monocytes, J Immunol 1987; 138:635. They derive from billions of clones, each with its own specificity. Thus, one clone of these thymus derived lymphocytes gives rise to T-killer (cytotoxic lymphocytes), or other functional classes each with the one specificity of the parent clone. Their mechanisms are related to both antibody dependent and antibody independent cellular tumor toxicity.
- Receptors for TNF on neoplastic, viral infected, aged cells or those otherwise targeted for destruction can be both a curse and a curse. In a positive role, they allow binding of TNF to the surface for internalization and destruction of the cell. Unfortunately this receptor hypothesis has a double edge.
- Certain neoplastic cells such as active melanomas secrete large amounts of these receptors (sTNF-R1 and sTNF-R2) that promptly bind TNF before it can get within the vicinity of the cell, Haranaka K., et al, Cytotoxic activity of tumor necrosis factor (TNF) on human cancer cells in vitro, Jpn J Exp Med 1981; 51:191; Urban J. L.
- Tumor necrosis factor A potent effector molecule for tumor cell killing by activated macrophages, Proc Natl Acad Sce USA 1986; 83-5233; Philip R., et al., Tumor necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, Gamma-interferon and Interleukin-1 , Nature 1986; 323:86; Ziegler-Heitbrock H.
- Tumor necrosis factor as effector molecule in monocyte-mediated cytotoxicity, Cancer Res 1986; 46:5947; and Feinman R., et al., Tumor necrosis factor is a important mediator of tumor cell killing by human monocytes, J Immunol 1987; 138:635. This serves as a defense mechanism on the part of the targeted cell rendering the host immune system ineffective.
- TNF-R1 and R2 have been characterized with respect to molecular weights (55 and 75 kD respectively), Old L.
- TNF and LT differ in their receptor binding properties and the induction of MHC class I proteins on a human CD4+ T cell hybridoma, J Immunol 1990; 144:2582-2591. They serve to both down regulate the immune response in a normal fashion and overly suppress the immune response as stated above with respect to certain malignancies. They are particularly abundant, and at high level, in patients with melanoma.
- soluble cytokine receptors which function as inhibitors of the cytokine
- the neutralizing agent is typically an antibody reactive with the receptor.
- the antibodies will typically be reactive with both the soluble and immobilized forms of the receptor.
- soluble tumor necrosis factor receptor (“sRNF-R”), soluble interleukin-2 receptor (“sIL-2R”), soluble interleukin-1 receptor (“sIL-1R”), soluble interleukin-6 receptor (“sIL-6R”), or soluble interferon-gamma receptor (“sIFN-gammaR”).
- the receptors can be removed by binding to the cytokine, an epitope thereof, or an antibody to the receptor.
- the antibodies to the receptors can be immobilized in a filter, in a column, or using other standard techniques for binding reactions to remove proteins from the blood or plasma of a patient, or administered directly to the patient in a suitable pharmaceutically acceptable carrier such as saline.
- antibody refers to antibody, or antibody fragments (single chain, recombinant, or humanized), immunoreactive against the receptor molecules.
- the antibody is reactive with the carboxy-terminus of the shed receptor molecules, thereby avoid concerns with signal transduction by the receptor is still present on the cell surface.
- Antibodies can be obtained from various commercial sources such as Genzyme Pharmaceuticals. These are preferably humanized for direct administration to a human, but may be of animal origin if immobilized in an extracorporeal device. Antibodies may be monoclonal or polyclonal. The antibodies and device should be sterilized and treated to remove endotoxin and other materials not acceptable for administration to a patient.
- Antibodies to the receptor proteins can be generated by standard techniques, using human receptor proteins. Antibodies are typically generated by immunization of an animal using an adjuvant such as Freund's adjuvant in combination with an immunogenic amount of the protein administered over a period of weeks in two to three week intervals, then isolated from the serum, or used to make hybridomas which express the antibodies in culture. Because the methods for immunizing animals yield antibody which is not of human origin, the antibodies could elicit an adverse effect if administered to humans. Methods for “humanizing” antibodies, or generating less immunogenic fragments of non-human antibodies, are well known.
- a humanized antibody is one in which only the antigen-recognized sites, or complementarily-determining hypervariable regions (CDRs) are of non-human origin, whereas all framework regions (FR) of variable domains are products of human genes. These “humanized” antibodies present a lesser xenographic rejection stimulus when introduced to a human recipient.
- variable region DNA of a selected animal recombinant anti-idiotypic ScFv is sequenced by the method of Clackson, T., et al., (1991) Nature, 352:624-688, incorporated herein by reference.
- animal CDRs are distinguished from animal framework regions (FR) based on locations of the CDRs in known sequences of animal variable genes. Kabat, H.
- the CDRs are grafted onto human heavy chain variable region framework by the use of synthetic oligonucleotides and polymerase chain reaction (PCR) recombination. Codons for the animal heavy chain CDRs, as well as the available human heavy chain variable region framework, are built in four (each 100 bases long) oligonucleotides. Using PCR, a grated DNA sequence of 400 bases is formed that encodes for the recombinant animal CDR/human heavy chain FR protection.
- PCR polymerase chain reaction
- the immunogenic stimulus presented by the monoclonal antibodies so produced may be further decreased by the use of Pharmacia's (Pharmacia LKB Biotechnology, Sweden) “Recombinant Phage Antibody System” (RPAS), which generated a single-chain Fv fragment (ScFv) which incorporates the complete antigen-binding domain of the antibody.
- RPAS Recombinant Phage Antibody System
- ScFv Single-chain Fv fragment
- antibody variable heavy and light chain genes are separately amplified from the hybridoma mRNA and cloned into an expression vector.
- the heavy and light chain domains are co-expressed on the same polypeptide chain after joining with a short linker DNA which codes for a flexible peptide.
- This assembly generated a single-chain Fv fragment (ScFv) which incorporates the complete antigen-binding domain of the antibody.
- the recombinant ScFv includes a considerably lower number of epitopes, and thereby presents a much weaker immunogenic stimulus when
- the antibodies can be formulated in standard pharmaceutical carriers for administration to patients in need thereof. These include saline, phosphate buffered saline, and other aqueous carriers, and liposomes, polymeric microspheres and other controlled release deliver devices, as are well known in the art.
- the antibodies can also be administered with adjuvant, such as muramyl dipeptide or other materials approved for use in humans (Freund's adjuvant can be used for administration of antibody to animals).
- adjuvant such as muramyl dipeptide or other materials approved for use in humans (Freund's adjuvant can be used for administration of antibody to animals).
- antibodies are immobilized to a solid support, such as the SEPHAROSETM column in the examples, using standard techniques such as cyanogen bromide or commercially available kits for coupling of proteins to membranes formed of materials such as nitrocellulose or polycarbonate.
- Treatment is conducted over a period of time until a positive indication is observed. This is typically based on diagnostic tests which show that there has been some reduction in tumor size or which suggests tumor inflammation.
- the patient is preferably treated daily for three weeks, diagnostic tests conducted to verity that there has been shrinkage of the tumors and/or inflammation, then the treatment regime is repeated.
- Surgical (or vacuum) removal of necrotic material may be required prior to or during treatment to avoid toxicity associated with high tumor burden.
- anti-angiogenic compound Any anti-angiogenic compound can be used.
- exemplary anti-angiogenic compounds include O-substituted fumagillol and derivatives thereof, such as TNP-470, described in U.S. Pat. Nos. 5,135,919, 5,698,586, and 5,290,807 to Kishimoto, et al.; angiostatin and endostatin, described in U.S. Pat. No. 5,290,807, 5,639,725 and 5,733,876 to O'Reilly; thalidomide, as described in U.S. Pat. Nos.
- Protein C is a vitamin K-dependent plasma protein zymogen to a serine protease. Upon activation it becomes a potent anticoagulant. Activated protein C acts through the specific proteolysis of the procoagulant cofactors, factor VIIIa and factor Va. This activity requires the presence of another vitamin K-dependent protein, protein S, calcium and a phospholipid (presumably cellular) surface. As described in Hemostasis and Thrombosis: Basic Principles and Clinical Practice 2nd Ed., Colman, R. W., et al., p. 263 (J. B. Lippincott, Philadelphia, Pa. 1987), protein C circulates in a two-chain form, with the larger, heavy chain bound to the smaller light chain through a single disulfide link.
- Protein C is activated to activated protein C (APC).
- APC activated protein C
- Thrombin is capable of activating protein C by the specific cleavage of the Arg 12 -Leu 13 bond in the heavy chain.
- the rate of this activation is enhanced dramatically when thrombin is bound to the endothelial cell cofactor, thrombomodulin.
- Matschiner, et al., Current Advances in Vitamin K Research , pp. 135-140, John W. Suttie, ed. (Elsevier Science Publishing Co., Inc. 1988) have further reviewed the role of the Vitamin K dependent proteins in coagulation.
- Blockage of the natural anticoagulant pathways uses the natural procoagulant properties of the tumor to target the tumor capillaries for microvascular thrombosis, leading to hemorrhagic necrosis of the tumor, as described in U.S. Pat. No. 5,147,638 to Esmon, et al.
- examples of such compounds include anti-protein C and anti-protein S.
- TNF alpha and TNF beta in doses of between approximately 100 to 500 micrograms per meter squared body surface area (M2BSA), can enhance the immune reaction in aggressive tumors.
- Monocyte and lymphocyte activation is augmented by INF-alpha, INF-beta and gamma.
- the IL-1 and IL-2 receptor antagonists are removed by ultrapheresis and thereby upregulate the in vivo activity of these cytokines.
- IFN-alpha and beta are 3 M units subcutaneous three times a week up to 20 M units/M2 BSA daily.
- Interferon-gamma is administered in a dosage of between 100 to 1000 micgms per day.
- Preferred chemotherapeutic agents are those which are synergistic with TNF, for example, alkylating agents, doxyrubicin, carboplatinum, cisplatinum, and tomoxifen.
- Tamoxifen plays a role not only in blocking of estrogen receptors but also certain growth factor receptors such as epidermal derived growth factor (“EDGF”), fibroblast derived growth factor (“FDGF”), tumor derived growth factor (“TDGF”), TDGF- ⁇ and platelet derived growth factor (“PDGF”) and therefore may be complementary to inflammation against cancers provoked by ultrapheresis.
- EDGF epidermal derived growth factor
- FDGF fibroblast derived growth factor
- TDGF tumor derived growth factor
- PDGF- ⁇ platelet derived growth factor
- Ultrapheresis allows the use of lower doses of radiation to kill residual tumor cells and spare normal tissue.
- ultrapheresis is used as the initial therapy, followed by radiation at approximately one-half of the normal dosages. It is well established that TNF kills tumor cells by generating free oxygen radicals, hydroxyl radicals and halide ions, and that radiation therapy generates carbonium ions in tissue. Therefore the combination of the two is more effective in killing cancer cells than either alone.
- Monoclonal antibody was obtained from R&D Systems, Minneapolis, Minn., and purified for administration to a patient. This antibody is reactive with TNF R1 and R2 inhibitors.
- a filtration system was assembled using an Eva Flux 4 A filter as the primary filter to remove ultrafiltrate containing these inhibitors from the cancer patient's blood.
- Monoclonal antibody in a dose of 1 mg per liter of normal ultrafiltrate of the monoclonal antibody and 1 mg of the $2 monoclonal antibody were added to that replacement solution.
- the ultrafiltrate of the initial 4 A filter was delivered by a separate blood pump to a Kuraray 3 A filter.
- the retentate of the 3A filter was then discarded and the ultrafiltrate of the 3A filter was metered back into the filtered blood from the 4 A filter as replacement solution.
- normal ultrafiltrate with monoclonal antibody added to it was metered into the intra circuit between the 4 A and 3 A filters.
- this murine monoclonal antibody could capture the inhibitor and aid in its removal from blood since the complex of antibody and antigen could not pass through the pores of the 3 A filter and thus be discarded in the retentate of the 3A filter. This was considerably more effective than the single separation technique and replacement with normal ultrafiltrate. There was also a heightened tumor specific inflammatory response by doing this and an increased rate of tumor destruction.
- the monoclonal antibody preferably humanized to 97% to 99% human form by substituting human constant regions for human constant regions on the antibody, preserve its capturing and neutralizing capability with the murine variable regions of the antibody and use the antibody as the therapeutic drug in clinical trials with a very high expectation that it would neutralize soluble receptors to TNF and cause tumor destruction in a human.
- a patient with vaginal metastasis of colon cancer was treated for one week with a three hour infusion of monoclonal antibody to TNF receptor 1 and TNF receptor 2. This led to a 75% reduction in the tumor size within one week.
- a procedure is described in case report form, that utilizes apheresis and immunological affinity chromatography to treat a melanoma patient with short term need and weakening long term prognosis.
- the patient is a 55 year old Russian woman with metastatic melanoma.
- the patient smoked 2-3 packs of cigarettes a day for some 20 years. He quit this habit several years ago. He was also a heavy alcohol user in years past but had decreased his intake to 1-2 glasses of wine a day. Review of his medications on this date revealed methylprednisolone 4 mg in AM and 4 mg in PM. Apparently this was being taken as replacement therapy for adrenal cortical suppression that was graded iatrogenically at the time of the treatment of his alveolitis (see below). He was additionally taking narcotic analgesics. As a child he suffered the usual childhood diseases, denies rheumatic fever, scarlet fever or diphtheria. As an adult he has had no major medical illnesses save those described above. He has had no other major surgeries in the past and has no known allergies.
- one lymph node was histologically confirmed to involve melanoma.
- the patient was treated with a course of Vindesine 3 mg/m 2 every three weeks, dacarbazine 100 mg/m 2 every three weeks for four cycles. He subsequently developed cutaneous metastases in the skin of his left shoulder, multiple metastases to the scars within the left anterolateral neck and multiple axillary metastases treated with fifteen subsequent excisions of recurrent metastases.
- March of 1999 he was offered a trial of Interleukin-2 but on this developed severe pulmonary toxicity that had a protracted course and was diagnosed as idiopathic fibrosing alveolitis.
- Interleukin-2 was discontinued and he received radiation therapy to his right neck and axilla for six weeks beginning in the month of May 1999. He developed low back pain in August of 1999. Work up in October of 1999 revealed bone metastasis of the vertebral body of T-11 and subsequent MRI revealed a lytic destructive process in the right transverse process and pedicle of the 11 th thoracic vertebra, as well as complete replacement of the vertebral body at T-11. Additional metastases were appreciated in the vertebral body of the 9 th thoracic vertebral as well as the 10th. Also there was involvement of L-1 and L-2 vertebral bodies. Tumor seen again on the Mar.
- His cerebellar examination revealed no dysmetria, dysarthria or dysdiadochokinesia. He was essentially confined to bed due to back pain only, but was able to roll from left to right without assistance. He had been confined to a wheelchair for the antecedent two months due to back pain and was wearing a back brace which was removed for physical exam.
- the material eluted from the column was then analyzed for the level of each inhibitor still in the plasma and 50 cc's of that plasma was then injected into the patient at the end of pheresis to look for any febrile reactions or allergic reactions. He tolerated this with no apparent clinical adverse effect.
- His R1 level before treatment was 1500 and after treatment was 1450.
- His R2 level before treatment was 5000 and after treatment was 3800 on this date. Again he tolerated the procedure well with no clinical adverse effect and no increase in pain in his back.
- the patient remains active, with good appetite, is walking normally and his back pain is much improved. He has positive anticipation for his second course of apheretic treatments.
- Polyclonal antibodies were produced in New Zealand white rabbits injected with recombinant antigen, soluble tumor necrosis factor receptor (“STNF”) R1 and R, injected into the rabbit on a standard immunization protocol, then boosted. 200 mg of polyclonal antibody may be produced against STNF R1 and R2, per liter. The animals will be bled monthly. 200 mg of antibody can be bound safely to 200 mg of AH SEPHAROSETM beads. The binding is done with ethanolamine and periodate. Binding is therefore excellent. This matrix is then placed in a 200 mg polycarbonate column. Each step is done in an aseptic fashion and the final product is then terminally sterilized with standard radiation protocols and subjected to USDA standard testing for pyrogen and infectious agents.
- STNF soluble tumor necrosis factor receptor
- This amount of antibody is enough to remove STNF R1 and STNF R2 in human extracellular water sufficient to reduce the level of 10,000 pg per ml to under 1,000 pg per ml in two to three hours of plasma exchange.
- the treatment is expected to produce excellent responses in these tumor types and may play a role in the clinical management of hematopoietic disorders as well.
- the methods and systems disclosed herein are useful for treatment of patients with cancer, immune-mediated disorders, chronic parasitism, some viral diseases especially viral diseases such as HIV which cause immunosuppresion, and other disorders characterized by elevated levels of TNF receptors or inhibitors to IL-2, IL-6, gamma interferon, or other pro-inflammatory signals as well as white cell activation.
- An example demonstrates efficacy in treating a cancer patient.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- The present invention is generally in the field of enhancing an immune response, and particularly relates to the removal of TNF inhibitors in a patient, such as a cancer patient, to promote inflammation and thereby induce remission of the cancer.
- This application claims priority to U.S. Ser. No. 60/164,695, filed Nov. 10, 1999.
- Conventional cancer therapy is based on the use of drugs and/or radiation which kills replicating cells, hopefully faster than the agents kill the patient's normal cells. Surgery is used to reduce tumor bulk, but has little impact once the cancer has metastasized. Radiation is effective only in a localized area.
- The treatments can in themselves kill the patient, in the absence of maintenance therapy. For example, for some types of cancer, bone marrow transplants have been used to maintain the patient following treatment with otherwise fatal amounts of chemotherapy. Efficacy has not been proven for treatment of solid tumors, however. “Cocktails” of different chemotherapeutic agents and combinations of very high doses of chemotherapy with restorative agents, for example, granulocyte macrophage colony stimulating factor (“GM-CSF”), erythropoietin, thrombopoetin granulocyte stimulating factor, (“G-CSF”), macrophage colony stimulating factor (“M-CSF”) and stem cell factor (“SCF”) to restore platelet and white cell levels, have been used to treat aggressive cancers. Even with the supportive or restrictive therapy, side effects are severe.
- Other treatments have been tried in an attempt to improve mortality and morbidity. Vaccines to stimulate the patient's immune system have been attempted, but not with great success. Various cytokines, alone or in combination, such as tumor necrosis factor, interferon gamma, and interleukin-2 (“IL-2”) have been used to kill cancers, but have not produced cures. More recently, anti-angiogenic compounds such as thalidomide have been tried in compassionate use cases and shown to cause tumor remission. In animal studies, compounds inducing a procoagulant state, such as an inhibitor of protein C, have been used to cause tumor remission. New studies have shown that soluble cytokine receptors, such as tumor necrosis factor receptors (“TNF-Rs”) which are released in a soluble form from tumor cells, in high concentrations relative to normal cells, may restore the immune system's attack on the tumor cells (Jablonska and Peitruska, Arch. Immunol. Ther. Exp. (Warsz) 1997, 45(5-6), 449-453; Chen, et al., J. Neuropathol. Exp. Neurol. 1997, 56(5), 541-550).
- U.S. Pat. No. 4,708,713 to Lentz describes an alternative method for treating cancer, involving ultrapheresis to remove compounds based on molecular weight, which promotes an immune attack on the tumors by the patient's own white cells.
- Despite all of these efforts, many patients die from cancer; others are terribly mutilated. It is unlikely that any one therapy will be effective to cure all types of cancer.
- It is therefore an object of the present invention to provide a method and system for treatment of solid tumors.
- It is a further object of the present invention to provide a method and compositions that does not involve non-selective, extremely toxic, systemic chemotherapy.
- A method to treat disorders characterized by production of soluble TNF receptors, such as many types of cancer, and certain diseases such as HIV, where the disease immunosuppresses the patient, has been developed. Antibodies which bind to TNF receptor, including the soluble TNF receptor, are administered to the patient in an amount effective to neutralize the molecules which block binding of TNF to the receptor, thereby inducing inflammation. In the preferred embodiment, the patient's blood is passed through a column having antibodies immobilized thereon, which bind to and remove the soluble TNF receptor molecules. The process can be performed alone or in combination with other therapies, including radiation, chemotherapy (local or systemic, for example, treatments using alkylating agents, doxyrubicin, carboplatinum, cisplatinum, and taxol, and other drugs which may be synergistic in effect with “unblocked” cytokines: or anti-angiogenic factors. Antibodies may be utilized which are immunoreactive with one or more of the following:
- tissue necrosis factor receptor-1 (“TNFR-1”), tissue necrosis factor receptor-2 (“TNFR-2”), interleukin-2 receptor (“IL-2R”), interleukin-1 receptor (“IL-1R”), interleukin-6 receptor (“IL-6R”), or interferon-gamma receptor (“sIFN-gammaR”). The patient is preferably treated daily for at least three weeks, diagnostic tests conducted to verify that there has been shrinkage of the tumors, then the treatment regime is repeated as needed.
- Innate, natural and antigen specific killer mechanisms represent the best arsenal for dealing with melanoma cells in vitro and in vivo. Central to these cellular destructive mechanisms is tumor necrosis factor (TNF-), an inflammatory cytokine produced by macrophages and earlier mononuclear cells and TNF-, a related cytokine produced and secreted by killer T-lymphocytes with highly selective antigen specific receptors, Old L. J., Antitumor activity of microbial products and tumor necrosis factor, and Bonavida B, et al., (eds): Tumor Necrosis Factor/Cachecin and Related Cytokines, Basell, Karger, 1988. p7; Haranaka K., et al, Cytotoxic activity of tumor necrosis factor (TNF) on human cancer cells in vitro, Jpn J Exp Med 1981; 51:191; Urban J. L. II, et al., Tumor necrosis factor: A potent effector molecule for tumor cell killing by activated macrophages, Proc Natl Acad Sce USA 1986; 83-5233; Philip R., et al., Tumor necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, Gamma-interferon and Interleukin-1, Nature 1986; 323:86; Ziegler-Heitbrock H. W., et al., Tumor necrosis factor as effector molecule in monocyte-mediated cytotoxicity, Cancer Res 1986; 46:5947; and Feinman R., et al., Tumor necrosis factor is a important mediator of tumor cell killing by human monocytes, J Immunol 1987; 138:635. They derive from billions of clones, each with its own specificity. Thus, one clone of these thymus derived lymphocytes gives rise to T-killer (cytotoxic lymphocytes), or other functional classes each with the one specificity of the parent clone. Their mechanisms are related to both antibody dependent and antibody independent cellular tumor toxicity. Receptors for TNF on neoplastic, viral infected, aged cells or those otherwise targeted for destruction can be both a blessing and a curse. In a positive role, they allow binding of TNF to the surface for internalization and destruction of the cell. Unfortunately this receptor hypothesis has a double edge. Certain neoplastic cells such as active melanomas secrete large amounts of these receptors (sTNF-R1 and sTNF-R2) that promptly bind TNF before it can get within the vicinity of the cell, Haranaka K., et al, Cytotoxic activity of tumor necrosis factor (TNF) on human cancer cells in vitro, Jpn J Exp Med 1981; 51:191; Urban J. L. II, et al., Tumor necrosis factor: A potent effector molecule for tumor cell killing by activated macrophages, Proc Natl Acad Sce USA 1986; 83-5233; Philip R., et al., Tumor necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, Gamma-interferon and Interleukin-1, Nature 1986; 323:86; Ziegler-Heitbrock H. W., et al., Tumor necrosis factor as effector molecule in monocyte-mediated cytotoxicity, Cancer Res 1986; 46:5947; and Feinman R., et al., Tumor necrosis factor is a important mediator of tumor cell killing by human monocytes, J Immunol 1987; 138:635. This serves as a defense mechanism on the part of the targeted cell rendering the host immune system ineffective. TNF-R1 and R2 have been characterized with respect to molecular weights (55 and 75 kD respectively), Old L. J., Antitumor activity of microbial products and tumor necrosis factor, and Bonavida B, et al., (eds): Tumor Necrosis Factor/Cachecin and Related Cytokines, Basell, Karger, 1988. p7, Langkopf F., et al., Soluble tumor necrosis factor receptors as prognostic factors in cancer patients, Lancet 1994; 344:57-58; Howard S. T., et al., Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumor necrosis factor receptor family, Virology 1991; 180:633-664; Mathias S, et al., Activation of the Sphingomyelin signaling pathway intact EL4 cells and in a cell-free system by IL-1b, Science 1993; 259-519-522; and Andrews J. S., et al., Characterization of the receptor for tumor necrosis factor (TNF) and lymphotoxin LT) on human T lymphocytes: TNF and LT differ in their receptor binding properties and the induction of MHC class I proteins on a human CD4+ T cell hybridoma, J Immunol 1990; 144:2582-2591. They serve to both down regulate the immune response in a normal fashion and overly suppress the immune response as stated above with respect to certain malignancies. They are particularly abundant, and at high level, in patients with melanoma.
- I. Anti-Cytokine Receptor Molecules.
- Selective removal or neutralization of the soluble cytokine receptors (which function as inhibitors of the cytokine) can be used to promote a selective, safe inflammatory response against a tumor or cells infected with a pathogen such as a virus like HIV or parasite. The neutralizing agent is typically an antibody reactive with the receptor. the antibodies will typically be reactive with both the soluble and immobilized forms of the receptor. These include soluble tumor necrosis factor receptor (“sRNF-R”), soluble interleukin-2 receptor (“sIL-2R”), soluble interleukin-1 receptor (“sIL-1R”), soluble interleukin-6 receptor (“sIL-6R”), or soluble interferon-gamma receptor (“sIFN-gammaR”). The advantage of selective removal or neutralization is that the same beneficial effect is obtained in treatment of the disorder but the treatment is much less expensive and safer since exogenous plasma or albumin does not have to be administered to the patient when there is selective removal, as in the case of ultrapheresis and the cytotoxic effects of radiation and chemotherapy are avoided.
- The receptors can be removed by binding to the cytokine, an epitope thereof, or an antibody to the receptor. The antibodies to the receptors can be immobilized in a filter, in a column, or using other standard techniques for binding reactions to remove proteins from the blood or plasma of a patient, or administered directly to the patient in a suitable pharmaceutically acceptable carrier such as saline. As used herein, antibody refers to antibody, or antibody fragments (single chain, recombinant, or humanized), immunoreactive against the receptor molecules. In the most preferred embodiment, the antibody is reactive with the carboxy-terminus of the shed receptor molecules, thereby avoid concerns with signal transduction by the receptor is still present on the cell surface.
- Antibodies can be obtained from various commercial sources such as Genzyme Pharmaceuticals. These are preferably humanized for direct administration to a human, but may be of animal origin if immobilized in an extracorporeal device. Antibodies may be monoclonal or polyclonal. The antibodies and device should be sterilized and treated to remove endotoxin and other materials not acceptable for administration to a patient.
- Antibodies to the receptor proteins can be generated by standard techniques, using human receptor proteins. Antibodies are typically generated by immunization of an animal using an adjuvant such as Freund's adjuvant in combination with an immunogenic amount of the protein administered over a period of weeks in two to three week intervals, then isolated from the serum, or used to make hybridomas which express the antibodies in culture. Because the methods for immunizing animals yield antibody which is not of human origin, the antibodies could elicit an adverse effect if administered to humans. Methods for “humanizing” antibodies, or generating less immunogenic fragments of non-human antibodies, are well known. A humanized antibody is one in which only the antigen-recognized sites, or complementarily-determining hypervariable regions (CDRs) are of non-human origin, whereas all framework regions (FR) of variable domains are products of human genes. These “humanized” antibodies present a lesser xenographic rejection stimulus when introduced to a human recipient.
- To accomplish humanization of a selected mouse monoclonal antibody, the CDR grafting method described by Daugherty, et al., (1991) Nucl. Acids Res., 19:2471-2476, incorporated herein by reference, may be used. Briefly, the variable region DNA of a selected animal recombinant anti-idiotypic ScFv is sequenced by the method of Clackson, T., et al., (1991) Nature, 352:624-688, incorporated herein by reference. Using this sequence, animal CDRs are distinguished from animal framework regions (FR) based on locations of the CDRs in known sequences of animal variable genes. Kabat, H. A., et al., Sequences of Proteins of Immunological Interest, 4th Ed. (U.S. Dept. Health and Human Services, Bethesda, Md., 1987). Once the animal CDRs and FR are identified, the CDRs are grafted onto human heavy chain variable region framework by the use of synthetic oligonucleotides and polymerase chain reaction (PCR) recombination. Codons for the animal heavy chain CDRs, as well as the available human heavy chain variable region framework, are built in four (each 100 bases long) oligonucleotides. Using PCR, a grated DNA sequence of 400 bases is formed that encodes for the recombinant animal CDR/human heavy chain FR protection.
- The immunogenic stimulus presented by the monoclonal antibodies so produced may be further decreased by the use of Pharmacia's (Pharmacia LKB Biotechnology, Sweden) “Recombinant Phage Antibody System” (RPAS), which generated a single-chain Fv fragment (ScFv) which incorporates the complete antigen-binding domain of the antibody. In the RPAS, antibody variable heavy and light chain genes are separately amplified from the hybridoma mRNA and cloned into an expression vector. The heavy and light chain domains are co-expressed on the same polypeptide chain after joining with a short linker DNA which codes for a flexible peptide. This assembly generated a single-chain Fv fragment (ScFv) which incorporates the complete antigen-binding domain of the antibody. Compared to the intact monoclonal antibody, the recombinant ScFv includes a considerably lower number of epitopes, and thereby presents a much weaker immunogenic stimulus when injected into humans.
- The antibodies can be formulated in standard pharmaceutical carriers for administration to patients in need thereof. These include saline, phosphate buffered saline, and other aqueous carriers, and liposomes, polymeric microspheres and other controlled release deliver devices, as are well known in the art. The antibodies can also be administered with adjuvant, such as muramyl dipeptide or other materials approved for use in humans (Freund's adjuvant can be used for administration of antibody to animals). In the preferred embodiment, antibodies are immobilized to a solid support, such as the SEPHAROSE™ column in the examples, using standard techniques such as cyanogen bromide or commercially available kits for coupling of proteins to membranes formed of materials such as nitrocellulose or polycarbonate.
- Treatment is conducted over a period of time until a positive indication is observed. This is typically based on diagnostic tests which show that there has been some reduction in tumor size or which suggests tumor inflammation. The patient is preferably treated daily for three weeks, diagnostic tests conducted to verity that there has been shrinkage of the tumors and/or inflammation, then the treatment regime is repeated.
- Surgical (or vacuum) removal of necrotic material may be required prior to or during treatment to avoid toxicity associated with high tumor burden.
- II. Treatment with Adjuvant Therapies
- It would clearly be advantageous to cause complete remissions. Based on the presumed mechanism that the process is removing immune inhibitors produced by the tumors, especially inhibitors of cytokines and other immune mediators, it is possible to treat the patients with adjuvant or combination therapies, that enhance the results achieved with the ant6ibodies to TNF receptors. These include anti-angiogenic compounds, such as thalidomide, procoagulant compounds, cytokines and other immunostimulants. Standard chemotherapeutic agents and/or radiation can also be used with the ultrapheresis with the antibody treatment.
- A. Anti-Angiogenic Compounds
- Any anti-angiogenic compound can be used. Exemplary anti-angiogenic compounds include O-substituted fumagillol and derivatives thereof, such as TNP-470, described in U.S. Pat. Nos. 5,135,919, 5,698,586, and 5,290,807 to Kishimoto, et al.; angiostatin and endostatin, described in U.S. Pat. No. 5,290,807, 5,639,725 and 5,733,876 to O'Reilly; thalidomide, as described in U.S. Pat. Nos. 5,629,327 and 5,712,291 to D'Amato; and other compounds, such as the anti-invasive factor, retinoic acid, and paclitaxel, described in U.S. Pat. No. 5,716,981 to Hunter, et al., and the metalloproteinase inhibitors described in U.S. Pat. No. 5,713,491 to Murphy, et al. Thalidomide is administered once daily, 200 mg orally.
- B. Procoagulant Compounds
- Protein C is a vitamin K-dependent plasma protein zymogen to a serine protease. Upon activation it becomes a potent anticoagulant. Activated protein C acts through the specific proteolysis of the procoagulant cofactors, factor VIIIa and factor Va. This activity requires the presence of another vitamin K-dependent protein, protein S, calcium and a phospholipid (presumably cellular) surface. As described in Hemostasis and Thrombosis: Basic Principles and Clinical Practice 2nd Ed., Colman, R. W., et al., p. 263 (J. B. Lippincott, Philadelphia, Pa. 1987), protein C circulates in a two-chain form, with the larger, heavy chain bound to the smaller light chain through a single disulfide link. Protein C is activated to activated protein C (APC). Thrombin is capable of activating protein C by the specific cleavage of the Arg12-Leu13 bond in the heavy chain. In vivo, in the presence of physiological concentrations of calcium, the rate of this activation is enhanced dramatically when thrombin is bound to the endothelial cell cofactor, thrombomodulin. Matschiner, et al., Current Advances in Vitamin K Research, pp. 135-140, John W. Suttie, ed. (Elsevier Science Publishing Co., Inc. 1988) have further reviewed the role of the Vitamin K dependent proteins in coagulation.
- Blockage of the natural anticoagulant pathways, in particular the protein C pathway, uses the natural procoagulant properties of the tumor to target the tumor capillaries for microvascular thrombosis, leading to hemorrhagic necrosis of the tumor, as described in U.S. Pat. No. 5,147,638 to Esmon, et al. Examples of such compounds include anti-protein C and anti-protein S.
- C. Cytokines
- The biologic activity and clinical effectiveness of pro-inflammatory cytokines is augmented by ultrapheresis in the patient with cancer and other states of acquired immune tolerance Specifically, both TNF alpha and TNF beta, in doses of between approximately 100 to 500 micrograms per meter squared body surface area (M2BSA), can enhance the immune reaction in aggressive tumors. Monocyte and lymphocyte activation is augmented by INF-alpha, INF-beta and gamma. The IL-1 and IL-2 receptor antagonists are removed by ultrapheresis and thereby upregulate the in vivo activity of these cytokines. An 80 kD glycoprotein, which is responsible for inhibiting blastoid transformation in advanced malignancy, chronic infectious disease and pregnancy, has recently been found, and appears to be responsible for the loss of delayed hypersensitivity reactions in these diseases, which is removed by this process. This is significant because in removing this type of suppression, vaccines of all types will work better. Dosage regimes for IFN-alpha and beta are 3 M units subcutaneous three times a week up to 20 M units/M2 BSA daily. Interferon-gamma is administered in a dosage of between 100 to 1000 micgms per day.
- D. Chemotherapeutic Agents
- Preferred chemotherapeutic agents are those which are synergistic with TNF, for example, alkylating agents, doxyrubicin, carboplatinum, cisplatinum, and tomoxifen. Tamoxifen plays a role not only in blocking of estrogen receptors but also certain growth factor receptors such as epidermal derived growth factor (“EDGF”), fibroblast derived growth factor (“FDGF”), tumor derived growth factor (“TDGF”), TDGF-β and platelet derived growth factor (“PDGF”) and therefore may be complementary to inflammation against cancers provoked by ultrapheresis.
- E. Radiation
- Radiation therapy is destructive of normal tissue, causing tumors to die partially by an inflammatory attack. Ultrapheresis allows the use of lower doses of radiation to kill residual tumor cells and spare normal tissue. In a preferred method, ultrapheresis is used as the initial therapy, followed by radiation at approximately one-half of the normal dosages. It is well established that TNF kills tumor cells by generating free oxygen radicals, hydroxyl radicals and halide ions, and that radiation therapy generates carbonium ions in tissue. Therefore the combination of the two is more effective in killing cancer cells than either alone.
- Materials and Methods
- Monoclonal antibody was obtained from R&D Systems, Minneapolis, Minn., and purified for administration to a patient. This antibody is reactive with TNF R1 and R2 inhibitors.
- A filtration system was assembled using an Eva Flux 4 A filter as the primary filter to remove ultrafiltrate containing these inhibitors from the cancer patient's blood. Monoclonal antibody in a dose of 1 mg per liter of normal ultrafiltrate of the monoclonal antibody and 1 mg of the $2 monoclonal antibody were added to that replacement solution. In this circuit the ultrafiltrate of the initial 4 A filter was delivered by a separate blood pump to a Kuraray 3 A filter. The retentate of the 3A filter was then discarded and the ultrafiltrate of the 3A filter was metered back into the filtered blood from the 4 A filter as replacement solution. To make the discard; i.e., the retentate of the 3 A filter, normal ultrafiltrate with monoclonal antibody added to it was metered into the intra circuit between the 4 A and 3 A filters.
- Results
- Addition of the monoclonal antibodies to ultrafiltrated cancer sera that possess elevated levels of the inhibitors decreases the level of detectable inhibitor by Elias Assay to zero.
- Addition of the monoclonal antibodies to the replacement fluid following ultrapheresis led to an increased reduction of both the soluble receptor to TNF R1 and R2 in the ultrafiltrate of the second filter.
- The purpose of this was to test whether or not this murine monoclonal antibody could capture the inhibitor and aid in its removal from blood since the complex of antibody and antigen could not pass through the pores of the 3 A filter and thus be discarded in the retentate of the 3A filter. This was considerably more effective than the single separation technique and replacement with normal ultrafiltrate. There was also a heightened tumor specific inflammatory response by doing this and an increased rate of tumor destruction. These experiments strongly indicate that the monoclonal antibody, preferably humanized to 97% to 99% human form by substituting human constant regions for human constant regions on the antibody, preserve its capturing and neutralizing capability with the murine variable regions of the antibody and use the antibody as the therapeutic drug in clinical trials with a very high expectation that it would neutralize soluble receptors to TNF and cause tumor destruction in a human.
- A patient with vaginal metastasis of colon cancer was treated for one week with a three hour infusion of monoclonal antibody to TNF receptor 1 and TNF receptor 2. This led to a 75% reduction in the tumor size within one week.
- A procedure is described in case report form, that utilizes apheresis and immunological affinity chromatography to treat a melanoma patient with short term need and weakening long term prognosis.
- Previous studies utilizing ultrafiltration, with selective pore sieving by passing patient's plasma through cartridges, have been shown to reduce sTNF-R1 and R2 levels. The period of this procedure seems to be of sufficient length to allow TNF to rebound and selectively produce apoptosis or membrane disarray of melanoma cells, Gatanaga T., et al., Identification of TNF-LT blocking factor(s) in the serum and ultrafiltrates of human cancer patients, Lymphokine Res 1990; 9:225-9. Instead of using ultrafiltrate cartridges, this apheresis system was coupled to Sepharose® gel columns in parallel, one of which contained monoclonal human anti TNF-R1 and the second anti TNF-R2. The concept of affinity chromatography preparations has been technically available for protein separation and purification, and improved upon over the past 30 years, Ey, P. L., et al., Isolation of pure IgG1, IgG2a, and IgG2b. immunoglobulins from mouse serum using protein A-Sepharose, Immunochemistry 1978; 15:429-436. This type of device represents one of the few examples of linking in vivo production of TNF inhibitors to in vitro removal and return of the purified extracted plasma to the patient to prevent fluid reduction.
- The patient is a 55 year old Russian gentleman with metastatic melanoma. The patient smoked 2-3 packs of cigarettes a day for some 20 years. He quit this habit several years ago. He was also a heavy alcohol user in years past but had decreased his intake to 1-2 glasses of wine a day. Review of his medications on this date revealed methylprednisolone 4 mg in AM and 4 mg in PM. Apparently this was being taken as replacement therapy for adrenal cortical suppression that was graded iatrogenically at the time of the treatment of his alveolitis (see below). He was additionally taking narcotic analgesics. As a child he suffered the usual childhood diseases, denies rheumatic fever, scarlet fever or diphtheria. As an adult he has had no major medical illnesses save those described above. He has had no other major surgeries in the past and has no known allergies.
- His history of present illness began in November of 1995 when he noted growth of a right facial naevus which bled and enlarged over the period of one year. This was treated initially by cryotherapy. It regrew within two months and was excised. Histology was that of a malignant melanoma (Clark's level unknown). Staging work up at the time was negative and included CT scans of the head, neck, chest and abdomen. He remained disease free until March of 1996 when he developed right cervical and right submental adenopathy. Preoperative CT scan of the head, neck, chest and abdomen confirmed the right cervical adenopathy but revealed no other sites of metastases. In June of 1996 he underwent re-excision with a right radical neck dissection. In this material, one lymph node was histologically confirmed to involve melanoma. The patient was treated with a course of Vindesine 3 mg/m2 every three weeks, Dacarbazine 100 mg/m2 every three weeks for four cycles. He subsequently developed cutaneous metastases in the skin of his left shoulder, multiple metastases to the scars within the left anterolateral neck and multiple axillary metastases treated with fifteen subsequent excisions of recurrent metastases. In March of 1999 he was offered a trial of Interleukin-2 but on this developed severe pulmonary toxicity that had a protracted course and was diagnosed as idiopathic fibrosing alveolitis. Interleukin-2 was discontinued and he received radiation therapy to his right neck and axilla for six weeks beginning in the month of May 1999. He developed low back pain in August of 1999. Work up in October of 1999 revealed bone metastasis of the vertebral body of T-11 and subsequent MRI revealed a lytic destructive process in the right transverse process and pedicle of the 11th thoracic vertebra, as well as complete replacement of the vertebral body at T-11. Additional metastases were appreciated in the vertebral body of the 9th thoracic vertebral as well as the 10th. Also there was involvement of L-1 and L-2 vertebral bodies. Tumor seen again on the Mar. 16, 2000 MRI revealed growth posteriorly from the mid body of the 11th thoracic vertebral into the spinal canal by 7.4 to 7.8 mm with posterior displacement of the spinal cord. CT scan of the chest, abdomen and pelvis revealed possible multiple liver metastases but no other suggestion of visceral metastases.
- The patient was then considered for a trial of UltraPheresis™ in an effort to reduce solubilized receptors to tumor necrosis factor, both sTNF-R1 and sTNF-R2. As facilities for the application of this form of semi-selective plasma exchange did not exist in Moscow at this time, affinity column separation of inhibitors was explored. Monoclonal antibodies against sTNF-R1 and R2 delivered to the Cardiology Research Center in Moscow for Dr. Sergei N. Petrovsky, PhD, head of the group for Affinity Sorbents for Medicine, Pocard, Ltd,. 3-rd Cherepkovskaya str., 15a, Moscow, 121552, Russia. Ninety milligrams of anti sTNF-R1 monoclonal antibody and 180 mg of anti sTNF-R2 monoclonal antibody were then bound with sterile Sepharose® using cyanogen bromide in a glass column previously described for use in the lipopack cholesterol absorbent column technology. The particular methodology used is well described and is commercially available in Russia for the development of these LDL absorbent columns. The columns were prepared under sterile conditions in a GSIO 9,001 facility. They were subjected to endotoxin testing, viral, fungal and bacterial cultures, and prepared for human use under written Informed Consent and under approval of the Kremlin President's Hospital Medical Center.
- On May 2, 2000 the patient's physical examination was that of a well-developed, well-nourished male who appeared his stated years. Examination of his head revealed a normal hair distribution and texture. His tympanic membranes and external auditory canals were clear. The sclerae and conjunctivae were clear. The pupils were round, reactive to light and accommodation. EOM intact. Funduscopic examination was normal. He had a healed graft over his right inferior cheek and extensive scarring over the right anterolateral neck consistent with his history of prior right radical neck dissection. There were no demonstrable pathologic masses within the skin, the scar, or pathologic nodes appreciated either in the cervical nodes or the supraclavicular fossae bilaterally. His lungs were clear to ausculation and percussion. His precordium demonstrated a non-displaced PMI, a normal S1 and S2 without gallop, murmur or rub. With the right arm exhibited there was 3+lymphedema. The right axilla was poorly examined due to extensive scarring in that area but no palpable nodes were appreciated. His abdomen was mildly obese. His liver and spleen were normal to physical examination. His axillary lymphatics were unremarkable. The genitalia was that of a normal mature male without pathologic mass. The lower extremities revealed no edema, cyanosis or clubbing and exhibited full ROM. His neurologic examination included a normal mental status. Cranial nerves 2-12 were intact. His DTR's were 2+ and symmetric. Motor and sensory testing was normal. His cerebellar examination revealed no dysmetria, dysarthria or dysdiadochokinesia. He was essentially confined to bed due to back pain only, but was able to roll from left to right without assistance. He had been confined to a wheelchair for the antecedent two months due to back pain and was wearing a back brace which was removed for physical exam.
- His laboratory parameters included a hemoglobin of 8.8 gms, WBC 2,800 with normal differential. His platelet count was 121,000. The comprehensive metabolic panel was unremarkable and alkaline phosphatase was normal.
- An MRI scan of the patient's 11th thoracic vertebral body revealed a mass placing pressure on the spinal cord. This was taken during the week prior to intensive therapy started in April of 2000 and continuing through May.
- On the first day an 18 gauge plastic cannula was inserted in the left antecubital vein. A second was established in the right greater saphenous vein of the leg. The patient was connected to a standard Cobe Spectra centrifically based plasma separator. Six hundred cc's of plasma was then harvested and replaced with 5% albumin in saline. The patient's plasma was then pumped over column one which contained 45 mg of anti sTNF-R1 monoclonal antibody and then passed to column two which contained 90 mg of anti sTNF-R2 monoclonal antibody. The material eluted from the column was then analyzed for the level of each inhibitor still in the plasma and 50 cc's of that plasma was then injected into the patient at the end of pheresis to look for any febrile reactions or allergic reactions. He tolerated this with no apparent clinical adverse effect.
- Subsequent analyses of the patient's plasma and the eluate of the column revealed that the column was able to capture essentially all of the inhibitor presented to it in this 600 ml plasma volume. The patient was maintained in the hospital over night and on the morning of the 4th of May, he was brought from hospital room back to the apheresis suite. He had a comfortable evening and ate a normal dinner and breakfast. The IV's were re-established in the same sites. The patient was re-attached to the Cobe Spectra machine and on this date, 3 liters of plasma was harvested and delivered to the columns as described above in a continuous fashion until 3 liters of plasma was treated.
- His R1 level before treatment was 1500 and after treatment was 1450. His R2 level before treatment was 5000 and after treatment was 3800 on this date. Again he tolerated the procedure well with no clinical adverse effect and no increase in pain in his back.
- On the third day the 6th of May, the treatment was repeated. Three liters of plasma were again pheresed over the columns in an identical fashion as described above. His pretreatment R1 was 2300, post treatment R1 was 1600. Pretreatment R2 was 5200, post treatment R2 was 3200. At the end of each treatment the columns were washed with glycine buffer at a pH of 2.5 to elute the bound inhibitor from them and measure them quantitatively. It was determined that at these amounts of treated plasma the columns were not saturated and significant quantities of inhibitor removed.
- His fourth treatment was on the 7th of May. He was increased to 4 liters of treated plasma. The procedures were repeated each day with gradual escalations in amount of plasma treated to a maximum treated plasma of 8 liters on the May 10th, 11th, 12th, 13th, and 14th. On May 16th, two columns were used in parallel, thus increasing the amount of plasma delivered to each column remained at 30 mls per minute, for a total of 60 mls of plasma per minute. This resulted in a pretreatment R1 of 2600 and a post treatment of 1700. R2 pretreatment was 4250 and went to post treatment of 2700.
- He was subsequently treated with 8 liters of plasma a day using the double column method. On the 21st of May he had a repeat CAT scan of his spine which revealed complete resolution of tumor. Three days after that, May 24th, he had a repeat MRI which was compared to the pretreatment MRI and confirmed a complete response. The patient was followed carefully in the hospital by his attending physicians as well as attending neurosurgeons, who followed him on a daily basis concerned about tumor bleeding or tumor swelling in his tight and anatomically dangerous places but fortunately the patient enjoyed a complete response with no apparent adverse effect.
- For the details of daily treatment in terms of volumes, columns, blood flow rates and plasma flow rates see Table 1.
- The patient has enjoyed an apparent complete response without any significant adverse effect. He was able to get up and walk after the fourth procedure. Two additional courses were planned in an endeavor to consolidate this response. This case is consistent with the observations that a salutatory tumor response can be achieved in melanoma by removing solubilized receptors to TNF. This column is so specific that it removes only sTNF-R1 and R2 and that is the only explanation for the response that this man has had from an oncologic point of view. A profound column yield was observed on the third treatment day for sTNF-R2 with modulation for the remaining treatment days throughout this fifteen day course. R1 peaked on treatment day 7 with the total amount removed of 6 million pg. This also modulated throughout the course of treatments but never approached the 16 million mark set by sTNF-R2.
- Radiographic examination on the day following his first fifteen day course of apheresis with anti R1 and anti R2 affinity column extraction revealed no melanoma and considerable reduction of the lesion at the 4th lumbar vertebral body. Currently the patient remains active, with good appetite, is walking normally and his back pain is much improved. He has positive anticipation for his second course of apheretic treatments.
- Polyclonal antibodies were produced in New Zealand white rabbits injected with recombinant antigen, soluble tumor necrosis factor receptor (“STNF”) R1 and R, injected into the rabbit on a standard immunization protocol, then boosted. 200 mg of polyclonal antibody may be produced against STNF R1 and R2, per liter. The animals will be bled monthly. 200 mg of antibody can be bound safely to 200 mg of AH SEPHAROSE™ beads. The binding is done with ethanolamine and periodate. Binding is therefore excellent. This matrix is then placed in a 200 mg polycarbonate column. Each step is done in an aseptic fashion and the final product is then terminally sterilized with standard radiation protocols and subjected to USDA standard testing for pyrogen and infectious agents.
- This amount of antibody is enough to remove STNF R1 and STNF R2 in human extracellular water sufficient to reduce the level of 10,000 pg per ml to under 1,000 pg per ml in two to three hours of plasma exchange.
- The use of the columns to reduce inhibitor levels to less than 1000 pg/ml over a period of at least three weeks has resulted in remissions of between 40 and 90% in non-small cell lung cancer, breast cancer and melanoma patients. It is therefore predictable that the treatment results in a rather consistent tumor specific inflammatory response and the majority of patients having the most common tumor types, including breast, small cell lung, colon, ovarian, hepatic, melanoma, and renal cell carcinoma as well as ovarian and endometrial cancers should respond to the treatment. In combination with antibodies against vascular endothelial growth factor receptor and/or epidermal growth factor receptor and/or antibodies against fibroblast derived growth factor and transforming growth factor receptor, either singularly or in combination, the treatment is expected to produce excellent responses in these tumor types and may play a role in the clinical management of hematopoietic disorders as well.
- The methods and systems disclosed herein are useful for treatment of patients with cancer, immune-mediated disorders, chronic parasitism, some viral diseases especially viral diseases such as HIV which cause immunosuppresion, and other disorders characterized by elevated levels of TNF receptors or inhibitors to IL-2, IL-6, gamma interferon, or other pro-inflammatory signals as well as white cell activation. An example demonstrates efficacy in treating a cancer patient.
- Modifications and variations of the method and compositions described herein will be obvious to those skilled in the art. Such modifications and variations are intended to come within the scope of the appended claims.
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/153,524 US20050244371A1 (en) | 1998-05-22 | 2005-06-14 | Method and system to remove cytokine inhibitor in patients |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/083,307 US6620382B1 (en) | 1998-05-22 | 1998-05-22 | Method and compositions for treatment of cancers |
| US09/316,226 US6231536B1 (en) | 1998-05-22 | 1999-05-21 | Method and compositions for treatments of cancers |
| US16469599P | 1999-11-10 | 1999-11-10 | |
| US09/699,003 US7854717B1 (en) | 1998-05-22 | 2000-10-26 | Method and compositions for treatment of cancers |
| US09/709,045 US8197430B1 (en) | 1998-05-22 | 2000-11-10 | Method and system to remove cytokine inhibitor in patients |
| US11/153,524 US20050244371A1 (en) | 1998-05-22 | 2005-06-14 | Method and system to remove cytokine inhibitor in patients |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/699,003 Continuation-In-Part US7854717B1 (en) | 1998-05-22 | 2000-10-26 | Method and compositions for treatment of cancers |
| US09/709,045 Continuation US8197430B1 (en) | 1998-05-22 | 2000-11-10 | Method and system to remove cytokine inhibitor in patients |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050244371A1 true US20050244371A1 (en) | 2005-11-03 |
Family
ID=46177762
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/709,045 Expired - Fee Related US8197430B1 (en) | 1998-05-22 | 2000-11-10 | Method and system to remove cytokine inhibitor in patients |
| US11/153,524 Abandoned US20050244371A1 (en) | 1998-05-22 | 2005-06-14 | Method and system to remove cytokine inhibitor in patients |
| US11/929,340 Expired - Fee Related US8133490B2 (en) | 1998-05-22 | 2007-10-30 | Method and system to remove cytokine inhibitors in patients |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/709,045 Expired - Fee Related US8197430B1 (en) | 1998-05-22 | 2000-11-10 | Method and system to remove cytokine inhibitor in patients |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/929,340 Expired - Fee Related US8133490B2 (en) | 1998-05-22 | 2007-10-30 | Method and system to remove cytokine inhibitors in patients |
Country Status (1)
| Country | Link |
|---|---|
| US (3) | US8197430B1 (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7854717B1 (en) * | 1998-05-22 | 2010-12-21 | Biopheresis Technologies, Inc. | Method and compositions for treatment of cancers |
| US8133490B2 (en) | 1998-05-22 | 2012-03-13 | Biopheresis Technologies, Inc. | Method and system to remove cytokine inhibitors in patients |
| US10086126B2 (en) * | 2009-12-01 | 2018-10-02 | Exthera Medical Corporation | Methods for removing cytokines from blood with surface immobilized polysaccharides |
| US10188783B2 (en) | 2005-12-13 | 2019-01-29 | Exthera Medical Corporation | Method for extracorporeal removal of pathogenic microbe, an inflammatory cell or an inflammatory protein from blood |
| US10457974B2 (en) | 2013-11-08 | 2019-10-29 | Exthera Medical Corporation | Methods for diagnosing infectious diseases using adsorption media |
| US10537280B2 (en) | 2011-02-15 | 2020-01-21 | Exthera Medical Corporation | Device and method for removal of blood-borne pathogens, toxins and inflammatory cytokines |
| US10639413B2 (en) | 2013-06-24 | 2020-05-05 | Exthera Medical Corporation | Blood filtration system containing mannose coated substrate |
| US10786615B2 (en) | 2016-03-02 | 2020-09-29 | Exthera Medical Corporation | Method for treating drug intoxication |
| US10857283B2 (en) | 2014-09-22 | 2020-12-08 | Exthera Medical Corporation | Wearable hemoperfusion device |
| US10988543B2 (en) | 2015-11-11 | 2021-04-27 | Opi Vi—Ip Holdco Llc | Humanized anti-tumor necrosis factor alpha receptor 2 (anti-TNFR2) antibodies and methods of use thereof to elicit an immune response against a tumor |
| US20220054725A1 (en) * | 2019-11-19 | 2022-02-24 | Immunicom, Inc. | System and method for removal of immune inhibitors from biological fluids |
| US11266772B2 (en) | 2012-06-13 | 2022-03-08 | Exthera Medical Corporation | Use of heparin and carbohydrates to treat cancer |
| CN114650852A (en) * | 2019-11-19 | 2022-06-21 | 英谬免疫股份有限公司 | System and method for removing immunosuppressive agents from biological fluids |
| US11844895B2 (en) | 2014-04-24 | 2023-12-19 | Exthera Medical Corporation | Method for removing bacteria from blood using high flow rate |
| US11911551B2 (en) | 2016-03-02 | 2024-02-27 | Exthera Medical Corporation | Method for treating drug intoxication |
| US12090261B2 (en) | 2019-05-16 | 2024-09-17 | Exthera Medical Corporation | Method for modulating endothelial glycocalyx structure |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050265996A1 (en) * | 2004-04-30 | 2005-12-01 | Biopheresis Technologies, Inc. | Method and system to remove soluble TNFR1, TNFR2, and IL2 in patients |
| DE102004014983A1 (en) * | 2004-03-26 | 2005-10-20 | Univ Stuttgart | Recombinant polypeptides of the members of the TNF ligand family and their use |
| US8764695B2 (en) * | 2012-09-28 | 2014-07-01 | Isaac Eliaz | Reduction of galectin-3 levels by plasmapheresis |
| WO2015130737A2 (en) | 2014-02-28 | 2015-09-03 | Parker-Hannifin Corporation | Apheresis system |
| KR20230042391A (en) | 2014-10-03 | 2023-03-28 | 나노틱스 엘엘씨 | Compositions and methods for inhibiting the biological activity of soluble biomolecules |
| CN114146056A (en) | 2015-07-29 | 2022-03-08 | 纳米提克斯有限责任公司 | Modular compositions and related methods for scavenging soluble biomolecules |
| EP3565604A4 (en) | 2017-01-04 | 2020-09-09 | Nanotics, LLC | METHOD OF PLACEMENT OF DISHWASHING ITEMS |
Citations (83)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4116589A (en) * | 1977-04-15 | 1978-09-26 | Avco Corporation | Extracorporeal pulsatile blood pump comprised of side by side bladders |
| US4189470A (en) * | 1973-01-30 | 1980-02-19 | Bio-Response, Inc. | Method for the continuous removal of a specific antibody from the lymph fluid in animals and humans |
| US4191182A (en) * | 1977-09-23 | 1980-03-04 | Hemotherapy Inc. | Method and apparatus for continuous plasmaphersis |
| US4350156A (en) * | 1980-05-29 | 1982-09-21 | Japan Foundation For Artificial Organs | Method and apparatus for on-line filtration removal of macromolecules from a physiological fluid |
| US4375414A (en) * | 1971-05-20 | 1983-03-01 | Meir Strahilevitz | Immunological methods for removing species from the blood circulatory system and devices therefor |
| US4439332A (en) * | 1978-08-14 | 1984-03-27 | American Cyanamid Company | Stable emulsion copolymers of acrylamide and ammonium acrylate for use in enhanced oil recovery |
| USRE31688E (en) * | 1977-09-23 | 1984-09-25 | Hemotherapy, Inc. | Method and apparatus for continuous plasmapheresis |
| US4512763A (en) * | 1981-05-04 | 1985-04-23 | Gamma Medical Products, Inc. | Method and apparatus for selective removal of constituents of blood |
| US4581010A (en) * | 1981-03-24 | 1986-04-08 | Skurkovich Simon V | Method of immonosuppression after transplantation of cells, tissues and organs |
| US4605394A (en) * | 1982-12-03 | 1986-08-12 | Simon V. Skurkovich | Methods for the treatment of pathological conditions by removing interferon from the organism |
| US4614513A (en) * | 1984-08-13 | 1986-09-30 | Fred Hutchinson Cancer Research Center | Method and apparatus for treatment to remove immunoreactive substances from blood |
| US4634417A (en) * | 1982-12-06 | 1987-01-06 | Georgetown University | Process for treatment of tumors and apparatus therefor |
| US4664913A (en) * | 1982-05-24 | 1987-05-12 | Xoma Corporation | Method for treating plasma for transfusion |
| US4801449A (en) * | 1985-01-11 | 1989-01-31 | Imre Corporation | Method for treatment of Kaposi's sarcoma |
| US4824432A (en) * | 1981-03-24 | 1989-04-25 | S.V.S. Laboratories, Inc. | Method for treating AIDS and other immune deficiencies and immune disorders |
| US4863611A (en) * | 1987-04-30 | 1989-09-05 | Massachusetts Institute Of Technology | Extracorporeal reactors containing immobilized species |
| US4865841A (en) * | 1987-10-23 | 1989-09-12 | Imre Corporation | Methods and compositions for transient elimination of humoral immune antibodies |
| US5037649A (en) * | 1985-01-11 | 1991-08-06 | Imre Corporation | Method for treatment of HIV-infected patients |
| US5078673A (en) * | 1988-11-14 | 1992-01-07 | Neorx Corporation | Selective removal of radiolabeled antibodies |
| US5135919A (en) * | 1988-01-19 | 1992-08-04 | Children's Medical Center Corporation | Method and a pharmaceutical composition for the inhibition of angiogenesis |
| US5147638A (en) * | 1988-12-30 | 1992-09-15 | Oklahoma Medical Research Foundation | Inhibition of tumor growth by blockade of the protein C system |
| US5290807A (en) * | 1989-08-10 | 1994-03-01 | Children's Medical Center Corporation | Method for regressing angiogenesis using o-substituted fumagillol derivatives |
| US5403917A (en) * | 1992-10-12 | 1995-04-04 | B. Braun Melsungen, Ag | Process for the quantitative selective removal or preparative isolation of tumour necrosis factor (TNF) or/and lipopolysaccharides (LPS) from aqueous liquids |
| US5523096A (en) * | 1993-03-16 | 1996-06-04 | Applied Immune Sciences, Inc. | Removal of selected factors from whole blood or its components |
| US5597899A (en) * | 1993-03-29 | 1997-01-28 | Hoffmann-La Roche Inc. | Tumor necrosis factor muteins |
| US5605690A (en) * | 1989-09-05 | 1997-02-25 | Immunex Corporation | Methods of lowering active TNF-α levels in mammals using tumor necrosis factor receptor |
| US5610279A (en) * | 1989-09-12 | 1997-03-11 | Hoffman-La Roche Inc. | Human TNF receptor |
| US5621077A (en) * | 1989-06-01 | 1997-04-15 | Yeda Research And Development Co. Ltd. | Soluble IFN-β2/IL-6 binding protein its preparation, and pharmaceutical compositions containing it |
| US5626843A (en) * | 1993-02-26 | 1997-05-06 | Advanced Biotherapy Concepts, Inc. | Treatment of autoimmune diseases, including AIDS, by removel of interferons, TNFs and receptors therefor |
| US5629327A (en) * | 1993-03-01 | 1997-05-13 | Childrens Hospital Medical Center Corp. | Methods and compositions for inhibition of angiogenesis |
| US5639725A (en) * | 1994-04-26 | 1997-06-17 | Children's Hospital Medical Center Corp. | Angiostatin protein |
| US5643732A (en) * | 1971-05-20 | 1997-07-01 | Strahilevitz; Meir | Immunological assay methods |
| US5705615A (en) * | 1994-10-06 | 1998-01-06 | Beth Israel Deaconess Medical Center | Antibodies specific for HTm4 |
| US5713491A (en) * | 1993-11-12 | 1998-02-03 | Idv Operations Ireland Limited | Pourer for pouring liquids from two containers |
| US5716981A (en) * | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
| US5730713A (en) * | 1993-03-16 | 1998-03-24 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Removal of selected factors from whole blood or its components |
| US5736138A (en) * | 1990-02-28 | 1998-04-07 | Klaus Pfizenmaier | Monoclonal antibodies with specific binding against membrane proteins on human cells, and pharmaceutical compositions containing them |
| US5753227A (en) * | 1993-07-23 | 1998-05-19 | Strahilevitz; Meir | Extracorporeal affinity adsorption methods for the treatment of atherosclerosis, cancer, degenerative and autoimmune diseases |
| US5861483A (en) * | 1996-04-03 | 1999-01-19 | Pro-Neuron, Inc. | Inhibitor of stem cell proliferation and uses thereof |
| US5869047A (en) * | 1996-10-22 | 1999-02-09 | Blake Laboratories, Inc. | Methods for therapeutically treating immunocomprised persons |
| US5888511A (en) * | 1993-02-26 | 1999-03-30 | Advanced Biotherapy Concepts, Inc. | Treatment of autoimmune diseases, including AIDS |
| US5910252A (en) * | 1993-02-12 | 1999-06-08 | Cobe Laboratories, Inc. | Technique for extracorporeal treatment of blood |
| US5919898A (en) * | 1995-01-27 | 1999-07-06 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Absorbent for removing interleukins and tumor necrosis factor, and process for removing the same |
| US5932704A (en) * | 1992-11-19 | 1999-08-03 | Dana-Farber Cancer Institute | Antibodies for GM-CSF receptor and uses thereof |
| US6017527A (en) * | 1996-07-10 | 2000-01-25 | Immunex Corporation | Activated dendritic cells and methods for their activation |
| USRE36755E (en) * | 1989-09-05 | 2000-06-27 | Immunex Corporation | DNA encoding tumor necrosis factor-α and -β receptors |
| US6197289B1 (en) * | 1997-07-01 | 2001-03-06 | Terumo Cardiovascular Systems Corporation | Removal of biologically active agents |
| US6221614B1 (en) * | 1997-02-21 | 2001-04-24 | The Regents Of The University Of California | Removal of prions from blood, plasma and other liquids |
| US6231536B1 (en) * | 1998-05-22 | 2001-05-15 | M. Rigdon Lentz | Method and compositions for treatments of cancers |
| US6245038B1 (en) * | 1997-01-07 | 2001-06-12 | Helmut Borberg | Method for treatment of ophthalmological diseases |
| US6262127B1 (en) * | 1993-08-27 | 2001-07-17 | Novartis Ag | Polymeric matrices and their uses in pharmaceutical compositions |
| US20010010818A1 (en) * | 1998-12-09 | 2001-08-02 | Engle Steven B. | Methods and formulations for reducing circulating antibodies |
| US6287516B1 (en) * | 1998-07-10 | 2001-09-11 | Immunocept, L.L.C. | Hemofiltration systems, methods, and devices used to treat inflammatory mediator related disease |
| US6379708B1 (en) * | 1999-11-20 | 2002-04-30 | Cytologic, Llc | Method for enhancing immune responses in mammals |
| US20020058031A1 (en) * | 2000-09-19 | 2002-05-16 | Tung Hsiaoho Edward | Methods for preparing diagnostic reagents using antibody preparation |
| US20020086276A1 (en) * | 2000-12-28 | 2002-07-04 | Srivastava Pramod K. | Immunotherapeutic methods for extracorporeal modulation of CD36 and its ligands |
| US6428790B1 (en) * | 1995-04-27 | 2002-08-06 | The United States Of America As Represented By The Secretary Department Of Health And Human Services | Cyanovirin conjugates and matrix-anchored cyanovirin and related compositions and methods of use |
| US20020107469A1 (en) * | 2000-11-03 | 2002-08-08 | Charles Bolan | Apheresis methods and devices |
| US6432405B1 (en) * | 1991-03-15 | 2002-08-13 | Duke University | Method of inhibiting HIV infection with CD44 and anti-CD44 antibodies |
| US20020111577A1 (en) * | 2001-02-09 | 2002-08-15 | Laksen Sirimanne | Extra-corporeal vascular conduit |
| US6528057B1 (en) * | 1998-08-31 | 2003-03-04 | Julian L. Ambrus | Method for removal of HIV and other viruses from blood |
| US20030073822A1 (en) * | 2001-07-20 | 2003-04-17 | Jonas Lofling | Blood group antigen fusion polypeptides and method of use thereof |
| US6561997B1 (en) * | 1999-04-23 | 2003-05-13 | The Regents Of The University Of Michigan | Extracorporeal fluid circuit and related methods |
| US20030118584A1 (en) * | 1998-11-18 | 2003-06-26 | G.D. Searle & Co. | Restoration of platelet aggregation by antibody administration after GPIIB/IIIa antagonist treatment |
| US20030125657A1 (en) * | 1995-11-15 | 2003-07-03 | Robert Koll | Treatment of cardiomyopathy by removal of autoantibodies |
| US20030127390A1 (en) * | 1998-12-29 | 2003-07-10 | Occulogix Corporation | Rheological treatment methods and related apheresis systems |
| US20030133929A1 (en) * | 2000-06-29 | 2003-07-17 | Cham Bill E | Method of treating infectious diseases |
| US20030138349A1 (en) * | 1998-10-16 | 2003-07-24 | Mission Medical, Inc. | Blood processing system |
| US6602993B2 (en) * | 1989-05-18 | 2003-08-05 | Yeda Research And Development Co. Ltd. | DNA molecule encoding TNF binding ligands and vectors and host cells containing the DNA molecule |
| US20030148404A1 (en) * | 2000-07-27 | 2003-08-07 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Peptides and substances, methods and devices using same for diagnosing and treating neurodegenerative disorders |
| US6607501B2 (en) * | 2001-05-14 | 2003-08-19 | Reynolds G. Gorsuch | Process and apparatus for utilization of in vivo extracted plasma with tissue engineering devices, bioreactors, artificial organs, and cell therapy applications |
| US6607723B1 (en) * | 1991-08-23 | 2003-08-19 | Alberta Research Council | Methods and compositions for attenuating antibody-mediated xenograft rejection in human recipients |
| US20030163077A1 (en) * | 2000-06-15 | 2003-08-28 | Sung-Teh Kim | Automatic dialyzer and dialyzing method |
| US6627151B1 (en) * | 1997-06-13 | 2003-09-30 | Helmut Borberg | Method for treatment diseases associated with a deterioration of the macrocirculation, microcirculation and organ perfusion |
| US6685664B2 (en) * | 2001-06-08 | 2004-02-03 | Chf Solutions, Inc. | Method and apparatus for ultrafiltration utilizing a long peripheral access venous cannula for blood withdrawal |
| US20040054315A1 (en) * | 2000-05-23 | 2004-03-18 | Chf Solutions, Inc. | Method and apparatus for peripheral vein fluid removal in heart failure |
| US6774102B1 (en) * | 1999-09-29 | 2004-08-10 | Gambro Dialysatoren Gmbh & Co. Kg | Extracorporeal endotoxin removal method |
| US6866846B1 (en) * | 1995-10-05 | 2005-03-15 | Privates Institut Bioserv Gmbh | Patient-specific immunoadsorbers for the extracorporeal apheresis and methods for their preparation |
| US6878127B2 (en) * | 2001-04-10 | 2005-04-12 | Renaltech International, Llc | Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood |
| US20070065514A1 (en) * | 2005-09-22 | 2007-03-22 | Howell Mark D | Method for enhancing immune responses in mammals |
| US7196070B2 (en) * | 1995-08-03 | 2007-03-27 | Johns Hopkins University School Of Medicine | Prophylactic and therapeutic treatment of the ductal epithelium of a mammary gland for cancer |
| US20080075690A1 (en) * | 2006-09-22 | 2008-03-27 | Mark Douglas Howell | Method for enhancing immune responses in mammals |
| US7368295B2 (en) * | 2001-08-31 | 2008-05-06 | Fraunhofer-Gesellschaft Zur Foderung Der Angewandten Forschung E.V. | Nanoparticles comprising biologically active TNF which is immobilized on the same |
Family Cites Families (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4787974A (en) | 1981-06-29 | 1988-11-29 | Ambrus Clara M | Blood purification |
| BR8205658A (en) | 1981-10-02 | 1983-08-30 | Du Pont | FILTER PLASMA PHERESIS PROCESS AND APPLIANCE |
| DE3302384A1 (en) | 1983-01-25 | 1984-07-26 | Michael J. Lysaght | Plasma filter unit for removing pathological plasma molecules |
| US4486282A (en) | 1983-02-22 | 1984-12-04 | University Patents, Inc. | Precipitation of proteins from salt-containing proteinaceous fluids employing a desalting treatment, and use thereof in selective plasmapheresis |
| JPS59168843A (en) | 1983-03-14 | 1984-09-22 | ジエルマン サイエンシスインコ−ポレ−テツド | Method and filter for sampling serum specimen |
| US4633417A (en) | 1984-06-20 | 1986-12-30 | Step Engineering | Emulator for non-fixed instruction set VLSI devices |
| US4708713A (en) | 1984-11-16 | 1987-11-24 | Anisa Medical, Inc. | Method and system for removing immunosuppressive components from the blood of mammals |
| US4828830A (en) * | 1986-01-24 | 1989-05-09 | Genentech, Inc. | Method and composition for prophylaxis and treatment of viral infections |
| US4857314A (en) * | 1986-07-18 | 1989-08-15 | Health Research , Inc. | C-reactive proteins in treatment of animal and human cancers |
| US4963265A (en) | 1988-05-06 | 1990-10-16 | Applied Immunesciences, Inc. | Plasma processing device with anaphylatoxin remover |
| DE68927904T2 (en) | 1988-09-01 | 1997-09-04 | Takeda Chemical Industries Ltd | Fumagillol derivatives |
| US5359037A (en) | 1988-09-12 | 1994-10-25 | Yeda Research And Development Co. Ltd. | Antibodies to TNF binding protein I |
| US7264944B1 (en) | 1989-04-21 | 2007-09-04 | Amgen Inc. | TNF receptors, TNF binding proteins and DNAs coding for them |
| EP0447143B1 (en) | 1990-03-12 | 1996-05-15 | E.I. Du Pont De Nemours And Company | Carrier for biochemically active substances |
| US5340736A (en) | 1991-05-13 | 1994-08-23 | The President & Fellows Of Harvard College | ATP-dependent protease and use of inhibitors for same in the treatment of cachexia and muscle wasting |
| CA2107340C (en) | 1991-06-19 | 2003-06-10 | Gunther Adolf | Monoclonal antibodies against human tnf-binding protein i (tnf-bp i) |
| ATE188708T1 (en) * | 1991-08-21 | 2000-01-15 | Novartis Ag | ANTIBODIES DERIVATIVES |
| US5565332A (en) * | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
| WO1994009148A1 (en) | 1992-10-15 | 1994-04-28 | Toray Industries, Inc. | Process for producing major histocompatibility antigen class ii protein and material having the same immobilized thereon |
| DE4345200C2 (en) | 1993-04-14 | 1995-07-13 | Fresenius Ag | Hybridoma cells that form antibodies that are contained in drugs used to treat immune reactions |
| JP3161604B2 (en) * | 1994-05-13 | 2001-04-25 | プラズマセレクト ゲーエムベーハー テテロウ | A sterile, pyrogen-free column that binds proteins in the blood to remove and remove substances in the blood |
| DE4435612A1 (en) | 1994-10-05 | 1996-04-11 | Braun Melsungen Ag | Process for the simultaneous removal of tumor necrosis factor alpha and bacterial lipopolysaccharides from an aqueous liquid |
| DE69733467T2 (en) | 1996-01-25 | 2006-03-23 | Kaneka Corp. | ADSORBTIONSVORRICHTUNG AND ABSORBENS FOR IMMUNOBLOBINE AND THEIR COMPLEXES |
| US5925633A (en) | 1996-03-06 | 1999-07-20 | Synphar Laboraties, Inc. | 3-Substituted-4-oxa-1-azabicyclo 3,2,0!heptan-7-one as cysteine protease inhibitors |
| AU719482B2 (en) | 1996-03-14 | 2000-05-11 | Genentech Inc. | Uses of GDNF and GDNF receptor |
| DE19624250A1 (en) | 1996-06-18 | 1998-01-02 | Peter Ahrenholz | Haemodialysis appts |
| US5980887A (en) | 1996-11-08 | 1999-11-09 | St. Elizabeth's Medical Center Of Boston | Methods for enhancing angiogenesis with endothelial progenitor cells |
| RU2130069C1 (en) | 1997-03-14 | 1999-05-10 | Институт элементоорганических соединений им.А.Н.Несмеянова РАН | Method of virus concentrating |
| US20020159995A1 (en) | 1997-07-30 | 2002-10-31 | Renal Tech International | Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood, generated as a result of extracorporeal blood processing |
| US20020197249A1 (en) | 2001-04-10 | 2002-12-26 | Renal Tech International | Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in blood products |
| US20020197250A1 (en) | 2001-04-10 | 2002-12-26 | Renal Tech International | Biocompatible devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood |
| US6565831B1 (en) | 1999-02-24 | 2003-05-20 | Oncolytics Biotech Inc. | Methods for preventing reovirus recognition for the treatment of cellular proliferative disorders |
| US5965394A (en) | 1997-09-18 | 1999-10-12 | Incyte Pharmaceuticals, Inc. | Human importin alpha homolog |
| US6824986B1 (en) | 1997-10-06 | 2004-11-30 | University Of Cincinnati | Methods for measuring in vivo cytokine production |
| US5817522A (en) | 1997-11-12 | 1998-10-06 | Goodman; David B. P. | Self-contained assay device and method |
| US8197430B1 (en) | 1998-05-22 | 2012-06-12 | Biopheresis Technologies, Inc. | Method and system to remove cytokine inhibitor in patients |
| US20050265996A1 (en) | 2004-04-30 | 2005-12-01 | Biopheresis Technologies, Inc. | Method and system to remove soluble TNFR1, TNFR2, and IL2 in patients |
| AUPP525198A0 (en) | 1998-08-13 | 1998-09-03 | Medvet Science Pty. Ltd. | Monoclonal antibody inhibitor of GM-CSF, IL-3 and IL-5 and other cytokines and uses thereof |
| US6982089B2 (en) | 1999-02-24 | 2006-01-03 | Tact Ip, Llc | Cytokine antagonists for neurological and neuropsychiatric disorders |
| US6676662B1 (en) | 1999-10-20 | 2004-01-13 | Sulzer Spine-Tech Inc. | Bone instruments and methods |
| US6960178B2 (en) | 2000-02-02 | 2005-11-01 | Xepmed, Inc. | Apparatus for enhanced plasmapheresis and methods thereof |
| US6554788B1 (en) | 2000-06-02 | 2003-04-29 | Cobe Cardiovascular, Inc. | Hematocrit sampling system |
| US20020114728A1 (en) | 2001-02-13 | 2002-08-22 | Kulish Victor V. | Electronic Sterilizer |
| WO2003030879A1 (en) | 2001-10-05 | 2003-04-17 | Surmodics, Inc. | Particle immobilized coatings and uses thereof |
-
2000
- 2000-11-10 US US09/709,045 patent/US8197430B1/en not_active Expired - Fee Related
-
2005
- 2005-06-14 US US11/153,524 patent/US20050244371A1/en not_active Abandoned
-
2007
- 2007-10-30 US US11/929,340 patent/US8133490B2/en not_active Expired - Fee Related
Patent Citations (100)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4813924A (en) * | 1971-05-20 | 1989-03-21 | Meir Strahilevitz | Immunological methods for removing species from the blood circulatory system |
| US4375414A (en) * | 1971-05-20 | 1983-03-01 | Meir Strahilevitz | Immunological methods for removing species from the blood circulatory system and devices therefor |
| US5643732A (en) * | 1971-05-20 | 1997-07-01 | Strahilevitz; Meir | Immunological assay methods |
| US5037645A (en) * | 1971-05-20 | 1991-08-06 | Meir Strahilevitz | Immunological methods for treating schizophrenia |
| US4834973A (en) * | 1971-05-20 | 1989-05-30 | Meir Strahilevitz | Immunological methods for treating mammals |
| US6602502B1 (en) * | 1971-05-20 | 2003-08-05 | Meir Strahilevitz | Methods and devices for removing species |
| US4189470A (en) * | 1973-01-30 | 1980-02-19 | Bio-Response, Inc. | Method for the continuous removal of a specific antibody from the lymph fluid in animals and humans |
| US4116589A (en) * | 1977-04-15 | 1978-09-26 | Avco Corporation | Extracorporeal pulsatile blood pump comprised of side by side bladders |
| US4191182A (en) * | 1977-09-23 | 1980-03-04 | Hemotherapy Inc. | Method and apparatus for continuous plasmaphersis |
| USRE31688E (en) * | 1977-09-23 | 1984-09-25 | Hemotherapy, Inc. | Method and apparatus for continuous plasmapheresis |
| US4439332A (en) * | 1978-08-14 | 1984-03-27 | American Cyanamid Company | Stable emulsion copolymers of acrylamide and ammonium acrylate for use in enhanced oil recovery |
| US4350156A (en) * | 1980-05-29 | 1982-09-21 | Japan Foundation For Artificial Organs | Method and apparatus for on-line filtration removal of macromolecules from a physiological fluid |
| US4824432A (en) * | 1981-03-24 | 1989-04-25 | S.V.S. Laboratories, Inc. | Method for treating AIDS and other immune deficiencies and immune disorders |
| US4581010A (en) * | 1981-03-24 | 1986-04-08 | Skurkovich Simon V | Method of immonosuppression after transplantation of cells, tissues and organs |
| US4512763A (en) * | 1981-05-04 | 1985-04-23 | Gamma Medical Products, Inc. | Method and apparatus for selective removal of constituents of blood |
| US4664913A (en) * | 1982-05-24 | 1987-05-12 | Xoma Corporation | Method for treating plasma for transfusion |
| US4664913B1 (en) * | 1982-05-24 | 1990-01-30 | Xoma Corp | |
| US4605394A (en) * | 1982-12-03 | 1986-08-12 | Simon V. Skurkovich | Methods for the treatment of pathological conditions by removing interferon from the organism |
| US4634417A (en) * | 1982-12-06 | 1987-01-06 | Georgetown University | Process for treatment of tumors and apparatus therefor |
| US4614513A (en) * | 1984-08-13 | 1986-09-30 | Fred Hutchinson Cancer Research Center | Method and apparatus for treatment to remove immunoreactive substances from blood |
| US4801449A (en) * | 1985-01-11 | 1989-01-31 | Imre Corporation | Method for treatment of Kaposi's sarcoma |
| US5037649A (en) * | 1985-01-11 | 1991-08-06 | Imre Corporation | Method for treatment of HIV-infected patients |
| US4863611A (en) * | 1987-04-30 | 1989-09-05 | Massachusetts Institute Of Technology | Extracorporeal reactors containing immobilized species |
| US4865841A (en) * | 1987-10-23 | 1989-09-12 | Imre Corporation | Methods and compositions for transient elimination of humoral immune antibodies |
| US5135919A (en) * | 1988-01-19 | 1992-08-04 | Children's Medical Center Corporation | Method and a pharmaceutical composition for the inhibition of angiogenesis |
| US5078673A (en) * | 1988-11-14 | 1992-01-07 | Neorx Corporation | Selective removal of radiolabeled antibodies |
| US5147638A (en) * | 1988-12-30 | 1992-09-15 | Oklahoma Medical Research Foundation | Inhibition of tumor growth by blockade of the protein C system |
| US6602993B2 (en) * | 1989-05-18 | 2003-08-05 | Yeda Research And Development Co. Ltd. | DNA molecule encoding TNF binding ligands and vectors and host cells containing the DNA molecule |
| US5621077A (en) * | 1989-06-01 | 1997-04-15 | Yeda Research And Development Co. Ltd. | Soluble IFN-β2/IL-6 binding protein its preparation, and pharmaceutical compositions containing it |
| US5290807A (en) * | 1989-08-10 | 1994-03-01 | Children's Medical Center Corporation | Method for regressing angiogenesis using o-substituted fumagillol derivatives |
| US5605690A (en) * | 1989-09-05 | 1997-02-25 | Immunex Corporation | Methods of lowering active TNF-α levels in mammals using tumor necrosis factor receptor |
| USRE36755E (en) * | 1989-09-05 | 2000-06-27 | Immunex Corporation | DNA encoding tumor necrosis factor-α and -β receptors |
| US5808029A (en) * | 1989-09-12 | 1998-09-15 | Hoffmann-La Roche Inc. | DNA encoding a human TNF binding protein |
| US5610279A (en) * | 1989-09-12 | 1997-03-11 | Hoffman-La Roche Inc. | Human TNF receptor |
| US5736138A (en) * | 1990-02-28 | 1998-04-07 | Klaus Pfizenmaier | Monoclonal antibodies with specific binding against membrane proteins on human cells, and pharmaceutical compositions containing them |
| US6432405B1 (en) * | 1991-03-15 | 2002-08-13 | Duke University | Method of inhibiting HIV infection with CD44 and anti-CD44 antibodies |
| US6607723B1 (en) * | 1991-08-23 | 2003-08-19 | Alberta Research Council | Methods and compositions for attenuating antibody-mediated xenograft rejection in human recipients |
| US5403917A (en) * | 1992-10-12 | 1995-04-04 | B. Braun Melsungen, Ag | Process for the quantitative selective removal or preparative isolation of tumour necrosis factor (TNF) or/and lipopolysaccharides (LPS) from aqueous liquids |
| US5932704A (en) * | 1992-11-19 | 1999-08-03 | Dana-Farber Cancer Institute | Antibodies for GM-CSF receptor and uses thereof |
| US5910252A (en) * | 1993-02-12 | 1999-06-08 | Cobe Laboratories, Inc. | Technique for extracorporeal treatment of blood |
| US5626843A (en) * | 1993-02-26 | 1997-05-06 | Advanced Biotherapy Concepts, Inc. | Treatment of autoimmune diseases, including AIDS, by removel of interferons, TNFs and receptors therefor |
| US5888511A (en) * | 1993-02-26 | 1999-03-30 | Advanced Biotherapy Concepts, Inc. | Treatment of autoimmune diseases, including AIDS |
| US5629327A (en) * | 1993-03-01 | 1997-05-13 | Childrens Hospital Medical Center Corp. | Methods and compositions for inhibition of angiogenesis |
| US5712291A (en) * | 1993-03-01 | 1998-01-27 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis |
| US5730713A (en) * | 1993-03-16 | 1998-03-24 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Removal of selected factors from whole blood or its components |
| US5523096A (en) * | 1993-03-16 | 1996-06-04 | Applied Immune Sciences, Inc. | Removal of selected factors from whole blood or its components |
| US5597899A (en) * | 1993-03-29 | 1997-01-28 | Hoffmann-La Roche Inc. | Tumor necrosis factor muteins |
| US5716981A (en) * | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
| US6039946A (en) * | 1993-07-23 | 2000-03-21 | Strahilevitz; Meir | Extracorporeal affinity adsorption devices |
| US5753227A (en) * | 1993-07-23 | 1998-05-19 | Strahilevitz; Meir | Extracorporeal affinity adsorption methods for the treatment of atherosclerosis, cancer, degenerative and autoimmune diseases |
| US6264623B1 (en) * | 1993-07-23 | 2001-07-24 | Meir Strahilevitz | Extracorporeal affinity adsorption methods for the treatment of atherosclerosis, cancer, degenerative and autoimmune disease |
| US6569112B2 (en) * | 1993-07-23 | 2003-05-27 | Meir Strahilevitz | Extracorporeal affinity adsorption device |
| US6676622B2 (en) * | 1993-07-23 | 2004-01-13 | Meir Strahilevitz | Extracorporeal affinity adsorption methods for the treatment of atherosclerosis, cancer, degenerative and autoimmune diseases |
| US20020019603A1 (en) * | 1993-07-23 | 2002-02-14 | Meir Strahilevitz | Extracorporeal affinity adsorption device |
| US6262127B1 (en) * | 1993-08-27 | 2001-07-17 | Novartis Ag | Polymeric matrices and their uses in pharmaceutical compositions |
| US5713491A (en) * | 1993-11-12 | 1998-02-03 | Idv Operations Ireland Limited | Pourer for pouring liquids from two containers |
| US5639725A (en) * | 1994-04-26 | 1997-06-17 | Children's Hospital Medical Center Corp. | Angiostatin protein |
| US5792845A (en) * | 1994-04-26 | 1998-08-11 | The Children's Medical Center Corporation | Nucleotides encoding angiostatin protein and method of use |
| US5733876A (en) * | 1994-04-26 | 1998-03-31 | The Children's Medical Center Corporation | Method of inhibiting angiogenesis |
| US5705615A (en) * | 1994-10-06 | 1998-01-06 | Beth Israel Deaconess Medical Center | Antibodies specific for HTm4 |
| US5919898A (en) * | 1995-01-27 | 1999-07-06 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Absorbent for removing interleukins and tumor necrosis factor, and process for removing the same |
| US6428790B1 (en) * | 1995-04-27 | 2002-08-06 | The United States Of America As Represented By The Secretary Department Of Health And Human Services | Cyanovirin conjugates and matrix-anchored cyanovirin and related compositions and methods of use |
| US7196070B2 (en) * | 1995-08-03 | 2007-03-27 | Johns Hopkins University School Of Medicine | Prophylactic and therapeutic treatment of the ductal epithelium of a mammary gland for cancer |
| US6866846B1 (en) * | 1995-10-05 | 2005-03-15 | Privates Institut Bioserv Gmbh | Patient-specific immunoadsorbers for the extracorporeal apheresis and methods for their preparation |
| US20030125657A1 (en) * | 1995-11-15 | 2003-07-03 | Robert Koll | Treatment of cardiomyopathy by removal of autoantibodies |
| US5861483A (en) * | 1996-04-03 | 1999-01-19 | Pro-Neuron, Inc. | Inhibitor of stem cell proliferation and uses thereof |
| US6017527A (en) * | 1996-07-10 | 2000-01-25 | Immunex Corporation | Activated dendritic cells and methods for their activation |
| US5869047A (en) * | 1996-10-22 | 1999-02-09 | Blake Laboratories, Inc. | Methods for therapeutically treating immunocomprised persons |
| US6245038B1 (en) * | 1997-01-07 | 2001-06-12 | Helmut Borberg | Method for treatment of ophthalmological diseases |
| US6221614B1 (en) * | 1997-02-21 | 2001-04-24 | The Regents Of The University Of California | Removal of prions from blood, plasma and other liquids |
| US6627151B1 (en) * | 1997-06-13 | 2003-09-30 | Helmut Borberg | Method for treatment diseases associated with a deterioration of the macrocirculation, microcirculation and organ perfusion |
| US6197289B1 (en) * | 1997-07-01 | 2001-03-06 | Terumo Cardiovascular Systems Corporation | Removal of biologically active agents |
| US6620382B1 (en) * | 1998-05-22 | 2003-09-16 | Biopheresis Technologies, Llc. | Method and compositions for treatment of cancers |
| US6231536B1 (en) * | 1998-05-22 | 2001-05-15 | M. Rigdon Lentz | Method and compositions for treatments of cancers |
| US6287516B1 (en) * | 1998-07-10 | 2001-09-11 | Immunocept, L.L.C. | Hemofiltration systems, methods, and devices used to treat inflammatory mediator related disease |
| US6528057B1 (en) * | 1998-08-31 | 2003-03-04 | Julian L. Ambrus | Method for removal of HIV and other viruses from blood |
| US20030138349A1 (en) * | 1998-10-16 | 2003-07-24 | Mission Medical, Inc. | Blood processing system |
| US20030118584A1 (en) * | 1998-11-18 | 2003-06-26 | G.D. Searle & Co. | Restoration of platelet aggregation by antibody administration after GPIIB/IIIa antagonist treatment |
| US20010010818A1 (en) * | 1998-12-09 | 2001-08-02 | Engle Steven B. | Methods and formulations for reducing circulating antibodies |
| US20030127390A1 (en) * | 1998-12-29 | 2003-07-10 | Occulogix Corporation | Rheological treatment methods and related apheresis systems |
| US6561997B1 (en) * | 1999-04-23 | 2003-05-13 | The Regents Of The University Of Michigan | Extracorporeal fluid circuit and related methods |
| US6774102B1 (en) * | 1999-09-29 | 2004-08-10 | Gambro Dialysatoren Gmbh & Co. Kg | Extracorporeal endotoxin removal method |
| US20020119147A1 (en) * | 1999-11-20 | 2002-08-29 | Cytologic, Llc | Apparatus for enhancing immune responses in mammals |
| US6379708B1 (en) * | 1999-11-20 | 2002-04-30 | Cytologic, Llc | Method for enhancing immune responses in mammals |
| US20040054315A1 (en) * | 2000-05-23 | 2004-03-18 | Chf Solutions, Inc. | Method and apparatus for peripheral vein fluid removal in heart failure |
| US20030163077A1 (en) * | 2000-06-15 | 2003-08-28 | Sung-Teh Kim | Automatic dialyzer and dialyzing method |
| US20030133929A1 (en) * | 2000-06-29 | 2003-07-17 | Cham Bill E | Method of treating infectious diseases |
| US20030148404A1 (en) * | 2000-07-27 | 2003-08-07 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Peptides and substances, methods and devices using same for diagnosing and treating neurodegenerative disorders |
| US20020058031A1 (en) * | 2000-09-19 | 2002-05-16 | Tung Hsiaoho Edward | Methods for preparing diagnostic reagents using antibody preparation |
| US20020107469A1 (en) * | 2000-11-03 | 2002-08-08 | Charles Bolan | Apheresis methods and devices |
| US20020086276A1 (en) * | 2000-12-28 | 2002-07-04 | Srivastava Pramod K. | Immunotherapeutic methods for extracorporeal modulation of CD36 and its ligands |
| US20020111577A1 (en) * | 2001-02-09 | 2002-08-15 | Laksen Sirimanne | Extra-corporeal vascular conduit |
| US6878127B2 (en) * | 2001-04-10 | 2005-04-12 | Renaltech International, Llc | Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood |
| US6607501B2 (en) * | 2001-05-14 | 2003-08-19 | Reynolds G. Gorsuch | Process and apparatus for utilization of in vivo extracted plasma with tissue engineering devices, bioreactors, artificial organs, and cell therapy applications |
| US20040044301A1 (en) * | 2001-06-08 | 2004-03-04 | Chf Solutions, Inc. | Method and apparatus for ultrafiltration utilizing a long peripheral access venous cannula for blood withdrawal |
| US6685664B2 (en) * | 2001-06-08 | 2004-02-03 | Chf Solutions, Inc. | Method and apparatus for ultrafiltration utilizing a long peripheral access venous cannula for blood withdrawal |
| US20030073822A1 (en) * | 2001-07-20 | 2003-04-17 | Jonas Lofling | Blood group antigen fusion polypeptides and method of use thereof |
| US7368295B2 (en) * | 2001-08-31 | 2008-05-06 | Fraunhofer-Gesellschaft Zur Foderung Der Angewandten Forschung E.V. | Nanoparticles comprising biologically active TNF which is immobilized on the same |
| US20070065514A1 (en) * | 2005-09-22 | 2007-03-22 | Howell Mark D | Method for enhancing immune responses in mammals |
| US20080075690A1 (en) * | 2006-09-22 | 2008-03-27 | Mark Douglas Howell | Method for enhancing immune responses in mammals |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7854717B1 (en) * | 1998-05-22 | 2010-12-21 | Biopheresis Technologies, Inc. | Method and compositions for treatment of cancers |
| US8133490B2 (en) | 1998-05-22 | 2012-03-13 | Biopheresis Technologies, Inc. | Method and system to remove cytokine inhibitors in patients |
| US8197430B1 (en) | 1998-05-22 | 2012-06-12 | Biopheresis Technologies, Inc. | Method and system to remove cytokine inhibitor in patients |
| US10188783B2 (en) | 2005-12-13 | 2019-01-29 | Exthera Medical Corporation | Method for extracorporeal removal of pathogenic microbe, an inflammatory cell or an inflammatory protein from blood |
| US11065378B2 (en) | 2005-12-13 | 2021-07-20 | Exthera Medical Corporation | Method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from blood |
| US10688239B2 (en) | 2005-12-13 | 2020-06-23 | Exthera Medical Corporation | Method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from blood |
| US10086126B2 (en) * | 2009-12-01 | 2018-10-02 | Exthera Medical Corporation | Methods for removing cytokines from blood with surface immobilized polysaccharides |
| US11123466B2 (en) | 2009-12-01 | 2021-09-21 | Exthera Medical Corporation | Methods for removing cytokines from blood with surface immobilized polysaccharides |
| US10537280B2 (en) | 2011-02-15 | 2020-01-21 | Exthera Medical Corporation | Device and method for removal of blood-borne pathogens, toxins and inflammatory cytokines |
| US11266772B2 (en) | 2012-06-13 | 2022-03-08 | Exthera Medical Corporation | Use of heparin and carbohydrates to treat cancer |
| US10639413B2 (en) | 2013-06-24 | 2020-05-05 | Exthera Medical Corporation | Blood filtration system containing mannose coated substrate |
| US10487350B2 (en) | 2013-11-08 | 2019-11-26 | Exthera Medical Corporation | Methods for diagnosing infectious diseases using adsorption media |
| US10457974B2 (en) | 2013-11-08 | 2019-10-29 | Exthera Medical Corporation | Methods for diagnosing infectious diseases using adsorption media |
| US11306346B2 (en) | 2013-11-08 | 2022-04-19 | Exthera Medical Corporation | Methods for diagnosing infectious diseases using adsorption media |
| US11844895B2 (en) | 2014-04-24 | 2023-12-19 | Exthera Medical Corporation | Method for removing bacteria from blood using high flow rate |
| US10857283B2 (en) | 2014-09-22 | 2020-12-08 | Exthera Medical Corporation | Wearable hemoperfusion device |
| US10988543B2 (en) | 2015-11-11 | 2021-04-27 | Opi Vi—Ip Holdco Llc | Humanized anti-tumor necrosis factor alpha receptor 2 (anti-TNFR2) antibodies and methods of use thereof to elicit an immune response against a tumor |
| US10786615B2 (en) | 2016-03-02 | 2020-09-29 | Exthera Medical Corporation | Method for treating drug intoxication |
| US11911551B2 (en) | 2016-03-02 | 2024-02-27 | Exthera Medical Corporation | Method for treating drug intoxication |
| US12090261B2 (en) | 2019-05-16 | 2024-09-17 | Exthera Medical Corporation | Method for modulating endothelial glycocalyx structure |
| US20220054726A1 (en) * | 2019-11-19 | 2022-02-24 | Immunicom, Inc. | System and method for removal of immune inhibitors from biological fluids |
| CN114650852A (en) * | 2019-11-19 | 2022-06-21 | 英谬免疫股份有限公司 | System and method for removing immunosuppressive agents from biological fluids |
| US20220054725A1 (en) * | 2019-11-19 | 2022-02-24 | Immunicom, Inc. | System and method for removal of immune inhibitors from biological fluids |
Also Published As
| Publication number | Publication date |
|---|---|
| US8197430B1 (en) | 2012-06-12 |
| US20080057060A1 (en) | 2008-03-06 |
| US8133490B2 (en) | 2012-03-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8133490B2 (en) | Method and system to remove cytokine inhibitors in patients | |
| AU2009227872B2 (en) | Method and system to remove soluble TNFR1, TNFR2, and IL2 in patients | |
| US6620382B1 (en) | Method and compositions for treatment of cancers | |
| CA2390095C (en) | Method and system to remove cytokine inhibitor in patients | |
| CA2490218C (en) | Extracorporeal photopheresis in combination with anti-tnf treatment | |
| HK1125026B (en) | Method and system to remove soluble tnfr1, tnfr2, and il2r in patients |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BIOPHERESIS TECHNOLOGIES, INC., GEORGIA Free format text: CHANGE OF NAME;ASSIGNOR:BIOPHERESIS TECHNOLOGIES, LLC;REEL/FRAME:017678/0110 Effective date: 20050322 Owner name: BIOPHERESIS TECHNOLOGIES, LLC, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LENTZ, M. RIGDON;REEL/FRAME:017678/0100 Effective date: 20011221 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: INNATUS CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOPHERESIS TECHNOLOGIES, INC.;REEL/FRAME:031754/0411 Effective date: 20130604 |